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Existing approaches of cyber attack-defense analysis based on stochastic game adopts the assumption of complete rationality, but
in the actual cyber attack-defense, it is di�cult for both sides of attacker and defender to meet the high requirement of complete
rationality. For this aim, the in�uence of bounded rationality on attack-defense stochastic game is analyzed. We construct
a stochastic game model. Aiming at the problem of state explosion when the number of network nodes increases, we design the
attack-defense graph to compress the state space and extract network states and defense strategies. On this basis, the intelligent
learning algorithmWoLF-PHC is introduced to carry out strategy learning and improvement.�en, the defense decision-making
algorithm with online learning ability is designed, which helps to select the optimal defense strategy with the maximum payo�
from the candidate strategy set. �e obtained strategy is superior to previous evolutionary equilibrium strategy because it does not
rely on prior data. By introducing eligibility trace to improve WoLF-PHC, the learning speed is further improved and the defense
timeliness is signi�cantly promoted.

1. Introduction

With the continuous strengthening of social informatiza-
tion, cyber attacks are becoming more frequent, causing
tremendous losses to defenders [1]. Because of the com-
plexity of the network itself and the limitation of the de-
fender’s ability, the network cannot achieve absolute
security. It is urgent to have a technology which can analyze
the attack-defense behavior and e�ectively compromise the
network risk and security investment so that the defender
can make reasonable decisions with limited resources. Game
theory and cyber attack-defense have a high degree of op-
position, non-cooperative relationship, and strategic de-
pendence [2]. �e research and application of game theory
in cyber security are rising day by day [3]. �e analysis of
attack-defense confrontation based on stochastic game has
become a hotspot. Stochastic game is a combination of game
theory and Markov decision making. It not only extends the
single state of traditional game to multistate but also
characterizes the randomness of cyber attack-defense. At

present, the cyber security analysis based on stochastic game
has achieved some results, but there are still some short-
comings and challenges [4–7]. �e existing stochastic game
of attack-defense is based on the assumption of complete
rationality, through Nash equilibrium for attack prediction
and defense guidance. Complete rationality includes many
aspects of perfection requirements, such as rational con-
sciousness (pursuit of maximum bene�ts), analytical rea-
soning ability, identi�cation and judgment ability, memory
ability, and accurate behavior ability, among which any
aspect of imperfection belongs to limited rationality [8]. �e
high requirement of complete rationality is too harsh for
both sides of attack-defense, which makes it di�cult for
Nash equilibrium under the assumption of complete ra-
tionality to appear in practice, and reduces the accuracy and
guiding value of existing research results.

To solve the above problems, this paper studies the
defense decision-making approach based on stochastic game
under the restriction of bounded rationality. Section 2 in-
troduces the research status of defense decision making
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based on stochastic game. Section 3 analyses the difficulties
of studying cyber attack-defense stochastic game under
bounded rationality and the idea of solving the problem in
this paper. Moreover, Section 3 constructs attack-defense
stochastic game model under bounded rationality con-
straints and proposes a host-centered attack-defense graph
model to extract network state and attack-defense action in
game model. Bowling et al. [9] first proposed WoLF-PHC
for multiagent learning, Section 4 further improves WoLF-
PHC algorithm based on eligibility trace for promoting the
learning speed of defenders as well as reducing the de-
pendence of the algorithm on data. Using the improved
intelligent learning algorithm WoLF-PHC (Wolf Mountain
Climbing Strategy) to analyze the stochastic game model in
the previous section, we design the defense decision-making
algorithm. Section 5 verifies the effectiveness of the proposed
approach through experiments. Section 6 summarizes the
full text and discusses future research.

/ere are three main contributions of this paper:

(1) /e extraction of network state and attack-defense
actions is one of the keys to the construction of
stochastic game model. /e network state of the
existing stochastic game model contains the security
elements of all nodes in the network, and there is
a “state explosion” problem. In order to solve this
problem, a host-centered attack-defense graph
model is proposed and an attack-defense graph
generation algorithm is designed, which effectively
compresses the game state space.

(2) Limited rationality means that both sides of attack-
defense need to find the optimal strategy through
trial and error and learning. It is a key point to
determine the learning mechanism of players. In this
paper, reinforcement learning is introduced into
stochastic game, which expands stochastic game
from complete rationality to limited rationality.
Defenders use WoLF-PHC to learn the game in
adversarial attack-defense so as to make the best
choice for current attackers. Most of the existing
bounded rationality games use biological evolu-
tionary mechanism to learn and take the group as the
research object. Compared with the existing boun-
ded rationality games, the approach proposed in this
paper reduces the exchange of information among
game players and is more suitable for guiding in-
dividual defense decision making.

(3) WoLF-PHC algorithm is improved based on eligi-
bility trace [10], which speeds up the learning speed
of defenders, reduces the dependence of the algo-
rithm on data, and proves the effectiveness of the
approach through experiments.

2. Related Works

Some progress has been made in cyber security research
based on game theory at home and abroad, but most of the
current studies are based on the assumption of complete
rationality [11]. Under complete rationality, according to the

decision-making times of both sides in the game process, it
can be divided into single-stage game and multistage game.
/e research of single-stage cyber attack-defense game
started earlier. Liu et al. [12] used static game theory to
analyze the effectiveness of worm virus attack-defense
strategy. Li et al. [13] established a non-cooperative game
model between attackers and sensor trust nodes and gave the
optimal attack strategy based on Nash equilibrium. In cyber
attack-defense, although part of the simple attack-defense
confrontation belongs to single-stage game, in most sce-
narios, the process of attack-defense often lasts for many
stages, so multistage cyber attack-defense game becomes
a trend. Zhang et al. [14] regarded the defender as the source
of signal transmission and the attacker as the receiver and
constructed a multistage attack-defense process using dif-
ferential game. Afrand and Das [15] established a repeated
game model between the intrusion detection system and
wireless sensor nodes and analyzed the forwarding strategy
of node packets. Although the above results can be used to
analyze multistage attack-defense confrontation, the state
transition between stages is not only affected by attack-
defense action, but also by the interference of system op-
erating environment and other external factors, which has
randomness. /e above results ignore this randomness and
weaken its guiding value.

Stochastic game is a combination of game theory and
Markov theory. It is a multistage game model. It can ac-
curately analyze the impact of randomness on attack-defense
process by using the Markov process to describe the state
transition. Wei et al. [16] abstracted the cyber attack-defense
as a stochastic game problem and gave a more scientific and
accurate quantitative approach of attack-defense benefits
applicable to the stochastic game model of attack-defense.
Wang et al. [17] used stochastic game theory to study the
network confrontation problem. Convex analysis theory was
used to prove the existence of equilibrium, and the equi-
librium solution was transformed into a nonlinear pro-
gramming problem. Based on incomplete information
stochastic game, Liu et al. [3] proposed the decision-making
approach formoving targets defense. All the aforementioned
schemes are based on the assumption of complete ratio-
nality, which is too strict for both sides of attack-defense. In
most cases, both sides of attack-defense are only limited
rationality level, which leads to the deviation of the above
research results in the analysis of attack-defense game.
/erefore, it has important research value and practical
significance to explore the bounded rationality of cyber
attack-defense game law.

Limited rationality means that both sides of attack-de-
fense will not find the optimal strategy at the beginning./ey
will learn the game of attack-defense in the game of attack-
defense. /e appropriate learning mechanism is the key to
win in the game. At present, the research of limited rational
attack-defense game is mainly centered on evolutionary
game [18]. Hayel and Zhu [19] established an evolutionary
Poisson game model between malicious software and an-
tivirus programs and used the replication dynamic equation
to analyze the antivirus program strategy. Huang and Zhang
[20] improved the traditional replication dynamic equation
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by introducing incentive coefficient and improved the cal-
culation approach of replication dynamic rate. Based on this,
an evolutionary game model was constructed for defense.
Evolutionary game takes the group as the research object,
adopts the biological evolution mechanism, and completes
the learning by imitating the advantage strategy of other
members. In evolutionary game, there is too much in-
formation exchange among players, and it mainly studies the
adjustment process, trend, and stability of attack-defense
group strategy, which is not conducive to guiding the real-
time strategy selection of individual members.

Reinforcement learning is a classic online intelligent
learning approach. Its players learn independently through
environmental feedback. Compared with evolutionary bi-
ology, reinforcement learning is more suitable for guiding
individual decision making. /is paper introduces re-
inforcement-learning mechanism into stochastic game,
expands stochastic game from complete rationality to finite
rationality, and uses bounded rationality stochastic game to
analyze cyber attack-defense. On the one hand, compared
with the existing attack-defense stochastic game, this ap-
proach uses bounded rationality hypothesis, which is more
realistic. On the other hand, compared with evolutionary
game, this approach uses reinforcement learning mecha-
nism, which is more suitable for guiding real-time defense
decision making.

3. Modeling of Attack-Defense Confrontation
Using Stochastic Game Theory

3.1. Description and Analysis of Cyber Attack-Defense
Confrontation. Cyber attack-defense confrontation is
a complex problem, but from the level of strategy selection, it
can be described as a stochastic game problem as depicted in
Figure 1. We take the DDoS attack of using Sadmind vul-
nerability of Soloris platform as an example. /e attack is
implemented through multiple steps including IP sweep,
Sadmind ping, Sadmind exploit, Installing DDoS software,
and Conducting DDoS attack. Each attack step can lead to
change of security state of network.

Taking the first step as an example, the initial network
state is denoted as S0 (H1, none). It means that the attacker
Alice does not have any privileges of host H1. /en, attacker
Alice implemented an IP sweep attack onH1 through its open
port 445 and gained the User privilege of H1. /is network
state is denoted as S1 (H1, User). Afterwards, if the defender
Bob selected and implemented a defense strategy from the
candidate strategy set {Reinstall Listener program, Install
patches, Close unused port}, then the network state is
transferred back to S0; otherwise, the network may continue
to evolve to another more dangerous state S3.

/e continuous time axis is divided into time slices, and
each time slice contains only one network state. /e network
statemay be the same in different time slices. Each time slice is
a game of attack-defense. Both sides detect the current net-
work state, then select the attack-defense actions according to
the strategy, and get immediate returns. Attack-defense
strategies are related to network state. /e network system
transfers from one state to another under the candidate action

of the attacking and defending sides. /e transition between
network states is not only affected by attack-defense actions
but also by factors such as system operating environment and
external environment, which is random./e goal of this paper
is to enable defenders to obtain higher long-term benefits in
attack-defense stochastic game.

Both sides of attack-defense can predict the existence of
Nash equilibrium, so Nash equilibrium is the best strategy
for both sides. From the description of complete rationality
in the introduction, we can see that the requirement of
complete rationality for both sides of attack-defense is too
strict, and both sides of attacker and defender will be
constrained by limited rationality in practice. Limited ra-
tionality means that at least one of the attacking and
defending sides will not adopt Nash equilibrium strategy at
the beginning of the game, which means that it is difficult for
both sides to find the optimal strategy in the early stage of the
game, and they need to constantly adjust and improve the
strategy for their opponents. It means that the game equi-
librium is not the result of one choice but that both sides of
the attack-defense sides are constantly learning to achieve in
the course of the attack-defense confrontation and because
of the influence of learning mechanism may deviate again
even if it reaches equilibrium.

From the above analysis, we can see that learning
mechanism is the key to win the game of limited rationality.
For defense decision making, the learning mechanism of
attack-defense stochastic game under bounded rationality
needs to satisfy the following two requirements: (1) Con-
vergence of learning algorithm: attacker strategy under
bounded rationality has dynamic change characteristics, and
because of the interdependence of attack-defense strategy,
the defender must learn the corresponding optimal strategy
when facing different attack strategies to ensure that he is
invincible. (2) /e learning process does not need too much
attacker information: both sides of the cyber attack-defense
have opposition of objectives and non-cooperation, and
both sides will deliberately hide their key information. If too
much opponent information is needed in the learning
process, the practicability of the learning algorithm will be
reduced.

WoLF-PHC algorithm is a typical strategy gradient
intelligent learning approach, which enables defenders to
learn through network feedback without too much in-
formation exchange with attackers. /e introduction of
WoLF mechanism ensures the convergence of WoLF-PHC
algorithm [9]. After the attacker learns to adopt Nash
equilibrium strategy, WoLF mechanism enables the de-
fender to converge to the corresponding Nash equilibrium
strategy, while the attacker has not yet learned Nash equi-
librium strategy, and WoLF mechanism enables the de-
fender to converge to the corresponding optimal defense
strategy. In conclusion, WoLF-PHC algorithm can meet the
demand of attack-defense stochastic game under bounded
rationality.

3.2. StochasticGameModel forAttack-Defense. /emapping
relationship between cyber attack-defense and stochastic

Security and Communication Networks 3



game model is depicted in Figure 2. Stochastic game consists
of attack-defense game in each state and transition model
between states. �e two key elements of “information” and
“game order” are assumed. Constrained by bounded ra-
tionality, the attacker’s historical actions and the attacker’s
payo� function are set as the attacker’s private information.

Herein, we use the above example in Figure 1 to explain
Figure 2; the security state corresponds to S0 (H1, none) and
S1 (H1, User) in this case. �e candidate strategy set against
DDoS attack is {Reinstall Listener program, Install patches,
Close unused port}. Network state is the common knowledge
of both sides. Because of the non-cooperation between the
attack and defense sides, the two sides can only observe each
other’s actions through the detection network, which will
delay the execution time for at least one time slice, so the
attack-defense sides are acting at the same time in each time
slice. �e “simultaneous” here is a concept of information
rather than a concept of time; that is, the choice of attack-
defense sides may not be based on the concept of time. At the
same time, because the attack-defense sides do not know the
other side’s choice when choosing action, they are consid-
ered to be simultaneous action.

Construct the network state transition model. Use
probability to express the randomness of network state
transition. Because the current network state is mainly re-
lated to the previous network state, the �rst-order Markov is
used to represent the state transition relationship, in which
the network state is the attack-defense action. Because both
sides of attacker and defender are constrained by bounded
rationality, in order to increase the generality of the model,
the transfer probability is set as the unknown information of
both sides of attack-defense.

On the basis of the above, a gamemodel is constructed to
solve the defense decision-making problem.

De�nition 1. �e attack-defense stochastic gamemodel (AD-
SGM) is a six-tuple AD − SGM � (N, S,D, R, Q, π), in which

(1) N � (attacker, defender) are the two players who
participate in the game representing cyber attackers
and defenders, respectively

(2) S � (s1, s2, . . . , sn) is a set of stochastic game states,
which is composed of network states (see Section 3.3
for the speci�c meaning and generation approach)

Optimal
strategy of

St1

Optimal
strategy of

Sti

Optimal
strategy of

S′t1

Current
state
S′t2

Optimal
strategy of

S″t2

Game Game

Game

t1 t2 ti Time

Defender

Current
state
St1

Current
state
S″t2

Current
state

StiAttacker

DefenderAttacker

DefenderAttacker DefenderAttacker

Evolution
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∙ ∙ ∙

∙ ∙ ∙

∙ ∙ ∙

∙ ∙ ∙

∙ ∙ ∙
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Figure 1: �e game process and strategy selection of attack-defense confrontation.

Game
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Cyber attack-defense Stochastic game model

Figure 2: �e mapping relationship between cyber attack-defense
and stochastic game model.
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(3) D � (D1, D2, . . . , Dn) is the action set of the de-
fender, in which Dk � d1, d2, . . . , dm􏼈 􏼉 is the action
set of the defender in the game state Sk

(4) Rd(si, d, sj)is the immediate return from state si to sj
after the defender performs action d.

(5) Qd(si, d) is the state-action payoff function of the
defender indicating the expected payoff of the de-
fender after taking action d in the state si

(6) πd(sk) is the defense strategy of the defender in the
state sk

Defense strategy and defense action are two different
concepts. Defense strategy is the rule of defense action, not
the action itself. For example, πd(sk) � (πd(sk, d1), . . . ,

πd(sk, dm)) is the strategy of the defender in the network
state sk, where πd(sk, dm) is the probability of selecting
action dm, 􏽐d∈Dk

πd(sk, d) � 1.

3.3. Network State and Attack-Defense Action Extraction
Approach Based on Attack-Defense Graph. Network state
and attack-defense action are important components of
stochastic game model. Extraction of network state and
attack-defense action is a key point in constructing at-
tack-defense stochastic game model [21]. In the current
attack-defense stochastic game, when describing the
network state, each network state contains the security
elements of all nodes in the current network. /e number
of network states is the power set of security elements,
which will produce a state explosion [22]. /erefore,
a host-centered attack-defense graph model is proposed.
Each state node only describes the host state. It can ef-
fectively reduce the size of state nodes [23]. Using this
attack-defense graph to extract network state and attack-
defense action is more conducive to cyber attack-defense
confrontation analysis.

Definition 2. attack-defense graph is a binary group
G � (S, E), in which S � s1, s2, . . . , sn􏼈 􏼉 is a set of node se-
curity states and si � 〈host, privilege〉, host is the unique
identity of the node, and privilege � none, user, root{ } in-
dicates that it does not have any privileges, has ordinary user
privileges, and has administrator privileges. For directed
edge E � (Ea, Ed), it indicates that the occurrence of attack
or defense action causes the transfer of node state and
ek � (sr, v/d, sd), k � a, d, where sr is the source node and sd

is the destination node.
/e generation process of attack-defense map is shown

in Figure 3. Firstly, target network scanning is used to ac-
quire cyber security elements, then attack instantiation is
combined with attack template, and defense instantiation is
combined with defense template. Finally, attack-defense
graph is generated. /e state set of attack-defense stochastic
game model is extracted by attack-defense graph nodes, and

the defense action set is extracted by the edge of attack-
defense graph.

3.3.1. Elements of Cyber Security. /e elements of cyber
security NSE are composed of network connection C,
vulnerability information V, service information F, and
access rights P. Matrix C⊆ host × host × port describes the
connection relationship between nodes, the row of matrix
represents the source node shost, the list of matrix rep-
resents the destination node dhost, and the port access
relationship is represented by matrix elements. When port
is empty, it indicates that there is no connection re-
lationship between shost nodes and dhost nodes.
V � 〈host, service, cveid〉 indicates the vulnerability of
services on nodes’ host, including security vulnerabilities
and improper configuration or misconfiguration of system
software and application software. F � 〈host, service〉 in-
dicates that a service is opened on a node host.
P � 〈host, privilege〉 indicates that an attacker has access
rights privilege on a node host.

3.3.2. Attack Template. Attack template AM is the de-
scription of vulnerability utilization, where
AM � 〈tid, prec, postc〉. Among them, tid is the identifi-
cation of attack mode; prec � 〈P, V, C, F〉 describes the set
of prerequisites for an attacker to use a vulnerability, in-
cluding the initial access rights privilege of the attacker on
the source node shost, the vulnerability information cveid
of the target node, the network connection relationship C,
and the running service of the node F. Only when the set of
conditions is satisfied, the attacker can succeed. Use this
vulnerability; postc � 〈P, C, sd〉 describes the conse-
quences of an attacker’s successful use of a vulnerability,
including the increase of attacker’s access to the target
node, the change of network connection relationship, and
service destruction.

3.3.3. Defense Template. Defense templates DM are the
response measures taken by defenders after predicting or
identifying attacks, where DM � 〈tid, dset〉. dset �

〈d1, postd1〉, . . . , 〈dm, postdm〉􏼈 􏼉 is the defense strategy set
for specific attacks. postdi � 〈F, V, P,C〉 describes the im-
pact of defense strategy on cyber security elements, in-
cluding the impact on node service information,
vulnerability information, attacker privilege information,
node connection relationship, and so on.

In the process of attack-defense graph generation, if
there is a connection between two nodes and all the pre-
requisites for attack occurring are satisfied, the edges from
source node to destination node are added. If the attack
changes the security elements such as connectivity, the cyber
security elements should be updated in time. If the defense
strategy is implemented, the connection between nodes or
the existing rights of attackers should be changed. As shown
in Algorithm 1, the first step is to use cyber security elements
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to generate all possible state nodes and initialize the edges.
Steps 2–8 are to instantiate attacks and generate all attack
edges. Steps 9–15 are to instantiate defenses and generate all
defense edges. Steps 16–20 are used to remove all isolated
nodes. And step 21 is to output attack-defense maps.

Assuming the number of nodes in the target network is n
and the number of vulnerabilities of each node is m, the
maximum number of nodes in the attack-defense graph is
3n. In the attack instantiation stage, the computational
complexity of analyzing the connection relationship be-
tween each two nodes is o(n2 − n). /e computational
complexity of matching the vulnerability of the nodes with
the connection relationship is o(m(n2 − n)). In the defense
instantiation stage, we remove the isolated nodes, and the
computational complexity of traversing the edges of all the
nodes is o(9n2 − 3n). In summary, the order of computa-
tional complexity of the algorithm is o(n2). /e node of
attack-defense graph G can extract network state, and the
edge of attack-defense graph G can extract attack-defense
action.

4. Stochastic Game Analysis and Strategy
Selection Based on WoLF-PHC
Intelligent Learning

In the previous section, cyber attack-defense is described as
a bounded rational stochastic game problem, and an attack-
defense stochastic game model AD-SGM is constructed. In
this section, reinforcement learning mechanism is in-
troduced into finite rational stochastic game, and WoLF-
PHC algorithm is used to select defense strategies based on
AD-SGM.

4.1. Principle of WoLF-PHC

4.1.1. Q-Learning Algorithm. Q-learning [24] is the basis of
WoLF-PHC algorithm and a typical model-free re-
inforcement learning algorithm. Its learning mechanism is
shown in Figure 4. Agent in Q-learning obtains knowledge
of return and environment state transfer through interaction

Elements of network
security

Network connection
relations

Node vulnerability
information

Node service
information

Node access
privilege

Attack template

Attack
instantiation

Defense
instantiation

Defense template

At
ta

ck
-d
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ph Network

state

Attack
action
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action

Figure 3: Attack-defense graph generation.

Input: Elements of Cyber security NSE, Attack Template AM, Defense Template DM
Output: Attack graph G � (S, E)

(1) S⟵NSE, E⟵∅/∗ Generate all nodes ∗/
(2) for each S do:/∗ Attack instantiation to generate attack edges ∗/
(3) update NSE in s/∗ Updating Cyber security Elements ∗/
(4) if C.shost � s.host and C.dhost.V ≥AM.prec.V and C.dhost.F≥AM.prec.F and C.dhost.P.privilege≥AM.prec.P.privilege:
(5) sr.host⟵C.shost
(6) sd.host⟵C.dhost
(7) sd.privilege⟵AM.postc.P.privilege
(8) Ea⟵Ea ∪ ea(sr,AM.tid, sd)􏼈 􏼉

(9) end if
(10) end for
(11) for each S do:/∗ Defense instantiation to generate defense edges ∗/
(12) if Ea.sd � s and DM.tid � Ea.tid:
(13) Ed⟵Ed ∪ ed(Ea.sd,DM.dset.d, Ea.sr)􏼈 􏼉

(14) end if
(15) end for
(16) for each S do:/∗ Remove isolated nodes S ∗/
(17) if ea(s, tid, sd) � ∅ and ed(sr, d, s) � ∅:
(18) S⟵ S − s

(19) end if
(20) end for
(21) Return G

ALGORITHM 1: Attack-defense graph generation algorithm.
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with environment. Knowledge is expressed by payoff Qd and
learned by updating Qd. Qd is

Qd(s, d) � Qd(s, d) + α Rd s, d, s′( 􏼁 + cmax
d′

Qd s′, d′( 􏼁 − Qd(s, d)􏼢 􏼣,

(1)

where α is payoff learning rate and c is the discount factor.
/e strategy of Q-learning is πd(s) � argmaxdQd(s, d).

4.1.2. PHC Algorithm. /e Policy Hill-Climbing algorithm
[25] is a simple and practical gradient descent learning al-
gorithm suitable for hybrid strategies, which is an im-
provement of Q-learning. /e state-action gain function Qd

of PHC is the same as Q-learning, but the policy update
approach of Q-learning is no longer followed, but the hybrid
strategy πd(sk) is updated by executing the hill-climbing
algorithm, as shown in equations (2)–(4). In the formula, the
strategy learning rate is

πd sk, di( 􏼁 � πd sk, di( 􏼁 + Δskdi
, (2)

where

Δskdi
�

− δskdi
, di ≠ argmax

d
Qd sk, d( 􏼁,

􏽘
dj≠di

δskdj
, others,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

δskdi
� min πd sk, di( 􏼁,

δ
Dk − 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼠 􏼡. (4)

4.1.3. WoLF-PHC Algorithm. WoLF-PHC algorithm is an
improvement of PHC algorithm. By introducing WoLF
mechanism, the defender has two different strategy learning
rates: low strategy learning rate δw when winning and high
strategy learning rate δl when losing, as shown in formula (5).
/e two learning rates enable defenders to adapt quickly to
attackers’ strategies when they perform worse than expected
and to learn cautiously when they perform better than expected.
/e most important thing is the introduction of WoLF
mechanism, which guarantees the convergence of the algorithm
[9]. WoLF-PHC algorithm uses average strategy as the criterion
of success and failure, as shown in formulae (6) and (7).

δ �

δw, 􏽘
d∈Dk

πd sk,d( 􏼁Qd sk,d( 􏼁> 􏽘
d∈Dk

πd sk,d( 􏼁Qd sk,d( 􏼁,

δl, others,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

πd(s,d) � πd(s,d) +
1

C(s)
πd(s,d) − πd(s,d)( 􏼁,

(6)

C(s) � C(s) + 1. (7)

4.2. Defense Decision-Making Algorithm Based on Improved
WoLF-PHC. /e decision-making process of our approach
is shown in Figure 5, which consists of five steps. It receives
two types of input data: attack evidence and abnormal

Input: AD − SGM; α, δ, λ, and c

Output: Defense action d
(1) initialize AD − SGM, C(s) � 0, e(s, d) � 0/∗ Network state and attack-defense actions are extracted by Algorithm 1 ∗/
(2) s∗ � get(E) /∗ Getting the current network state from Network E ∗/
(3) repeat:
(4) d∗ � πd(s∗) /∗ Select defense action ∗/
(5) Output d∗; /∗ Feedback defense actions to defenders ∗/
(6) s′ � get(E) /∗ Get the status after the action d∗ is executed ∗/
(7) ρ∗ � Rd(s∗, d∗, s′) + cmaxd′Qd(s′, d′) − Qd(s∗, d∗)

(8) ρg � Rd(s∗, d∗, s′) + cmaxd′Qd(s′, d′) − maxdQd(s∗, d)

(9) for each state-action pair (s, d) except (s∗, d∗) do:
(10) e(s, d) � cλe(s, d)

(11) Qd(s, d) � Qd(s, d) + αρge(s, d)

(12) end for/∗ Update noncurrent eligibility trace (s∗, d∗) and values Qd ∗/
(13) Qd(s∗, d∗) � Qd(s∗, d∗) + αρ∗/∗ Update Qd of (s∗, d∗) ∗/
(14) e(s∗, d∗) � cλe(s∗, d∗) + 1 /∗ Update track of (s∗, d∗)∗/
(15) C(s∗) � C(s∗) + 1
(16) Updating average strategy based on formula (6)
(17) Selecting the learning rate of strategies based on formula (5)
(18) δs∗d � min(πd(s∗, d), δ/(D(s∗) − 1)),∀d ∈ D(s∗)

(19) Δs∗d �
− δs∗d d≠ argmaxdi

Qd(s∗, di)

􏽐dj≠d∗δs∗dj
Others􏼨

(20) πd(s∗, d) � πd(s∗, d) + Δs∗d,∀d ∈ D(s∗) /∗ Update defense strategy ∗/
(21) s∗ � s′
(22) end repeat

ALGORITHM 2: Defense decision-making algorithm.
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evidence. All these pieces of evidence come from real-time
intrusion detection systems. After decision making, the
optimal security strategy is determined against detected
intrusions.

In order to improve the learning speed of WoLF-PHC
algorithm and reduce the dependence of the algorithm on
the amount of data, the eligibility trace is introduced to
improve WoLF-PHC. /e eligibility trace can track specific
state-action trajectories of recent visits and then assign
current returns to the state-action of recent visits. WoLF-
PHC algorithm is an extension of Q-learning algorithm. At
present, there are many algorithms combining Q-learning
with eligibility trace. /is paper improves WoLF-PHC by
using the typical algorithm [10]. /e qualification trace of
each state-action is defined as e(s, a). Suppose s∗ is the
current network state s∗, and the eligibility trace is updated
in the way shown in formula (8). Among them, the trace
attenuation factor is λ.

e(s, d) �
cλe(s, d), s≠ s∗,

cλe(s, d) + 1, s � s∗.
􏼨 (8)

WoLF-PHC algorithm is an extension of Q-learning
algorithm, which belongs to off-policy algorithm. It uses
greedy policy when evaluating defense actions for each
network state and occasionally introduces nongreedy policy
when choosing to perform defense actions in order to learn.
In order to maintain the off-policy characteristics of WoLF-
PHC algorithm, the state-action values are updated by
formulae (9)–(12), in which the defense actions d∗ are

selected for execution s∗ because only the recently visited
status-action pairs will have significantly more eligibility
trace than 0, while most other status-action pairs will have
almost none eligibility trace. In order to reduce the memory
and running time consumption caused by eligibility trace,
only the latest status-action pair eligibility trace can be saved
and updated in practical application.

Qd s
∗
, d
∗

( 􏼁 � Qd s
∗
, d
∗

( 􏼁 + αρ∗, (9)

Qd(s, d) � Qd(s, d) + αρge(s, d), (10)

ρ∗ � Rd s
∗
, d, s′( 􏼁 + cmax

d′
Qd s′, d′( 􏼁 − Qd s

∗
, d
∗

( 􏼁,

(11)

ρg � Rd s
∗
, d
∗
, s′( 􏼁 + cmax

d′
Qd s′, d′( 􏼁 − max

d
Qd s
∗
, d( 􏼁.

(12)

In order to achieve better results, the defense decision-
making approach based on WoLF-PHC needs to set four
parameters α, δ, λ, and c reasonably. (1) /e range of the
payoff learning rate is 0< α< 1./e bigger the representative
α is, the more important the cumulative reward is. /e faster
the learning speed is, the smaller α is and the better the
stability of the algorithm is. (2)/e range of strategy learning
rate 0< δ < 1 is obtained. According to the experiment, we
can get a better result when adopting δl/δw � 4. (3) /e
attenuation factor λ of eligibility trace is in the range of
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Figure 5: /e process of our decision-making approach.
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Figure 4: Q-learning learning mechanism.
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0< λ< 1, which is responsible for the credit allocation of
status-action. It can be regarded as a time scale. /e greater
the credit allocated λ to historical status-action, the greater
the credit allocated to historical status-action. (4) /e range
of the discount factor 0< c< 1 represents the defender’s
preference for immediate return and future return. When c

approaches 0, it means that future returns are irrelevant and
immediate returns are more important. When c approaches
1, it means immediate returns are irrelevant and future
returns are more important.

Agent in WoLF-PHC is the defender in the stochastic
game model of attack-defense AD − SGM, the game state in
agent’s state corresponds to AD − SGM, the defense action
in agent’s behavior corresponds to AD − SGM, the imme-
diate return in agent’s immediate return corresponds to
AD − SGM, and the defense strategy in agent’s strategy
corresponds to AD − SGM.

On the basis of the above, a specific defense decision-
making approach as shown in Algorithm 2 is given. /e first
step of the algorithm is to initialize the stochastic game
model AD − SGM of attack-defense and the related pa-
rameters. /e network state and attack-defense actions are
extracted by Algorithm 1. /e second step is to detect the
current network state by the defender. Steps 3–22 are to
make defense decisions and learn online. Steps 4-5 are to
select defense actions according to the current strategy, steps
6–14 are to update the benefits by using eligibility traces, and
steps 15–21 are the new payoffs using mountain climbing
algorithm to update defense strategy.

/e spatial complexity of the Algorithm 2 mainly
concentrates on the storage of pairs Rd(s, d, s′) such as
e(s, d), πd(s, d), πd(s, d), and Qd(s, d). /e number of states
is |S|. |D| and |A| are the numbers of measures taken by the
defender and attacker in each state, respectively. /e
computational complexity of the proposed algorithm is
O(4 · |S| · |D| + |S|2 · |D|). Compared with the recent
method using evolutionary game model with complexity
O(|S|2 · (|A| + |D|)3) [14], we greatly reduce the computa-
tional complexity and increase the practicability of the al-
gorithm since the proposed algorithm does not need to solve
the game equilibrium.

5. Experimental Analysis

5.1. Experiment Setup. In order to verify the effectiveness of
this approach, a typical enterprise network as shown in
Figure 6 is built for experiment. Attacks and defenses occur
on the intranet, with attackers coming from the extranet. As
a defender, network administrator is responsible for the
security of intranet. Due to the setting of Firewall 1 and
Firewall 2, legal users of the external network can only access
the web server, which can access the database server, FTP
server, and e-mail server.

/e simulation experiment was carried out on a PC with
Intel Core i7-6300HQ @3.40GHz, 32GB RAM memory,
and Windows 10 64 bit operating system. /e Python 3.6.5
emulator was installed, and the vulnerability information in
the experimental network was scanned by Nessus toolkit as
shown in Table 1. /e network topology information was

collected by ArcGis toolkit. We used the Python language to
write the project code. During the experiment, we set up
about 25,000 times of attack-defense strategy studies. /e
experimental results were analyzed and displayed using
Matlab2018a as described in Section 5.3.

Referring to MIT Lincoln Lab attack-defense behavior
database, attack-defense templates are constructed. Attack-
defense maps are divided into attack maps and defense maps
by using attacker host A, web server W, database server D,
FTP server F, and e-mail server E. In order to facilitate
display and description, attack-defense maps are divided
into attack maps and defense maps, as shown in Figures 7
and 8, respectively. /e meaning of defense action in the
defense diagram is shown in Table 2.

5.2. Construction of the Experiment Scenario AD-SGM
(1) N � (attacker, defender) are players participating in

the game representing cyber attackers and defenders,
respectively

Vulnerability
scanning system

VDS

Internet

DMZ

FTP server

Firewall 1
Trusted zone

Firewall 2
Database

server
E-mail
server

Web server

IDS

Attacker

Extranet

Intranet

Figure 6: Experimental network topology.

Table 1: Network vulnerability information.

Attack
identifier Host CVE Target

privilege
tid1 Web server CVE-2015-1635 user
tid2 Web server CVE-2017-7269 root
tid3 Web server CVE-2014-8517 root
tid4 FTP server CVE-2014-3556 root
tid5 E-mail server CVE-2014-4877 root
tid6 Database server CVE-2013-4730 user
tid7 Database server CVE-2016-6662 root

S0(A, root)

S1(W, user)

S2(W, root)
S5(D, user)

S6(D, root)

tid1

tid2

tid3

tid4

tid5

tid6

tid7

tid8

tid9

S3(F, root)

S4(E, root)

Figure 7: Attack graph.
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(2) /e state set of stochastic game is S � (s0, s1,

s2, s3, s4, s5, s6), which consists of network state and is
extracted from the nodes shown in Figures 7 and 8

(3) /e action set of the defender is D � (D0, D1,

D2, D3, D4, D5, D6), D0 � NULL{ }D1 � d1,􏼈 d2}D2 �

d3, d4􏼈 􏼉D3 � d1, d5, d6􏼈 􏼉D4 � d1, d5, d6􏼈 􏼉D5 � d1,􏼈

d2, d7}D6 � d3, d4􏼈 􏼉, and the edges are extracted
from Figure 8

(4) Quantitative results of immediate returns Rd(si,

d, sj) of defenders [16, 26] are

Rd s0,NULL, s0( 􏼁, Rd s0,NULL, s1( 􏼁, Rd s0,NULL, s2( 􏼁( 􏼁 � (0, − 40, − 59),

Rd s1, d1, s0( 􏼁, Rd s1, d1, s1( 􏼁, Rd s1, d1, s2( 􏼁; Rd s1, d2, s0( 􏼁, Rd s1, d2, s1( 􏼁, Rd s1, d2, s2( 􏼁( 􏼁

� (40, 0, − 29; 5, − 15, − 32),

( Rd s2, d3, s0( 􏼁, Rd s2, d3, s1( 􏼁, Rd s2, d3, s2( 􏼁, Rd s2, d3, s3( 􏼁, Rd s2, d3, s4( 􏼁, Rd s2, d3, s5( 􏼁;

Rd s2, d4, s0( 􏼁, Rd s2d4, s1( 􏼁, Rd s2, d4, s2( 􏼁, Rd s2, d4, s3( 􏼁, Rd s2, d4, s4( 􏼁, Rd s2, d4, s5( 􏼁􏼁

� (24, 9, − 15, − 55, − 49, − 65; 19, 5, − 21, − 61, − 72, − 68),

( Rd s3, d1, s2( 􏼁, Rd s3, d1, s3( 􏼁, Rd s3, d1, s6( 􏼁; Rd s3, d5, s2( 􏼁, Rd s3, d5, s3( 􏼁, Rd s3, d5, s6( 􏼁;

Rd s3, d6, s2( 􏼁, Rd s3, d6, s3( 􏼁, Rd s3, d6, s6( 􏼁􏼁

� (21, − 16, − 72; 15, − 23, − 81; − 21, − 36, − 81),

( Rd s4, d1, s2( 􏼁, Rd s4, d1, s4( 􏼁, Rd s4, d1, s6( 􏼁; Rd s4, d5, s2( 􏼁, Rd s4, d5, s4( 􏼁, Rd s4, d5, s6( 􏼁;

Rd s4, d6, s2( 􏼁, Rd s4, d6, s4( 􏼁, Rd s4, d6, s6( 􏼁􏼁

� (26, 0, − 62; 11, − 23, − 75; 9, − 25, − 87),

( Rd s5, d1, s2( 􏼁, Rd s5, d1, s5( 􏼁, Rd s5, d1, s6( 􏼁; Rd s5, d2, s2( 􏼁, Rd s5, d2, s5( 􏼁, Rd s5, d2, s6( 􏼁;

Rd s5, d7, s2( 􏼁, Rd s5, d7, s5( 􏼁, Rd s5, d7, s6( 􏼁􏼁

� (29, 0, − 63; 11, − 21, − 76; 2, − 27, − 88),

( Rd s6, d3, s3( 􏼁, Rd s6, d3, s3( 􏼁, Rd s6, d3, s5( 􏼁, Rd s6, d3, s6( 􏼁; Rd s6, d4, s3( 􏼁,

Rd s6, d4, s4( 􏼁, Rd s6, d4, s5( 􏼁, Rd s6, d4, s6( 􏼁􏼁

� (− 23, − 21, − 19, − 42; − 28, − 31, − 24, − 49).

(13)

Table 2: Defense action description.

Atomic defense action d1 d2 d3 d4 d5 d6 d7

Renew root data ✓ ✓ ✓ ✓
Limit SYN/ICMPpackets ✓
Install Oracle patches ✓ ✓
Reinstall listener program ✓ ✓
Uninstall delete Trojan ✓ ✓
Limit access toMDSYS ✓ ✓
Restart database server ✓ ✓ ✓
Delete suspicious account ✓ ✓
Add physical resource ✓ ✓ ✓ ✓
Repair database ✓ ✓ ✓
Limit packets from ports ✓ ✓ ✓ ✓

S0(A, root)

S1(W, user)

S2(W, root)
S5(D, user)

S6(D, root)

d3

d3

d4

d1/d2/d7

S3(F, root)

S4(E, root)
d1/d5/d6

d1/d5/d6
d4

d3

d1/d2

Figure 8: Defense graph.

10 Security and Communication Networks



(5) In order to detect the learning performance of the
Algorithm 2 more fully, the defender’s state-action
payoffQd(si, d) is initialized with a unified 0, without
introducing additional prior knowledge

(6) Defender’s defense strategy adopts average strategy
to initialize, that is, πd(sk, d1) � πd(sk, d2) � · · · �

πd(sk, dm), 􏽐d∈D(sk)πd(sk, d) � 1,∀sk ∈ S, where no
additional prior knowledge is introduced

5.3. Testing and Analysis. /e experiment in this section has
three purposes. /e first is to test the influence of different
parameter settings on the proposed Algorithm 2 so as to find
out the experimental parameters suitable for this scenario.
/e second is to compare this approach with the existing
typical approaches to verify the advancement of this ap-
proach. /e third is to test the effectiveness of WoLF-PHC
algorithm improvement based on eligibility trace.

From Figures 7 and 8, we can see that the state of attack-
defense strategy selection is the most complex and repre-
sentative. /erefore, the performance of the algorithm is
analyzed by the experimental state selection, and the other
network state analysis approaches are the same.

5.3.1. Parameter Test and Analysis. Different parameters will
affect the speed and effect of learning. At present, there is no
relevant theory to determine the specific parameters. In
Section 4, the relevant parameters are preliminarily ana-
lyzed. On this basis, the different parameter settings are
further tested to find the parameter settings suitable for this
attack-defense scenario. Six different parameter settings
were tested. Specific parameter settings are shown in Table 3.
In the experiment, the attacker’s initial strategy is random
strategy, and the learning mechanism is the same as the
approach in this paper.

/e probability of the defender’s choice of defense ac-
tions and sums in state is shown in Figure 9. /e learning
speed and convergence of the algorithm under different
parameter settings can be observed from Figure 9, which
shows that the learning speed of settings 1, 3, and 6 is faster,
and the best strategy can be obtained after learning less than
1500 times under the three settings, but convergence of 3
and 6 is poor. Although the best strategy can be learned by
settings 3 and 6, there will be oscillation afterwards, and the
stability of setting 1 is not suitable.

Defense payoff can represent the degree of optimization
of the strategy. In order to ensure that the payoff value does
not reflect only one defense result, the average of 1000
defense gains is taken, and the change of the average payoff
per 1000 defense gains is shown in Figure 10. As can be seen
from Figure 10, the benefits of Set 3 are significantly lower
than those of other settings, but the advantages and dis-
advantages of other settings are difficult to distinguish. In
order to display more intuitively, the average value of 25,000
defense gains calculated under different settings in Figure 10
is shown in Figure 11. From Figure 11, we can see that the
average value of settings 1 and 5 is higher. For further
comparison, the standard deviation of settings 1 and 5 is

calculated one step on the basis of the average value to reflect
the discreteness of the gains. As shown in Figure 12, the
standard deviations of setting 1 and setting 6 are small.
Moreover, the result of setting 1 is smaller than setting 6.

In conclusion, setting 1 of the six sets of parameters is the
most suitable for this scenario. Since setting 1 has achieved
an ideal effect and can meet the experimental requirements,
it is no longer necessary to further optimize the parameters.

5.3.2. Comparisons. In this section, stochastic game [16] and
evolutionary game [20] are selected to conduct comparative
experiments with this approach. According to the difference
of attacker’s learning ability, this section designs two groups
of comparative experiments. In the first group, the attacker’s
learning ability is weak and will not make adjustments to the
attack-defense results. In the second group, the attacker’s
learning ability is strong and adopts the same learning
mechanism as the approach in this paper. In both groups,
the initial strategies of attackers were random strategies.

In the first group of experiments, the defense strategy of
this approach is as shown in Figure 9(a). /e defense strategies
calculated by the approach [16] are πd(s2, d3) � 0.7,
πd(s2, d4) � 0.3. /e defense strategies of [20] are evolu-
tionarily stable and balanced. And the defense strategies of [20]
are πd(s2, d3) � 0.8, πd(s2, d4) � 0.2. Its average earnings per
1000 times change as shown in Figure 13.

From the results of the strategies and benefits of the three
approaches, we can see that the approach in this paper can
learn from the attacker’s strategies and adjust to the optimal
strategy, so the approach in this paper can obtain the highest
benefits. Wei et al. [16] adopted a fixed strategy when
confronting any attacker. When the attacker is constrained
by bounded rationality and does not adopt Nash equilibrium
strategy, the benefit of this approach is low. Although the
learning factors of both attackers and defenders are taken
into account in [20], the parameters required in the model
are difficult to quantify accurately, which results in the
deviation between the final results and the actual results, so
the benefit of the approach is still lower than that of the
approach in this paper.

In the second group of experiments, the results of
[16, 20] are still as πd(s2, d3) � 0.7, πd(s2, d4) � 0.3 and
πd(s2, d3) � 0.8, πd(s2, d4) � 0.2. /e decision making of
this approach is shown in Figure 14. After about 1800 times
of learning, the approach achieves stability and converges to
the same defense strategy as that of [16]. As can be seen from
Figure 15, the payoff of [20] is lower than that of other two
approaches. /e average payoff of this approach in the first
2000 defenses is higher than that of [26], and then it is almost
the same as that of [26]. Combining Figures 14 and 15, we
can see that the learning attacker cannot get Nash equi-
librium strategy at the initial stage, and the approach in this
paper is better than that in [26]. When the attacker learns to
get Nash equilibrium strategy, the approach in this paper can
converge to Nash equilibrium strategy. At this time, the
performance of this approach is the same as that in [26].

In conclusion, when facing the attackers with weak
learning ability, the approach in this paper is superior to that
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Table 3: Di�erent parameter settings.

Set α δl δw λ c

1 0.01 0.004 0.001 0.01 0.01
2 0.1 0.004 0.001 0.01 0.01
3 0.01 0.004 0.001 0.01 0.1
4 0.01 0.004 0.001 0.1 0.01
5 0.01 0.04 0.01 0.01 0.01
6 0.01 0.008 0.001 0.01 0.01
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Figure 9: Defense decision making under di�erent parameter settings. (a) Defense decision under setting 1. (b) Defense decision under
setting 2. (c) Defense decision under setting 3. (d) Defense decision under setting 4. (e) Defense decision under setting 5. (f ) Defense
decision under setting 6.
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in [16, 20]. When facing an attacker with strong learning
ability, if the attacker has not obtained Nash equilibrium
through learning, this approach is still better than [16, 20]. If
the attacker obtains Nash equilibrium through learning, this
paper can also obtain the same Nash equilibrium strategy as
[26] and obtain its phase. �e same e�ect is superior to that
in [20].

5.3.3. Test Comparison with and without Eligibility Trace.
�is section tests the actual e�ect of the eligibility traces on
the Algorithm 2. �e e�ect of eligibility traces on strategy
selection is shown in Figure 16, from which we can see that
the learning speed of the algorithm is faster when the
quali�ed trace is available. After 1000 times of learning, the

algorithm can converge to the optimal strategy. When the
quali�ed trace is not available, the algorithm needs about
2500 times of learning to converge.

Average earnings per 1,000 times change as shown in
Figure 17, from which we can see that the bene�ts of the
algorithm are almost the same when there is or not any
quali�ed trace after convergence. From Figure 17, we can see
that 3000 defenses before convergence have higher returns
from quali�ed trails than those from unquali�ed trails. In
order to further verify this, the average of the �rst 3000
defense gains under quali�ed trails and unquali�ed trails is
counted 10 times each, respectively. �e results are shown in
Figure 18, which further proves that in the preconvergence
defense phase, quali�ed traces are better than unquali�ed
traces.

�e addition of eligibility trace accelerates the learning
speed but also brings additional memory and computing
overhead. In the experiment, only 10 state-action pairs that
were recently accessed were saved, which e�ectively reduced
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the increase of memory consumption. In order to test the
computational cost of qualified trail, the time of 100,000
defense decisions made by the algorithm was counted for 20
times with and without qualified trail. /e average of 20
times was 9.51s for qualified trail and 3.74 s for unqualified
trail. Although the introduction of eligibility traces will
increase the decision-making time by nearly 2.5 times, the
time required for 100,000 decisions after the introduction of
eligibility traces is still only 9.51 s, which can still meet the
real-time requirements.

In summary, the introduction of eligibility trace at the
expense of a small amount of memory and computing
overhead can effectively increase the learning speed of the
algorithm and improve the defense gains.

5.4. Comprehensive Comparisons. /is approach is com-
pared with some typical research results, as shown in Table 4.
[3, 12, 14, 16] is based on the assumption of complete ra-
tionality. /e equilibrium strategy obtained by it is difficult
to appear in practice and has a low guiding effect on actual
defense decision making. [20] and this paper have more
practicability on the premise of bounded rationality hy-
pothesis, but [20] is based on the theory of biological
evolution and mainly studies population evolution. /e core
of game analysis is not the optimal strategy choice of players,
but the strategy adjustment process, trend, and stability of
group members composed of bounded rational players, and
the stability here refers to group members. /is approach is
not suitable for guiding individual real-time decision
making because the proportion of specific strategies is
unchanged and not the strategy of a player. On the contrary,
the defender of the proposed approach adopts reinforcement
learning mechanism, which is based on systematic feedback
to learn in the confrontation with the attacker and is more
suitable for the study of individual strategies.

6. Conclusions and Future Works

In this paper, cyber attack-defense confrontation is ab-
stracted as a stochastic game problem under the restriction
of limited rationality. A host-centered attack-defense graph
model is proposed to extract network state and attack-de-
fense action, and an algorithm to generate attack-defense
graph is designed to effectively compress the game state
space. /e WoLF-PHC-based defense decision approach is
proposed to overcome the problem, which enables defenders
under bounded rationality to make optimal choices when
facing different attackers. /e lattice improves the WoLF-

PHC algorithm, speeds up the defender’s learning speed, and
reduces the algorithm’s dependence on data. /is approach
not only satisfies the constraints of bounded rationality but
also does not require the defender to know too much in-
formation about the attacker. It is a more practical defense
decision-making approach.

/e future work is to further optimize the winning and
losing criteria of WoLF-PHC algorithm for specific attack-
defense scenarios, in order to speed up defense learning and
increase defense gains.
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Most network security research studies based on signaling games assume that either the attacker or the defender is the sender of
the signal and the other party is the receiver of the signal.�e attack and defense process is commonly modeled and analyzed from
the perspective of one-way signal transmission. Aiming at the reality of two-way signal transmission in network attack and defense
confrontation, we propose a method of active defense strategy selection based on a two-way signaling game. In this paper, a two-
way signaling game model is constructed to analyze the network attack and defense processes. Based on the solution of a perfect
Bayesian equilibrium, a defense strategy selection algorithm is presented. �e feasibility and e�ectiveness of the method are
veri�ed using examples from real-world applications. In addition, the mechanism of the deception signal is analyzed, and
conclusions for guiding the selection of active defense strategies are provided.

1. Introduction

Network information technology is developing rapidly, and
interconnected systems are on the rise [1]. However, net-
work security incidents pose a major and perpetual problem
[2]. Defense technologies represented by �rewalls, intrusion
detection, and antivirus software provide passive response
defense based on a priori knowledge and attack character-
istics, but they cannot respond to new types of complex
network attacks in an e�ective and timely manner [3]. If the
defending party can actively select a targeted defense strategy
by predicting the attacker’s actions and disrupt or block the
attack process, while simultaneously maximizing its own
bene�ts, then the defense may be called an active defense [4].
�e essence of cybersecurity is a battle between the o�ense
and defense. �e e�ectiveness of the defense depends not
only on its own strategic action, but also in�uenced and
constrained by the attacker’s action [5]. �e key issue is how
to select the optimal active defense strategy in an in-
formation-constrained confrontation environment.

�e characteristics of opposite goals, strategic de-
pendence, and noncooperative relationships in network

attack and defense are in line with the core philosophy of
game theory, namely, optimal decision in an environment of
con�ict. Some scholars, such as the authors of Refs. [6–11],
have established network security models based on game
theory, analyzed the o�ensive and defensive confrontation
process, and solved the game equilibrium to determine the
defense strategy and guide defense actions. We classi�ed and
analyzed the existing research results by combining the two
factors of game information and action timing and came to
the following conclusions:

(1) In a static game with complete information, there are
many premise assumptions and the model is easy to
establish, as demonstrated in Ref. [12].

(2) In a dynamic game with complete information, given
the sustained nature of the o�ensive and defensive
confrontation process, previous actions could be
studied to a�ect the subsequent game process, as
shown in Ref. [13].

(3) In a static game with incomplete information, the
players may use the static Bayes’ rule to infer the
opponent’s private information and break through

Hindawi
Security and Communication Networks
Volume 2019, Article ID 1362964, 14 pages
https://doi.org/10.1155/2019/1362964

mailto:wlby_zzmy_henan@163.com
https://orcid.org/0000-0001-9446-7426
https://orcid.org/0000-0002-1649-7336
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/1362964


the complete information assumption, such as in Ref.
[14].

(4) In a dynamic game with incomplete information, the
late player observes the partial action of the early
player, even without fully understanding the be-
havior type. However, since the behavior is type
dependent, one can modify the a priori judgment of
the behavior type of the early player by using the
dynamic Bayes’ rule, as depicted in Ref. [15]. Since
neither the offense player nor the defense player can
fully understand the opponent’s information,
influenced by the dynamic and persistent nature of
the confrontation process, the dynamic game with
incomplete information is more in line with the
actual network attack and defense. Hence, this type
of game is the focus of current network security game
research.

A signaling game is a typical dynamic game with in-
complete information, which provides a formal mathe-
matical way to analyze how identity and deception are
coupled in cyber-social systems. [16] It describes the stra-
tegic interplay of the game process through signal trans-
mission [17], which is well-suited for studying the selection
of active defense strategy. In Ref. [18], from the perspective
of dynamic confrontation and limited information, a two-
stage signaling game model is constructed to derive an
optimal defense strategy. As demonstrated in Ref. [19], the
signaling game model can be used to analyze the moving
target defense. 1e defense side can alter the information
asymmetry of the two sides by releasing the dynamically
transformed signal and thereby expand its own benefits. In
Ref. [20], the DDoS attack and defense process is modeled as
a multistage signaling game, and an equilibrium solution is
found. Moreover, the server port hopping defense strategy
has been demonstrated to be effective. In Ref. [21], a mul-
tistage offensive and defensive signaling game model is
constructed for modeling the multistage dynamic attack and
defense process under incomplete information constraints.
Also, the signal attenuation factor is used to quantify the
influence of the defensive signal of the defending party. In
Ref. [22], to address the spear-phishing attack of industrial
control systems, a multistage offensive and defensive game
model is established. Defense strategies are selected based on
the comprehensive consideration of the benefits and costs.
Finally, Ref. [23] analyzes the security issues of the Internet
of 1ings through a multistage game model and provides
specific defense strategies.

Despite their strengths, all the studies above assume that
the network attack and defense process involve only one-
way signal transmission, so the attack and defense process is
modeled and analyzed by designating either the attacker or
defender as the signal sender and the other party as the signal
receiver. However, in an actual network attack and defense
process, the attacker and the defender will have a series of
strategic interactions. 1e attack and defense parties are
generally both senders and receivers of signals. If the
sender’s transmitted signal is viewed as a stimulus, then the
response chosen by the recipient is a reaction. In a two-way

sustained stimulus-response process, the defender and the
attacker are constantly adjusting and optimizing their re-
spective strategies, thus dynamically propelling the attack
and defense evolution [24]. 1erefore, the game signal in
network attack and defense should be a two-way send-and-
receive mechanism.

To address the problem described above, we construct a
two-way signaling gamemodel to analyze the network attack
and defense processes based on a two-way transmission
mechanism of actual attack and defense signals. Based on the
solution of the perfect Bayesian equilibrium, a defense
strategy selection algorithm is presented. 1e main contri-
butions of this work are as follows:

(1) Two-way signal transmission mechanism: both the
offense and defense parties play a dual role of the
sender and receiver. While affecting the other party’s
strategy selection by releasing the signal, they are also
affected by the signal released by the other party.

(2) Game signal set containing both true and fake sig-
nals: in order to disrupt the cognitive decision-
making process of the other party, both the offense
and defense sides in the process of network con-
frontation use information countermeasures that
release a mixture of true and false signals. Since the
signal recipient has a certain discriminating ability
against false signals, the deceptive effect of the false
signal diminishes as the attack and defense game
progresses.

(3) Dynamic multistage game process: the offensive and
defensive confrontation continues in multiple stages
as both sides continue to learn and evolve based on
the interaction of signals, dynamically adjust the
action strategy, and maximize their gains. 1rough a
two-way signal transmission mechanism, the
method proposed in this paper can more accurately
characterize the offensive and defensive strategy
confrontation process. Hence, this method more
closely models an actual network attack and defense
process. It also serves as a better theoretical refer-
ence, providing practical guidance in the selection of
active defense strategies under dynamic conditions
of incomplete information.

2. Construction of a Two-Way Attack and
Defense Game Signal Model

2.1. Analysis of Attack and Defense Game Process

2.1.1. Basic Signaling Game Process. 1e basic signaling
game consists of two players: the signal sender and the signal
receiver. First, according to the Harsanyi conversion [25],
the virtual player “Nature” selects the type of signal sender as
θ and transforms the selection problem under the condition
of incomplete information into a selection problem under
the condition of uncertainty type. 1e signal sender knows
that its type is θ, but the signal receiver only knows the a
priori probability P(θ) that the sender belongs to type θ. 1e
signal sender releases a signal H, and the signal receiver,
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having observed signal H, uses Bayes’ rule to deduce the
posteriori probability P(θ | H) from the a priori probability
P(θ) and subsequently selects an action strategy. 1e signal
sender determines its own action strategy by predicting the
signal receiver’s action strategy, and both parties strive to
maximize their respective gains. 1e process of the basic
signaling game is shown in Figure 1.

2.1.2. Two-Way Attack and Defense Signaling Game Process.
Network confrontations are dynamic and sustained. 1e
attacker and the defender take sequential actions, and each
party selects its own action strategy after observing the signal
released by the other party. 1e two-way signaling game
process is shown in Figure 2.

(1) Initial Configuration (ICN). 1e defender acts as the
signal sender, and the attacker acts as the signal receiver.1e
defender deploys the network information system and
configures the network topography, IP address, and network
segmentation. Since the network must provide services to
the outside world, it is characterized by open sharing, in-
terconnection, and interoperability. 1e network must also
have homologous, isomorphic, and homogenous charac-
teristics of information network products. 1e attacker can
gather information on the initial configuration of the de-
fender through a variety of avenues, including infiltration by
social engineering means, continuous scanning and de-
tection, and public information acquisition [26]. Such in-
formation serves as the basis for the attacker to launch a
network attack. In this work, the information is treated as a
signalHD released by the defender.1e attacker observes the
signal HD, corrects the a priori judgment regarding the type
of defender, and identifies its attack strategy. 1e game
process is shown in the S1 stage of Figure 2.

(2) Dynamic Confrontation (DCN). Both the offense and
defense sides are constantly switching between the role of the
signal sender and the signal receiver. Each stage of the game
consists of a basic signaling game, as shown in the S2, S3, and
Si stages in Figure 2. In the S2 phase, the attacker selects the
attack strategy and releases the signal HA. 1e defender
receives the signal HA, corrects the a priori judgment about
the type of the attacker, and selects the defense strategy
accordingly. In the S3 stage, the defender releases the signal
HD and the attacker receives the signalHD and again corrects
the a priori assessment regarding the type of the defender to
determine the attack strategy. In the process of dynamic
confrontation, the signal is transmitted in both directions,
and both the offense and defense sides use Bayes’ rule to
incrementally correct their estimate of the true type of the
other party. From the perspective of the defender, the ter-
mination condition of the game is when the attacker stops
the attack and no longer releases signals.1e game process is
shown in the Sn phase of Figure 2.

2.2. Definition of Two-Way Attack-Defense Signaling Game
Model. 1e signal plays a role in the strategic interaction
between the sender and receiver. 1e sender of the signal

determines the content of the signal and influences the
recipient’s action strategy through the signal. According to
the Cyber Kill Chain model [27], the first stage of network
reconnaissance is an intelligence gathering activity, such as
detection and scanning, which is conducted by the attacker
on the defender.1is may be regarded as receiving the signal
released by the defender. In the course of the confrontation,
the sender of the signal may adopt the idea of deception by
releasing signals that do not match its own type for the
purpose of misleading the other party’s judgment and
expanding its own gain [28]. 1erefore, the signals trans-
mitted by both the offense and defense parties can be divided
into two types: real signals and deception signals.

Definition 1 (real signal (RS)). A real signal is a signal that
reflects the true type of the player. 1e player chooses the
action strategy according to its own type. In the process of
implementing its strategy, some private information is in-
evitably exposed; this information is transmitted to the
receiver as a real signal. A real signal is accompanied by an
action strategy, and the release of a real signal does not
require additional cost.

Definition 2 (deception signal (DS)). A deception signal is a
signal that does not match the true type of the player. In
order to conceal its real type, the player induces the signal
receiver to establish a wrong correction to the a priori
probability by sending a signal that does not match its type,
thereby rendering the receiver into a passive state. Since a
signal will not be generated for no reason, the deceptive
player must pay an extra cost to release the deceptive signal
[29]. For example, if a low-defense user wishes to spoof as a
high-defense user, it must deploy some camouflage facility
and pay a certain defense cost to release the spoofing signal.
1e release of defensive signals by the defense player is a
concrete manifestation of the active defense philosophy [30],
in line with the deceptive concept that “when we are able to
attack, we must seem unable; when using our forces, we
must seem inactive” in Sun Tzu’s 6e Art of War.

Based on the above analysis, a two-way signaling game
(TWSG) model is constructed for the two-way transmission
mechanism in the actual network attack and defense con-
frontation process.

Signal sender

Receive signal

Modify the probability
of sender type θ through
posteriori assessment of

P(θ | H)

Select action strategy

Signal receiver

Probability for “Nature” to select type θ of signal sender

Select action strategy

Send signal H

Figure 1: 1e basic signaling game process.
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Definition 3. 1e TWSG model has ten elements, where
TWSG � (N,Θ, H, T, σ, ξ, S, P, 􏽥P, U).

① N � (ND, NA) is the player space of the game. It
includes two players: the defender ND and the at-
tacker NA.

② Θ � (θD, θA) is the type space. θD is the type of the
defender, θD � (ϕi | i � 1, 2, . . . n), n≥ 2, and θA is
the type of the attacker, θA � (φj | j � 1, 2, . . . m),

m≥ 2. 1e type of the player is private information,
determined by the action strategy, and the player type
can affect the game return of both parties.

③ H � (HD, HA) is the signal space. HD is the defense
signal, HD � (hDk | k � 1, 2, . . . v), v≥ 2, and HA is
the attack signal, HA � (hAl | l � 1, 2, . . . w), w≥ 2.
1e signal receiver can estimate the type of sender
according to the signal received, and the signal space

Defense strategy

Send signal

Defender Attacker

Modify probability for
defender type

Stage S2

Stage S3

Receive signalStage S1

HD

HA

HD

HA

HD

Probability for “Nature” to select type θ of signal sender

Attack strategy

Send signal

Receive signal

Attack strategy

Send signal

Receive signal

Receive signal

Stage Si

……

Stop attack

Defense strategy

Send signal

Receive signal

Stage Sn

……

ICN

DCN

Defense strategy

Send signal

Modify probability for
defender type

Modify probability for
attacker type

Modify probability for
attacker type

Modify probability for
defender type

Figure 2: Two-way signaling game process.
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logically corresponds to the type space. However,
due to the existence of the spoofing signal, a specific
signal does not have a strict correspondence re-
lationship with the specific type of the attacker or
defender.

④ T is the number of game stages, and T � (1,

2, 3, . . . , t), t≥ 3. 1e two-way signaling game con-
tinues inmultiple stages, and the tth stage of the game
is represented as TWSG(t).

⑤ σ is the spoofing signal attenuation factor. After
multiple strategic interactions between the attacker
and defender, the two sides become more familiar
with each other, and the influence of deception
signals is gradually attenuated. 1e posteriori
probability generated in the tth stage of the game is
modified by the factor σt to make it more realistic,
where 0≤ σt ≤ 1. 1e initial stage deception signal is
not attenuated. 1e degree of attenuation of the
deception signal at the TWSG(t) stage is expressed as
σt � σt− 1. For a sufficiently large T, σT � σT− 1 ≈ 0,
and the influence of the spoofing signal disappears
completely. 1e signal and type constitute a corre-
sponding relationship, and the two-way signaling
game degenerates into a static game of incomplete
information.

⑥ ξ is the gain discount factor and ξ represents the
discount ratio of the gain in the t+ 1 stage as well as
the gain in the t-stage. 1e discount ratio is used to
convert the gain of a future stage into the present
value.

⑦ S � (SD, SA) is the strategy space. SD is a defensive
party strategy, SD � dg | g � 1, 2, . . .􏽮 􏽯 and SA is an
attacker party strategy, SA � ah | h � 1, 2, . . .􏼈 􏼉.

⑧ P � (PD, PA) is the a priori probability space. PD is
the set of a priori probability of the defender, and it
represents the a priori probability of the attacker’s
type known to the defender, where PD ≠∅,
PD � [pD1, pD2, . . . , pDT]. PA is the a priori proba-
bility of the attacker, and it represents the a priori
probability of the defender’s type known to the at-
tacker, where PA ≠∅, PA � [pA1, pA2, . . . , pAT].

⑨ 􏽥P � (􏽥PD, 􏽥PA) is the posteriori probability space. 􏽥PD is
a set of posteriori probability of the defender,
meaning the defender’s posteriori assessment of the
attacker’s type, where 􏽥PD(φj | hl) � (εD1, εD2, . . . ,

εDT). 􏽥PA is the attacker’s posteriori probability set,
meaning the attacker’s posteriori assessment of
the defender’s type, where 􏽥PA(ϕi | hk) � (εA1, εA2,

. . . , εAT).
⑩ U � (UD, UA) is the gain space. UD and UA represent

the defender’s gain and the attacker’s gain,
respectively.

2.3. Gain Calculation. Based on the characteristics of the
two-way signaling game model, we provide the following
definition and calculation method for the game return.

Definition 4. 1e system damage cost (SDC), attack cost
(AC), defense cost (DC), and related definitions and cal-
culation methods can be found in Refs. [23, 31, 32]. Among
them, SDC is affected by the combination of attack and
defense strategies and is often recorded as SDC(dg, ah),
which represents the value that the system suffers when the
defense strategy is dg and the attack strategy is ah.

Definition 5 (deception cost). 1e deception defense cost
(DDC) is the cost incurred to the defense party for actively
releasing a spoofing signal to confuse the attacker. 1e
deception attack cost (DAC) is the cost incurred to the
attacking party for actively releasing a spoofing signal to
confuse the defender.

According to the cost/reward calculation method, the
returns of the attacker are the SDC and the total cost is the
sum of the AC and DAC. 1e defender’s cost is the sum of
the SDC, DC, and DDC.

1e discount factor ξ is used to convert future earnings
into current gain. 1e gain target functions of the offensive
and defensive parties can be expressed, respectively, as
follows:

UA dg, ah, t􏼐 􏼑 � 􏽘
g,h,t

ξt− 1 SDC dg, ah􏼐 􏼑 − AC − DAC􏽨 􏽩,

UD dg, ah, t􏼐 􏼑 � − 􏽘
g,h,t

ξt− 1 SDC dg, ah􏼐 􏼑 + DC + DDC􏽨 􏽩.

(1)

According to the attack-defense types of θA and θD, the
attack-defense strategies can be divided into different levels,
such as enhanced type and regular type. 1e costs and
returns of the strategies at the same level are basically the
same. For example, if an attack level contains a total of h
attack policies, then the probability that the attacker selects
the strategy ah is 1/h. 1e gain from this attack level can be
expressed as an average of UA(dg, ah, t) � 􏽐hUA(dg, ah, t)/h.
Similarly, if a defense level has a total of g defensive
strategies, the gain of the defense level is
UD(dg, ah, t) � 􏽐gUD((dg, ah, t))/g.

3. Two-Way Signaling Game Equilibrium
Solution and Defense Strategy Selection

A two-way signaling game is a finite game consisting of
several basic signaling games. In the game, the attacker and
defender alternately act as signal senders and receivers and
the single role equilibrium solution is no longer applicable.
In this paper, we first present the solution process for a one-
stage game equilibrium and then apply it to a multistage
equilibrium solution.

We carry out the calculation and analysis for the single-
stage game equilibrium solution by referring to the signal
sender as the Leader and the signal receiver as the Follower.
1e relevant parameters are set as follows:

① Signal sender action strategy l1, l2, . . . , ln􏼈 􏼉

② Signal receiver action strategy f1, f2, . . . , fm􏼈 􏼉
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③ Defender type space θD � (ϕDH, ϕDM)� (enhanced
type defense, regular type defense)

④ Defender’s signal spaceHD � (hDH, hDM)� (enhanced
defense signal, regular defense signal)

⑤ Attacker type space θA � (φAH, φAM)� (enhanced
attack, regular attack)

⑥ Attacker signal space HA � (hAH, hAM)� (enhanced
attack signal, regular attack signal)

3.1. Single-Stage Game Equilibrium Solution

Definition 6. 1e TWSG(t) game equilibrium solution is
EQt � (h∗(l∗,Θ), f∗(h), 􏽥PF(Θ | h)), where h∗(l∗,Θ) is the
Leader’s signal strategy, abbreviated as h∗(Θ), f∗(h) is the
Follower’s strategy, abbreviated as f∗(h), and 􏽥PF(Θ | h) is
the Follower’s posteriori probability of the Leader type,
where the parameter F ∈ A, D{ } indicates that the Follower
can be an attacker or defender in different game stages,
abbreviated as 􏽥PF(Θ). According to game theory, the
equilibrium should satisfy two conditions:

(i) f∗(h) ∈ argmaxf ∈F 􏽐 􏽥PF(Θ | h)UF(h∗(Θ), f,Θ),
indicating that under the condition of posteriori
probability 􏽥PF(Θ | h), the Follower is the optimal
strategy for the Leader

(ii) h∗(Θ) ∈ argmaxh∈HUL(h, f∗(h),Θ), indicating that
the Leader is the optimal strategy for the Follower

Here, 􏽥PF(Θ | h) represents the posteriori probability of
the Leader type calculated for the Follower based on a priori
probability P, observed signal h, and its own strategy f∗(h).

1e steps for solving the perfect Bayesian equilibrium is
more complex, and the entire process may be divided into
the following three steps:

(1) Step 1. Calculate optimal strategy f∗(h) based on the
signal received by the Follower

(2) Step 2. Leader reduces the optimal strategy h∗(Θ)

(3) Step 3. Select the perfect equilibrium solution
EQt � (h∗(Θ), f∗(h), 􏽥PF(Θ))

1e detailed process is shown in the Appendix.
Based on game theory, the perfect Bayesian equilibrium

solution is the optimal strategy for the player [33].1erefore,
the defender should determine the active defense strategy
based on its role and game equilibrium EQt.

3.2.MultistageGameEquilibriumSolution. In the multistage
continuous confrontation process, the defense party may
incrementally modify the attacker’s motivation and be-
havioral preference using the stimulus-response learning
mechanism, reduce the impact of the attacker’s deception
signal, and implement a targeted active defense strategy to
maximize the expected return.

(1) In the first stage of the game TWSG(1), the Leader is
the defender and the Follower is the attacker.

Based on the Harsanyi conversion, the viral player
“Nature” selects the type of the defender. Type ϕDH is
selected with a priori probability p1, and type ϕDM is
selected with probability 1 − p1. 1e defender releases
the signals hDH and hDM. Based on the observed signals,
the attacker selects strategy types φAH and φAM and
corrects its a priori assessment of the defender type.
According to the single-stage game equilibrium solution
process in Section 3.1, the game equilibrium EQ1 �

(h∗(Θ), f∗(h), 􏽥PA(Θ)) can be obtained for TWSG(1).
1e TWSG(1) game tree is shown in Figure 3.

(2) In the second stage of the game TWSG(2), the Leader
is the attacker and the Follower is the defender.
1e attacker selects the attack strategy according to
EQ1 and sends a signal to the defender. 1e offense
and defense sides have interchanged their role as the
sender and receiver of the signal. 1rough the
TWSG(1) game, both the offensive and defensive
sides have gained some mutual understanding and
the decay phenomenon of the deception signal be-
gins to emerge. At this point, the attacker no longer
relies on “Nature” to select the type. Instead, the
selection is determined by the signal attenuation
factor σ of the deception signal and the posteriori
probability EQ1(􏽥PA(Θ)) in EQ1, as expressed by
σEQ1(

􏽥PA(Θ)). 1e attacker chooses φAH with
probability σEQ1(

􏽥PA(Θ)) and chooses φAM with
probability 1 − σEQ1(

􏽥PA(Θ)). 1e TWSG(2) game
tree is shown in Figure 4.

(3) In the third stage game TWSG(3), the Leader is the
defender and the Follower is the attacker. 1e
TWSG(3) game tree is shown in Figure 5.
1e defender selects the defense strategy according
to EQ2 and sends a signal to the attacker. 1e attack
and defense roles are interchanged again. After the
first two stages of the game, the attenuation effect of
the deception signal is more pronounced, as rep-
resented by the expression σ2EQ2(􏽥PD(Θ)). 1e
defender chooses ϕDH with probability σ2EQ2
(􏽥PD(Θ)) and selects ϕDM with probability
1 − σ2EQ2(

􏽥PD(Θ)).
(4) In the T-stage of the game TWSG(T), the Leader is

the defender and the Follower is the attacker.

As described in Section 2.1.2, both the attacker and the
defender continuously interchange their roles as the sender and
receiver of the signal during the ongoing confrontation, which
dynamically adjusts the strategy and moves the game process
forward. When the game stage T is large enough, the spoofing
signal will be screened by the other party and its influence will
completely disappear. 1e two-way signaling game will de-
generate into a static game of incomplete information. 1e
defender will continue to use defensive measures as the Leader
releases signals to the outside world. 1e attacker will terminate
the confrontational behavior and act only as the Follower to
receive the signals sent by the defender.1eTWSG(T) game tree
is shown in Figure 6.
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3.3. Defense Strategy Selection Algorithm and Comparison
with Results. �e algorithm for designing the active defense
strategy is shown in Algorithm 1.

If the number of types on the defense side is n, the
number of types on the attacker side is m, the number of

game stages is t, the number of defense strategies is g, and
the number of attack strategies is h, then according to Refs.
[17, 21], the time complexity of the active defense strategy
selection algorithm is O(2t(mn +max(g, h)3)) and the
space complexity is O(mnmax(g, h)).

�e results of our method are compared with available
research on signaling games in Table 1.

�e signal transmissionmechanism refers to whether the
signal transmission direction is one-way or two-way in the
model. �e attenuation of the deception signal indicates
whether the model characterizes the deception signal at-
tenuation phenomenon. �e game process is used to dis-
tinguish whether the model has single-stage analysis
capability or multistage analysis capability. �e model ex-
pansion indicates whether the type and strategy of attack and
defense in the model can be expanded. �e better the

hAH hAHhAM hAM

ϕDH ϕDM ϕDH ϕDM ϕDH ϕDM ϕDH ϕDM

Attacker

Attacker Attacker

DefenderDefender

φAH φAM

σEQ1(P~A(Θ)) 1 – σEQ1(P~A(Θ))

Figure 4: TWSG(2) game tree.
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Security and Communication Networks 7



expansion ability, the wider the scope of application of the
model. 1e equilibrium solution of the model represents the
degree of detail of the game equilibrium solution process.
1e more detailed the solution process is, the more practical
it is. In terms of operating costs, it means time complexity
and space complexity of the defense strategy selection al-
gorithm. 1e lower the operation cost, the better; the better
the performance, the better. Most previous studies use the
one-way signal transmission mechanism to model the attack
and defense process, and less consideration is given to the
phenomenon of deception signal attenuation in the con-
frontation. Additionally, some studies are limited to single-
stage game analysis. In this paper, we conduct an in-depth
analysis of the two-way signal transmission mechanism,
establish a two-way signaling gamemodel, provide a detailed
game equilibrium solution process, and design a defense
strategy selection algorithm. In terms of signal transmission
mechanisms, deception signal attenuation, and game pro-
cess, this work comes closer to actual network attack and
defense, and the model has better scalability and practica-
bility. By sending deception signals from both the offense
and defense sides, the parties seek to control the other party’s

strategy selection as well as maximize their own expected
returns. 1is process embodies the confrontational philos-
ophy under the condition of limited information.

Zhu et al. [34] propose two iterative reinforcement
learning algorithms which allow the defender to identify
optimal defenses. Reinforcement learning and signaling
game model have their own advantages and disadvantages,
and they should be adapted to different application sce-
narios. 1e purpose of this paper is to analyze process of
network attack and defense. Reinforcement learning is a
black box. Although the optimal defenses can be obtained,
the analysis process and principles cannot be visualized.
Using the two-way signaling game model to conduct the
network attack-defense confrontation analysis, the analysis
process and principles can be visulized more cleraly.

4. Real Case Application and Results Analysis

4.1. Experimental Environment andParameterConfiguration.
In order to verify the feasibility and effectiveness of the
proposed method, an experimental network environment
was set up to carry out a simulation experiment. 1e

Input: Two-way signaling game model
Output: Active defense strategy

(1) Initialize TWSG � (N,Θ, H, T, σ, ξ, S, P, 􏽥P, U)

(2) Calculate attack gain UA(dg, ah, t);
(3) Calculate defense gain UD(dg, ah, t);
(4) for (t � 1, t≤T, t + +)

(5) {
(6) Initialize P(Θ | h);
(7) Leader releases signal H;
(8) Calculate {Inferred optimal dependence strategy f∗(h) for Follower};
(9) Calculate {Inferred optimal dependence strategy h∗(Θ) for Leader};
(10) Generate posteriori inference of 􏽥PF(Θ) for Follower based on Bayes’ rule;
(11) If 􏽥PF(Θ) and P(Θ | h) not in conflict;
(12) 1en, Create EQt � (h∗(Θ), f∗(h), 􏽥PF(Θ));
(13) Return S∗D;
(14) 􏽥PF(Θ) � σt− 1EQt(

􏽥PF(Θ));
(15) }
(16) End

ALGORITHM 1: Active defense strategy selection algorithm.

Table 1: Comparison of research methods.

Reference Signal transmission
mechanism

Deception signal
attenuation

Game
process

Model
expandability

Equilibrium
solution

Operating
costs Performances

Ref. [16] One-way No Single
stage Average Detailed Low Poor

Ref. [18] One-way No Single
stage Better Simple Low Poor

Ref. [19] One-way No Multistage Average Simple High Medium
Ref. [20] One-way No Multistage Average Simple High Medium
Ref. [21] One-way Yes Multistage Good Detailed High Medium
Ref. [22] One-way Yes Multistage Good Detailed High Medium
1is
study Two-way Yes Multistage Good Detailed High Good
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experimental network was a typical business network, which
was divided into three areas: external network, internal
network, and DMZ. 1e attack and defense scenario are set
as follows: the attacker located in the external network area
and attempted to remotely attack the internal network zone
of the enterprise intranet. 1e defender was the network
security administrator of the enterprise and selected the
active defense strategy according to the method in the paper.
1e topography of the experimental network is shown in
Figure 7.

To ensure the availability and security of the enterprise
network, a set of access control rules were set up between the
network partitions as shown in Table 2. Among them, ⊕
indicates that access was allowed; × indicates that access was
not allowed; and ∅ indicates that access requires certain
permissions.

In general, the database server (databaseserver) stores a
large amount of confidential data of the enterprise, so it was
set as the target of attack in the experiment. According to the
access control rules in Table 2, the attacker cannot directly
access the databaseserver; however, through multiple steps,
the vulnerability of the bastion server in the DMZ area can
be used to obtain access to the internal network area, thereby
achieving the goal of the attack.

Combined with the description of Common Vulnera-
bilities and Exposures (CVE) information in the information
security vulnerability library [35], the vulnerability scanning
tool Nessus was used to detect and discover the security
vulnerabilities that existed in the experimental network. 1e
security vulnerability of the experimental network is given in
Table 3.

1e attacker used the security vulnerabilities and defects
that existed in the enterprise network to select an attack
strategy consisting of several atomic attack actions. 1e
defender selected a defense strategy containing different
atomic defense actions in a targeted manner [36]. According
to the attack and defense classification of the Lincoln
Laboratory [37], we obtained the attack and defense strat-
egies and their operating costs, as shown in Table 4.

In Refs. [17, 28], historical statistical data and expert
experience were combined to provide the SDC values for
different combinations of attack and defense strategies, as
shown in Table 5, and to set ξ � 0.5 and σ � 0.6. In the ninth
stage, ξt− 1

� 0.58 ≈ 0.0039, which shows that after this stage,
the gain has very less influence on the total return calcu-
lation; thus, the number of game stages was set to T � 9.

4.2. Equilibrium Solution and Strategy Selection

4.2.1. TWSG(1) Game Equilibrium and Defense Strategy.
“Nature” selects the type of defense strategy with a proba-
bility of (0.4, 0.6). When the strategy type of the defender is
φDH, the signal hDH is sent out. When the type of the attack
strategy is φAH, there are a total of four strategy combina-
tions: (d1, a1), (d1, a2), (d2, a1), and (d2, a2). 1e SDC
values for different combinations of attack-defense strategies
are given in Table 5.

Under the first strategy combination (d1, a1), the spoof
signal of the attacker is DAC� 0. 1us,

UA d1, a1, 1( 􏼁 � SDC d1, a1( 􏼁 − AC − DAC

� 2320 − 480 − 0 � 1840.
(2)

1e gains for the other three strategy combinations can
be calculated in the same way:

UA(d1, a2, 1) � 1810, UA(d2, a1, 1) � 1900, and
UA(d2, a2, 1) � 1770.

Since the probability for selecting different strategies at
the same attack and defense level is the same, the probability
for each strategy combination is 0.25, and therefore the
average gain u12 of the attacker under strategy type φAH is

u12 � UA ϕDH,φAH, 1( 􏼁

� 0.25UA d1, a1, 1( 􏼁 + 0.25UA d1, a2, 1( 􏼁

+ 0.25UA d2, a1, 1( 􏼁 + 0.25UA d2, a2, 1( 􏼁

� 1830.

(3)

Similarly, we have.
UD(d1, a1, 1) � − [SDC(d1, a1) + DC + DDC] � − 3000,

UD(d1, a2, 1) � − 2950, UD(d2, a1, 1) � − 3020, and UD

(d2, a2, 1) � − 2870.

u11 � UD ϕDH,φAH, 1( 􏼁

� 0.25UD d1, a1, 1( 􏼁 + 0.25UD d1, a2, 1( 􏼁

+ 0.25UD d2, a1, 1( 􏼁 + 0.25UD d2, a2, 1( 􏼁

� − 2960.

(4)

Similarly, the above method can be used to obtain the
offensive and defensive gains under different combinations
of strategy types.

Using the equilibrium solution algorithm of Section 3.3,
a pooling equilibrium solution is obtained for TWSG(1).
1ere are two possible combinations of strategy types:

User
Attacker

DMZ

Webserver

FTPserver

Fileserver

Databaseserver

Firewall

Router

Router

Internet

Staff Staff
Internal networkExternal network

Router

Router

Bastionserver

IDS

Figure 7: Topography of the experimental network.
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Option 1: the defender selects strategy type ϕDH and
releases signal hDH, and the attacker selects strategy
type φAM. 1is time, U11 � − 2960 and U12 �1830.
Option 2: the defender selects strategy type ϕDM and
releases signal hDH, and the attacker selects strategy
type φAM. At this time, U11 � − 2727.5 and U12 � 2037.5.

1erefore, the defender selects option 2 as the defense
strategy, designated as (ϕDM, hDH). 1e game tree of attack
and defense is shown in Figure 8.

4.2.2. TWSG(2) Game Equilibrium and Defense Strategy.
In the TWSG(1) equilibrium solution process, the attacker
may choose either the strategy type φAH or φAM, and
therefore the defender’s posteriori probability of the attacker
is modified to (0.5, 0.5). Using the equalization solution

algorithm described in Section 3.3, the solution of TWSG(2)
remains a pooling equilibrium. 1ere are two possible
combinations of strategies:

(i) 1e attacker selects the strategy type φAH and re-
leases signal hAM, and the defender chooses strategy
type ϕDM

(ii) 1e attacker selects strategy type φAM and releases
signal hAM, and the defender selects strategy type
ϕDM

1erefore, the defender selects the regular type strategy,
designated as ϕDM.

4.2.3. Game Equilibrium and Defense Strategy for Stages
6ree through Nine. Using the above method, the game
equilibrium for each stage is solved sequentially.

Table 2: Access control rules.

Network region External network Internal network DMZ
External network ⊕ × ⊕
Internal network × ⊕ ∅
DMZ ⊕ ∅ ⊕

Table 3: Security vulnerability of the experimental network.

No. Object of action CVE code 1reat type 1reat level
1 Webserver CVE-2015-1635 Code injection Extreme risk
2 Webserver CVE-2017-7269 Buffer zone overflow Extreme risk
3 FTPserver CVE-2014-8517 Operating system command injection High risk
4 Bastionserver CVE-2014-3556 Operating system command injection High risk
5 Fileserver CVE-2013-4730 Buffer zone overflow Extreme risk
6 Databaseserver CVE-2016-6662 Authorization and access control Extreme risk

Table 4: Attack-defense strategy and operating cost.

Atomic attack action
φAH φAM Atomic defense action

ϕDH ϕDM
a1 a2 a3 a4 d1 d2 d3 d4

Install listener program √ √ √ √ Uninstall listener program √ √ √
Remote buffer overflow √ √ √ Buffer overflow protection √ √
Install delete Trojan √ Uninstall delete Trojan √ √
Attack SSH on FTPServer √ √ Restart FTPserver √ √ √
Steal account and password √ √ √ Change account and password √ √ √
Raise authority √ √ Delete suspicious account √ √ √
Remote code injection √ √ Identify code injection √
Violent crack password √ √ Increase password complexity √ √ √ √
AC 480 460 240 220 DC 680 640 440 410
DAC 80 70 30 20 DDC 100 80 40 30

Table 5: SDC values for different combinations of attack-defense strategies.

d d1 d2 d3 d4a
a1 SDC(d1, a1) � 2320 SDC(d2, a1) � 2380 SDC(d3, a1) � 2640 SDC(d4, a1) � 2680
a2 SDC(d1, a2) � 2270 SDC(d2, a2) � 2230 SDC(d3, a2) � 2520 SDC(d4, a2) � 2570
a3 SDC(d1, a3) � 2180 SDC(d2, a3) � 2120 SDC(d3, a3) � 2280 SDC(d4, a3) � 2320
a4 SDC(d1, a4) � 2120 SDC(d2, a4) � 2080 SDC(d3, a4) � 2210 SDC(d4, a4) � 2260
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For stages three through six, as shown in Table 6, the
game equilibrium solution remains a pooling equilibrium,
but the deceptive signal is gradually attenuated. In stages
seven through nine, the deception signal is completely
attenuated, the game evolves into an incomplete in-
formation static game, and the pooling equilibrium so-
lution becomes a separating equilibrium solution. At this
point, the defender selects the enhanced ϕDH as the
strategy type and releases an enhanced signal hDH, des-
ignated as (ϕDH, hDH).

4.3. Experimental Analysis. Based on the above experiments
and data analysis, the following conclusions can be drawn
from the general analysis of the offensive and defensive game
equilibrium and the gain without considering specific pa-
rameter values.

(1) Deception signals can improve attack and defense
performance.
1e game equilibrium solutions for stages one
through six are pooling equilibrium solutions, in-
dicating that, in the initial stage of the offensive and
defensive game, the defender may adopt the regular
type of defense strategy ϕDM and confuse and mis-
lead the attacker by releasing the spoofing signal hDH.
By disrupting the cognition of the attacker, the
defender’s own gain can be maximized at a small
cost. 1e effectiveness of the spoofing signal should
therefore be fully utilized to actively release the
spoofing signal. At the same time, the ability to
identify the attacking party’s spoofing signals should
be enhanced so that the motivation and preference of
the attacker can be recognized as early as possible
and a targeted active defense strategy can be
implemented.

(2) 1e role of the spoofing signal is limited and
attenuated.
As the game progresses, the spoofing signal becomes
gradually attenuated. In the seventh through ninth
stages of the game, the game equilibrium solution

becomes a separating equilibrium solution, in-
dicating that the function of the deception signal has
completely disappeared. 1e defender no longer
releases spoofing signals but instead increases the
defensive input and adopts an enhanced defense
strategy ϕDH to fight against network attacks.
1erefore, when selecting the strategy, one should
avoid the limitations of the spoofing signal and the
attenuation process should be delayed by improving
the quality of the spoofing signal. At the same time,
attention should be given to collecting threat in-
formation and amplifying the limitations of the at-
tacker’s spoofing signal.

(3) Spoofing signals can delay the attack speed and re-
duce the suddenness of the attack.
An analysis of the first through ninth stages of the
game shows that the deception signal released by the
defender can delay the formation of the network kill
chain and gain some reaction time for the defender.
1e deception signal can partially offset the time
asymmetry advantage and the first-move advantage
possessed by the attacker. However, due to the
limitations of the spoofing signal, relying solely on
the spoofing signal itself cannot completely resist
network attacks. 1erefore, the defending party
should evolve according to the game process and use
other means of defense to dynamically adjust the
defense strategy to maximize its own return.

(4) Reduce security losses by enhancing defense
capabilities.

We analyze the gamer’s return when different strategy
types are adopted. In the first through sixth stages, the
defender adopts the regular type of defense strategy and the
average return is − 2853. In the seventh through ninth stages,
the defender chooses the enhanced defense strategy type and
the defender’s average return is − 2496.1is shows that when
faced with continuous high-intensity network attacks, the
defending party should increase its security investment,
enhance its defense capabilities, and reduce its security
losses.

Nature

DefenderDefender

L

F

hDH

AttackervLH vLM AttackerwLH wLM

hDH

p1 = 0.4 1 – p1 = 0.6

hDM
hDM

ϕDH ϕDM

φAH φAM φAH φAM φAH φAMφAH φAM

U11 = –2960

U12 = 1830

U21 = –2785

U22 = 1895

U31 = –3062.5

U32 = 2162.5

U41 = –2727.5

U42 = 2037.5

U51 = –3050

U52 = 1830

U61 = –2875

U62 = 1895

U71 = –3022.5

U72 = 2162.5

U81 = –2692.5

U82 = 2037.5

Figure 8: Game tree of attack and defense.
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5. Conclusion

Active defense is a topic at the forefront of research in the
field of network security. Strategy selection is the key to
defense effectiveness. Under the conditions of attack-de-
fense confrontation and limited information, the defense
party’s optimal strategy is difficult to determine; however, a
signaling game model is an effective way to solve this
problem. To address the problem that one-way signal
transmission does not conform to the actual problem of
network attack and defense, we analyzed the two-way
signal transmission process, constructed a two-way sig-
naling game model, provided a multistage perfect Bayesian
equilibrium solution process, and designed an active de-
fense strategy selection algorithm in this paper. 1e fea-
sibility and effectiveness of the method was verified
through example applications and analysis. By analyzing
the experimental results, we identified the mechanism
driving the effectiveness and limitations of the deceptive
signal and summarized four conclusions that guide the
selection of active defense strategies. Compared with
existing research, the two-way signaling game model
proposed in this paper more accurately represents the
offensive and defensive strategy confrontation process and
more closely resembles an actual network attack and de-
fense process. 1us, our work serves as the basis of,
and provides reference to, the active defense strategy se-
lection process under dynamic incomplete information
conditions.

Appendix

Example Solution of Perfect
Bayesian Equilibrium

Based on the parameter settings in this paper, the attacking
party and defending party each have two strategy types and
release two types of signals. 1e Leader type is represented
by the symbols LH and LM, the signal space is represented by
HLH and HLM, the Follower type is represented by the
symbols FH and FM, {u11, u21, u31, . . ., u81} is the gain of the
Leader, and {u12, u22, u32, . . ., u82} is the gain of the Follower.
1e single-stage signaling game tree is shown in Figure 9.

Step 1. Follower strategy calculation.
First, we assume that the posteriori inference of different

signal sets on the single-stage game tree to be PF(Θ | h). We
then calculate the maximum return maxf∈F 􏽐 PF

(Θ | h)UF(h∗(Θ), f,Θ).
When H� hLH,

max
f∈F

􏽘 PF(Θ | h)UF h
∗
(Θ), f,Θ( 􏼁

� max UF hLH, FH, LH( 􏼁 × 􏽥P LH

􏼌􏼌􏼌􏼌 hLH􏼐 􏼑􏽮

+ UF hLH, FH, LM( 􏼁 × 􏽥P LM

􏼌􏼌􏼌􏼌 hLH􏼐 􏼑, UF hLH, FM, LH( 􏼁

× 􏽥P LH

􏼌􏼌􏼌􏼌 hLH􏼐 􏼑 + UF hLH, FM, LM( 􏼁 × 􏽥P LM

􏼌􏼌􏼌􏼌 hLH􏼐 􏼑􏽯

� max u12 · vLH + u32 · vLM, u22 · vLH + u42 · vLM􏼈 􏼉,

(A.1)

Leader

Leader Leader

L
F

FollowerwLH wLMFollowervLH vLM

LH
PLM

hLM hLM

PLH

hLHhLH

FH FM FH FM FH FM FH FM

LM

u11 
u12 

u21 
u22 

u31 
u32 

u41 
u42 

u51 
u52 

u61 
u62 

u71 
u72 

u81 
u82 

Figure 9: Single-stage signaling game tree.

Table 6: Defense strategies of different stages and attack-defense returns.

Game stage Defense role Equilibrium type Defense strategy Attacker return Defender return
TWSG(1) Leader Pooling equilibrium (ϕDM, hDH) 2037.5 − 2727.5
TWSG(2) Follower Pooling equilibrium ϕDM 2053.5 − 2785.5
TWSG(3) Leader Pooling equilibrium (ϕDM, hDH) 2079.5 − 2833.5
TWSG(4) Follower Pooling equilibrium ϕDM 2112.5 − 2894.5
TWSG(5) Leader Pooling equilibrium (ϕDM, hDH) 2145.5 − 2920.5
TWSG(6) Follower Pooling equilibrium ϕDM 2069.5 − 2956.5
TWSG(7) Leader Separating equilibrium (ϕDH, hDH) 2011 − 2460
TWSG(8) Follower Separating equilibrium ϕDH 2038 − 2492
TWSG(9) Leader Separating equilibrium (ϕDH, hDH) 2089 − 2536
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and the condition vLH + vLM � 1 is satisfied.
Assuming that u12 · vLH + u32 · vLM � u22 · vLH + u42 ·

vLM,
we solve and obtain v∗LH � (u42 − u32/u12 − u22 −

u32 + u42), and v∗LH ∈ [0, 1].
For 0≤ vLH ≤ v∗LH, (3) � u12 · vLH + u32 · vLM and

f∗(h) � FH.
For v∗LH ≤ vLH ≤ 1, (3) � u22 · vLH + u42 · vLM and

f∗(h) � FL.
Similarly, we obtain w∗LH � u82 − u72/u52 − u62 − u72 +

u82.
For 0≤wLH ≤w∗LH, f∗(h) � FH.
For w∗LH ≤wLH ≤ 1, f∗(h) � FL.
By repeating the above process, we calculate f∗(h) for

H� hLM.

Step 2. Leader strategy calculation.

max
h∈H

UL h, f
∗
(h),Θ( 􏼁. (A.2)

For Θ � LH, when 0≤ vLH ≤ v∗LH and 0≤wLH ≤w∗LH,

max
h∈H

UL h, f
∗
(h),Θ( 􏼁

� max UL hLH, FH, LH( 􏼁, UL hLM, FH, LH( 􏼁􏼈 􏼉

� max u11, u51􏼈 􏼉,

(A.3)

and we obtain h∗(LH).
Similarly, we obtain h∗(LH) for different sections of vLH

and wLH.
By repeating the above process, we calculate h∗(LH) for
Θ � LM.

Step 3. Calculate equilibrium solution.

We obtain f∗(h) and h∗(Θ) in Step 1 and Step 2, re-
spectively, by combining this with a priori probability PL
and obtain the posteriori probability 􏽥PF(Θ). If the calculated
value of 􏽥PF(Θ) is not in conflict with the premise hypothesis
P(Θ | h), then the equilibrium solution is EQ � (h∗(Θ),

f∗(h), 􏽥PF(Θ)).
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To restrain escalating computer viruses, new virus patches must be constantly injected into networks. In this scenario, the patch-
developing cost should be balanced against the negative impact of virus. This article focuses on seeking best-balanced patch-
injecting strategies. First, based on a novel virus-patch interactive model, the original problem is reduced to an optimal control
problem, in which (a) each admissible control stands for a feasible patch-injecting strategy and (b) the objective functional
measures the balance of a feasible patch-injecting strategy. Second, the solvability of the optimal control problem is proved, and
the optimality system for solving the problem is derived. Next, a few best-balanced patch-injecting strategies are presented by
solving the corresponding optimality systems. Finally, the effects of some factors on the best balance of a patch-injecting strategy
are examined. Our results will be helpful in defending against virus attacks in a cost-effective way.

1. Introduction

Computer networks bring huge convenience to our work
and life [1, 2]. Meanwhile, digital viruses can propagate
rapidly through computer networks, posing a severe threat to
human society. For example,WannaDecryptor, the notorious
ransomware, has recently swept across the globe, leading to
massive computer paralysis [3]. Consequently, the problem
of how to mitigate the negative impact of computer virus in a
cost-effective way has long been a hotspot of research in the
field of cyber security [4].

To restrain evolving computer viruses, new virus patches
must be constantly injected into networks. In this scenario,
there is an obvious conflict between the patch-developing
cost and the impact of virus; reducing the former would
increase the latter, whereas mitigating the latter would
enhance the former. Therefore, the patch-developing cost
should be balanced against the impact of virus. We refer
to a dynamic patch-injecting strategy that achieves the
best balance between the two aspects as a best-balanced

patch-injecting strategy, and we refer to the problem of
seeking best-balanced patch-injecting strategies as the virus-
patch tradeoff (VPT) problem. Solving the VPT problem
would be helpful in defending against virus attacks in a cost-
effective way.

This article addresses the VPT problem. First, based on
a novel virus-patch interactive model, the original problem
is reduced to an optimal control problem which we refer to
as the VPT control problem, in which (a) each admissible
control stands for a feasible patch-injecting strategy and (b)
the objective functional measures the balance of a feasible
patch-injecting strategy. Second, the solvability of the VPT
control problem is shown, and the optimality system for
solving the VPT control problem is derived. Next, a few best-
balanced patch-injecting strategies are given by solving the
corresponding optimality systems. Finally, the effects of some
factors on the best balance of a patch-injecting strategy are
examined.

The remaining materials are organized in this fashion:
Section 2 reviews the related work. Sections 3 and 4 establish
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2 Security and Communication Networks

and solve the VPT control problem, respectively. Section 5
illustrates how to solve the VPT control problem, and
Section 6 examines the effects of some factors on the best
balance. This work is summarized by Section 7.

2. Related Work

In order to solve the VPT problem, the expected total loss
of all network users resulting from a patch-injecting strategy
must be estimated [5, 6]. As this quantity relies on the
expected network states at all times, we need to characterize
the evolutionary process of the expected network state. The
resulting evolutionary model is essentially a propagation
model that captures the interactive propagation of viruses and
patches [7, 8]. In the available literature, propagation models
of this kind are referred to as Susceptible-Infected-Patched-
Susceptible (SIPS) models.

Compartmental propagation models are propagation
models in which all nodes of the same state are classified
as a class, with the goal of understanding the evolutionary
trend of the size or fraction of each class [9]. Compartmental
models are suited to capturing propagation phenomena
occurring on homogeneously mixed networks but fail to
characterize propagation phenomena occurring on highly
heterogeneous networks. The compartmental SIPS models
proposed in [10–13] take patch forwarding into account but
leave patch injection out of consideration. Very recently, [14]
proposed a compartmental SIPS model with static patch-
injecting mechanism and thereby assessed the effectiveness
of patch injection.

Node-level propagation models are propagation models
in which each node is regarded as a separate class, with
the goal of gaining insight into the evolutionary trend of
the expected network state [15, 16]. One striking advan-
tage of node-level propagation models is that they can
accurately characterize propagation phenomena occurring
on arbitrary networks. With the progress of wireless and
mobile communication technologies,most existing computer
networks admit an irregular topology [17–19]. As a result, a
number of node-level computer virus propagation models
have been advised [20–25]. In particular, [26] introduced
a node-level SIPS model with no patch injection. Recently,
[27] proposed a node-level SIPS model with dynamic patch-
injecting mechanism and thereby addressed a problem that
is something like the VPT problem through differential game
approach. In our opinion, this work has two weaknesses: (i)
It is assumed that the network defender is aware of the total
attack budget of all relevant cyber malefactors. However, in
practice the budget is usually unknown to the defender. (ii) It
is assumed that new patches can be injected into any network
node. Due to the limited network bandwidth, in practice new
patches are typically injected into a small subset of nodes and
then forwarded to the unpatched nodes [28].

Optimal control theory [29, 30] provides a powerful tool
for studying the problem of how to contain the prevalence
of computer virus in a cost-effective way [31–35]. In view
of the defects of the research approach used in [27], in this
paper we deal with the VPT problem through optimal control

approach. For this purpose, we propose a novel node-level
SIPSmodel with dynamic patch-injecting mechanism, where
new patches can be injected into only a small subset of nodes.
Thereby, we accurately estimate the expected total loss of all
network users. On this basis, we reduce the VPT problem
to an optimal control problem and then solve the problem
by means of optimal control theory. Our optimal control
model is promising, because, by collecting and analyzing the
relevant actual data, the model parameters can be estimated
quite accurately.

3. The Modeling of the VPT Problem

This section is devoted to the modeling of the VPT problem.
First, we introduce basic terms and notations. Second, we
establish a node-level SIPS model. Finally, wemodel the VPT
problem as an optimal control problem.

3.1. Terms and Notations. Consider a computer network with𝑁 nodes labeled V1 through V𝑁. Let 𝐺 = (𝑉, 𝐸) denote
the topology of the network, i.e., 𝑉 = {V1, V2, . . . , V𝑁}, and
each edge stands for a communication link between the two
endpoints. Let A = (𝑎𝑖𝑗)𝑁×𝑁 denote the adjacency matrix of𝐺, i.e, 𝑎𝑖𝑗 = 1 or 0 according as {V𝑖, V𝑗} ∈ 𝐸 or not. Suppose
new computer viruses can be injected into any node of the
network and can propagate over the network, and suppose
new virus patches can be injected into only the node subset𝑈 = {V1, V2, . . . , V𝑀} of the network and can be forwarded to
other nodes through the network.

Consider the finite time horizon [0, 𝑇]. Assume each and
every node of the network is in one of three possible states:
susceptible, infected, and patched. Susceptible nodes are nodes
that are not infected with any virus but have not received the
newest patch. This implies these nodes are vulnerable to new
viruses. Infected nodes are nodes that are infected with some
virus. Patched nodes are nodes that are not infected with any
virus and have received the newest patch. This implies that
these nodes possess temporary immunity to new viruses. Let𝑋𝑖(𝑡) = 0, 1, and 2 denote that the node V𝑖 is susceptible,
infected, and patched at time 𝑡, respectively. Then the state
of the network at time 𝑡 can be characterized by the vector

X (𝑡) = (𝑋1 (𝑡) , . . . , 𝑋𝑁 (𝑡)) . (1)

Let 𝑆𝑖(𝑡), 𝐼𝑖(𝑡), and 𝑃𝑖(𝑡) denote the probabilities of the node V𝑖
being susceptible, infected, and patched at time 𝑡, respectively.

𝑆𝑖 (𝑡) = Pr {𝑋𝑖 (𝑡) = 0} ,
𝐼𝑖 (𝑡) = Pr {𝑋𝑖 (𝑡) = 1} ,
𝑃𝑖 (𝑡) = Pr {𝑋𝑖 (𝑡) = 2} .

(2)

Since 𝑆𝑖(𝑡) = 1−𝐼𝑖(𝑡)−𝑃𝑖(𝑡), the expected state of the network
at time 𝑡 can be characterized by the vector

E (𝑡) = (𝐼1 (𝑡) , . . . , 𝐼𝑁 (𝑡) , 𝑃1 (𝑡) , . . . , 𝑃𝑁 (𝑡)) . (3)

3.2. A Virus-Patch Interactive Model. In order to establish a
virus-patch interactive model, we introduce a set of assump-
tions as follows.
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Figure 1: Diagram of the assumptions (A1)-(A5).

(A1) Due to virus injection, each susceptible node gets
infected at the average rate 𝛽𝐼 which we refer to as the
virus injection rate.

(A2) Due to virus propagation, the susceptible node V𝑖 gets
infected at time 𝑡 at the average rate 𝛽𝑃∑𝑁𝑗=1 𝑎𝑖𝑗𝐼𝑗(𝑡),
where 𝛽𝑃 is a constant which we refer to as the virus
propagation rate.

(A3) Due to patch injection, each unpatched node in𝑈 gets
patched at time 𝑡 at the average rate 𝛾𝐼(𝑡) which we
refer to as the patch injection rate at time 𝑡.

(A4) Due to patch forwarding, the unpatched node V𝑖 ∈𝑉 − 𝑈 gets patched at time 𝑡 at the average rate𝛾𝑃∑𝑁𝑗=1 𝑎𝑖𝑗𝑃𝑗(𝑡), where 𝛾𝑃 is a constant which we refer
to as the patch forwarding rate.

(A5) Due to appearance of new viruses, each patched node
becomes susceptible at the average rate 𝛿 which we
refer to as the patch failure rate.

Remark 1. Thevirus injection rate, the virus propagation rate,
the patch forwarding rate, and the patch failure rate can be
estimated accurately by collecting and analyzing the relevant
historical data. All patch injection rates are under control of
the network defender.

Figure 1 shows the above assumptions schematically.
Based on the above assumptions, the expected network

state evolves over time according to the following differential
dynamical system:

𝑑𝐼𝑖 (𝑡)𝑑𝑡 = [
[𝛽𝐼 + 𝛽𝑃

𝑁∑
𝑗=1

𝑎𝑖𝑗𝐼𝑗 (𝑡)]] [1 − 𝐼𝑖 (𝑡) − 𝑃𝑖 (𝑡)]

− 𝛾𝐼 (𝑡) 𝐼𝑖 (𝑡) , 0 ≤ 𝑡 ≤ 𝑇, V𝑖 ∈ 𝑈,
𝑑𝑃𝑖 (𝑡)𝑑𝑡 = 𝛾𝐼 (𝑡) [1 − 𝑃𝑖 (𝑡)] − 𝛿𝑃𝑖 (𝑡) ,

0 ≤ 𝑡 ≤ 𝑇, V𝑖 ∈ 𝑈,
𝑑𝐼𝑖 (𝑡)𝑑𝑡 = [

[𝛽𝐼 + 𝛽𝑃
𝑁∑
𝑗=1

𝑎𝑖𝑗𝐼𝑗 (𝑡)]] [1 − 𝐼𝑖 (𝑡) − 𝑃𝑖 (𝑡)]

− 𝛾𝑃𝐼𝑖 (𝑡) 𝑁∑
𝑗=1

𝑎𝑖𝑗𝑃𝑗 (𝑡) ,
0 ≤ 𝑡 ≤ 𝑇, V𝑖 ∈ 𝑉 − 𝑈,

𝑑𝑃𝑖 (𝑡)𝑑𝑡 = 𝛾𝑃 [1 − 𝑃𝑖 (𝑡)] 𝑁∑
𝑗=1

𝑎𝑖𝑗𝑃𝑗 (𝑡) − 𝛿𝑃𝑖 (𝑡) ,
0 ≤ 𝑡 ≤ 𝑇, V𝑖 ∈ 𝑉 − 𝑈,

E (0) = E0.
(4)

This is a novel SIPS model, which can be written in matrix-
vector notation as𝑑E (𝑡)𝑑𝑡 = F (E (𝑡) , 𝛾𝐼 (𝑡)) , 0 ≤ 𝑡 ≤ 𝑇,

E (0) = E0.
(5)

3.3. 	e Modeling of the VPT Problem. The function 𝛾𝐼
defined by 𝛾𝐼(𝑡), 𝑡 ∈ [0, 𝑇], is under control of the network
defender.We refer to the function as a patch-injecting strategy.
Let 𝐿[0, 𝑇] denote the set of all Lebesgue integrable functions
defined on the interval [0, 𝑇] [36]. Henceforth, we assume the
set of all allowable patch-injecting strategies is

Γ = {𝛾𝐼 ∈ 𝐿 [0, 𝑇] | 𝛾𝐼 ≤ 𝛾𝐼 (𝑡) ≤ 𝛾𝐼, 0 ≤ 𝑡 ≤ 𝑇} . (6)

We refer to 𝛾𝐼 as the minimum allowable patch injection rate,𝛾𝐼 as the maximum allowable patch injection rate.
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Let 𝐶(𝑡) denote the cost per unit time at time 𝑡 for patch
developing. Obviously, 𝐶(𝑡) is increasing with 𝛾𝐼(𝑡). In this
paper we simply assume that 𝐶(𝑡) is linearly proportional to𝛾𝐼(𝑡). That is, 𝐶(𝑡) = 𝑐𝛾𝐼(𝑡), where 𝑐 is a constant which we
refer to as the cost coefficient. As a result, the total patch-
developing cost is ∫𝑇

0
𝑐𝛾𝐼(𝑡)𝑑𝑡 units.

Remark 2. In practice, 𝐶(𝑡) may be dependent on 𝛾𝐼(𝑡) in a
more complex way. For example, 𝐶(𝑡) may be proportional
to the square of 𝛾𝐼(𝑡). That is, 𝐶(𝑡) = 𝑐𝛾2𝐼 (𝑡), where 𝑐 is a
constant. If this is the case, the total patch-developing cost
would be ∫𝑇

0
𝑐𝛾2𝐼 (𝑡)𝑑𝑡 units. The exact form in which 𝐶(𝑡)

depends on 𝛾𝐼(𝑡) is yet to be determined through analysis of
massive actual data. Nevertheless, our research approach can
easily be applied to any other dependence relationship.

On the other hand, we assume that the average loss per
unit time caused by the infected node V𝑖 is 𝑤𝑖 unit. Then, the
expected total loss of all network users is ∫𝑇

0
∑𝑁𝑖=1𝑤𝑖𝐼𝑖(𝑡)𝑑𝑡

units. Let w = (𝑤1, . . . , 𝑤𝑁). Therefore, we get a measure of
the balance of a patch-injecting strategy 𝛾𝐼 as follows.

𝐽 (𝛾𝐼) = ∫𝑇
0
𝑐𝛾𝐼 (𝑡) 𝑑𝑡 + ∫𝑇

0

𝑁∑
𝑖=1

𝑤𝑖𝐼𝑖 (𝑡) 𝑑𝑡. (7)

By combining the above discussions, the VPT problem is
reduced to the following optimal control problem:

Minimize
𝛾𝐼∈Γ

𝐽 (𝛾𝐼) = ∫𝑇
0
𝑐𝛾𝐼 (𝑡) 𝑑𝑡 + ∫𝑇

0

𝑁∑
𝑖=1

𝑤𝑖𝐼𝑖 (𝑡) 𝑑𝑡
subject to 𝑑E (𝑡)𝑑𝑡 = F (E (𝑡) , 𝛾𝐼 (𝑡)) , 0 ≤ 𝑡 ≤ 𝑇,

E (0) = E0.
(8)

We refer to the optimal control problem as the VPT control
problem. In this problem, each admissible control stands for a
feasible patch-injecting strategy, and the objective functional
measures the balance of a feasible patch-injecting strategy.
Each instance of the VPT control problem is given by the 11-
tuple

M = (𝐺 | 𝑈, 𝛽𝐼, 𝛽𝑃, 𝛾𝑃, 𝛿, 𝛾𝐼, 𝛾𝐼, 𝑐,w, 𝑇,E0) . (9)

4. Theoretical Study of the VPT
Control Problem

This section is dedicated to the theoretical study of the VPT
control problem. First, we show that the problem is solvable.
Second, we present a method for solving this problem.

4.1. Solvability. Let 𝐿(E, 𝛾) = 𝑐𝛾𝐼 + ∑𝑁𝑖=1𝑤𝑖𝐼𝑖. We have the
following lemma [30].

Lemma 3. 	e VPT game problem (8) admits an optimal
control if the following five conditions are met.

(C1) Γ is closed and convex.
(C2) 	ere is 𝛾𝐼 ∈ Γ such that the differential system𝑑E(𝑡)/𝑑𝑡 = F(E(𝑡), 𝛾𝐼(𝑡)) (0 ≤ 𝑡 ≤ 𝑇) is solvable.
(C3) F(E, 𝛾𝐼) is bounded by a linear function in E.
(C4) 𝐿(E, 𝛾𝐼) is concave on Γ.
(C5) 𝐿(E, 𝛾𝐼) ≥ 𝑐1𝛾𝜌𝐼 + 𝑐2 for some 𝜌 > 1, 𝑐1 > 0 and 𝑐2.
The solvability of the VPT control problem is guaranteed

by the following theorem.

Theorem 4. 	e VPT control problem (8) admits an optimal
control.

Proof. (a) Let 𝛾𝐼 be a limit point of Γ.Then there is a sequence
of points in Γ, denoted 𝛾(1)𝐼 , 𝛾(2)𝐼 , . . ., that approaches 𝛾𝐼. As𝐿[0, 𝑇] is complete [36], we get that 𝛾𝐼 ∈ 𝐿[0, 𝑇]. As 𝛾𝐼 ≤𝛾𝐼 = lim𝑛󳨀→∞𝛾(𝑛)𝐼 ≤ 𝛾𝐼, we get that 𝛾𝐼 ∈ Γ. So, Γ is closed.
(b) Let 𝛾(1)𝐼 , 𝛾(2)𝐼 ∈ Γ, 0 < 𝛼 < 1. 𝛾𝐼 = 𝛼𝛾(1)𝐼 + (1 − 𝛼)𝛾(2)𝐼 . As𝐿[0, 𝑇] is a real vector space [36], we have 𝛾𝐼 ∈ 𝐿[0, 𝑇]. As𝛾𝐼 ≤ 𝛾𝐼 ≤ 𝛾𝐼, we get that 𝛾𝐼 ∈ Γ. So, Γ is convex. (c) As F(E, 𝛾𝐼)
is continuously differentiable, it follows from Continuation
Theorem for Differential Systems [37] that the differential
system 𝑑E(𝑡)/𝑑𝑡 = F(E(𝑡), 𝛾𝐼) (0 ≤ 𝑡 ≤ 𝑇) is solvable. (d)
Obviously, for V𝑖 ∈ 𝑈,

−𝛾𝐼𝐼𝑖 ≤ (𝛽𝐼 + 𝛽𝑃 𝑁∑
𝑗=1

𝑎𝑖𝑗𝐼𝑗)(1 − 𝐼𝑖 − 𝑃𝑖) − 𝛾𝐼𝐼𝑖
≤ 𝛽𝐼 + 𝛽𝑃 𝑁∑

𝑗=1

𝑎𝑖𝑗𝐼𝑗,
−𝛿𝑃𝑖 ≤ 𝛾𝐼 (1 − 𝑃𝑖) − 𝛿𝑃𝑖 ≤ 𝛾𝐼 − 𝛿𝑃𝑖,

(10)

for V𝑖 ∈ 𝑉 − 𝑈,
−𝛾𝑃 𝑁∑
𝑗=1

𝑎𝑖𝑗𝑃𝑗 ≤ (𝛽𝐼 + 𝛽𝑃 𝑁∑
j=1
𝑎𝑖𝑗𝐼𝑗)(1 − 𝐼𝑖 − 𝑃𝑖)

− 𝛾𝑃𝐼𝑖 𝑁∑
𝑗=1

𝑎𝑖𝑗𝑃𝑗 ≤ 𝛽𝐼 + 𝛽𝑃 𝑁∑
𝑗=1

𝑎𝑖𝑗𝐼𝑗,

−𝛿𝑃𝑖 ≤ 𝛾𝑃 (1 − 𝑃𝑖) 𝑁∑
𝑗=1

𝑎𝑖𝑗𝑃𝑗 − 𝛿𝑃𝑖 ≤ 𝛾𝑃 𝑁∑
𝑗=1

𝑎𝑖𝑗𝑃𝑗.
(11)

(e) Let 𝛾(1)𝐼 , 𝛾(2)𝐼 ∈ Γ, 0 < 𝛼 < 1. As
𝐿 (E, 𝛼𝛾(1)𝐼 + (1 − 𝛼) 𝛾(2)𝐼 )

= 𝛼𝐿 (E, 𝛾(1)𝐼 ) + (1 − 𝛼) 𝐿 (E, 𝛾(2)𝐼 ) , (12)

we get that 𝐿(E, 𝛾𝐼) is convex with respect to 𝛾𝐼. (f) Obviously,𝐿(E, 𝛾𝐼) ≥ 𝑐𝛾𝐼 ≥ (𝑐/𝛾𝐼)𝛾𝐼2. Hence, the five conditions in
Lemma 3 are met. By Lemma 3, the VPT control problem
admits an optimal control.

This theorem implies that theVPTproblemadmits a best-
balanced patch-injecting strategy.
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4.2. 	e Optimality System. According to optimal control
theory [29], when the solvability of an optimal control
problem is guaranteed, we may solve the problem by solving
the optimality system associated with the problem. Now, let
us derive the optimality system associated with the VPT
control problem (8). The associated Hamiltonian is

𝐻(E, 𝛾𝐼, p) = 𝑐𝛾𝐼 + 𝑁∑
𝑖=1

𝑤𝑖𝐼𝑖 + 𝑀∑
𝑖=1

𝜇𝑖 [𝛾𝐼 (1 − 𝑃𝑖) − 𝛿𝑃𝑖]

+ 𝑁∑
𝑖=𝑀+1

𝜇𝑖 [[𝛾𝑃 (1 − 𝑃𝑖)
𝑁∑
𝑗=1

𝑎𝑖𝑗𝑃𝑗 − 𝛿𝑃𝑖]]
+ 𝑀∑
𝑖=1

𝜆𝑖[[(𝛽𝐼 + 𝛽𝑃
𝑁∑
𝑗=1

𝑎𝑖𝑗𝐼𝑗)(1 − 𝐼𝑖 − 𝑃𝑖) − 𝛾𝐼𝐼𝑖]]
+ 𝑁∑
𝑖=𝑀+1

𝜆𝑖 [[(𝛽𝐼 + 𝛽𝑃
𝑁∑
𝑗=1

𝑎𝑖𝑗𝐼𝑗)(1 − 𝐼𝑖 − 𝑃𝑖)

− 𝛾𝑃𝐼𝑖 𝑁∑
𝑗=1

𝑎𝑖𝑗𝑃𝑗]] ,

(13)

where p = p(𝑡) = (𝜆1(𝑡), . . . , 𝜆𝑁(𝑡), 𝜇1(𝑡), . . . , 𝜇𝑁(𝑡)) (0 ≤ 𝑡 ≤𝑇) is the adjoint.
The following result is a necessary condition for the

optimal control of the VPT control problem.

Theorem 5. Suppose 𝛾𝐼 is an optimal control for the VPT
control problem (8). Let E be the solution to the differential
system (5). 	en there exists p with p(𝑇) = 0 such that

𝑑𝜆𝑖 (𝑡)𝑑𝑡
= −𝑤𝑖 + 𝜆𝑖 (𝑡) [[𝛽𝐼 + 𝛽𝑃

𝑁∑
𝑗=1

𝑎𝑖𝑗𝐼𝑗 (𝑡) + 𝛾𝐼 (𝑡)]]
− 𝛽𝑃 𝑁∑
𝑗=1

𝑎𝑖𝑗𝜆𝑗 (𝑡) [1 − 𝐼𝑗 (𝑡) − 𝑃𝑗 (𝑡)] ,
0 ≤ 𝑡 ≤ 𝑇, V𝑖 ∈ 𝑈,

𝑑𝜆𝑖 (𝑡)𝑑𝑡
= −𝑤𝑖 + 𝜆𝑖 (𝑡) [[𝛽𝐼 + 𝛽𝑃

𝑁∑
𝑗=1

𝑎𝑖𝑗𝐼𝑗 (𝑡) + 𝛾𝑃 𝑁∑
𝑗=1

𝑎𝑖𝑗𝑃𝑗 (𝑡)]]
− 𝛽𝑃 𝑁∑
𝑗=1

𝑎𝑖𝑗𝜆𝑗 (𝑡) [1 − 𝐼𝑗 (𝑡) − 𝑃𝑗 (𝑡)] ,
0 ≤ 𝑡 ≤ 𝑇, V𝑖 ∈ 𝑉 − 𝑈,

𝑑𝜇𝑖 (𝑡)𝑑𝑡
= 𝜇𝑖 (𝑡) [𝛿 + 𝛾𝐼 (𝑡)] + 𝜆𝑖 (𝑡) [[𝛽𝐼 + 𝛽𝑃

𝑁∑
𝑗=1

𝑎𝑖𝑗𝐼𝑗 (𝑡)]]
+ 𝛾𝑃 𝑁∑
𝑗=𝑀+1

𝑎𝑖𝑗 {𝐼𝑗 (𝑡) 𝜆𝑗 (𝑡) + [1 − 𝑃𝑗 (𝑡)] 𝜇𝑗 (𝑡)} ,
0 ≤ 𝑡 ≤ 𝑇, V𝑖 ∈ 𝑈,

𝑑𝜇𝑖 (𝑡)𝑑𝑡
= 𝜇𝑖 (𝑡) [[𝛿 + 𝛾𝑃

𝑁∑
𝑗=1

𝑎𝑖𝑗𝑃𝑗 (𝑡)]]
+ 𝜆𝑖 (𝑡) [[𝛽𝐼 + 𝛽𝑃

𝑁∑
𝑗=1

𝑎𝑖𝑗𝐼𝑗 (𝑡)]]
+ 𝛾𝑃 𝑁∑
𝑗=𝑀+1

𝑎𝑖𝑗 {𝐼𝑗 (𝑡) 𝜆𝑗 (𝑡) + [1 − 𝑃𝑗 (𝑡)] 𝜇𝑗 (𝑡)} ,
0 ≤ 𝑡 ≤ 𝑇, V𝑖 ∈ 𝑉 − 𝑈,

𝛾𝐼 (𝑡)

=
{{{{{{{{{{{

𝛾𝐼 𝑖𝑓 𝑐 + 𝑀∑
𝑖=1

𝜇𝑖 (𝑡) [1 − 𝑃𝑖 (𝑡)] > 𝑀∑
𝑖=1

𝐼𝑖 (𝑡) 𝜆𝑖 (𝑡) ,
𝛾𝐼 𝑖𝑓 𝑐 + 𝑀∑

𝑖=1

𝜇𝑖 (𝑡) [1 − 𝑃𝑖 (𝑡)] < 𝑀∑
𝑖=1

𝐼𝑖 (𝑡) 𝜆𝑖 (𝑡) ,
0 ≤ 𝑡 ≤ 𝑇.

(14)

Proof. According to Pontryagin Minimum Principle [29],
there exists p such that

𝑑𝜆𝑖 (𝑡)𝑑𝑡 = −𝜕𝐻 (E (𝑡) , 𝛾𝐼 (𝑡) , p (𝑡))𝜕𝐼𝑖 ,
𝑑𝜇𝑖 (𝑡)𝑑𝑡 = −𝜕𝐻 (E (𝑡) , 𝛾𝐼 (𝑡) , p (𝑡))𝜕𝑃𝑖 ,

𝑡 ∈ [0, 𝑇] , 1 ≤ 𝑖 ≤ 𝑁.
(15)

Thus, the first 2𝑁 equations in the system (14) follow by direct
calculations. As the terminal cost is unspecified and the final
state is free, the transversality condition p(𝑇) = 0 holds true.
Again by Pontryagin Minimum Principle, we have

𝛾𝐼 (𝑡) ∈ arg min
𝛾𝐼
∗∈Γ

𝐻(E (𝑡) , 𝛾𝐼∗ (𝑡) , p (𝑡)) , 0 ≤ 𝑡 ≤ 𝑇. (16)

The last equation in the system (14) follows by direct calcula-
tions.

The optimality system associated with the VPT control
problem (8) consists of the system (5), the system (14), and
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Figure 2: A synthetic small-world network𝐺𝑆𝑊, where𝑈𝑆𝑊 consists
of the red nodes.

p(𝑇) = 0. In practice, wemay apply the well-known Forward-
Backward Euler Scheme [38] to solve the optimality system.

5. Examples of Best-Balanced
Patch-Injecting Strategy

In this section, we present a few best-balanced patch-
injecting strategies by solving the corresponding instances of
the VPT control problem. For comparative purpose, for the
VPT control problem (8) and the admissible control 𝛾𝐼, we
define the cumulative balance function as

𝐽 (𝛾𝐼, 𝑡) = ∫𝑡
0
𝑐𝛾𝐼 (𝑠) 𝑑𝑠 + ∫𝑡

0

𝑁∑
𝑖=1

𝑤𝑖𝐼𝑖 (𝑠) 𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇. (17)

Obviously, 𝐽(𝛾𝐼, 𝑇) = 𝐽(𝛾𝐼). For convenience, let 1 denote an
all-one row vector with appropriate number of dimensions.

Small-world networks are networks with small diameter
and high clustering coefficient [39]. By invoking Pajek [40],
the well-known social network analysis software, we get
a synthetic small-world network 𝐺𝑆𝑊, which is plotted in
Figure 2, where the patch injection subset𝑈𝑆𝑊 consists of the
red nodes.

Example 1. Consider the following instance of the VPT
control problem:

(𝐺𝑆𝑊 | 𝑈𝑆𝑊, 0.1, 0.4, 0.4, 0.1, 0.2, 0.8, 1, 1, 20, 0.1 × 1) . (18)

By solving the corresponding optimality system, we get an
optimal control, which is depicted in Figure 3(a). Figure 3(b)
plots the cumulative balance functions for the optimal control
and three static controls, from which it is seen that the
optimal control is superior to these static controls in terms
of the balance.

Scale-free networks are networks with power-law degree
distribution [41]. Again by invoking Pajek, we get a synthetic

scale-free network𝐺𝑆𝐹, which is portrayed in Figure 4, where
the patch injection subset 𝑈𝑆𝐹 consists of the red nodes.

Example 2. Consider the following instance of the VPT
control problem:

(𝐺𝑆𝐹 | 𝑈𝑆𝐹, 0.1, 0.4, 0.4, 0.1, 0.2, 0.8, 1, 1, 20, 0.1 × 1) . (19)

By solving the corresponding optimality system, we get an
optimal control, which is exhibited in Figure 5(a). Figure 5(b)
plots the cumulative balance functions for the optimal control
and three static controls, from which it is seen that the
optimal control outperforms these static controls in terms of
the balance.

Figure 6 exhibits a real-world email network 𝐺𝐸𝑀, which
comes from [42]. Here, the patch injection subset 𝑈𝐸M
consists of the red nodes.

Example 3. Consider the following instance of the VPT
control problem:

(𝐺𝐸𝑀 | 𝑈𝐸𝑀, 0.1, 0.4, 0.4, 0.1, 0.2, 0.8, 1, 1, 20, 0.1
× 1) . (20)

By solving the corresponding optimality system, we get an
optimal control, which is shown in Figure 7(a). Figure 7(b)
plots the cumulative balance functions for the optimal control
and three static controls, from which it is seen that the
optimal control overmatches these static controls in terms of
the balance.

We conclude from the above examples that a best-
balanced patch-injecting strategy first stays at the maximum
allowable patch injection rate, then sharply jumps to the
minimum allowable patch injection rate, and finally stays at
this rate.

6. Further Discussions

In this section, we examine the effects of some factors on the
best balance of a patch-injecting strategy. For convenience,
let 𝛾𝑜𝑝𝑡𝐼 denote a best-balanced patch-injecting strategy, 𝐽𝑜𝑝𝑡 =𝐽(𝛾𝑜𝑝𝑡𝐼 ) the corresponding balance.
6.1. 	e Effects of the Four Rates. First, we inspect the effect
of the four rates, 𝛽𝐼, 𝛽𝑃, 𝛾𝑃, and 𝛿, on the best balance.

Experiment 6. Consider the following instances of the VPT
control problem:

(𝐺 | 𝑈, 𝛽𝐼, 0.4, 0.4, 0.1, 0.2, 0.8, 1, 1, 20, 0.1 × 1) , (21)

where 𝐺 | 𝑈 ∈ {𝐺𝑆𝑊 | 𝑈𝑆𝑊, 𝐺𝑆𝐹 | 𝑈𝑆𝐹, 𝐺𝐸𝑀 | 𝑈𝐸𝑀}, 𝛽𝐼 ∈{0.1, 0.2, . . . , 0.9}. Figure 8 exhibits the best balances of these
instances.

It is concluded from this experiment that 𝐽𝑜𝑝𝑡 is increasing
with 𝛽𝐼. As a result, the best balance can be improved
by persuading the network users not to install suspicious
software.
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Figure 3: Results in Example 1: (a) an optimal control; (b) a comparison between the optimal control and three static controls.

Figure 4: A synthetic scale-free network 𝐺𝑆𝐹, where𝑈𝑆𝐹 consists of the red nodes.

Experiment 7. Consider the following instances of the VPT
control problem:

(𝐺 | 𝑈, 0.1, 𝛽𝑃, 0.4, 0.1, 0.2, 0.8, 1, 1, 20, 0.1 × 1) , (22)

where 𝐺 | 𝑈 ∈ {𝐺𝑆𝑊 | 𝑈𝑆W, 𝐺𝑆𝐹 | 𝑈𝑆𝐹, 𝐺𝐸𝑀 | 𝑈𝐸𝑀}, 𝛽𝑃 ∈{0.1, 0.2, . . . , 0.9}. Figure 9 displays the best balances of these
instances.

It is concluded from this experiment that 𝐽𝑜𝑝𝑡 is increasing
with 𝛽𝑃. Again, this conclusion demonstrates that warning
the network users not to install suspicious software would
improve the best balance.

Experiment 8. Consider the following instances of the VPT
control problem:

(𝐺 | 𝑈, 0.1, 0.4, 𝛾𝑃, 0.1, 0.2, 0.8, 1, 1, 20, 0.1 × 1) , (23)

where 𝐺 | 𝑈 ∈ {𝐺𝑆𝑊 | 𝑈𝑆𝑊, 𝐺𝑆𝐹 | 𝑈𝑆𝐹, 𝐺𝐸𝑀 | 𝑈𝐸𝑀}, 𝛾𝑃 ∈{0.1, 0.2, . . . , 0.9}. Figure 10 exhibits the best balances of these
instances.

It is concluded from this experiment that 𝐽𝑜𝑝𝑡 is decreas-
ing with 𝛾𝑃. Therefore, the best balance can be improved by
reminding the network users of timely installing new patches.

Experiment 9. Consider the following instances of the VPT
control problem:

(𝐺 | 𝑈, 0.1, 0.4, 0.4, 𝛿, 0.2, 0.8, 1, 1, 20, 0.1 × 1) , (24)

where 𝐺 | 𝑈 ∈ {𝐺𝑆𝑊 | 𝑈S𝑊, 𝐺𝑆𝐹 | 𝑈𝑆𝐹, 𝐺𝐸𝑀 | 𝑈𝐸𝑀}, 𝛿 ∈{0.1, 0.2, . . . , 0.9}. Figure 11 exhibits the best balances of these
instances.
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Figure 5: Results in Example 2: (a) an optimal control; (b) a comparison between the optimal control and three static controls.

Figure 6: An email network 𝐺𝐸𝑀, where𝑈𝐸𝑀 consists of the red nodes.

It is concluded from this experiment that 𝐽𝑜𝑝𝑡 is increasing
with 𝛿. It follows that the best balance can be improved by
developing patches that can defend against future viruses.

6.2. 	e Effects of the Two Bounds. Second, let us investigate
the effects of the minimum allowable patch injection rate
and the maximum allowable patch injection rate on the best
balance.

Experiment 10. Consider the following instances of the VPT
control problem:

(𝐺 | 𝑈, 𝛽𝐼, 0.1, 0.4, 0.4, 0.1, 𝛾𝐼, 𝛾𝐼, 1, 1, 20, 0.1 × 1) , (25)

where 𝐺 | 𝑈 ∈ {𝐺𝑆𝑊 | 𝑈𝑆𝑊, 𝐺𝑆𝐹 | 𝑈𝑆𝐹, 𝐺𝐸𝑀 | 𝑈𝐸𝑀}, 𝛾𝐼, 𝛾𝐼 ∈{0.1, 0.2, . . . , 0.9}. Figure 12 exhibits the best balances of these
instances.

It is concluded from this experiment that 𝐽𝑜𝑝𝑡 is increasing
with 𝛾𝐼 and is decreasing with 𝛾𝐼. In practice, we should
reduce the lowest allowable patch injection rate and enhance
the highest allowable patch injection rate to achieve a better
balance.

7. Concluding Remarks

Virus patches play an important role in restraining computer
viruses. This paper has addressed the problem of seek-
ing patch-injecting strategies that achieve the best balance
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Figure 7: Results in Example 3: (a) an optimal control; (b) a comparison between the optimal control and three static controls.
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Figure 8: The best balances in Experiment 6.

between the patch-developing cost and the impact of virus.
Theproblemhas been reduced to an optimal control problem,
and a scheme for solving the optimal control problem has
been presented. Finally, the effects of some factors on the best
balance of a patch-injecting strategy have been examined.
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Figure 9: The best balances in Experiment 7.

Some relevant problems are yet to be resolved. First, the
problem of how to select a given number of patch injection
nodes so that the balance is optimized is worth study. Second,
in this article it is assumed that the patch propagation rate
is fixed. In practice, the network defender may change this
rate flexibly through rewriting the communication protocol.
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Figure 10: The best balances in Experiment 8.
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Figure 11: The best balances in Experiment 9.

In this situation, we will face a new and more complex
balance problem. Next, in this article the virus injection
rate is assumed to be fixed. In reality, the virus maker may
flexibly change the rate to avoid detection. In this context, it is
appropriate to deal with the balance problem through game-
theoretic approach [43–46]. Finally, the research approach
used in this article may be applied to some other areas

such as cloud security [47, 48] and Internet of Things
security [49].

Data Availability

The data used to support the findings of this study are
included within the article.
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