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In complicated mechanical systems, fault diagnosis, especially regarding feature extraction from multiple sensors, remains a
challenge. Most existing methods for feature extraction tend to assume that all sensors have uniform sampling rates. However,
complex mechanical systems use multirate sensors. These methods use upsampling for data preprocessing to ensure that all
signals at the same scale can cause certain time-frequency features to vanish. To address these issues, this paper proposes a
Multirate Sensor Information Fusion Strategy (MRSIFS) for multitask fault diagnosis. The proposed method is based on
multidimensional convolution blocks incorporating multisource information fusion into the convolutional neural network
(CNN) architecture. Features with different sampling rates from the raw signals are run through a multichannel parallel fault
feature extraction framework for fault diagnosis. Additionally, time-frequency analysis technology is used to reveal fault
information in the association between time and frequency domains. The simulation platform’s experimental results show that
the proposed multitask model achieves higher diagnosis accuracy than the existing methods. Furthermore, manual feature
selection for each task becomes unnecessary in MRSIFS, which has the potential toward a general-purpose framework.

1. Introduction

In many complicated systems, researchers tend to take the
multisource data measured in the manufacturing process as
the features of deep learning (DL) algorithms [1–3]. How-
ever, existing studies guarantee that all sensors operate at
the same rate [4], which is often unrealistic in multisampling
rate signal fusion systems. Therefore, the issue of multirate
sensor information fusion is of great significance in the actual
industrial environment and has received extensive attention,
especially in the recent ten years [5, 6].

In recent studies, a model based on convolution takes
advantage of its excellent ability to extract features frommul-
tisource signals, which has achieved excellent performance in
multitask fault detection [7]. CNN can effectively extract
fault features from the raw signal with its weight-sharing
strategy, spatial pooling layer, local connection mechanism
[8, 9], and ability in handling periodic signals. It had been
proved that CNN is suitable to learn potential features

hidden in rotating mechanical signals because of its ability
in handing periodic signals [10]. With the 1D-to-2D conver-
sion of vibration signals or 1D convolutional structure, the
2D CNNmodels have been successfully applied in fault diag-
nosis directly using raw signals. In recent years, some CNN-
based deep learning models have been developed for
mechanical fault diagnosis.

For specific fault detection problems, some researchers
have made different improvements based on the original
convolutional layer, as follows: Jia et al. [11] proposed a
framework called deep normalized convolutional neural
network (DNCNN) for imbalanced fault classification of
machinery to overcome the weakness of imbalanced distribu-
tion of machinery health conditions. Apart from extracting
potential features hidden in signals, CNNs can detect local
features in a deep network. Recently, Peng et al. [12] pro-
posed a novel deeper 1D convolutional neural network
(Der-1DCNN), which includes the idea of residual learning
and can effectively learn high-level and abstract features
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while effectively alleviating the problem of training difficulty
and performance degradation of a deeper network. All these
works prove that CNN is capable of mechanical data analysis.
However, these works require that all signals for training and
testing CNN must be acquired at the same sensor sampling
frequency, which limits its further application.

Besides, a key disadvantage of 1D CNN is to detect the
local correlation of signals that is deficient. In the design of
the 2D CNN applied to the fault diagnosis algorithm of a
multisensor fusion system, some signal preprocessing trans-
formation procedures [13] and time-frequency analysis tech-
nology are needed. 2D CNN based on signal processing
techniques (fast Fourier transform, short-time Fourier trans-
formation, wavelet transform, etc.) has many successful
applications in the field of mechanical fault diagnosis. In
some works, the raw sensor time series data has been prepro-
cessed by some methods such as frequency transformation
and time-frequency transformation before being input to
the 2D CNN [14, 15].

Although researchers have tried to combine multisensor
signal fusion and deep learning, different sampling rates of
the mechanical system’s multiple components are not con-
sidered in the existing articles [16, 17]. The multirate sensor
problem has become an urgent problem to be solved. How-
ever, in the previous paper [18], only the raw signals from
the low-rate sensor are transferred through the upsampling
network. As mentioned earlier, the existing deep learning
model cannot solve the multirate sensor problem well in a
complicated mechanical system with multiple components.

This paper is aimed at developing an end-to-end Multi-
rate Sensor Information Fusion Strategy (MRSIFS), which
is dedicated to improving the feature fusion of multirate sam-
pled signals. This strategy can automatically extract sensitive
fault features from multirate sensor signals for fault detection
and diagnosis. Specifically, the strategy consists of three
sequential phases: multirate sensor feature extraction stage,
feature fusion stage, and regression stage. A key advantage
of the proposed strategy is that the fault features of different
scales can be automatically learned from the vibration signals
of different components through parallel multichannels in
complex mechanical systems. As we know, the different
dimensions of the filters have different frequency resolutions.
The sensitive frequency of the signal may exist in different
frequency bands. The proposed multidimensional parallel
convolution kernel can be used as filters with different
frequency resolutions for recognition, thus effectively
enhancing the frequency domain classification information
of raw signals. Thus, it is effective to add a multidimensional
convolution block (MDCB) in the multirate sensor feature
extraction layer to extract the different scale fault classifica-
tion information from the raw signals. Since the sensitive
frequency bands of the multidimensional convoluted signal
are included in the frequency component of the sequence
signal, to combine the fault features of different scale signals,
the feature fusion layer is used for cascading processing of the
fault features. Besides, 1D CNN and DNN implement low
sampling rate signal feature extraction and dimensionality
reduction, while 2D CNN based on short-time Fourier trans-
form (STFT) extracts higher sampling rate features [19]. The

strategy combines the advantages of the three network struc-
tures, and the three networks supplement the feature infor-
mation neglected by the other side.

The proposed strategy is tested on the hydraulic system
condition monitoring dataset, which is available from the
UC Irvine Machine Learning Repository [20]. In the experi-
mental part, MRSIFS are compared with the existing fault
diagnosis methods in classification accuracy. The compari-
son results show that MRSIFS can extract fault features from
multisampling sensor signals. The main contributions of our
work are listed as follows:

(1) For the complicated mechanical system with multirate
sampling, the designedmultirate sensor feature extrac-
tion layer can extract fault features from the multirate
sensor and fuse the fault feature automatically

(2) To improve the capability of the fault detection
model to learn fault feature information from different
frequency band signals, multidimensional convolu-
tional blocks are used to learn rich and complementary
fault information frommultirate sensor signals in par-
allel. MRSIFS is an end-to-end deep learning model,
which takes the original signal as input directly without
time-consuming feature selection. Therefore, it has the
potential to be extended to other industrial systems

(3) For the complicated mechanical system, the contri-
bution of the present work is the implementation of
a multitask classification framework, whereas the
existing studies on the dataset of tag classification
are all to propose and train a model for each task

The rest of this article is organized as follows. Section 2
discusses the related theories and the proposed framework.
The experimental results and discussion are presented in
Section 3. Finally, Section 4 is the conclusion.

2. Related Works

2.1. End-to-EndMultisensor Model.Despite existing methods
based on CNN have achieved the breakthrough performance
in detection and diagnosis [21–23], there are still some short-
comings that can be improved: multirate information feature
fusion can extract fault sensitive and complementary fea-
tures, which are not contained in a single sensor signal, thus
achieving higher accuracy and stability of the complex
mechanical system [24, 25]. Nevertheless, most existing
methods only used a single sensor, and few researchers
attempted the multirate sensor information fusion for diag-
nosis. Furthermore, in previous studies about multisensor
feature fusion, it is often assumed that all sensors have uni-
form sampling rates. In [16], the original AE signals of four
independent sensor groups are first preprocessed by time-
frequency analysis technology. Then, the feature matrices
are converted into grey images. Finally, grey images are
subsequently fed to the fine-tuned transfer learning (FTL)
for fault diagnosis of different components and prediction
of bearing degradation degree. In [17], the multisequence sig-
nal data collected by multiple sensors are converted into
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multichannel feature matrices, and a parallel convolutional
neural network (PCNN) is designed to fuse the fault informa-
tion extracted from the transformed feature matrix.

Besides, the signals of various sensors are difficult to be
measured at the same sampling rate, since the complicated
mechanical system and design principles between different
sensors [26–28]. Thus, the issue about multirate feature
extraction inevitably occurs in the process of sensor fusion
for complicated mechanical systems using multirate sensors
[29]. However, most existing work in the area of CNN for
multisensor feature fusion usage upsampling may make the
vanish of certain time-frequency features, unless all sample
rates are sufficiently close, and thus degrades the accuracy
of fault diagnosis. In the multisensor system with different
sampling rates, Li et al. [18] present an improved informa-
tion fusion framework based on the atrous convolution.
Specifically, to avoid tedious preprocessing, the model
extracts fault features from multisource signals by construct-
ing a convolution kernel of adaptive size matching the data
source channels. Finally, the proposed method is compared
with the existing research, as shown in Table 1.

2.2. Existing Works Based on the Same Dataset. There have
been some researches about the hydraulic system condition
monitoring dataset based on time-frequency analysis tech-
niques and artificial feature extraction. Helwig et al. [31, 32]
convert the time domain data into frequency domain using
fast Fourier transform and generate statistical features. They
then calculated features for fault label correlation and
selected the n features by ranking or sorting the correlation
(CS) for the fault classification. Prakash and Kankar [33] also
utilized statistical features of frequency domain data and
applied XGBoost [34] to define feature importance (XFI)
and select half of the highest correlations along with a deep
neural network for the classification model.

These previous approaches include several drawbacks.
First, the proposed handcrafted feature selection methods,
such as CS and XFI, may suffer from utilizing redundant
features, which will disrupt the learning of the model.
Second, statistical feature extraction, PCA, and other feature
engineering methods are not suitable for real-time detection.
These techniques must be applied to each new incoming
sample, thereby consuming more time and computation
power. Third, to ensure the quality of the feature extraction,
a manual design and suitable features are needed based on
the characteristics of the different types of faults. Further-
more, feature extraction usually turns out to be a computa-
tionally costly operation, but the existing studies on the
dataset of tag classification based on UCI are all to propose
and train a model for each tag. The quality of the features
directly determines the system performance. Therefore, the
system feature extraction is not automatic.

With the aforementioned open issues, we propose the
end-to-end deep learning model and directly take the raw
vibration signals as input. Finally, the multilabel classification
problem is transformed into the regression prediction prob-
lem, and the accuracy rate is higher than the existing
methods [31–34]. Unlike traditional methods relying on
manually defined or extracted features, the proposed design

does not require any additional expert knowledge, which has
great potential toward a general-purpose framework for intel-
ligent fault diagnosis. Thus, it can be easily extended to deal
with fault diagnosis problems of other industrial systems.

3. Methods

Although the most satisfactory level of anomaly diagnosis
accuracy was reported [20, 32–34], most of these previous
approaches had to design and train different feature extrac-
tion models for each task. In contrast, the multitask model
is suitable for the complex mechanical system. In addition,
manual feature selection often results in wasteful computa-
tional costs, but the existing studies on the dataset of tag clas-
sification based on UCI are all to propose and train a model
for each tag. However, the stage of manual feature selection
is difficult and time-consuming [35]. This process incurs
considerable computational costs, which eventually may
impede the use of existing approaches in real-time fault diag-
nosis applications. The MRSIFS model proposed in this
paper transforms the multirate problem into a unified multi-
dimensional convolutional neural network feature fusion
strategy. Compared with the traditional methods about con-
dition monitoring of hydraulic system dataset, MRSIFS has
better robustness in noise environment and does not require
predetermined feature selection. In particular, it proposes a
feature extraction layer based on a multidimensional convo-
lutional neural network and a concatenated feature fusion
layer. Finally, the multitask classification problem is trans-
formed into the regression prediction problem, and the accu-
racy rate is higher than the existing methods [20, 32–34].

The framework of the proposed MRSIFS is shown in
Figure 1. The inputs to the model consist of 3 segments of
raw temporal vibration signal at different sampling rates.
The output Y is a vector made up of the labels of five tasks,
where each value represents the predicted regression value
for a task. The fault detection is defined to predict the vector
Y based on the fault feature extraction from the raw temporal
vibration signal X using the MRSIFS model. The MRSIFS
model has three parts: the multidimensional convolution fea-
ture learning layer, the multirate feature concatenate layer,
and the regression layer.

3.1. The Framework of MRSIFS. In the multirate sensor fea-
ture extraction stage, the fault feature extracted by the input
layer is fed into the multidimensional convolution feature
learning block. The kernels of the convolution layer have
different dimensions. As we know, convolution kernels of
different dimensions act as filters of different resolution
scales to extract fault features in the raw signals and simulta-
neously extract the features of input signals in different
frequency bands. As shown in Figure 2, features of the convo-
lution kernel dimension are combined through the concate-
nation layer to form a multirate feature map. As a fault
information collector, the concatenation layer can aggregate
features of different scales to form a multirate feature set. It
can be observed that the data frommultiple sensors are trans-
formed into multiple channels through the input layer, and
then, the fault features are obtained through the feature
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extraction layer and feature fusion layer sequentially. Specif-
ically, the input layer of the proposed method is a three-
dimensional matrix, and the prediction results are taken as
the output of the multitask model. The specific size and other
parameters of the filter are shown in Tables 2–4.

3.2. CNN Details and Regression. The 2D CNN is composed
of six parts, including STFT, input layer, downsampling
layer, smooth layer, and upsampling layer. The downsam-
pling layer is composed of K prevention blocks, and each of
them contains three convolutional layers. The upsampling
layer is implemented based on bilinear. And the smooth layer
contains a single convolutional layer. To extract the hidden
fault information in the signal as far as possible, four down-
sampling layers, four smooth layers, and three upsampling
layers were successively used in the experimental model with
the dataset. The features are fed into the output layer and
straighten the output of the last layer as the fault feature
extracted by the 2D convolution component. The 2D CNN
model summary is mentioned in Table 2. Table 2 describes
the type of layers, in channels, out channels, kernel size, etc.

It must be noted that in the 2D convolution component,
we use a deep convolutional network structure. In this way,
although deep-level fault features can be extracted, according
to some existing studies [30], the deep-level convolutional
network may lose some shallow-level fault features. In this
paper, the downsampling layer, smooth layer, and upsam-
pling layer are used to cooperate, so that the features
extracted from the shallow convolutional network can be
integrated into the subsequent deep-level feature informa-
tion. The proposed network structure is inspired by [36].

Compared with the two-dimensional convolution struc-
ture, the one-dimensional convolution structure only retains
the part of the lower sampling layer, and some modifications
are made in the convolutional network parameter settings.
The DNN network block is composed of four full connection
layers. Similarly, the regression layer consists of three full
connection layers, with ReLU as an activation function.
Parameter details and design implementation of DNN and
regression layer are shown in Tables 3 and 4, respectively.
After each convolutional layer in the input layer and down-
sampling layer, and the fully connected layer in DNN, batch

Table 1: Comparison with related works.

Framework MSFTFI [16] PCNN [17] FAC-CNN [18] MRSIFS

Data preprocessing STFT —— —— STFT

CNN dimension 2D 2D 1D 1D, 2D

Feature extraction FTL, LeNet-5 LSTM, DRN Atrous CNN FPN [30]

Activation function ReLU ReLU PReLU PReLU

Sampling frequency Fixed Fixed Different Different
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Figure 1: Flowchart of the proposed approach.
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normalization [37] is used to accelerate the training process
of MRSIFS.

3.3. Training Details. In MRSIFS training, we adopt the
mean-square error (MSE) between the predictive label and

the real label as the loss function. To reduce the computa-
tional overhead in the training, the Adam algorithm [38] is
employed to optimize the parameters of the model. A critical
task for MRSIFS training is the adjustment of hyperpara-
meters, and this paper takes the batch size and learning rate
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Figure 2: Detailed structure of the proposed method.

Table 2: Summary of the submodel of MRSIFS using 2D CNN for feature extraction.

Network structure Layers In_channels Out_channels Kernel_size Stride Padding

Input layer
Conv2D 7 16 7 2 3

MaxPool 3 2 1

Downsampling layer

Conv2D 16 16 1 1 0

Conv2D 16 16 3 1 1

Conv2D 16 64 1 1 0

Conv2D 64 16 1 1 0

Conv2D 16 16 3 1 1

Conv2D 16 64 1 1 0

Smooth layer Conv2D 64 64 1 1 0

Upsampling layer “Bilinear”

Output layer

Conv2D 64 32 1 1 0

MaxPool 4 4 0

Dropout (p = 0:2)

Table 3: Summary of the submodel of MRSIFS using DNN for
feature extraction.

Network structure Layers In_features Out_features Bias

Fully connected layer

Linear 480 400 True

Linear 400 256 True

Linear 256 128 True

Linear 128 64 True

Table 4: Summary of the regression layer of MRSIFS.

Network structure Layers In_features Out_features Bias

Regression

Linear 1280 512 True

Dropout (p = 0:2)
Linear 512 128 True

Dropout (p = 0:2)
Linear 128 5 True
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as hyperparameters. The batch size defines the number of
samples to be processed in one batch. The learning rate deter-
mines the convergence speed of weight and bias in the neural
network during training. The learning rate of model training
is set to 0.001, and the batch size is set to 32. To prevent over-
fitting, the proposed method uses dropout technology [39]
between the full connection layers in the regression predic-
tion stage. With the dropout technique, every parameter in
the full connection layer has a certain probability of being
randomly removed during each training epoch. In the initial-
ization stage of the model, all parameters of the neural
network are initialized by a zero-mean standard uniform
distribution. Particularly, in this model, the biases of all
neurons are set to zero when initialized. In addition, all the
original vibration signals are randomly used for training the
model and testing the model. Specifically, 20% of the signals
are selected as test samples, and the remaining 80% are used
for testing models. To obtain a relatively stable experimental
result, 10 trials of MRSIFS were repeated on the condition
that each group of models had the same parameters.

Since its different scales and different depths of feature
extraction layers (i.e., pairs of downsampling layers, smooth
layer, and upsampling layers), MRSIFS architecture has the
advantages of general purpose and flexibility. Furthermore,
MRSIFS can effectively learn sensitive diagnostic information
by using multidimensional feature extraction structure and
capture complementary and useful fault features at different
scales for fault diagnosis and detection. As we know, more
robust and abstract fault information is expected to improve
the diagnosis performance. Therefore, MRSIFS with more
scales and layers can extract useful diagnostic features to
adapt to the complicated mechanical system. In addition, in
practical applications, the simple rate of the input samples
and the depth of the layers have a restriction relationship.
In MRSIFS, researchers can select the appropriate kernel size
and layer depth based on the length of the input signal. More
details can be found in III.

The proposed MRSIFS algorithm is conducted on torch
1.6.0+cu101. The hardware configuration for training and
testing is Intel(R) MKL-DNN v1.5.0 +TITAN X (Pascal),
while the software environment is Linux +Python 3.7
Version 3.7.9 [GCC 7.3.0].

4. Experiments and Discussion

4.1. Data Description. The proposed strategy is tested on the
hydraulic system condition monitoring dataset, which is
available from the UC Irvine Machine Learning Repository
[10]. The system cyclically repeats constant load cycles
(duration 60 seconds) and measures process values such as
pressure, volume, flow, and temperature, while the condi-
tions of the four hydraulic components (cooler, valve, pump,
and accumulator) and the stable flag of the hydraulic system
are quantitatively varied. As shown in Table 5, the dataset
consists of the measurement signals of 17 sensors, including
14 physical sensor components and 3 virtual sensors. The
measurement period of each sensor is 60 seconds, and the
sampling rate range is between 1Hz and 100Hz. The dataset
consists of 2205 samples with a sampling period of 60

seconds. Each sample contains a component status label that
reflects the fault condition of the 5 components.

As shown in Table 6, the training results of each sample
include five types of tags. Therefore, what this paper deals
with is a multitask classification problem. Nevertheless,
because the value of each tag has a specific physical meaning,
therefore, the multitask classification problem can also be
transformed into a regression problem to solve. The problem
proposed by the dataset is actually using the regression vector
with the predicted length of 5, and to set the threshold,
convert the regression value to the final classification result.
Ideally, the output of the network for any input should be
limited to our given range (for example, the labelled hydrau-
lic accumulator is estimated to be only 130, 115, 100, and 90),
but actually, the output value is often in between these values.
In this paper, the value with the minimum absolute value
error is selected as the predicted class label.

4.2. Compared Models. The purpose of the experiment is to
verify the higher classification accuracy of MRSIFS proposed
in this paper compared with the existing MSFTFI, PCNN,
and FAC-CNN. Besides, when changing the convolutional
layer depth of the MRSIFS feature extraction block, MRSIFS
still has good performance, which indicates that MRSIFS is
not sensitive to the setting of super parameters, indicating
that the strategy proposed in this paper has wide adaptability.
The main comparisons of the proposed model and existing
methods are listed as follows:

(1) MSFTFI: in [16], the original AE signals of four inde-
pendent sensor groups are first preprocessed by time-
frequency analysis technology. Then, the feature
matrices are converted into grey images. Finally, grey
images are subsequently fed to the fine-tuned transfer
learning (FTL) for fault diagnosis of different compo-
nents and prediction of bearing degradation degree

(2) PCNN: firstly, the multisequence signal data collected
by multiple sensors are converted into multichannel
feature matrices, and a parallel CNN is designed to
concatenate the fault information extracted from the

Table 5: Hydraulic system sensors. ∗CE, CP, and SE are virtual
sensors.

Sensor
Physical quantity

description
Unit

Sampling
rate

Sensor signal
length

PS1-6 Pressure Bar 100Hz 6000

EPS1 Motor power W 100Hz 6000

FS1-2 Volume flow L/min 10Hz 600

TS1-4 Temperature °C 1Hz 60

VS1 Vibration mm/s 1Hz 60

CE
(virtual)

Cooling efficiency % 1Hz 60

CP
(virtual)

Cooling power kW 1Hz 60

SE
(virtual)

Efficiency factor % 1Hz 60
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transformed feature matrix. More details of PCNN
can be found in [17]

(3) FA-CNN: researchers construct a convolution kernel
of adaptive size matching data source channel to cap-
ture multiscale data without time-frequency analysis
technology. In addition, to extract the diagnosis infor-
mation of the fused data effectively, one-dimensional
CNN and global average pooling methods are adopted
to improve the domain adaptation of the network.
More details of FA-CNN can be found in [18]

(4) MRSIFS: in comparison experiments, MRSIFS were
tested on layers 1 to 4 to test the depth of influence
of MRSIFS on diagnostic performance. In addition,
to provide a fair comparison, all comparison models
have the same model depth as the MRSIFS proposed

To enable the fairness of comparison and improve the
persuasiveness of the experiment results, all existing models
have the same parameters and structure as the proposed
MRSIFS. In addition, the same input form, number of train-
ing, batch size, and parameter optimization algorithm were
adopted for all models.

4.3. Diagnosis Results and Performance Comparison. To
reduce the effect of randomness and improve the persuasive-
ness of experiment results, the average accuracies of ten
replicate experiments for multitask fault diagnosis using
different models are shown in Figure 3(a). The standard devi-
ations of the cumulative experiments act as the error bars,
which reflect the robustness of the method. In the figure,
the mean represents the average accuracy of the model when
solving the assigned tag task, and the standard deviation
reflects the stability of the model.

As shown in Figure 3(a), the proposed MRSIFS achieves
optimum performance on five tasks (coolers, valves, pumps,
accumulators, and stabilizers). Specifically, the fault diagno-
sis accuracies of MRSIFS for each label are more than 97%,
so MRSIFS has good multirate information extraction capa-
bility on multitask classification. Besides, since the standard
deviations of MRSIFS on all tasks are very small, the pro-
posed method has better robustness. The MSFTFI, PCNN,
and FAC-CNN perform slightly less well than MRSIFS in
the tag cooler, valve, and pump but have significantly worse
performed than MRSIFS in tag accumulator and stable.
Besides, as shown in Figure 3(b), MRSIFS perform better
than the original CNNs and DNN in all five tasks. Therefore,
we can draw two advantages, the first advantage is that
MRSIFS performs better than the original CNNs. Another
advantage of the proposed MRSIFS is that using multidimen-
sional convolution kernels can extract more useful multiscale
fault information than the traditional multisensor feature
extraction model. Additionally, the multiscale feature con-
nection layer fuses the fault feature information extracted
from the original signals of different sampling frequencies
by each submodel. Although FAC-CNN, PCNN, andMSFTFI
can achieve excellent performance in task cooler, valve, and
pump, they have lower than 80% accuracy in other tasks,
which show that the existing models have low multirate fea-
ture extraction ability. The convergence performances of four
different models are shown in Figure 3(b). We can see that the
proposed MRSIFS converges faster than other models, which
can be concluded that multidimensional cascade signals can
provide more specific information than the raw signals.

To reveal that the existing models lack sufficient feature
extraction capability, the losses of the four models on the
condition monitoring of the hydraulic system dataset are
shown in Figure 4. First of all, the loss of MRSIFS-2 (the
depth of the multidimensional convolution feature learning

Table 6: Summary of components and their simulated fault conditions of the hydraulic dataset. A load cycle with 60 s duration is repeated
2205 times with the distribution of instances as indicated by the examples.

Component Fault conditions States Abbreviation Examples

Cooler (C1) Cooling power decrease

3%: close to total failure CTFc 732

20%: reduced efficiency RE 732

100%: full efficiency FE 741

Valve (V10) Switching degradation

73%: close to total failure CTFv 360

80%: severe lag Sel 360

90%: small lag SmL 360

100%: optimal behaviour OB 1125

Pump (MP1) Internal leakage

0: no leakage NL 1221

1: weak leakage WL 492

2: severe leakage SL 492

Accumulator (A1-A4) Gas leakage

130 bar: optimal pressure OP 599

115 bar: slightly reduced SlR 399

100 bar: severely reduced SeP 399

90 bar: close to total failure CTFa 80 8

Stable flag (S1) ——
0: conditions were stable SC 1449

1: nonstatic conditions NSC 756
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layer is two) converges to zero. However, the loss of PCNN
converges to about 0.1. Secondly, when more than 80 epochs
were trained, the loss of MRSIFS-2 converges to zero,
whereas the MSFTFI model needs to train more than 110
epochs to obtain similar results. In addition, since all labels
of the raw signals have been normalized and preprocessed,

the losses of MRSIFS-2 and FAC-CNN are highly overlap-
ping. To further explore the effectiveness of the proposed
MRSIFS framework, the logarithmic function can be intro-
duced to enlarge the difference between MRSIFS-2 and
FAC-CNN. The logarithmic function value of the loss of
MRSIFS is one order of magnitude lower than that of the
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Figure 3: Testing fault diagnosis accuracy about four models (a) and the performance of the proposed MRSIFS in five tasks compared to all
submodels (b).
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three existing models, which illustrates that the proposed
MRSIFS model can learn the fault features and diagnosis
information robustly from the raw vibration signals, and
has fault discriminative ability. Thus, it can be proved that
the multidimensional convolution feature learning stage
actually makes the diagnosis information of the signal com-
plementary by concatenating the useful components that
come from multirate sensor systems.

It shows the overall accuracy curves for both MRSIFS,
MSFTFI, PCNN, and FAC-CNN over 150 epochs in
Figure 5 during the entire training process. As shown in
Figure 5, compared with existing models, the proposed
MRSIFS has stabilized over 95 accuracies after training 50
epochs. MRSIFS is more adaptable to complicated mechani-
cal systems since it requires less time for training.

4.4. Feature Visualization via t-SNE and Confusion Matrix.
To further prove that multidimensional feature learning
can improve the feature extraction capability of the model
in complicated mechanical systems, the t-SNE method [40]
is adopted to realize the visualization of the feature maps
learned from the multidimensional convolution block. The
feature map obtained through the feature extraction stage
of multidimensional convolution is shown in Figure 6, which
uses different colours to distinguish the features of samples
with different tag types. Only consider the classification
results of the original data of the four models when the
hydraulic accumulator is used as the label because when the
other four hydraulic components are used as the label, the
accuracy of the classification results obtained by the MRSIFS
model has reached 99.5%.
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Specifically, for the multitask classification problem, t-
SNE is used to display the classification effect of the model
better. As can be seen from Figure 6(a), samples are grouped
into four categories under other labels, and each category is
further divided into four categories, with accumulator sam-
ples as a label. However, in Figures 6(b)–6(d), the clustering
results of the features of samples with the same tag type are
worse, which indicates that the existing models cannot
extract fault features from a multirate sensor. On the
contrary, the proposed MRSIFS model has good domain
adaptability and diagnosis information extraction ability

under complex working conditions, so it can finally learn
fault discriminative features robustly.

Figure 7 gives the probability of the model making the
correct classification and the probability of making the wrong
classification for a given health condition. The X-axis repre-
sents the accurate label, and the Y-axis represents the
predicted label.

4.5. Time Consumption. It is worth noting that, to make the
comparison results more convincing, all the existing models
and the proposed MRSIFS have the same convolutional layer
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depth. The training time and testing time spent by different
models on the hydraulic system dataset are shown in
Table 7. As shown in Table 7, MRSIFS, MSFTFI, and PCNN
all require more time consuming than the original CNNs,
which can be explained by the introduction of more param-
eters in multidimensional convolution blocks and result in
more computing time. The testing time is a determining
factor in the performance of the online fault diagnosis and
detection model since the model is trained offline. Even if
MRSIFS-2 needs more time to test, the testing time of the
proposed method on the hydraulic system dataset is just
14.2161ms, which shows the possibility about using
MRSIFS-2 for online fault detection and diagnosis.

4.6. Discussions on the Effects of Depth. The depth of the con-
volutional layer will affect the diagnostic performance of the
model based on deep learning. The proposed MRSIFS model
can automatically adjust the depth of the model (i.e., the
number of convolutional layer and pool layer pairs) accord-
ing to the characteristics of the dataset. This section explores
the influence of depth on feature extraction and fault diagno-
sis. The abstraction level of the feature is determined by the
depth of MRSIFS and the scale of the convolution kernel.
In complicated mechanical systems, the accuracies of classifi-
cation results depend largely on the abstraction level of fault
features. To test the influence of model depth on fault diag-
nosis, the accuracy of MRSIFS with one to four layers is
recorded and compared with existing models in Figure 8.

As we know, the abstraction level of the extracted features
can be determined by the depth of the MRSIFS. In addition,
speed or load variations and background noise may suffer

low-level features obtained from the raw signal. Since the
abstraction level of fault features can significantly impact
the classification results, MRSIFS with layer depth of 1 to 4
are tested in this paper to investigate the influence of depth
on diagnostic performance. The result is shown in Figure 8.
In these experiments, the average accuracies of ten replicate
experiments for each condition are shown in Figure 8, where
the standard deviations of the cumulative experiments act as
the error bars, which reflect the robustness of the method. A
conclusion from the figure is that, for each tag, all MRSIFS
outperform MSFTFI, PCNN, and FA-CNN in the fault diag-
nosis accuracy index. In general, as the depth increases to
equal to two, MRSIFS can achieve the best and most reliable
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Figure 7: Confusion matrix results of cooler and valve.

Table 7: Cost time for MRSIFS for different scales and other models.

Method
Training time
(s)/epoch

Testing time (ms)/one
sample

MRSIFS-1 1.7278 2.1811

MRSIFS-2 2.0080 2.8432

MRSIFS-3 2.0813 3.7681

MRSIFS-4 2.2856 4.4364

MSFTFI 2.0809 1.7704

PCNN 1.7067 2.5053

FAC-
CNN

1.4600 1.1219

DNN 1.3744 0.8290

1D CNN 1.5845 1.7763

2D CNN 1.7792 1.8995
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performance. Specifically, for bothMRSIFS, MSFTFI, PCNN,
and FAC-CNN, since MRSIFS with multidimensional
convolution kernels can extract more useful and abstract
fault information, which help in classification at higher levels,
the classification performance improves with increasing
depth. As the depth continues increasing, the accuracy of
MRSIFS begins to decline. In addition, the standard deviation
of each condition is smaller than these existing models, espe-
cially MRSIFS in the fourth task, which showed more excel-
lent fault diagnosis performance than existing literatures.
The result proves that MRSIFS can learn more abstract and
fault sensitive features from multirate sensor systems. The
time consumption of MRSIFS for training and testing at
different convolutional layer depths was calculated, and the
results are shown in Table 7. Obviously, the time overhead
for optimizing model parameters increases with increasing
depth. Therefore, to reduce the computational cost, MRSIFS
with two layers are selected for feature extraction. For com-
plex diagnostic tasks in practical applications, MRSIFS can
be modified to improve the performance further.

Another advantage of the proposed model is that, for a
compound and changeable industrial environment, MRSIFS
does not require a complex parameter adjustment process
and can effectively extract fault information. Therefore, the
model introduced in this paper is not sensitive to the setting
of neural network parameters.

4.7. The Details of MRSIFF. To reveal the function of a
multidimensional convolution feature learning layer, the
evolution of the neurons in the MRSIFF, the learned kernels,
multirate sensor cascade signals, and the output of each layer
in the MRSIFF are displayed in this section. It can be seen

from Figure 9 that the length of multiscale feature fusion sig-
nals has been increased because of the series connection of
signals convoluted by kernels with different dimensions. In
addition, the waveform shapes of the fusion signals have been
changed. In Figure 9(a), there is little difference between the
signal wave shapes (SWS) of ball and normal. However, in
Figure 9(b), the fusion-SWS of them are totally different,
which can provide more useful features for the classifier.

To reveal how the raw signals change in the MRSIFF and
what is the input of the classifier, the evolution of the inputs
in MRSIFF and the features of Multilayer Perceptron (MLP)
are shown in Figure 10, respectively. It can be seen from
Figure 10 that the outputs of the C3 (the third convolutional
layer) are similar to the wave shape of fusion signals and they
can be distinguished obviously in the four conditions. The
MLP features are constituted by the features in C3, and it
can be seen from Figure 10 that the features before putting
into the classifier are linear separable, which can increase
the classification accuracy. Furthermore, the fully connected
features of MRSIFF, MSFTFI, PCNN, and FAC-CNN are
mapped into three-dimension features using t-SNE which
are shown in Figure 6. Obviously, the mapped features of
the MRSIFF cluster are better than other models based on
CNN even though other models can differentiate most sam-
ples. Thus, the t-SNE error of MRSIFF is the lowest among
the three models.

4.8. Summary of Experimental Results. In this paper,
another deep convolution structure is proposed, which is
different from the traditional CNN structure that only
utilizes features in the last convolution layer. In the feature
extraction stage, the upsampling layer is combined with the
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Figure 10: The whole evolution of signals of each healthy condition in MRSIFF.
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convolutional layer to form the compound convolutional
block, while maintaining the global and local features and
improving the network capacity. In this structure, the
multidimensional convolution layer and a full connection
layer are used to extract features from multiscale input
signals. In this method, the extracted features are
concatenated to improve the accuracy of fault diagnosis, since
the receptive fields between 1D convolution and 2D convolu-
tion are different.

The proposed MRSIFS, which is put forward, is tested on
the hydraulic system condition monitoring dataset. The
experiment results show that the fault diagnosis performance
of the model based on 1D CNN is better than the model
based on 2D CNN. However, when 1D CNN, 2D CNN,
and DNN are combined, the accuracy of MRSIFS for fault
diagnosis is improved to 97-99.5%, which indicates that mul-
tidimensional convolutional blocks can learn complementary
and rich fault features. In addition, the same parameters and
structures are used in MSFTFI, PCNN, and FAC-CNN, and
the results show that the performance of the proposed Multi-
rate Sensor Information Fusion Strategy is much better than
all existing models.

Compared with the traditional intelligent fault detection
models, the proposed MRSIFS has better performance in
both feature extraction and detection accuracy. Therefore,
the proposed method outperforms the existing methods.

4.9. Feature Work. In the future, the normal samples are far
more than the fault samples due to the fault that will cause
damage to the mechanical system, and existing research
methods assume that the original signal dataset has sufficient
balanced sample types. Therefore, it is necessary to develop a
fault diagnosis model combining Generative Adversarial
Networks (GAN), which is of great significance for the prac-
tical engineering environment and is also the research direc-
tion of the author in the future.

5. Conclusions

This paper introduced a Multirate Sensor Information
Fusion Strategy (MRSIFS). The proposed method is based
on multidimensional convolution block and time-frequency
analysis technology, which implement multichannel parallel
fault feature extraction, and the features from raw signals
with different sampling rates are used for fault diagnosis.
The multirate sensor feature extraction is a novel multitask
feature extraction unit using a multidimensional convolution
block and Adam loss function, which significantly improves
the feature extraction capability. Finally, the simulation plat-
form’s experimental results show that the proposed multitask
model achieves higher diagnosis accuracy than the existing
methods. Besides, the manual feature selection for each task
is unnecessary in MRSIFS, which has the potential toward a
general-purpose framework. The main conclusions can be
listed as follows:

(1) The hierarchical learning structure of multiple con-
volution blocks can be used to learn advanced fault
features effectively

(2) To obtain fault sensitive and complementary detec-
tion features, this paper proposes a multidimensional
convolution feature extraction model to adapt signal
sources at different sampling frequencies

(3) Another valuable characteristic of the proposed strat-
egy is the ability to work directly with raw sensor
data, thus providing an end-to-end model to perform
feature extraction and classification simultaneously
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Bearings are one of the most important parts of a rotating machine. Bearing failure can lead to mechanical failure, financial loss, and
even personal injury. In recent years, various deep learning techniques have been used to diagnose bearing faults in rotating
machines. However, deep learning technology has a data imbalance problem because it requires huge amounts of data. To solve
this problem, we used data augmentation techniques. In addition, Convolutional Neural Network, one of the deep learning
models, is a method capable of performing feature learning without prior knowledge. However, since conventional fault
diagnosis based on CNN can only extract single-scale features, not only useful information may be lost but also domain shift
problems may occur. In this paper, we proposed a Multiscale Convolutional Neural Network (MSCNN) to extract more
powerful and differentiated features from raw signals. MSCNN can learn more powerful feature expression than conventional
CNN through multiscale convolution operation and reduce the number of parameters and training time. The proposed model
proved better results and validated the effectiveness of the model compared to 2D-CNN and 1D-CNN.

1. Introduction

The development of the IoT and industrial applications is
rapidly improving the intelligence of equipment in the mod-
ern industry. As a result, mechanical equipment is becoming
increasingly sophisticated and complex. Machinery failure
can cause significant financial loss as well as human casual-
ties. The rotating machine is one of the most widely used
machines in the industry [1]. Rolling bearings are very essen-
tial components in rotating machines [2, 3]. Therefore, diag-
nosing bearing failure is very important.

Recently, data-based fault diagnosis [4–6] is drawing a lot
of attention to the researchers due to the development of
computers and GPUs. Traditional model-based diagnostic
methods [7–11] are not efficient for learning nonlinear data.
In addition, in the feature extraction step [12–15], there is a
large difference in the result value depending on the skill of
the expert. Machine learning methods such as Support Vec-
tor Machine (SVM) [16, 17], Principal Component Analysis
(PCA) [18, 19], and artificial neural network (ANN) [20]
have been used frequently. However, traditional machine
learning [21–23] has also difficulty handling complex data.

On the other hand, data-driven diagnostics can effectively
and accurately express the characteristics of big data or com-
plex input data. With the advent of deep learning, it is possi-
ble to train neural networks through very deep continuous
layers. Deep learning [24, 25] is widely applied in various
fields such as image processing and image generation. DNN
(Deep Neural Network) [26, 27] is a structure composed of
many layers and can automatically extract deep features. Jia
et al. [28] performed rolling bearing failure diagnosis via
DNN and said that characteristics could be collected from
raw signals. Xu et al. [29] used PCA to reduce the size of these
features. Eren et al. [30] built an error detection system using
1D-CNN (One-Dimension Convolutional Neural Network).
Deng et al. [31] proposed the MSIQDE algorithm based on
making use of the merits of the Mexh wavelet function. Shao
et al. [32] proposed the Convolutional Deep Faith Network
(CDBN) for rolling bearings. Thus, deep learning technolo-
gies have the ability to overcome the shortcomings inherent
in traditional machine learning methods.

Among deep learning models, CNNs are one of the great
ways to perform feature learning without prior knowledge.
CNNs are suitable for feature learning because they can pass
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signals periodically. However, CNNs have some drawbacks.
Unlike methods like SVM or PCA, it requires a lot of training
samples. Also, the filter size of each convolutional layer is
fixed, so you cannot get various information. In addition,
since a CNN with a general structure can only extract single
scale features, useful information may be lost and domain
shift problems may occur. Therefore, we proposed an
improved CNN called MSCNN with different filter sizes at
each convolution. This allows us to extract useful informa-
tion in frequency domains with different resolutions. In addi-
tion, more powerful feature expressions can be learned than
conventional CNNs, and the number of parameters and
training time can be reduced [33, 34]. Also, training deep
learning requires a lot of data. If there is not enough training
data, it is difficult to expect good results. Data on rolling bear-
ings are not always enough under real condition. In this
paper, we have increased the amount of data by applying per-
mutation and time-warping techniques.

This paper is configured as follows: Neural networks and
the background of the proposed model are described in Sec-
tion 2. Experiment and results are provided in Section 3.
Finally, Section 4 presents a conclusion.

2. Background

2.1. Artificial Neural Network (ANN). The structure used in
artificial neural networks [35] today was proposed by Frank
Rosenblatt in 1958. Rosenblatt proposed a linear classifier
called perceptron, which was a linear classifier structure that
outputs 1 if the value is greater than 0 and -1 if it is less than 0
by adding the product of the inputs and weights and applying
the activation function. Neurons have multiple inputs and
one output. When each input is multiplied by a weight, the
weight is multiplied by the next input, and the larger the
weight, the more information is conveyed. A bias is added
to the sum of the input value and the weight, and this bias
represents the sensitivity of the neuron. Figure 1 describes
the architecture of perceptron:

u = 〠
n

i=1
wi × xið Þ + b, ð1Þ

where w represents the weight, x represents the input of
neuron, and b represents the bias.

It was expected that the perceptron could create artificial
intelligence like a real human, but in 1969, Minsky and
Papert [36] proved the mathematical limitations of the per-
ceptron, and people’s expectations dwindled. According to
them, the perceptron is only a simple linear classifier and
cannot perform XOR classification. In other words, simple
problems can be solved, but complex problems cannot be
solved. Figure 2 describes the problem of OR, AND, and
XOR.

In 1986, Rumelhart et al. [37] proposed a multilayered
perceptron that overcomes the limitation of linear classifiers
by adding a hidden layer. It proved that the XOR problem
can be solved by using a concept of multilayered perceptron.

MLP has a structure that is similar to a single perceptron,
but by making the input/output characteristics of the inter-
mediate layer and each unit nonlinear, it overcame the short-
comings of single perceptron by improving the network
capability. In MLP, as the number of layers increases, the
characteristics of decision regions formed by perceptron
become more advanced. In Figure 3, we visualized the archi-
tecture of MLP.

2.2. Convolutional Neural Network (CNN). CNN was devel-
oped by Lecun and Bengio [38] in the 1990s as a neural net-
work structure that classifies handwritten numbers and
received great attention. It is one of the most popular deep
learning algorithms. CNN is a model that reduces the num-
ber of parameters using convolution using spatial relations.
The goal of extracting hidden features from the data is to
learn several feature filters in the input data and then perform
operations between the feature filters and the input data.
Since the vibration signal is a time series vibration signal,
1D-CNN [39] was used. CNN mainly consists of input, con-
volution layer, pooling layer, fully connected layer, and out-
put. The basic structure of 1D-CNN is represented in
Figure 4.

The convolutional layer is a layer that learns the fea-
ture values of the input data and consists of multiple fea-
ture maps. Neurons in each feature map are connected to
the local area of the previous functional map through a set
of weights. This set of weights is called the convolution
kernel. The result after performing convolution on the
input feature map and the convolution kernel is passed
to the activation function to form the next feature map
layer. Functional maps are computed through weight shar-
ing, reducing model complexity, and making network
training easier. The forward propagation of the convolu-
tional layer is as follows:

xnj = f 〠
i∈F j

xn−1i × knij + bnj

 !
, ð2Þ

where xlj is the output of the layer l, Mj is the selected fea-

ture map, xl−1j is the output of the layer l – 1, klij is the

weight of layer l, and blj is the bias of layer l.
The pooling layer is usually placed between successive

convolutional layers. It is about reducing the dimensionality

b

x1

x2

xn

w1

w2

wn

∑

Activation function

ŷ

Figure 1: Architecture of perceptron.
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of the convolutional layer to do the extraction. The pooling
layer uses feature vector values in feature maps for subsam-
pling, so the most commonly used pooling methods are max-
pooling and average pooling. In this paper, we used a
maxpooling method that performs better in one-
dimensional time series operations. The structure of the

maximum pooling layer is shown in Figure 5 and is as
follows:

pi′n+1 jð Þ = max
j−1ð Þw+1≤t≤jw

hni tð Þð Þ, ð3Þ
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Table 1: System specification.

Hardware environment Software environment

CPU: Intel Core i7-8700K, 3.7 GHz, six-core twelve threads, 16GB Windows TenserFlow 2.0 framework and Python 3.7

GPU: Geforce RTX 2080ti
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where qli is the output of the tth neuron in the ith feature map
of the layer l, t ∈ ½ðj − 1ÞW + 1, jW�, W is the width of the
pooled area, and Pl+1

i ðjÞ is the pooled value of the corre-
sponding neuron in the layer l + 1.

2.3. Multiscale Convolutional Neural Network (MSCNN).
Since the input value of CNN is usually a raw signal, poor
results can be obtained regardless of hyperparameter
changes if there is insufficient useful information. A con-

volution is the most important method to analyze the sig-
nal, and the size of the convolution filter in 1D-CNN has
a great influence on the performance. In 1D-CNN, the size
of the convolution filter is a hyperparameter. Since the
convolution layer uses a convolution filter of a fixed size,
laying out the size of the convolution filter is a very diffi-
cult problem.

Also, there are also some issues with the classification.
First, a large size of convolutional filter has a good resolution
because it focuses on a low-frequency region but tends to
ignore high-frequency information. Conversely, a small size
of convolutional filter focuses on the frequency band but
has a lower resolution. Second, if a convolution filter of the
same size is used, other discriminatory features cannot be
properly extracted.

To address this problem, researchers proposed a multi-
scale convolution neural network. Multiscale convolution
extracts features from a vibration signal using several con-
volution filters of various scales. Our framework of the
proposed model is described in Figure 6.

We have used three convolution filters with different
widths in the convolution layer to extract features from
the original data through two convolution layers and one
maxpooling layer and obtain three different feature maps
and then concatenate them. The 1 × 1 convolution reduces
the depth and width of the networks without increasing
computation resources. This structure made it possible to
extract other distinct features from the original signal.
After concatenation, the classification part consisted of
two fully connected layers and a softmax layer. The soft-
max function is designed as the number of labels in two
different datasets.

The proposed multiscale feature extraction utilizes
three convolution filters with different widths in the con-
volution layer to extract features from the original data
through two convolution layers and one maximum

Drive end
Load motor

Torque transducer
2 hp motor

Figure 11: Bearing simulator of CWRU.

Table 2: Description of data—CWRU.

Training
samples

Validation
samples

Test
samples

Fault
types

Fault
diameters

Class
ID

1600 192 240 Normal — 0

1600 192 240 Ball 0.007 1

1600 192 240 Ball 0.014 2

1600 192 240 Ball 0.021 3

1600 192 240 IR 0.007 4

1600 192 240 IR 0.014 5

1600 192 240 IR 0.021 6

1600 192 240 OR 0.007 7

1600 192 240 OR 0.014 8

1600 192 240 Outer 0.021 9

Table 3: Result of accuracy test—CWRU.

Model
MSCNN

(%)

1D-
CNN
(%)

2D-
CNN
(%)

MSCNN (%) (no
augmentation)

Train
accuracy

99.88 99.31 99.27 98.56

Test
accuracy

99.79 99.22 98.50 98.35
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pooling layer and obtain three different feature maps, then
connect them. This structure allows both low- and high-
frequency information to be obtained from the original
signal. The convolution layer of MSCNN is as follows
[40]:

Ct
d =max 0, Concat ct1, c

t
2, c

t
3

� �� �
, ð4Þ

where Ct
d represents the output feature map of the tth

convolution layer of MSCNN with depth d = 3 and ct1, ct2
, ct3 represents the feature maps after convolutions of
MSCNN and can be seen as

ct1 = f t1 ∗ C t−1½ � + bt1,

ct2 = f t2 ∗ C t−1½ � + bt2,

ct3 = f t3 ∗ C t−1½ � + bt3:

8>><
>>: ð5Þ

Three convolution filters f td are convolved with a C½t−1�

feature map. btd is the bias added to the feature map of the
tth convolution layers. Each convolution layer is combined
into a concatenation layer after convolution operations.

2.4. Data Augmentation. Deep learning increases the
expressiveness of the model by increasing the parameters
by stacking a lot of hidden layers. A huge amount of

training data is necessary to properly train a lot of param-
eters. However, it is not easy to extract a lot of data under
real working conditions. In addition, the data should keep
the quality high and varied enough to reflect reality. If a
deep learning model without enough training data is per-
formed to train the parameters, the overfitting problem
usually occurs. Therefore, by increasing the absolute
amount of data even in a small data set area through a
data augmentation technique [41, 42], we acquired new
data by applying artificial changes to the data. Data aug-
mentation can process unexplored input and improve the
generalization effect of deep learning models. The impor-
tant thing about data augmentation is to meet your
domain knowledge to keep your existing labels when gen-
erating new data. It also does not change the data label
with minor changes. Data augmentation technology is
often used for images, but data augmentation technology
is applied to time series data.

In this paper, we have used two data augmentation
techniques. Both techniques are made by the fact that a
slight change in the action point can keep the label.
Firstly, a time-warping technique changes the position of
time samples by smoothly distorting the time interval
between samples. In Figures 7 and 8, we visualized the
original signal and the generated signal by time-warping
using subplot and scatter plot.

Second, the permutation is a technique that randomly
changes the location of an event. To confuse the location
of the input data, it is a technique to create a new window
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Figure 12: Loss and accuracy curves—CWRU.
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by splitting the data into segments with the same length
and then randomly changing the next segment. Figures 9
and 10 are diagrams visualizing the original data and the
data generated by the permutation technique. Both
methods have slight changes to the data, but no significant
changes to the labels.

3. Experiment and Results

3.1. Experimental Configuration. Keras library was used with
Tensorflow backend. We compared our proposed model
with 2 CNN models. The system specification for the exper-
iment is shown in Table 1.

3.2. Simulation Case 1: CWRU Bearing Dataset. To evaluate
the performance of the proposed MSCNN, a bearing data-
set from Case Western Reserve University Bearing Data
Center was used, and the fault test bench is given in
Figure 11.

The CWRU bearing dataset provides vibration signals
generated by the simulator in normal and fail conditions.
The 2 hp electric motor, torque converter, and dynamom-
eter are the main components, and the vibration signals
were collected from the drive end, fan end, and accelerom-
eter mounted in the housing. We used motor drive end
bearing data sampled at 0 hp, 1 hp, 2 hp, and 3hp. Each
defect type is divided into 0.007, 0.014, and 0.021 inches,
so there are 10 states in the data set. We divided the size
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Figure 13: Confusion matrix of the proposed model (a), 1D-CNN (b), 2D-CNN (c), and proposed model without data augmentation
(d)—CWRU.
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of each signal segment by 400. Each state has 1600 sam-
ples, total of 10 states, so there are 16000 data. We divided
80% of the total data as training data, 20% as test data,
and 20% of the remaining training data as validation data.
The detailed description of data is in Table 2.

Two types of CNN models were compared to confirm
the effectiveness of the proposed model. Both models are
built as commonly used. Table 3 shows the results of an
accuracy comparison of the proposed MSCNN with 1D-
CNN, 2D-CNN, and the proposed model without increas-
ing data.

Also, Figure 12 is a graph that visualizes the loss curve
and accuracy curve for each model. In the loss curve, it can
be seen that the proposed model is fine but settles more
quickly. In addition, the accuracy curve shows that the pro-
posed model is rapidly increasing in accuracy.

According to the result, the proposed model showed a
better accuracy compared with others. The proposed
model showed high accuracy of up to 1.4% and at least
0.53% in tests. There seems to be a slight difference, but
this is significant because the 1% difference is not a small

number as the accuracy increases. In addition, there is a
significant difference in accuracy even when data augmen-
tation techniques are not used. This proves that splitting
the convolution kernel into multiple scales works. In addi-
tion, we created a confusion matrix for each model for the
reliability of the experiment.

As a second indicator, we used the confusion matrix.
Although accuracy is the most intuitive metric, perfor-
mance can be skewed on unbalanced datasets. There are
four concepts you need to understand for the confusion
matrix. The formula utilized for the confusion matrix is
as below.

First, precision is the ratio of true to what the model clas-
sifies as true. Precision is expressed as

Precision = TPj j
TPj j + FPj j : ð6Þ

Recall is the proportion of true that the predicted model
is true. The recall is expressed as

Recall =
TPj j

TPj j + FNj j : ð7Þ

Accuracy is the most intuitive metric and is expressed as
follows:

Accuracy =
TPj j + TNj j

TPj j + FPj j + FNj j + TNj j : ð8Þ

Bearing 1

Motor

Accelerometers

Figure 14: Bearing simulator of IMS.

Table 4: Description of data—IMS.

Training
samples

Validation
samples

Test
samples

Fault types
Class
ID

1500 192 240 Normal 0

1500 192 240 IR 1

1500 192 240
Roller
element

2

1500 192 240 OR 3
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The F1 score is the harmonic mean, which allows you
to accurately evaluate the performance of your model if
your data labels are unbalanced. The F1 score can be
expressed as

F1 score = 2
Precision ∗ Recall
Precision + Recall

: ð9Þ

Figure 13 shows the results of the confusion matrix for
each model. As a result of the experiment, as in the accu-
racy analysis, the proposed model showed the best perfor-
mance, followed by 1D-CNN and 2D-CNN. Since the time
series data is the input data, the performance of 1D-CNN
appears to be better than that of 2D-CNN performance,
followed by 1D-CNN and 2D-CNN. Since the time series
data is the input data, the performance of 1D-CNN
appears to be better than that of 2D-CNN.

3.3. Simulation Case 2: IMS Bearing Dataset. To add reliabil-
ity to the evaluation of the proposed model, we used the bear-
ing dataset provided by the Center for Intelligent
Maintenance System (IMS), and the fault test bench is given
in Figure 14.

Four rolling bearings were installed and operated with a
rotational speed of 2000 rpm and a radial load of 6000 lbs.
The raw signal was received by two accelerometers arranged
vertically and horizontally. Therefore, there are a total of 4
types, including 3 fault states and normal states. In order to
see the difference in the results, we conducted an experiment
with the CWRU data set presented above and the number of
samples made the same. The detailed description of data is in
Table 4.

We compared the two types of CNNmodels and the pro-
posed model as in the previous experiment. Table 5 shows
the results of comparing the accuracy of the proposed model
and a typical CNN model using IMS data. According to the
results, the proposed model showed better accuracy com-
pared to other models. The proposed model showed maxi-
mum 1.37%, minimum 0.26%, and higher accuracy in the
test.

Also, Figure 15 is a graph that visualizes the loss curve
and accuracy curve for each model. From the loss curve, it
is shown that the proposed model is fine, similar to the
CWRU experiment results, but settles more quickly. In
addition, the accuracy curve shows that the proposed
model is rapidly increasing in accuracy. The results of
the confusion matrix for each model are shown in
Figure 16.

Table 5: Result of accuracy test—IMS.

Model
MSCNN

(%)

1D-
CNN
(%)

2D-
CNN
(%)

MSCNN (%) (no
augmentation)

Train
accuracy

99.64 99.33 99.03 98.57

Test
accuracy

99.51 99.25 99.01 98.14

0.8

1.0

0.6

0.4

0.2

0.0

0 5 10 15 20

Epoch

25 30 35 40

0.95

0.90

1.00

0.85

0.80

0.75

0.70

0.60

0.65

0 5 10 15 20

Epoch

25 30 35 40

1D-CNN
MSCNN 2D-CNN

MSCNN-no Aug

Figure 15: Loss and accuracy curves—IMS.
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4. Conclusion

Diagnosis of bearing failures is very important in the industry.
Knowing bearing failure in advance can reduce downtime, pre-
vent financial losses, and prevent failures in advance. Raw vibra-
tion signals were collected from CWRU and IMS bearing data
sets. However, in the real world, there is not always enough data,
and without enough data, the deep learning model performs
very poorly. Therefore, in this paper, data was generated using
data augmentation techniques that are good for application to
two types of time series data. Experimentation has shown that
data augmentation techniques significantly improve accuracy.
In addition, in order to overcome the shortcomings of CNN,
we proposed a model that minimizes the information lost
through each different convolution filter by configuring the con-

volution layer inmultiscale and reduces parameters and training
time. The proposed model not only extracts useful information
better from the frequency domain with different resolutions
than the conventional CNN but also enables more powerful fea-
ture expression learning. The proposed model showed better
performance than the existing 1D-CNN and 2D-CNN. Future
research will apply to not only bearing data but also data from
other fields widely used in the industry. In addition, we plan
to improve the structure of the model more efficient.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request (jpjeong@
skku.edu).
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Figure 16: Confusion matrix of proposed model (a), 1D-CNN (b), 2D-CNN (c), and proposed model without data augmentation (d)—IMS.
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Fabric defect detection is a crucial quality control step in the textile manufacturing industry. In this article, a machine vision system
based on the Sylvester Matrix-Based Similarity Method (SMBSM) is proposed to automate the defect detection process. The
algorithm involves six phases, namely, resolution matching, image enhancement using Histogram Specification and Median–
Mean-Based Sub-Image-Clipped Histogram Equalization, image registration through alignment and hysteresis process, image
subtraction, edge detection, and fault detection by means of the rank of the Sylvester matrix. The experimental results
demonstrate that the proposed method is robust and yields an accuracy of 93.4%, a precision of 95.8%, and computational
speed of 2275ms.

1. Introduction

Quality is an important aspect in the production line of the
textile industry. Thus, fault detection in fabric quality control
is an essential requirement of the textile industry. To mini-
mize the manual labor in this endeavor, image analysis and
processing techniques are widely used in the industry to
automate the defect detection and classification process.

The defects that occur frequently on the fabric pattern
limit the manufacturers who are able to recover only 45-
65% of their profits from the off-quality goods [1, 2]. Hence,
the defect detection process in the textile industry needs to
satisfy high expectations of nearly 100% detection accuracy.
Therefore, any other methods that are adopted should be able
to perform real time defect detection with agility and accu-
racy. The main challenges encountered include the plethora
of types and zones of defects to be detected, as well as the very
fine variations that are present between the defects.

In many textile companies, the workers perform the fab-
ric quality control process through human visual examina-
tion. As such, quality control is totally observer dependent,
and it lacks uniformity. Further, the fabric quality control

process is highly demanding for a human observer because
the type of defects present will vary from fabric to fabric,
according to the dynamic nature of the production process.

In this paper, we have generalized and automated fabric
quality control, using the Sylvester Matrix-based defect
detection algorithm, which can easily detect even very fine
defects on fabrics, by comparing the input image with the ref-
erence image. Substantial literature sources are available,
related to the algorithmic developments in the textile
industry to detect defects [3–8]. As specified in [9, 10], an
automated defect detection and classification system will cer-
tainly enhance the product quality, and result in heightened
productivity. The autocorrelation method is one among the
robust algorithms for detecting defects in both patterned
and unpatterned fabrics [11]. Gabor Wavelet Network
(GWN) was chosen as an effective technique to extract tex-
ture features from the textile fabrics. Depending upon the
features extracted, an optimal Gabor filter was designed for
defect detection [12–16]. Reference [17] presents the wavelet
subwindow and gray level cooccurrence matrix for defect
detection, and the Mahalanobis distance to categorize each
wavelet subwindow as either defective or nondefective. Local
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homogeneity and neural network-based defect detection
algorithms are presented in [18]. A design that includes both
hardware and software, and which uses the Otsu and Golden
image subtraction methods, was proposed in [19] to reveal
the defects. Its performance on a variety of defects validated
the accuracy of the method developed.

In [20], the approach proposed was the fusion analysis
for surface detection, which included a combination of the
global and local features for the detection process by extract-
ing and classifying the energy characteristics from the
images. Based on the genetic elliptical Gabor filter, a novel
method of defect detection was proposed in [21]. After being
tuned by the genetic algorithm, the Gabor filter was applied
to a variety of samples which show differences in type, shape,
size, and background.

The Elo rating system was designed to inspect by making
fair matches between the partitions from the images [22]. It
was estimated to have 97% accuracy with the use of 336 pat-
terned images. The particle analyzer method in [23] reveals
higher performance compared to the other traditional
methods, as it drives the analysis towards a predefined region
of interest (ROI), and defines a particle as consisting of a
minimum number of pixels. Moreover, a huge number of
classes having large intraclass diversity continues to pose a
major issue in the Feed Forward Neural Network (FFNN)
and Support Vector Machine (SVM) dependent inspection
methodologies, as all the classifiers require training regarding
the known classes of fabric defects [24, 25].

The principal deficits present in the available literature
are the overall lower accuracy and the substantial time for

making decisions. The methods described in [26, 27, 28]
are able to achieve accuracy levels of only 90%, 90.6%, and
90.8%, respectively. The processing time of the algorithms
revealed in [29, 30] stays high at 5.2 s and 5.9 s, respectively.
Furthermore, the methods proposed in [31, 32] fail to give
acceptably accurate performances, while detecting the finer
defects in the fabrics.

In this paper, we describe a novel defect detection
method which has fast processing and high accuracy, to
detect even the very fine defects in the fabrics by comparing
the reference and test images. In this method, all the images
used are in RGB scale with identical resolution. First, image
enhancement is done on every test image to ensure a better
contrast image and thus facilitate defect detection. Later,
image registration ensures that all the test images are in
proper alignment. After this step, image subtraction is done
to crosscheck the input against the reference image to detect
any type of defects. If a positive rating is noted for the pres-
ence of defects, then edge detection is applied to both the ref-
erence and test images, to enable tracing even the finer
details. Finally, the Sylvester Matrix-Based Similarity Method
(SMBSM) is used to identify the defects in the fabrics. The
method proposed works with 2275ms computational speed
and 93.4% average accuracy.

2. Proposed Methodology

In this research, an automated fault detection technique is
proposed to lessen the degree of human interaction required
for fault inspection in fabrics. Three types of fault inspection

Test and reference images

Image enhancement
Histogram Specification (HS)
Median‑Mean Based Sub‑Image‑Clipped Histogram Equalization
(MMSICHE)

Image registration
Geometric transformation

Image subtraction
Absolute difference
Double threshold and hysteresis process

Fault detection
Sylvester Matrix‑Based Similarity Method

(SMBSM)

Edge detection
Sparse Banded Filter Matrices (SBFM)
Method

Fault‑free test image

Yes No
Faults present

Figure 1: Block diagram of the proposed algorithm.
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algorithms exist, namely, the referential, nonreferential, and
hybrid approaches [33]. The algorithm presented here is
based on the referential approach, in which a reference image
is employed to find defects in the test image. The proposed
system is depicted in Figure 1.

It is well known that the performance of any image com-
parison algorithm is highly dependent upon the capturing
condition of the input image. However, our system can ana-
lyze the images in the face of different capture conditions, in
terms of contrast, distortion, and alignments, due to the
image preprocessing techniques adopted. In the system pro-
posed, the test image (ITest) and the reference image (IRef ) are
in the RGB format with identical resolution.

2.1. Image Enhancement. Image enhancement aims at
improving the quality of the test image captured under differ-
ent lighting conditions. In the algorithm proposed, first the
Histogram Specification (HS) improves the contrast level of
the test image based on the reference image. Second, the
Median–Mean-Based Sub-Image-Clipped Histogram Equali-
zation (MMSICHE) algorithm was adopted as the processing
technique to achieve the objective of preserving brightness, as
well as image information content (entropy) together with
control over the enhancement rate. This method circumvents
excessive enhancement and provides images having natural
enhancement, with the assurance that the test images taken
under different lighting conditions will be accurately prepro-
cessed to detect defects.

2.1.1. Histogram Specification (HS). The histogram specifica-
tions are used to rectify the contrast levels of the input test
image against the reference image; i.e., if the contrast level
of the input image is low in comparison to the reference, a
correction will be applied to raise the contrast level and vice
versa in the event of high contrast inputs [34].

The histogram of the intensity levels of both the refer-
ence and test images will be in the range of ½0, L − 1�. The
nRef ðiÞ and nTestðiÞ are the number of pixels having intensity
i in the reference image and input test image, respectively,
where i = 0, 1, 2,⋯, L − 1. The inverse transformation, as
defined in (1), maps i to zð0 ≤ z ≤ L − 1Þ and shows the
corresponding intensity values of the transformed test image
ðGT ,HSÞ:

z = L − 1ð Þ〠
i

z=0

nRef zð Þ
p ∗ q

 !−1

L − 1ð Þ〠
i

j=0

nTest jð Þ
p ∗ q

 !
, ð1Þ

where p and q are the row and column dimensions of the
images, respectively.

2.1.2. Median–Mean-Based Sub-Image-Clipped Histogram
Equalization (MMSICHE) for Contrast Enhancement. This
method represents the MMSICHE algorithm which consists
of three steps: median and mean calculation, histogram
clipping, and histogram subdivision and equalization.
MMSICHE further enhances the image quality of the trans-
formed test image ðGT ,HSÞ.

The median of the image is shown to have an intensity
value Xe, where the cumulative density function is around
0:5 [35]. Based on the median value, two mean intensity
values, the mean of the lower histogram Xml and the mean
of the upper histogram Xmu, are calculated for two individual
subhistograms. The corresponding values for Xe, Xml, and
Xmu, as shown in Figure 2, are calculated as in [35, 36] before
the histogram clipping process.

Histogram clipping is done to control the degree of
enhancement, to ensure that the resultant image is natural
in appearance, matching that of the input image, as close
as possible. The clipping threshold (Tc) is calculated as
in [28, 35].

The image histogram is divided equally into four bins as
shown in Figure 2. The subdivision process produces the four
subimages WLl, WLu, WUl, and WUu ranging from the gray
level 0 to Xml , Xml + 1 to Xe, Xe + 1 to Xmu, and Xmu + 1 to
L − 1, respectively. In the next step of MMSICHE, based on
the pixel distribution, all the four subhistograms are equal-
ized individually and independently, using either (2), (3),
(4), or (5) for the independent fine tuning:

FLl = Xml 〠
Xml

i=0

Hc ið Þ
NLl

 forWLl , ð2Þ

FLu = Xml + 1ð Þ + Xe − Xml + 1ð Þð Þ 〠
Xe

i=Xml+1

Hc ið Þ
NLu

 forWLu,

ð3Þ

FUl = Xe + 1ð Þ + Xmu − Xe + 1ð Þð Þ 〠
Xmu

i=Xe+1

Hc ið Þ
NUl

 forWUl , ð4Þ

FUu = Xmu + 1ð Þ + L − 1 − Xmu + 1ð Þð Þ 〠
L−1

i=Xmu+1

Hc ið Þ
NUu

 forWUu,

ð5Þ
whereHcðiÞ is the clipped histogram. NLl, NLu, NUl, and NUu
are the total number of pixels in the subimages WLl, WLu,
WUl, and WUu, respectively.

0 Xml Xe

Tc

Xmu L−1

Intensity

N
um

be
r o

f p
ix

els

Figure 2: Process of histogram clipping.
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The final step is to integrate all the subimages,WLl,WLu,
WUl, and WUu, into one complete image ðGT ,MMSICHEÞ for
further analysis.

2.2. Image Registration. Image registration aims at finding the
best transformation, which will align both the reference and
input images. More precisely, it is used to identify a corre-
spondence function, or mapping, that takes each spatial
coordinate from the reference image and returns the coordi-
nate for the test image. The transformation adopted involves
two stages, namely, the geometric transformation and image
resampling.

The geometric transformation [37] adopted is expressed
as follows:

x′

y′

" #
=

a11 a12

a21 a22

" #
x

y

" #
+

tx

ty

" #
, ð6Þ

where ðx′, y′Þ is the point coordinate of the test image and
ðx, yÞ is the corresponding point coordinate of the reference
image. The transformation used in (6) has six degrees of free-
dom (DOF), where tx and ty relate to the translation of the
signals, and a11, a12, a21, and a22, are used to calculate the
scaling and shearing between the two images.

With this transformation, a correspondence map is
established between the pixels in the preprocessed test image
ðGT ,MMSICHEÞ and that of the gray scale reference image ðGRÞ,
and the registered test image ðGT ,IRÞ is generated.
2.3. Image Subtraction. Image subtraction is done to obtain
the differential mapping between the reference image ðGRÞ
and the preprocessed test image ðGT ,IRÞ. As image subtrac-
tion aims at identifying the presence of defects in the input,
it will produce a binary decision which will be “1” if defects
are present, and “0” otherwise. If defects are detected, the fab-
ric is then transferred to the edge detection and fault detec-
tion stages, where the exact location and details of these
defects in the fabric are identified. In the case nothing is
detected, the fabric is labeled “defect-free”.

In the algorithm proposed, the absolute difference ðA
DÞ is calculated in a pixel-wise subtraction process, as
shown:

AD = GT ,IR x, yð Þ −GR x, yð Þ�� ��: ð7Þ

The output of AD may include a few erroneous pixels
due to the uncorrected noise or misalignment between the
two images. The double threshold approach is thus
defined as eliminating the nonrelevant pixels which belong
to the area between HTmin and HTmax, as shown in
Figure 3. The hysteresis process is then performed, where
a weak pixel is transformed into a strong one, if and only
if at least one strong pixel is present within its neighbor-
hood, as depicted in Figure 3.

2.4. Sparse Banded Filter Matrices (SBFM) for Edge Detection.
In the algorithm proposed, Sparse Banded Filter Matrices
(SBFM) [38] enables the detection of the edge information
in both the test and reference images. SBFM comprises two
major stages, namely, implementation of the zero-phase
high-pass Butterworth filter using the SBFM matrix, and
edge extraction. This edge detection method facilitates the
finer details to be detected, of both the gray scale reference
image ðGRÞ and registered test image ðGT ,IRÞ significantly,
thus ensuring the detection of even considerably insignificant
defects on the test image during the fault detection stage.

Implementation of the zero-phase noncausal recursive
high-pass filters based on banded matrices was introduced
in [38] to identify the edge information from the images.

The matrix form of the first-order Butterworth high-pass
filter can be expressed as follows:

y = A−1Bx, ð8Þ

where A and B are the banded matrices of size ðN − 1Þ ×
ðN − 1Þ and ðN − 1Þ ×N , respectively, with N representing
the length of the input signal. A and B are defined as follows:

A =

a0 0 : 0 0 0

a1 a0 : 0 0 0

0 a1 : 0 0 0

: : : : : :

0 0 : a1 a0 0

0 0 : 0 a1 a0

2
666666666664

3
777777777775
,

B =

−1 1 : 0 0 0 0

0 −1 : 0 0 0 0

0 0 : 0 0 0 0

: : : : : : :

0 0 : 0 −1 1 0

0 0 : 0 0 −1 1

2
666666666664

3
777777777775
:

ð9Þ
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Figure 3: Hysteresis process.
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Furthermore, the transfer function of the zero-phase
noncausal higher-order high-pass Butterworth filter can be
expressed as follows:

h zð Þ = B zð Þ
A zð Þ = 1 −

α −z + 2 − z−1
� �d

−z + 2 − z−1ð Þd + α z + 2 + z−1ð Þd
, ð10Þ

where

α =
1 − cos ωcð Þ
1 + cos ωcð Þ

� �d

, ð11Þ

d and ωc are the filter order and cut-off frequency,
respectively.

According to (10), the frequency response is maximally
flat at ω = 0, and the frequency response is of unity gain at
ω = π. Therefore, this is a zero-phase digital filter. The zero-
phase high-pass Butterworth filter shown in (10) can be
implemented using (8). Then, A and B can be defined as
the banded sparse matrices of size ðN + 2d − 1Þ × ðN + 2d −
1Þ and ðN + 2d − 1Þ × ðN + 2dÞ, respectively.

The sparse banded high-pass filter proposed is then
applied row-wise and column-wise to extract the vertical
and horizontal edges, respectively, as in [39], to detect all
the edges of the test image processed ðGT ,MMSICHEÞ and the
gray scale reference image ðGRÞ, while producing their corre-
sponding edge extractions as GT ,SBFM and GR,SBFM ,
respectively.

2.5. Sylvester Matrix-Based Similarity Method (SMBSM) for
Fault Detection. The Sylvester matrix (S) is associated with

two univariate polynomials with the coefficients in a commu-
tative ring [40]. This matrix helps to determine the common
roots of the characteristic polynomial of the two images being
compared. Hence, the similarity measure between the two
images represents the rank or nullity of the matrix S.

Cði, jÞ and Dði, jÞ are 2D subimages of GR,SBFM and
GT ,SBFM such that Cði, jÞ,Dði, jÞ ∈ Rn×nðn ≤ p, qÞ and square
matrices. Their characteristic polynomials can be obtained
by evaluating det ðλI − CÞ and det ðλI −DÞ. These character-
istic polynomials can be stated as follows:

P Cð Þ = 〠
n

i=0
ciλ

n−i, ð12Þ

P Dð Þ = 〠
n

i=0
diλ

n−i: ð13Þ

The Sylvester matrix SðE, FÞ ∈ Rðn+nÞ×ðn+nÞ of PðCÞ and
PðDÞ can be defined as follows:

S E, Fð Þ = E P Cð Þð Þ F P Dð Þð Þ½ �, ð14Þ

where EðPðCÞÞ ∈ Rn×n and FðPðDÞÞ ∈ Rn×n are the Toeplitz
matrices whose entries are the coefficients of PðCÞ and P
ðDÞ, respectively [41] and can be defined as follows:

E P Cð Þð Þ =

c0 0 : 0 0

c1 c0 : 0 0

: c1 : 0 0

cn−1 : : c0 0

cn cn−1 : c1 c0

0 cn : : c1

0 0 : cn−1 :

0 0 : cn cn−1

0 0 : 0 cn

2
666666666666666666664

3
777777777777777777775

,

F P Dð Þð Þ =

d0 0 : 0 0

d1 d0 : 0 0

: d1 : 0 0

dn−1 : : d0 0

dn dn−1 : d1 d0

0 dn : : d1

0 0 : dn−1 :

0 0 : dn dn−1

0 0 : 0 dn

2
666666666666666666664

3
777777777777777777775

:

ð15Þ

Table 1: The selected reference and test images of the dataset.

Image ID Reference image (R) Test image (T)

I1

I2

I3
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The nullity and rank of the matrix SðE, FÞ show the
degree of closeness of the characteristics of PðCÞ and Pð
DÞ. For similar images, the nullity value NðSðE, FÞÞ is
equal to the number of columns in a matrix SðE, FÞ and
is zero for the totally dissimilar images. However, the
value of rank, rðSðE, FÞÞ, is zero for similar images and
equal to the number of the columns in a matrix SðE, FÞ
for those images that are totally dissimilar. In the event
of small defects, the rank rðSðE, FÞÞ too will be small,
and the number is seen to rise as the defect intensity
increases. Thus, rank rðSðE, FÞÞ can be used in a defect
intensity function to visualize the defective region, as it
is in direct proportion to the defect intensity. Hence, to
reach the final labeling in our method, we adopt the rank
rðSðE, FÞÞ:

3. Results and Discussion

In this section, the findings of the simulation are presented.
The algorithm proposed exhibits a significant improvement
over the existing methods for defect detection in fabrics, as

it is successful in identifying directional defects, under vary-
ing conditions of illumination.

The model was assessed in terms of robustness and stabil-
ity using two datasets KTH-TIPS-I and KTH-TIPS-II [42].
The fabric dataset includes around 500 samples, captured
under different conditions of illumination and contrast set-
tings with skews, creating a challenge for defect detection.
Table 1 lists three samples, including the reference (R) and
test (T) images of the dataset. Further, right at the beginning,
all the input images are resized to 1024 ∗ 1024.

First, the image enhancement method described in Sec-
tion 2.1 is applied to enhance the histogram of the test image,
as shown in Table 2. The intermediate outputs, post applica-
tion of the image enhancement technique, are depicted in
Table 3. Next, the image registration process presented in
Section 2 is applied to align the test image coordinates with
the corresponding reference image alignments, as revealed
in Table 3. This preprocessing is done to circumvent any
inaccuracies at the image subtraction stage, in which the dou-
ble threshold values HTmin = 0:035 and HTmax = 0:150 are
utilized, after manual tuning of the algorithm.

Table 2: Histogram of test images after image enhancement.

Image ID Histogram of test image before image enhancement Histogram of test image after image enhancement
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In the textile industry, all the defects need to be detected
with 100% accuracy. Keeping this objective in focus, the first
priority is to minimize the rate of the false-positives which
should be as negligible as possible. If false-negatives occur,
then the fabric needs to be reinspected or discarded, even if
the product is defect-free. In this experiment, the rates of
the false-positives and false-negatives for the two datasets
considered, KTH-TIPS-I and KTH-TIPS-II, are 4.2% and
0%, respectively. This occurred because of the carefully
fine-tuned double threshold values used during the subtrac-
tion stage. After being subjected to image subtraction, all of
the test images (I1T, I2T, and I3T) are identified as defective
fabrics. Hence, these images are moved onto the next stage,
namely, edge detection.

In the final stage of the algorithm, edge detection, as
shown in Table 4, is performed using SBFM for the refer-
ence and test images, which are identified as positively

defective, during the image subtraction process. The
advantage of having this stage is to enhance all the minor
details of the images, which will assist in detecting even
the very fine defects present in the fabric.

The input parameters, selected by manual tuning, for the
sparse banded high-pass filter design, including degree, cut-
off frequency, and the length of the input sequence, are set
as 3, 0.9, and 1024, respectively. The input image size of
1024 ∗ 1024 is subjected to zero padding, in order to match
the sequence length (each row/column of the input image)
given as the input to the filter design. From the analysis, it
is clear that the edge extraction using SBFM provides more
detailed results in the test and reference images, even the
finer details, and the discontinuity in the edges extracted is
less because the input parameters for this filter design are well
tuned and matched. This is evident in the images, as revealed
in Table 4.

Table 3: Test images after image enhancement, coordinate matching and image registration.

Image ID Test image afterimage enhancement Coordinates matching between reference and test image After image registration

I1T

ptsOriginal
ptsDistorted

I2T

ptsOriginal
ptsDistorted

I3T

ptsOriginal
ptsDistorted
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A comparison of the similarity between the two images
is performed using SMBSM. SMBSM is evaluated using
window sizes of 4 ∗ 4, 8 ∗ 8, and 12 ∗ 12 pixels, with the
minimum simulation time for the fault detection process
being given by the 8 ∗ 8 window size. The reference and
test images are first divided into small subwindows of 8
∗ 8 and then compared against the coinciding location
of the reference image. For each subwindow, the Sylvester
matrix (S) is computed, and its rank is used to determine
the defects on the selected subwindow of the test image
compared to the reference image. The process is repeated
for all the pixels of the entire image to detect faults, as
shown in Table 4.

To calculate the accuracy of the algorithm that we pro-
posed, the Binary Similarity Measure (γ) is used as given in
(16), which detects the dissimilarities between two binary
images based on a modified Hamming Distance measure
[43]. The values of γ range from 0, distinct-dissimilarity, to
1, perfect similarity. The actual and detected faults on the test
image are represented in the binary scale BAF and BDF ,

respectively, and the γ values of the test images are listed in
Table 5.

γ = 1 −
2
pq

〠
p

i=1
〠
q

j=1
BAF i, jð Þ⨁ BDF i, jð Þð Þ

�����
�����, ð16Þ

where the ⨁ symbol represents the logical exclusive-OR
operator, and p and q are the row and column dimensions
of the binary images of the actual and detected faults (BAF
and BDF).

The computational speed of the algorithm proposed is
about 2275ms, making it superior to the existing ones. Fur-
thermore, our algorithm performed with 93.4% accuracy,
95.8% precision, and 100% recall, on average. The proposed
method works significantly well, even when the test images
are taken under different conditions of illumination and have
skews. The experiments presented here demonstrate the
superiority of the proposed method.

Table 4: Edge detection of reference and test image, and fault detection of test image.

Image ID Edge detection of reference image Edge detection of test image Fault detection on test image

I1

I2

I3
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4. Conclusions

In this paper, a method to identify defects in fabrics has been
proposed, based on the Sylvester Matrix-Based Similarity
Method (SMBSM). This method is capable of handling mis-
alignment and varying illuminations of the test images, cap-
tured under different conditions, as image enhancement
improves the quality of the test image and image registration
ensures proper alignment between the reference and test
images. Edge detection is guaranteed to identify even very
fine defects on fabrics during fault detection. Visual and
quantitative results on the two datasets presented have dem-
onstrated that the proposed method is superior and robust.
In the future, more experiments will be conducted to further
improve the accuracy of this method, and to assure that it is
fast enough for defect detection in real time.

Data Availability

The dataset used in this research is freely available through
“M. Fritz, B.C. E. Hayman, and J.O. Eklundh, THE KTH-
TIPS Database. (Online) Available at: https://www.csc.kth
.se/cvap/databases/kth-tips/download.html.
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