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*is paper investigates the problems of the robust fault estimation (FE) and fault-tolerant control (FTC) for the Takagi-Sugeno (T-
S) fuzzy systems with unmeasurable premise variables (PVs) subject to external disturbances, actuator, and sensor faults. An
adaptive fuzzy sliding mode observer (SMO) with estimated PVs is designed to reconstruct the state, actuator, and sensor faults
simultaneously. Compared with the existing results, the proposed observer is with a wider application range since it does not
require the knowledge of the upper bound of faults that some FE methods demand. Based on the FE information, a dynamic
output-feedback fault-tolerant controller (DOFFTC) is designed to compensate the effect of faults by stabilizing the closed-loop
systems. By using the H∞ filtering method, sufficient conditions for the existence of the proposed SMO and DOFFTC are derived
in terms of linear matrix inequalities (LMIs) optimization. Finally, a nonlinear inverted pendulum system is given to validate the
proposed methods.

1. Introduction

In industrial applications, the increasing demand of higher
performance, safety, reliability, maintainability, and sur-
vivability represent a major concern. So, it is important to
support research on fault estimation (FE) and fault-tolerant
control (FTC) for a class of nonlinear systems specifically
Takagi-Sugeno (T-S) fuzzy models [1–5]. Many approaches
have been developed in recent decades, such as sliding mode
observer (SMO) [6–12], unknown input observer [13–15],
adaptive observer [16, 17], and descriptor observer [18, 19].

*e sliding mode (SM) scheme is a powerful tool to
overcome uncertainties and external disturbances in dy-
namic systems, due to its good robustness, simple structure,
and strong applicability. *erefore, it has a good application
prospect in the field of FE and FTC and has attracted more
and more attention from both academia and industry.

Fruitful works can be found regarding this issue. For in-
stance, in [8], a sliding mode observer (SMO) is designed for
the estimation of actuator faults in T-S fuzzy models with
digital communication channel, but the sensor faults were
not considered. While in [9], the estimation of simulta-
neously actuator and sensor faults is realized for T + S fuzzy
systems using nonquadratic Lyapunov function. However,
the FTC problem was not treated. While, in [20], a FTC
design for T-S fuzzy systems was established using unknown
input observer approach. Moreover, a FTC scheme based on
SMO for T-S fuzzy systems with local nonlinear models is
proposed in [6]. Sufficient conditions are derived to calculate
observer and controller gains which are solved using linear
matrix inequalities (LMIs). In [21], an adaptive sliding mode
FTC design is developed for a class of uncertain T-S fuzzy
systems affected by multiplicative faults. Unfortunately,
these previous results needed that the premise variables of
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the T-S fuzzy systems are measurable and the upper bounds
of faults are known.*erefore, how to design a suitable SMO
to overcome the above drawbacks?

Motivated by the above discussion, an adaptive fuzzy
SMO is developed for the T-S fuzzy systems with unmea-
surable premise variables in order to estimate the state,
actuator, and sensor faults. *en, based on FE a dynamic
output-feedback fault-tolerant controller (DOFFTC) is
designed to compensate the fault effects by stabilizing the
closed-loop system. Finally, the simulation result of a
nonlinear inverted pendulum system is given to illustrate the
effectiveness of the proposed method.

Compared with the existing results, the advantages of
our work can be summarized as follows. First of all, we in-
vestigate the problem of fault estimation and fault-tolerant
control based on the dynamic output-feedback controller for
T-S fuzzy systems with external disturbances and actuator and
sensor faults. Whereas, many researchers have considered only
actuator faults [22, 23] or senor faults [24+26]. *en, the
sliding mode observer is designed using adaptive law to avoid
the hypothesis concerning knowledge of the upper bound of
faults, which give less conservative results and offer more
freedom in comparison with [27+29]. Moreover, authors in
[6, 24] assume that the premise variables of the T-S fuzzy
systems aremeasurable.Whereas, in this work, we consider the
unmeasurable premise variables. *e gains of the observer and
controller are computed separately to avoid the coupling and
reduce the computation complexity. Whereas, in [25], a single
step solving algorithm is needed.

*e rest of this paper is organized as follows. In Section
2, we describe the system and the problem studied in this
paper. In Section 3, we present the design of the adaptive
fuzzy sliding mode observer and the analysis of the stability
of the error system.*e fault estimation is studied in Section
4. In Section 5, the dynamic output-feedback fault-tolerant
controller is developed. Finally, simulation example in
Section 6 validates the efficiency of the proposed methods.

1.1. Notations. *roughout the paper, the following nota-
tions are used. In denotes an identity matrix with dimension
of n × n. Rn and R(n×m) denote the n-dimensional Euclidean
space and n × m real matrices.*e pseudoinverse of a matrix
A is denoted by A+. For a real matrix A, A> 0 indicates that
A is symmetric positive definite, and A> 0 indicates that A is
symmetric negative definite. ‖.‖ denotes the Euclidean norm
or its induced spectral norm. *e symmetric terms in a
symmetric matrix are denoted by ∗ . Finally, the space of
square integrable functions is denoted by L2, that is, for any
ξ(.) ∈ L2 0 ∞􏼂 􏼁, ‖ξ(.)‖2 �

������������

􏽒
∞
0 ξT

(.)ξ(.)dt

􏽱

.

2. System Description and Problem Statement

Considering the following T-S fuzzy model: Rule I: IF z1 is
Mi

1, . . ., and zg is Mi
g, THEN

_xp � Apixp + Bpi u + fa( 􏼁 + Epid.,

yp � Cpxp + Npfs + Dpd,

⎧⎨

⎩ (1)

where xp ∈ Rn represents the state vector; u ∈ Rm is the
input; yp ∈ Rp is the measured output; Api, Bpi, Epi, Cp, Np,
and Dp are known matrices with compatible dimensions;
fa: R+⟶ Rq and fs: R

+⟶ Rh represent the additive
faults generated by actuator and sensor, respectively; d ∈ Rl

is the external disturbance which belong to L2 0 ∞􏼂 􏼁. It is
supposed that matrices Bpi are of full column rank, i.e.,
rank(Bpi) � m, matrix Np is of full column rank, Cp is of full
row rank, the pairs (Api, Cp) are observable, and the pairs
(Api, Bpi) are controllable. Besides, z � [z1 . . . zg] denotes
the unmeasurable premise variable, Mi

j are the fuzzy sets, k

is the number of IF-THEN rules, and g is the number of the
premise variable.

Using the technique [26], the overall model of system (1)
is given by

_xp � 􏽘
k

i�1
hi(z) Apixp + Bpi u + fa( 􏼁 + Epid􏽨 􏽩,

yp � Cpxp + Npfs + Dpd,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

where hi(z) � wi(z)/􏽐
k
i�1 wi(z) and wi(z) � 􏽑

g

j�1 Mi
j(zj),

here Mi
j is the grade of the membership function of zj. We

assume that wi(z)≥ 0, i � 1, . . . , k. *en, it easy to see that
􏽐

k
i�1 wi(z)> 0, for any z. Hence, hi(z) satisfies hi(z)≥ 0 and

􏽐
k
i�1 hi(z) � 1.

Lemma 1 (see [27]). For matrices A and B with appropriate
dimensions, we have

A
T
B + B

T
A≤ εAT

A + ε− 1
B

T
B, (3)

for any ε> 0.

Lemma 2 (see [28]). If the following inequalities hold,

Φii < 0, 1≤ i≤ k.

2
k − 1
Φii +Φij +Φji < 0,

1≤ i≠ j≤ k,

(4)

we have

􏽘

k

i�1
􏽘

k

j�1
hihjΦij < 0. (5)

Introduce the state xf such that

_xf � − Afxf + Afyp, (6)

where − Af ∈ Rh×h is an arbitrary stable matrix. Let

x �
xp

xf
􏼢 􏼣; then, the following augmented T-S fuzzy system

is constructed:
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_x � 􏽘
k

i�1
hi(z) Aix + Bi u + fa( 􏼁 + Nfs + Eid􏼂 􏼃,

y � Cx,

⎧⎪⎪⎨

⎪⎪⎩
(7)

where

Ai �
Api 0

AfCp − Af

⎡⎣ ⎤⎦,

Bi �
Bpi

0
􏼢 􏼣,

N �
0

AfNp

⎡⎣ ⎤⎦,

Ei �
Epi

AfDp

⎡⎣ ⎤⎦.

C � 0 Ih􏽨 􏽩,

y �
yp

xf

⎡⎣ ⎤⎦.

(8)

Combining the actuator fault fa and the sensor fault fs

in the same unknown vector f � fa fs􏼂 􏼃
T and assuming it

is bounded and satisfies ‖f‖⩽w, where w> 0 is an unknown
real constant, then system (8) can be re-expressed as

_x � 􏽘
k

i�1
hi(z) Aix + Biu + Mif + Eid􏼂 􏼃,

y � Cx,

⎧⎪⎪⎨

⎪⎪⎩
(9)

where Mi �
Bpi 0
0 AfNp

􏼢 􏼣.

For designing observers, it is often assumed, in the lit-
erature, that the premise variable z is available for mea-
surement. In this paper, it is interesting to develop a sliding
mode observer for the unmeasurable premise variable T-S
fuzzy system. A slidingmode observer for system (9) is in the
form

_􏽢x � 􏽘
k

i�1
hi(􏽢z) Ai􏽢x + Biu + Gliey + Gniϑ􏽨 􏽩., 􏽢y � C􏽢x,

⎧⎨

⎩ (10)

where 􏽢z is the estimation of unmeasured premise variable, 􏽢x

is the state estimation of x, 􏽢y is the observer output, ey: �

y − 􏽢y is the output estimation error, Gli and Gni are the
observer gain matrices, and ϑ is the discontinuous vector to
be designed.

Define the state estimation error, e � x − 􏽢x. Based on (9)
and (10), we get the following error dynamics system:

_e � 􏽘
k

i�1
hi(􏽢z) Aoie + ϕ + Mif − Gniϑ + Eid􏼂 􏼃, (11)

where Aoi � (Ai − GliC) and

ϕ � 􏽘
k

i�1
hi(z) − hi(􏽢z)( 􏼁 Aix + Biu + Mif + Eid􏼂 􏼃. (12)

Note that ϕ⟶ 0 when e⟶ 0, that is, ϕ is treated as an
unstructured vanishing perturbation which is supposed to
be growth-bounded for x, 􏽢x ∈ Rn such that

‖ϕ‖≤ c‖x − 􏽢x‖, (13)

where c is a small Lipschitz scalar. For the simplicity, 􏽢hi

denotes hi(􏽢z).
Authors in [29] have proven that the necessary and

sufficient conditions for the existence of sliding mode ob-
server when the system includes faults are

(A1) rank(CMi) � rank(Mi) � 􏽥q

(A2) *e invariant zeros of (Ai, Mi, C) are stable

Under A1, there exists a coordinate transformation
x⟶ x � T1ix such that system (8) is transformed into

_x � 􏽘
k

i�1

􏽢hi Aix + ϕ + Biu + Mifa + Eid􏽨 􏽩, y � Cx,
⎧⎨

⎩ (14)

where

Ai � T1iAiT
− 1
1i

�
A1i A2i

A3i A4i

⎡⎣ ⎤⎦,

ϕ � T1iϕ, Bi

� T1iBi

�
B1i

B2i

⎡⎣ ⎤⎦,

Mi � T1iMi

�
0

M2i

􏼢 􏼣,

M2i �
0

M22i

􏼢 􏼣,

Ei � T1iEi

�
E1i

E2i

⎡⎣ ⎤⎦,

C � CT
− 1
1i

� 0 C2􏽨 􏽩,

(15)

where A1i ∈ R(n+h− p)×(n+h− p), B2i ∈ Rp×m, M22i ∈ Rq×(q+h),
E2i ∈ Rp×l, and C2 ∈ Rp×p is nonsingular.

Applying the linear change of coordinates T1i to the
error system (11), then we obtain

_e � 􏽘
k

i�1

􏽢hi Aoie + ϕ + Mif − Gniϑ + Eid􏽨 􏽩, (16)
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where Aoi � T1iAoiT
− 1
1i . We suppose the observer gain Gni

has been the following form to facilitate the analysis:

Gni �
− KiC

− 1
2

C
− 1
2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

Ki � K1i 0(n+h− p)×􏽥q􏽨 􏽩,

(17)

where K1i ∈ R(n+h− p)×(p− 􏽥q). It is noted that

KiMi � K1i 0(n+h− p)×􏽥q􏽨 􏽩
0(p− 􏽥q)×(q+h)

M22i

⎡⎣ ⎤⎦ � 0, (18)

which motivates us to consider a coordinate transformation
e⟶ 􏽥e: � T2ie, where

T2i �
In+h− p Ki

0p×(n+h− p) C2

⎡⎢⎢⎣ ⎤⎥⎥⎦. (19)

In the new set of coordinates, (16) becomes

_􏽥e � 􏽘
k

i�1

􏽢hi
􏽥Aoi􏽥e + 􏽥ϕ + 􏽥Mif − 􏽥Gniϑ + 􏽥Eid􏽨 􏽩, (20)

where

􏽥Aoi � T
T
2i􏼐 􏼑

− 1
AoiT

− 1
2i

� 􏽥Ai − 􏽥Gli
􏽥C

(21)

and
􏽥Ai � T2iAiT

− 1
2i

�
􏽥A1i

􏽥A2i

􏽥A3i
􏽥A4i

⎡⎣ ⎤⎦,

􏽥Gli � T2iGli

�
􏽥Gl1i

􏽥Gl2i

⎡⎣ ⎤⎦,

􏽥ϕ � T2iϕ:

�
􏽥ϕ1
􏽥ϕ2

⎡⎣ ⎤⎦,

􏽥Mi � T2iMi

�
0

􏽥M2i

􏼢 􏼣,

􏽥Ei � T2iEi

�
􏽥E1i

􏽥E2i

⎡⎣ ⎤⎦,

􏽥C � CT
− 1
2i

� 0 Ip􏽨 􏽩,

􏽥Gni � T2iGni

�
0

Ip

⎡⎣ ⎤⎦,

(22)

with

􏽥A1i � �A1i + �Ki
�A3i,

􏽥A2i � �A2i + �Ki
�A4i􏼐 􏼑�C

− 1
2 − �A1i + �Ki

�A3i􏼐 􏼑�C
− 1
2 − �A1i

�Ki�C
− 1
2 ,

􏽥A3i � �C2
�A3i,

􏽥A4i � �C2
�A4i − �A3i

�Ki􏼐 􏼑�C
− 1
2 ,

􏽥M2i � �C2
�M2i,

􏽥E1i � �E1i + �Ki
�E2i,

􏽥E2i � �C2
�E2i.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

Define the matrix 􏽥Gli �
􏽥Gl1i
􏽥Gl2i

􏼢 􏼣. If the observer gain

matrices 􏽥Gl1i and 􏽥Gl2i are chosen as 􏽥Gl1i � 􏽥A2i and
􏽥Gl2i � 􏽥A4i − 􏽥A

s

4, where 􏽥A
s

4 is an arbitrary negative definite

matrix, it can be concluded that
􏽥Aoi � 􏽥Ai − 􏽥Gli

􏽥C

�
A1i + KiA3i 0

C2A3i
􏽥A

s

4

⎡⎣ ⎤⎦.
(24)

According to our choice, 􏽥A
s

4 is stable. *erefore, 􏽥Aoi is
stable from the stability of A1i + KiA3i.

Partitioning the error system conformably to
􏽥e ≔ eT

1 eT
y􏽨 􏽩

T
with e1 ∈ Rn+h− p and ey ∈ Rp yields

_e1 � 􏽘
k

i�1

􏽢hi
􏽥A1ie1 + 􏽥ϕ1 + 􏽥E1id􏽨 􏽩,

_ey � 􏽘
k

i�1

􏽢hi
􏽥A

s

4ey + 􏽥A3ie1 + 􏽥ϕ2 + 􏽥M2if − ϑ + 􏽥E2,id􏽨 􏽩.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(25)

Considering the following sliding mode surface as

S � e1, ey􏼐 􏼑|ey � 0􏽮 􏽯, (26)

we now design the discontinuous error injection ϑ as follows:

ϑ �

􏽘

k

i�1

􏽢hiρi

P2iey

P2iey

�����

�����
, if ey ≠ 0,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(27)

where P2i > 0 ∈ Rp×p is the unique solution to the Lyapunov
equation for 􏽥A

s

4 with the design matrix Q0 > 0 ∈ Rp×p:

P2i
􏽥A

s

4 + P2i
􏽥A

s

4􏼐 􏼑
T

� − Q0 (28)

and

ρi � C2M2i

����
����􏽢w + ρ0, (29)

with the adaptive law,

_􏽢w � − q 􏽘
k

i�1

􏽢hi C2M2i

����
����􏽨 􏽩 P2iey

�����

�����. (30)

ρ0 is a small positive constant and q is designed constant.
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Remark 1. *e presence of both f and d in (18) poses the
main challenge to the SMO design problem in this paper. To
tackle this difficulty, in addition to the design of ϑ for the
estimation of f in the SMO, we use the H∞ approach for the
stability analysis of the error system.

Define the controlled output of the error system m as

m � H
e1

ey

⎡⎣ ⎤⎦, (31)

where H � diag(H1, H2) is a full rank design matrix.
We will utilize the H∞ approach to analyse the stability

of the error system (18) so that

(i) lim
t⟶∞

􏽥e � 0 if d � 0, ∀t≥ 0

(ii) 􏽒
∞
0 mTm dt ≤ μ2 􏽒

∞
0 dTddt, otherwise

μ> 0 is the attenuation level to be minimized.

3. Sliding Mode Observer Design

In this section, we will discuss the design method of SMO.
*e main results are presented as follows.

3.1. Stability Analysis

Theorem 1. Consider system (9) with conditions A1 and A2.
3e error system (18) is asymptotically stable with a minimal
μ if there exist matrices P1i > 0, P2i > 0, Ki, and small positive
scalar ε such that the following convex optimization problem
is solved:

min(μ) subject to

Λ1i Λ2i P1iE1i + WiE2i P1i 0

∗ Λ4i P2iC2E2i 0 P2i

∗ ∗ − μI 0 0

∗ ∗ ∗ − εI 0

∗ ∗ ∗ 0 − εI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (32)

where

Λ1i � A
T

1iP1i + P1iA1i + WiA3i + A
T

3iW
T
i + εc2

I + H
T
1 H1,

Λ2i � A
T

3iC
T

2 P2i,

Λ4i � 􏽥A
sT

4 P2i + P2i
􏽥A

s

4 + εc2
Ip + H

T
2 H2.

(33)

Ki and μ are obtained as Ki � P− 1
1i Wi and μ �

��
μ

􏽰
.

Proof. Consider the Lyapunov functional candidate:

V(􏽥e) � 􏽥e
T
Pi􏽥e +

1
q

􏽥w
2
, (34)

where Pi � diag P1i, P2i􏼈 􏼉, P1i ∈ R(n+h− p)×(n+h− p), and
􏽥w � w − 􏽢w. By deviating V(􏽥e), we obtain

_V(􏽥e) � 􏽘
k

i�1

􏽢hi 􏽥e
T 􏽥A

T

oiPi + Pi
􏽥Aoi􏼒 􏼓􏽥e + 2􏽥e

T
Pi

􏽥ϕ + 2􏽥e
T
Pi

􏽥Eid􏼔

+ 2􏽥e
T
Pi

􏽥Mif − 2􏽥e
T
Pi

􏽥Gniϑ +
2
q

(− 􏽥w _􏽢w)􏼣.

(35)

According to Lemma 1, we obtain

2􏽥e
T
Pi

􏽥ϕ≤
1
ε
􏽥e

T
P
2
i 􏽥e + ε‖􏽥ϕ‖

2 ≤
1
ε
􏽥e

T
P
2
i 􏽥e + εc2‖􏽥e‖

2
. (36)

Hence, from (33), we have

_V(􏽥e)≤ 􏽘
k

i�1

􏽢hi 􏽥e
T 􏽥A

T

oiPi + Pi
􏽥Aoi +

1
ε
P
2
i 􏽥e

T
􏽥e + εc2I􏼒 􏼓􏽥e + 2􏽥e

T
Pi

􏽥ϕ􏼔

+ 2􏽥e
T
Pi

􏽥Eid + 2􏽥e
T
Pi

􏽥Mif − 2􏽥e
T
Pi

􏽥Gniϑ +
2
q

(− 􏽥w _􏽢w)

􏽼√√√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√√√􏽽
term(i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(37)

Substituting the adaptive law _􏽢w and the discontinuous
vector ϑ into the term(i), we have

􏽘

k

i�1

􏽢hi 􏽥e
T
Pi

􏽥Mif − 􏽥e
T
Pi

􏽥Gniϑ +
1
q

_􏽢w 􏽥w􏼢 􏼣 � 􏽘

k

i�1

􏽢hi e
T
yP2iC2M2if − e

T
yP2iϑ +

1
q

_􏽢w􏽥w􏼢 􏼣

� 􏽘
k

i�1

􏽢hi e
T
yP2iC2M2if − e

T
yP2i C2M2i

����
����􏽢w + ρ0􏼐 􏼑 ×

P2iey

P2iey

�����

�����
+
1
q

_􏽢w􏽥w⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

� 􏽘
k

i�1

􏽢hi e
T
yP2iC2M2if − C2M2i

����
����􏽢w + ρ0􏼐 􏼑 P2iey

�����

�����􏼔 􏼕 +
1
q

(w − 􏽢w) − q 􏽘
k

i�1

􏽢hi C2M2i

����
����􏽨 􏽩 P2iey

�����

�����⎛⎝ ⎞⎠

⩽􏽘
k

i�1

􏽢hi P2iey

�����

����� C2M2i

����
����w − ρ0 + C2M2i

����
����w􏽨 􏽩

� − ρ0 􏽘

k

i�1

􏽢hi P2iey

�����

�����< 0.

(38)
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When substituting obtained expressions (35) into (34),
we obtain

_V(􏽥e)≤ 􏽘

k

i�1

􏽢hi 􏽥e
T 􏽥A

T

oiPi + Pi
􏽥Aoi +

1
ε
P
2
i + εc2

I􏼒 􏼓􏽥e + 2􏽥e
T
Pi

􏽥Eid􏼔 􏼕. (39)

For the case d � 0, then

_V(􏽥e)≤ 􏽘
k

i�1

􏽢hi

e1

ey

⎡⎣ ⎤⎦

T

Λi

e1

ey

⎡⎣ ⎤⎦⎛⎝ ⎞⎠, (40)

where

Λi �
Λ1i Λ2i

∗ Λ4i

􏼢 􏼣, (41)

with

Λ1i ��A
T

1iP1i + P1i
�A1i + Wi

�A3i +�A
T

3iW
T
i +

1
ε
P
2
1i + εc2

I,

Λ2i ��A
T

3i�C
T

2 P2i,

Λ4i � 􏽥A
sT

4 P2i + P2i
􏽥A

s

4 +
1
ε
P
2
2i + εc2

I.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(42)

Denote

Wi � P1iKi,

μ � μ2.
(43)

Using the Schur complement, if (32) holds, we have

Λi �
Λ1i Λ2i

∗ Λ4i

􏼢 􏼣< 0, (44)

which implies that _V(􏽥e)< 0, i.e., limt⟶∞􏽥e � 0.
On the contrary, for the case that d≠ 0, let

J1 � _V + m
T
m − μ2dT

d. (45)

Substituting (31) and (39) into (45) yields

J1 � _V(􏽥e) + 􏽥e
T
H

T
H􏽥e − μ2dT

d

≤ 􏽘

k

i�1

􏽢hi 􏽥e
T Λi + H

T
H􏼐 􏼑􏽥e + 2􏽥e

T
Pi

􏽥Eid − μ2dT
d􏼐 􏼑

≤ 􏽘
k

i�1

􏽢hi

e1

ey

d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T Λ1i Λ2i P1iE1i + WiE2i

∗ Λ4i P2iC2E2i

∗ ∗ − μI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

e1

ey

d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(46)

where Λ1i � Λ1i + HT
1 H1 and Λ4i � Λ4i + HT

2 H2.
Using the Schur complement, we have that if (30) holds

υi �

Λ1i Λ2i P1iE1i + WiE2i

∗ Λ4i P2iC2E2i

∗ ∗ − μI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (47)

which means that J1 < 0; i.e., the error system (23) is as-
ymptotically stable with the H∞ performance μ.

From (43), Ki and μ are computed as Ki � P− 1
1i Wi and

μ �
��
μ

􏽰
. □

Remark 2. According to *eorem 1, the error system is
asymptotically stable with H∞ performance. *us, for some
small ϖ> 0, we have ‖􏽥e‖≤ϖ. In addition, one has ‖e1‖≤ ‖􏽥e‖.

3.1.1. Sliding Motion Analysis. In this section, the gain
parameter ρ0 in (29) will be determined to demonstrate a
sliding motion occurs on S in finite time.

Theorem 2. If ρ0 in (27) is chosen to satisfy

ρ0 − ρ≥ ςmax + c( 􏼁ϖ + ]max‖d‖, (48)

where ρ is positive scalar, then a sliding motion occurs on the
surface S, for all t≥ ts, where ts is the finite time at which
sliding is established.

Proof. Define

Vs �
1
2
e

T
yP2iey +

1
2q

􏽥w
2
, (49)

where the matrix P2i is proposed in *eorem 1; then, the
derivative of Vs satisfies

_Vs � 􏽘

k

i�1

􏽢hi e
T
yP2i

􏽥A
s

4ey + 􏽥A3ie1 + 􏽥ϕ + 􏽥E2id + 􏽥M2if − ϑ􏼐 􏼑 +
1
q

_􏽢w􏽥w􏼢 􏼣.

(50)

According to (35), we have

_Vs ≤ 􏽘
k

i�1

􏽢hi e
T
yP2i

􏽥A
s

4ey + 􏽥A3ie1 + 􏽥ϕ + 􏽥E2id􏼐 􏼑 − ρ0 P2iey

�����

�����􏼔 􏼕.

(51)

Since 􏽥A
s

4 is a stable design matrix and P2i is solution to
Lyapunov (28), we have

e
T
yP2i

􏽥A
s

22ey �
1
2
e

T
y P2i

􏽥A
s

4 + P2i
􏽥A

s

4􏼐 􏼑
T

􏽼√√√√√√√􏽻􏽺√√√√√√√􏽽
− Q0i

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠ey

� −
1
2
e

T
yQ0iey⩽0.

(52)

Using relation (46), we have
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_Vs ≤ 􏽘
k

i�1

􏽢hi e
T
yP2i

􏽥A3ie1 + 􏽥ϕ + 􏽥E2id􏼐 􏼑 − ρ0 P2iey

�����

�����􏼔 􏼕

≤ 􏽘
k

i�1

􏽢hi P2iey

�����

����� 􏽥A3i

����
���� + c􏼐 􏼑‖􏽥e‖ + 􏽥E2i

����
����‖d‖􏼐 􏼑 − ρ0􏼔 􏼕

≤ P2iey

�����

����� ςmax + c( 􏼁ϖ + ]max‖d‖ − ρ0􏼂 􏼃,

(53)

where

ςmax � max λmax
􏽥A31􏼐 􏼑, λmax

􏽥A32􏼐 􏼑, . . . , λmax
􏽥A3k􏼐 􏼑􏽮 􏽯,

]max � max λmax
􏽥E21( 􏼁, λmax

􏽥E22( 􏼁, . . . , λmax
􏽥E2k( 􏼁􏼈 􏼉,

(54)

where λmax(A) is the maximum eigenvalue of A.
If condition (42) holds, then the sliding mode reaching

condition

_Vs⩽ − ρ0 P2iey(t)
�����

�����⩽ − ρ0
��������

λmin P2i( 􏼁

􏽱

V
1/2
s

(55)

is guaranteed. Applying the chain rule
(d/dt)

���
Vs

􏽰
� (1/2

���
Vs

􏽰
) _Vs, the reaching condition (47) can

be integrated and rearranged to obtain an estimate for ts:
1

2
���
Vs

􏽰 _Vs ≤ − ρ0
��������

λmin P2i( 􏼁

􏽱

⇒􏽚
ts

0

d
dt

���
Vs

􏽰
( 􏼁dt

≤ − ρ0
��������

λmin P2i( 􏼁

􏽱

􏽚
ts

0
dt

⇒
������

Vs ts( 􏼁

􏽱

−

�����

Vs(0)

􏽱

􏼔 􏼕

≤ ρ0
��������

λmin P2i( 􏼁

􏽱

ts

⇒ts ≤
1
ρ0

�����
Vs(0)

􏽰

��������
λmin P2i( 􏼁

􏽱 .

(56)

*is proves that the sliding surface S is thus reached in
finite time ts. □

4. Robust Reconstruction of Actuator and
Sensor Faults

In*eorems 1 and 2, one has proven that the error system is
asymptotically stable and can thus be driven onto sliding
surface S at some time instant ts; the error system (23) is
reduced to

0 � 􏽘
k

i�1

􏽢hi e
T
yP2i

􏽥A3ie1 + 􏽥ϕ2 + 􏽥M2if + 􏽥E2id − ϑeq􏼐 􏼑􏽨 􏽩, ∀t≥ ts,

(57)

where

ϑeq � 􏽘
k

i�1

􏽢hiρi

P2iey

P2iey

�����

����� + δ
, (58)

with δ > 0 is small scalar. Define

g e1, x, 􏽢x, u( 􏼁 � 􏽥A3ie1 + 􏽥ϕ2 + 􏽥E2id. (59)

Computing the norm of (59) yields

g e1, x, 􏽢x, u( 􏼁
����

����≤ 􏽥A21i

����
���� + c2􏼐 􏼑 e1

����
����

+ 􏽥E2i

����
����‖d‖≤ ςmax + c( 􏼁‖􏽥e‖ + ]max‖d‖

≤ μ ςmax + c( 􏼁σmax H
− 1

􏼐 􏼑 + ]max􏽨 􏽩‖d‖,

(60)

where σmax(A) for a matrix A denotes the maximum sin-
gular value of the matrix. *e result (52) follows by keeping
in mind that ‖􏽥e‖≤ σmax(H− 1)μ‖d‖. *erefore, it follows that

sup
‖d‖≠0

�
g e1, x, 􏽢x, u( 􏼁

����
����

‖d‖

� β1
��
μ

􏽰
+ β2,

(61)

where β1 � (ςmax + c)σmax(H− 1) and β2 � ]max. *us, for a
small β1

��
μ

􏽰
+ β2, both actuator and sensor faults are esti-

mated by

􏽢f �

􏽢fa

􏽢fs

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

� 􏽘
k

i�1

􏽢hi
􏽥M

+

2iρi

P2iey

P2iey

�����

����� + δ
.

(62)

5. Dynamic Output-Feedback Fault-Tolerant
Control Design

In this section, a fuzzy dynamic output-feedback FTC
(DOFFTC) will be constructed to guarantee the stability of
closed-loop system (2). *e following corrected output will
be given which is obtained by subtracting the reconstructed
sensor faults from the (faulty) outputs:

yc � Cpxp + Np fs − 􏽢fs􏼐 􏼑 + Dpd, (63)

where 􏽢fs is estimation of fs obtained from the FE scheme.
System (2) becomes

_xp � 􏽘

k

i�1
hi Apixp + Bpi u + fa( 􏼁 + Epid􏽨 􏽩,

yc � Cpxp + Npefs + Dpd,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(64)

where efs
� fs − 􏽢fs is the sensor fault estimation error. *e

fuzzy DOFFTC for system (56) is constructed as follows:
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_xc � 􏽘
k

i�1
􏽘

k

j�1
hihj Acijxc + Bciyc􏽨 􏽩,

u � 􏽘
k

i�1
hi Ccixc + Dciyc − 􏽢fa􏽨 􏽩,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(65)

where xc ∈ Rn×n is the controller state, 􏽢fa is the estimation
of fa, and Acij ∈ Rn×n, Bci ∈ Rn×p, Cci ∈ Rm×n, and
Dci ∈ Rm×p denote controller matrices to be obtained later,
respectively.

Substituting (63) into (65), we obtain

_xc � 􏽘

k

i�1
􏽘

k

j�1
hihj Acijxc + BciCpxp + BciNpefs + BciDpd􏽨 􏽩,

u � 􏽘
k

i�1
hi Ccixc + DciCpxp + DciNpefs + DciDpd − 􏽢fa􏽨

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(66)

*en, substituting (64) into (66), we further obtain

_xp � 􏽘
k

i�1
hi Apixp + BpiCcixc + BpiDciCpxp + BpiDciNpefs􏽨

+ BpiDciDpd + Bpiefa
+ Epid􏽩,

(67)

where efa
� fa − 􏽢fa is the actuator fault estimation error.

*e dynamic equation of the closed-loop system is
obtained as follows:

_􏽥x � 􏽘
k

i�1
􏽘

k

j�1
hihj Aij􏽥x + Eijϖ􏽨 􏽩, yc � C􏽥x + Dϖ,

⎧⎨

⎩ (68)

where 􏽥x �
xp

xc

􏼢 􏼣, ϖ � eT
fa

eT
fs dT

􏽨 􏽩
T
, and

Aij �
Api + BpiDciCp BpiCci

BciCp Acij

⎡⎣ ⎤⎦,

Eij �
Bpi BpiDciNp BpiDciDp + Epi􏼐 􏼑

0 BciNp BciDp

⎡⎢⎣ ⎤⎥⎦,

C � Cp0􏽨 􏽩,

D � 0NpDp􏽨 􏽩.

(69)

So far, the control purpose in this paper for the closed-
loop system (60) is to design the controller gain matrices of
(57) such that the corrected output satisfies the H∞ per-
formance as follows:

􏽚
∞

0
y

T
c ycdt≤ μc 􏽚

∞

0
ϖTϖdt, (70)

for ϖ ∈ L2 0 ∞􏼂 􏼁 and attenuation level μc > 0.

Theorem 3. 3e closed-loop system (60) is asymptotically
stable with a minimal μc in (61) if there exist matrices X> 0,
Y> 0, and 􏽢Acij, 􏽢Bci, 􏽢Cci, and 􏽢Dci, i, j � 1, . . . , k, such that the
following convex optimization problem is solved:

min(μc) subject to

Φii < 0, 1≤ i≤ k,

2
k − 1
Φii +Φij +Φji < 0, 1≤ i< j≤ k,

(71)

where

Φij �

Υ1ij Υ2ij Bpi Υ3ij Υ4ij Epi XC
T
p

∗ Υ5ij YBpi Υ6ij Υ7ij YEpi C
T
p

∗ ∗ − μcI 0 0 0 0

∗ ∗ ∗ − μcI 0 0 0

∗ ∗ ∗ ∗ − μcI 0 N
T
p

∗ ∗ ∗ ∗ ∗ − μcI D
T
p

∗ ∗ ∗ ∗ ∗ ∗ − μcI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (72)

with

Υ1ij � ApiX + XA
T
pi + Bpi

􏽢Cci + 􏽢C
T

ciB
T
pi,

Υ2ij � 􏽢A
T

cij + Api + Bpi
􏽢DciCp,

Υ3ij � Bpi
􏽢DciNp,

Υ4ij � Bpi
􏽢DciDp,

Υ5ij � YApi + A
T
piY

T
+ 􏽢BciCp + C

T
p

􏽢B
T

ci,

Υ6ij � 􏽢BciNp,

Υ7ij � 􏽢BciDp.

(73)

3e gain matrices of the DOFFTC are as follows:

Dci � 􏽢Dci,

Acij � S
− 1 􏽢Acij − Y Api + Bpi

􏽢DciCp􏼐 􏼑X􏼐 􏼑Q
− T

− S
− 1

YBpiCcj − BciCpXQ
− T

,

Cci � 􏽢Cci − DciCpX􏼐 􏼑Q
− T

,

Bci � S
− 1 􏽢Bci − YBpiDci􏼐 􏼑.

(74)

μc is obtained as μc �
��
μc

􏽰
.

Proof. Consider the Lyapunov function Vx � 􏽥xTPx􏽥x, where
Px > 0; then, the derivative of Vx can be obtained as

_Vx � 􏽘
k

i�1
􏽘

k

j�1
hihj 􏽥x

T
A

T
ijPx + PxAij􏼐 􏼑􏽥x

T
+ 2􏽥x

T
PxEijϖ􏽨 􏽩.

(75)

Let

J2 � _Vx + y
T
c yc − μ2cϖ

Tϖ. (76)

Substituting (76) into (75), we obtain
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J2 � 􏽘
k

i�1
􏽘

k

j�1
hihj 􏽥x

T
A

T
ijPx + PxAij􏼐 􏼑􏽥x

T
+ 2􏽥x

T
PxEijϖ + y

T
c yc − μ2cϖ

Tϖ􏽨 􏽩

� 􏽘
k

i�1
􏽘

k

j�1
hihj 􏽥x

T
A

T
ijPx + PxAij􏼐 􏼑􏽥x

T
+ 2􏽥x

T
PxEijϖ + 􏽥x

T
C

T
C􏽥x + 2􏽥x

T
C

T
Dϖ + ϖT

D
T
Dϖ − μ2cϖ

Tϖ􏽨 􏽩

� 􏽘

k

i�1
􏽘

k

j�1
hihj 􏽥x

T
A

T
ijPx + PxAij + C

T
C􏼐 􏼑􏽥x

T
+ 2􏽥x

T
PxEijϖ + 2􏽥x

T
C

T
Dϖ + ϖT

D
T
Dϖ − μ2cϖ

Tϖ􏽨 􏽩

�
􏽥x

ϖ
􏼢 􏼣

T

Θ
􏽥x

ϖ
􏼢 􏼣,

(77)

where

Θ � 􏽘
k

i�1
􏽘

k

j�1
hihj

A
T
ijPx + PxAij + C

T
C PxEij + C

T
D

∗ D
T
D − μ2cI

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (78)

It is easy to find that J2 < 0 if Θ< 0. Using the Schur
complement, Θ< 0 is equivalent to

􏽘

k

i�1
􏽘

k

j�1
hihj

A
T
ijPx + PxAij PxEij C

T

∗ − μ2cI D
T

∗ ∗ − I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0. (79)

Let us define the matrix Px and its inverse P− 1
x :

Px �
Y S

S
T

W
􏼢 􏼣,

P
− 1
x �

X Q

Q
T

Z
􏼢 􏼣.

(80)

Due to PxP− 1
x � I2n, we have

Px

X

Q
T

􏼢 􏼣 �
In

0
􏼢 􏼣,

Px

X In

Q
T 0

􏼢 􏼣 �
In Y

0 S
T

􏼢 􏼣.

(81)

We will also define the matrices:

Π1 �
X I

Q
T 0

􏼢 􏼣,

Π2 � PxΠ1

�
I Y

0 S
T

􏼢 􏼣.

(82)

Pre- and post-multiplying (79) by diag(ΠT
1 , I, I) and its

transpose and by using the variable change:
􏽢Aij � Y Api + BpiDciCp􏼐 􏼑X + SBciCpX + YBpiCcjQ

T

+ SAcijQ
T
,

􏽢Bci � YBpiDci + SBci,

􏽢Cci � DciCX + CciQ
T
,

􏽢Dci � Dci.

(83)

Inequality (72) can thus be easily obtained. □

6. Inverted Pendulum Example

Consider the nonlinear inverted pendulum system from
[30]:

_x1 � x2,

_x2 �
g sin x1( 􏼁 − mlax

2
2sin 2x1( 􏼁/2 − ba cos x1( 􏼁x4 − a cos x1( 􏼁 F − fc( 􏼁

4l/3 − mla cos x1( 􏼁
2 ,

_x3 � x4,

_x4 �
− mgasin 2x1( 􏼁/2 + 4mla/3x

2
2 sin x1( 􏼁 − bax4 + 4a/3 F − fc( 􏼁

4/3 − ma cos x1( 􏼁
2 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(84)

where m � 2kg, M � 8kg, l � 0.5m, b � 0.06Ns/rad,
ρ � 0.05, g � 9.81ms− 2, L � 2m, a � 1/(m + M), and

fc � ρ sign(x4). In [30], the above nonlinear system is
expressed by two-rule T+ S fuzzy model (2) with
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Ap1 �

0 1 0 0

g

4l/3 − mla
0 0

ba

4l/3 − mla

0 0 0 1

− mga

4/3 − ma
0 0

− ba

4/3 − ma

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Bp1 �

0
− a

4l/3 − mla

0

4a/3
4/3 − ma

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ep1 �

1

1

0

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ap2 �

0 1 0 0

g2
�
2

√
/π

4l/3 − mla/2
0 0

ba
�
2

√
/2

4l/3 − mla/2

0 0 0 1

− mga2/π
4/3 − ma/2

0 0 −
ba

4/3 − ma/2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Bp2 �

0

− a
�
2

√
/2

4l/3 − mla/2

0

4a/3
4/3 − ma/2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ep2 �

1

1

0

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Cp �

1 0 0 0

0 0 1 0

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Np �

0

1

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Dp �

0

0.5

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(85)

With membership functions are h1(x1) � 1 − (1/1 + exp
(− 14(x1 − (π/8))))/1 + exp(− 14(x1 + (π/8))) and h2(x1) �

1 − h1(x1). *e membership functions are chosen based on
the method of sector nonlinearity [30].

Choosing Af � 1, 􏽥A
s

4 � diag(− 3, − 5, − 7), H1 � I2×2, and
H2 � I3×3 and solving LMI optimization problem given in
*eorem 1, we can calculate the H∞ performance level μ �

0.6128 and the following observer gains:

K11 �
1.5283

3.8106
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

K12 �
0.4747

0.7659
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

Gl1 �

− 1.500 − 8.8106 0

− 4.3941 − 36.4793 0

1 4.3226 0

2.9471 − 3.6149 0

0 − 1.0807 6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Gl2 �

− 1.0607 − 5.7659 0

− 3.1132 − 18.1749 0

1 1.3427 0

2.9514 − 0.6493 0

0 − 0.3357 6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Gn1 �

0 − 1 0

− 1.5000 − 3.8106 0

0 1.0807 0

1 − 1.0807 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Gn2 �

0 − 1 0

− 1.0607 − 0.7659 0

0 0.3357 0

1 − 0.3357 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(86)

According to*eorem 3, we obtain theH∞ performance
level, μc � 1.0746, and the following controller gainmatrices:
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X �

6.5946 − 22.8284 − 1.4260 − 0.3703

− 22.8284 89.0575 6.3415 − 10.5593

− 1.4260 6.3415 7.6086 − 7.8653

− 0.3703 − 10.5593 − 7.8653 21.3122

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Y �

106.4288 − 22.7293 − 12.3762 − 22.2923

− 22.7293 8.6729 4.1400 7.7688

− 12.3762 4.1400 83.7854 6.0534

− 22.2923 7.7688 6.0534 20.5865

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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Figure 1: *e actuator fault fa and its estimation.
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Figure 2: *e sensor fault fs and its estimation.
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Ac11 �

− 4.8054 − 4.6433 − 29.6951 186.8313

0.1944 − 1.9736 − 6.0099 13.6829

− 1.0255 − 3.2484 − 24.8435 194.3215

− 0.2002 0.3665 2.2852 − 20.0596

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ac12 �

− 4.8921 − 4.8143 − 31.5827 397.3524

0.1805 − 1.9966 − 6.2623 44.6510

− 1.1243 − 3.4524 − 27.0566 463.3002

− 0.1881 0.3910 2.5087 − 56.4758

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ac21 �

− 3.7054 − 1.8250 − 9.8471 15.8856

0.1188 − 1.8469 − 6.2064 28.5907

− 0.7277 − 1.1952 − 15.1229 198.4365

− 0.3068 − 0.0084 − 0.1040 − 1.6435

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ac22 �

− 3.6976 − 1.8083 − 9.6846 − 4.7204

0.1008 − 1.8815 − 6.5937 79.3446

− 0.8225 − 1.3877 − 17.2258 451.0355

− 0.3028 − 0.0007 − 0.0702 − 11.9604

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Bc1 �

− 152.1400 0.0680 − 193.0902

− 14.6685 7.4849 − 16.7177

− 180.1739 − 8.0082 − 296.1359

− 46.7432 0.7054 30.6986

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Bc2 �

13.0136 6.1728 18.4474

− 30.5119 − 3.3066 − 14.3595

− 153.5522 − 52.0403 − 169.8636

− 61.5354 1.8005 3.2691

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(87)
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Figure 3: Second closed-loop system output response: output response with free faults (black line), output response without FTC (red line),
output response with FTC without adaptive law (orange line), and output response with the proposed FTC (blue line).
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Cc1 � 0.0656 0.2233 1.5563 − 14.3353􏼂 􏼃, Cc2 � [0.0547
0.0863 1.0121 − 32.8360], Dc1 � [12.9881 0.3879 16.8240],
and Dc2 � 11.4862 3.7856 7.6871􏼂 􏼃. In the corresponding
simulation, the parameters associated with the equivalent
output error injection ϑeq have been chosen to be ρ1 � 10,
ρ2 � 15, ρ0 � 5, ρ � 0.1, and δ � 0.01 and initial conditions
x10 � π/20, x20 � 0, x30 � 2, and x40 � 0. *e considered
actuator and sensor faults have, respectively,

fa �

0, t< 2,

0.5 sin(0.25t), 2≤ t< 10,

0.5 sin(0.75t), t≥ 10,

⎧⎪⎪⎨

⎪⎪⎩

fs �

0, t< 5,

0.75, 5≤ t< 15,

1, t≥ 15.

⎧⎪⎪⎨

⎪⎪⎩

(88)

And the external disturbances d are supposed to be
random noises from − 0.1 and 0.1. *e simulation results are
provided with online simultaneous actuator and sensor
faults’ injection. Figures 1 and 2 indicate that the adaptive
SMO can estimate existing faults simultaneously with sat-
isfactory precision by rejecting the effects of disturbances.

Simulation result for the output response y2 (con-
sidered faulty) is provided in Figure 3. It is observed that
the output without FTC does not converge to the output
of the fault-free model (i.e., without any fault). However,
the output trajectory of y2 with FTC reaches the output of
the nominal model. *erefore, the proposed fuzzy
DOFFTC design achieves the performance under faults
and disturbances, and the stability of the closed-loop
system is guaranteed while satisfying the prescribed H∞
performance.

7. Conclusion

*is paper focuses on the problems of FE and FTC for T-S
fuzzy systems with unmeasurable PVs and having ex-
ternal disturbances, actuator, and sensor faults. An
adaptive fuzzy SMO is designed for estimating the state,
actuator, and sensor faults, simultaneously. Using the
FE scheme, a DOFFTC is designed to compensate the
faults and to stabilize the closed-loop system. Finally,
simulation results show the effectiveness of the proposed
methods.
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In this paper, the problem of fault estimation in systems described by Takagi–Sugeno fuzzy systems is studied. A proportional
integral observer is conceived in order to reconstruct state and faults which can affect the studied system. Proportional integral
observer can easily estimate actuator faults which are assimilated to be as unknown inputs. In order to estimate actuator and
sensor faults, a mathematical transformation is used to conceive an augmented system, in which the initial sensor fault appears as
an unknown input. Considering the augmented state, it is possible to conceive an adaptive observer which is able to estimate the
whole state and faults. *e noise effect on the state and fault estimation is also minimized in this study, which provides some
robustness properties to the proposed observer. *e proportional integral observer is conceived for nonlinear systems described
by Takagi–Sugeno fuzzy models.

1. Introduction

State estimation can have numerous applications in control
and diagnosis. In often cases, the system state is globally or
partially unknown, so its estimation can be a solution.

Generally, the process is affected by disturbances,
measurement uncertainties, and sensor and/or actuator
faults. Disturbances and faults are usually considered as
unknown inputs which can have a random behavior in time,
and they can have harmful effects on the process. Observers
with unknown inputs were the subject of many works [1–3].
Indeed, methods of simultaneous estimation of the un-
known inputs and the system state were proposed in [3]. In
[1], authors present a method of simultaneous estimations of
system state and unknown inputs and outputs, and it is
considered that some outputs are not accessible to measure.
In [2], a comparison study is proposed between sliding mode
observers and unknown inputs’ observers in the context of
fault estimation, but only the actuator fault is considered.

Takagi–Sugeno fuzzy systems, named also multiple
models [4], are an efficient approach to handle complex

nonlinear systems [5, 6].*ey are composed of a set of linear
models weighted by nonlinear activation functions verifying
the convex-sum property [6, 7]. Using the same activation
functions, nonlinear observers can be designed to make the
state estimation. *ese observers are called multiple ob-
servers [5, 8]. Indeed, works presented in [6, 7] can be
considered as the first works regarding this kind of models. It
is proved in these works that these models can approximate
well the nonlinear system behavior. Works presented in
[5, 8] are interested in some application of state and fault
estimation using this kind of models.

Approaches using Takagi–Sugeno fuzzy models are the
subject of numerous works [9–12], dealing with state esti-
mation in the presence of unknown inputs or parameter
uncertainties. In [9], authors propose to consider singulary
perturbed Takagi–Sugeno models where the activation
function is depended on unmeasurable variables such as the
system state. In [10], a case of the switching system is
considered as a particular form of Takagi–Sugeno models. In
this kind of models, the activation function can be 0 or 1. In
[11], authors are interested in Takagi–Sugeno–Kang models
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for online identification with application to crane systems.
Sensor networks are considered in [12] more precisely in the
case of nonfragile distributed filters with Takagi–Sugeno
models. In this context, the problem of state and fault es-
timation is studied in [2, 4, 5, 8, 13]. In [4], a sliding mode
observer with unknown input for the case of uncertain
Takagi–Sugeno models is proposed. In [5], a method of state
and unknown input estimation is presented for multiple
models. In [8], a method of sensor faults’ estimation is
proposed for systems described by Takagi–Sugeno models.
For linear systems, Edwards proposes, in [2], to use
a mathematical transformation in order to conceive a new
system where the sensor fault appears as an unknown input.
*is transformation is used next in [14] for the fault esti-
mation in the context of linear systems.

It is possible to estimate simultaneously the system state
and the fault affecting the system using the proportional in-
tegral observer. *is kind of observer is composed of two
estimators (proportional and integral) [4, 5, 8, 13]. In practice,
the design of the proportional integral observer is reduced to
the computation of the two gains (proportional and integral)
where the proportional term lets to estimate the system state
and the integral term permits to estimate the fault [4, 5, 8, 13].
Works presented in [4, 5, 8, 13] are interested in state and fault
estimation in the context of Takagi–Sugeno systems using
proportional integral observers which are composed of two
estimators; the first one called proportional terms is used to
estimate the system state and the second one called integral
term allows estimating the fault affecting the system. Some
academic and real applications are given like the application to
the model of turbo-reactor presented in [4].

Takagi–Sugeno fuzzy models can be of type 1 or 2
[15–18]. A type 2 fuzzy set uses upper and lower primary
membership functions and a secondary membership func-
tion [15–18]. Contrary to a type 1 fuzzy set which has only
one primary membership function, by consequent, a type 2
fuzzy set is more able to handle uncertainties and ambi-
guities. Type 2 fuzzy sets were proposed by Zadeh in 1975,
but there were not many researchers interested in them until
these last years. Some researchers started to consider type 2
fuzzy systems in the past several years due to their relative
novelty [15–18]. Works presented in [15–18] are interested
in type 2 Takagi–Sugeno fuzzy models. Indeed, it is shown
that this type can be used to reduce the system complexity
and the number of local models comparing with type 1. *e
main difference between type 1 and type 2 is in the form of
activation functions. Indeed, activation functions for type 1
are characterized by a real term for each time. For type 2, in
each time, the activation functions are characterized by fuzzy
sets which are defined often in cases by their upper and lower
bounds which is why they are called type 2 interval Taka-
gi–Sugeno fuzzy systems. For each time, activation function
is varying between upper and lower bounds.

Many other works focus on the state and fault estimation
in several contexts. Let us cite briefly some of them and give
the difference between them and the present work. In
[19, 20], authors are interested on multiagent systems which
are modeled by several agents where each agent presents
a nonlinearity which is different from the principle of the

Takagi–Sugenomodels where the local models are linear and
the nonlinearity is given by the activation functions. *e
obtained results in these works are important but the main
difference is in the used model. Multiagent systems are also
considered for fault estimation in [21] by considering dis-
tributed ℓ1 state and fault estimation. Asymptotic fault and
state estimation is proposed in [22] in the context of
nonlinear systems which is different from this work where
systems are modeled by Takagi–Sugeno models. *e same
work is extended to conceive fault tolerant control. In [23],
Lipschitz condition is assumed for the state and fault esti-
mation in the context of Takagi–Sugeno models, and these
conditions are not considered in this work. In [24], only
actuator fault is estimated simultaneously with the state
estimate in the context of interval Takagi–Sugeno systems
contrary with this work where both actuators and sensors’
faults are considered. *e Takagi–Sugeno discrete model is
considered in [25–27], but in this work, we focus on con-
tinuous models. In [28], Takagi–Sugeno models with delay
assumptions are considered; in this work, we do not consider
delay.*e application of fault estimation to the fault tolerant
control is given in [29, 30]. Ellipsoidal bounding conditions
are assumed in [31].

*emain contribution in this work is to extend the method
of simultaneous estimation of the system state and actuator and
sensor faults developed in the context of type 1 Takagi–Sugeno
fussy systems for the case of type 2 Takagi–Sugeno fuzzy
models. Indeed, the structure of type 2 Takagi–Sugeno fuzzy
systems based on varying activation functions lets the extension
of obtained results in the case of type 1 Takagi–Sugeno systems
not evident since type 2 models are based on double fuzzy sets
which are the model and the activation functions, which make
the presented work more important. An adaptive proportional
integral observer is proposed and used to assure this estimation.
Classically, this observer is used to estimate system state and
unknown inputs. *is paper shows that it is possible to adapt
this observer to estimate, simultaneously, the system state, the
actuator, and the sensor faults. Indeed, the mathematical
transformation proposed in [2], for the case of linear systems
and extended to the case of systems described by Taka-
gi–Sugeno models in [4, 8, 13], is adapted to interval type 2
Takagi–Sugenomodels in this paper. Based on the adapted form
of this transformation, an augmented system state is obtained.
*is augmented system presents a generalized unknown input
which contains the initial sensor and actuator faults. At this
level, a proportional integral observer able to estimate the
augmented state and the generalized unknown input is pro-
posed. *e estimation of the initial sensor and actuator faults is
reduced to the estimation of the generalized unknown input.
*is work presents the three possible cases of faults’ estimation:

(i) State and actuator fault estimation

(ii) State and sensor fault estimation

(iii) Simultaneous estimation of state, actuator, and
sensor faults

*e paper is organized as follows. Section 2 recalls the
principle of Takagi–Sugeno multiple models type 1 and type
2. Section 3 describes the design of the proportional integral
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observer for the state and actuator faults’ estimation. *is
observer is adapted to sensor faults’ estimation in Section 4.
Section 5 proposes a method to estimate simultaneously
system state, sensor, and actuator faults. An example of
simulation, showing the quality of estimation, is given in
Section 7.

2. Takagi–Sugeno Fuzzy Systems

2.1. Elementary Background on Type 1 Takagi–Sugeno Fuzzy
Systems. Takagi–Sugeno fuzzy systems are an appropriate
tool which permits to model large class of complex and
nonlinear systems with a mathematical model which can be
used for analysis [32, 33], control [34, 35], and observer
design [1, 8, 13, 36]. *is approach is based on a de-
composition of the system operating space into a finite
number of operating zones. Hence, a simple linear model
describes the system dynamic behavior inside each operating
zone.*e contribution of each submodel in the global model
is quantified using a nonlinear weighting function which can
have various structures. *e submodels are associated in the
state equation using a common state vector. *is model has
been proposed, in a fuzzy modeling framework, by Takagi
and Sugeno [7].

Takagi–Sugeno fuzzy systems are based on the as-
sumption that each nonlinear dynamic system can be simply
described as the fuzzy fusion of many linear models, where
each linear model represents the local system behavior
around an operating point. A Takagi–Sugeno model is de-
scribed by fuzzy IF-THEN rules which represent local linear
inputs/outputs’ relations of the nonlinear system. It has
a rule base of M rules, each having p antecedents, where the
ith rule is expressed as follows:

R
i
: IF ξ1 isF

i
1 and . . . and ξp isF

i
p, (1)

where i ∈ 1, . . . , M{ }, Fi
j(j ∈ 1, . . . , p􏼈 􏼉) are fuzzy sets and

ξ � [ξ1, ξ2, . . . , ξp] is a known vector of premise variables [5]
which may depend on the state, the input, or the output.
Variable ξ is called the decision variable.

*e global Takagi–Sugeno fuzzy model is given by the
aggregation of the submodels using the weighting functions
as follows:

_x(t) � 􏽘
M

i�1
μi(ξ(t)) Aix(t) + Biu(t)( 􏼁,

y(t) � 􏽘
M

i�1
μi(ξ(t))Cix(t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rr is the control
vector, y(t) ∈ Rm is the vector of measures, and Ai, Bi, and
Ci are known constant matrices with appropriate
dimensions.

*e weighting functions μi(ξ(t)) assure a progressive
passage between the local models and verifies the property of
the convex sum: 􏽐

M
i�1 μi(ξ(t)) � 1, ∀t and

0≤ μi(ξ(t))≤ 1, ∀i � 1, . . . , M,∀t.
If, in the equation of the output, it is supposed that

C1 � C2 � · · · � CM � C, the output of the multiple model

(2) is reduced to y(t) � Cx(t), and the multiple model state
equation becomes

_x(t) � 􏽘
M

i�1
μi(ξ(t)) Aix(t) + Biu(t)( 􏼁,

y(t) � Cx(t).

⎧⎪⎪⎨

⎪⎪⎩
(3)

2.2. Type 2 Takagi–Sugeno Fuzzy Systems. Interval type 2
Takagi–Sugeno fuzzy models are nonlinear systems with M

rules, where the Rule Ri is as follows.
IF f1(ξ(t)) is 􏽥F

i

1 AND . . .AND fp(ξ(t)) is 􏽥F
i

p THEN

_x(t) � Aix(t) + Biu(t),

y � Cix(t),
􏼨 (4)

where fj(ξ(t)) is the premise variable depending on
a known decision variable ξ and 􏽥F

j

i is an interval type 2 fuzzy
set, for i ∈ 1, 2, . . . , M{ } and j ∈ 1, 2, . . . , p􏼈 􏼉, p is a positive
integer, x(t) ∈ Rn is the state vector, u(t) ∈ Rq in the system
input, y(t) ∈ Rl is the system output, and Ai, Bi, and Ci are
known matrices with appropriate dimensions.

*e ith fuzzy rule can be described by the interval sets:
μi(ξ(t)) � [μ

i
(ξ(t)), μi(ξ(t))], i ∈ 1, 2, . . . , M{ }, where

μ
i
(ξ(t)) � 􏽑

M
j�1 μ􏽥F

i

j

(fi(ξ(t))) ≥ 0 and μi(ξ(t)) � 􏽑
M
i�1 μ􏽥F

i

j

(fi(ξ(t)))≥ 0 are the lower and upper grades of member-
ship, respectively. μ􏽥F

i

j

(fi(ξ(t)))≥ 0 and μ􏽥F
i

j

(fi(ξ(t))) ≥ 0

denote the lower and upper weighting functions, re-
spectively. *erefore, it is assumed that
μ􏽥F

i

j

(fi(ξ(t))) ≥ μ􏽥F
i

j

(fi(ξ(t))) ≥ 0 and μ
i
(ξ(t))≥ μi(ξ(t)) for

all i.
*e interval type 2 Takagi–Sugeno fuzzy system is given

by the following state equations:

_x(t) � 􏽘
M

i�1
μi(x(t)) Aix(t) + Biu(t)( 􏼁,

y(t) � 􏽘
M

i�1
μi(x(t))Cix(t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

with

μi(ξ(t)) �
ωi(ξ(t))

􏽐
M
i�1 ωi(ξ(t))

,

􏽘

M

i�1
μi(ξ(t)) � 1,

(6)

where

ωi(ξ(t)) � ϑi(ξ(t))μ
i
(ξ(t)) + ϑi(ξ(t))μi(ξ(t))≥ 0, ∀i.

(7)

*e nonlinear functions ϑi(ξ(t)) et ϑi(ξ(t)) must verify
the following conditions:
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0≤ ϑi(ξ(t))≤ 1, (8)

0≤ ϑi(ξ(t))≤ 1, (9)

ϑi(ξ(t)) + ϑi(ξ(t)) � 1. (10)

To summarize, it is possible to write an interval type 2
Takagi–Sugeno system in the following form:

_x(t) � 􏽘
M

i�1
μi(x(t)) Aix(t) + Biu(t)( 􏼁,

y(t) � 􏽘
M

i�1
μi(x(t))Cix(t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)

where 􏽐
M
i�1 μi(ξ(t)) � 1, ∀t and 0≤ μi(ξ(t))≤ 1,

∀t,∀i � 1, . . . , M and

μi(ξ(t)) �
μi(ξ(t))ϑi(ξ(t)) + μ

i
(ξ(t))ϑi(ξ(t))

􏽐
M
i�1 μi(ξ(t))ϑi(ξ(t)) + μ

i
(ξ(t))ϑi(ξ(t))􏼐 􏼑

.

(12)

3. Actuator Faults’ Estimation

*e objective of this part is to conceive a proportional in-
tegral observer able to estimate actuator faults affecting
nonlinear systems represented by interval type 2 Taka-
gi–Sugeno models.

Consider the following interval type 2 Takagi–Sugeno
fuzzy system affected by an actuator fault and a measure-
ment noise:

_x(t) � 􏽘
M

i�1
μi(ξ(t)) Aix(t) + Biu(t) + Eifa(t)( 􏼁,

y(t) � Cx(t) + Dw(t),

⎧⎪⎪⎨

⎪⎪⎩
(13)

where x(t) ∈ Rn is the system state, y(t) ∈ Rm is the
measured output, u(t) ∈ Rr is the input, fa(t) is the ac-
tuator fault which is assumed to be bounded, and w(t) is the
measurement noise. Ai, Bi, and C are known constant
matrices with appropriate dimensions. Ei and D are, re-
spectively, the fault and noise distribution matrices which
are assumed to be known. *e scalar M represents the
number of the local models. μi(ξ(t)) are the activation
functions verifying equation (12).

*e structure of the proportional integral observer is
chosen as follows:

_􏽢x(t) � 􏽘
M

i�1
μi(ξ(t)) Ai􏽢x(t) + Biu(t) + Ei

􏽢fa(t) + Ki 􏽥y(t)􏼐 􏼑,
⎧⎨

⎩

_􏽢fa(t) � 􏽘
M

i�1
μi(ξ(t))Li 􏽥y(t),

􏽢y(t) � C􏽢x(t), (14)

where 􏽢x(t) ∈ Rn is the estimated system state, 􏽢fa(t) rep-
resents the estimated fault, 􏽢y(t) ∈ Rm is the estimated
output, 􏽥y(t) � y(t) − 􏽢y(t), Ki are the local proportional
observer gains, and Li are the local integral gains to be
computed.

Let us define the state estimation error 􏽥x(t) and the fault
estimation error 􏽥fa(t). *ey are given by the following
equalities:

􏽥x(t) � x(t) − 􏽢x(t), (15)

􏽥fa(t) � fa(t) − 􏽢fa(t). (16)

*e dynamics of the state estimation error is given by the
computation of _􏽥x(t) which is written as follows:

_􏽥x(t) � _x(t) − _􏽢x(t) � 􏽘
M

i�1
μi(ξ(t)) Ai − KiC􏽥x(t) + Ei

􏽥fa(t) + KiDw(t)􏼐 􏼑. (17)

*e dynamics of the fault estimation error is given by the
expression of 􏽦fa

.

(t) written below:

􏽦fa

.

(t) � fa

.

(t) − 􏽣fa

.

(t) � fa

.

(t) − 􏽘
M

i�1
μi(ξ(t)) LiC􏽥x(t) − LiDw(t)( 􏼁. (18)

*e following matrices are introduced:
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φa �
􏽥x(t)

􏽥fa(t)
􏼢 􏼣,

εa �
w(t)

_fa(t)
􏼢 􏼣.

(19)

Equations (17) and (18) can be rewritten as follows:

_φa � Amaφa + Bmaεa, (20)

with

Ama � 􏽘
M

i�1
μi(ξ(t))Aai,

Bma � 􏽘
M

i�1
μi(ξ(t))Bai,

(21)

where

Aai �
Ai − KiC Ei

−LiC 0
􏼢 􏼣,

Bai �
−KiD 0
−LiD I

􏼢 􏼣.

(22)

*e matrix I is the identity matrix with appropriate
dimensions.

In order to analyse the convergence of the generalized
estimation error φa(t), the quadratic Lyapunov candidate
function Va(t) � φa(t)TPφa(t) is considered, where P de-
notes a symmetric definite positive matrix.

*e problem of robust state and fault estimation is re-
duced to find the gains Ki and Li of the observer to ensure an
asymptotic convergence of φa(t) toward zero if εa(t) � 0
and to ensure a bounded error in the case, where εa(t)≠ 0,
i.e.,

lim
t⟶∞

φa(t) � 0, for εa(t) � 0,

φa(t)
����

����Qφ
≤ λ εa(t)

����
����Qε

, for εa(t)≠ 0 and e(0) � 0,
(23)

where λ> 0 is the attenuation level.
To satisfy constraints (23), it is sufficient to find a Lya-

punov function Va(t) such that

Va

.

(t) + φT
a Qφφa − λ2εT

a Qεεa < 0, (24)

where Qφ and Qε are two positive definite matrices.
In order to simplify the notations, the time index (t) will

be omitted henceforth.
Inequality (24) can also be written as follows:

ψT
aΩaψa < 0, (25)

with

ψa �
φa

εa

􏼢 􏼣,

Ωa �
A

T
maP + PAma + Qφ PBma

B
T
maP −λ2Qε

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(26)

Inequality (25) has a quadratic form, and it holds iff
Ωa < 0.

*e matrices Ama and Bma can be written as

Ama � 􏽥Ama − 􏽥Kma
􏽥C,

Bma � 􏽥I − 􏽥Kma
􏽥D,

(27)

where

􏽥Ama � 􏽘
M

i�1
μi(ξ(t))􏽥Ama,

􏽥Kma � 􏽘
M

i�1
μi(ξ(t)) 􏽥Kma,

(28)

with

􏽥Kmai �
Ki

Li

􏼢 􏼣,

􏽥Amai �
Ai Ei

0 0
􏼢 􏼣,

􏽥I �
0 0

0 I
􏼢 􏼣,

􏽥C � C 0􏼂 􏼃,

􏽥D � D 0􏼂 􏼃.

(29)

With the changes of variables Gma � P 􏽥Kma and λ � λ2,
the matrix Ωa can be put as follows:

Ωa �
ϑa −Gma

􏽥D + P􏽥I

􏽥I
T
P − 􏽥D

T
G

T
ma −λQε

⎡⎢⎣ ⎤⎥⎦, (30)

where ϑa � P􏽥Ama + 􏽥A
T

maP − Gma
􏽥C − 􏽥C

T
GT
ma + Qφ.

As Ωa � 􏽐
M
i�1 μi(ξ(t))Ωai, the negativity of Ω is assured

if, for i � 1, . . . , M,

Ωai < 0, (31)

with

Ωai �
ϑai −Gai

􏽥D + P􏽥I

􏽥I
T
P − 􏽥D

T
G

T
ai −λQε

⎡⎢⎣ ⎤⎥⎦, (32)

where ϑai � P􏽥Amai + 􏽥A
T

maiP − Gai
􏽥C − 􏽥C

T
GT
ai + Qφ and

Gai � P 􏽥Kmai.
*e resolution of LMI (31) leads to the determination of

the matrices P and Gai and the scalar λ. *e gain matrices are
then deduced by the equation 􏽥Kmai � P− 1Gai.

*e observer design is summarized by the following
theorem.

Theorem 1. System (20) describing the time evolution of the
state estimation error 􏽥x and the fault estimation error 􏽦fa is
stable and the L2-gain of the transfer from εa(t) to φa(t) is
bounded if there exists a symmetric, positive definite matrix P,
gain matrices Gai, i ∈ 1, . . . , M{ }, and a positive scalar λ such
that the following LMI are verified:
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ϑai −Gai
􏽥D + P􏽥I

􏽥I
T
P − 􏽥D

T
G

T
ai −λQε

⎡⎢⎣ ⎤⎥⎦< 0, i ∈ 1, . . . , M{ }, (33)

where ϑai � P􏽥Amai + 􏽥A
T

maiP − Gai
􏽥C − 􏽥C

T
GT
ai + Qφ. ;e ob-

server gains (proportional and integral gains) are computed
using 􏽥Kmai � P− 1Gai and the attenuation level is given by
λ �

�
λ

􏽰
.

4. Sensor Faults’ Estimation

*e objective of this part is to adapt the proportional integral
observer proposed in Section 3 to estimate sensor faults
affecting the nonlinear system described by interval type 2
Takagi–Sugeno fuzzy model.

Let us consider the following interval type 2 Taka-
gi–Sugeno system affected by sensor fault fs(t) and mea-
surement noise w(t):

_x(t) � 􏽘
M

i�1
μi(ξ(t)) Aix(t) + Biu(t)( 􏼁,

y(t) � Cx(t) + Ffs(t) + Dw(t),

⎧⎪⎪⎨

⎪⎪⎩
(34)

where x(t) ∈ Rn is the system state, y(t) ∈ Rm is the
measured output, u(t) ∈ Rr is the system input, Ai, Bi, and C

are known constant matrices with appropriate dimensions,
F and D are, respectively, the fault and noise distribution
matrices which are assumed to be known, the scalar M is the
number of local models, and μi(ξ(t)) are the activation
functions verifying equation (12).

Consider the state z(t) ∈ Rp [8, 13] given by

_z(t) � 􏽘
M

i�1
μi(ξ(t)) −Aiz(t) + AiCx(t) + AiFfs(t)( 􏼁,

(35)

where −Ai, i ∈ 1, . . . , M{ } are stables matrices.

Remark 1. *e introduced new state z(t) has the form of
a particular filter for the output of the system; it was initially
extended to the context of Takagi–Sugeno models in [8], and
it was used in [13]. *emain advantage of this new state is to
conceive an augmented system where all the faults affecting
the initial system (actuator and sensor faults) appear as
unknown inputs which let possible to use an augmented
proportional integral observer to estimate this unknown
input considered as actuator faults. *e use of this state is
important because the classic proportional integral observer
allows only estimating actuator faults which let the im-
possible to estimate the sensor fault based on the classical
proportional observer.

*e augmented state x(t) � xT(t) zT(t)􏼂 􏼃
T is in-

troduced. It is given by equation (36):

x
.
(t) � 􏽘

M

i�1
μi(ξ(t)) Agix(t) + Bgiu(t) + Egifs(t)􏼐 􏼑,

y(t) � Cgx(t) + Dgw(t),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(36)

with

Agi �
Ai 0

AiC −Ai

⎡⎢⎢⎣ ⎤⎥⎥⎦,

Bgi �
Bi

0
⎡⎢⎢⎣ ⎤⎥⎥⎦,

Egi �
0

AiF

⎡⎢⎢⎣ ⎤⎥⎥⎦,

Cg �
C 0

0 I

⎡⎢⎢⎣ ⎤⎥⎥⎦,

Dg �
D

0
⎡⎢⎢⎣ ⎤⎥⎥⎦.

(37)

A proportional integral observer is able to estimate si-
multaneously the augmented state x(t) and the sensor fault
fs(t) is chosen as follows:

􏽢x
.

(t) � 􏽘
M

i�1
μi(ξ(t)) Agi􏽢x(t) + Bgiu(t) + Egi

􏽢fs(t) + Ki􏽥y(t)􏼐 􏼑,

􏽢fs(t) � 􏽘
M

i�1
μi(ξ(t)) Li􏽥y(t)( 􏼁,

􏽢y(t) � Cg􏽢x(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(38)

where 􏽢x(t) is the estimated system state, 􏽢fs(t) is the esti-
mated sensor fault, 􏽢y(t) is the estimated output,
􏽥y(t) � y(t) − 􏽢y(t), Ki are the local proportional observer
gains, and Li are the local integral observer gains to be
computed. It is assumed that fs(t) is bounded.

*e augmented state estimation error 􏽥x(t) and the fault
estimation error 􏽥fs(t) are defined as follows:

􏽥x(t) � x(t) − 􏽢x(t), (39)

􏽥fs(t) � fs(t) − 􏽢fs(t). (40)

*e dynamics of the augmented state reconstruction
error is given by the computation of 􏽥x

.

(t) � x
.
(t) − 􏽢x

.

(t)

which is written as follows:

􏽥x
.

(t) � 􏽘

M

i�1
μi(ξ(t)) Aai − KiCa( 􏼁􏽥x(t) + Eai

􏽥fs(t) + KiDaw(t)􏼐 􏼑.

(41)

*e dynamic of the sensor fault estimation error can be
computed as follows:

􏽥fs

.

(t) � fs

.

(t) − 􏽘
M

i�1
μi(ξ(t)) LiCa􏽥x(t) − LiDaw(t)( 􏼁.

(42)

*e following matrices are introduced:
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φs �
x(t)

􏽥fs(t)
􏼢 􏼣,

εs �
w(t)

_fs(t)
􏼢 􏼣.

(43)

By omitting to denote the dependence with regard to the
time t, equations (41) and (42) can be rewritten as follows:

_φs � Amsφs + Bmsεs. (44)

*e matrices Ams and Bms have the following
expressions:

Ams � 􏽘
M

i�1
μi(ξ(t))􏽦Asi,

Bms � 􏽘

M

i�1
μi(ξ(t))􏽦Bsi,

(45)

where

􏽦Asi �
Aai − KiCa Eai

−LiCa 0
􏼢 􏼣,

􏽦Bsi �
−KiDa 0

−LiDa I
􏼢 􏼣.

(46)

Using the Lyapunov function Vs(t) given by Vs(t) �

φs(t)TPφs(t) and following the same reasoning as for ac-
tuator faults’ estimation, the convergence of state and fault
estimation errors as well as the attenuation level is guar-
anteed if ψT

s Ωsψs < 0 with

ψs �
φs

εs

􏼢 􏼣,

Ωs �
A

T
mgP + PAmg + Qφ PBmg

B
T
mgP −λ2Qε

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(47)

*e matrices Ams and Bms are written as Ams � 􏽥Ams −
􏽥Kms

􏽥Cg and Bms � 􏽥I − 􏽥Kms
􏽥Dg with

􏽥Ams � 􏽘

M

i�1
μi(ξ(t))􏽥Amsi,

􏽥Kms � 􏽘
M

i�1
μi(ξ(t)) 􏽥Kmsi,

(48)

where

􏽥Amsi �
Agi Egi

0 0
􏼢 􏼣,

􏽥Kmsi �
Ki

Li

􏼢 􏼣,

􏽥I �
0 0

0 I
􏼢 􏼣,

􏽥Cg � Cg 0􏽨 􏽩,

􏽥Dg � Dg 0􏽨 􏽩.

(49)

Using the changes of variables Gms � P 􏽥Kms and λ � λ2
and choosing Qφ � Qε � I, the matrix Ωs can be put in the
following form:

Ωs �
ϑs P􏽥I − Gms

􏽥Da

􏽥I
T
P − 􏽥D

T

a G
T
ms −λI

⎡⎢⎣ ⎤⎥⎦ , (50)

with ϑs � P􏽥Ams + 􏽥A
T

msP − Gms
􏽥Ca − 􏽥C

T

a GT
ms + I.

As Ωs � 􏽐
M
i�1 μi(ξ(t))Ωsi, the negativity of Ωs is assured

if, for i ∈ 1, . . . , M{ },

Ωsi < 0, (51)

with

Ωsi �
ϑsi P􏽥I − Gsi

􏽥Da

􏽥I
T
P − 􏽥D

T

a G
T
si −λI

⎡⎢⎣ ⎤⎥⎦ , (52)

where ϑsi � P􏽥Amsi + 􏽥A
T

msiP − Gsi
􏽥Ca − 􏽥C

T

a GT
si + I and

Gsi � P 􏽥Kmsi.
*e resolution of LMI (51) leads to the determination of

the matrices P and Gsi and the scalar λ. *e gain matrices are
then deduced from the equation 􏽥Kmsi � P− 1Gsi. *e ob-
server design is summarized by the following theorem:

Theorem 2. System (44) describing the time evolution of the
state estimation error 􏽥x and the fault estimation error 􏽥f is
stable and the L2-gain of the transfer from εg(t) to φg(t) is
bounded if there exists a symmetric, positive definite matrix P,
gain matrices Ggi, i ∈ 1, . . . , M{ }, and a positive scalar m such
that the following LMI is verified:

ϑsi P􏽥I − Ggi
􏽥Da

􏽥I
T

P − 􏽥D
T

a G
T
gi −λI

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦< 0, i ∈ 1, . . . , M{ }, (53)

with ϑsi � P􏽥Amgi + 􏽥A
T

mgiP − Ggi
􏽥Ca − 􏽥C

T

a GT
gi + I. ;e observer

gains (proportional and integral gains) are computed using
the equation 􏽥Kmgi � P− 1Ggi, and the attenuation level is given
by λ �

�
λ

􏽰
.

*e main advantage of the proposed method is to es-
timate the sensor fault using a proportional integral ob-
server. *e use of the mathematical transformation (35) lets
to estimate it since it appears as an actuator fault in the
augmented system.

5. Actuator and Sensor Faults’ Estimation

*e objective of this part is to conceive a proportional in-
tegral observer which is able to estimate simultaneously
actuator and sensor faults affecting the nonlinear system
represented by interval type 2 Takagi–Sugeno model.

Let us consider the following nonlinear interval type 2
Takagi–Sugeno system affected by a sensor fault fs(t), ac-
tuator fault fa(t), and a measurement noise w(t):

_x(t) � 􏽘
M

i�1
μi(ξ(t)) Aix(t) + Biu(t) + Eifs(t)( 􏼁,

y(t) � Cx(t) + Ffs(t) + Dw(t),

⎧⎪⎪⎨

⎪⎪⎩
(54)
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where x(t) ∈ Rn is the system state, y(t) ∈ Rm is the
measured output, u(t) ∈ Rr is the system input, Ai, Bi, and C

are known constant matrices with appropriate dimensions,
Ei, F, and D are, respectively, the fault and noise distribution
matrices which are assumed to be known, M is the number
of local models, and μi(ξ(t)) are the activation functions
verifying equation (12).

By considering the state z(t) ∈ Rp given in (35), the
augmented state x(t) � xT(t) zT(t)􏼂 􏼃

T is given by

x
.
(t) � 􏽘

M

i�1
μiξ(t) Agix(t) + Bgiu(t) + Wgif(t)􏼐 􏼑,

y(t) � Cgx(t) + Dgw(t),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(55)

with

Agi �
Ai 0

AiC −Ai

􏼢 􏼣,

Bgi �
Bi

0
􏼢 􏼣,

Wgi �
E 0

0 AiF
􏼢 􏼣,

Cg �
C 0

0 I
􏼢 􏼣,

Dg �
D

0
􏼢 􏼣,

f �
fa

fs

􏼢 􏼣.

(56)

An adaptive structure of the proportional integral ob-
server which is able to estimate simultaneously the system
augmented state and the generalized fault f(t) is chosen as
follows:

􏽢x
.

(t) � 􏽘
M

i�1
μi(ξ(t)) Agi􏽢x(t) + Bgiu(t) + Wgi

􏽢f(t) + Ki􏽥y􏼐 􏼑,

􏽢f(t) � 􏽘
M

i�1
μi(ξ(t)) Li􏽥y(t)( 􏼁,

􏽢y(t) � Cg􏽢x(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(57)

where 􏽢x(t) is the estimated augmented system state, 􏽢f(t) is
the estimated fault, 􏽢y(t) is the estimated output,
􏽥y(t) � y(t) − 􏽢y(t), Ki are the local proportional observer
gains, and Li are the local integral observer gains to be
computed. It is assumed that f(t) is bounded.

Remark 2. *e designed observer is called adaptive observer
because it is based on the adaptive global model, and it lets
the estimation of the actuator and the sensor fault after the
application of the mathematical transformation. So, it has
the same structure of a proportional integral observer, but
this structure is adapted to the augmented system.

Let us define the augmented state estimation error 􏽥x(t) �

x(t) − 􏽢x(t) and the fault estimation error
􏽥f(t) � f(t) − 􏽢f(t).

*eir dynamics are given as follows:

􏽥x
.

(t) � 􏽘

M

i�1
μi(ξ(t)) Agi − KiCg􏼐 􏼑􏽥x(t) + Egi

􏽥f(t) + KiDgw(t)􏼐 􏼑,

(58)

_􏽥f(t) � _f(t) − 􏽘
M

i�1
μi(ξ(t)) LiCg􏽥x(t) − LiDgw(t)􏼐 􏼑.

(59)

*e following matrices are introduced:

φf �
􏽥x(t)

􏽥f(t)

⎡⎢⎣ ⎤⎥⎦,

εf �
w(t)

_f(t)

⎡⎢⎣ ⎤⎥⎦.

(60)

By omitting to denote the dependence with regard to the
time t, equations (58) and (59) become

_φf � Amfφf + Bmfεf. (61)

*e matrices Amf and Bmf have the expressions: Amf �

􏽐
M
i�1 μi(ξ(t)) 􏽦Afi and Bmf � 􏽐

m
i�1 μi(ξ(t)) 􏽦Bfi. with

􏽦Afi �
Agi − KiCg Egi

−LiCg 0
⎡⎣ ⎤⎦,

􏽦Bfi �
−KiDg 0

−LiDg I
⎡⎣ ⎤⎦.

(62)

*e Lyapunov function Vf(t) � φf(t)TPφf(t) is con-
sidered. By following the same reasoning as for actuator
faults’ estimation, the convergence of state and fault esti-
mation errors as well as attenuation level are guaranteed if
ψT

fΩfψf < 0 with

ψf �
φf

εf

⎡⎣ ⎤⎦,

Ωf �
A

T
mfP + PAmf + Qφ PBmf

B
T
mfP −λ2Qε

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(63)

*ematrices Amf and Bmf can be written as Amf � 􏽥Amf −
􏽥Kmf

􏽥Cg and Bmf � 􏽥I − 􏽥Kmf
􏽥Dg with

􏽥Amf � 􏽘
M

i�1
μi(ξ(t))􏽥Amfi,

􏽥Kmf � 􏽘
M

i�1
μi(ξ(t)) 􏽥Kmfi,

(64)

where
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􏽥Amfi �
Agi Egi
0 0

􏼢 􏼣,

􏽥Kmfi �
Ki

Li

􏼢 􏼣,

􏽥I �
0 0
0 I

􏼢 􏼣,

􏽥Cg � Cg 0􏽨 􏽩,

􏽥Dg � Dg 0􏽨 􏽩.

(65)

Using the changes of variables Gmf � P 􏽥Kmf and λ � λ2
and choosing Qφ � Qε � I, the matrix Ωf can be put in the
following form:

Ωf �
ϑf P􏽥I − Gmf

􏽥Da

􏽥I
T

P − 􏽥D
T

a G
T
mf −mI

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ , (66)

with ϑf � P􏽥Amf + 􏽥A
T

mfP − Gmf
􏽥Ca − 􏽥C

T

a GT
mf + I.

As Ωf � 􏽐
M
i�1 μi(ξ(t))Ωfi, the negativity of Ωf is assured

if, for i ∈ 1, . . . , M{ },

Ωfi < 0, (67)

with

Ωfi �
ϑfi P􏽥I − Gfi

􏽥Da

􏽥I
T
P − 􏽥D

T

a G
T
fi −mI

⎡⎢⎣ ⎤⎥⎦ , (68)

where ϑfi � P􏽥Amfi + 􏽥A
T

mfiP − Gfi
􏽥Ca − 􏽥C

T

a GT
fi + I and

Gfi � P 􏽥Kmfi.
*e resolution of LMI (67) leads to the determination of

the matrices P and Gfi and the scalar m. *e gain matrices
are then deduced using the equation: 􏽥Kmfi � P−1Gfi.

*e observer design is summarized by the following
theorem.

Theorem 3. System (61) describing the time evolution of the
state estimation error 􏽥x and the fault estimation error 􏽥f is

stable and the L2-gain of the transfer from εf(t) to φf(t) is
bounded if there exists a symmetric, positive definite matrix P,
gain matrices Gfi, i ∈ 1, . . . , M{ }, and a positive scalar m such
that the following LMI is verified:

ϑfi P􏽥I − Gfi
􏽥Da

􏽥I
T
P − 􏽥D

T

a G
T
fi −mI

⎡⎢⎣ ⎤⎥⎦< 0, i ∈ 1, . . . , M{ }, (69)

where ϑfi � P􏽥Amfi + 􏽥A
T

mfiP − Gfi
􏽥Ca − 􏽥C

T

a GT
fi + I. ;e observer

gains (proportional and integral gains) are computed using
the equation 􏽥Kmfi � P−1Gfi and the attenuation level is given
by λ �

�
λ

􏽰
.

*e main advantage of this method is to estimate simul-
taneously the sensor and the actuator faults using a pro-
portional integral observer. *e use of the mathematical
transformation 34 lets to obtain a generalized fault which
combines the actuator and the sensor faults. *is generalized
fault appears as an actuator fault in the obtained augmented
system. Its estimation leads to estimate the sensor and the
actuator fault.

6. Example of Simulation

*e objective of this section is to apply the proposed method to
a hydraulic process made up of three tanks [37]. *e system is
supposed affected simultaneously by sensor and actuator faults.
*e three tanks T1, T2, and T3 with identical sections ρ are
connected to each other by cylindrical pipes of identical sections
Sn.*e output valve is located at the output of tankT2; it ensures
to empty the tank filled by the flow of pumps 1 and 2 with,
respectively, flow rates Q1(t) and a2(t). Combinations of the
three water levels are measured. *e pipes of communication
between the tanks are manually closed or open. *e three levels
x1, x2, and x3 are governed by the constraint x1 > x3 >x2; the
process described by Figure 1 is modeled by equation (70).
Taking into account the fundamental laws of conservation of the
fluid, a nonlinear model is expressed by the following state
equations [37]:

ρ
dx1(t)

dt
� −α1Sn 2g x1(t) − x3(t)( 􏼁( 􏼁

1/2
+ Q1(t) + Qf1fa(t),

ρ
dx2(t)

dt
� −α3Sn 2g x3(t) − x2(t)( 􏼁( 􏼁

1/2
− α2Sn 2gx2(t)( 􏼁

1/2
+ Q2(t) + Qf2fa(t),

ρ
dx3(t)

dt
� −α1Sn 2g x1(t) − x3(t)( 􏼁( 􏼁

1/2
− α3Sn 2g x3(t) − x2(t)( 􏼁( 􏼁

1/2
+ Qf3fa(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(70)

where α1, α2, and α3 are constants, fa(t) is regarded as an
unknown input, and fs(t) is a sensor fault affecting the
process. Qf/fi(t), i ∈ 1, . . . , 3{ }, denote the additional mass
flows into the tanks caused by leaks and g is the gravity
constant.

*e multiple model, with ξ(t) � u(t), which approxi-
mates the nonlinear system (70), is given by the following
state equation:

_x(t) � 􏽘
M

i�1
μi(u(t)) Aix(t) + Biu(t) + Eifs(t)( 􏼁,

y(t) � Cx(t) + Ffs(t) + Dw(t).

⎧⎪⎪⎨

⎪⎪⎩
(71)

*e matrices Ai, Bi, and di are calculated by linearizing
the initial system (70) around four points chosen in the
operation range of the system. Four local models have been
selected in a heuristic way. *at number guarantees a good
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approximation of the state of the real system by the multiple
model [?]. *e following numerical values were obtained:

A1 �

−0.0109 0 0.0109

0 −0.0206 0.0106

0.0109 0.0106 −0.0215

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

d1 � 10−3 ∗

−2.86

−0.38

0.11

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A2 �

−0.0110 0 0.0110

0 −0.0205 0.0104

0.0110 0.0104 −0.0215

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

d2 � 10−3 ∗

−2.86

−0.34

0.038

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A3 �

−0.0084 0 0.0084

0 −0.0206 0.0095

0.0084 0.0095 −0.0180

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

d3 � 10−3 ∗

−3.7

−0.14

0.69

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A4 �

−0.0085 0 0.0085

0 −0.0205 0.0095

0.0085 0.0095 −0.0180

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

d4 � 10−3 ∗

−3.67

−0.18

0.62

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Bi � Ei

D �

0.1 0.5

0.2 0.1

0.1 0.3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

C �

1 1 1

1 0 0

0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(72)

*e functions Qf1, Qf2, and Qf3 are constant and the
numerical application is made with

Qfi � 10−4, ∀i ∈ 1, . . . , 4{ }, and. t ∈ [0, x, [

α1 � 0.78, α2 � 0.78, and α3 � 0.75
g � 9.8, Sn � 5∗ 10−5, and ρ � 0.0154

*e type 2 activation functions are shown in Figure 2.
Figure 2 shows the evolution of activation functions

μi(ξ(t)) in time. For each activation function
μi(ξ(t)), i ∈ 1, . . . , 4, the upper bound μi(ξ(t)) and the
under bound μ

i
(ξ(t)) are represented. *e evolution of the

activation function in time is between these two bounds.
*e actuator fault fa(t) � fa1(t) fa2(t)􏼂 􏼃

T is defined
as

fa1 �
0.4, 100 s< t< 700 s,

0, otherwise,
􏼨

fa1 �

0.5, 60 s< t< 360 s,

0.8∗ sin(0.2πt), 360 s< t< 800 s,

0, otherwise.

⎧⎪⎪⎨

⎪⎪⎩

(73)

*e sensor fault fs(t) is fs(t) � fs1(t) fs2(t)􏼂 􏼃
T with

fs1 �

0.7∗ sin(0.4πt), 200 s< t< 700 s,

0.6, 700 s< t< 1000 s,

0, otherwise,

⎧⎪⎪⎨

⎪⎪⎩

fs2 �

0.8∗ sin(0.1πt), 350< t< 550 s,

0.6, 600 s< t< 800 s,

0, otherwise.

⎧⎪⎪⎨

⎪⎪⎩

(74)

Matrices Ai are chosen as A1 � 5∗ I, A2 � 10∗ I,
A3 � 15∗ I, and A4 � 20∗ I.

Figure 3 visualizes the two actuator faults and their
estimations.*e actuator faults’ error estimation is shown in
Figure 4. In Figure 5, the two sensor faults and their esti-
mations are represented, and the sensor faults’ error esti-
mation is shown in Figure 6. *e state error estimation is
visualized in Figure 7.

Figures 3 and 4 show that the proposed proportional
observer allows estimating the actuator fault well even in the
case of time-varying faults.

Figures 5 and 6 show that the proposed proportional
observer allows estimating the sensor fault well even in the
case of time-varying faults. Figure 7 shows also that this
proposed observer allows estimating the system state well.
*e effect of the measurement noise is minimized using the
L2 approach.

*e obtained results show the effectiveness of the pro-
posed proportional integral observer.

Figures 3 to 7 show that the proposed method gives
a state and fault estimation with high performances. *e
proposed adaptive proportional observer lets to estimate the
system state and the actuator and/or the sensor fault well.
*e proposed observer gives good results even in the case of
time-varying faults. It is shown also that the proposed

Q1

Qf1u– (t) Qf3u– (t) Qf2u– (t)

Q2

x1 x3
x2

Sn

T3 T2

T1

Figure 1: *ree tanks’ system.
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observer is rapid and lets to estimate the system state and the
fault in a very short time.

Simulations results present the robustness of the
designed observer for state and fault estimation. Indeed, it is
shown that the actuator fault and its estimation are nearly
superposed. *e same situation is obtained for sensor faults.
*e estimation error is less than 1% which is supposed
acceptable estimation error for fault or state estimation. *e
analysis of simulation result lets to conclude that the con-
ceived observer allows an acceptable state and fault esti-
mation by its application to the three tanks system modeled
by a type 2 interval Takagi–Sugeno model. *e considered
fault for the simulation is time varying which lets to obtain
a general result without the assumption of null fault
derivative.
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–0.2
0 200 400 600 800 1000

fa1
fa1 estimated

1

0.5

0

–0.5

–1
0 200 400 600 800 1000

fa2
fa2 estimated

Figure 3: Actuator faults and their estimation.
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Figure 5: Sensor faults and their estimation.
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Figure 6: Sensor faults’ estimation error.
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Remark 3. *e particularity of this work compared with
others in the same context is that this work proposes an
observer able to estimate actuator and sensor fault using
a mathematical transformation which can be considered as
a filter of the system output. Many works in this context
suppose that the fault derivate is null, and this assumption is
not considered in this work which makes it more general. It
is shown that time-varying fault is well estimated.

7. Conclusion

*is paper presents a method of a proportional integral
observer design based on the principle of interval type 2
Takagi–Sugeno fuzzy systems. *e proposed observer is able
to estimate simultaneously the system state and the faults’
affecting system. In this work, actuator faults are considered
as unknown inputs. To estimate sensor faults, a mathemat-
ical transformation is used to conceive an augmented system
in which the initial sensor fault appears as an unknown
input. In this work, the system affected by actuator fault is
considered firstly; then, the system affected by the sensor
fault is treated. Moreover, the case, where the studied system
is affected simultaneously by sensor and actuator faults, is
considered. *e computation of the global observer gains is
reduced to the computation of the gains of the local
observers.

*is method allows estimating the faults well even in the
case of time-varying faults. *e noise effect on the state and
fault estimation is also minimized using the L2 approach.
*e direct application of this observer could be the base for
the design of a detection procedure and localization of faults.
It is possible also to use the sensor and/or actuator fault
estimation to conceive a fault tolerant control which can
remain the evolution of the faulty system state to the state of
the system where no faults are affecting it. In the same
context of Takagi–Sugeno approach, more works will be
developed taking into account more parameters such as
system delays and fractional order systems. Other type of

observers will be also developed, in particular, proportional
multiple integral observers and observers with unknown
input. *ese works will be extended in the second step to
treat the problem of the design of fault tolerant control using
the active approach.
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*is paper presents a sum of squares (SOS) approach for active fault tolerant control (AFTC) of nonlinear polynomial systems. A
polynomial adaptive fault estimation algorithm for polynomial systems is firstly proposed. *en, sufficient conditions for the
existence of the fault estimator are given in terms of SOS which can be numerically (partially symbolically) solved via the recently
developed SOSTOOLS. Based on the obtained online fault estimation information, a fault-tolerant control strategy is designed for
both compensating the effect of actuator faults in real time and stabilizing the closed-loop system. Finally, tunnel diode circuit and
mass-spring-damper systems are used to demonstrate the applicability of the proposed approach.

1. Introduction

*e growing complexity of modern industrial processes
gives rise to increasing demands regarding fault estimation
(FE) and fault-tolerant control (FTC). Various FE strategies
have been proposed in the literature. For example, pro-
portional integral sliding mode observer has been consid-
ered in Elleuch et al. [1]; learning algorithm has been
proposed in Jia et al. [2]. In Zhang et al.’s study [3], a fast
adaptive actuator fault estimation technique is proposed for
linear models. In Tayari et al.’s study [4], two adaptive sliding
mode observers are adopted for a class of uncertain linear
parameter varying systems.

Since the most practical systems are nonlinear, the
adaptive observer approach has been extended to deal with
nonlinear models.*e well-known Takagi Sugeno (TS) fuzzy
model has attracted much attention in the past two decades
due to its powerful capability to approximate complex
nonlinear systems. In Ichalal et al.’s study [5], the state and
the actuator faults are well estimated by using the fast
adaptive observer proposed in Zhang et al. [3] for TS fuzzy

systems. An adaptive observer-based FTC has been designed
for a class of TS fuzzy systems with both actuator and sensor
faults in Kharrat et al. [6]. Moreover, the H∞ performance is
used in this work to attenuate the external disturbance effect.

Polynomial system is a class of nonlinear systems in the
form of _x � A(x)x + B(x)u, where A(x) and B(x) are
polynomial matrices. *is class of systems can describe
many engineering systems such as electronic circuits,
mechanical systems, and communications systems. For
instance, the electronic circuit with tunnel and the mass-
spring-damper are described by polynomial models in Zhao
et al. [7] and Li et al. [8], respectively. In Zhao et al.’s study
[7], a functional observer is designed in order to estimate the
system state and the unknown input, in which the observer
design scheme has been applied to electronic circuit with
tunnel described by the polynomial model. When this
original model is considered, the LMI-based analysis ap-
proach cannot be applied directly. For this reason, the
control of this electronic circuit is based on the transfor-
mation of the original polynomial model into TS fuzzy form.
In this case, the controller is designed using LMI-based
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approach. Similarly, a mass-spring-damper system is used by
Li et al. [8] to show the applicability of the proposed con-
troller design.

*e latest developments in sum of squares (SOS) pro-
gramming techniques make it possible to deal directly with
polynomial systems. So far, extensive results have been
presented for investigating different classes of polynomial-
based systems such as polynomial systems, positive poly-
nomial systems, polynomial fuzzy systems, and polynomial
fuzzy systems with time delay. Topics on delay-free case
cover a wide range including stability analysis by Han et al.
[9], stabilization by Zhao et al. [10], fuzzy observer design by
Liu et al. [11], passive fault tolerant control by Ye et al. [12],
and fault detection filter design by Chibani et al. [13]. Re-
cently, in the direction of investigating several classes of time
delay polynomial systems, some results have been proposed
in the literature, e.g., stabilization by Gassara et al. [14];
control under actuator saturation by Gassara et al. [15], and
observer-based control for positive polynomial systems with
time delay by Iben Ammar et al. [16]. *ese various results
are presented in terms of sum of squares (SOS), in which
conditions are numerically (partially symbolically) solved
via the recently developed SOSTOOLS by Prajna et al. [17].
*ese results clearly demonstrate that the SOS approach can
be used as an effective alternative technique to the LMI-
based approaches for nonlinear systems with polynomial
matrices. However, to our knowledge, there are no results
for adaptive observer-based FTC for polynomial-based
systems. Motivated by the aforementioned observation, in
this work, the adaptive fault tolerant control problem for a
class of polynomial model with actuator faults is investi-
gated, in which polynomial terms depend only on the
measurable variables.

*e main contributions of this paper can be summarized
as follows:

(i) A novel polynomial adaptive observer is proposed.
Despite, standard adaptive observer has been ex-
tensively studied in literature for fault estimation,
polynomial adaptive observer is not yet investigated
for the class of polynomial model. *e main ad-
vantage of the proposed polynomial adaptive ob-
server-based fault estimation compared with the
standard one is that the observer gain L(y(t)) is not
constant but polynomial.

(ii) Various practical engineering systems can be
modeled by the proposed polynomial model. For
design purpose, the dynamics of these systems are

generally approximated in literature by TS fuzzy
models. In this case, the polynomial model can
reduce the computational load especially when the
number of fuzzy rules is high.

(iii) *e proposed polynomial model can also increase
the modelling accuracy. In fact, we can deal with the
original model without using the sector nonlinearity
concept to transform the original model into the TS
fuzzy model. *is allows to avoid setting the vari-
ation bounds of some system states.

It becomes increasingly apparent that the SOS approach
can be extended to deal with large research topics, e.g.,
adaptive tracking control by Chen et al. [18] and Wang et al.
[19]; event-triggered control by Xie et al. [20]; and finite-
time adaptive fault-tolerant control by Wang et al. [21].

*is paper is organized as follows. In Section 2, we
present a description of a class of polynomial models with
actuator faults. Sufficient conditions for the existence of the
actuator fault estimator are given in Section 3. *ese con-
ditions are given in terms of SOS. Meanwhile, based on the
online fault estimation, the controller law is then designed to
compensate the effect of actuator faults. In Section 4, a
tunnel diode circuit and mass-spring-damper systems are
presented to demonstrate the applicability of the proposed
result. Finally, Section 5 concludes the paper.

2. Problem Formulation

Consider the following polynomial model with additive
actuator faults:

_x(t) � A(ζ(t))x + B(ζ(t))(u(t) + f(t)),

y(t) � Cx(t),
􏼨 (1)

where x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu is the input
vector, f(t) ∈ Rnf is the additive actuator fault vector, ζ(t) is
available, such as the partial system state variables and the
system outputs as in Pang and Zhang’s study [22],
y(t) ∈ Rny is the measurement output vector, C is constant
real matrix, and A(ζ(t)) and B(ζ(t)) are polynomial ma-
trices in ζ(t).

*e derivative of f(t) with respect to time is norm-
bounded:

‖ _f(t)‖≤f1max; 0≤f1max <∞. (2)

To estimate actuator faults, the following polynomial
adaptive fault diagnosis observer is considered:

_􏽢x(t) � A(ζ(t))􏽢x(t) + B(ζ(t))(u(t) + 􏽢f(t)) + L(ζ(t))ey(t), ey(t) � y(t) − 􏽢y(t), 􏽢y(t) � C􏽢x(t),􏽮 (3)

where 􏽢x(t) ∈ Rnx is the observer state vector, 􏽢y(t) ∈ Rny is
the observer output vector, and 􏽢f(t) ∈ Rnf is an estimate of
actuator fault f(t).

Denote the state and fault estimation errors as follows:

ex(t) � x(t) − 􏽢x(t),

ef(t) � f(t) − 􏽢f(t).
(4)

State estimation error ex(t) is written as
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_ex(t) � (A(ζ(t)) − L(ζ(t))C)ex(t) + B(ζ(t))ef(t). (5)

*e conventional adaptive fault estimation algorithm is
given by

_􏽢f(t) � ΓF(ζ(t)) _ey(t) + σey(t)􏼐 􏼑, (6)

where Γ ∈ Rnf×nf is the learning rate.
In Figure 1, the block diagram illustrates the proposed

polynomial FTC strategy.
From now, to lighten the notation, we will drop the

notation with respect to time t. For instance, we will employ
x, 􏽢x, and ζ instead of x(t), 􏽢x(t), and ζ(t), respectively.

3. Main Results

3.1. Fault Estimation Based on Polynomial Adaptive
Algorithm. In this section, the stability of the error dynamics
is guaranteed by the following theorem.

Theorem 1. If there exists positive definite matrix P1 and
polynomial matrices WL(ζ) and F(ζ) such that the following
SOS optimization problem is feasible.

Minimize η subject to

v
T
1 P1 − ε1I( 􏼁v1 is SOS, (7)

v
T
2 Λ(ζ) − ε2(ζ)I( 􏼁v2 is SOS, (8)

−v
T
3 Ξ(ζ) + ε3(ζ)I( 􏼁v3 is SOS, (9)

where v1, v2, and v3 denote vectors that are independent of x,
􏽢x, and ζ.

Λ(ζ) �
ηI B

T
(ζ)P1 − F(ζ)C

∗ I

⎡⎣ ⎤⎦,

Ξ(ζ) �
ξ11(ζ) ξ12(ζ)

∗ ξ22(ζ)
􏼢 􏼣,

(10)

in which

ξ11(ζ) � P1A(ζ) − WL(ζ)C + A
T

(ζ)P1 − C
T
W

T
L (ζ),

ξ12(ζ) � −
1
σ

A
T
(ζ)P1B(ζ) +

1
σ

C
T
WL(ζ)B(ζ),

ξ22(ζ) � −2
1
σ

B
T
(ζ)P1B(ζ) +

1
σ

M,

(11)

then the state estimation error ex and the fault estimation
error ef are bounded. Furthermore, if the bound of the first
time derivative of f is zero, these variables converge as-
ymptotically to zero. In this case, the gain of the polynomial
adaptive observer-based is given by L(ζ) � P−1

1 WL(ζ).

Proof. Consider the following Lyapunov function

V � e
T
xP1ex +

1
σ

e
T
fΓ

− 1
ef. (12)

Differentiating V with respect to time t and considering
(3), (5), and (6), it leads to

_V � 2e
T
xP1 (A(ζ) − L(ζ)C)ex + B(ζ)ef􏼐 􏼑

+ 2
1
σ

e
T
fΓ

− 1 _f − 2e
T
fF(ζ)Cex − 2

1
σ

e
T
fF(ζ)C _ex.

(13)

One has

2
1
σ

e
T
fΓ

− 1 _f≤
1
σ

e
T
fMef(t) +

1
σ

_f(t)
TΓ− 1

M
− 1Γ− 1 _f(t)

≤
1
σ

ef(t)
T
Mef(t) + δ,

(14)

where

δ �
1
σ

f
2
1maxλmax Γ

− 1
M

− 1Γ− 1
􏼐 􏼑. (15)

If (8) holds, then

Λ(ζ) �
ηI B

T
(ζ)P1 − F(ζ)C

∗ I
􏼢 􏼣 ± 0. (16)

Applying Schur complement to (16) implies that

F(ζ)C − B
T
(ζ)P1􏼐 􏼑 F(ζ)C − B

T
(ζ)P1􏼐 􏼑

T
≺ ηI. (17)

*e minimization of η leads to the following equality:

F(ζ)C � B
T
(ζ)P1. (18)

Hence,

_V≤ 2e
T
xP1(A(ζ) − L(ζ)C)ex +

1
σ

ef(t)
T

Mef(t)

+ δ − 2
1
σ

e
T
fB

T
(ζ)P1 (A(ζ) − L(ζ)C)ex + B(ζ)ef􏼐 􏼑.

(19)

*is inequality can been rewritten as follows:

_V≤ 􏽥x
TΩ(ζ)􏽥x + δ, (20)

where 􏽥x �
ex(t)

ef(t)
􏼢 􏼣, Ω(ζ) �

ω11(ζ) ω12(ζ)

∗ ξ22(ζ)
􏼢 􏼣 in which

ω11(ζ) � P1(A(ζ) − L(ζ)C) +(A(ζ) − L(ζ)C)
T
P1,

ω12(ζ) � −
1
σ

(A(ζ) − L(ζ)C)
T
P1B(ζ).

(21)

If (9) holds, thenΩ(ζ)≤ 0. Furthermore, if (9) holds with
ε3(ζ)> 0 for ζ ≠ 0, then Ω(ζ)< 0. *erefore, there exists a
scalar ϑ> 0 such that

_V< − ϑ‖􏽥x‖
2

+ δ. (22)

It follows that _V< 0 if ϑ‖􏽥x‖2 > δ, and according to
Lyapunov stability theory 􏽥x converges to the following set:

S �
􏽥x

‖􏽥x‖
2 ≤

δ
ϑ

􏼨 􏼩. (23)
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*us, estimation errors of both the state and the fault are
uniformly ultimately bounded. □

Remark 1. Selection of the learning rate Γ influences the
accuracy of the system state and actuator faults estimation
(see Kharrat et al. [6]). *is parameter should be adjusted
such that δ is minimised.

Remark 2. *e nonnegative polynomials ε2(ζ)> 0 and
ε3(ζ)> 0 for ζ ≠ 0 can be accommodated by SOS optimi-
zation as in Papachristodoulou and Prajna’s study. [23].

3.2. Fault Accommodation. After that, the fault information
is obtained, and we will consider the fault-tolerant control
design problem of system (1) to compensate the effect of
actuator faults and to stabilize the resulting closed loop
systems by considering the following FTC law:

u � −K(ζ)􏽢x − 􏽢f. (24)

Substituting (24) into (1), we obtain the following dy-
namic of the closed-loop system:

_x � (A(ζ) − B(ζ)K(ζ))x + ρ, (25)

where

ρ � B(ζ)K(ζ)ex + B(ζ)ef. (26)

ρ can be considered as an external disturbance, and the
boundedness of ex and ef can be guaranteed by Section 3.1.
So, if the polynomial state feedback controller

u � −K(ζ)x (27)

can ensure that the following polynomial system is as-
ymptotically stable:

_x � A(ζ)x + B(ζ)u, (28)

then state vector x is uniformly ultimately bounded under
observer-based fault tolerant controller (3) according to the
input-to-state stability theory.

*e polynomial state feedback controller (27) can be
obtained by solving the SOS conditions presented in the
following theorem.

Theorem 2. Control law (27) stabilizes polynomial system
(28) if there exists a symmetric matrix P2 and a polynomial
matrix WK(ζ) such that the following SOS conditions are
satisfied:

v
T
1 P2 − ε1I( 􏼁v1 is SOS,

− v
T
2 Υ(ζ) + ε2(ζ)I( 􏼁v2 is SOS,

(29)

where v1 and v2 denote vectors that are independent of ζ.

Υ(ζ) � A(ζ)P2 − B(ζ)WK(ζ) + P2A
T

(ζ) − W
T
K(ζ)B

T
(ζ).

(30)

In this case, a stabilizing feedback gain K(ζ) can be
obtained from P2 and WK(ζ) as K(ζ) � WK(ζ)P−1

2 .

4. Simulation Examples

4.1. Example 1: Tunnel Diode Circuit. A tunnel diode circuit
shown in Figure 2 is adopted from the study by Zhao et al.
[7] and Iben Ammar et al. [16]. *is electronic circuit can be
described as follows:

Actuator Polynomial
system

y

Polynomial
nominal controller

Polynomial
adaptive FE

observer

+

–

Polynomial FTC

Polynomial adaptive observer-based FTC

Sensor

f

u + f

x

f⌃

x⌃

Figure 1: Polynomial fault tolerant control scheme.

4 Mathematical Problems in Engineering



_x1

_x2

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦ �

1
RLCc

−
1

Cc

0.002 + 0.01x
2
1􏼐 􏼑

1
Cc

1
2L

−
RE

L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

x1

x2

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦ +

0

1
L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
u,

y � 1 0􏼂 􏼃

x1

x2

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦,

(31)

where RL and RE are two resistors, Cc is a capacitor, and L is
an inductor.

*e tunnel diode circuit parameters are taken as

Cc � 25mF,

L � 20H,

RE � 200Ω,

RL � 2 kΩ.

(32)

Based on the concept of nonlinearity sector, a T–S fuzzy
model is proposed in Zhao et al. [7] to represent the dy-
namics of this system under x1 ∈ m1 m2􏼂 􏼃. In this paper,
we deal directly with polynomial model (31), without any
assumption. Furthermore, x1 is not restricted to be in

m1 m2􏼂 􏼃.
In order to illustrate the use of result, we assume that we

have an actuator fault. In this case, the polynomial model is
as follows:

_x1

_x2

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦ �

1
RLCc

−
1

Cc

0.002 + 0.01x
2
1􏼐 􏼑

1
Cc

1
2L

−
RE

L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

x1

x2

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦ +

0

1
L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(u + f),

y � 1 0􏼂 􏼃

x1

x2

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦,

(33)

Inductor Voltage source

iL L Us (t) = –1.5Vc (t)
ic

Resistor
Rt

Capacitor

Vin
u (t)

ResistorCa

RL

iR iO

Tunel diode

RD
Vout
y (t)

Figure 2: Tunnel diode circuit.
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where f is an additive actuator fault defined by

f �

0, 0≤ t< 5,

0.5e
0.05(t− 5)

− 0.5, 5≤ t< 80,

0.5e
0.05∗75

− 0.5, 80≤ t< 150.

⎧⎪⎪⎨

⎪⎪⎩
(34)

We choose ε1 � ε2(ζ) � ε3(ζ) � 10− 3, σ � 1, degrees of
P1, WL(ζ), and F(ζ) are 0, 2, and 0, respectively. Solving the
SOS conditions in Section 3.1, one can obtain that

c � 0.0004,

F � 0.0050057,

L �
1253.442ζ2 + 7084.977

−313.3588ζ2 − 1770.6725
⎡⎣ ⎤⎦.

(35)

*e polynomial state feedback gain matrix K(y) is
calculated by solving SOS conditions in Section 3.2. By
choosing ε1 � ε2(ζ) � 10− 3, the degrees of P2, WK(ζ) are 0
and 2, respectively. We get

K � 2.8013ζ2 + 3.6931 140.3681ζ2 + 151.395􏽨 􏽩. (36)

By taking learning rate Γ � 106 and σ � 1, we obtain
δ � 25 × 10− 7. Simulation results are shown in Figures 3–5.
Figure 3 shows the evolution of actuator fault and its esti-
mated values. Figures 4 and 5 show the evolution of system
states x1 and x2, respectively, with nominal control and fault
tolerant control law.

It is noted that when actuator failures occurs, the stability
of the closed-loop polynomial model with the nominal
controller is not even guaranteed, whereas the closed-loop
system using the fault tolerant control still operates correctly
and remains maintained.

4.2. Example 2: Mass-Spring-Damper System. In this ex-
ample, we consider a mass-spring-damper system (Figure 6)
described by the following polynomial model given in Li
et al. [8]:where M is the mass, x1(t) is the displacement of
the mass, x2(t) is the velocity of the mass, and u(t) is the
input force.

_x1(t)

_x2(t)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �

0 1

−
c3

M
−

c1 + c2x
2
1(t)

M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x1(t)

x2(t)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ +

0

1 + c4x
2
2(t)

M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
u(t),

y �

1 0

0 1
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

x1(t)

x2(t)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

(37)

Mass-spring-damper system parameters are M � 1,
c1 � 0.003, c2 � 0.001, c3 � 0.80, and c4 � 0.1.

We notice that the mass-spring-damper system is
modeled as a polynomial system, whereas in Li et al.’s study
[8], it has been modeled as an uncertain system with pol-
ytopic uncertainties by restricting the state variables x1(t)

and x2(t) such as x1(t) ∈ −a a􏼂 􏼃 and x2(t) ∈ −b b􏼂 􏼃,
a> 0, b> 0. However, in this paper, we do not need this
restriction, we take the original model as it is.

By adding the actuator fault on the system, the poly-
nomial model can be described by

_x1(t)

_x2(t)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �

0 1

−
c3

M
−

c1 + c2x
2
1(t)

M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x1(t)

x2(t)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ +

0

1 + c4x
2
2(t)

M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(u(t) + f(t)),

y �

1 0

0 1
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

x1(t)

x2(t)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

(38)
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where f is an additive actuator fault defined by

f �
0, 0≤ t< 5,

cos(πt) + 2, 5≤ t≤ 20.
􏼨 (39)

We choose ε1 � ε2(ζ) � ε3(ζ) � 10−3, σ � 1, F(ζ) of
degree 2 in ζ2, and WL(ζ) of degree 2 in ζ1. By solving SOS
conditions in Section 3.1, we get

c � 0.1 × 10−10
,

F(y) � 0.00024962ζ22 + 0.0024962 0.034298ζ22 + 0.34298􏽨 􏽩,

L(y) �
0.683066ζ21 + 1.026 0.70759

−0.0049713ζ21 − 0.622816 0.4218721 − 0.001ζ21
⎡⎢⎣ ⎤⎥⎦.

(40)

Now, we choose ε1 � ε2(ζ) � 10− 3, WK(ζ) of degree 2 in
ζ1. By solving the SOS conditions in Section 3.2, the
polynomial controller gain is obtained as:

K(ζ) � 0.62ζ41 + 0.52ζ21 + 0.76 1.3ζ41 + 1.09ζ21 + 1.58􏽨 􏽩.

(41)

By choosing Γ � 1000, we obtain δ � 0.00010. Similar to
example 1, we show the evolution of actuator fault and its
estimated values in Figure 7.*e evolution of system state x1
with nominal control and fault tolerant control law is given

0 50 100 150
0

5

10

15

20

25

Time (s)

f
f⌃

Figure 3: Fault and its estimated in example 1.
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Figure 4: System state x1 with nominal control and fault tolerant
control law in example 1.
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Figure 5: System state x2 with nominal control and fault tolerant
control law in example 1.
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Figure 6: A mass-spring-damper system.
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Figure 7: Fault and its estimated in example 2.
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in Figure 8 and the evolution of system state x2 with nominal
control and fault tolerant control law in Figure 9.

5. Conclusion

In this paper, we have developed an adaptive actuator FTC
strategy for a class of polynomial models, and sufficient
analysis and design conditions in terms of SOS are proposed.
Based on the adaptive fault estimation, a fault tolerant
control is designed to guarantee the stability of the closed
loop systems despite fault presence. Two simulation ex-
amples are presented to demonstrate the applicability of the
proposed polynomial active fault-tolerant controller using
the adaptive fault estimation algorithm. As future work, we
will investigate the problem of adaptive fault estimation and
fault-tolerant control for polynomial fuzzy systems with
time delay considering measurable and unmeasurable
premise variables.
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