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Bridges are vulnerable to devastation in the earthquake, resulting in the closure of the whole transport system of the particular
region. Generally, pre-Kashmir earthquake bridges in Pakistan were not designed according to present seismic zoning re-
quirements. �erefore, it is critical to evaluate their seismic performance and accordingly enhance their strength, sti�ness, and
thus reliability. Seismic retro�tting of existing bridges with CFRPs (carbon �ber-reinforced polymers) may be planned for typical
bridge types of Pakistan. High-strength concrete (HSC) is now widely used in bridge construction, and the seismic behavior of
typical bridge piers being a key component needs to be assessed. �is investigation aims to evaluate the seismic performance of
HSC piers before and after retro�tting in association with the earlier research in Pakistan on low-strength concrete prototypes. An
experimental program was executed wherein scaled-down (4 :1) HSC (6192 psi) RC bridge pier prototypes with axial load at the
top were subjected to quasistatic cyclic loadings (QSCLs) under controlled drifts. �e damaged pier prototypes were retro�tted
with CFRP sheets beside another set of undamaged retro�tted models. �e samples were tested under QSCL against several drift
levels ranging from 0 to 5%. Hysteresis loops were drawn for each sample. �e tests were studied for the assessment of the
structural behavior of the prototypes. �e results for the control models, damaged retro�tted models, and undamaged retro�tted
models of low-strength concrete (LSC, 1800 psi and 2400 psi) obtained from doctoral research by Ali and Iqbal were compared
with corresponding models of high-strength concrete (6192 psi). �e outcomes clearly show a noteworthy increase in lateral load
carrying capacity, ductility, strength, and energy absorption on an increase in concrete strength and retro�tting of the prototypes.
�e numerical modeling of these piers was in consistence with the experimental results. When retro�tted with CFRP, the existing
bridge piers will enable the bridge stock to withstand high-intensity future earthquakes and lessen their seismic vulnerability
against prospective damages.

1. Introduction

Bridges are the vital elements of a transport network. In an
earthquake event, they are the most vulnerable to damage
resulting in the closure of the whole transportation system.
Generally, bridges constructed in Pakistan do not meet the
present seismic requirements. After October 8, 2005
earthquake, seismic zoning, and seismic hazard maps were
modi�ed and the Building Code of Pakistan (BCP-2007)
with seismic provisions was enforced. Bridges built prior to
2005 were constructed in accordance with theWest Pakistan
Code of Practice for Highway Bridges (WPCPHB1967),

wherein the earthquake considerations were nominal. �is
fact put these bridge structures at risk against newly rec-
ommended seismic zoning requirements [1, 2].

To reinforce the existing structures and to retro�t them
for forthcoming challenges, a research was concluded to
examine the behavior of reinforced concrete (RC) piers
enwrapped with composites straps of �ber-reinforced plastic
(FRP). Results established that RC piers showed noticeable
enhancements in strength and translational ductility [3]. In
addition, an investigation of short columns after wrapping
with FRP composite tubes was �nalized. Outcomes of this
research revealed that the wrapping enhanced the capability
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of tested RC columns in strain resistance, yielding, and
energy dispersion [4]. In another study, surface-mounted
FRP rods were bonded in the footings and the flexural
capability of rectangular bridge piers was calculated. It was
established that the flexural capacity of the piers was im-
proved [5].

+e properties of the materials used for confinement and
the performance of confined cylinders were studied in the
experimental investigations. +e results concluded that
columns were able to take 35% greater load when retrofitted
with jacketing by pretensioned fiber-reinforced polymer

materials and were able to take 400% additional load when
RC columns were unconfined but retrofitted [6]. In order to
warrant shear failure, a work was carried out on short
columns. Here, eight columns with deficient transverse steel
and with longitudinal reinforcement higher than the upper
boundaries were considered. CFRP application was made to
seven out of these eight models. All of them were subjected
to a sustained compressive load in addition to a lateral
quasistatic cyclical loading. FRP reinforcement entirely
transformed the failure mechanism of these samples and
increased both the strength and ductility [7]. In addition,

Figure 2: Test assembly setup with physical loading of 42.4 kips.
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Figure 1: Investigational arrangement explaining the specimen sizes with top dead load arrangement and details of reinforcement used.
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four scaled-down pier samples having 1800 psi and 2400 psi
concrete were tested under quasistatic cyclical loading. It
was established that the ability of 1800 psi and 2400 psi
models to dissipate energy was in a similar range. +e cu-
mulative energy dissipation did not have any remarkable
difference within these limits of the concrete compressive
strength [1].

+e samples cracked in the investigation [1] were
repaired and retrofitted. Additional prototypes were pre-
pared and retrofitted in their undamaged position and
placed under the study to ascertain the outcome of retro-
fitting on the strength and energy dispersion of low-strength
concrete (LSC) piers. +e evaluation concluded that the
properties of undamaged but retrofitted models improved in
their strength and ductility [8]. +e evaluation of seismic
behavior of two high-strength concrete (HSC)-reinforced
short columns installed with PVC pipe confinement, and
three additional similar column samples of HSC with
conventional hoop confinement, steel, and steel tubes, re-
spectively, was conducted by short-cycle reversed loading
tests. +rough these strengthening methods, the energy
dissipation and deformation capability of HSC samples were
efficiently enhanced [9].

In another study, six square slender HSC columns were
tested. CFRP wrapping with changing thicknesses of carbon
fiber over the height of all the column samples was made.
+e curves for moment versus curvature were plotted for all
of these column segments, which revealed that segments
with greater thickness of carbon fiber sheets displayed a
noticeable improvement in the performance of the column
subdivisions. +e lateral moment carrying capability of
jacket-confined samples was improved from 48% to 100%
with the envelope of 0.40 inch thick carbon fiber sheets. An
analytical study was also conducted, analysis results were
matched with the experimental records, and it was noted
that the load versus deformation graphs showed an ac-
ceptable arrangement [10].

A research work was carried out by retrofitting rein-
forced concrete columns with CFRP sheets in the longitu-
dinal direction affixing them to their base. +e outcomes
established the enhancement in the lateral strength and the
effective stiffness of these reinforced concrete samples [11].
+e performance of nonductile RC slender column speci-
mens when enwrapped with carbon fiber-reinforced poly-
mer and subjected to cyclic load test showed substantial
enhancement in respect of translational ductility, load

Figure 3: Damaged column, cracks, and spalling of concrete.
Figure 4: Outer repair works with cementitious mix after filling of
cracks.
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carrying capacity, the total energy dissolution, and failure
process [12]. Another investigational effort was concluded to
estimate the effectiveness of the use of CFRP applications to
retrofit the nonductile joints of beams or columns. It was
apprised that the application of one layer of CFRP sheet
appeared more beneficial than two layers [13]. +e use of
CFRP for fortifying the columns in RC buildings was probed
for the capacities and the benefits by considering deviation
of concrete class, reinforcement percentage and strength-
ening skills by conducting quasistatic tests both for

compressive loads and bending capability. It was established
that CFRP applications are useful means to strengthen and
retrofit RC structures due to the properties that they can
comprehensively increase flexural properties, shear resis-
tance, column confinement, and ductility [14].

It is studied that the similitude characteristics are not
similar for static and dynamic testing [15]. In another re-
search, reinforced concrete columns were subjected to
hysteretic load and the result was concluded that the hysteric
response of deficient columns may be increased by CF sheet

Figure 5: Grinded and prepared surface of pier for CFRP application.
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encasing being an efficient means to increase lateral con-
finement, strength, and ductility [16]. In a study, a crux of
various analytical techniques for retrofitting in seismic re-
gions by using FRP is presented [17]. In a research work,
column samples were externally enwrapped with carbon
fiber-reinforced polymer and were having a continuous
compressive force along with a lateral load to perform
quasistatic cyclic testing. +e outcomes established that
confining application of CFRP totally improved the failure
mechanism of those samples [7]. An extensive research was
made on efficient rehabilitation techniques for structures
damaged after a historic earthquake. During experimental
work, eight low-strength scaled-down (4 :1) piers were
modeled and four of them were wrapped with CFRP. +e
quasistatic cyclic and free vibration tests were performed on
these models to envisage CFRP wraps’ behavior and effec-
tiveness [2]. In another work, analytical simulation and
analysis of LSC scaled-down models of bridge piers were
conducted. Outcomes demonstrate that when columns are
retrofitted prior to the damaged state, the ductility of col-
umns is increased and their energy dissipation capacity
effectively enhanced without noticeable loss in stiffness [18].
In other studies, the reliability analysis of CFRP-confined

concrete cylinders [19] and the performance of reinforced
concrete circular columns wrapped with the CFRP and
subjected to the axial load are represented very well with the
analytical equations developed [20]. Similarly, the effect of
CFRP, on seismic retrofit of short columns [7], on axial
compressive strength [21], as a structural material [22], as an
externally bonded reinforcement [23], on the behavior of
inadequately detailed RC columns during an earthquake
event [24], and on the residual performance of R.C. columns
[25], has been studied by different researchers with prom-
ising results.

+e bridges in the past have been constructed following
WPCPHB1967. +e concrete strength used in these struc-
tures was low to moderate level. Now with the imple-
mentation of the new building code with revised seismic
provisions and modified seismic zonings, there is an im-
mediate requirement to reinforce the standing bridge
structures and especially their piers, being the most vul-
nerable parts of the structure, in order to resist more severe
earthquake events. In a recent experiment [26] and nu-
merical investigations [27], the energy dissipation behavior
of HSC and CFRP retrofitted piers, which got damaged due
to quasistatic loading, is presented.+e current investigation
has the main objectives to analyze and evaluate the lateral

Figure 7: Testing of pier after the application of CFRP.Figure 6: Application of CFRP (HEX-103-C) to pier.
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load carrying capacity, equivalent stiffness, and equivalent
damping of HSC model bridge piers when these are pro-
vided with CFRP retrofitting.+is investigation also presents
the evaluation of the behavior of low-strength concrete (1800
and 2400 Psi) bridge piers viz, namely, a high-strength
concrete (6192 Psi) in respect of load carrying capacity,
equivalent stiffness, and equivalent damping. +e investi-
gation work on low-strength concrete has already been
carried out vide references [2, 8, 18]. +e experimental
outcomes of these investigators were analyzed and com-
pared with the results of the present study.+is research also
covers the numerical simulation and evaluation of HSC
bridge models retrofitted with CFRP to find out its effec-
tiveness in increasing the strength of the piers. A comparison
of results of simulated models for both of high-strength and
of low-strength concrete models with experimental results
shows that they are in acceptable limits. +e results clearly
illustrate a noteworthy rise in load carrying capacity of high-
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Figure 8: Hysteresis curves of the CM 6192 psi pier model sub-
jected to different drift levels.
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Figure 9: Hysteresis curves of the DRM-SL 6192 psi pier model
subjected to different drift levels.
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Figure 10: Hysteresis curves of the DRM-DL 6192 psi pier model
subjected to different drift levels.
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Figure 11: Hysteresis curves of the UDRM-SL 6192 psi pier model
subjected to different drift levels.
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Figure 12: Hysteresis curves of the UDRM-DL 6192 psi pier model
subjected to different drift levels.
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strength concrete models, the minutiae of which are cited in
subsequent sections.

2. Experimental Arrangement

All the experimental work was completed in the Civil En-
gineering Department of University of Engineering and
Technology Peshawar, Pakistan, where satisfactory facilities
and essential apparatus are available. +e investigation work
included quasistatic cyclic testing of Six (6) bridge pier
samples with the following properties.

+e model piers were prepared by scaling them down to
4 :1 by similitude analysis [15] and then scheduled in ex-
perimentation as was performed by different researchers
[1, 2]. +ese samples were having average concrete strength
of 6192 psi. +e steel used had 83000 psi yielding strength
with an elastic modulus of 29,000,000 psi. A dead load of
42400 lbs was assembled on each prototype. +e QSC test

was performed on each specimen. Polymer (CFRP) sheets
labeled HEX 103-C with a 0.40 inch (1.016mm) thick fabric,
153000 psi strength in tension, and modulus of elasticity of
9400000 psi were externally applied in lower 24 in each of the
retrofitted model. +e comprehensive experimental ar-
rangement with all the geometric information is given in
Figure 1.

+e representative concrete cylinder samples were
tested for compressive strength, whereas the QSC testing
was performed on each pier sample. +e enhancement of
the properties due to retrofitting of these scaled-down
models was envisaged. To better visualize these im-
provement effects, the following testing schedule was
conceded:

(a) Two HSC test samples were subjected to quasistatic
cyclic loading tests with their unretrofitted state and
were tested up to failure. +ese models are desig-
nated in the research as CM or control models.
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Figure 13: Lateral load vs drift: comparison of 6192 psi model backbone curves with those of similar work carried out by Ali [1] and Iqbal [2]
with 1800 psi vs 2400 psi models.
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(b) +ese cracked models were restored, which consti-
tuted repairing of cracks with the cementitious mix,
restoring their shape and retrofitting with CFRP. For
one model, single layer of CFRP was used for ret-
rofitting, which is referred as damaged retrofitted
model—single layer (DRM-SL), while for the second
sample, double layer of CFRP was used for retro-
fitting, which is referred as damaged retrofitted
model—double layer (DRM-DL).+ese two repaired
and retrofitted models were subjected to QSCTup to
failure. +e tests were studied to assess strength,
stiffness, and damping properties of the samples.

(c) Two additional models prepared with similar high-
strength concrete (6192 psi) were applied retrofitting
sheets in their original/unspoiled state, and then, qua-
sistatic cyclic tests were performed on them. A sample
was wrapped with one sheet cover of CFRP, which is
referred to as undamaged retrofitted model—single
layer (UDRM-SL), while two CFRP sheet covers were
applied to the other model, which is referred as un-
damaged retrofittedmodel—double layer (UDRM-DL).

(d) QSCTwas performed at different drift levels, i.e., 0 to
4% and 5% in some cases. +e extent of 5% drift

involved depending upon the failure criteria set for
the models and the safety concerns due to the
presence of a dead load of 42400 lbs over the
specimens of the small diameter of one foot only
subjected to repeated reverse cyclic loading. +us, a
potential threat of an accident to the laboratory
equipment and to the staff working in the laboratory
was present. +e safety measures were adopted
accordingly.

(e) After completion of QSCT on all the samples,
IGOR Pro software was used to arrange the data
recorded on the data logger in the format of
spreadsheets.

+e activities including test assembly setup, damaged
column with cracks, and spalling of concrete, crack filling
and repairing, preparation of surface, application of CFRP,
and testing of the column after this application are illustrated
in Figures 2–7, respectively. +e cyclic lateral loading of the
tests with the change in drift stages provided hysteresis
curves for all the models. Hysteresis curves were separately
shaped for each drift level, which are presented below in
Figures 8–12. With the help of these hysteresis curves,
backbone curves were generated.
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3. Experimental Results

+e statistics obtained from the investigational outcomes by
the data collecting instrument data logger was analyzed with
the help of a software named IGOR Pro, wherein it was
organized in the form of spreadsheets and graphs were
plotted. +e number of tested specimens was six. +e
quasistatic cyclic load was applied to each sample with a
varying range of drift increasing from 0% to 5%. +e graphs
accordingly portray the load carried/resisted by the model.
+e hysteresis curves are plotted by combining these graphs
[26]. +e peak value of each curve was marked and used to
draw backbone curves. +e backbone curves for represen-
tative control models, damaged retrofitted models, and
undamaged retrofitted models for LSC (1800 psi and 2400
psi) were gained from previous work carried out by Ali [1],
Khan et al. [8], and Iqbal [2] and have been analyzed in
comparison with matching curves of HSC, i.e., 6192 psi
(Figure 13).

+e area under the hysteresis loop curves gives the
value of energy dissipated. Energy dissipation values for
different drift levels (0.1%, 0.25%, 0.5%, 1%, 2%, 3%, 4%,
and 5%) for each model were the same as in recent re-
search [26]. +e energy dissipation values for control

models, damaged retrofitted models, and undamaged
retrofitted models of HSC and those of LSC gained from
previous work carried out by Ali [1] and Iqbal [2] were
compared and analyzed [26] to investigate the improve-
ments made by CFRP (Figure 14) and are replicated here
for reference.

Herein CM� control model, DRM� damaged retrofitted
model, UDRM� undamaged retrofitted model, SL� single
layer, and DL� double layer.

Equivalent stiffness ke (kip/in) and damping were also
determined in this research. For this purpose, necessary
calculations were made on Excel sheets. In these calcula-
tions, values of drift level, displacements, and push and pull
forces were used, and relevant formulae for evaluating the
equivalent stiffness and damping values were applied.
Graphs were then plotted between different drift levels and
equivalent stiffness and damping, respectively. Curves ob-
tained for HSC (6192 psi) were then compared with LSC
(1800 psi and 2400 psi) (Figures 15 and 16). It is noted that
the stiffness values for UDRM-SL 2400 psi and UDRM-
DL1800 psi are on the excessive side while others are in
consistency. It was further noted that the value of equivalent
damping increased with the increase in drift level while it is
approximately in the same zone for high-strength concrete.
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Figure 15: Equivalent stiffness vs drift—comparison of 6192 psi model curves with those of similar work carried out by Ali [1] and Iqbal [2]
with 1800 psi and 2400 psi models.
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It is obvious from the evaluation of different sets of high-
strength concrete (6192 psi) models and their comparison
with the corresponding single- and double-layered CFRP
low-strength concrete models (1800 and 2400 psi) that the

rise in the strength of concrete substantially increased the
load carrying capacity, equivalent stiffness, equivalent
damping, and energy dissipation of the samples.

4. Numerical Simulation of Bridge Pier Models

+e numerical modeling of the high-strength concrete
bridge pier models for assessing their dynamic properties
was also made. +e hysteretic performance, the lateral
stiffness, and damping properties were assessed for the
columns wrapped with CFRP layers. +e model geometry,
different dimensions, type, and magnitude of applied
loading were the same as considered in the experimental
work. +e control specimen was modeled and analyzed
through the finite element method (FEM) using the
“SeismoStruct” software. +en, the retrofitting of the
specimen was modeled by encasing it with CFRP layers and
it was analyzed again for assessing the effectiveness and
performance of confined concrete. +e software is capable
of accounting for different sorts of nonlinearity. Quasistatic
cyclic loading was stimulated through the static pushover
analysis. A dead load of 42400 lbs was applied on the top of
the model. +e horizontal load generated on the round
model was applied in the form of incremental drift stages
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Figure 16: Equivalent damping vs drift—comparison of 6192 psi model curves with those of similar work carried out by Ali [1] and Iqbal [2]
with 1800 psi and 2400 psi models.

Table 1: Material properties used in SiesmoStruct.

Description Limits
Unconfined concrete
Compressive strength (psi) 6192
Tensile strength (psi) 382
Strain at peak stress 0.0018
Confinement factor 1.0
Steel reinforcement
Modulus of elasticity (psi) 29000000
Yield strength (psi) 83000
Fracture/buckling strain 0.067
CRFP
+ickness (in) 0.04
Tensile strength (psi) 153000
Confinement factor 1.981
FRP jacket elastic modulus (psi) 9400000
FRP jacket ultimate strain 0.01
Radius of rounding corner (in) 1.50
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on one specific track and then a returning force on the
opposite path, thus establishing the hysteresis loop for
every cycle.

+irteen diverse features are present in SeismoStruct
V6.5 to define material and loading conditions, which may
be used by several methods to organize any number of
materials and loads to be employed to the models. In the
present research, the Mander et al. nonlinear concrete model
(con_mat) was selected to describe the concrete in the core
and in the cover while the pier was modeled as an inelastic
force-based frame element type (infrmFB). Similarly, the
steel was represented by the Menegotto–Pinto steel model
(stl_mp).+e parameters of nonlinear concrete material, the
confinement factor, physical properties for the confined
concrete model, and the type of element used for the model
and the size element effect on the nonlinear behavior were
based on the previous research conducted by the authors
[18]. +e properties of the materials considered in the
software are arranged in Table 1.

5. SeismoStruct Results

Simulation of quasistatic cyclic load tests using pushover
analysis was carried out. Subsequent to simulating the QSCL
test, the accompanying actions were performed:

(a) +e statistics obtained after the analysis of the model
from SeismoStruct were rearranged in a manageable
format and transferred to spreadsheets of Excel
program.

(b) Hysteresis loop curves at various drift levels (in)
against lateral load (kip) were individually plotted in
Excel program. +e damaged retrofitted model was
not analytically analyzed; however, the curves for
control model (CM), undamaged retrofitted mod-
el—single layer (UDRM-SL), and undamaged ret-
rofitted model—double layer (UDRM-DL) for HSC
have been displayed in Figures 17–19. +e following
information was derived from these curves:
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Figure 21: Lateral load vs drift—comparison of experimental vs numerical results.
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(i) Maximum lateral load/strength of the column at
each drift stage

(ii) Equivalent stiffness
(iii) Equivalent damping

(c) For the respective drift levels, curves were drawn for
ultimate lateral loads for each drift value, as back-
bone curves, and are shown in Figures 20 and 21.+e
values for equivalent stiffness and equivalent
damping were calculated in the same manner as in
the experimental work and graphs, and Figures 22
and 23, respectively, are also plotted. +e values for
energy dissipation have been taken from recent
research by Mustahsan [27] and reproduced here in
Figure 24 for reference.

+ese curves of the control model (CM), undamaged
retrofitted model—single layer (UDRM-SL), and undam-
aged retrofitted model—double layer (UDRM-DL) of HSC
piers were compared with those of LSC specimens of the
experimental work mentioned in this research and earlier
research works [1, 2, 26] and earlier numerical works [18, 27]
and checked for the increase with reference to the control
models.

6. The Discussion on the Results

After the detailed study of experimental and numerical
results discussed above, the following are the main
outcomes:

(i) +e percent increase in lateral load carrying ca-
pacity, equivalent stiffness, and damping in exper-
imental results of theDRM-SL andDL and UDRM-
SL and DL above those of CM for HSC 6192 Psi
models is presented in Table 2.
A comparison of column #3 and column #4 of
Table 2 reveals that for high-strength concrete the
application of a single layer of CFRP is more effi-
cient. Figure 16 demonstrates that the equivalent
damping value remained approximately the same
for high-strength concrete.

(ii) +e summary of the experimental results of CM and
DRM-SL and DL and UDRM-SL and DL of HSC
6192 Psi and of corresponding models of LSC (1800
and 2400 psi) in comparison of percent increase for
lateral load carrying capacity, equivalent stiffness,
and damping is given in Table 3.
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Columns #3 and #8 of Table 3 exhibit the increase in
properties on the increase of strength only. A
comparison of column #3 and #4 of Table 3 with
column # 4 and #5 and #11 of the same table, re-
spectively, shows that the increase in properties is
more prominent in 1800psi models, i.e., in low-
strength columns.
Figure 16 further demonstrates that the value of
equivalent damping increases with the increase in
lateral drift for low-strength concrete models.

(iii) +e comparison of numerical results of the control
models (CM) and undamaged retrofitted models
(UDRM)-SL and DL of HSC 6192 Psi for the
percent increase of lateral load carrying capacity,
equivalent stiffness, and damping is summarized
here under in Table 4. Figure 23 further demon-
strates that the equivalent damping value remained
approximately the same for high-strength
concrete.

(iv) +e summary of the numerical results of CM and of
SL and DL of HSC 6192 Psi and of corresponding
models of LSC (1800 and 2400 psi) in comparison to
percent increase for lateral load carrying capacity,
equivalent stiffness, and damping is here under in
Table 5.
+e numerical analysis results are steady when
compared with the experimental results due to the
assumptions and parameters selected for analysis
devised by different researchers. +e results of the
recent research studies [26, 27] also give the same
trends. Figure 23 further demonstrates that the
value of equivalent damping increases with the
increase in lateral drift for low-strength concrete
models. +e percent increase in values above con-
trol model in low-strength concrete (1800 psi and
2400 psi) samples is more prominent as compared
to their improvement in high-strength concrete
(6192 Psi).
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Figure 23: Equivalent damping vs drift—comparison of experimental vs numerical results.
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Figure 24: Cumulative energy dissipation vs drift—comparison of experimental vs numerical results.

Table 2: Percent increase above control model for HSC 6192 psi models in experimental results.

Sr. no. Property DRM-SL DRM-DL UDRM-SL UDRM-DL
1 2 3 4 5 6
1 Lateral load carrying capacity 15.96 09.11 11.51 18.95
2 Equivalent stiffness 34.637 17.01 8.59 40.45
3 Equivalent damping −1.93 12.85 11.78 -3.97

Table 3: Percent increase above control model for HSC 6192 vs 1800psi and 2400psi models in experimental results.

Sr.
no. Property

CM
6192
vs-
1800

UDRM-SL
6192 vs-
1800

UDRM-
DL 6192
vs- 1800

DRM-SL
6192 vs-
1800

DRM- DL
6192 vs-
1800

CM
6192
vs-
2400

UDRM-SL
6192 vs-
2400

UDRM
-DL 6192
vs- 2400

DRM-SL
6192 vs-
2400

DRM- DL
6192 vs-
2400

1 2 3 4 5 6 7 8 9 10 11 12

1
Lateral load
carrying
capacity

35.45 27.54 30.56 55.46 51.61 21.52 04.42 05.33 15.74 30.47

2 Equivalent
stiffness 46.07 20.21 38.07 105.44 08.67 41.26 03.52 09.91 25.04 11.59

3 Equivalent
damping 25.22 42.18 18.59 27.22 39.43 16.35 47.89 28.61 16.61 30.39
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7. Conclusions

Upon comparison of the experimental and numerical results
of control models and CFRP wrapped LSCmodels (1800 and
2400 Psi) and CFRP wrapped HSC models (6192 psi) for
lateral load carrying capacity, stiffness, and damping, it is
concluded that

(i) All the properties effectively improve with the in-
crease in the strength of concrete

(ii) +e retrofitting significantly enhances all the
properties of the piers

(iii) +e effect of retrofitting is more prominent in case
of concrete with low strength due to its effectiveness
in the confinement

(iv) +e outcome of double layer of CFRP sheets is more
significant in low-strength concrete

(v) +e result of single layer of CFRP retrofitting is
more prominent in high-strength concrete

(vi) +e effect of CFRP retrofitting is steady in nu-
merical modeling as compared to that of the ex-
perimental results

(vii) +e value of equivalent damping increases with the
increased lateral drift for low-strength concrete
models while it remained approximately the same
for high-strength concrete prototypes

+erefore, it may be concluded that a significant en-
hancement in lateral load carrying capacity, equivalent
stiffness, and equivalent damping is noticed in the HSC
models when compared to those of LSC. +is improvement
is further enriched when HSC models are retrofitted. +e
numerical analysis further supports the experimental results.

+e existing bridges made of low- and high-strength
concrete need structural improvements after the revision of
relevant seismic zones to comply with the revised seismic
provisions. When retrofitted with CFRP sheets, the bridge
piers showed a considerable growth in lateral strength,
ductility, stiffness, and energy absorption as evident from the

results of this research. +is will enable the bridge structure
to withstand high-intensity future earthquakes and lessen
their vulnerability against prospective damages.+erefore, it
is suggested that the available bridge stock may be checked
for the capacity of their piers to meet with the seismic
demand and may be retrofitted with CFRP to comply with
the contemporary seismic zoning requirements instead of
their replacement with new structures.
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Supplementary Materials

+e energy dissipation, equivalent stiffness, and damping
were calculated in Excel sheets using relevant equations. +e
necessary calculation notes (Appendix A) describing the
procedure used here with sample calculation sheets as
Appendices B and C along with supporting Graph 1 for 1%
drift for DRM-SL have been added for ready reference.
(Supplementary Materials)

Table 4: Percent increase above control model for HSC 6192 psi models in numerical results.

Sr. no. Property UDRM-SL UDRM-DL
1 2 3 4
1 Lateral load carrying capacity 16.32 18.04
2 Equivalent stiffness 4.61 4.52
3 Equivalent damping 05.88 05.65

Table 5: Percent increase above control model for HSC 6192 vs 1800psi and 2400psi models in numerical results.

Sr.
no. Property CM 6192 vs-

1800
UDRM-SL 6192

vs- 1800
UDRM-DL 6192

vs- 1800
CM 6192 vs-

2400
UDRM-SL 6192

vs- 2400
UDRM-DL 6192

vs- 2400
1 2 3 4 5 6 7 8

1 Lateral load carrying
capacity 31.75 48.20 47.01 35.26 43.22 43.20

2 Equivalent stiffness 43.25 60.19 62.40 31.05 40.08 40.70
3 Equivalent damping 86.92 19.53 37.31 92.86 63.93 36.50
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�e increasing number of e-petition services requires accurate calculation methods to perform rapid and automated delivery.
Automated text classi�cation signi�cantly reduces the burden of manual sorting, improving service e�ciency. Moreover, existing
text classi�cation methods focus on improving sole models with an insu�cient exploration of hybrid models. Moreover, existing
research lacks combinatorial model selection schemes that yield satisfactory performance for petition classi�cation applications.
To address these issues, we propose a hybrid deep-learning classi�cation model that can accurately classify the responsible
department of a petition. First, e-petitions were collected from the Chinese bulletin board system and then cleaned, segmented,
and tokenized into a sequence of words. Second, we employed the word2vec model to pretrain an embedding matrix based on the
e-petition corpus. An embedding matrix maps words into vectors. Finally, a hybridized classi�er based on convolutional neural
networks (CNN) and bidirectional long short-term memory (Bi-LSTM) is proposed to extract features from the title and body of
the petition. Compared with baseline models such as CNN, Bi-LSTM, and Bi-LSTM-CNN, the weighted F1 score of the proposed
model is improved by 5.82%, 4.31%, and 1.58%, respectively. Furthermore, the proposed automated petition classi�cation decision
support system is available on the e-petition website and can be used to accurately deliver petitions and conduct citizen
opinion analysis.

1. Introduction

Online applications of e-government have been increasingly
applied to pursuing citizen demand and government reg-
ulations that allow citizens to interact e�ciently with gov-
ernment agencies. One of the most widely used
e-government applications is e-petition, which enhances the
communication of citizens with functional departments [1].
Recently, the burden of e-petition delivery has grown, and
the number of messages has signi�cantly increased from
hundreds per week to thousands per day for government
o�ces [2, 3]. According to the Shanghai Municipal Bureau
of Petition in China, over 69,000 public opinions and
suggestions were received and handled in 2021, with a

monthly average of 5,750 cases and an average public re-
sponse rate of 79.08% in each district. Also, 49,554 petitions
have been received from January to April 2022, with the
number of petition submissions increasing rapidly and the
daily response rate dropping to below 70%.

�e government requires the ability to automatically
determine the content of these petitions to reduce this
burden. Alternatively, the exponential growth of easily ac-
cessible text data has led to a surge of research interest in
automated content methods, such as automated text clas-
si�cation (ATC) [4, 5]. ATC is a sub�eld of natural language
processing (NLP) that assigns documents to one or more
prespeci�ed categories, while these texts are usually un-
structured [6, 7]. Large amounts of e-petition data are
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publicly available. )ese data are novel in their availability
and high storage volume, not widely used for research
purposes [8]. ATC might offer an effective solution to ad-
dress automated e-petition deliveries. However, selecting an
accurate and efficient model is a challenge for current ap-
plications [9].

In traditional text classification research, classical clas-
sifiers include support vector machines (SVM) [10, 11],
k-nearest neighbor (KNN) [12], and naive Bayes (NB) [13].
However, these methods cannot extract contextual rela-
tionships between words and text [5]. Since the concept of
deep learning was proposed in 2006 [14], Kim [15] first
proposed a text-based convolutional neural network (Text-
CNN). )e model performance was verified on seven short-
text data sets with an average length of below 25. )e
outstanding performance of convolutional neural network
(CNN) in short-text classification is attributed to the local
correlation captured by the convolution and pooling op-
erations. )e limitation of CNN lies in the loss of structural
information in maximum pooling; therefore, finding com-
plex patterns such as adversative relations in long texts is
difficult. Subsequently, a recurrent neural network (RNN)
was applied to extract global semantic information from
texts, which is suitable for time-series analyses such as text
classification [16]. Long short-term memory (LSTM) is a
special type of RNN. LSTM effectively solves the problems of
long-term memory dependence and gradient disappearance
in backpropagation and is more effective in processing
chapter-level texts [17]. As an improvement of LSTM, bi-
directional long short-term memory (Bi-LSTM) has for-
warding and backward directions, which excels in extracting
context features [18]. Improvements in these text classifi-
cation models focus more on the network structure, acti-
vation function, etc. [19–22]. As deep learning models alone
cannot improve classification performance, several scholars
have proposed hybridized models [6, 23, 24]. )e hybridized
model takes advantage of each other to improve the accuracy
of text classification. However, no single model is generic for
all tasks, and different types of models are useful for specific
domains [25]. Modeling unstructured text to achieve au-
tomated classification is a challenging task; for instance, a
submitted e-petition contains two parts: title and body.
Furthermore, the text length varies considerably, so
extracting features using a unified method is ineffective.

To address this issue, this study proposes a hybrid au-
tonomous classification method for e-petitions based on Bi-
LSTM and CNN and integrates the rich information of the
petition text to solve the decision-making support of the
autonomous transmission of e-petitions. )e proposed
hybridmodel combines the CNN and LSTM algorithms.)e
preprocessed title and body of the petition were input in
parallel and represented as word embeddings. )en, a CNN
with a small convolution kernel captures local features of the
concise title, whereas Bi-LSTM-CNN extracts complex se-
mantic features of the complex body. )ese two features
were concatenated to form a unified representation and
provide information for classification. To verify the per-
formance of the proposed method, we collected e-petitions
from the Chinese bulletin board system (BBS). )e

numerical results show that the proposed method achieved
the highest weighted precision (0.8288) and weighted recall
(0.8262). )e F1 score reached 0.8267, which was higher
than that of the baseline models. In addition, we also found
that the classification effect of the model using the CNN
structure to extract the features of the title was better than
that of the model using the LSTM structure. )e proposed
model can effectively solve the problems of inconsistent text
lengths and difficulty in feature extraction. )e contribu-
tions of this study are twofold. First, it proposes a hybrid
deep learning model incorporating title and body features,
which is more adaptable to text classification tasks withmore
information than existing neural network structures. )e
second is the decision support system, which helps citizens
automatically select the responsible department and to
provide references for staff to judge petition demands. )ese
two improvements significantly increase the efficiency and
effectiveness of the petition workflow.

)e remainder of this study is organized as follows.
Section 2 reviews related studies on ATC and their appli-
cations. In Section 3, we introduce the methodological idea
and the proposed classification model. )e numerical ex-
periments are presented in Section 4, and we conclude the
study in Section 5.

2. Research Background and Literature Review

2.1. Related Studies of Automated Text Classification.
Recently, ATC has attracted considerable attention from
researchers in NLP. ATC techniques have developed rapidly
and profoundly with the support of a large-scale research
community. Table 1 lists several advanced studies on text-
classification techniques.

Machine learning is considered superior to dictionary-
based text classification methods [5]. Traditional machine
learning models are widely used in various small-scale text
classification tasks, owing to their simple implementation
and high interpretability. )e corpus size is usually above
10,000, and traditional text representation is high dimen-
sional and highly sparse with weak feature representation,
which usually requires additional feature engineering. SVM
can effectively pursue two main properties of textual data:
high dimensionality and sparsity [11]. However, an SVM
requires extensive storage space and training time when the
data volume is large [10]. Classic models are adept at solving
the problem with strong individual signal words; they may
make the classification insufficient because of ignorance of
the interaction between words [12, 13].

Deep learning solves the limited representation of
complex functions in previous shallow-structured algo-
rithms and has become the mainstream research method in
text classification [14]. A CNN has achieved significant
success in image classification. )e convolutional kernel
extracts multidimensional features by setting different
weights to obtain local key information through the pooling
layer. A CNN enables fast dimensionality reduction and
relatively few training parameters through its unique net-
work structure and weight-sharing strategy [28]. Recently,
CNN has been applied to various NLP tasks [29] and has
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been extended to Text-CNN, which has several convolu-
tional windows of varied sizes and has an excellent classi-
fication effect in the short-text classification task [15, 26].
CNN cannot effectively capture long-term context infor-
mation between discontinuous words, which is important in
text models [30]. To solve this limitation, RNN and LSTM
can efficiently explore the potential semantic information of
text, and LSTM is more common in long texts [17]. Bi-LSTM
has two parallel layers that propagate in both forward and
backward directions to fully capture dependencies in the
context [18]. However, the accuracy of LSTM is further
hampered by the inability to identify the different rela-
tionships between the various parts of the document [24]. In
addition, CNN can be efficiently computed in parallel,
whereas LSTM is less efficient than CNN because of the
sequence dependencies problems in transmission [6, 25].

To improve classification, some researchers have pro-
posed hybrid neural networks that combine CNN and LSTM
algorithms. )e convolution and pooling operations of CNN
help the model extract locally salient features, whereas LSTM
solves the long-sentence dependency problem by using a gate
control mechanism to extract more complex contextual in-
formation [6, 31]. Regarding the hybrid model, attention
should be paid to the organization of the structure [24]. )e
model structure design depends on the nature of the problem,
and the data researched in the existing literature are derived
from news, reviews, and social media. )e design scheme of a
hybrid model structure explored for novel data sets is rare.

2.2. Related Applications of Text Classification. )e prospect
of affordable access to substantial amounts of text data has
encouraged opportunities for various analytic business,
academic, and contextual exploits [5]. Text-classification
applications have gained considerable attention from
scholars in the field of NLP [27, 32, 33].

Bencke et al. [34] collected messages on citizens’ com-
plaints on official social networks regarding transportation,
entertainment, and other services. )ey classified the mes-
sages into 14 corresponding dimensions of smart cities. )e
study compared different feature extraction methods to help
classical classification models alleviate the dimensionality
problem and pointed out the problem that the classification
effect is affected by unbalanced data distribution. [35]
proposed an intelligent system to monitor public opinion
(i.e., favorable, neutral, and unfavorable) on vaccination
decisions, which adopted a bag of words for text repre-
sentation and achieved the best accuracy with a small sample

of training data (693 pieces of data). [36] analyzed law-re-
lated news (i.e., relevant, and irrelevant) and proposed a
learning method that combines titles and body text, using a
bidirectional gated recurrent unit (Bi-GRU) to encode title
and body text, and then constructed a bidirectional attention
stream to integrate information from both. A new approach
for automatically analyzing political discourses of citizens
and civil servants was proposed in [22], where they used
multiscale CNNs in seven different languages to construct a
discourse classifier to classify political manifestos into seven
policy domains as well as political party background in-
formation to enhance the predictive power of the network.

Table 2 summarizes the text classification intelligent
systems that support decision-making for governments.
From the perspective of data sources, existing research
collected data from specialized social networks [22, 34] and
general social networks [35, 36], where general social net-
work information requires additional operations to filter
relevant texts. For the sample, unevenly distributed data
adds difficulties to the multiclassification task. Methodo-
logically, feature selection and deep learning are used to
alleviate the problem of the high sparsity and high di-
mensionality of textual data. Finally, the text used in the
model had a single body part, and the title information was
ignored. In relatively few studies that consider titles, uniform
structures are used to extract the characteristics of different
components, lacking the analysis of textual characteristics.
To address these issues, we propose a hybrid model based on
deep learning to classify information-rich text. Developing
e-government and establishing specialized channels have
made accessing substantial amounts of petition data easy.
Word2vec was utilized to convert words into low-dimen-
sional vectors to solve the sparse word representation
problem. We also analyzed the characteristics of each
component of the e-petition text and designed various
neural network structures to improve the classification
ability of the model.

3. Materials and Methods

)e proposed method combines CNN and Bi-LSTM to
classify petition text. Figure 1 shows an overview of the
proposed method.

3.1.DataCollection. )eprogress of the petitions and replies
were selected and posted on the Shanghai e-petition BBS.
Citizens register with their real names, log in, fill out the
petition, and submit it. )e petitions submitted are received

Table 1: Advanced studies on text classification techniques.

Model Data set Training set Classes Text length Vocab
SVM [11] Newspaper 250 2 500 11672
KNN [12] Newspaper 4731 87 1000 10000
CNN [15] Customer reviews 12700 3 16 13612
CNN [26] Twitter 1600000 2 60 76643
LSTM [17] Newspaper articles 8552 2 339 -
Bi-LSTM [18] Service documents 9121 10 128 -
CNN+LSTM [6] Clinical notes 26363 50 200 49354
LSTM-CNN [27] Newspaper 50000 10 100 -
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and registered regularly by office workers and then for-
warded to the relevant functional departments for proper
handling according to their duties.

)is study used the octopus data collector to automat-
ically crawl petition text data in the BBS. An octopus is an
automatic data collection application that simulates human
behavior and supports user-designed collection processes.
Figure 2 illustrates the collection process for this research.
First, the petition bulletin board web page is opened within
the collector and contains links to multiple publicized pe-
titions. Clicking on the links leads to a petition details page,
and clicking on the corresponding positions on the details
page can conveniently capture the text in the corresponding
fields on the page. An octopus can generate and loop all
links, open the linked pages in turn, and automatically
collect the text of the specified fields until all the corre-
sponding texts of the links are collected. )e collected data
were saved locally in CSV file format. After data collection,
each petition text was automatically labeled according to the
reply to department.)e automatic transmission problem of
petition text was transformed into an ATC problem.

3.2. Data Preprocessing. Data preprocessing is the process of
transforming raw text into the format required by ML al-
gorithms. We preprocessed the raw data using three oper-
ations: cleaning, word splitting, and tokenization. Data
preprocessing was implemented using python3 (see

Table 2: Text classification intelligent systems supporting decision-making for governments.

Function Data set Class Method Text
Classification of smart city service [35] Colab 14 Logistic regression Body
Social media monitor [36] Tweets related to vaccination 3 SVM+n-gram Body
Public opinion analysis [22] Law-related news 2 Bi-GRU Title + body
Political analysis [37] Political manifestos 7 CNN+Word2vec Body

E-petition BBS

Data collector

cleaning

word
splitting

tokenization Petition body

Petition title

Embedding layer

Words
sequence

Embedding matrix

Reply
department

CNN layer

Bi-LSTM-CNN
layer

Fully connected
layer

Figure 1: )e proposed automated petition classification method overview. (a) Data collection; (b) pre-processing; (c) word embedding;
(d) classification model.

Open webpage

Generate a recurring list of links

Click on the element

Crawl text

Start

Export as a CSV file

End

Open the link's details page

Whether the
links in the list have been fully

iterated?
Yes

No

Figure 2: E-petition data collection process with octopus collector:
design of the Data Collection Process.
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Algorithm 1 for the pseudocode). Figure 3 shows an example
of the preprocessing of a petition text.

(a) )e cleaning process includes removing duplicate
samples and null values, non-Chinese characters, and
extra spaces.We first cleaned up these noises to prevent
interference with the results. As shown in Figure 3(a),
the horizontal tabs on both sides were removed.

(b) )e word-splitting process involves splitting text
into individual words. )e Chinese texts require
specialized operations for word splitting because of
the absence of space. Jieba [37] is an open-source
library for NLP that targets Chinese texts for word
splitting. )e library supports adding a custom user
dictionary and removing stop-words. )is study
added 1495 words for the names of local streets and
roads to the user dictionary. We also summarized
three stop-word lists (the Chinese stop-word list,
the stop-words list of Harbin Institute of Tech-
nology, and the stop-words list of the machine
intelligence laboratory) with a total of 2490 stop-

words. )ese words and symbols do not help the
model to analyze and predict the category of the text
but add computational complexity and system
overhead. Figure 3(b) shows that after word split-
ting, such a sentence constitutes a row in the in-
ternal corpus.

(c) Tokenization represents a sentence as a sequence of
words. First, all words in the corpus are obtained to
form vocabulary V, and each word is assigned a
unique integer number. )us, a sentence is trans-
formed into a sequence of word tokens. )e
tokenizer class in Keras facilitates this. Because the
neural network can only receive inputs of the same
length, we processed sentences of varying lengths
into a sequence of standard lengths based on the
length distribution of the petition text. Sequences
less than the standard length were padded with zeros
at the end of the sequences, and sequences longer
than the standard length had extra words at the back-
end cut-off.

Input: texts, user_dictionary_list, stopwords_list
Output: word_sequences

(1) //Step 1: content cleaning
(2) m� size of (texts) //get number of total documents in texts
(3) For i� 1 to m do
(4) Content� texts[i] //get the content of ith document
(5) Content� content.strip() //remove the blanks
(6) n� length (content) //get number of total characters in content
(7) For j� 1 to n do
(8) Character� content[j]
(9) If character< u‘\u4e00’ and character> u‘\u9fa5’ then
(10) Character� character.strip() //remove the blanks
(11) End if
(12) End for
(13) End for
(14) //Step 2: word splitting
(15) Jieba.load () //jieba is a python Chinese word segmentation module
(16) User_dictionary_list.load ()
(17) Stopwords_list.load ()
(18) Corpus� [] //build internal corpus
(19) For i� 1 to m do
(20) Word_list� jieba.lcut (texts[i]) //split texts[i]
(21) s� length (word_list) //get number of total words in word_list
(22) For j� 1 to s do
(23) If word_list[j] in stopwords_list then
(24) Remove (word_list[j])
(25) End if
(26) End for
(27) Corpus.append (word_list)
(28) End for
(29) //Step 3: tokenization
(30) Tensorflow.load () //tensorflow is a machine learning framework
(31) Tokenizer� tensorflow.keras.pre-processing.text.Tokenizer() //Tokenizer is a class that converts text into sequences
(32) Tokenizer.fit_on_texts (corpus)
(33) Senquences� tokenizer.texts_to_sequences (corpus)
(34) Word_sequences� tensorflow.keras.pre-processing.sequence.pad_sequences (senquences, maxlen� l)

ALGORITHM 1: Data Preprocessing
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3.3. Word Embedding. To analyze text using machine
learning algorithms, unstructured text must be converted
into numerical form as input. Word embedding is a
method of transforming words into vectors. In contrast to
one-hot coding, word embedding allows text to be
expressed low dimensionally. Word2vec is a mainstream
statistical method for obtaining word vectors [38]. We
employed word2vec based on the skip-gram algorithm to
pretrain the embedding matrix. �e skip-gram algorithm
predicts the context words of the currently known word wt
in an internal corpus.�e optimized objective function is as
follows:

L � max∑
w∈c

logp(Context(w) |w), (1)

where Context(w) is the context of the input word w. We
de�ned a skip window parameter to represent the number of
words selected from one side (left or right) of the current

input word. �en, several contextual words from the whole
window were selected as our output words; thus, there were
multiple sets (input words and output words) of the training
data. �is neural network was trained using all training data.
�e model structure of the skip-gram is shown in Figure 4,
which has three layers: the input, hidden, and output layers.
�e input layer was a one-hot vector of length |V|. Hidden
layer was calculated as follows:

h �WT ·X � VTwI . (2)

�eweightW ∈ R|V|×d from the input layer to the hidden
layer is the embedding matrix, in which d represents the
dimension of the word-embedding vector and |V| is a
constant-size vocabulary. VTwi is a distributed vector that
represents the word wI.

�e output layer represents the probability that each
word in dictionary V is an output word.

(a) Clean:

Juquan Experimental Kindergarten morning broadcast loud asked for solution
instead of disturbing the residents

Petition text:
/t/t Reflecting the morning broadcast of the Juquan Experimental Kindergarten was too loud, and asked

for a solution instead of disturbing the residents. /t/t

(b) Word splitting:

(c) Tokenization: [8, 7, 6, 3, 15, 10, 1, 9, 14, 376, 45, 79 ]
[8, 7, 6, 3, 15, 10, 1, 9, 14, 376]

Remove stop-words

Cut Reflecting Juquan Experimental Kindergarten morning broadcast was too
loud , and asked for a solution instead of disturbing the residents .

Reflecting the morning broadcast of the Juquan Experimental Kindergarten was too loud,
and asked for a solution instead of disturbing the residents.

If standard length= 10:

Figure 3: Example of preprocessing operation.

Input layer Hidden layer Output layer

|V| positions

W|V|×d = {wki}
W′d×|V| = w′ij

x1
x2

h1
h2

hi

hd

x3
x4

xk

xV

y1
y2

y3
y4

y1
y2

y3
y4

yj

yV

yn

yV

|V| neuronsd neurons

… …
…

…
…

…
…

…

Figure 4: Word2vec embedding model training based on the skip-gram algorithm.
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uj � 

d

i�1
Wij
′Thi,

P wj | wI  � yj �
exp uj 

k∈Vexp uk( 
.

(3)

3.4. Classification

3.4.1. Embedding Layer. )is study used word2vec to pre-
train an embedding matrix to initialize the weights of the
embedding layers and fine-tune them. Each input sequence
is mapped as a vector group through the embedding layer.
Given a sequence consisting of l words: doc� w1, w2, . . ., wl,
where each word wi is associated with tokenized real-valued
encoding, we looked up the embedding matrix W and
transform wi to ei by matrix vector product:

ei � W
T
vi. (4)

In equation (4), vi has an equal length to |V| and the
elements have values between 0 and 1. )e sequence of
words is represented as

doc � e1, e2, . . . , ei, . . . , el 
T
. (5)

Figure 5 shows that the petition title and petition body
are represented as vector groups of different standard
lengths, which are subsequently input into the CNN and Bi-
LSTM-CNN layers, respectively.

3.4.2. CNN Layer. CNN was widely used in the early days of
image processing, but it has only recently been used for text
classification tasks and outperformed sequence-based
methods. )e convolution windows applied to text in the NLP
domain are usually one dimensional. For the 1DCNN, the
convolution layer uses a 1D cross-correlation operation, which
slides the convolutionwindow from top to bottom on the input
text. )e length of the 1D convolution window was consistent
with the dimensions of the word vector and the width was n.
)e convolution operation applies the filter F ∈ Rd×n dots with
n words in the text to obtain a new feature ci:

ci � f F · xi:n + b( . (6)

Here, f is a nonlinear activation function such as relu or
tanh, xi:n is the concatenation of n words:
xi: n � xi ⊕ xi+1 ⊕ xi+2 ⊕ . . .⊕xi+n−1, and b is the bias term.

)e convolution stride defines the distance between the
positions of the convolution windows when they sweep
through the adjacent feature map. In this study, the con-
volution step was set to 1, which means that the convolution

……

Embedding Layer

Bi-LSTM-CNN Layer CNN Layer

Petition body Petition title

Bi-LSTM

Conv1D

Maxpoling1D

Conv1D

Maxpoling1D

Conv Input

Fusion Layer

Output Layer

Softmax

Concatenate

W1 W2 W4W3 W1 W3W2

Figure 5: Architecture of the proposed hybrid deep learning classification method.
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windows swept through the elements of the feature map one
by one. We performed the same padding to maintain the
output and input of the same size for feature extraction at the
word level. )erefore, filter A generated one feature map
c � [c1, c2, . . . , cl]. Finally, we performed a 1D maximum
pooling operation on the feature map generated by the filter
fi to capture the most important features.

pi � max c1, c2, . . . , cl( . (7)

Figure 6 shows an example of a filter that performs a one-
dimensional convolution operation. )e filter was multiplied
by the word embeddings in the convolution window and
summed to obtain a feature map containing locally dependent
information. )e maximum pooling operation selects the
maximum value in the feature map to represent the local
features captured by the filter. Filters are considerably im-
portant for CNN to automatically learn the features required to
understand the text. )erefore, the size and number of filters
are important parameters affecting the performance of CNN.

3.4.3. Bi-LSTM-CNN Layer. )e unidirectional LSTM net-
work accesses only forward information; however, reverse
information is also needed in most cases to fully understand
the context. Bi-LSTM effectively uses past and future con-
textual information to learn semantic information. LSTM is a
variant of RNN that introduces a gatingmechanism to control
the accumulation speed of information, including the input
gate it, forget the door ft, and output gate ot. )e LSTM
network introduces a new internal state ct to simultaneously
transmit recurrent information and output information to the
external state of the hidden state ht at the same time. )e
formula used is as follows:

it � σ Wixt + Uiht−1 + bi( ,

ft � σ Wfxt + Ufht−1 + bf ,

ot � σ Wo( xt + Uoht−1 + bo,

ct � tanh Wcxt + Ucht−1 + bc( ,

ct � ft ⊙ ct−1 + it ⊙ ct.

(8)

Here, σ is the sigmoid function. xt is the input of the
current time t, ht − 1 is the hidden state of the last moment, ⊙
is the product of vector elements, ct − 1 is the memory unit
of the last moment, and ct is a candidate state obtained by a
nonlinear function. It selectively adds new information and
forgets previously accumulated information, which can
effectively solve the problems of gradient disappearance
and gradient explosion of a simple recurrent neural
network.

Assuming that the first layer is in the order of sentences
and the second layer is in the reverse order of sentences, the
hidden state at time t is defined as h

(1)
t and h

(2)
t , then

h
(1)
t � f U

(1)
h

(1)
t−1 + W

(1)
xt + b

(1)
 ,

h
(2)
t � f U

(2)
h

(2)
t−1 + W

(2)
xt + b

(2)
 ,

ht � h
(1)
t ⊕ h

(2)
t ,

(9)

where ⊕ is a vector concatenate operation.
When using LSTM for text classification tasks, the

hidden-layer state of the last time step is typically used as the
penultimate layer. However, this study extracted local fea-
tures using a 1DCNN based on the contextual features of
long texts. )erefore, the hidden state of each time step was
returned, and ht was the concatenation of the hidden states
of the forward and backward units at time step t. A text
sequence of length l returns l hidden states after context
features are extracted by Bi-LSTM, and these returned
hidden states can be regarded as a sequence of words of
length l with embedding dimension 2 h. Next, we performed
the convolution and maximum pooling operations de-
scribed in Subsection 3.4.2. )e 1DCNN was performed on
returned hidden states and then a maximum pooling op-
eration to capture the prominent features of the petitioning
body.

3.4.4. Fusion Layer. )is study used different neural net-
work structures to extract features according to the length
characteristics of various petition parts. )e Bi-LSTM-CNN
layer uses the petition body as input, extracts contextual
information from the input using forward and backward
LSTMs, and returns the hidden state of all time steps into a
1DCNN for convolution and maximum pooling. Mean-
while, the CNN layer uses the petition title as input, per-
forms a convolution operation on the input, and calculates
the maximum value of each activation mapping using 1D
maximum pooling. To obtain the advantages of both shallow
neural networks, the output of the Bi-LSTM-CNN layer,
noted Ob, and the output of the CNN layer, noted Ot, are
concatenated to create a unified representation Y. Finally,
the resulting unified representation is transported to the
output layer.

Y � Ob⊕Ot. (10)

3.4.5. Output Layer. )e proposed end-to-end framework
for automatic classification supports multiple petition
classifications. )e fully connected layer integrates the
category differentiation information in Y and then outputs
yi. )e calculation formula is as follows:

yi � W
T

yi( )Y, (11)

where WT
(yi)

is the learnable weight connected to the
neuron yi. )e softmax activation function was used to
generate a probability pi for each label. Finally, the label
with the highest probability among the k labels was selected
as the final reply department of petition P.

pi �
exp yi( 

j∈kexp yj 
,

y � max p1, p2, . . . , pk( .

(12)
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4. Numerical Experiments

4.1. E-Petition Data Set. In 2016, Shanghai integrated
various channels to establish a comprehensive e-peti-
tioning platform. )is study conducted an experiment
using open petition data collected from May 2016 to
September 2021. We chose departments that received over
1000 e-petitions as labels for the classifier, and 11 de-
partments were selected. After removing duplicate and
missing values, 28085 records were collected as the data set
for this study, and Table 3 shows the categories and data
volume statistics.

4.2.DataPreparation. )enumber of words in the corpus of
the fully structured e-petition data was 110,645. Figure 7
shows the text length distributions of the title and body. )e
title is truncated at 10, and the text is truncated at 500, but
with a relatively long right tail. Excessive length increases the
computational overhead; therefore, we used 10 and 500 as
the standard length of the title sequence and body sequence,
respectively.

For the preprocessed petition data set, 20% of the
shuffling data set was selected as the test set and 80% as the
training set. )e validation set comprised the last 10% of the
training set. )e proportions of the categories in the three
data sets remained similar. Table 4 summarizes the statistics
and splitting of the data sets.

4.3. Classification and Comparison

4.3.1. Parameter Setting. Some basic parameter settings are
summarized in Table 5, which serve as the default settings
for the proposed classification model and work well in
many cases. Owing to the limited amount of sample data,
which contains noisy data, it is easy to obtain high training
accuracy on an unknown data set. Early stopping is used
to prevent overfitting. During the gradient descent
training process, the parameters that converged on the

training set were not necessarily the best on the test set.
)is study used validation loss as the monitor. In each
epoch, we estimated the newly obtained model for the
validation set and computed the validation loss. If the
validation loss did not decrease, then the iteration was
stopped. To solve the problem of class imbalance, class
weight was considered to weigh the loss function during
training to make the model more attentive to the samples
of underrepresented classes. In this study, the class weight
was set to “balanced” and the weight of category i was
calculated as follows:

wi �
N

labels∗ ni

, (13)

where N is the total number of samples, labels are the total
number of categories, and ni is the number of samples in
category i.

In addition to the aforementioned basic settings, some
important parameters were sought to improve the per-
formance of the model (see Table 6). )e introduction of a
dropout before the output layer can alleviate this overfitting
problem. )e problem of gradient explosion appears in
model training when the activation function in LSTM is set
as relu; therefore, tanh was set as the default. )e activation
function of the CNN layer was optimized for relu and tanh,
as recommended by [15]. To select the optimal parameter
value to achieve high accuracy, we trained the model on the
training set and determined the optimal parameter settings
based on the classification performance of the validation
set.

4.3.2. Evaluation Measures. )e evaluation measures in-
clude accuracy, precision, recall, and F1 score; category i to
be observed was considered positive, and the rest of the
categories were considered negative, and a confusion matrix
similar to binary classification was obtained. )e evaluation
metrics were calculated as follows:
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Figure 6: An example of using a filter to extract features.
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Figure 7: Length distribution of word sequences. (a) Length of title; (b) length of body.

Table 3: Classes and volume of the petition data set.

Reply departments Volume Label Proportion (%)
Municipal Finance Bureau 1174 0 4.18
Public Security Bureau 3033 1 10.80
Municipal Education Commission 4765 2 16.97
Municipal Human Resources and Social Security Bureau 1707 3 6.08
Municipal Administration for Market Regulation 5597 4 19.93
Municipal Health Commission 1437 5 5.12
Municipal Commission of Housing and Urban-Rural Development 3992 6 14.21
Municipal Transportation Commission 2446 7 8.71
Landscaping & City Appearance Administrative Bureau 822 8 2.93
Urban Management and Law Enforcement Bureau 1252 9 4.46
Planning and Natural Resources Bureau 1860 10 6.62

Table 4: Statistics and splitting of e-petition data set.

Data set Training set Validation set Test set Vocab Title length Body length
28085 20221 2247 5617 110645 10 500

Table 5: Basic parameter settings of the classification model.

Parameter Value
Loss function Categorical cross-entropy
Metrics Categorical accuracy
Optimizer Adam
Early stopping monitor� ‘val-loss’, patience� 1
Class weight Balanced

Table 6: Key parameters of the classification model to be optimized.

Parameter Explanation Scope
Batch size (b) Number of samples per gradient update 16≤ b≤ 64, b ⊂ Z

Learning rate (lr) Hyperparameters in updating weights during gradient descent 0.0001≤ b≤ 0.01
Embedding size (e) )e dimensionality of the word vector 100≤ e≤ 600, e ⊂ Z

Hidden size (h) Number of neurons in the hidden layer 32≤ h≤ 256, h ⊂ Z

Kernel size (c1) Length of convolution window in Bi-LSTM-CNN layer 2≤ c1 ≤ 10, c1 ⊂ Z

Kernel size (c2) Length of convolution window in CNN layer 1≤ c1 ≤ 6, c1 ⊂ Z

Filter size (f1) Number filters in Bi-LSTM-CNN layer 10≤f1 ≤ 400, f1 ⊂ Z

Filter size (f2) Number filters in CNN layer 5≤f2 ≤ 200, f2 ⊂ Z

Dropout (d) A simple way to prevent neural networks from overfitting 0≤d≤ 0.8
Activation function (a) A function for introducing nonlinear factors into a neural network Relu or tanh
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Accuracy �
TP + TN

N
,

Pi �
TP

TP + FP
,

Ri �
TP

TP + FN
,

F1i �
2Pi × Ri

Pi + Ri

.

(14)

Considering the uneven distribution of the samples, we
introduced weights to each evaluation index to evaluate the
overall classification effect of the samples. Here, the weights
were determined by the sample proportion, p.

Weighted − P � 
10

i�0
piPi,

Weighted − R � 

10

i�0
piRi,

Weighted − F1 � 
10

i�0
piF1i.

(15)

4.3.3. Parameter Optimization. To determine the optimal
settings of many hyperparameters in the model step-by-step,
we randomly initialized a set of parameters and selected the
optimal choice in the current state as the setting of the
parameters. Figure 8 shows the decline of the model in the
training loss over 25 epochs with nine sets of batch sizes and
learning rates. )e results show that the model reached the
lowest loss fastest at a learning rate of 0.001, with three batch
size settings. When the batch size was 64, the training time
was shorter than that for the other two batch size settings.
Considering the training time of the model, the final choice
was a learning rate of 0.001 and a batch size of 64.

Next, the remaining parameters were optimized se-
quentially. Figure 9(a) shows the classification accuracy of
the configuration of the embedding size on the validation set.
)e model had the highest validation accuracy when the
embedding size was set to 400. Figure 9(b) shows that the
classification results were slightly better when the hidden
size was set to 128. For the kernel size, the convolution size of
the body had a significant impact on the classification
performance of the model, fluctuating by 5%. We selected
c1� 5 and c2� 3 as the optimal parameter settings.
Figures 10(a) and 10(b) show that when the number of filters
was below 100, the accuracy was positively correlated with
the number of filters, and the optimal number of filters was
set to 100. Figure 10(c) shows that the model performed best
when dropout� 0.25. Figure 10(d) shows that the two ac-
tivation functions have minimal impact on model perfor-
mance, and the activation function set as tanh is slightly
better.

4.3.4. Classification Result. We controlled the three em-
bedded modes of the proposed structure in the embedding
layer and obtained the classification results for the test set (see
Table 7). Word2vec pretrained word embedding with fine-
tuning in the embedding layer had the highest classification
accuracy, weighted precision, weighted recall, and weighted-
F1 score, and the randomly initialized word embedding
approach had the poorest classification performance. In ad-
dition, pretrained word embeddings, either static or fine-
tuned, can reduce the training time of the model.

4.3.5. Comparisons and Discussion. )is study compared
baseline models with the proposed model to verify its
classification performance. )e basic settings of the baseline
models were consistent with those of the proposed model
(see Table 5), and the other settings are listed in Table 8. )e
input of baseline models represented as “body + title”, which
respectively indicates the petition body and petition title.

)e classification results of the proposed and baseline
models for the test set are summarized in Table 9. )e
baseline models provided reasonable results, and the pro-
posed method was more effective. First, in the case of using
the body as the input text for the model, hybrid models (M7,
M10) outperformed the single structure models (M1 and
M4) in each evaluation. )e results showed that Bi-LSTM
outperforms Text-CNN, which demonstrates that extracting
contextual features is more effective for classification tasks
for long petition bodies. In addition, the hybrid approach of
Bi-LSTM for extracting contextual features, followed by
CNN for extracting local features, showed better results.
Second, introducing title information can improve the
classification effect (M2, M3, M5, M6, M8, M9, M11, and
proposed model). Compared to the Bi-LSTM-CNN, the
proposed model improves 1.26%, 1.67%, and 1.58% in
weighted precision, weighted recall, and weighted F1 score,
respectively. Text-CNN, which performed the worst in text
classification using the body of the petition, improved the
recall by 3.22% after adding the title. )ird, among the
models with titles, the evaluations of models with the CNN
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Figure 10: Parameter optimization of filters (f1, f2), dropout d, and activation function a. (a) Filters (f1); (b) filters (f2); (c) dropout (d);
(d) activation function (a).
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Figure 9: Parameter optimization of embedding size (e), hidden size (h), and convolutional kernel size (c1, c2). (a) Embedded size (e);
(b) hidden size (h); (c) kernel size (c1); (d) kernel size c2.
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structure (M3, M6, proposed model) are better than those of
models with the LSTM structure (M2, M5, M11). Compared
with the baseline models, the proposed model achieved the
best classification results in the petition text classification
task.

We summarized the F1 score for each class (see Fig-
ure 11) to investigate the classification performance of each
model in the unbalanced data set. F1 score balances the
precision and recall of the classification model. )e results
show that the proposed model had a high F1 score of over
0.74 in each class. For Classes 2, 3, and 5, where the clas-
sification results were generally good, the F1 scores of the
proposed model were close to 0.9. )e F1 scores of the
proposed model significantly improved for classes 0, 7, 8,
and 10. Our model provides more comprehensive classifi-
cation results for biased samples.

Considering the independence of each government
department, evaluating the classification effects of all de-
partments is beneficial for discovering the causes of dif-
ferences in classification effects among departments. We
calculated the confusion matrix for the classification results.
Eachmatrix element was divided by the sum of each column,
i.e., the misclassification rate of each category (see Fig-
ure 12). Although the proposed model significantly im-
proves the misclassification rate of class 6 compared to the
other baseline models, all models tend to misclassify classes
6, 7, and 10. Analyzing the classification results of the
proposed model, there were 41 petitions for “tenement” and
“facility management” in class 7 that were mistakenly
classified as class 6 (8.12%) and 57 petitions for housing
relocation in class 10 that were mistakenly classified as class
6 (15.45%). We investigated the duties of the department of
Class 6, which included coordinating various departments to
manage land use and supervising construction and housing
issues. One of the duties of the department of Class 10 is
planning the construction of engineering projects, and the
department of Class 7’s duties are related to parking lot

Table 7: Classification results of three embed modes of the embedding layer on the test set.

Embed mode Weighted-P Weighted-R Weighted-F1 Training time (second)
Random 0.8137 0.8104 0.8103 1249
Static 0.8226 0.8214 0.8212 430
Fine-tuning 0.8288 0.8262 0.8267 1100

Table 8: Configurations of baseline models.

Baseline models Parameter setting
Text-CNN (M1) e � 400, c1 � 3, 4, 5, filters� 100, input� petition body
Text-CNN+LSTM (M2) e � 400, c1 � 3, 4, 5, h � 128, input� petition body and title
Text-CNN+CNN (M3) e � 400, c1 � 3, 4, 5, c2 � 3, filters� 100, input� petition body and title
Bi-LSTM (M4) e � 400, h � 128, input� petition body
Bi-LSTM+LSTM (M5) e � 400, h1 � 128, h2 � 128, input� petition body and title
Bi-LSTM+CNN (M6) e � 400, h � 128, c2 � 3, input� petition body and title
CNN -Bi-LSTM (M7) e � 400, c1 � 5, h � 128, c2 � 3, input� petition body
CNN -Bi-LSTM+LSTM (M8) e � 400, c1 � 5, h1 � 128, h2 � 128, input� petition body and title
CNN -Bi-LSTM+CNN (M9) e � 400, c1 � 5, h � 128, c2 � 3, input� petition body and title
Bi-LSTM-CNN (M10) e � 400, c1 � 5, h � 128, input� petition body
Bi-LSTM-CNN+LSTM (M11) e � 400, c1 � 5, h1 � 128, h2 � 128, input� petition body and title
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Figure 11: F1 score of proposedmodel and baseline models in each
class on the test set.

Table 9: Evaluation of the proposed model and baseline models in
the test set.

Models Weighted-P Weighted-R Weighted-F1
M1 0.7856 0.7668 0.7685
M2 0.8006 0.7899 0.7920
M3 0.8026 0.7990 0.7988
M4 0.7892 0.7839 0.7836
M5 0.8044 0.7953 0.7971
M6 0.8124 0.8109 0.8104
M7 0.7883 0.7821 0.7825
M8 0.7986 0.7942 0.7952
M9 0.7941 0.7887 0.7894
M10 0.8162 0.8095 0.8109
M11 0.8169 0.8124 0.8131
Proposed model 0.8288 0.8262 0.8267
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Figure 12: Misclassification of the proposed and baseline models on the test set: (a) Text-CNN; (b) Bi-LSTM; (c) CNN-Bi-LSTM; (d) Bi-
LSTM-CNN; (e) Proposed model.
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operations in urban areas. )eir duties overlap when dealing
with housing issues. Clear and well-defined responsibilities
are important for the effective automatic classification of
petitions.

4.4. Implications and Applications. Efficient interaction be-
tween citizens and the government can help the government
analyze public opinion, understand and solve difficulties in
people’s lives, and make favorable decisions. Assessing the
“e-petition platform” in China, citizens are required to
choose a responsible department when submitting a peti-
tion, and office workers receive the petition, sort it, and send
it to the responsible department according to the demand.
Because citizens do not have a clear understanding of the
department’s responsibility, they sometimes choose the
wrong responsible department. When petition office
workers sort many petitions, some petitions have unknown
needs and cannot be quickly processed.

Using the automatic text classification model proposed
in this study and the current application requirements, we
designed a text-based petition decision support system to
help citizens in selecting a responsible department and to
help office staff improve the sorting speed of petitions with
unclear demands. As shown in Figure 13, on the one hand,
after citizens register and log in to the e-petition platform,
they submit a petition with a title and body. )e decision
support system uses a classifier trained from historical data
to predict the responsible department, provides the pre-
dicted result to the citizen for reference, and then stores label
A. Moreover, the submitted petition is received and regis-
tered by the office staff, which provides reference keywords
to help the staff improve the sorting speed and handle
petitions with unclear needs. If the staff judges that the
petition does not fall under the authority of Department A,
the petition is forwarded to Department B, and the label is

updated. Meanwhile, the data are added to the training set to
update the classifier. Before autonomous classification, we
first store the data in a structured manner and store the
labels and replies, which accumulate data resources for
further analysis of public opinion, prediction of hot topics,
and evaluation of department performance. )is will be-
come an integral part of the e-government decision support
system. )e system will also continuously update the data to
improve the accuracy of autonomous classification, which
remarkably improves the efficiency of petition
administrators.

In addition to the application framework, we also
provide some useful application suggestions based on the
research results and findings. First, the data of each de-
partment is unbalanced. We should strengthen the ability to
identify categories with small sample sizes, balance the
proportion of samples in each category, and be alert to the
extreme prediction of the classifier as a department with a
large sample size. Second, we set a classification threshold for
a single petition. Departments with more overlapping re-
sponsibilities had similar predicted probabilities. When the
difference between the predicted probabilities of multiple
classes is small, we set a threshold for delivery to multiple
departments.

5. Conclusion

Communication and interaction between citizens and
government are important for social governance. )is
study researched questions for petition autonomous de-
livery and decision support by reviewing the gap between
existing research and application requirements. We pro-
posed a hybrid model that integrates the advantages of
both neural networks. )e petitions were unstructured.
)erefore, we preprocessed the text and mapped the words
into low-dimensional vectors. )en, we input the word
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Figure 13: Petition automated forwarding decision support system.
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embedding of the title and body into the hybrid deep
learning model, extracting the contextual and local fea-
tures to realize the autonomous classification of the pe-
tition-responsible department. Numerical experimental
results show that compared with the baseline models, the
overall F1 score of the proposed method is 0.8267, which is
5.82% higher than that of Text-CNN, 4.31% higher than
that of Bi-LSTM, and 1.58% higher than that of Bi-LSTM-
CNN.

Further, we explored the superiority of the model in
various classes and found that the hybrid model out-
performed the simple model. )e proposed model incor-
porates the title and body of the text well and had better
classification performance. Finally, we designed a decision-
making support system that can store data and update
classifiers, thereby significantly promoting the automation
and efficiency of the petition workflow. We also provided
useful suggestions for applications in real-world scenarios.
In conclusion, our research provides a significant practical
reference.

Furthermore, we must note that departments receiving a
few e-petitions are not included in this study and that
overlapping responsibilities among departments may be
biased in practice. )erefore, further analysis should focus
on small samples and the problem of e-petitions corre-
sponding to multiple departments.
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To quantitatively describe the in�uence of the contact characteristics of granular materials on their mechanical response, the true-
triaxial tests with di�erent particle shapes are simulated by the discrete element method (DEM), and the connection between the
evolutions of particle contact fabric and the anisotropic mechanical responses is studied.�e contact normal vector of the particle
in 3D space is described by two independent angles, by which the contact fabric tensor is de�ned. �e amplitude parameters in
three orthogonal directions are de�ned by the invariants of the plane fabric tensor, which are scalars and describe the degree of
anisotropy of the contact fabric in each plane. �e expression of orthotropic fabric tensor is derived from the amplitude pa-
rameters, with the change of geometric space of contact normal vector, which is reduced to the di�erent tensor of transverse
isotropic naturally. �e fabric tensor can be directly applied to the constitutive equation to describe the e�ects of the particle
contact on the mechanical response. For verifying the rationality of contact characteristics described by fabric tensor, four particle
shapes are clumped by PFC3D. �e mechanical properties of specimens with di�erent particles are simulated under the true-
triaxial loading path, and the data of contact normal vector is extracted in real time.�e simulation results showed that the particle
shapes have a signi�cant e�ect on the 3D stress-strain relationship and strength, which showed apparent anisotropy, and the
invariants of fabric tensor can be used to describe the evolution of particle contact in the loading process.

1. Introduction

Due to the unique properties of granular materials, such as
dispersion, for a long time, their macroscopic mechanical
properties and microscopic mechanical properties are often
studied separately. Taking geotechnical engineering as an
example, the strength and stability of granular materials in
slope, foundation, and underground engineering studies
from a macroscopic perspective can often meet engineering
needs. However, under complex stress conditions such as
cyclic loading, the failure’s forms are quite di�erent mac-
roscopically, due to anisotropy, strain localization, strain
softening, etc. �e fundamental reason for these phenomena
is the microscopic properties of the material, such as particle
morphology, motion, fabric, and evolution [1–4]. �erefore,
it is of theoretical and practical signi�cance to study the

relationship between macroscopic and microscopic me-
chanical properties of granular materials [5–9].

Fabric tensor is a great connection tool for granular
materials, and quantitative description is helpful in revealing
the in�uence of microscopic fabric on macroscopic me-
chanical properties [10]. Since Oda et al. [11–13] put forward
the de�nition of fabric tensors, the study on the mechanical
properties of granular materials has gone from macroscopic
to microscopic, and several constitutive models and strength
criteria based on fabric tensors have been established. Guo
[14] and Yao and Kong [15] established the strength cri-
terion of granular materials using fabric tensors. Ouadfel
and Rothenburg [16] researched the relationship of the
stress-force-fabric. Liu et al. [17] presented the relationship
between macroscopic stress, microscopic contact force, and
anisotropic fabric. Petalas et al. [18] introduced fabric
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anisotropy parameters into the constitutive model and
studied the influence of fabric anisotropy evolution on
mechanical properties. Pouragha et al. [19] combined the
contact force, contact direction, and strength criterion be-
tween particles. Hu et al. [20] presented a boundary surface
model containing fabric tensors, in which the anisotropy was
represented by introducing back stress opposite to the
contact normal direction and contrasted the predicted re-
sults of the model between simulation results by DEM. -e
author of this paper also established the potential theory [21]
and the strength criterion [22] using the fabric tensor [23].

-e above research results enrich the description per-
formance and scope of the existing constitutive models and
strength criteria based on fabric tensors. However, the
characteristics of macroscopic and microscopic connections
and their evolutions under complex stress conditions need
to be further studied, such as the relationship between the
evolution of contact fabric and macroscopic stress-strain
change [24], and the relationship with the evolution of
stress-induced anisotropy [25]. In the loading process, the
evolution of the particle contact normal determines the
evolution direction of macroscopic deformation to a certain
extent. Liu et al. [26] studied the influence of stress path on
fabric evolution by analyzing the evolution of partial fabric.
Zheng et al. [27] studied the relationship between strength
and fabric evolution. Hu et al. [28] studied the relationship
between strain rate and fabric evolution. Nie et al. [29]
believed that particle shape was also one of the factors af-
fecting the evolution of fabric. Ng [30] and Oda et al. [31, 32]
found that the contact normal direction between particles
tended to be consistent with the maximum principal stress
direction. Gu et al. [33] analyzed the evolutions of me-
chanical quantities such as contact number, contact force,
and anisotropic parameters between particles. Vijayan et al.
[34] studied the evolution of fabric and the average coor-
dination number in the shearing process of granular ma-
terials. Wang et al. [35] and Zhou et al. [36] believed that the
initial fabric influenced the evolutions of fabric.

-e true-triaxial test can determine the macroscopic
mechanical properties of granular materials in the 3D space
and combine them with the measurement of the materials’
microscopic particle information. We can explain the
mechanism of the macro-microscopic relations. Under the
true-triaxial condition, the granular materials in the stress
state of nonhydrostatic pressure lead to stress-induced an-
isotropy [37–40], which is helpful in studying the loading
influences on contact fabric anisotropy [41–44]. In practice,
granular materials are composed of many irregular particles
and voids. It is difficult to quantify their contact properties,
especially during loading. DEM is a widely used discon-
tinuous method [45–47], which can better simulate the
macroscopic mechanical response of different particle
morphology materials under complex loading conditions
and, at the same time, can extract the microscopic char-
acteristics of the contact in real time. -erefore, it is more
suitable for studying the mechanical properties of granular
materials from the macroscopic and microscopic perspec-
tives [48–50]. Suhr and Six [51] studied the relationship
between particle shapes and fabric evolution by DEM.

Dorostkar et al. [52], Yuan et al. [53], and Sazzad and Suzuki
[54] used DEM to simulate a triaxial test and believed that
loading with different ratios in three orthogonal directions
had a significant influence on the evolution of anisotropic
fabric. He and Jiang [55] conducted a true-triaxial simu-
lation and analyzed the influence of intermediate principal
stress coefficient (b) for fabric tensor.-e above research has
laid an excellent foundation for granular materials’ macro-
microscopic relations and evolutions.

In this paper, the influence of the four particle shapes on
the macroscopic and microscopic properties of granular
materials and the evolution trend of anisotropic fabric will
be studied under the condition of true three-dimensional.
Based on the author’s research on fabric tensor, the contact
fabric tensor will be defined by the normal vector of the
contact point, and three amplitude parameters of the or-
thogonal direction can be defined with the invariant of the
fabric tensor.-en, the expression of the orthotropic contact
fabric with scalar parameters can be derived. -e influence
of particle shapes on the strength of granular materials will
be analyzed by extracting the stress-strain relationship, peak
internal friction angle, and other mechanical parameters.
-e evolution of anisotropic fabric and the relationship
between microscopic fabric and macroscopic stress can be
explored by extracting contact fabric, contact number of
points, contact force, and other statistics of the contact
points.

2. Contacts Fabric

As one of the three granular material fabrics, the contact
fabric describes the statistical characteristics of the normal
direction at the contact points. -e force inside the material
is transmitted by the contact point on the microscopic scale,
for the complexity of the spatial distribution of the contact
points caused different forces in a different direction, which
shows anisotropy on a macroscopic scale. -e degree of
anisotropy is related to the contact direction between
particles.

2.1. (e Definition of Fabric. To describe the pattern of
particle-to-particle contact direction, Oda et al. [11–13] and
Tobita and Kuhn [56] have defined the expression of the
second-order fabric tensor as

Fij �
1
2N



2N

k�1
n

(k)
i n

(k)
j , (i, j � 1, 2, 3), (1)

where N is the number of the particle, and n
(k)
i and n

(k)
j are

the components of the unit contact normal vector on the
coordinate axis, respectively.

2.2. Definition of Amplitude Parameters of Orthogonal Planes.
Two independent angles can represent the components of
the contact normal vector on three orthogonal axes. Take a
certain contact point as an example, at the contact point,
one angle between the contact normal vector and the x1 axis
is θ(k)

1 , the other between the projection on the horizontal
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plane and the x3 axis is α(k), and then the direction vector of
equation (1) is

n � cos θ(k)
1 , sin θ(k)

1 sin α(k)
 , sin θ(k)

1 cos α(k)
  .

(2)

It is difficult to analyze the three-dimensional fabric of
sand, so it is necessary to use two-dimensional graph
analysis and then carry out reasonable three-dimensional.
According to equations (1) and (2), the expression on the
orthogonal plane is

Fij �
1
2N



2N

k�1
n

(k)
i n

(k)
j (i, j � 1, 2). (3)

In the interior of granular materials, the particles are in
contact with each other, and the directions of the contact
normal vector are normally positively distributed. -e two
angles can also represent the projection components of
particles onto three orthogonal planes. For example, on the
plane of x1-x3, the 2D fabric tensor can be expressed as
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F11 F13
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, (4)

where Fij is a second-order plane-symmetric tensor, and θ(k)
is the angle between the x1-x3 plane and the x3 axis pro-
jection. As the properties of plane-symmetric stress, the
plane fabric tensor can also be described by its invariant.-e
two principal values of the F1 and F3 can be expressed as

F1,3 �
1
2

F11 + F33(  ±
1
4

F11 − F33( 
2

+ F
2
13 

1/2
�
1
2
±

a1

2
,

(5)

where, according to the fabric tensor definition, the trace of
Fij is equal to 1, so the direction vector describes a scalar
parameter a1in equation (5) as
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1
2N
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, (6)

where a1 is the anisotropic amplitude parameter of contact
normal fabric, which describes the statistical probability
distribution of the normal direction of the contact point.
According to the theoretical definition, a1 value range is [0, 1].

Similarly, the amplitude parameters of x1-x2 plane and
x2-x3 plane can be obtained as follows:

a2 �
1
2N
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2N

k�1
sin2 θ(k)

1 sin 2α(k)
 ⎛⎝ ⎞⎠

2



. (8)

As shown in Figure 1, a1, a2, and a3 are the anisotropic
amplitude parameters on three orthogonal planes, such as

Fx1- Fx3, Fx1- Fx2, and Fx2- Fx3. -ree parameters can be
determined by the normal vector of all particle contact
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points from equations (6)–(8), and the range of the three
parameters is 0∼1, describing the anisotropy degree of
materials on each surface.

According to the fabric definition, the trace of the fabric
tensor is equal to 1.-ere are only two independent variables
among the three amplitude parameters on the orthogonal
planes. Hence, the fabric tensor Fij (i, j� 1, 2, 3) can be
derived from any two of three amplitude parameters defined
by equations (6)–(8). -is paper uses the orthotropic fabric
tensor derived from reference [20]. For a detailed derivation
process, refer to reference [57].

F �

1 + a1 + a2 + a1a2

3 + a1 + a2 − a1a2
0 0

0
1 + a1 − a2 − a1a2

3 + a1 + a2 − a1a2
0

0 0
1 − a1 + a2 − a1a2

3 + a1 + a2 − a1a2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(9)

F �

1 + a1 − a3 − a1a3

3 − a1 − a3 − a1a3
0 0

0
1 − a1 + a3 − a1a3

3 − a1 − a3 − a1a3
0

0 0
1 − a1 − a3 + a1a3

3 − a1 − a3 − a1a3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(10)
In equation (9), when α(k) � π/4, sin α(k) � cos α(k), then

a1 � a2. -e amplitude parameters of vertical planes and in
the horizontal direction are equal. -en, the materials are
shown as transversely isotropic, and then equation (9) is
depredated to transversely isotropic fabric:

Fij �
1

3 − a1′

1 + a1′ 0 0

0 1 − a1′ 0

0 0 1 − a1′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (11)

where

a1′ �
1
2N

����������������������������������������������


2N

k�1
cos2 θ(k)

1  −
sin2 θ(k)

1 

2
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

2

+
1
2



2N

k�1
sin 2θ(k)

1 ⎛⎝ ⎞⎠

2



,

(12)

where a1′ is the amplitude parameter after degradation of a1
and a2, and the a1′ value range is [0, 1].

In equation (10), an amplitude parameter is obtained
according to any one of the two planes that can be used to
describe the transverse isotropy of natural soil, and the
amplitude parameter value can be obtained by equation (12).
In equation (10), if θ(k)

1 � π/2 in equation (6) and α(k) = 0 in
equation (8), then a1 = a3. Equation (10) has degenerated
into the transversely isotropic form.

Fij �
1

3 + a3′

1 + a3′ 0 0

0 1 + a3′ 0

0 0 1 − a3′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (13)

where

a3′ �
1
2N

��������������������������������



2N

k�1
cos 2θ(k)

 ⎛⎝ ⎞⎠

2

+ 

2N

k�1
sin 2θ(k)

 ⎛⎝ ⎞⎠

2



, (14)

where a3′ is the amplitude parameter after degradation of a1
and a3.

Equation (14) is the same as the formula proposed by
Oda [13, 58] if the variable satisfies θ(k) � π/2 − θ(k)

1 .
Equation (13) is the only expression that quantitatively
describes the fabric tensor of particle orientation at present.
It has been widely used in both quantitative tests and macro-
microscopic mechanical models. -e difference is that
equation (13) is derived from the 3D definition of fabric,
while the expression of Oda [13, 58] is derived directly from
the assumption of transverse isotropy.

3. True-Triaxial Test Simulations by PFC3D

3.1. Generation of Nonspherical Particles. In DEM, spherical
particle (3D) with different diameters is used, which is too ideal
to describe the natural geometry of granularmaterials, especially
when the microscopic particle characteristics are used to de-
scribe the influence of their fabric on macroscopic mechanism.
-erefore, the four particle shapes, that is, spheres, elongate
clump, pyramid clump, and cube clump (Figure 2), are used to
establish a true-triaxial specimen, respectively, and bonding 1∼4
spherical particles generate the clumps. In order to distinguish
the differences in the geometric shapes of particles, Yang and
Luo [59] defined the overall regularity value to describe the
geometric characteristics of the particles. -e smaller the value
is, the more complex the particle morphology is. -e overall
regularity values for spherical, ellipsoid, pyramidal, and cubic
particles are 1, 0.91, 0.88, and 0.89, respectively.

Elongate, pyramid, and cube clumps are used to replace
spherical particles with clamp function. Figure 3 shows
replacing a single spherical particle with an elongate clump.
It should be pointed out that particle replacement is carried
out one by one in which particles are arranged. In the
process of particle replacement, only the particle shape is
changed, but other material parameters of the particle are
not changed, and the volume of the DEM model is constant
during the process of generation irregular particles.

Fx2

Fx3

Fx1

x2

x3

a3

a1 a2

x1

Figure 1: -e schematic diagram for determining the amplitude
parameters of orthogonal fabrics.
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3.2. Simulation Processes. In this paper, the rectangular
models are established with a ratio of length, width, and
height of 1 :1:2 (Figure 4). Rigid walls are set on six faces of
the models (the boundaries are the rigid boundaries)
[60, 61]. -e contact model is linear. -e friction coefficient
between particles is 0.4, and the friction coefficient between
particles and the rigid walls is 0. According to the target
porosity of 0.35, 12000 spherical particles are generated in
the model with the random distribution method. -e
spherical particle parameters are adopted in Table 1.

In true-triaxial test simulations, intermediate principal
stress coefficient b � (σ2 − σ3)/(σ1 − σ3) and mean normal
stress p � (σ1 + σ2 + σ3)/3 are required to be kept constant
throughout the loading process, and then the loading path in
the three principal directions is

dσ1 � dσ1,

dσ2 �
1 − 2b

b − 2
dσ1,

dσ3 �
1 + b

b − 2
dσ1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

where dσ1, dσ2 and dσ3 are the increments of σ1, σ2, and σ3
respectively. For ease of understanding, Figure 5 is the
schematic of the loading.

In the true-triaxial simulation test, isotropic consoli-
dation is applied earlier, and then shearing is conducted. For
isotropic consolidation, 500 kPa confining pressure σc
(σc = p) is applied to the six rigid walls. -e model gradually
achieved stress equilibrium under the confining pressure,
and the first figure in Figure 5 shows the isotropic con-
solidation.-en, the vertical downward velocity is applied to
the rigid wall at the top of the model, and compressive stress
is increased on the rigid walls at the four sides of the model.
In other words, under the condition of σc = 500 kPa, dσ1 is
loaded in the vertical direction, and then four lateral stress
increments are obtained by the relationship between dσ2,
dσ3 and dσ1 (equation (15)). -e shearing process ended
when the vertical strain ε1 reached 20%.-e shearing process
can be shown in the second picture of Figure 5. -e test

schemes are shown in Table 2.-e stress paths of the tests are
constant p and b.

3.3. Influences of Particle Shapes on the Strength. For
obtaining the influences of the particle shapes on macro-
scopic strength, a true-triaxial test is carried out by PFC3D.
Figure 6 shows the stress-strain relationships of the speci-
mens of the four particle shapes under the same b. -e
purpose is to get the variation of generalized shear stress

q �

��������������������������������

((σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2)/2



. -e hori-
zontal axis of the curves is the vertical strain ε1 of the
specimens in Figure 6.

It can be seen from Figure 6 that the strain softening and
hardening characteristics of the same particle shape increase
with the increase of b. -e more complex the particle shape
is under the same b, the greater the stress-strain relation-
ship’s influence is. -e spherical particle specimen has the
most significant slope in the strain softening process, and the
pyramids have the slightest slope. -is law is consistent with
the experimental and simulation results carried out by Yang
and Luo [59], Jerves et al. [62], and Lashkari et al. [63].

Figures 7 and 8 show the relationships between the peak
strength (qmax) and peak internal friction angle (φmax) of the
four particle shapes with different b, respectively. -e peak
strength and the peak internal friction angles are the
maximum values of the generalized shear stress and the
internal friction angle, which can be expressed as
sin φ � (σ1 − σ3)/(σ1 + σ3). -e results of all the specimens
in Figure 7 show a monotonous decreasing trend of qmax
with the increase of b, which is consistent with the true-
triaxial test trend of granular materials. Moreover, with the
complexity of particle shapes increasing, the qmax is greater
at the same b. Similarly, the relationships between the φmax
and b in Figure 8 are also consistent with the test results of
granular materials. -e φmax increases and then decreases.

(a) (b) (c) (d)

Figure 2: -e four particle shapes in the specimens. (a) Spherical. (b) Elongate clump. (c) Pyramid clump. (d) Cube clump.

Figure 3: Particle replacement process.

xy

σ3

σ2

σ1

z

Figure 4: Schematic of the true-triaxial specimen.
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With the particle shapes becoming complex, this trend
became more apparent. Some existing research has also
reached similar conclusions. -e specimens of spherical
particles have a lower friction angle and shear strength [64].
Some experiments and simulations revealed that granular
materials comprising irregular particles usually have higher
macroscopic shear strength at a given stress path [65, 66].

3.4. Stress Path and Fabric Variations. -e evolution of the
fabric in three principal directions is extracted during the
test under the true-triaxial stress path. From shear to failure,
F11 first increases, decreases, and then stabilizes. -e rules
are the same as the pattern of stress-strain relationship from
hardening, peaking to softening, finally. Oda et al. [32]
conclude that the contact normal tends to align in the
maximum principal stress direction to resist greater external
forces during the shearing. Ultimately, the main direction of
the fabric will be consistent with the direction of principal
stress. Due to space limitations, this article only gives the
data at the critical state.

Figure 9(a) shows the true-triaxial stress path of pressure
control, and Figure 9(b)∼ 9(e) shows the evolutions of the
principal fabric components of the four particle shapes at the
peak state. With the variations of b, F11 and F33 gradually
decrease, while F22 increases. -e evolutions of contact
fabric at the peak state are consistent with the true-triaxial
test of stress path under the constant b and p. -e varying
degree of the principal fabric with spherical particles is far
less than that of other nonspherical particles, and the contact
fabric changes continuously as the stress. -e more complex

the particle shape is, the greater the discontinuity of the
fabric is when b� 1. It can be found that the complexity of
particle shapes directly affected the evolutions of the contact
normal vector.

It can be seen from Figure 6 that the strain softening and
hardening characteristics of the same particle shape increase
with the increase of b. -e more complex the particle shape
is under the same b, the greater the stress-strain relation-
ship’s influence is. -e spherical particle specimen has the
most significant slope in the strain softening process, and the
pyramids have the slightest slope. -is law is consistent with
the experimental and simulation results carried out by Yang
and Luo [59], Jerves et al. [62], and Lashkari et al. [63].

Figures 7 and 8 show the relationships between the peak
strength (qmax) and peak internal friction angle (φmax) of the
four particle shapes with different b, respectively. -e peak
strength and the peak internal friction angles are the
maximum values of the generalized shear stress and the
internal friction angle, which can be expressed as
sin φ � (σ1 − σ3)/(σ1 + σ3). -e results of all the specimens
in Figure 7 show a monotonous decreasing trend of qmax
with the increase of b, which is consistent with the true-
triaxial test trend of granular materials. Moreover, with the
complexity of particle shapes increasing, the qmax is greater
at the same b. Similarly, the relationships between the φmax
and b in Figure 8 are also consistent with the test results of
granular materials. -e φmax increases and then decreases.
With the particle shapes becoming complex, this trend
became more apparent. Some existing research has also
reached similar conclusions. -e specimens of spherical
particles have a lower friction angle and shear strength [64].
Some experiments and simulations revealed that granular
materials comprising irregular particles usually have higher
macroscopic shear strength at a given stress path [65, 66].

3.5. Evolutions of Fabric. Both inherent anisotropy and
stress-induced anisotropy are closely related to the micro-
scopic properties of the granular materials. Casagrande and
Carillo [67] first discriminate the difference between them.
-e sedimentation of a particle will trigger inherent an-
isotropy, while the induced anisotropy is mainly caused by
nonelastic deformation [68]. Oda et al. [32] revealed that
induced anisotropy is mainly produced by changing the
distribution of internal contact normal of materials.-e four
particle shapes can make different inherent anisotropic
specimens in our simulation. Changing the loading ratio of
the three main directions of the specimen can simulate
stress-induced anisotropy. -e relationships between the
two anisotropies can be explored by analyzing the particle
contact evolution data.

Based on the simulation results above, it is considered
that Fij evolutions of granular materials are the function of

Table 2: Schemes of true-triaxial simulation.

Particle shapes Intermediate
principal stress coefficient b

Mean normal
stress p (kPa)

Spherical

0, 0.2, 0.4, 0.6, 0.8,1 500Elongate clump
Pyramid clump
Cube clump

Table 1: -e parameters used in DEM simulation.

Density/ρ (kg/m3) Modulus of
elasticity E (MPa)

Normal contact
stiffness Kn (N/m)

Normal to tangential
stiffness ratio Damping coefficient Particle radius d (mm)

1600 20 1× 108 2.00 0.7 1.8∼2.5

+ =

σ3

σ2

σ1

σc

σc

σc

dσ3

dσ2

dσ1

Figure 5: Schematic illustration of the loading process.
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principal stress. Hu et al. [69] and Lashkari and Norouzi [70]
all established the relationship between stress ratio and
fabric evolution in order to analyze the distribution of fabric
evolution and anisotropy. In this paper, the relationship
between the fabric tensor and the deviatoric stress ratio

suggested by Guo et al. [14] is used to analyze the law of
fabric evolution. Guo [14] supposed that Fij is proportional
to the components of the deviatoric stress ratio tensor:

dFij � λ dηij, (16)
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Figure 6: Stress-strain relationships with the four particle shapes under different intermediate principal stress coefficients. (a) b� 0 (b)
b� 0.2 (c) b� 0.4 (d) b� 0.6 (e) b� 0.8 (f ) b� 1.0.
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where λ is a fabric evolution parameter that could describe
the stress-fabric relationship, dηij denotes deviatoric stress
ratio, dηij � d(sij/p), sij is deviatoric stress tensor, and
sij � σij − pδij, δij is Kronecker notation. Under constant p
loading, p is a constant, so equation (16) can be turned into

dFij � λ d
σij − p

p
� λ

dσij

p
. (17)

We can get the fabric-stress evolution relationship by
integrating equation (17):

Fij �
λ
p
σij + C, (18)

where C is an arbitrary constant. Assume that the sample has
an initial fabric Fij|0 in the isotropic state, and then equation
(18) can be written as

Fij �
λ
p
σij + Fij|0. (19)

For the initial isotropic sample, the initial fabric is
equal to 1/3. -e fabric evolution parameter λ of granular
material can be calculated by substituting Fij|0 � 1/3 into
equation (19). -e experimental evidence by Oda et al. [32]
revealed that induced anisotropy is mainly produced by
changing the distribution of internal contact of materials.
To describe the effect of fabric evolution on anisotropy, we
used the invariant of fabric tensor as a reference quantity
as follows:

Fq �

�
2

√

2

����������������������������������

F11 − F22( 
2

+ F22 − F33( 
2

+ F11 − F33( 
2



. (20)

Figure 10 shows the variation of λ of the four particle
shapes with different b at the peak state. When the b is small,
the change rate of the λ-b curve of spherical particles is small,
while the change rate of cubic and pyramidal particles is
larger. When the b is larger, the rate of change of λ-b curves
of different shapes is approximately constant. -e overall
change of λ is smaller and around 1. For the nonspherical
particle, λ decreased first as b increased, and it decreased
slowly after b� 0.6; then, the rate of change tends to be
constant. -e more irregular the particle shape is, the more
considerable the λ is, and the more significant the reduction
when b< 0.6. It can be seen that the spherical particle is easy
to rotate in the loading process, but due to the regular shape,
the spatial probability and distribution probability of the
particle contact point tend to be even. However, for the
nonspherical particles, with the change of particle shapes
and principal stress loading ratio, the spatial distribution of
the contact points is different, and the variation rules of
fabric evolution parameters are quite different.

Figure 11 shows the evolutions of Fq with b of the four
particle shapes in the peak state. -e expression of Fq is the
same as the expression of q, which is the second invariant of
fabric and stress partial tensor, respectively. Fq can describe
the degree of anisotropy of contact fabric. -e greater the Fq
is, the higher the degree of anisotropy is. For the spherical
particles, Fq increases monotonously with b, which is
contrary to the evolution that q changed with b in Figure 7.
When the particle morphology becomes complicated, Fq
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Figure 10: Evolutions of fabric evolution parameter with the intermediate principal stress coefficient.
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Figure 12: Continued.

10 Mathematical Problems in Engineering



Initial state
b=0
b=0.2

b=0.4 
b=0.6

b=0.8
b=1.0

0.00

0.02

0.04

0.06

0.02

0.04

0.06 D
ist

rib
ut

io
n 

no
rm

al
 co

nt
ac

t f
or

ce
 (%

)

0

30

60
90

120

150

180

210

240
270

300

330

z

x

pyramid

(g)

Initial state
b=0
b=0.2

b=0.4 
b=0.6

b=0.8
b=1.0

0.00

0.02

0.04

0.06

0.02

0.04

0.06 D
ist

rib
ut

io
n 

no
rm

al
 co

nt
ac

t f
or

ce
 (%

)

0

30

60
90

120

150

180

210

240
270

300

330

z

x

cube

(h)

Figure 12: Rose diagrams of contact number and contact force. (a) Distribution of contact number of spherical. (b) Distribution of
contact number of the elongate. (c) Distribution of contact number of the pyramid. (d) Distribution of contact number of the cube. (e)
Distribution of contact force of the spherical. (f ) Distribution of contact force of the elongate. (g) Distribution of contact force of the
pyramid. (h) Distribution of contact force of the cube.
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Figure 13: Evolutions of deviatoric fabric with stress ration. (a) Evolutions of Fqwith η of spherical specimens. (b) Evolutions of Fqwith η of
elongate specimens. (c) Evolutions of Fq with η of pyramid specimens. (d) Evolutions of Fq with η of cube specimens.
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does not increase monotonously with b but shows a different
anisotropy. -erefore, Fq can be used to quantify the evo-
lution of fabrics caused by stress-induced anisotropy.

Figure 12 shows the rose diagram on the XZ plane of the
distribution of contact number and contact force with the
different b. -e black curves in the figure are the distribution
of contact characteristics after isotropic consolidation, and it
can be seen that the curve is close to the isotropic distri-
bution. Other curves show apparent anisotropy distribution,
indicating that the contact fabric shows different degrees of
anisotropy distribution under the conditions of different
proportions, and that can directly reflect the stress-induced
anisotropy. -e distribution of contact numbers in
Figure 12(a) and contact force in Figure 12(b) are similar for
spherical particles, but the anisotropic degrees are different.
-ere is a similar rule for other irregular particles, only to a
different degree.-is rule indicates that themagnitude of the
force on the contact points aggravate the degree of an-
isotropy in the distribution direction of the same contact
number. -erefore, a more reasonable method to describe
the contact fabric is to consider the distribution of contact
points’ numbers and the contact force’s magnitude.

Figure 13 shows the evolutions of Fq with stress ratio
(η� q/p) of the four particle shapes. -e results show that Fq
and η are increased to peak point first and then reduced to a
critical state under the stress path of constant p. Fq increases
with the increase of b, and η decreases with the increase of b,
which is consistent with the research results of Yuan and Yu
[53]. As the irregularity of the particles increases, η and Fq
will also gradually increase. -e micro-macroscopic me-
chanical interpretation can be given as follows. Due to the
uniform distribution of the fabric and the smoothness of
spherical particle specimens, the particles are easy to rotate,
so the shear stress is relatively lower, while for irregular
particles, the spatial distribution of fabric is more complex,
and particle movement requires greater stress. It is con-
sistent with the observation that interlocking between
spherical particles is more unstable than between angular
particles in reference [71].

4. Conclusions

-e normal direction of particle contact substantially in-
fluences the macroscopic mechanical properties of granular
materials. In this paper, the true-triaxial tests with four
particle shapes are simulated by DEM, the microscopic
evolutions of a particle are studied using the novel defined
fabric tensor, and the relationships between the evolution of
contact fabric and themacroscopic mechanical behaviors are
explored. -e main conclusions are as follows:

(1) -e contact fabric tensor is defined by the contact
normal vector, which describes the probabilistic and
statistical laws of the contact characteristics of mi-
croscopic particles. -ree amplitude parameters in
the orthogonal direction are defined using the in-
variant of the plane fabric tensor, by which the scalar
expression of orthotropic fabric is derived. With the
change of the geometric relationship of the contact

points, the orthotropic fabric can naturally degen-
erate into different forms of transverse isotropy. -e
fabric tensor defined in this paper can be directly
applied to the macroscopic constitutive equation.

(2) -e four particle shapes are constructed using PFC3D

software. Under the condition of the same param-
eters and loading paths of the true-triaxial test,
simulation results show that particle morphology
changes directly affect the anisotropy of the stress-
strain relationship and the strength. -e more
complex the particle shape is, the more significant
the influence on the anisotropy is. -ese showed the
influence of particle morphology on the macro-
mechanics of granular materials.

(3) -e contact characteristics of particles directly affect
their macroscopic mechanical response. -e contact
fabric can be used to describe the contact charac-
teristics and the evolution of particles. Under the true-
triaxial loading path, the spherical particles are easy to
rotate, the distributions of contact points are uniform,
and the variations of fabric evolution parameters are
small. Even if the three principal stress directions are
loaded in different proportions, the effect on an-
isotropy is small. Irregular particles greatly influence
the spatial distributions of contact points, and the
more pronounced the fabric evolution is, themore the
anisotropy changes. -e distribution of contact
points, contact force, and the evolution of the four
particle shapes show that the distribution of particle
contact points and themagnitude of the contact forces
should be considered in the fabric tensor.

Abbreviations

Fij (i, j� 1, 2, 3): Second-order fabric tensor
N: Number of the particle
n

(k)
i , n

(k)
j (i, j� 1,

2, 3):
Components of the unit contact normal
vector

x1, x2, and x3: -ree orthogonal axes
θ(k)
1 : One angle between the contact normal

vector and the x1
α(k): One angle between the projection on the

horizontal plane and the x3
n: Contact normal vector
Fij: Second-order plane-symmetric tensor
θ(k): One angle between the x1-x3 plane and the

x3 axis projection
F1, F3: Invariant of plane fabric tensor
a1, a2, and a3: Anisotropic amplitude parameter of

contact normal fabric
Fx1, Fx2, and Fx3: -ree orthogonal axes of fabric
F: Fabric tensor
a1′: Amplitude parameter after degradation of

a1 and a2
ρ: Density
E: Modulus of elasticity
Kn: Normal contact stiffness
d: Particle radius
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b: Intermediate principal stress coefficient
p: Mean normal stress
dσ1，dσ2 and
dσ3:

Increment of σ1, σ2, and σ3

σ1, σ2, and σ3: Maximum, intermediate, and minimum
principal stress

σc: Confining pressure
q: Generalized shear stress
ε1: Vertical strain
qmax: Peak strength
φmax: Peak internal friction angle
σij (i, j� 1, 2, 3): Principal stress
dFij (i, j� 1, 2,
3):

Deviatoric stress ratio tensor

λ: Fabric evolution parameter
dηij (i, j� 1, 2,
3):

Deviatoric stress ratio

sij (i, j� 1, 2, 3): Deviatoric stress tensor
δij (i, j� 1, 2, 3): Kronecker notation
C: Arbitrary constant
Fij|0: Initial fabric
Fq: Invariant of fabric tensor
η: Stress ratio.
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Remote sensing is mainly used to investigate sites of dams, bridges, and pipelines to locate construction materials and provide
detailed geographic information. In remote sensing image analysis, the images captured through satellite and drones are used to
observe surface of the Earth.�emain aim of any image classi�cation-based system is to assign semantic labels to captured images,
and consequently, using these labels, images can be arranged in a semantic order. �e semantic arrangement of images is used in
various domains of digital image processing and computer vision such as remote sensing, image retrieval, object recognition,
image annotation, scene analysis, content-based image analysis, and video analysis. �e earlier approaches for remote sensing
image analysis are based on low-level and mid-level feature extraction and representation. �ese techniques have shown good
performance by using di�erent feature combinations andmachine learning approaches.�ese earlier approaches have used small-
scale image dataset. �e recent trends for remote sensing image analysis are shifted to the use of deep learning model. Various
hybrid approaches of deep learning have shown much better results than the use of a single deep learning model. In this review
article, a detailed overview of the past trends is presented, based on low-level andmid-level feature representation using traditional
machine learning concepts. A summary of publicly available image benchmarks for remote sensing image analysis is also
presented. A detailed summary is presented at the end of each section. An overview regarding the current trends of deep learning
models is presented along with a detailed comparison of various hybrid approaches based on recent trends. �e performance
evaluation metrics are also discussed. �is review article provides a detailed knowledge related to the existing trends in remote
sensing image classi�cation and possible future research directions.

1. Introduction

Deep learning and computer vision are used in various
applications such as image classi�cation, object detection in
industrial production, medical image analysis, action rec-
ognition, and remote sensing [1–4]. Satellite images are
considered the main source of acquiring geographic infor-
mation [5], and there are many applications of satellite
image analysis in the �eld of civil engineering such as design,
construction, urban planning, and water resource man-
agement. �e data obtained from satellite sources are huge

and are growing exponentially; to handle these large data,
there is a need to have e�cient techniques for data extraction
purpose.�rough image classi�cation, these large number of
satellite images can be arranged in semantic orders. �e
satellite image classi�cation is a multilevel process that starts
from extracting features from images to classifying them
into categories [6]. Image classi�cation is a step-wise process
that starts with designing scheme for classi�cation of desired
images. After that, the images are preprocessed which in-
clude image clustering, image enhancement, scaling, and so
on. At third step, the desired areas of those images are
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selected and initial clusters are generated. After that, the
algorithm is applied on the images to get the desired clas-
sification, and corrective actions are made after that algo-
rithm phase which is also called postprocessing. &e final
phase is to assess the accuracy of this classification, as shown
in Figure 1.

Recent research is focused on the use of mid-level fea-
tures and deep learning models to build robust decision
support systems for smart vehicles, Internet of &ings (IoT),
and remote sensing images [7–9]. To get the geographical
data on large scales, remote sensing plays a significant role,
and efficient land use could be achieved through aerial
images of Earth [10]. Some are supervised techniques while
some of them are unsupervised. Similarly, while keeping in
focus the parameters, there are parametric and non-para-
metric approaches; another type is fuzzy classification [11];
besides this, classification can also be performed on prepixels
or subpixels. &e latest research in remote image classifi-
cation is towards hybrid approaches, where two or more
techniques are combined to get better classification
[3, 12, 13]. &e most recent research is focused towards
scene-based classification. &e whole remote sensing image
classification process is divided into three kinds of basic
division: supervised learning, unsupervised learning, and
deep learning approaches. Supervised learning techniques
are further divided into distributed and statistical learning
[14–16]. &ere are many types of distributed learning like
logistic regression, decision trees, support vector machine
(SVM), ensemble methods, and so on, whereas statistical
learning techniques are further divided into parametric and
non-parametric approaches. Similarly, different types of
unsupervised learning techniques like K-means clustering,
spectral clustering, fuzzy C-means, and reinforcement
leaning are discussed in detail. Moving towards the third
division, that is, deep learning approaches, they are further
divided into three categories: generative methods, hybrid
methods, and discriminative methods. Deep belief network
(DBN), network autoencoder, and deep Boltzmann machine
(DBM) are discussed in generative methods, whereas deep
neural network (DNN) and grey wolf optimization (GWO)
are discussed in hybrid methods. In discriminative methods,
transfer learning, convolutional neural network (CNN),
AlexNet, VGG, GoogLeNet, MobileNet, ResNet, artificial
neural network (ANN), and so on are discussed, as shown in
Figure 2.

&ere are basically three types of remote image classi-
fications that are mainly pixel-based classification, object-
based classification, and scene-based classification, and the
recent research is focused towards scene-based classification
[17, 18]. Figure 3 shows that due to the improved research,
spatial resolution of images is increased drastically [19].
&ere is no need to classify remote images on the basis of
pixels, and research trend changed towards the object-based
classification of images. By objects of remotely sensed im-
ages, we mean semantics or scene units [20]. During the last
two decades, processing visual features of an image was a
time consuming and computationally expensive task, which

required lots of effort and resources. According to the lit-
erature in recent years, scale invariant feature transform
(SIFT), textual descriptors (TD), color histogram (CH),
histogram of oriented gradients (HOG), and global image
descriptor (GIST) [21] were proposed by human engineers.
After a while, some improvements were made and improved
Fisher kernel, spatial pyramid matching (SPM), and bag of
visual words (BoVW) were introduced [22]. &ese encoding
techniques were relatively more efficient than the existing
techniques [23].

In simple words, we can differentiate between supervised
and unsupervised learning as follows: supervised learning
algorithms are trained using labeled data, whereas unsu-
pervised learning algorithms are trained using unlabeled
data. In case of unsupervised learning, principal component
analysis (PCA), sparse coding, and K-means clustering were
introduced later on. &e benefit of these techniques is that
they are able to automatically learn the features. But these
unsupervised learning techniques were not doing justice
when there are larger datasets [24]. Due to advancement in
deep learning techniques and parallel computing, these
remote images can be easily classified by initializing weights
in training layers so that the prediction of scene could be
more accurate in later deep learning layers [25]. &ere are
many deep learning models that exist in literature like
AlexNet, GoogLeNet, VGG, and ResNet [26]. AlexNet was
proposed in 2012, and it has 60M parameters and is 8 layers
deep [27]. GoogLeNet was proposed in 2015, and it has 4M
parameters and has 22 layers. It also comes under the
category of spatial exploitation [28]. After that, VGGNet was
proposed in 2015, and it has 138M parameters and is 16 and
19 layers deeper [26]; it has two types: VGG16 and VGG19.
Later ResNet was proposed, and it has various variants like
ResNet18, ResNet34, ResNet50, ResNet101, ResNet110,
ResNet152, ResNet164, and ResNet1202, and it has 25.6M
parameters [29]. &e above-mentioned models come under
the category of spatial exploitation. Comprehensive reviews
relevant to remote sensing image classifications are pub-
lished in recent years. In [30], we can see a detailed review of
multimodel remote sensing image classification. Also, in
another article before 2016, all the remote sensing classifi-
cation techniques were discussed in detail in [31]. In 2017, a
detailed review about process of remote sensing image
classification was discussed in [32]. &e details about the
resources for remote sensing research are enlisted in this
article [32]. In 2017, a detailed comparison of existing deep
learning techniques for hyperspectral classification was
given in [33]. In 2017, a review about support vector ma-
chine (SVM) techniques relevant to remote sensing was
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Feature Extraction
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Figure 1: Remote sensing image classification process.
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discussed in [34]. In [35], AID dataset was proposed, and it
also includes remote sensing image classification surveys
before 2017. A review of multiple remote sensing techniques
and also NWPU-RESISC45 dataset was proposed in [36]. In
recent years, comprehensive reviews relevant to hyper-
spectral and spatial-spectral images analysis are published
[20, 37]. A detailed summary about deep learning in remote
sensing applications, current challenges relevant to deep
learning methods, benchmarks, and possible future research
directions are referred to the following review articles
[38–40].

&e article is organized as follows: there is a basic in-
troduction about remote sensing image classification in the
start. Section 2 is about machine learning. Section 3 contains
the detailed description of CNN models and their appli-
cations. Section 4 deals with existing deep learning tech-
niques. Section 5 is about the datasets commonly used for

remote sensing image classification which are discussed in
detail. Section 6 deals with unsupervised learning tech-
niques. Section 7 is about optimization techniques. Sections
8, 9, and 10 are about feature fusion techniques. Section 11
deals with hybrid approaches. Section 12 is about perfor-
mance evaluation criterion for classification. In the last
section, a conclusion of the proposed research is presented.

2. Machine Learning

Machine learning (ML) is the field of computer science
which incorporates both supervised and unsupervised
learning techniques [41–43]. It covers both regression and
classification problems [44]. In machine learning, a detailed
dataset is constructed that covers maximum of system pa-
rameters. ML is useful in the scenarios where theoretical
knowledge is not sufficient to predict some information out
of it [45, 46]. It has a huge number of applications in many
areas like land use and cover concerns [47] disaster man-
agement, atmosphere changes, and many more [48]. ML is
the subdivision of artificial intelligence (AI) [49]. ML ba-
sically designs an algorithm to be able to learn from the data
to predict something out of it. &ere are many algorithms
present in the field of machine learning that are doing ex-
ceptional job like support vector machine, Bayesian net-
work, decision trees, ensemble methods, random forest,
neural networks, genetic programming, andmanymore. ML
has a huge impact on remote sensing and geosciences. It
automatically extracts features from the data using statistical
techniques [50, 51]. At the start, the classification of remote
sensing images was considered to be “shallow structures.” To
perform remote sensing classification, there exist different
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techniques like decision trees, SVM, artificial neural net-
work, bag of visual words, and many more [52–54]. Another
important application of ML techniques is to detect the
change from the normal scenarios. Images are captured
through satellites or drones and then ML techniques are
applied to predict the behavior or change [55]. SVM and GA
are combined to detect the change. Both supervised learning
approaches and unsupervised learning techniques are
combined to get the association of adjacent pixels of images,
while using SVM, radial basis kernel is used and its pa-
rameters like C andΩ are optimized using genetic algorithm
(GA); this optimization process increased the efficiency of
the process. &e authors have performed experimentation
while using Mexico dataset and Sardinia image datasets. &e
results are validated with existing results and the proposed
approach outperforms when compared to the existing re-
sults [56]. In early years of ML, the accuracy of only high
spectral images was high [57]. To overcome this issue, a new
3-D approach was used in combination with spatial and
spectral images. &e experimentation was performed on
Pavia University (PU), Pavia Center (PC), and Kennedy
Space Center (KSC) datasets, and the results show that the
proposed methods achieve better accuracy with low com-
putational cost [58]. It has many applications in different
fields of life like speech recognition systems, search engines,
and other AI-based applications like robotics [59]. &ere are
many ML techniques available in literature like K-means
clustering and PCA for classification tasks, and to perform
regression, there are techniques like SVM, decision trees,
ANN, ensemble methods, random forest, and so on [60, 61].
Remote sensing image classification can be performed using
existing CNNmethods, but they require high computational
power and a big labeled dataset for better performance.
&ere are freely available datasets. We can use pretrained
networks to get better accuracy. &ere exist strategies to
avoid overfitting and dropouts which also play an important
role. &e training time of CNN models is quite long, but
GPUs help us to solve this issue [62]. Remote images
captured from satellite images have a huge importance, but
there are some issues in the clarity of images when weather
conditions are not so clear which affect the feature selection
part of ML process and thus performance degrades [63]. &e
article described below fills this gap by using a specially
designed toolbox. In the first step, gaps between spatial
relationships and pixels are filled, while remaining gaps of
temporal dynamics of each pixel are filled in the second
phase. &e experimentation of above algorithm was per-
formed on two datasets Sentinel-3 SLSTR and Terra MODIS.
Data were collected in different seasonal conditions. Also,
the experimentation was performed on GNU GPL3 which is
a public repository [64].

3. Convolutional Neural Network

Convolutional neural networks are useful in many multi-
media applications where we need to classify images without
human interference. In this article, four different deep
learning models: AlexNet, VGG19, GoogLeNet, and
ResNet50, were used for feature extraction. &e

experimentations were performed on different datasets:
SAT4, SAT6, and UCMD, where images for the datasets
SAT4 and SAT6 were extracted from NAIP dataset which
has around 330000 scene images of all over US. SAT4 and
SAT6 have 4 and 6 classes, respectively, and labels are trees,
grassland, barren land, building, road, water, and so on,
whereas for UCMD dataset, images were extracted from a
large dataset named USGS. It has 20 classes in it. Training
and testing ratio for SAT datasets is selected as 80:20, re-
spectively, whereas for UCMD, it is 70:30 [65, 66]. Figure 4
shows the basic process of image classification for CNN.

ResNet50 gives better accuracy on all the three above-
mentioned datasets. Accuracy on UCM is 98% and that on
SAT4 is 95.8%, whereas that on SAT6 is 94.1%. Satellite
image classification is a challenging task due to its variability.
Due to this issue, existing approaches are not feasible for
object detection in satellite images. In this article, a new
model DeepSat V2 is proposed which is basically an aug-
mented version of CNN.&e first phase is feature extraction
phase where 50 features were extracted and then statistical
approaches were used for feature ranking to extract the
useful features. It has 2 convolutional layers with RELU layer
attached. After convolutional layers, there is a max-pooling
layer with dropout layer at the end. After that, feature
concatenation layer is present followed by fully connected
layers. Last layer is softmax layer based on cross entropy loss
function. &e optimizer used in this model is Adadelta. All
the experimentation was performed on SAT4 and SAT6
datasets. &is proposed model has achieved accuracy of
99.9% and 99.84% on SAT4 and SAT6, respectively [67].

4. Deep Learning-Based Methods
and Approaches

Satellite images have high importance in many fields of life.
&is article is about the available datasets on remote sensing
and the techniques used to classify satellite images. &e
existing image classification techniques can be divided into
four categories: manual feature extraction, unsupervised
feature extraction, supervised feature extraction, and object-
based classification, as shown in Figure 5.

Dataset used in this article for classification is UCM land
use which has 21 classes and 2100 images. Experimentation
was performed using AlexNet. Images used for training are
about 10%, and after eight iterations, accuracy reached at
94%. By comparing GoogLeNet and CaffeNet, GoogLeNet
gives better accuracy, that is, 97%, on UCM dataset. But
AlexNet is almost 4 times faster. Deep learning methods
perform better in image classification as compared to other
feature extraction techniques [68]. &e article is about useful
methods for feature extraction using deep learning tech-
niques. AlexNet, VGG19, GoogLeNet, and ResNet50 were
used here, whereas experimentation is performed on 3
different datasets: SAT4, SAT6, and UC Merced. &e ac-
curacy of UCM dataset on multiple deep learning models is
summarized in Table 1.

Performance of the proposed ResNet50 on SAT6 is
better as compared to previous models, whereas accuracy on
SAT4 is degraded. Classification accuracy of the proposed
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ResNet50 on SAT4 is 95.8%, that on SAT6 is 94.1%, and that
on UCM is 98% [80]. In this article, a new CNN model
known as deep convolutional neural network (DCNN) is
proposed which works in twofold. In the first phase, multiple
filters were introduced to minimize variance, whereas in the
2nd phase, best suited hyperparameters were selected from
the pool. Based on these found parameters, a new con-
volutional neural network (DCNN) model is built and ex-
perimentation is performed. &e results are validated using

DeepSat model, whereas datasets used are SAT4 and SAT6.
Table 2 summarizes the accuracy of RSSCN dataset on
different CNN models. Classification accuracy of SAT4
using convolutional neural network (DCNN) is 98.408%,
whereas that of SAT6 using convolutional neural network
(DCNN) is 96.037% which is better than the model used for
validation [83]. In satellite image classification, the process
of scale selection is very important task. &e remote image
datasets are in larger number, and it is very important to
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Figure 4: Convolutional neural network.
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Figure 5: Image classification through deep learning.

Table 1: Classification accuracy of UCM on different CNN models.

Algorithm Year Publication Accuracy (%)
MCNN [69] 2018 IEEE trans 99.76
ARCNet-VGG16 [19] 2018 IEEE trans 99.12
FACNN [70] 2019 IEEE trans 99.05
SF-CNN [71] 2019 IEEE trans 99.05
CNN-CapsNet [22] 2019 Remote sensing 99.05
D-CNN [72] 2018 IEEE trans 98.93
ADSSM [73] 2018 IEEE trans 98.81
RSFJR [71] 2019 IEEE trans 98.57
GBN [74] 2019 IEEE trans 98.57
MSCP [19] 2018 IEEE trans 98.36
ADFF [75] 2019 IEEE trans 97.53
VGG-VD-16 [76] 2017 IEEE trans 95.21
CaffeNet [76] 2017 IEEE trans 95.02
GBRCN [77] 2015 IEEE trans 94.53
GoogLeNet [76] 2017 IEEE trans 94.31
AlexNet [78] 2021 Journal of Geosciences 94.20
Feature RCGSVM [22] 2019 PLOS ONE 93.81
Inception-V3 [78] [2] 2021 Journal of Geosciences 91.10
LPCNN [79] 2016 IEEE trans 89.90
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select the relevant techniques for the selection process. In
[84], an enhanced technique of CNN model is used and
experimentation is performed on WHU-RS, UC Merced,
and Brazilian coffee scene datasets. Here classification ac-
curacies of all three datasets are presented. For UCMdataset,
the accuracy is better at stage 2, whereas for WHU-RS
datasets, the accuracies are measured after stage 1, stage 2,
and stage 4 of image scaling. After scales 1 and 2, the ac-
curacy is improved, but after scales 3 and 4, the improve-
ment in accuracy is very small. Land cover land use has a
great link between human and nature, and many research
studies are available on one-class extraction, but there is a
need to focus on multiclass classification. Here in this article,
to overcome the issue of low-resolution loss, a new model
HR-net is introduced. Comparison was performed on Deep-
Lab and U-Net. &e proposed model performs better, test
accuracy is 95.7%, mean I/U value is 88.01%, and kappa
value is 94.55% [85]. &ere are datasets available on remote
sensing and also techniques used to classify satellite images.
&e existing image classification techniques can be divided
into four categories: manual feature extraction, unsuper-
vised feature extraction, supervised feature extraction, and
object-based classification. Dataset used in this article for
classification is UCM land use which has 21 classes and 2100
images. Experimentation was performed using AlexNet. 10%
images were used for training, and after eight iterations, the
accuracy reached at 94%. By comparing GoogLeNet and
CaffeNet, GoogLeNet gives better accuracy, that is, 97%, on
UCM dataset, but AlexNet is almost 4 times faster. Deep
learning methods perform better in image classification as
compared to other feature extraction techniques [86]. Xia
et al. [76] used google net algorithm and reported a clas-
sification accuracy of 94.31% while using UCM image
benchmark. Zhang et al. [77] performed scene classification
using gradient boosting random convolutional network
framework and reported classification accuracy as 94.53%
while using UCM image benchmark. Zhong et al. [79] used
large patch convolutional neural networks and reported a
classification accuracy value as 89.90% for UCM image
benchmark. &e classification accuracies of AID dataset on
different CNN models are summarized in Table 3.

While using the same dataset, the experimentation was
performed on CaffeNet, and the accuracy noted in this ex-
perimentation is 95.31%. In the third run using same dataset
with a different algorithm, i.e., VGG-VD-16, the classification
accuracy is 95.21% for UCM dataset. In 2nd run for AID
dataset, the experimentation was performed using GoogLeNet
and Inception-V3 algorithm, and the accuracies mentioned in

the article are 86.39% and 93%, respectively [76]. Experi-
mentation was performed using ARCNet-VGG16 in scene
classification with recurrent attention of VHR remote sensing
images reaching the accuracy up to 99.12%. &e same exper-
imentation was performed on AID dataset and the accuracy
achieved is 93.10% using UCM dataset [19]. In [19], it is stated
that they have performed the experimentation using minimum
sum coloring problem (MSCP) algorithm and the classification
accuracy achieved is 98.36% for UCM dataset. Again the ex-
perimentation was performed on AID dataset using three al-
gorithms MSCP, DCNNS, and HW-CNN, whereas the
accuracies are 94.42%, 96.89%, and 96.98%, respectively. Zhu
et al. [69] reported a value of classification accuracy as 99.76%
while using UCM image benchmark. Lu et al. [73] used feature
aggregation convolutional neural networks and reported the
classification accuracy as 98.81% while using UCM image
benchmark. Experimentation performed using feature aggre-
gation convolutional neural network (FACNN) algorithm has
achieved accuracy of 99.05%, and the dataset used for exper-
imentation is UCM [70]. Spatial frequency (SF-CNN) has
reached the accuracy of 99.05% using UCM dataset. &e same
algorithm was used for AID dataset and accuracy achieved was
96.66%, whereas using feature aggregation convolutional
neural network (FACNN) algorithm on AID dataset, the
classification accuracy mentioned in the same article was
95.45% [71].

In [71], it is stated that using robust space-frequency
joint representation (RSFJR) algorithm, they have achieved
classification accuracy of 98.57% using UCM dataset. In
another research, it is stated that they have achieved clas-
sification accuracy of 98.57% using GBN algorithm for UCM
dataset [74]. ADFF algorithm gave an accuracy of 97.53% in
another research using UCM dataset. &e same experi-
mentation was performed on AID dataset, and the accuracy
achieved is 94.75% [75]. Another research achieved the
accuracy of 99.05% using CNN-Caps Net algorithm using
UCM dataset. In another article, they achieved accuracy of
93.81% using feature RCGSVM for UCM dataset [22].
AlexNet and inception algorithms gave an accuracy of 94.2%
and 911.1%, respectively, using the UCM dataset. Again
using AID dataset, the experimentation was performed on
VGG-VD-16, and the accuracy achieved is 89.64% [78]. In
the article, the author performed experimentation using
SCCOV, and the accuracy achieved is 96.10%, and the
dataset used for experimentation is AID [89]. Using AID
dataset, accuracy achieved is 96.81%, and the algorithm used
for experimentation is RSFJR [71]. Using ResNet, another
research claimed that they have achieved accuracy of 89.1%

Table 2: Classification accuracy of RSSCN on different CNN models.

Algorithm Year Publication Accuracy (%)
CaffeNet [81] 2019 Journal of Geovisualization and Spatial Analysis 88.25
VGG-VD-16 [82] 2018 Applied Sciences 87.18
Inception-V3 [81] 2019 Journal of Geovisualization and Spatial Analysis 87
AlexNet [78] 2021 Journal of Geosciences 85.25
GoogLeNet [82] 2018 IEEE 84.84
POVH [22] 2019 PLOS ONE 84.07
RGSIR [22] 2019 PLOS ONE 81.44
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using AID dataset. From the literature, we have extracted
accuracies of different datasets on different CNN models. In
Table 4, the datasets with their respective accuracies are
mentioned. Similarly, the classification accuracies of SIRI-
WHUdataset on different CNNmodels are also summarized
in Table 4.

5. Datasets

&e details about different remote sensing datasets are de-
scribed below:

5.1. SAT4andSAT6. National Agriculture Imagery Program
(NAIP) dataset was used to extract the images to the dataset.
SAT4 consists of total of 500,000 image patches while SAT6
consists of 405,000 image patches, as shown in Figure 6.

5.2. Brazilian Coffee Scenes. Dataset is taken from four
countries with the size of 64× 64 pixels. &ere are 600
images in 4 different kinds of dataset while the fifth kind
has 476 images. Table below summarizes details regarding
the total number of classes, images per class, number of
images per class and total number of images in the
benchmark, image spatial resolution, and dimensions.
Figure 7 summarizes the details about coffee dataset images
and other dimensions.

5.3. RSSCN. &e remote sensing image classification dataset
comprises images gathered from Google Earth Engine and
covers widespread areas. RSSCN consists of 7 classes of
quintessential scene images having a size of 400× 400 pixels.
Further description about this image benchmark is discussed
in the dataset description table. Figure 8 shows the picture
gallery of all the classes of RSSCN dataset.

5.4. SIRI-WHU. &e description such as image size, total
number of images, images per class, and date of creation is
referred to the following research article [22]. &e images

Table 4: Classification accuracy of SIRI-WHU on different CNN models.

Algorithm Year Publication Accuracy (%)
ResNet50 [22] 2019 PLOS ONE 94.03
AlexNet [81] 2019 Journal of Geovisualization and Spatial Analysis 90.20
GoogLeNet [78] 2021 Journal of Geosciences 89.30
Inception-V3 [78] 2021 Journal of Geosciences 89
VGGNet [78] 2021 Journal of Geosciences 86.60
POVH [81] 2019 Journal of Geovisualization and Spatial Analysis 80.14

Figure 6: Picture gallery taken from all classes of SAT dataset.

Table 3: Classification accuracy of AID on different CNN models.

Algorithm Year Publication Accuracy (%)
CNNS-WD [72] 2019 IEEE trans 97.24
HW-CNN [87] 2018 IEEE trans 96.98
DCNNS [87] 2018 IEEE trans 96.89
RSFJR [71] 2019 IEEE trans 96.81
SF-CNN [70] 2019 IEEE trans 96.66
CNN-CAPSNET [88] 2019 Remote sensing 96.32
SCCOV [89] 2019 IEEE trans 96.10
GBN [70] 2019 IEEE trans 95.48
FACNN [70] 2019 IEEE trans 95.45
ADFF [74] 2019 IEEE trans 94.75
MSCP [87] 2018 IEEE trans 94.42
ARCNet-VGG16 [19] 2017 IEEE trans 93.10
Inception-V3 [76] 2017 IEEE trans 93
MCNN [16] 2018 IEEE trans 91.80
VGG-VD-16 [78] 2021 Journal of Geosciences 89.64
CaffeNet [81] 2019 Journal of Geovisualization and Spatial Analysis 89.10
GoogLeNet [76] 2017 IEEE trans 86.39
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have a spatial resolution of 2m with image size of 200× 200
pixels. Figure 9 shows randomly selected images taken from
each class of SIRI-WHU dataset.

5.5. UC Merced Land Use. &e description such as image
size, total number of images, images per class, and date of
creation is referred to [65]. &ere are a total of 21 distinctive
scene categories with 100 images per class and dimensions of
256× 256 pixels, as shown in dataset description table.
Figure 10 shows the indiscriminately selected examples of
each category included in the dataset (Table 5).

5.6. AID Dataset. AID dataset has 10000 images with 30
different classes. Figure 11 shows the photo gallery of AID
dataset.

5.7. DIOR Dataset. &e DIOR dataset includes 23,463 im-
ages and 192,472 object. Figure 12 shows the photo gallery of

DIOR dataset. Table 5 shows some of the existing datasets
with image quantity and other descriptions.

6. Unsupervised Learning Approaches

Due to the advancement of space and satellite technologies,
remote sensing has reached a new height [90]. Due to these
high-resolution satellites, it has become easier to perform
land use land cover surveys, to detect change, to recognize
objects, and so on [91]. It has become easier to automatically
interpret the image acquaintances due to the advancement in
image classification techniques. Using these satellite data
efficiently and in effective manner is still challenging. CNNs
plays an important role in this image classification process.
&e article discussed below presents a framework called
unsupervised restricted de-convolution neural network
(URDNN). &e main idea behind this framework is to get
unsupervised restricted de-convolution using neural net-
works. It learns the pixel to pixel and end to end classifi-
cation and then passes it to CNN model for assigning labels.
Due to this, the issue of over and underfitting has been

Figure 7: Picture gallery taken from all classes of coffee dataset.

Figure 8: Picture gallery taken from all classes of RSSCN dataset.
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reduced which occurs due to the large number of labeled
data. &e experimentation was performed on two datasets
Geoeye and Quick-bird sensors [92]. &e results are better
than the previous models. &e accuracy achieved is 97% and

98.9%, respectively [92]. Remote sensing image classification
using unsupervised deep learning techniques is introduced
here. In the first step, CNN extracts features using unsu-
pervised techniques. After that, parameters of the network

Figure 10: Picture gallery taken from all classes of UCM dataset.

Table 5: Dataset description.

Dataset Total number of images Total number of classes Image size Year
UCM [1] 2100 21 256× 256 2010
SIRI-WHU 2400 12 200× 200 2016
RSSCN7 2800 7 400× 400 2015
Brazilian coffee scene 2876 2 64× 64 2015
SAT4/SAT6 500000/405000 4 and 6 28× 28 2015
AID 10000 30 600× 600 2017
NWPU-RESISC45 31500 45 256× 256 2017
OPTIMAL 1860 31 256× 256 2018
WHU-RS19 1005 19 600× 600 2012
NWPU VHR-10 dataset 800 10 VHR 2014
DIOR and DIOR-R datasets 23,463 20 VHR 2020
IKONOS 1000 10 64× 64 2008
In-house dataset 606 6 4500× 6000 2011
SPOT image dataset 912 3 512× 512 2013
ORNL dataset 690 5 512× 512 2014

Figure 9: Picture gallery taken from all classes of SIRI-WHU dataset.
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are trained, which are then passed to the classifier. &e cost
of computation decreased due to unsupervised learning.
SVM classifier was used in the process while spatiospectral
information was efficiently extracted with this technique.
Adding new layers in the network improves efficiency, but
the problem of overfitting is introduced [93]. While dis-
cussing unsupervised remote sensing image classification,
the concepts of scale invariant feature transform and his-
togram-oriented gradient are very important [94]. Image is
converted into feature vector by encoding; as compared to
hand-engineered image representation, unsupervised
learning techniques have achieved a new height [95]. We can
get image features right from the start of raw pixels of an
image. Gabor filters can be applied to those image patches to
get the image features out of those pixels. Bags of word
(BOW) is another concept of image classification and image
retrieval [96]. To get the best results in terms of accuracy, we
need to add SVM with non-linear kernel. While keeping

remote sensing in mind, both color feature and intensity are
important while classification. But most of the existing al-
gorithms cannot handle this at a time. &e article discussed
below discussed this issue. &e authors have considered the
quaternion of color features and then proposed an unsu-
pervised learning technique with the help of this quaternion
concept, and they have jointly considered the color and
intensity. &e experimentation was performed on UCM and
Brazilian coffee datasets. &e proposed model has given
better accuracy than the existing techniques [97]. With the
enhancement of deep learning techniques, we are able to
classify remotely sensed images using unsupervised learning
techniques, more accurately. When available labeled data
samples are limited, it becomes difficult to perform image
classification using supervised learning techniques [98].
Scene image classification is a hot topic these days; with these
classification and analysis techniques, we are able to perform
land cover and land use surveys, urban area planning,

airport

church

industrial

playground

school sparse residential square stadium storage tanks viaduct

pond port railway station resort river

meadow medium residential mountain park parking

commercial dense residential desert farmland forest

bareland baseball field beach bridge center

Figure 11: Picture gallery taken from all classes of AID dataset.
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disaster management and planning, crop analysis, weather
prediction, and so on much easily and with high accuracy
[99]. Previously BOW was the unsupervised learning
technique that was used for remote sensing image classifi-
cation. &e article discussed below mentions a new tech-
nique. To overcome the issue of less labeled data, a new
technique is proposed, and it is multilayered feature
matching technique. &e model uses both discriminative
and generative models for earning unlabeled data. &e ex-
perimentation was performed on two datasets: UCM and
coffee, and as compared to other existing techniques, this
proposed model MARTA GA1ns outperforms with the
classification accuracy of 94.86% and 89.86%, respectively
[100].

6.1. Reinforcement Learning. Reinforcement learning is the
concept of training a model for classification purpose where
we reward the correct behavior and punish the undesired
behavior. Reinforcement learning is the subbranch of ma-
chine learning which is quite similar to unsupervised
learning where there are no labels assigned to the image. In
reinforcement learning, agents learn the parameters and
predict the outcomes [101]. On that prediction, there is a
reward and punishment, and this process carries on till the
game ends. Mostly reinforcement learning is used in gaming

and in AI and robotics where you need to teach a robot some
new tricks. &ere are subelements of reinforcement learning
that include policy, reward, value function, and environment
as a model [102]. &e reinforcement learning has achieved a
new height as it is really helpful in minimizing the gap
between training loss and matrix evaluation [103]. Cap-
tioning image is a challenging and most needed task of
remote sensing. Most of the existing ML models suffer from
the problem of overfitting. Below mentioned article has
overcome this issue by proposing a two-stage model, one
stage is for autoencoding variations while in stage 2, rein-
forcement learning is introduced. CNN is fine-tuned in stage
1, and in stage 2, it generates image captions. Reinforcement
learning is then applied to improve the accuracy of the
model. &e experimentation was performed on NWPU-
RESISC45 dataset. &e results are far better than the pre-
viously mentioned results. But there exists a problem of
overfitting, which should be addressed in future [104]. Fully
polarized radar has the advantage to capture images
throughout the time regardless of weather conditions. &ey
are useful for land cover land use type applications, crop
management, forest estimation, disaster prevention, rec-
ognition of targets, and many more. &e article discussed
below proposed a new model called deep Q network (DQN)
that is basically a deep neural network model for polarized
SAR image classification. &e data are first preprocessed to
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Figure 12: Picture gallery taken from all classes of DIOR dataset.
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reduce noise and extract features. &e data are then fed into
deep neural network for classification purpose where the
concept of reinforcement learning is introduced. &e ex-
perimentation was performed on two PolSAR image datasets
and the researchers claim that their model outperforms on
many existing models [105].

7. OptimizationTechniques forRemote Sensing
Image Classification

Optimization is the process of finding those input values that
best find the output, and there should be a well-defined
objective function. &is is a very critical task for which there
exist multiple machine learning algorithms. Optimization
means to minimize operational cost and improve accuracy.
An optimization algorithm tries different solutions until it
gets the best suitable result which gives the most optimal
solution to that problem [106]. In remote sensing image
classification, selection of features is basically the most
crucial task and it depends on number of available labeled
samples. Feature selection is the process of selecting more
important features out of the pool of features and excluding
correlated features. In the article discussed below, there is a
solution proposed for this feature selection task. For this
purpose, the stochastic method is introduced for selection of
relevant and important features.

&e experimentation was performed on two datasets:
AVIRIS and ROSIS, and the results show that the proposed
method gives better accuracy than the existing approaches
[107]. Feature selection is one of the most important tasks in
remote sensing image classification. Due to huge amount of
data and correlated features, it becomes very tricky. To
overcome this issue, a newmethodology is introduced, and it
has added the concept of wavelet analysis. &reefold strategy
is introduced in this framework: in the first phase, the
resolution technique is modified, and in the second phase, 3-
D discrete wavelet transformation is introduced. In the last
phase, CNN is introduced, and the performance of this new
model is tested on three different datasets: Indian Pines,
University of Pavia, and Salinas datasets. &e accuracy
achieved using this model is 99.4%, 99.85%, and 99.8%,
respectively [108].

When dealing with hyperspectral remote sensing, we
usually have limited samples for training. Using the con-
ventional techniques, it has become difficult to achieve high
accuracy. SVM gives the better accuracy as it has good
generalization and least structural risk, and it overcomes the
issue of high time consumption and less optimized pa-
rameters.&e article discussed below uses EO-1 Hyperion to
optimize the parameters. &e proposed model is tested, and
the authors claimed that they have reached the accuracy of
91.3% which is quite higher than that of the existing ap-
proaches [109]. Remote sensing image classification has a
huge benefit for land use land cover cases which is a latest
research area. Existing classification methods have the issue
of low efficiency and they usually have larger datasets. To
overcome this issue, a new method is proposed where the
concept of extreme programming is introduced. Ensemble
methods along with full use of features and deep learning

methods are introduced into the proposed model. All the
three methods give better accuracy in terms of classification
and efficiency, and the experimentation was performed on
multiple datasets; classification accuracy depends upon the
type of dataset. &e optimization technique combined with
deep learning outperforms as compared to other methods
[110]. &ere are many optimization techniques covering
different aspects of image classification task: the summary of
the techniques is described in later section.

7.1.GreyWolfOptimization. Grey wolf optimization (GWO)
is a newmetaheuristic technique, and it mimics the leadership
quality of grey wolves [111]. &ere are four types of grey
wolves, namely, alpha, beta, omega, and delta. &e fittest
solution is called as alpha, second best is called beta, 3rd one is
called delta, and the last one is omega.&ere are three steps of
hunting: searching for prey, encircling prey, and attacking
prey; these three steps are implemented to get the optimized
performance. &is technique is basically a feature selection-
based technique [112, 113]. In HSI, there are many consec-
utive and narrow spectral bands that give information about
various land covers. Due to number of features, the time
complexity increases. Selecting the best features out of the
pool of features is a difficult and challenging task. &e article
discussed below proposed a new technique for feature se-
lection of HSI, and it reduces redundant features. Fuzzy
C-means algorithm is used for the decomposition of feature
subset, whereas wolf optimization and max entropy are used
for feature selection. &e experimentation was performed on
three known datasets: Indian Pines, Pavia University, and
Salinas. &e proposed methods outperform in terms of
classification accuracy of existing techniques [114]. Image
processing and analysis is an emerging field of computer
vision. It has many different applications like image classi-
fication, segmentation, medical imaging, compression of
image, and many more. &ere exist multiple algorithms to
solve these issues like GA, GP, grey wolf algorithm, bat al-
gorithm, and so on. &e article discussed below is a review of
multiple optimization techniques, their usage, and their real-
world applications [115]. Grey wolf is one of the recent trends
which comes under the umbrella of swarm intelligence. It has
better performance than swarm intelligence and hence is used
more effectively than swarm intelligence, and it is simpler to
implement and easy to understand. &e article discussed
below is a review of multiple applications of grey wolf
techniques and its applications [116]. We can summarize
these optimization algorithms as follows:

(i) Grey wolf algorithm can handle large data effi-
ciently, but it ignores smaller details which need to
be addressed.

(ii) Grey wolf divides the features into four groups; in
future, there should be a direction where more or
less than four groups are formed.

(iii) Effectiveness of grey wolf should be checked in
combination of different optimization algorithms.

(iv) &ere should be a focus on solving dynamic
problems using GWO.
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(v) Parameter tuning of GWO could also be focused in
future.

Table 6 shows the summary of some of the optimization
techniques described in literature.

8. Fusion of Deep Learning with
Spectral Features

Classification accuracy of hyperspectral images (HSI) has
increased drastically when using in combination with CNNs.
To perform better, it is needed to have denser network which
as a result causes overfitting, degradation of accuracy, and
also gradient vanishing. To overcome these issues, a new
framework hierarchical feature fusion network (HFFN) is
proposed. &e main idea behind this model is to fuse the
output of all the layers which results in increase of accuracy.
&e experimentation was performed on three real HSI
datasets: AVIRIS Indian Pines image, ROSIS-03 University
of Pavia image, and AVIRIS Salinas image.&e experimental
results were compared with DCNN, SVM, and DRN. &e
results showed that the proposed method outperforms as
compared to existing DL methods [117].

CNNS are known as most powerful methods when talking
about hyperspectral image classification. Usually pooling layers
and sampling features of CNNS are fixed, so they cannot be
used for downsampling of features. A research article proposed
a deformable HIS. &e proposed method is evaluated on two
real HSI datasets: University of Pavia and Houston University,
and they have 12 and 15 classes, respectively. 1st experiment
was performed on Pavia dataset where training samples (45, 55,
and 65) are randomly selected from each class. &e results
showed that the proposed method accurately classifies pixels in
the near edge regions. &e 2nd experiment was performed on
Houston dataset were training samples (30, 40, and 50) were
also randomly selected from each class. It has been observed
that the proposed method performs better than other existing
methods [118].

A deeper network with 9 layers is proposed called as
contextual deep CNN, and the idea behind this research is to
have a model that can accurately find local contextual inter-
actions by jointly exploiting local spatiospectral relationships of
neighboring individual pixel vectors, as shown in Figure 13

In the first step, multiscale joint exploitation of the
spatiospectral information is obtained through filter bank
which is then combined in a map. &e experimentation is
performed on three datasets: the Indian Pines dataset, the
Salinas dataset, and the University of Pavia dataset. Indian
Pines dataset has 12 classes but only 8 were used as there
were so many images. Pavia dataset has 16 classes, and all of
them were considered for experimentation. &e accuracy of
Indian Pines using proposed technique is 93.6%, that of
Salinas is 95.07%, and that of Pavia is 95.97% [119].

Hyperspectral image (HSI) is a new research area. In this
article, a special CNN model is proposed that performs the
desired classification by using lesser training and fine-tuning
of data. To perform this task, the pixels can be pulled from
the same class closer, while pushing the different class pixels
farther away. &e experimentation is performed on three

HSI datasets: Indian Pines, Pavia, and Salinas. &e results
were validated on AlexNet, VGG-CNN-S, and GoogLeNet.
&e previous accuracies were 88.45%, 85.5%, and 88.8%,
respectively, whereas the proposed model gives accuracies of
96.21%, 86.46%, and 88.48%, respectively [120].

In [121], a newmodel SAFF is proposed. In the 1st phase,
multiple labels were identified by using pretrained CNNs
and then a self-attention layer is added for channel-based
and spatial-based weight assigning. At the end, SVM was
used for classification. &e experimentation was performed
on three different datasets: (1) UCMerced Land Use Dataset
having 2100 images and 21 classes; (2) Aerial Image Dataset
having 10000 images and 30 classes; and (3) NWPU-
RESISC45 Dataset with 31,500 images and 45 classes. &e
overall accuracy of UCM dataset is 97.02%, that of AID
dataset is 90.25%, and that of NWPU dataset is 84.38%.

9. Feature Fusion

Earlier in the literature, we have seen that for image retrieval,
one technique was used; later on, it was observed that fusion of
more than one techniques can give better accuracy [122]. In this
article, a new model weight feature convolutional neural
network (WFCNN) is proposed that performs segmentation
and extraction of information from images. &e WFCNN
model first performs encoding and then classification is per-
formed. &e proposed model is trained by using stochastic
gradient decent (SGD) algorithm. &e experimentation was
performed on two datasets: Gaofen 6 images and aerial images.
&e results are validated using SegNet, U-Net, and RefineNet
models. GF-6 datasets give accuracy of 94.13%, and aerial
image dataset gives accuracy of 96.9% [123]. Ren et al. [124]
proposed a full CNN based on multiscale feature fusion for the
class imbalance for remote sensing image classification. &e
authors named the proposed research model as DeepLab V3+,
with loss function based solution of samples imbalance [124].
Experimentation was performed on 2 datasets: sentinel-2 and
sentinel-3. When compared with U-Net, PSPNet, and ICNet,
the proposed method gives accuracy up to 97% [124]. &is
article proposed a new technique where large image is divided
into small-scale images. To divide the samples into classes,
support vector machine (SVM) is used. After this phase, a new
module called active learning is added. &e proposed model

Table 6: Optimization techniques.

Application Techniques

Segmentation

Grey wolf optimizer
Genetic programming
Genetic algorithm

Particle swarm optimization
Cuckoo search algorithm

Classification
Bat algorithm

Grey wolf optimizer
Genetic programming

Medical imaging
Particle swarm optimization

Grey wolf optimizer
Differential optimization

Compression Bat algorithm
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(SSFFSC-AL) performs better in terms of classification accu-
racy and also gives results in lesser time. &e experimentation
was performed on two datasets: Indian Pines and Pavia [125].
Feature fusion has two basic methods: local feature fusion and
global feature fusion.

Zhu et al. [126] claimed about local and global feature
fusion for high-resolution spatial images for scene classifi-
cation. &ey have merged two different techniques for
feature fusion: local and global fusion. &e datasets used for
the experimentation are 21-class UC Merced and 12 class
Google dataset of SIRI-WHU. Google dataset reached the
accuracy of 99.76%, whereas the other one has 96.37%.
Future directions identified from this article are

(1) To use social media data for this training purpose.
(2) To improve classification accuracies of remote

sensing images.
(3) To implement this research on non-optical data.

Li et al. [127] discussed about scene image classification
by fusion strategy to integrate multilayer features using CNN
for pretrained data. CNN was used for feature extraction
process and then fully connected layers were used for deep
feature extraction; then, these extracted features were fused
using PCA; after that, classification process was performed.
&e datasets used for the experimentation are WHU-RS and
UCM, and the authors claim that they have achieved better
accuracy than previously implemented classification pro-
cesses. &e gap identified in this article is to reduce com-
putational time and to improve classification accuracy [127].

Yuan et al. in [128] discussed scene image classification
which was performed by global rearrangement of local
features, and the rearrangement of local features helped to
get spatial information of the image. &e experimentation
was performed on four different datasets: UCM, WHU-
RS19, Sydney, and AID, and they claimed that the perfor-
mance was satisfactory. In future, there should be a focus
towards improvement of classification accuracy.

In [128], the multilayer covariance pooling technique
was used for extraction of features; then, these features were
stacked to form a covariance matrix, and finally support
vector machine was used for classification. &e experi-
mentation was performed on UCM, AID, and NWPU-
RESISC45 datasets, and the proposed method outperforms
existing methods of classification. In future, there should be
an end to end CNN model which is able to classify with
better accuracy using lesser features maps at each layer.

A research article discussed feature aggregation to learn
about scene classification. &is model unites feature

learning, aggregation, and classification into CNN during
training process. Fine-tuning is performed to alleviate the
training process, and it works for insufficient data as well.
&e experimentation was performed on three datasets: AID,
UCM, and WHU-RS19. &e limitation of this research is
that there should be a technique that can get semantic in-
formation of images without cropping or resizing of images
[87].

Figure 14 shows the complete process of how features
are extracted and image classification process is com-
pleted. Another article is an unsupervised feature fusion
technique for training of CNN. Due to this, training
becomes easier and more efficient; after that, feature fu-
sion was performed to classify images. &e experimen-
tation was performed on UCM and Brazilian coffee
datasets, and the proposed model gives better accuracy of
87.83%.&ere should be a focus on different feature fusion
strategies to check their effect [73]. Table 7 summarizes
the above-explained research articles.

10. Texture Features

Feature selection and extraction are the most important
tasks in content-based image retrieval. &ere could be two
types of features: global and local features. Global features
include color, texture, shape, and spatial information,
whereas local features have the information about image
segmentation, edge detection, corners and blobs, and so on
[129].

Texture features are considered to be most powerful
features among all. &ey are the most visible and noticeable
patterns in any image. But we cannot use texture features
separately. Among low-level visual features, texture of an
image is considered as a distinguishable image representa-
tion. &ey are the considered as the visible and noticeable
pattern of an image. Different fusions of texture features
have shown good results in different application of remote
sensing and image retrieval [130].

With these pros, there are also some cons of texture
feature extraction. Complexity increases while processing
and extracting texture feature [131]. To overcome these
issues, different forms of texture features extraction methods
are reported in literature such as wavelet transform [132]
and Gabor filter [133], and Table 8 presents a detailed
summary about texture features.

In this article [134], a new technique is proposed for
classification and extraction of features from SAR images.
&e method is divided into three phases. In the 1st phase,
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Figure 13: Block diagram representing details about spectral feature extraction.

14 Mathematical Problems in Engineering



two types of features were extracted: grey level co-occur-
rence matrix and Gabor filter. In phase 2, dimensionality is
reduced, and at final phase, SVM is introduced for image
classification. &e experiments showed that this model gives
better classification accuracy and is also good for dimen-
sionality reduction. SAR image dataset is used for experi-
mentation, and accuracy is 87.5% [134].

Speckle effect is a very common issue of PolSAR. To
overcome this issue, a special technique is proposed that first
extracts the features and then classifies them. Real PolSAR
images were used for experimentation process and then
validated using existing techniques. &is article claims that
they have reached the accuracy up to 99.8% [135].

Hyperspectral sensors can collect huge amount of data now.
But it is still challenging to classify HSIs accurately. &e tech-
nique used in previous research was spatiospectral classification,
but these were not able to classify images accurately. In this
article, the author proposed a new technique to classify images,
and this technique is the process that is carried out in three

phases. In the 1st phase, feature extraction is performed, and in
the 2nd phase, images were classified using probabilistic SVM,
while in the 3rd and last phase, probabilities were calculated to
find the results. &e experimentation was performed on two
different HSI datasets: Indian Pines and Pavia. &e results
showed that the classification accuracy of the proposedmodel is
better as compared to previously used techniques [136].

Kai et al. [137] claimed that they extracted texture
features using the Gabor method. &e datasets used for the
experimentation are Corel, Li, and Caltech 101. &ey
managed to improve accuracy. &e results showed 83%,
88%, and 70% accuracy of each dataset, respectively. &e
main limitation identified in this research is the increase in
computational cost while feature extraction. In [138], Sajjad
et al. reported that texture features could be extracted ef-
ficiently using the wavelet method. &ey have claimed high
accuracy of 99%, 56%, and 35% on Corel 1K, Corel 5K, and
Corel 10K, respectively. Using wavelet methods of texture
feature extraction, we can increase accuracy but computa-
tion cost also increases as a result. In another article [139],
Sajjad et al. extracted texture features using the histogram
method. &e experimentation was performed on Corel 1K
and Corel 5K datasets. Classification accuracy was 87%. In
2018, it is reported in their research that texture features
extracted using the edge detection method give better ac-
curacy, i.e., 98%. &e dataset used for the experimentation is
NUSWIND. &e limitation of this research is the increase in
computation cost.

Wang et al. [140] found that texture features extracted
using Canny edge detector give better accuracy of 68%. &e
dataset used for experimentation is Corel 10K.&e drawback
of this research is increase in running cost as the number of
input images was very large.

Nazir et al. [141] stated in their article that texture
features extracted through discrete wavelet transform
(DWT) and edge histogram descriptor (EDH) have better
accuracy than those of other methods. &e experimentation
was performed on Corel dataset. &e accuracy reported in
this article is 73.5%. &e drawback of this research is that no
machine learning methods were used for classification or
extraction of features.

In [142], &usnavis Bella and Vasuki used the ranklet
transformation method for texture feature extraction. &ey
claimed that they have increased the accuracy. &e datasets
used in their experimentation are Corel 5k and Corel 10K.
Accuracies measured in the article are 67.4% and 67.9%,
respectively. &e limitation of this research is that due to
many dimensions of texture features, the computation cost
increased.

Bella et al. [142] performed texture feature extraction
using the grey level co-occurrence matrix (GLCM) method.
&e dataset used in this experiment was Corel 5K, and they
achieved accuracy of 66.9%. &e computation accuracy is
very high, as there was no algorithm used in their experi-
mentation to reduce computational cost.

In [143], Ashraf et al. [143] claimed that using Gabor
filter they have extracted texture features. &e accuracy
achieved in this experimentation was 79% while dataset was
Corel 5K. &e limitation of this research is also the increase
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in computational accuracy as there are many feature
dimensions.

In [144], Alsamadi et al. [144] reported that they have
extracted texture features using the DWT method. &e
dataset used in the experimentation was Corel, and they
achieved accuracy of 90%. &e limitation of this research is
high computational time.

11. Hybrid Approaches

In this article, a hybrid approach is used to accurately classify
remotely sensed aerial images. SVM and KNN were com-
bined in this article. First SVMwas trained to classify images
into different classes. In the testing phase, newly tested
samples were entered, and average distance between the test
samples for each class was calculated using the distance
formula. Lastly, the images are placed to their respected
classes where there is minimum average distance. &is
process is repeated till all the images are sorted into their
respective classes. &e experimentation was performed on
two datasets: the ALOS data of the Yitong River and PMS
sensor. &e results are quite impressive, i.e., 92.44% and
97.8%, respectively [148].

In an article, both parametric and non-parametric ap-
proaches were combined to classify the remote sensing images
especially land cover land use data. Also, a new dataset was
proposed in this article for this purpose which can also be used
in other related research. &e data of land were captured for
both dry and wet conditions. &e proposed model is basically
the combination of ISODATA clustering and decision trees.
&e accuracy achieved for dry conditions is 84.54%, whereas
for wet weather conditions, the accuracy ismeasured as 91.10%,
which is better than existing deep learning models [149].

In an article, the authors combined two algorithms:
kernel-internal value fuzzy C-means clustering and multi-
value C-means clustering; by comparing the results with
conventional fuzzy C-means clustering, it was observed that

the proposed methods outperform the existing methods.
&ey have constructed a new dataset: LANDSAT-7 Ba Ria
area and Hanoi area.&e accuracy noted in this research was
98.2% and 94.13%, respectively [11].

An article explains the phenomenon of sparse code that is
used to reduce the calculation time for feature extraction. SC is
commonly used for aerial images as it performs better in this
particular case. With the help of existing approach, accuracy of
local feature extraction is increased as compared to existing
techniques. &e experimentation was performed on UAS op-
erating system data that are recorded for nearly 2 hours without
flight interruptions. &e accuracy achieved is 85.7% [150].

An article states that the combination of two techniques:
pixel-based multilayer perceptron and CNN. &is combined
algorithm is applied on a dataset that is obtained through aerial
photography and satellite. &e dataset contains images of both
urban and rural lands of different land uses of Southampton.
&e proposed method outperforms the existing deep learning
methods. &e accuracies achieved from this proposed model
are 90.93% for urban and 89.64% for rural lands [151].

It states the hybrid approach that combines two techniques,
SVM and ANN, for LULC classification of images captured
through satellite. &e fuzzy hierarchal clustering approach is
used for classification purpose as shown in Figure 15.

&e dataset “Landsat-8 satellite images” is also proposed
in this research. All the data are obtained from lands of
Hyderabad and its surroundings. &e accuracy achieved in
this article are 93.159% for SVM and 89.925% for ANN. &e
authors claim that the proposed method gave better results
than existing methods [153].

Yang et al. [134] proposed an efficient classification
technique for agricultural lands that is based on spatial and
spectral image features. Here a hybrid approach was used for
classification purposes of healthy and non-healthy plants.
Unmanned aerial vehicle (UAV) images of rice fields in
Chianan Plain and Taibao City, Chiayi County, were collected.
&e accuracy achieved in this research is 90.67% [154].

Table 7: Feature fusion.

Title Year Methods Datasets Limitations
Integrating multilayer features of
convolutional neural networks for
remote sensing scene classification
[127]

2017 Fisher kernel coding WHU_RS dataset,
UCM dataset

To reduce computational time and to
improve classification accuracy.

A deep-local-global feature fusion
framework for high spatial
resolution imagery scene
classification [126]

2018 Deep-local-global
feature fusion

21-class UC Merced
dataset, 12-class Google
dataset of SIRI-WHU

Same process could be implemented on
non-optical images.

Remote sensing scene classification
using multilayer stacked covariance
pooling [129]

2018
Multilayer stacked
covariance pooling

(MSCP)

UC Merced land use
dataset, AID30,

NWPU-RESISC45
dataset

&ere should be an end to end CNN
model which is able to classify with better
accuracy using lesser features maps at

each layer.
Remote sensing image scene
classification using rearranged local
features [128]

2019 Global and rearranged
local features

UC Merced, WHU-
RS19, Sydney, AID

To explore more techniques for feature
fusion.

A feature aggregation convolutional
neural network for remote sensing
scene classification [130]

2021
Feature aggregation
convolutional neural
network (FACNN)

AID, UC Merced,
WHU-RS19

&ere should be a technique that can get
semantic information of images without

cropping or resizing of images.
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Another article explains the research of a hybrid ap-
proach used for classification of remote sensing images.
SVM and KNN were combined in this research for better
results. Two datasets were used for experimentation: dataset-
1 contains “ALOS data of the Yitong River in Changchun,”
whereas dataset-2 contains “the ortho image of a factory
region in Jiangsu Province.”&e accuracies achieved are DS-
1: 92.4% and DS-2: 97.9% [155].

An article explains a disaster scenario of southern Indiawhich
was hit by flood. Data captured in this research were 200 flooded
and non-flooded images. &e approach used for research is the
combination of SVM and K-means clustering. &e accuracy
achieved was 92%. Bitner et al. [157] extracted automatic building
footprint by extracting multiresolution remote sensing images
using a hybrid approach. &e data of World View-2 imagery of
Munich, Germany, were collected through satellite. &e experi-
mentation is performed by combining approaches, i.e., U-Net on
top of the Caffe deep learning framework. &e new hybrid
technique performs better than existing techniques.&e accuracy
achieved is 97.4% [157]. &e summary of all the hybrid ap-
proaches explained in the above section is given in Table 9.

12. Performance Evaluation Criteria

To evaluate the performance of classification, there are many
ways that exist in the literature [65, 158]. &e selection of
performance measure purely depends upon the type of clas-
sification we are going to perform and what type of results are

required. &e selection of algorithm for classification purpose
also plays an important role for the selection of performance
metrics. Following are the performance metrics used to check
the accuracy of classification:

True positive (TP): number of images that are correctly
labeled
True negative (TN): number of images that are in-
correctly labeled
False positive (FP): assigning label to an image when it
does not belong to that class
False negative (FN): not assigning label to the image
when it really belongs to that class

Below mentioned are some of the types to measure
performance of content-based image retrieval:

(i) Precision/predictive value: it is the ratio of rel-
evant output to the total number of output
image.

Precision �
TP

TP + FP
. (1)

(ii) Average precision: it can be defined as the mean of
all the related queries.

Avg.Precision � 

nNRI

k�1
p(k) ×

R(k)

NRI
. (2)

(iii) Mean average precision: it is defined as the mean of
average mean of all the relevant queries.

MAP � 
s

(q�1)

AP
(q)

S
, (3)

where S is the no. of queries.

Deep learning model

Hybrid Approach formation

Input images

Traditional classification
techniques

Cl
as

sif
ic

at
io

n

Figure 15: Hybrid approaches.

Table 8: Texture feature-based models.

Title Methods Datasets Accuracy Limitations

Alexey et al. [145] Gabor Corel, Li, Caltech101 83%, 88%,
70% Increase in computational cost

Song et al. [117] Wavelet Corel 1K, Corel 5K,
Corel 10k

99%, 56%,
35% Increase in computational cost

Zhu et al. [118] Histogram Corel 1K, Corel 5K 87% –

Phadikar et al. [146] MPEG-7 edge
detector NUSWIND 98% Computational cost increased by using GA

Sharmila and
Sharmila [147] Canny edge detector Corel10K 68% Running cost increased due to large image input

Cao et al. [121] DWT,EDH Corel 73.50% No ML used in experimentation

Deselaers et al. [122] Ranklet
transformation Corel 5K, Corel 10K 67.4%, 67.9% Computational cost increased due to multiple

dimensions of features

Zhang et al. [123] GLCM Corel 5K 66.90% No optimization algorithm is used to reduce
computational complexity

Ren et al. [124] Gabor filter Corel 5K 79% Computational cost increased because of feature
dimensions

Mu et al. [125] DWT Corel 90% High computational time

Mathematical Problems in Engineering 17



(iv) Precision recall curve: it is the trade-off be-
tween precision and recall under different
thresholds.

(v) Recall/sensitivity: it is the ratio of relevant output
to all the input and output queries.

Recall �
TP

TP + FN
. (4)

(vi) F-measure: it is the harmonic mean between
precision and accuracy.

F − measure � 2
P × R

P + R′
 . (5)

(vii) Negative predictive value: it can be defined as
the ratio between correctly labeled negative
images to total number of negatively labeled
images.

Negative predictive value �
TN

TN + FN
. (6)

(viii) Specificity: it is the ratio between correctly labeled
negative images to total number of negative
images.

Specificity �
TN

TN + FP
. (7)

(ix) Accuracy: it is the ratio of all the results either
rightly labeled or falsely labeled to total number of
labels that exist.

Accuracy �
TP + TN

TP + FP + FN + TN
. (8)

(x) Overall accuracy: it is defined as the sum of overall
accuracy of total correctly labeled images to all the
existing images.

w � 
nc

i�0
e

ii

NT
,

NT � 
nc

i�1


nc

j�1
eij,

(9)

where w � overall accuracy, NT � sum of all non-
diagonal elements in confusion matrix, and eij

� total correct cells.
(xi) Mean square error: the most popular metric used

for measuring the error is mean square error. It
computes the average of the squared difference
between the target value and the value predicted by
the model.

MSE �
1
N



N

J�1
yj − yj
′ 

2
, (10)

where N� the last iterations, yj � true value, and
yj
′ � value predicted by the model.

(xii) Mean absolute error: when we try to compute the
average between the actual value and predicated
value we use MAE. &e mathematical represen-
tation of the metric is given below.

Table 9: Hybrid approaches.

Ref. Approaches Datasets Accuracy
Kantakumar et al.
[149]

Maximum likelihood supervised, decision tree,
and ISODATA clustering technique

Landsat-8’s dataset for dry period and wet
period

Dry: 84.54%; wet:
91.10%

Nguyen et al. [11] Fuzzy C-means clustering and multiple kernel
interval-valued fuzzy C-means clustering LANDSAT-7 Ba Ria area and Hanoi area 98.2% and 94.13%

Qayyum et al.
[150]

DRT hybrid dictionary with Ricker wavelet
function

UAS operating system recorded data for
nearly 2 h without flight interruptions 85.70%

Zhang et al. [151] CNN and MLP (multilayer perceptron) Urban and rural scenes of aerial imagery of
Southampton

90.93% for urban and
89.64% for rural

Nijhawan et al.
[152]

Hybrid of CNN integrated with handcrafted
(LBP+GIST) features

Satellite images of Uttarakhand, northern
part of India 88.43%

Prasad et al. [153] Landsat-8 satellite images SVM and ANN SVM: 93.15%; ANN:
89.92%

Yang et al. [154] UAV images of rice fields in Chianan Plain and
Taibao City, Chiayi County DSM and texture information 90.67%

Alimjan et al.
[148] SVM and KNN

DS-1: ALOS data of the Yitong River in
Changchun

DS-2: the ortho image of a factory region in
Jiangsu Province

DS-1: 92.4%; DS-2:
97.9%

Akshya et al. [155] SVM and K-means A dataset containing 200 flooded and non-
flooded images 92%

Hua et al. [156] Class-wise attention-based convolutional and
bidirectional LSTM network UCM and DFC15 multilabel datasets

Schuegraf et al.
[157]

U-Net on top of the Caffe deep learning
framework

World View-2 imagery of Munich,
Germany 97.40%
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MAE �
1
N



N

J�1
yj − yj
′



, (11)

where N� the last iterations, yj � true value, and
yj
′ � value predicted by the model.

(xiii) Root mean square error: it is easy to compute and
gives a better idea of how well the model is per-
forming. We just have to take the square root of
average of the squared difference between the
target value and the value predicted. Mathemati-
cally, it is pictured as

D �

��������������

1
N



N

J�1
yj − yj
′ 

2




. (12)

(xiv) Area under the receiver operating characteristic
curve (AUROC): this is a very interesting metric
and is also known as AUC-ROC score/curves.
While computing AUROC, true positive rate
(TPR) and false positive rate (FPR) are used.
Mathematically, it is represented as follows:

TRP �
TP

TP + FN
,

FRP �
FP

FP + TN
.

(13)

13. Conclusion and Future Directions

Remote sensing image analysis is used in various real-time
applications such as monitoring of Earth, urban develop-
ment, town planning, water resources engineering, pro-
viding construction requirements, and agriculture planning.
Image analysis and classification is an open research
problem for the research community working on remote
sensing applications. Due to recent development in imaging
technology, there is an exponential increase in the number
and size of multimedia contents such as number of videos
and digital images. Due to this increase in this volume of
digital images, the automatic classification of images is an
open research problem for computer vision research com-
munity. Various research models are proposed in recent
years, but there is still a research gap between human un-
derstanding and machine perception. Due to this reason, the
research community working on remote sensing image
analysis is exploring the possible research directions that can
bridge this gap. &e earlier approaches for remote sensing
image analysis are based on low-level feature extraction and
mid-level feature representation. &ese approaches have
shown good performance on small-scale image benchmarks
with limited training and testing samples. &e use of dis-
criminating feature representation with multiscale features
can boost the performance of the learning model. &ese
approaches can mainly assign single labels to images, while
in existing era, it is a requirement to assign multiple labels to

single image on the basis of contents. One of the main
requirements of a deep learning model is to build a large-
scale image benchmark that can be helpful to train a complex
deep network. &e creation of a large-scale image bench-
mark with all possible classes of remote sensing images is
one of the main requirements and an open research problem
in this domain. Most of the current research models based
on deep learning are mainly using the fine-tuning and data
augmentation techniques to enhance learning. If a large-
scale image benchmark is available, it will assist the learning
model to learn parameters in a more effective way. &e
available large-scale image benchmarks are used through
supervised learning, and this is a time consuming process
and such fully supervised learning models are computa-
tionally expensive. Exploring the possible learning capa-
bilities based on unsupervised and semi-supervised learning
is a possible future research direction. &e deep learning
models use extensive computational power for training, and
mostly, the research models are using GPUs as high-per-
formance computing. Designing a deep learning model with
less computations is also a possible research direction, and
such model can be used on a device with less computation
powers. &e use of few-shot/zero-shot learning approaches
can be explored in the field of remote sensing image
classification.
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Due to the national economic development form and social development demand, in recent years, the government has been
vigorously promoting the control of government-enterprise collusion in the bidding process of government projects in order to
promote the standardization of the market. How to predict the vertical collusion behavior under different internal and external
environments has become an important research content. Although the prediction of individual behavior is difficult to achieve,
the prediction of group behavior has certain possibilities. In this paper, we propose a method for predicting and evaluating the
vertical collusion behavior of government investment project bidding based on BP neural network analysis optimized by an
annealing algorithm. First, drawing on the traditional evaluation model, the evaluation index system of government-enterprise
collusion behavior is constructed from five dimensions: internal environment, external environment, policy development,
enforcement effort, and feedback channel. Secondly, a machine learning method based on BP neural network optimized by an
annealing algorithm is introduced to evaluate the influence of the change of initial conditions on the bidding collusion behavior.
'is study has certain significance for government managers to discover the problems and causes in policy formulation, which in
turn can support the government in further improving the policy utility.

1. Introduction

Policy formulation and evaluation of management effec-
tiveness is a systematic and complex task, and with the
continuous development of China’s engineering construc-
tion field, the management of corrupt practices in the
bidding process of government projects has become in-
creasingly strict [1, 2]. However, the same control policy
under different external conditions can lead to different
strategies adopted by each participant in the bidding of
government investment engineering projects [3]. 'erefore,
it is of greater practical significance to predict the vertical
collusion behavior of each group in the bidding of gov-
ernment investment engineering projects and to carry out
targeted control according to the prediction results.

Vertical collusion in bidding for engineering projects can
bring high economic benefits to each stakeholder, and all

parties tend to maximize their profit in the process of project
execution [4]. At the same time, in the vertical hierarchical
relationship, some actors in the information disadvantage
have the information demand, while another actor in the
information advantage has the information rent-seeking
supply, so the information asymmetry motivates the
vertical actor to reach the vertical collusion based on
information trading [5]. In the absence of additional costs,
collusion is likely to occur between stakeholders in bid-
ding for engineering projects regardless of whether the
cost of vertical collusion is symmetrical or not; the pos-
sibility of collusion is higher when the cost of collusion is
symmetrical; in the presence of additional costs, it can
promote the occurrence of collusion in the case of
asymmetrical cost of collusion [6]. 'erefore, the pre-
diction of changes in regional collusion behavior through
reasonable external conditions and the environment in
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which collusion occurs can help relevant policies and
targeted management behavior.

'ere are many influencing factors that affect the change
of vertical collusion behavior. By utilizing these factors, it is
possible to effectively remedy the deficiencies in policy
formulation, save management efforts, and optimize the
implementation to improve the science of policy formula-
tion [7]. For example, taking the number of government
project bidding collusion cases in a city as the research
object, the BP neural network model and algorithm based on
annealing algorithm optimization can be used to analyze the
relationship between the changes in the number of cases and
the external economic environment, the tension between
supply and demand in the market, and the government’s
enforcement efforts. Meanwhile, by decomposing these
relationships into optimization problems, and through the
solution of the optimization problems, more adaptive pol-
icies can be formulated. 'e paper is based on the Chinese
Comprehensive Social Survey (CCS).

'e paper analyzes and mines the data based on the
Chinese General Social Survey (CGSS) [8] and the relevant
data from the National Bureau of Statistics. 'e paper
provides more governmental governance of collusion be-
tween government and enterprises with decision support by
evaluating the degree of collusion between government and
enterprises in the bidding field of government investment
projects and analyzing the degree of change in collusion
behavior under different environmental combinations.

'e innovation points of this paper are mainly reflected
in

(1) A prediction model about vertical collusion behavior
in government investment engineering project bid-
ding based on the BP neural network optimized by
the annealing algorithm is established.

(2) In the evaluation process, evaluation indexes such as
market collusion tendency and government integrity
degree on collusion behavior are added to make the
evaluation model more realistic.

'e research in this paper mainly addresses the following
issues.

(1) In the process of policy formulation for the pre-
vention of collusion in bidding, the implementation
effects of the same policies in different cities differ
greatly.'erefore, how to determine the policies that
are more adapted to the local economic development
status and actual conditions before the policies are
promulgated.

(2) How to evaluate the effects of policies already pro-
mulgated and optimize the relevant policies.

2. Literature Review

2.1. Vertical Collusion in Bidding for Government Investment
Projects. Due to information asymmetry among parties,
disorderly competition among enterprises, imperfect regu-
latory mechanisms, and the bidding process, the market is
highly competitive and most enterprises cannot obtain fair

competition [9]. 'e engineering bidding process includes
multiple types of participating subjects, such as bidders,
agencies, and supervisory bodies [10]. Due to the complex
relationship among the participating subjects, collusion in
the bidding process has various types [11, 12]. Vertical
collusion refers to the existence of hierarchical differences
between colluders, similar to those between superiors and
subordinates. Vertical collusion mainly includes vertical
collusion between bidders, collusion between agencies and
bidders, collusion between bid evaluation experts and bid-
ders, collusion between supervisory agencies and bidders,
and multiparty collusion. 'e emergence of vertical collu-
sion has indirectly promoted the proliferation and devel-
opment of bidding irregularities. 'erefore, it is of great
significance to predict collusion through the external en-
vironment and local market atmosphere.'us, how to detect
and govern this bidding behavior is also a hot issue being
studied by many scholars [13]. Due to the strong ran-
domness of individual behavior, the accuracy and signifi-
cance of predicting individual decision-making behavior are
low. However, the prediction of group behavior can effec-
tively reduce the influence of individual random behavior on
the results. By predicting the changes of the internal and
external environment on the vertical collusion behavior in
the bidding process, the collusion behavior can be effectively
controlled. Sirui Nie et al. pointed out that the vertical
collusion of bidding will lead to a decline in the quality of the
project and various negative effects, while the occurrence of
collusion [14] is relatively hidden and difficult to identify.
'erefore, an effective and rapid method is necessary to
measure the tendency of vertical collusion in bidding to
discover vertical collusion in bidding [15].

2.2. Factors Influencing Vertical Collusion in Bidding for
Government Investment Projects. 'e collusive behavior of
bidding is formed by a combination of influencing factors.
'e incomplete implementation of the bidding system is an
important reason for the prevalence of collusion in gov-
ernment investment projects [16].'is is actually a reflection
of the long-standing lack of policy implementation in the
bidding field. For a long time, local governments and
competent officials have tended to adopt alternative strat-
egies to deal with the implementation of laws and policies.
Meanwhile, the implementers choose to adapt the imple-
mentation of policies that are not profitable so that indi-
cators such as the level of corruption in the government of
the bidding place and the tendency of local collusion have a
greater impact on the generation of vertical collusion.

Economic motivation is also one of the important
reasons for collusion in the bidding process [17]. 'e reason
for this is that the costs and risks of collusion are low
compared to the benefits. 'e cost includes not only the
implementation cost of collusion but also the imple-
mentation cost and the risk cost. At the same time, the
profit-seeking and competition caused by the market
economy also contribute to the creation of power andmoney
transactions and collusion in the bidding process in disguise.
'e local economic development and the degree of
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competition in the market will have an impact on the
collusion. 'rough research, Henke believes that in the
existing bidding model, refusing bribes will increase the
participation costs of “honest agents,” has negative exter-
nalities and leads to potential corrupt practices [18].

2.3. BP Neural Network and Simulated Annealing Algorithm.
'e BP algorithm originated in the 1980s, has the error back
propagation training discovered by David Rumelhart et al.
[19].'e algorithm is amodel that mimics the neurons of the
brain to deal with uncertainty problems. 'e standard BP
neural network is trained twice by the error back propa-
gation algorithm and belongs to a three-layer feedforward
network that consists of an input layer, a hidden layer, and
an output layer. 'e main features are that the signal is
forward propagation and the error is backward propagation.
'e BP neural network has better prediction results for
highly uncertain problems. 'e BP algorithm takes the
square of the network error as the objective function and
uses the gradient descent method to calculate the minimum
value of the objective function.

BP neural network is essentially a simplified biological
model, where the output and input structure on the neural
network is a single-layer structure, while the hidden layer is a
multilayer structure. All components are connected. 'e
input layer passes the information to the hidden layer after
getting the stimulus, and the hidden layer passes the weight
information to the output layer according to the calculation
rules, and the output layer compares the results and adjusts
the weights if the results are incorrect. In other words, the BP
neural network uses the backpropagation algorithm to
calculate the model for several iterations given the training
set D. Finally, the parameters of the training neural network
model are determined according to the error requirements.
A schematic diagram of the structure of the BP neural
network is shown in Figure 1.

2.4. Application of BPNeural Network in the Evaluation Field.
BP neural networks have a wide range of applications in
nonlinear modeling, system identification, etc. While gen-
eral neural networks have a predetermined number of
network layers, BP neural networks do not require

predetermination. Two-layer BP networks achieve the fitting
of arbitrary functions without limiting the number of hidden
nodes. 'erefore, in practical applications, BP neural net-
works are usually selected with 2 layers.

In 2015, Yang Baoan et al. combined BP neural networks
with corporate financial analysis and demonstrated the
applicability of neural networks in financial analysis [20].
Zeng Zhongdong, on the other hand, found that a neural
networkmodel can be useful for establishing a dynamic early
warning mechanism for companies in the insurance in-
dustry [21]. Fu et al. combined BP neural network with
hierarchical analysis to analyze green marketing and found
that a high prediction accuracy could be achieved [19]. Yang
et al. used a BP neural network to predict the level of
teaching management and provide help to improve teaching
[22]. Yu et al. found that campus congestion could be better
predicted using the BP neural network [23]. Liu Qi et al.
found that BP neural networks have high feasibility for
application in the field of GEM enterprise value assessment
[24]. Wang et al. used the autoregressive integrated moving
average (ARIMA) method and the back propagation neural
network (BPNN) method to forecast carbon emissions in
China, India, the United States, and the European Union in
the absence of COVID-19 [25]. Lyu et al. utilized the GA-
NN algorithm predicting the torsional strength of reinforced
concrete (RC) beams [26]. In summary, it can be found that
BP neural networks have high application value and ap-
plicability in the field of multiindustry evaluation.'erefore,
the introduction of this method in the field of policy
adaptability evaluation has high rationality.

2.5. Simulated Annealing Algorithm. 'e simulated
annealing (SA) algorithm is derived from the process of
temperature change, and the SA algorithm has a strong local
search capability [23]. 'e process is similar to physical
annealing, also known as system temperature, by accepting
an increase in the objective function through the standard
probability rules of Metropolis. SA obtains the global op-
timal solution to the problem by repeating the sampling
during the decrease of the system temperature.

3. BP Neural Network Optimized by
Annealing Algorithm

3.1. Determination of Relevant Evaluation Indicators. In the
traditional government project bidding process, the evalu-
ation process for the change of collusive behavior usually
prefers to select quantitative indicators, but the adoption of
quantitative indicators for group behavior prediction does
not fully reflect the influence of human subjective factors on
behavior. At the same time, in the actual implementation
process, the same policy achieves a wide range of effects in
different cities. It also indicates that, in addition to the basic
external conditions, qualitative indicators also have a certain
influence on the implementation effect of the project.
'erefore, it is of great practical value to use a more objective
method to evaluate the behavior of each decision maker in
the bidding collusion process and to optimize it on this basis.

X1 Z1

Z2

Z3

Y1

Y2

Y3

X2

X3

input layer hidden layer output layer

Figure 1: Network structure diagram.
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By reading the previous literature and analyzing the
influencing factors of the bidding collusion process, we fi-
nally determined 13 evaluation indexes in 5 categories and
selected the number of colluding groups choosing to collude
and break the law as the output value to predict the vertical
collusion behavior of the groups. Since the implementation
of the policy has a certain lag, this paper selects the average
growth rate of the first two years of policy implementation,
versus the second two years, as evaluation indicators to
increase the credibility of the results.

In the external environment, the economic level in the
year of policy making in the implementation place is mainly
considered, including GDP and the intensity of market
competition. 'e internal environment indicators include
the degree of local collusion tendency and the perceived
degree of government corruption (data from CGSS2015 and
CGSS2017 survey data); the policy making environment
needs to be clarified for the level of policy making and the
main target group of the policy, etc. 'e different effects of
different levels of policies on the control of collusion also
have a large difference. Under the same policy and external
conditions, if the government’s implementation strength is
different, it will also have a certain influence on the behavior
of collusion subjects. 'erefore, we choose to evaluate the
policy implementation strength (i.e., whether special control
actions were carried out in the same year) and the degree of
judicial impartiality and trial impartiality; the feedback of
the implementation process is reflected by the indicators of
the effectiveness of supervision procedures. 'e relevant
evaluation indicators are shown in Table 1.

3.2. BP Neural Network Based on Annealing Algorithm
Optimization. In the SA-BP algorithm, the neural network
structure first needs to be determined and subsequently
optimized using a degradation algorithm. After the relevant
parameters have been determined, the BP neural network is
used to make predictions. It is assumed that the BP neural
network has n nodes in the input layer, q nodes in the hidden
layer, and m nodes in the output layer, and the weights

between the nodes in the input layer to the nodes in the
hidden layer are Vij and the weights between the nodes in
the hidden layer to the nodes in the output layer are Wjk.

In the forward propagation phase, the hidden layer
output Oj and the output Ok of the output layer are

oj � f netj f 
n

i�1
vijxi − θj

⎛⎝ ⎞⎠

ok � f netk( f 
n

i�1
wjkoi − δk

⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

, (1)

where xi is the input layer sample data netj, netk are the net
input data of the jth, kth node of the hidden layer. θj, δk are
the node thresholds. f(net) is the selected training function.

'e error back propagation phase with error signals is

δk � −
zE

zok

·
zok

znetk

θj � f′ netj  

m−1

k�0
δkwjk

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where E is the total error.
'e weighting corrections are

Δwjk � ηoj(dk − ok)ok(1 − ok)

Δvjk � oj 1 − oj  

m−1

k�0
δkwjkoi .

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

η ∈ (0, 1) is for learning rates.
'e steps of the BP neural network operation based on

the optimization of the SA algorithm are as follows:

(1) Initialization. Let us determine the problem domain,
select certain values as initial weights, determine the
number of nodes in the input layer, hidden layer, and
output layer of the BP neural network, and the
initial values of the annealing algorithm; initial

Table 1: Table of influencing factors.

Primary indicators Secondary indicators Source

Internal environment Propensity to collude degree CGSS2017
Government corruption perception degree CGSS2015

External environment
Economic development GDP total (billion yuan) Statistical yearbook

Development of private economy Statistical yearbook
Total construction industry output value Statistical yearbook

Policy development

Number of relevant laws Statistical yearbook
Level of new laws

National laws and regulations databaseType of policy
Main target groups

Enforcement efforts
Whether there was a special state action in the current year General office of the CPC central committee

website
Fairness of justice CGSS2015
Fairness of trial CGSS2015

Feedback channels Monitoring the effectiveness of the process CGSS2015
Effectiveness
evaluation

Rate of increase percentage of decrease percentage of
decrease Judgmental instruments network
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temperature, annealing times, crossover probability,
and variation probability, and other related pa-
rameters. 'e initial solution is generated randomly,
and the objective function value of this solution is
calculated.

(2) Let us transform the current solution in the so-
lution space according to the generated pertur-
bation function to generate a new solution and
calculate the objective function value of the new
solution.

(3) If the new solution outperforms the old solution,
then replacement is performed. If not, it is
replaced with a certain probability, according to
Metropolis.

(4) 'e solution is judged by whether the requirements
are satisfied or not.

(5) Let us end if the maximum number of substitutions
is reached. If not, an annealing operation is per-
formed to reduce the temperature.

(6) Let us substitute the optimal node weights ob-
tained by the neural network and train the sample
data.

(7) 'en we calculate the mean square error (MSE) of
the training results and determine whether the re-
quirements are met.

'e block diagram of the operational flow is shown in
Figure 2.

4. Empirical Analysis of Predicting Group
Behavior of Vertical Collusion in Bidding for
Government Investment Projects

4.1. Mixed Stabilisation Strategy for Gaming Subjects. In
order to verify the applicability of the algorithm and the
effectiveness of the fit to the relevant data, MATLAB sim-
ulation was used to simulate the proportional decrease of
relevant cases before and after the promulgation of the policy
in relevant cities in China. In order to ensure the validity of
the data, a total of 166 samples from 31 provinces, cities, and
autonomous regions were selected for the simulation from
the promulgation of theMeasures on Bidding and Tendering
for Engineering Construction Projects in 2005 to the end of
2020.

'e output parameters were the percentage decrease in
the growth rate of cases and the percentage decrease in the
variance. Before the training started, the maximum number
of training cycles was set to 1000, the proportion of vali-
dation samples was set to 15%, and the proportion of test
samples was set to 15%.'e annealing algorithm parameters
were set to a start temperature of 97°C, an end temperature
of 3°C, and a decay coefficient of 0.8. MATLAB was used for
the simulation.

As can be seen from Figure 3, with the continuous
optimization of the simulation degradation algorithm, the
current accepted optimal solution is continuously close to
the historical optimal solution, the value of the mean error
gradually decreases, and the model obtains a higher degree
of fit.

From Figure 4, it can be found that the validation sample
obtained the best fit after the 6th training session as the
number of training sessions continued to increase.

From Figures 5 and 6, it can be seen that the actual effect
of the test data has a small error with the prediction result.
Over 70% of the predicted data is distributed around the 0
error line.

'erefore, the BP neural network optimized based on the
simulated annealing algorithm can better predict the effect
of government project bidding control policies, providing
some reference value for the government to formulate
policies. It also provides a basis for how the government
formulates policies according to the local external envi-
ronment, economic conditions, and the level of market
development.

'e simulation results show that changes in vertical
collusion in tendering can be better predicted through in-
dicators such as external conditions and the internal envi-
ronment. It also shows that the above conditions have an
impact on the creation of bid collusion. 'erefore, the
control path of the project can be investigated through the
above indicators.

For researchers, this model extends the existing research
and proposes a vertical collusion behavior prediction model
for government investment project bidding based on SA-BP,
which provides a new research direction for related research.
For the government, before formulating policies on the
control of collusion behavior in bidding, it can conduct

Start

Initialize BP neural
network connection

weights

Input training
samples

Obtain optimal
weights

Calculation errors

Weighting update

Set annealing
algorithm parameters

Does it meet the
requirements

Yes

Yes

Annealing algorithm
optimization

Does it meet
MSE requirements

End

No

Figure 2: Block diagram of the operational flow.
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research on the external environment of the city where the
policy is implemented to predict the effect of vertical col-
lusion control after the implementation of the new policy,
provide data basis and theoretical support for policy for-
mulation, and improve the pertinence of control policies.
For project managers, the degree of control of vertical
collusion behavior in the bidding process has a greater
impact on the difficulty of project acquisition and project
profits. So the model proposed in the research can be used to
predict the vertical collusion behavior before the bidding,
providing guidance for management work.

5. Conclusions and Limitations

5.1. Conclusions

(1) In the actual calculation, 166 samples from 31
provinces, cities, and autonomous regions in China

were selected for the analysis, covering the changes
in vertical collusion in most cities in China after
2005. 'e introduction of the simulated annealing
algorithm avoids the complex process of parameter
selection in BP neural networks and facilitates the
extension of the method.

(2) 'e results of the study showed that the use of SA-BP
models to predict collusion bidding behavior has a
high accuracy rate. 'e model constructed in this
paper can be used to predict changes in bidding
behavior, help relevant government departments
predict changes in bidding behavior, and provide
data support for the government to formulate
control policies.

(3) 'e BP neural network vertical collusion behavior
prediction model of government project bidding
based on the optimization of the annealing algorithm
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proposed in this paper effectively solves the problem
of policy formulation and implementation mainly
relying on subjective judgment and lacking data
guidance in the current process of bidding collusion
behavior control process by using external condi-
tions to predict the change trend of collusive
behavior.

5.2. Limitations

(1) As some of the data collection remained the same
during the writing of the thesis, necessary simplifi-
cations were made to the indicators in the model
building process. In future research, the credibility of

the model can be enhanced by increasing the scale of
the survey and obtaining relevant data.

(2) In the process of future practice, multiple deep
learningmodels and researchmethods can be used to
predict the behavior of vertical collusion groups,
analyze the influence of external conditions on
collusion behavior under different circumstances
and achieve crossvalidation of the research results.

Data Availability

'e raw data supporting the conclusions of this article
will be made available by the authors, without undue
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