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Bone marrow mesenchymal stem cells (BMSCs) have been identi�ed as a potential therapeutic approach to immune-related
diseases. Here, we show that BMSC-derived exosomes promote FOXP3 expression and induce the conversion of CD4+ Tcells into
CD4+CD25+FOXP3+ Treg cells, which is signi�cant for immunosuppressive activity. We found that miR-181a-5p is upregulated
in BMSC-derived exosomes and can be transferred to CD4+ Tcells. In CD4+ cells, miR-181a directly targets SIRT1 and suppresses
its expression. Moreover, downregulated SIRT1 enhances FOXP3 via protein acetylation. In conclusion, our data demonstrated
that BMSC-derived exosomal miR-181a is critical in the maintenance of immune tolerance. Furthermore, our results reveal that
BMSC-derived exosomal miR-181a induces the production of CD4+CD25+FOXP3+ Treg cells via SIRT1/acetylation/FOXP3.

1. Introduction

Pancreas transplantation is widely used for treating diabetes
mellitus [1, 2]. However, recurrent autoimmunity and
conventional allograft rejection are signi�cant obstacles to
pancreas transplantation [1, 2]. Learned tolerance is a
hallmark of the immune system, and the induction of im-
mune tolerance is considered a promising way to improve
the success of pancreas transplantation [3, 4].

MSCs are multipotent stromal cells that play a signi�cant
role in the immune response via immune suppression [5].
Zhang et al. showed the role of MSC-mediated immuno-
suppression in immune thrombocytopenia [6]. Mounayar
et al. suggested that PI3kα and STAT1 modulate immu-
nosuppressive activity by MSCs [7]. Exosomes are a type of
membrane microvesicles approximately 40–150 nm in di-
ameter [8] that are involved in Treg cell development [8, 9]
and can mediate cellular communication by carrying

miRNAs to neighboring cells [10]. Research suggests that
stem cell-derived exosomes could be a new strategy for the
treatment of neurodegenerative diseases [11]. In addition,
accumulating evidence indicates that MSC-derived exoso-
mal miRNAs are critical for immunosuppression regulation.
Du et al. showed that MSC-derived cells promote immu-
nosuppression of regulatory T cells in asthma [12]. Shahir
et al. indicated that MSC-derived exosomes could induce
mouse tolerogenic dendritic cells [13]. Moreover, MSC-
derived exosomal miRNAs function in immunosuppression
[14]. MSC-derived exosomes can transfer microRNAs
(miRNAs) to receptors, subsequently a¦ecting immune
homeostasis [15–17].

Moreover, previous studies found that MSCs seem to
play a signi�cant role in inducing FOXP3-expressing Treg
cells [18, 19]. Forkhead box protein 3 (FOXP3)-expressing
CD4+CD25+ Treg cells are critical for immune tolerance
maintenance, for example, Nemo-like kinase-enhanced
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FOXP3 participates in Treg cell-mediated immune tolerance
[20]. FOXP3+ Treg cells promote transplantation tolerance
via neuropilin-1 [21]. POH1 contributes to immune toler-
ance by maintaining FOXP3+ Treg cells [22]. Increasing
evidence suggests that the maintenance of FOXP3 expres-
sion is critical for Treg cell development and function. Jang
et al. indicated that Hhex suppresses Treg cells by inhibiting
FOXP3 [23]. Chen demonstrated that dysregulation of
FOXP3 by hypermethylation impairs the function of Treg
cells [24]. FOXP3 also plays a central role in immune tol-
erance; thus, stabilization of FOXP3 expression may provide
an acceptable way to maintain immune tolerance and im-
prove the success of pancreas transplantation [25]. Re-
searchers have demonstrated that FOXP3 expression and
activity could be controlled by posttranslational modifica-
tions. Moreover, posttranslational modifications of FOXP3
contribute to Treg cell function [26]. Kagoya et al. indicated
that arginine methylation of FOXP3 plays a crucial role in
the suppressive activity of Treg cells [27]. Lin et al. suggested
that kaempferol promotes the suppressive function of Treg
cells by inhibiting PIMI-mediated FOXP3 phosphorylation
[28]. In addition, the deacetylation of FOXP3 by sirtuin 1
(SIRT1) also functions in Treg cell regulation [29–31]. It was
reported that acetylation of FOXP3 modulates the sup-
pressive function of CD4+CD25+ FOXP3+ Treg cells [29, 30].
Zhang et al. showed that miR-23a-3p-mediated FOXP3
acetylation could induce Treg function [32]. In abdominal
aortic aneurysm (AAA), SIRT1-regulated acetylation of
FOXP3 modulates Treg function [30]. Forkhead box protein
3 (FOXP3)-expressing CD4+CD25+ Treg cells play an es-
sential role in immune tolerance maintenance [33]. Sus-
tained FOXP3 expression is the most specific marker for
characterizing CD4+CD25+FOXP3+ Treg cells [23, 34].
,erefore, the regulation of FOXP3 may provide a potential
method for immunosuppression. Epigenetic regulation,
such as acetylation andmethylation, of FOXP3 has been well
studied [35].

In this study, we uncovered the underlying mechanism
by which BMSC-derived exosomal miR-181a induces
CD4+CD25+FOXP3+ Treg cells via SIRT1/acetylation/
FOXP3, providing a potential way to improve the success of
pancreas transplantation.

2. Materials and Methods

2.1. Cell Culture. BMSCs were purchased from Cyagen
Biosciences (MUBMX-01001). ,en, the cells were cultured
in Mouse Mesenchymal Stem Cell Growth Medium
(MUCMX-90011, Cyagen Biosciences) and cultured at 37°C
and 5% CO2. CD34 and CD44 surface markers were used for
BMSC analysis.

2.2. BMSC-Exosome Isolation and Identification. When the
density of BMSCs reached approximately 80%, the culture
medium was discarded, and serum-free medium for BMSCs
was added. After culturing for 24 h, the supernatant was
aspirated into a 50ml centrifuge tube and subjected to
gradient centrifugation (300 g, 10min; 2000 g, 10min;

10000 g, 30min) at 4°C. ,e supernatant was transferred to
an exosome extraction ultracentrifuge tube and subjected to
centrifugation (100000 g, 70min). ,e supernatant was
discarded, and the sediment was washed with PBS and
subjected to centrifugation (100000 g, 70min). ,e exo-
somes were resuspended in 150 μl PBS and identified with
transmission electron microscopy as described previously
[36].

2.3.CD4+TCell IsolationandPurification. CD4+ Tcells from
the spleen were isolated using magnetic activated cell sorting
(MACS). Briefly, a spleen cell suspension was obtained by
grinding the tissue. After lysis, the cells were resuspended in
PBE buffer. Anti-CD4 magnetic beads (Miltenyi) were used
to isolate CD4+ T cells following the manufacturer’s
protocol.

2.4. Flow Cytometry. Flow cytometry analysis was per-
formed to determine the percentage of Treg cells in CD4+
T cells. Treg cells were measured by flow cytometry with
FOXP3+ as the marker. Briefly, the cells were first stained
with anti-CD4-FITC (ab218745, Abcam), anti-CD25-PE
(ab210334, Abcam), and anti-FOXP3-APC (ab200568,
Abcam) antibodies. Fluorescence signals were measured by a
FACS Fortessa system (BD).

2.5. Cell Transfection. Cells were transfected with miR-181a
inhibitor (5′-ACUCACCGACAGCGUUGAAUGUU-3′)
andmiR-181a NC (5′-CAGUACUUUUGUGUAGUACAA-
3′) using Lipofectamine 2000 reagent (Invitrogen) according
to the manufacturer’s instructions.

2.6. Reverse Transcription-Quantitative (RT-q) PCR Analysis.
RT-qPCR was used to examine the expression of miR-181a.
Total RNA was isolated using TRIzol reagent (R0016,
Beyotime), and 1 μg RNA was used as a template for cDNA
synthesis using SuperScript III RT (18080093, Invitrogen).
,e primers used in this study were as follows: miR-181a-5p
forward primer: 5′-CGGCAACATTCAACGCTGT-3′ and
reverse primer: 5′-GTGCAGGGTCCGAGGTATTC-3′; U6
forward primer: 5′-CTTCGGCAGCACATATAC-3′ and
reverse primer: 5′-GAACGCTTCACGAATTTGC-3′. RT-
qPCR was performed at 95°C for 3min, 95°C for 5 s, 56°C for
10 s, 75°C for 25 s (39 cycles), 65°C for 5 s, and 95°C for 50 s.

2.7.Western Blotting. Total proteins were extracted by RIPA
lysis buffer (Beyotime, P0013B), and the concentration of the
proteins was measured by a BCA kit (Beyotime, P0012).
Equal amounts of protein lysates were loaded on a sodium
dodecyl sulfonate-polyacrylamide gel (SDS–PAGE) and
transferred to a polyvinylidene fluoride membrane. ,e
membrane was blocked with 5% nonfat milk and incubated
with antibodies at 4°C overnight. ,e primary antibodies
used were as follows: anti-CD81 (1 :1000, Cell Signaling
Technology, 56039), anti-CD63 (1 :1000, Abcam, ab68418),
anti-CD9 (1 :1000, Abcam, ab223052), anti-SIRT1 (1 :1000,
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Abcam, ab263965), and anti-FOXP3 (1 : 2000, Abcam,
ab10901). GAPDH was used as a loading control. ,en, a
horseradish peroxidase (HRP)-labeled secondary antibody
was used to detect the specific protein bands.

2.8. Immunoprecipitation. ,e acetylation of FOXP3 was
detected using an IP kit (Absin, abs955-50 tests) according to
the manufacturer’s instructions. Briefly, the collected cells
were washed with PBS and lysed with IP lysis buffer on ice
for 5min. Cells were scraped from the plate and transferred
to a microcentrifuge tube. After ultrasonic disruption 3
times, the cells were subjected to centrifugation (14,000 g,
10min) at 4°C, and the supernatant (cell lysate) was
transferred to a new tube. Cell lysates (200–1000 µg total
protein) were mixed with anti-FOXP3 antibody. After
overnight incubation at 4°C, the protein A/G plus agarose
was added to the sample and incubated on a rotator at 4°C
for 2 hours. ,e mixture was centrifuged at 12,000 g for 1
minute to retain the precipitate, and it was washed with wash
buffer. ,e acetylation of FOXP3 was determined by
Western blotting with antiacetylated-lysine antibody (Cell
Signaling Technology, 9941) and anti-FOXP3 antibody
(Abcam, ab10901).

2.9. Luciferase Reporter Assay. ,e wild (WT) or mutant
(MUT) type of the 3′-UTR of SIRT1 was inserted into the
pGL3 promoter vector (Promega, E1761). SIRT1 WT or
SIRT1 MUTand miR-181a control or miR-181a mimic were
transfected into HEK-293T cells (Procell, CL-0005). ,e
luciferase activities were measured by the Dual-Luciferase
Reporter Assay System.

2.10. Statistical Analysis. All of the data are presented as the
mean± SD as indicated for at least three independent ex-
periments and were tested with Student’s t-test for between-
group differences. P< 0.05 was considered statistically
significant.

3. Results

3.1.CharacterizationofBMSCsandBMSC-DerivedExosomes.
We first identified BMSCs by detecting the CD34 and CD44
surface markers of the cells (Figure 1(a)). Exosomes derived
from MSCs were identified with transmission electron
microscopy (Figure 1(b)). Western blotting results indicated
that the exosome markers CD9, CD63, and CD81 in the
exosomes were significantly higher than those in the BMSC
lysate (Figure 1(c)).

3.2. miR-181a Is Highly Expressed in BMSC-Derived
Exosomes. To determine the expression of miR-181a in the
BMSC-derived exosomes, we first performed RT-qPCR to
detect miR-181a expression in the BMSC-derived exosomes
and BMSC lysates. As shown in Figure 2(a), the expression
of miR-181a was upregulated in the BMSC-derived exo-
somes. In addition, after coculturing with the BMSC-derived

exosomes, miR-181a expression was increased in the CD4+
cells (Figure 2(b)).

3.3. BMSC-Derived ExosomemiR-181aTreatmentTriggers the
Conversion of Effector T Cells into FOXP3+ Expressing Tregs.
We next determined the role of MSC-derived exosome miR-
181a (BMSC-exo-miR-181a) in the stimulation of
CD4+CD25+FOXP3+ Treg cells. CD4+ cells were treated with
BMSC-exo-miR-181a, and the frequency of
CD4+CD25+FOXP3+ Treg cells was analyzed by flow
cytometry. As shown in Figure 3(a), the frequency of
CD4+CD25+FOXP3+ Treg cells in the BMSC-exo-miR-181a
treated group was higher than that in the BMSC lysate
treated group.

We next knocked downmiR-181a by miR-181a inhibitor
transfection into BMSCs and isolated exosomes from the
knockdown BMSCs. ,e expression of miR-181a in exo-
somes derived from miR-181a inhibitor-transfected BMSCs
was measured (Figure 3(b)). After inhibition of miR-181a,
the exosomes no longer increased the frequency of
CD4+CD25+FOXP3+ Treg cells (Figure 3(c)). ,ese results
revealed the function of BMSC-exo-miR-181a in main-
taining CD4+CD25+FOXP3+ Treg cells.

3.4. BMSC-Derived Exosomal miR-181a Regulates FOXP3 via
SIRT1-Mediated Acetylation. miRNAs were previously re-
ported to modulate target genes by binding to their 3′UTRs.
Based on bioinformatics analysis, miR-181a could directly
target a deacetylase, SIRT1 (Figure 4(a)). According to the
dual-luciferase reporter assay, there was a relationship be-
tween miR-181a and SIRT1 (Figure 4(b)). After BMSC-exo-
miR-181a treatment, the expression of SIRT1 in CD4+ cells
decreased (Figure 4(c)). Inhibition of miR-181a rescued
SIRT1 expression (Figure 4(d)).

Accumulating evidence has demonstrated that SIRT1
modulates FOXP3 expression via protein deacetylation.
Here, we detected FOXP3 and acetylation levels in CD4+
cells treated with BMSC-exo-miR-181a. BMSC-exo-miR-
181a promoted FOXP3 and acetylation (Figures 4(c) and
4(e)). ,e suppression of miR-181a decreased FOXP3 and
acetylation levels (Figures 4(d) and 4(f )).

4. Discussion

Here, we demonstrate the effect of exosomes derived from
bone marrow mesenchymal stem cells (BMSCs) on im-
munosuppressive regulation. Our results indicate that
BMSC-derived exosomes can induce the transformation of
CD4+ T cells into CD4+CD25+FOXP3+ Treg cells.
CD4+CD25+FOXP3+Treg cells play a key role in the ag-
gressiveness of diseases and cancers by regulating the im-
mune response. In recent years, with advances in research,
the regulatory mechanism of CD4+CD25+Foxp3+Treg cells
in the process of controlling autoimmunity and maintaining
immune tolerance has been gradually understood [37, 38].

In our study, it was demonstrated that miR-181A was
highly expressed in BMSC-derived exosomes, and miR-
181A, miR-181b, miR-181c, and miR-181D jointly formed
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Figure 1: Characterization of BMSC and BMSC-derived exosomes. (a) CD34, CD44, and CD90 surface markers of the cells measured by
§ow cytometry. (b) Exosomes isolated from BMSCs detected by transmission electron microscopy. (c) Exosome diameter measured by
dynamic light scattering (DLS). (d) Expression of exosomemarkers detected by §ow cytometry. (e) Expression of exosomemarkers detected
by Western blot.
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the miR-181 family, which is one of the most abundant
miRNAs in lymphatic tissues [39]. mir-181a plays an im-
portant role in B cell development in bone marrow [40, 41]

and immune function [42]. We found that miR-181A can be
internalized by CD4+ cells and that miR-181A in CD4+ cells
directly target SIRT1. SIRT1 is a protein deacetylase that
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∗∗∗P< 0.001. (b) miR-181a expression in CD4+ T cells treated with NC or miR-181a inhibitor-transfected BMSC-derived exosomes
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regulates protein expression through deacetylation. miRNA
and host cell protein expression are important regulatory
mechanisms. Studies have shown that HCV impairs the
T cell response through miR-181a-mediated DUSP6 ex-
pression [43]. miR-181A not only regulates T cell

response-related proteins but also balances immune-medi-
ated virus clearance with in§ammatory damage and en-
hances immune tolerance [44].�is study demonstrated that
miR-181A has a targeted relationship with SIRT1, a
deacetylase that regulates protein expression. In future
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Figure 4: BMSC-derived exosomal miR-181a regulates FOXP3 via SIRT1-mediated acetylation. (a)�e binding site of miR-181a and SIRT1
predicted by StarBase. (b)�e interaction of SIRT1 andmiR-181a determined by a dual-luciferase reporter assay. ∗P< 0.05. (c) Expression of
SIRT1 and FOXP3 in CD4+ T cells treated with BMSC-derived exosomes detected by Western blot. ∗P< 0.05. (d) Expression of SIRT1 and
FOXP3 in CD4+ Tcells transfected with NC or miR-181a inhibitor BMSC-derived exosomes detected byWestern blot. ∗P< 0.05. (e) FOXP3
acetylation in CD4+ T cells treated with BMSC-derived exosomes detected by immunoprecipitation. ∗P< 0.05. (f ) FOXP3 acetylation in
CD4+ Tcells with CD4+ Tcells transfected with NC or miR-181a inhibitor and BMSC-derived exosomes detected by immunoprecipitation.
∗P< 0.05. Data are the mean± SD (n� 3 biological replicates).
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studies, the proteins related to miR-181A that have roles in
the process of immune tolerance can be further studied, and
the related mechanisms can be explored. Our results suggest
that the suppression of SIRT1 enhances FOXP3 activity by
increasing acetylation levels. In addition, our results suggest
that BMSC-derived exosomes trigger
CD4+CD25+FOXP3+Treg cells through mir-181A/SIRT1-
mediated FOXP3 acetylation.

Collectively, our data show that exosomes from bone
marrow mesenchymal stem cells (BMSCs) induce the
transformation of CD4+ T cells into CD4+CD25+FOXP3+
Treg cells. miR-181a is preferentially expressed in exosomes
derived from bone marrow mesenchymal stem cells and can
be transferred to CD4+ T cells. miR-181a directly targets
SIRT1 in CD4+ T cells and reduces SIRT1 expression. In-
hibition of SIRT1 enhances FOXP3 expression by promoting
acetylation of FOXP3. We found that bmSC-derived exo-
somes carrying miR-181A induced the production of
CD4+CD25+FOXP3+ Treg cells by regulating FOXP3 ex-
pression. In addition, we revealed the mechanism by which
exosomal miR-181A enhances FOXP3 expression through
sirT1-catalyzed acetylation. A limitation of this study is that
we did not verify this mechanism in vivo.
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Uveal melanoma is an aggressive skin cancer that remains insurmountable and is accompanied by inferior prognostic results. The
proliferative and survival mechanisms of uveal melanoma cells need to be further investigated to improve the treatment of uveal
melanoma. According to reports, HAX-1 is an antiapoptotic protein vital for multiple malignancies. Nevertheless, the role and
causal link of HAX-1 in uveal melanoma are still elusive. The survival diversity of uveal melanoma sufferers with diverse haX-
1 expressing levels was studied by TCGA database. Patients in the riskhigh group exhibited greater levels of HAX-1 in contrast
to the risklow group, and individuals with higher HAX-1 levels displayed inferior survival times. The outcomes of CCK-8 and
clonogenesis revealed that the proliferative rate of haX-1 knockout cells was slower. The result of scratch experiment shows
that the ability of scratch recovery after HAX-1 is reduced. Transwell migration and tumor cell pelletization experiments
showed that siHAX-1 significantly reduced cell migration and tumor cell pelletization. After haX-1 was knocked out, the loss
of MMP was decreased, the transfer of CyT C was elevated, and the protein expression of Bax, Caspase 3, and Bcl2 was
elevated, suggesting that mitochondria-induced apoptosis was increased. Sihax-1 treatment remarkably decreased the
phosphonation of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR)/endothelial NO
synthase (eNOS) in mum-2B and C918. Pretreatment with LY294002 significantly restored iHAX-1-induced decline in PI3K/
AKT/mTOR/eNOS phosphorylation. Therefore, our results suggest that haX-1 induces radiation-dependent apoptosis of UM
cells via the PI3K/AKT/eNOS signal path.

1. Introduction

UM is one of the most seen primary intraocular malignan-
cies in adults. It is mainly derived from uveal melanocytes
and has the features of high proliferation activity and easy
metastases [1, 2]. The prevalence of melanoma rises inces-
santly in many nations and has become one of the major
causes of tumor-associated incidence and death across the
globe [3]. Due to the special structure of the eye, the initial
tumor symptoms are not obvious, and the patient’s attention
is not paid attention to. This has caused many patients with
liver or systemic metastases at the time of diagnosis, which

often leads to higher mortality [4, 5]. The treatment methods
of UM mainly include eyeball enucleation, local tumor
resection, local radiotherapy (external scleral application
radiotherapy, stereo radiotherapy, and proton beam ther-
apy), and laser photocoagulation therapy (transpupillary
thermotherapy and photodynamic therapy) [6, 7]. At pres-
ent, extrascleral application radiotherapy is a more effective
method for the treatment of UM, which can not only
increase the effective transmission speed of radiation but
also reduce the damage of radiation to normal tissues [8,
9]. As current treatment methods still face challenges in
improving patients’ clinical survival and visual function,
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studying the molecular mechanism of UM is imperative for
early diagnosis and ameliorating the long-term prognosis
of patients.

Apoptosis is one of the methods of programmed cell
death (CD), and it is vital for the elimination of impaired
cells [10]. Apoptotic events have evident morphology and
biochemistry variations and are pivotal for the growth and
developmental process of organs and tissues, immunity,
metabolism, and the elimination of abnormal cells [11]. Cas-
pase is a protease that promotes cell apoptosis and plays a
central role in the network of cellular apoptotic mechanisms
[12]. Researches have shown that Caspases can induce cell
apoptosis in three main ways: (1) death receptor pathway
(exogenous) apoptosis, (2) mitochondrial pathway (endoge-
nous pathway), and (3) internal apoptosis of the plasma
reticulum stress pathway [13, 14].

The key effects of mitochondria on apoptotic events
have been broadly revealed [15]. In the process of apopto-
tic events, the permeability of the mitochondrial mem-
brane increases, releasing soluble mitochondrial
membrane interstitial proteins and further destroying the
cell structure. Among these lethal proteins, some (Cyt c,
Smac/DIABLO, Omi/HtrA2, etc.) can activate caspases,
while others (endo G, AIF, Omi/HtrA2, etc.) act in a
non-caspase-dependent manner. The releasing of those
proteins is the result of the destruction of the complete-
ness of the mitochondria OM via permeabilisation [16,
17]. The kinetic events in mitochondria eventually decide
the onset of apoptotic events, highlighting the tight associ-
ation between mitochondria function disorder and CD. In
addition, Bcl-2 family protein is also vital for the occur-
rence of apoptotic events. Bcl-2 family members modulate
the mitochondria apoptosis signal path via regulating the
permeation of the mitochondrial OM. Upon apoptosis
stimulation, Bax/Bak translocates to the mitochondrial
membrane, promotes the releasing of Cyt c from the inner
mitochondrial membrane space into the cytoplasm, and
induces the occurrence of cell apoptosis [18]. HS-1 related
protein-1 (HAX) -1) is a +35 kDa protein, found every-
where in mitochondria [19]. On the foundation of its
low sequencing homology with Nip3 and structure similar-
ity with Bcl-2 family protein, as a mitochondrial antiapop-
totic protein, HAX-1 is considered to participate in
apoptotic events or programmed CD regulation, and its
abnormal expression is related to many serious diseases,
including neurodevelopmental delay, cancer, and cardio-
vascular disease [20, 21]. A report pointed out that
HAX-1 can regulate the cell death process in myocardial
ischemia-reperfusion injury through ERS and mitochon-
drial stability [22]. Recently, a research showed that the
decomposition of HAX-1 induced CD in mankind B-cell
lymphomas, confirming the critical effects of HAX-1 on
regulating cellular survival [23]. Another study pointed
out that the abnormal expression of HAX-1 protein is vital
for suppressing the apoptosis of glioblastoma cells [24].
Yan et al. revealed that HAX-1 can suppress the apoptotic
events of prostate oncocytes via the inactivation of yellow
membrane-9 [25]. According to Oncomine, the tumor
microarray database, the expression of HAX-1 is high in

many diseases like lung carcinoma, lymphoma, melanoma,
and myeloma [26]. However, the molecular mechanism of
HAX-1’s effect on uveal melanoma has not been studied.

Here, our team was the first to reveal that HAX-1
knockout affects the viability, migration, and tumor cell
spheroidizing ability of UM cells. The effects of HAX-1
on mitochondrial-dependent induction of uveal melanoma
cell apoptosis are caused by activating the PI3K/AKT/
eNOS signal path and favorable modulation of Bax, cas-
pase 3, and Bcl2.

In this research, the TCGA database was employed to
study the survival differences of patients with uveal mela-
noma with diverse expression levels of HAX-1. Our team
found that the expression of HAX-1 in the riskhigh group
was greater in contrast to the risklow group, and the survival
duration of patients with higher HAX-1 levels was inferior.
In addition, we also discovered that HAX-1 participates in
the modulation of uveal melanoma cellular viability, metas-
tasis, and tumor ring formation via modulating PI3K/AKT/
eNOS and triggers UM cell apoptosis via mitochondria
dependence. For that reason, the present research primarily
discusses the expressing features of HAX-1 in uveal mela-
noma and the causal link affecting cell apoptosis.

2. Methods

2.1. Data Collection. Download RNA-seq data of uveal mel-
anoma patients from TCGA database and relevant clinical
data of patients. The extracted clinical data included overall
survival time (OS.time), age, sex, and IDH gene mutation
status. Data from 88 patients with uveal melanoma were
extracted by matching the samples with RNA-SEQ data,
CNV data, and relevant clinic information for analysis.

2.2. Differential Analysis of the Expression Profile of UM
Patients with Different HAX-1 Expression. For 88 UM
expression spectrum data in TCGA, HAX1_H:40 and
HAX1_L:40 were used as grouping basis. DESeq2 package
was used for difference analysis and screen P < 0:05 and
absolute value Log2ðfold changeÞ > 1 as the significant gene
for difference. Finally, the difference genes were shown by
volcano map. Differentially expressed genes in heat map
were stratified and clustered. The correlation between
HAX1 gene expressing and OS rate was analyzed by univari-
able Cox based on the clinical information data of UM in
TCGA database.

2.3. Differential Gene GO Analysis and KEGG Pathway
Analysis. TCGA expression profile chip was corrected,
edgeR of R language was used for differential gene analysis,
and pheatmap package was used to draw differential gene
volcano map and cluster analysis heatmap. The screening
conditions were logFC ≥ 1 or ≤-1, and P < 0:05 had signifi-
cance on statistics. DAVID online program and clusterPro-
filer package were employed to study the differentially
expressed EC genes. Finally, Gene Ontology (GO) analysis
with FDR < 0:05 was selected as the result of enrichment
function, and the GGploT2 package of R language was used
for mapping. KEGG pathway analysis is functionally
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Figure 1: Difference analyses of HAX-1 overexpression and normal expression in patients with uveal melanoma. (a) TCGA volcano map of
differentially expressed genes in patients with uveal melanoma in different survival periods. (b) Layer clustering thermograph of differential
genes. (c) Enrichment analysis of the upregulated and downregulated genes GO and KEGG in the survival group of patients with uveal
melanoma in TCGA.
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classified and enriched by a hypergeometric distribution.
The dataset was analyzed by KEGG pathway via the
“Limma” R package for differential analysis.

2.4. Subsistence Analysis. The Kaplan-Meier survival curve
was drawn, and logrank rank-sum test was employed to
evaluate the overall survival of patients in the riskhigh group
and risklow group. ROC curves were employed to evaluate
the prediction power of the prognostic risk model at 1, 3,
and 5 years of survival, and heat maps of the riskhigh group
and risklow group were drawn. The univariable and multi-
variable Cox regressive analyses were employed to evaluate
the correlation of clinical variables and risk scores with
patient prognoses. The pictures were drawn using R software
and SPSS 22.0 (IBM, Armonk, NY, USA).

2.5. MUM-2B and C918 Cells and their Cultivation. UM lin-
eage cells Mum-2B and C918 were bought from SICB, CAS.
The uveal melanoma lineage cells mum-2B and C918 were
cultivated in DMEM intermediary with 10% serum, and
1% PNC/Streptomycin double antibody solution was added
into the medium. The cell incubator temperature was set at
37°C and CO2 content was 5%. The fresh medium was
replaced every 2 days. When the medium was replaced, the
cell surface was washed with PBS solution to remove some
metabolic substances secreted by cells. When the cells
adhered to the wall and grew to 80%~90%, 0.25% trypsin
was added for digestion and passage of cells. Stable and
well-growing third-generation melanoma cells were col-
lected for subsequent experimental operations.

2.6. Synthesis of HAX-1 siRNA. According to the design
principle of siRNA sequence and according to the sequence
of HAX-1 gene (no. NM006118) in GenBank database, the
540-640 nucleotide of CDS sequence was selected as siRNA
sequence, and this sequence was compared with the homol-
ogy of other genes and EST sequences in NCBI database,
which confirmed that there was no homology with other
genes and EST sequences. The following two haX-1 siRNA
target sequences with BglII and HindIII sticky ends were
designed and synthesized:

5,—CATCCCCAACCAGAGAGGACAATGATCTTTC
AAGAGAAGATCATTGTCCTCTCTGGTTTTTTTA—37

5,—AGCTTAAAAAAACCAGAGAGGACAATGATCT
TCTCTTGAAAGATCATTGTCCTCTCTGGTTGGG—37

2.7. Cell Proliferation Detected by CCK8 Method. The cells
from each group were digested by trypsin to prepare cell sus-
pension and inoculated on 96-well dishes with inoculation
density of 5 × 103/well. The cells were continued to be cul-
tured at 37°C, and 100μL CCK 8 liquor was supplemented
into all wells at 0 h, 24 h, 48 h, and 72h, separately, and cul-
tivated under 37°C for 30min under dark conditions. The
OD result of all wells at 450nm was measured on a multi-
functional micro plate analyzer, and the cellular activity ð%
Þ − ðexperiment group optical density/control group optical
densityÞ × 100% was calculated. Three multiple holes were
set at each time point in every group, and the assay was per-
formed in triplicate.

2.8. Clone Formation Experiment. Mum-2b and C918 cells
were seeded to 6-well dishes with about 500 cells in each well
and grouped according to Method 1.3. After 7 days of cul-
ture, the supernatant was discarded, 4% paraformaldehyde
was subjected to fixation for 20min, and 0.1% gentian violet
was dyed for 15min. After washing and drying, the number
of clones formed was observed under a microscope, and the
clone forming rate was computed. Cell clone forming rate ð
%Þ = overall cell clones/seeded cells × 100%.

2.9. Scratch Healing Test. Mum-2b and C918 cells were
seeded into 6-well dishes, and 1 × 106 cells were inoculated
in every well and cultured to 90%-100% fusion degree. The
bottom of 6-well plates was gently scratched with 200μL
spear head, a vertical line and a horizontal line were drawn,
and the cells were cleaned with PBS for two times. The 6-
well plate was observed under an inverted microscopic
device. Images were captured near the junction of vertical
and horizontal lines and taken again at the same position
24 hours later. Use ImageJ software to measure the scratch
width, mobility/% = ð0 h scratch width − 24 h scratch widthÞ/
0 h scratchwidth × 100%. Each dosing group was set with 3
multiple wells, and the assay was independently performed
in triplicate.

2.10. Transwell Assay Detected by Cell Migration. Matrigel
matrix adhesive was diluted 9 : 1 in precooled culture
medium, and 40μL Matrigel diluent was added to each well
in the upper chamber of Transwell chamber and cultivated
under RT for 5 h. Mum-2b and C918 cells of logarithmic
growth uveal melanoma cells were precooled and washed
with PBS, subjected to digestion by 0.25% trypsin, and then
added with culture medium without fetal bovine serum to
prepare single cell suspension (5 × 104 cells/mL). 200μL sin-
gle cell suspension was supplemented to each well of the
upper chamber. 600μL culture intermediary with 10% FBS
was supplemented into each well in the lower chamber, cul-
tivated for 24h under 37°C within an incubating device at
5% carbon dioxide, cleaned in PBS, subjected to fixation in
PFA for 10min, dyed in 0.1% gentian violet for 10min,
and wiped with cotton swabs for nonmigrated cells. The
number of transplanted cells was observed under
microscope.

2.11. Flow Cytometry Apoptosis Detection. The cells were
inoculated on 6-well dishes and apoptotic events were iden-
tified via flow cell technique using Annexin V-FITC/PI dye-
ing (Nanjing KGI Biotechnology Development Co., Ltd.).
Flow cytometry apoptosis detection is as follows: 24 h poste-
rior to transfection, the cells were digested by trypsin and
harvested and then suspended and washed with 100μL
1×Binding Buffer (Shanghai Biyantian Biotechnology Co.,
Ltd.) for each tube. Annexin V-APC 5μL reagent was added
and incubated for 15min. Apoptotic events were identified
via flow cell technique at 4°C.

2.12. Western Blot Detection. The cells were harvested 3648 h
posterior to transfection and subjected to centrifugation at
600 r/min for 3 rains, and the supernate was removed. The
cells were cleaned with 5mL ice precooled PBS for 2 times
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to collect cell precipitates. 200μL single detergent lysis solu-
tion containing protease inhibitor was supplemented into a
60mm diameter cultivation plate, followed by an ice bath
of about 18 rains and centrifugation of 13000 r/min for 10
rains. The supernate was taken, and the total protein was
quantitatively determined and moved onto PVDF film by
SDS-PAGE. The cells were sealed with 5% skim milk pow-
der, sealed with primary antibody (1 : 1000, Protein Tech
Group, USA) under 4°C nightlong, and cleaned three times
in TBST, 300 s each. The second antisubstance (1 : 500, Pro-
tein Tech Group, USA) was incubated under RT for 60min
and afterwards cleaned three times in TBST, and ECL
chemiluminescence was performed. FluorChemFC2 imager
from CELLBIOSCIENCES was used for luminescence
development.

2.13. Statistical Analysis. Using R (V3.6.1) and SPSS 20.00,
the univariable Cox regressive analyses were completed on
the expressing level of HAX-1 and overall survival in UM
clinical case data. Statistical tests were conducted by bilateral
tests. P < 0:05 had significance on statistics.

3. Results

3.1. Differential Analysis of the Expression Profile of HAX-1
Overexpression and Normal Expression in Uveal Melanoma.
Raw counts and corresponding clinical information of
RNA sequence (level 3) from 80 UVM tumors were acquired
from TCGA dataset. Using the high and low expression of
HAX1 as grouping basis (HAX1_H:40 and HAX1_L:40),
Limma software of R program was employed to explore

the differentially expressed mRNA. According to the screen-
ing criteria modified P < 0:05 and absolute value Log2ðfold
changeÞ > 1. A total of 407 mRNA genes were screened,
including 252 upregulated genes and 155 downregulated
genes (Figure 1(a)), and top 20 upregulated genes and top
20 downregulated genes are shown in Table 1. Figure 1(b)
thermograph shows layer clustering of expressing levels of
DEGs. To identify the potential capabilities of underlying
targets, the data was studied through feature enrichment.
GO is a extensively utilized method to annotate functional
genes, particularly MF, BP, and CC. KEGG enrichment anal-
ysis is useful for analyzing gene function and related high-
level genomic function data. To further reveal the carcino-
genic effects of targeted genes, the clusterProfiler package
in R was employed to study the GO function of underlying
mRNAS and realize the KEGG pathway enrichment. Cyto-
kine enriching assay revealed that the upregulated genes
were mainly distributed in viral arditis, type 1 diabetes mel-
litus, Th1 and Th2 cellular differentiation, systemic lupus
erythematosus, SA infection, phagosome, pertussis, human
papillomavirus infection, HIV-1 infection, and HCMV
infection. KEGG pathway analyses revealed that downregu-
lated genes were mainly distributed in Wnt signal path, thy-
roid cancer, TGF-beta, signal path, signal paths modulating
pluripotency of stem cells, proteoglycans in carcinoma, etc.
GO term enrichment outcomes revealed that the upregu-
lated genes were primarily distributed in type I interferon
signaling pathway, reaction to viruses, reaction to type I
IFN, reaction to IFN-γ, modulation of lymphocyte prolifer-
ation, and other pathways. GO term enrichment showed
developmental maturation, developmental cell growth,

Table 1: Top 20 upregulated genes and top 20 downregulated genes.

Upregulated genes Downregulated genes
Gene name LogFC P value Adjusted P value Gene name LogFC P value Adjust P value

HTR2B 3.53 2.55E-07 1.66E-05 SYNPR -2.70 3.89E-07 2.24E-05

CHAC1 2.74 6.01E-09 1.28E-06 SPP1 -2.50 1.53E-04 1.73E-03

SLC38A5 2.27 1.00E-05 2.22E-04 MSC -2.28 2.63E-05 4.51E-04

VGF 2.24 5.76E-06 1.47E-04 GSTA3 -2.17 4.39E-05 6.61E-04

TRPV2 2.18 3.95E-07 2.27E-05 PDE3A -2.00 1.40E-07 1.07E-05

ECM1 2.15 4.35E-07 2.38E-05 HPGD -1.95 5.84E-06 1.49E-04

AHNAK2 2.13 6.21E-10 3.72E-07 ENPP2 -1.94 2.46E-07 1.61E-05

ISM1 2.11 6.47E-09 1.29E-06 IL12RB2 -1.89 1.79E-07 1.26E-05

IFI27 1.99 4.56E-05 6.83E-04 BEX1 -1.82 4.21E-05 6.39E-04

COL9A3 1.99 1.15E-06 4.79E-05 ROPN1B -1.80 6.76E-11 1.16E-07

VTN 1.98 2.08E-06 7.09E-05 BCHE -1.77 9.90E-07 4.25E-05

MYEOV 1.89 1.03E-05 2.27E-04 GPR27 -1.70 6.57E-08 6.48E-06

PSMB9 1.87 3.56E-06 1.04E-04 LNP1 -1.70 5.37E-08 5.63E-06

WARS1 1.83 8.82E-08 7.75E-06 MTUS1 -1.70 2.45E-09 7.87E-07

GRID1 1.83 1.50E-07 1.12E-05 RNF43 -1.69 2.37E-10 1.99E-07

TNFRSF19 1.82 6.11E-06 1.53E-04 CLEC11A -1.69 5.45E-06 1.42E-04

RARRES2 1.77 1.89E-06 6.60E-05 LIMS2 -1.68 1.19E-06 4.86E-05

PLN 1.76 2.37E-04 2.42E-03 MLIP -1.67 6.84E-06 1.66E-04

FERMT3 1.76 3.55E-07 2.09E-05 COL11A1 -1.66 1.18E-06 4.86E-05

LAG3 1.76 4.26E-06 1.18E-04 KCNK2 -1.66 8.05E-07 3.65E-05
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connective tissue development, cell maturation, cell growth,
cardiac septum morphogenesis, cardiac chamber develop-
ment, and packet structure Hood isotherm pathway
(Figure 1(c)).

3.2. Cox Analysis of the Correlation between HAX-1
Expression and Overall Survival. To further study the effect

of HAX-1 on the prognosis of uveal melanoma, the DEGs
were obtained, univariate Cox regression analysis was per-
formed, and forest maps were drawn. As shown in
Figure 2(a), the Cox risk regression analysis identified 20
optimal differentially expressed genes. As you can see from
the risk factor association graph, there were significantly
more deaths and fewer survivors in the riskhigh group. In
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Figure 2: Cox analysis of correlation between haX-1 expressing and OS. (a) Forest map of 20 differentially expressed genes related to OS in
whole-gene Cox regressive analysis. (b) Risk factor association diagram of differential expression gene prognostic model. Above: riskhigh
(red) and risklow (blue) in a prognostic model. Risk score distribution of uveal melanoma patients. Middle image: scatter plot shows the
survival of patients with GBM in the model. Red dots are patients who died and blue dots are patients who survived. Figure below: a
calorimetric map of the genetic expression of haX-1 in the model.
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addition, the expressing level of haX-1 was greater in the ris-
khigh group in contrast to the risklow group (Figure 2(b)). K-
M survival analyses were used to evaluate the OS of sufferers
in diverse groups. The OS of sufferers in the risklow group
(blue) was remarkably higher in contrast to the riskhigh
group (red) (P < 0:05) and the difference was statistically sig-
nificant (Figure 2(c)). On the foundation of the prognosis
gene model, the overall survival rate of 1, 3, and 5 years in
the future was predicted by ROC curve. The results showed
that the constructed model exhibited satisfactory prediction
capability (Figure 2(d)).

3.3. HAX-1 Knockout Affects UM Cell Viability, Migration,
and Oncocyte Spheroidizing Ability. To better explore the
roles of HAX-1 in UM cells, our team used chemically syn-
thesized siRNA to knock down haX-1 expression in mum-
2B and C918 cells. At 48h after transfection, WB was
employed to evaluate the efficiency of siRNA knockout.
The outcomes showed that HAX-1 siRNA effectively
reduced the protein expressing level of HAX-1 in mum-2B
and C918 cells (Figure 3(a)). By CCK-8 detection, we found

that cell proliferation rates of Mum-2B and C918 cells sub-
jected to siRNA treatment were remarkably lower in con-
trast to those subjected to siRNA treatment (Figure 3(b)).
In scratch experiments, siHAX-1’s ability to recover scratch
was remarkably improved in mum-2B and C918 cells com-
pared with siRNA control cells (Figure 3(c)). Results of clone
forming assays revealed that siHAX-1 remarkably reduced
the quantity of colony formation in soft AGAR (Figure 3
(d)). In Transwell migration experiment, siHAX-1 signifi-
cantly reduced cell migration in mum-2B and C918 cells
in contrast to siRNA control cells (Figure 3(e)). In addi-
tion, haX-1 knockout significantly reduced the pellet-
forming ability of UM cells in contrast to the controls
(Figure 3(f)). Those results reveal that HAX-1 knockout
affects UM cellular activity, metastasis, and oncocyte
pelletogenesis.

3.4. HAX-1 Induces Apoptosis in the Mitochondrial-
Dependent Pathway. We next examined whether HAX-1
triggered apoptosis in uveal melanoma cells. In apoptotic
events identified via flow cell technique, siHAX-1 triggered
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Figure 3: HAX-1 knockout affects the viability and migration of UM cells and the ability of tumor cells to form balls. (a) WB assay of HAX-
1 protein expressing levels in uveal melanoma lineage cells MUM-2B and C91. (b) CCK-8 method was employed to identify the proliferative
effect of transfected siHAX-1 and si control on MUM-2B and C91 cells. siHAX-1 vs. control group, ∗P < 0:05 and ∗∗P < 0:01. (c) Scratch test
to assess the effect of HAX-1 on the migration of MUM-2B and C91 cells. (d) The clone formation experiment detects the effect of HAX-1
on the proliferative ability of MUM-2B and C91 cells. siHAX-1 vs. the controls, ∗P < 0:05 and ∗∗P < 0:01. (e) Migration test (using Matrigel
Transwell chambers) is used to study cell migration. siHAX-1 vs. the controls, ∗P < 0:05 and ∗∗P < 0:01. (f) Tumor sphere formation ability
experiment to assess the roles of HAX-1 in the tumor sphere formation capability of MUM-2B and C91 cells.
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programmed cell death in mum-2B and C918 cells in con-
trast to siRNA control cells (Figure 4(a)). In addition,
siHAX-1 increased protein expressing levels of Bax mum-
2B and C918 cells (Figure 4(b)). Stimulation of caspase-9,
reduction of MMP, and transfer of Cyt c from the mitochon-
drion to cytosol can verify the occurrence of mitochondrial
apoptosis. For that reason, to better verify the effects of
mitochondria on haX-1-triggered apoptotic events, we
examined variations in protein expressing levels of caspase-
3/9 and cytochrome C levels. The outcomes revealed that
siHAX-1 elevated the expression of Caspase-3/9 and Cytosol
cyt C in mum-2B and C918 cells in contrast to the controls
(Figure 4(c)). Moreover, siHAX-1 remarkably decreased
MMP in mitochondrial pathways in mum-2B and C918 cells
compared to the controls (Figure 4(d)). Those results reveal
that HAX-1 triggers programmed cell death in uveal mela-
noma cells in a mitochondrion-reliant signal path.

3.5. HAX-1 Induces UM Cell Apoptosis through AKT/eNOS
Signal Path. To investigate the causal link involved in the
apoptosis-inducing role of HAX-1, WB was employed to
identify the expression and phosphonation of PI3K/AKT/
mTOR/eNOS. Treatment with SihaX-1 remarkably
decreased the phosphonation of PI3K/AKT/mTOR/eNOS
in mum-2B and C918 (Figure 5(a)). Pretreatment with
740-YP significantly restored the decrease in PI3K and

AKT phosphorylation induced by SihaX-1 (Figure 5(b)).
These data suggest that the apoptosis-inducing effect of
SiHAX-1 in mum-2B and C918 cells might be under the
mediation of the PI3K/AKT/mTOR/eNOS signal path.

3.6. HAX-1 Regulates UM Cell Viability, Migration, Oncocyte
Spheroidization Ability, and Mitochondrial-Dependent
Apoptosis by Regulating the AKT/eNOS Signal Path. It is
known to all that the AKT/eNOS signal path is pivotal for
the genesis and development of tumors. It is vital for cellular
proliferation, differentiation, and cell viability modulation
[27]. The gain or loss of function caused by abnormal
expression of related genes and molecules in this pathway
can lead to abnormal proliferation, apoptosis, and invasion
of tumor cells [28]. Tumor progression is related to aberrant
genetic stimulation in those signal paths as well, which
might induce elevated cellular growth and survival [29].
Next, we examined whether haX-1 affects uveal melanoma
cells through the AKT/eNOS pathway. 48 h after transfec-
tion, Western blot results showed that the decrease in PI3K
and AKT phosphonation caused by HAX-1 knockdown
was significantly restored by LY294002 in mum-2B and
C918 cells (Figures 5(a) and 5(b)). By CCK-8 assay, we
found that LY294002 preconditioning restored the decrease
in mum-2B and C918 cellular proliferative rates caused by
siHAX-1 treatment (Figure 6(a)). In the scratch experiment,
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Figure 4: HAX-1 induces apoptosis in the mitochondrial-dependent pathway. (a) Flow cytometry to detect flow cytometry cycle
distribution. (b) WB assay to identify Bax and Bcl-2 protein expressing levels in UM lineage cells MUM-2B and C91. (c) Western blot
analysis to detect the expression levels of caspase-3/9 and cytosolic Cyt c protein in the uveal melanoma cell lines MUM-2B and C91. (d)
Immunofluorescence detection of MMP expressing in UM lineage cells MUM-2B and C91.
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LY294002 pretreatment restored the reduced scratch recov-
ery ability of SIHAX-1 in mum-2B and C918 cells
(Figure 6(b)). The results of clone formation experiments
showed that LY294002 pretreatment restored the reduction
in the number of colonies formed in soft AGAR caused by
SiHAX-1 (Figure 6(c)). In Transwell migration experiment,
pretreatment with LY294002 restored the decrease in cell
migration induced by SIHAX-1 in mum-2B and C918 cells
(Figure 6(d)). These results suggest that haX-1 knockout
reduced uveal melanoma cell viability and migration ability
reversed by LY294002. In addition, LY294002 also reversed
the tumor-forming ability of uveal melanoma cells reduced

by HAX-1 knockdown (Figure 6(e)), as well as the apoptosis
of uveal melanoma cells induced by HAX-1 in the
mitochondria-dependent pathway (Figure 6(f)). Those
results reveal that haX-1 affects UM cell viability, the ability
of migrating tumor cells to form pellets, and mitochondria-
dependent apoptosis via the AKT/eNOS pathway.

4. Discussion

Uveal melanoma (UM) is a commonly seen malignancy in
the eye. Its incidence is second only to retinoblastoma. It
has a high degree of malignancy, proliferation, and
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Figure 6: Continued.
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invasiveness and can metastasize at an early stage [30]. Some
studies have pointed out that metastasis, especially the dis-
tant metastasis that breaks through the orbit, is an important
cause of death [31]. Surgery is still one of the most effective
treatments for the disease, but the 5-year survival rate of suf-
ferers remains not optimistic. However, more than 50% of
surgical patients have blood metastases, most of which
involve the liver, and eventually cause liver failure and death.
Surgical resection did not significantly improve the patient’s
quality of life and did not achieve the effect of radical treat-
ment of the tumor [32, 33]. Therefore, further research of
the molecular causal link of the occurrence and metastasis
of UM and the search for tumor molecular markers and
new therapeutic targets have important significance and
clinical application value.

Apoptosis, that is, programmed CD, can happen
through the external pathway of the cell death receptor
mediator or the internal pathway of the mitochondrial medi-
ator. Many stimuli induce programmed cell death, such as
ROS, RNS, hormones, cell-cell interactions, growing factor
extraction, antigens, and chemotherapy [34, 35]. The devel-
opment of cancer is related to decreased apoptosis and can-
cer cell proliferation [36]. For that reason, apoptotic
induction is considered a valid way of tumor treatment.
Herein, our team discovered that HAX-1 triggers pro-
grammed cell death in a mitochondrial-reliant signal path.
In addition, our team also explored the signaling pathways
that might exert impacts on the apoptotic events of uveal
melanoma cells triggered by HAX-1. As far as we know,
the present research is the first to link HAX-1 to uveal mel-
anoma cell lines and shows that HAX-1 mediated

mitochondrion-dependent apoptosis is through the AKT/
eNOS pathway.

As an antiapoptotic protein, HAX-1 is crucial for cellular
protection via suppressing the stimulation of mitochondria
and endoplasm reticulum stress-associated apoptosis signal
paths [19]. More and more researches have revealed that
the expression of HAX-1 is high in a variety of malignancies,
affecting tumor cell proliferation, migration, and apoptosis
[37]. Deng et al. discovered that the expression of HAX-1
is high in glioma samples and lineage cells and is related to
the clinicopathology features and prognoses of glioma;
moreover, it promotes the proliferation of glioblastoma cells
and inhibits tumor cell apoptosis. [24] Studies have also
found that HAX-1 promotes the proliferative, migratory,
invasive abilities, and epithelial interstitial transform of liver
carcinoma cells. Another research revealed that HAX-1 sup-
presses the programmed cell death of prostate carcinoma
cells via inhibiting the activation of caspase-9 [38]. Never-
theless, the roles and molecular causal link of HAX-l in the
occurrence and progression of UM are still unclear. This
study was the first to discover that HAX-1 promotes
radiation-induced mitochondrion-reliant programmed cell
death of UM cells via the AKT/eNOS signal path, inhibits
cell proliferation, and has potential clinical application value.

In this study, the TCGA database first analyzed survival
differences in patients with uveal melanoma with diverse
haX-1 expressing levels. The results showed that the gene
expression level of haX-1 was greater in the riskhigh group
in contrast to the risklow group, and sufferers with higher
HAX-1 levels displayed an inferior survival time. For that
reason, HAX-1 was chosen as an investigation target. There

siHAX-1
Q1

Q4

Q2

Q3

Q1

Q4

Q2

Q3

Q1

Q4

Q2

Q3

Q1

Q4

Q2

Q3

siHAX-1siHAX-1+LY294002 siHAX-1+LY294002

siNC

PI

Annexin V-FITC Annexin V-FITC Annexin V-FITC Annexin V-FITC
100 101 102 103

10
0

10
1

10
2

10
3

Q1

Q4

Q2

Q3

Annexin V-FITC
100 101 102 103

10
0

10
1

10
2

10
3 Q1

Q4

Q2

Q3

Annexin V-FITC
100 101 102 103

10
0

10
1

10
2

10
3 Q1

Q4

Q2

Q3

Annexin V-FITC
100 101 102 103

10
0

10
1

10
2

10
3 Q1

Q4

Q2

Q3

Annexin V-FITC
100 101 102 103

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

100 101 102 103 100 101 102 103 100 101 102 103

siNCsiHAX+LY294002 siNC+LY294002

MUM-2B C918

siN
C

siN
C

siH
AX-1+

LY
294

002

siH
AX-1+

LY
294

002

siN
C+LY

294
002

siN
C+LY

294
002

siH
AX-1

siH
AX-1

8

6

4

2

0

Ap
op

to
sis

 ra
te(

%
)

MUM-2B C918

⁎

⁎

⁎⁎ ⁎⁎

(f)

Figure 6: HAX-1 regulates uveal melanoma cell viability, migration, tumor cell spheroidization ability, and mitochondrial-dependent
apoptosis by regulating the AKT/eNOS pathway. (a) CCK-8 method was employed to identify the proliferative effect of MUM-2B and
C91 cells in siHAX-1+ LY294002 and siNC+LY294002 groups. siHAX-1 vs. the controls, ∗P < 0:05 and ∗∗P < 0:01; siHAX-1+LY294002
vs. siNC+LY294002, ∗P < 0:05 and ∗∗P < 0:01. (b) Scratch test to evaluate the effect of HAX-1+LY294002 on the migration of MUM-2B
and C91 cells. (c) The clone formation experiment detects the effect of siHAX-1+LY294002 on the proliferation of MUM-2B and C91
cells. siHAX-1 vs. the controls, ∗P < 0:05 and ∗∗P < 0:01; siHAX-1+LY294002 vs. siNC+LY294002, ∗P < 0:05 and ∗∗P < 0:01. (d)
Migration test (using Matrigel Transwell chambers) is used to study cell migration. siHAX-1 vs. control group, ∗P < 0:05 and ∗∗P < 0:01;
siHAX-1+LY294002 vs. siNC+LY294002, ∗P < 0:05 and ∗∗P < 0:01. (e) Tumor spherule forming ability experiment to assess the role of
siHAX-1+LY294002 in the tumor spherule forming capability of MUM-2B and C91 cells. siHAX-1 vs. the controls, ∗P < 0:05 and ∗∗P <
0:01; siHAX-1+LY294002 vs. siNC+LY294002, ∗P < 0:05 and ∗∗P < 0:01. (f) Flow cytometry experiment to assess the roles of siHAX-1
+LY294002 in the apoptotic capability of MUM-2B and C91 cells. siHAX-1 vs. the controls, ∗P < 0:05 and ∗∗P < 0:01; siHAX-1
+LY294002 vs. siNC+LY294002, ∗P < 0:05 and ∗∗P < 0:01.
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is increasing proofs that the overexpression of HAX-1 occurs
in a variety of malignancies, especially affecting proliferation
and invasion. We were interested in the roles and causal link
of HAX-1 in uveal melanoma, so we used chemically synthe-
sized siRNA to knock out HAX-1 expression in mum-2B
and C918 cells. To evaluate the siRNA knockout efficiency,
WB was employed to evaluate the siRNA knockout effi-
ciency. We found that HAX-1 siRNA effectively reduced
protein expression of HAX-1 in mum-2B and C918 cells.
By CCK-8 analysis, our team discovered that cellular prolif-
erative rates of Mum-2B and C918 cells subjected to siRNA
treatment were remarkably lower in contrast to those sub-
jected to siRNA treatment. Those outcomes suggest that
HAX-1 can facilitate the development of cancer via regulat-
ing uveal melanoma cell proliferation. Consistent with this
concept, we further found that haX-1 knockdown inhibited
cell proliferation in mum-2B and C918 cells. Transwell
migration analysis showed that siHAX-1 significantly
reduced the cell migration ability in mum-2B and C918 cells
in contrast to siRNA control cells. In addition, haX-1 knock-
out significantly reduced the pellet-forming ability of uveal
melanoma cells compared to the control group.

Internal apoptosis induced by mitochondria triggered by
death receptors is represented by activation of caspase-9
[39]. In this study, Sihax-1 mediated the activation of Cas-
pase-3/9 and Cytosolic cyt C, and sihax-1 significantly inhib-
ited MMP in the mitochondrial pathway. In addition, Bcl-2
and Bax are tightly associated with programmed cell death
as well. Bcl-2 primarily acts as a global mitochondria mem-
brane protein and produces heterosomes with Bax to avoid
mitochondria variations during programmed cell death.
The outcomes herein revealed that siHAX-1 remarkably
decreased the increased expression of Bcl-2 and Bax in
mum-2B and C918 cells. Those outcomes suggest that
HAX-1 induces uveal melanoma cell apoptosis mainly
through mitochondrial dependence.

Finally, this research demonstrates for the first time that
HAX-1 triggers uveal melanoma cell apoptosis via mito-
chondria dependence via the stimulation of PI3K/AKT/
eNOS signal path and favorable modulation of Bax, Caspase
3, and Bcl2. The results of this study suggest that haX-1 acti-
vates uveal melanoma cells through PI3K/AKT/eNOS by
mediating mitochondrial dependent apoptotic pathways that
trigger apoptosis, including loss of MMP, transfer of CyT C,
and favorable modulation of Bax, Caspase 3, and Bcl2 as key
events associated with apoptosis. Those discoveries reveal
that PI3K/AKT/eNOS/mitochondrial signal path plays a
pivotal role in haX-1 induction of uveal melanoma cell
apoptosis.
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Gastric cancer (GC) is the most deadly gastrointestinal malignancy with high incidence and mortality. Although, molecular
mechanisms which drive gastric cancer progression are extensively investigated, the roles of long noncoding RNA (lncRNA) in
gastric cancer growth and drug sensitivity remain unclear. Platinum is a mainstay to treat gastric cancer, and platinum
resistance always leads to the local recurrence of gastric cancer. Therefore, it is important to identify biomarkers or therapeutic
targets to sensitize gastric cancer to platinum. In this study, we employ noncoding RNA sequencing and found that lncRNA
PITPNA-AS1 is overexpressed in gastric cancer tissues and associated with poor survival of gastric cancer patients. Kockdown
of PITPNA-AS1 in gastric cancer cells significantly inhibited cell growth and triggered apoptotic cell death in gastric cancer
cells. Also, cisplatin treatment could decrease PITPNA-AS1 levels in gastric cancer cells through inhibiting H3K27ac. Besides,
PITPNA-AS1 is elevated in cisplatin-resistant gastric cancer cells and tissues, PITPNA-AS1 knockdown could sensitize gastric
cancer cells to cisplatin treatment. Furthermore, we identified that PITPNA-AS1 directly interacts and inhibits miR-98-5p.
Therefore, PITPNA-AS1 could be served as a potential biomarkers and curative therapeutic targets for gastric cancer progression.

1. Introduction

Gastric cancer (GC) is the fourth most commonly diagnosed
cancer and the second most common cancer-related mortal-
ity globally, with approximately 738,000 people died of GC
each year worldwide [1, 2]. Despite the remarkable progres-
sive improvement in surgical and medical techniques, prog-
nosis of patients with GC remains relatively poor, mainly
due to its high recurrence and metastasis incidence [3]. Neo-
adjuvant chemotherapy improves overall survival of GC
patients in comparison to traditional chemotherapy or sur-
gery alone. 5-Fluorouracil combined with cisplatin has been
convincingly proved survival benefits for HER-2-positive
patients [4–6]. As the main chemotherapy treatment for

postoperative GC patients, the efficacy of platinum has been
largely limited due to the chemo-resistance [7]. Laboratory
studies illustrated that resistance to platinum is almost mul-
tifactorial, which includes impaired cellular uptake of plati-
num drug [8], reinforced endocellular detoxification by
glutathione and metallothionein systems [9], enhanced
DNA repair capacity, enhanced tolerance to DNA damage
[10], and rising restore of DNA damage [8, 11].

Long noncoding RNAs (LncRNAs) are a class of non-
coding RNAs longer than 200nt without protein coding
potential. Several lncRNAs were confirmed as biotargets
for modulating cisplatin resistance in cancer through the cell
cycle, apoptosis, and Wnt pathways [12], which acts as a
competing endogenous RNA or directly binding to mRNAs
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or proteins and regulating their expression and functions
[13]. LncRNA PITPNA antisense RNA 1 (PITPNA-AS1) is
located in chromosome 17p13.3, with the function of regu-
lating cell growth and motility of hepatocellular carcinoma
via miR-876-5p/WNT5A pathway, which was affirmed by
rescue and in vivo experiments [14]. Furthermore,
PITPNA-AS1 was found to be involved in promoting EMT
process to promote proliferation and metastasis of non-
small-cell lung cancer. Based on the fact that EMT is an
important mechanism for regulating platinum resistance,
we hypothesized that PITPNA-AS1 took part in mediating
platinum resistance as well.

MiRNAs are another type of noncoding RNAs with 19-
24 nt in length, which could posttranscriptionally repress
gene expression via binding to the 3′-untranslated region
(3′-UTR) of mRNA [15]. Wei et al. summarized expression
levels and potential targets of 53 microRNAs (miRNAs)
which participated in platinum resistance of gastric cancer
[16]. It has been reported that several oncogenic miRNAs
can promote platinum resistance of gastric cancer, such as
miR-20a [17] and miR-106a [18], while tumor suppressive
miRNAs can reverse platinum resistance, such as miR-
508p [19] and miR-129-5p [20]. As a valid tumor suppres-
sor, microRNA-98-5p (miR-98-5p), which is one member
of let-7 family, is usually downregulated in various cancers,
such as nasopharyngeal carcinoma [21] and endometrial
cancer [22]. But increased expression of miR-98-5p has been
observed in primary breast cancer swatches [23]. Perhaps
miR-98 has completely opposite obligation in different types
of cancers. A series of assays have elucidated that MiR-98-5p
was expressed significantly lower in pancreatic ductal adeno-
carcinoma tissues compared with normal tissue and its
expression was highly associated with tumor size, TNM
stage, lymph node metastasis, and survival. And it could
negatively regulate MAP4K4 and inhibit MAPK/ERK signal-
ing [24]. Until now, few studies implemented the function of
miR-98-5p in GC.

Although recent advanced studies identify molecular ele-
ments of GC, the precise mechanisms of tumourigenesis
remain largely unknown [25]. Therefore, the clarification
of new pathogenesis is vital for practical targeted treatment
for GC; many studies verified that lncRNA and miRNA
played vital functions in the development and therapeutic
resistance of cancers and their aberrant expression emerged
as important hallmarks of multiple cancers [26–28]. How-
ever, few studies reported the molecular mechanisms of
PITPNA-AS1 and miR-98-5p in GC, especially when it
comes to their relationship with platinum resistance. Thus,
we investigate the role of PITPNA-AS1 and miR-98-5p in
GC and their connection with platinum resistance.

2. Results

2.1. RNA Sequencing for lncRNA and MicroRNA in 3 Gastric
Cancer Patients. To identify the differentiated expression
noncoding RNA (ncRNA) in cisplatin sensitive and cisplatin
resistant gastric cancer tissues, we have performed ncRNA
sequencing including lncRNA and microRNA using gastric
cancer tissue (cisplatin sensitive vs. resistant). The top 20

upregulated lncRNAs and microRNAs including PITPNA-
AS1 are shown in Figure 1. Elevated expression of
PITPNA-AS1 was previously detected in gastric cancers;
our ncRNA sequencing further showed that PITPNA-AS1
was downregulated in cisplatin resistant gastric cancer. To
identify the downstream effector of PITPNA-AS1, we used
DIANA on-line software, which is a website-based tool to
prediction miRNA-lncRNA interactions, and found that
miR-98-5p might be the target of PITPNA-AS1.

2.2. PITPNA-AS1 Expression Was Correlated with Local
Recurrence in Gastric Cancer Patients. To further confirm
the PITPNA-AS1 expression in gastric cancer tissues com-
pared with their matched normal tissue, we have measured
PITPNA-AS1 expression in 153 gastric cancer tissues com-
pared with para-cancer tissues and found that PITPNA-
AS1 was significantly increased cancer tissues; meanwhile,
the level of its putative target miR-98-5p significantly
downregulated in cancer tissues (Figures 2(a) and 2(b)).
In addition, the patients’ survival analysis showed that
the high expression of PITPNA-AS1 was associated with
poor survival (Figure 2(c)). On the contrary, the high level
of miR-98-5p was associated with better overall survival
(Figure 2(d)). Besides, the expression of PITPNA-AS1
was negatively correlated with miR-98-5p expression in
gastric cancer tissues (Figure 2(e)). Furthermore, signifi-
cant higher level of PITPNA-AS1 has been detected in
local recurrent gastric cancer patients compared with non-
recurrent cancer tissues, while miR-98-5p was downregu-
lated in local recurrent gastric cancer tissues (Figures 2(f)
and 2(g)).

2.3. PITPNA-AS1/miR-98-5p Regulated Cell Proliferation
and Inhibits Apoptosis in Gastric Cancer Cell Lines. Next,
we measured the PITPNA-AS1 levels in gastric cancer cells,
and found that PITPNA-AS1 was overexpressed in human
gastric cancer cell lines including MKN45 and AGS, but
not in in normal gastric mucosal cell line GES-1 (Figure 3
(a) and Sup Figure 1). Meanwhile the expression of miR-
98-5p was lower in MKN45 and AGS than that in GSE-1
cell line (Figure 3(b)). To investigate the biological roles of
PITPNA-AS1 in gastric cancer, knocked down the
expression of PITPNA-AS1 in MKN45 and AGS cells (Sup
Figures 2a and 2b), and found that silence of PITPNA-AS1
significantly inhibited cancer cell proliferation (Figures 3(c)
and 3(d)). Also, PITPNA-AS1 knockdown caused
apoptotic cell death in MKN45 and AGS cells, as
evidenced by significant increased caspase 3/7 activity. In
contrast with PITPNA-AS1, ectopic expression of miR-98-
5p (Sup Figures 2c and 2d) could significantly decreased
cell proliferation rate and enhanced cell apoptosis rate
(Figures 3(g)–3(j)).

2.4. PITPNA-AS1 Negatively Regulated the Expression of
miR-98-5p. To validate whether miR-98-5p could be the tar-
get of PITPNA-AS1, we examined the miR-98-5p expression
after PITPNA-AS1 knockdown and found that silence of
PITPNA-AS1 significantly increased the level of miR-98-5p
(Figures 4(a) and 4(b)). Then, we performed dual luciferase
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reporter gene assay and found that PITPNA-AS1 was associ-
ated with miR-98-5p in cell (Figures 4(c) and 4(d)). We fur-
ther performed in vitro RNA pulldown assay and found that
PITPNA-AS1 directly interacted with miR-98-5p (Figures 4
(e) and 4(f)).

2.5. PITPNA-AS1 Expression Can Be Suppressed by Cisplatin
in Gastric Cancer Cell Lines. PITPNA-AS1 was decreased in
the cisplatin-resistant gastric cancer tissues; we then exam-
ined whether cisplatin treatment whether could affect
PITPNA-AS1 expression. As shown in Figure 5(a), the half
maximal inhibitory concentration (IC50) of CDDP in
MKN45 is 0.52μg/mL and the IC50 in AGS is 0.59 μg/mL
(Figure 5(b)). We used CDDP (0.52 μg/mL) to treat
MKN45 and CDDP (0.59 μg/mL) to treat AGS cells for 24
hours and found that PITPNA-AS1 expression can be signif-
icantly suppressed after cisplatin treatment (Figures 5(c) and
5(d)).

In the meantime, we also detected that CDDP treatment
could significantly increase expression of miR-98-5p in
MKN45 (0.52μg/mL) and in AGS cells (0.59μg/mL)
(Figures 5(e) and 5(f)). To study the mechanism which leads
to PITPNA-AS1 downregulation during cisplatin treatment,
we examined H3K27ac levels after cisplatin treatment, since
H3K27ac is a well-established marker for active enhancers
and promoters. As shown in Figure 5(g), we found that
H3K27ac expression was significantly suppressed in
MKN45 and AGS cells when treated with CDDP.

2.6. PITPNA-AS1/miR-98-5p Regulated by H3K27ac
Influenced the Effect of Platinum. We have generated
cisplatin-resistant MKN45 cells (MKN45-CDDPR), the
IC50 of which is 2.60 μg/mL, which MKN45 parental cell
has a IC50 of 0.59μg/mL (Figure 6(a)). Then, we checked
PITPNA-AS1 expression in MKN45 parental and cisplatin
resistant cells, and we found that PITPNA-AS1 was over-
expressed in MKN45-CDDPR compared with parental
cells (Figure 6(b)); meanwhile, we also detected that
miR-98-5p was downregulated in cisplatin-resistant cells
(Figure 6(c)).

Furthermore, we also found that H3K27ac was upregu-
lated in MKN45-CDDPR cells (Figure 6(d)), which could
be significantly suppressed by cisplatin treatment (Figure 6
(e)). Furthermore, Chip assay showed that H3K27ac
enriched more in the promotor region of PITPNA-AS1 in
MKN45-CDDPR cells than in parental cells (Figures 6(f)
and 6(g)). By treating with C646, the expression of
PITPNA-AS1 in MKN45-CDDPR could be significantly
suppressed (Figure 6(h)). Then, we transfected PITPNA-
AS1-WT plasmids and found that PITPNA-AS1 knock
down could suppress IC50 of MKN45-CDDPR, which could
be reversed by miR-98-5p knock down (Figure 6(i)).

3. Discussion

Collectively, in this study, we discovered the role of
PITPNA-AS1 and miR-98-5p in gastric cancer through gain
and loss-of-function assays and analyzed the mechanism by
which PITPNA-AS1 regulates apoptosis and drug resistance
through the miR-98-5p targeting axis.

Gastric cancer is one of the leading public health prob-
lems worldwide because of its high incidence, morbidity,
and mortality rate [29]. Currently, lacking of screening
methods and early symptom, patients are most often diag-
nosed at advanced stages, with metastatic at distant sites
and somber prognosis (median overall survival is 10-12
months) [30, 31]. For locally advanced disease, adjuvant
or neoadjuvant therapy which recognized as the optimal
therapeutic option is usually introduced with surgery
owing to its curability [30]. Fluoropyrimidine plus oxali-
platin doublet is considered as the preferred first-line reg-
imen due to its comparable survival benefits and lower
toxicity [32]. Overcoming resistance is still a challenge in
GC chemotherapy.

LncRNAs are associated with the tumor recurrence and
poor prognosis, and abnormal expression has been observed
in various tumors [33]. Mounting evidence elucidated that
lncRNAs could act as oncogenes or tumor suppressors by
modulating the gene expression or function in tumorigenesis
[34], which possibly induce significant influence on the
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Figure 1: RNA sequencing for lncRNA and microRNA in 3 gastric cancer patients. (a) Heatmap based on the lncRNA NGS between gastric
cancer and matched normal tissues to show the top 20 differentially expressed genes. (b) Heatmap based on the microRNA NGS between
gastric cancer and matched normal tissues to show the top 20 differentially expressed microRNAs in gastric cancer.
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Figure 2: Continued.
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alterations of cell proliferation, metastasis, autophagy, and
apoptosis [35, 36]. Our study indicated that lncRNA
PITPNA-AS1 was highly expressed in gastric cancer patients
and was associated with poor prognosis. Alteration of gene
expression is correlated with the cancer specific survival of
patients. PITPNA-AS1 was overexpressed in MKN45 cell
line while knocking down PITPNA-AS1 resulted in inhibit-
ing cell proliferation rate and increasing apoptosis rate. We
first time inspected the role of PITPNA-AS1 in GC, which
founding the basis for further exploration.

Next, we investigated the potential mechanism under-
lying PITPNA-AS1. Biased on current study, mechanism
assays unveiled that PITPNA-AS1 targeted miR-98-5p.
Dual-luciferase reporter gene assay, RNA pull-down assay,
and RIP consequence provided powerful evidence that
PITPNA-AS1 could interact with miR-98-5p. Moreover,
knocking down of PITPNA-AS1 resulted in decreased
expression of miR-98-5p, which confirmed this discovery
again. The antitumor function of miR-98-5p has been doc-
umented yet. For instances, Fu et al. recognized miR-98-5p
underexpression as biomarkers for predicting poor prog-
nosis in pancreatic ductal adenocarcinoma (PDAC)
patients because miR-98-5p inhibits proliferation and
metastasis via targeting MAP4K4 [24]. Acting as a tumor
suppressor, miR-98 could decelerate cancer aggressiveness
by inhibiting TWIST expression in non-small-cell lung
cancers [37]. In hepatocellular carcinoma (HCC), miR-
98-5p could restrain cell proliferation and induce cell apo-
ptosis via inhibition of its target gene IGF2BP1 [38]. As
for colon cancer, miR-98 plays the role of tumor suppres-
sor gene and inhibits Warburg effect by targeting HK2
(HK2 involves in miR-98-mediated suppression of glucose
uptake, lactate production, and cell proliferation, whose
expression was negatively correlated with miR-98) in colon

cancer cells, which provided promising therapeutic candi-
date for clinical treatments [39].

In our study, miR-98-5p was shown to be downregulated
in GC. Overexpression of miR-98-5p led to decreased cell
proliferation rate and ascended apoptosis rate. Moreover,
inhibition of miR-98-5p partially reversed the inhibitory
effects of PITPNA-AS1 on GC cell proliferation and apopto-
sis. Thus, we draw the conclusion that PITPNA-AS1 exerts
its tumor-promotion effect in GC via negatively modulating
the expression of miR-98-5p. Laboratory findings were con-
sistent with literature reports. Guo et al. revealed that
lncRNA PITPNA-AS facilitates the cervical cancer progres-
sion on the proliferation, cell cycle, and apoptosis by target-
ing the miR-876-5p/c-MET axis [40].

It is well-established that aberrant lncRNA expression is
strongly implicated in drug resistance in some cancers [41,
42]. Our experiments uncovered that cisplatin (CDDP) and
lobaplatin (LBP) could suppress PITPNA-AS1 expression
and induce expression of miR-98-5p in GC cell lines.
Besides, PITPNA-AS1 was overexpressed in MKN45-
CDDPR and MKN45-LBPR, which could confer GC cell
resistance to platinum drugs, compared with their parental
cells. However, miR-98-5p has the opposite effects. Further-
more, PITPNA-AS1-WT could reverse the inhibitory effect
of platinum. These data demonstrated that PITPNA-AS1/
miR-98-5p had a major role in regulating platinum-
resistant in GC cells. Consistent with aforementioned find-
ings, Wang’s studies have identified that elevated expression
of miR-98-5p is associated with resistance to cisplatin treat-
ment through directly targeting Dicer1 and poor clinical
outcomes in epithelial ovarian cancer patients [43]. Guo’s
studies have illustrated that cancer-associated fibroblast-
derived exosomal who carrying overexpressed miR-98-5p
promoted cisplatin resistance in ovarian cancer by
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Figure 2: PITPNA-AS1 expression was correlated with local recurrence in gastric cancer patients. (a) PITPNA-AS1 expression was
measured using qRT-PCR method in gastric cancer tissues compared with matched normal tissues. (b) miR-98-5p expression was
measured using qRT-PCR method in gastric cancer tissues compared with matched normal tissues. (c) Survival analysis shown as KM-
plot for PITPNA-AS1 high-expression group and low-expression group in gastric cancer patients. (d) Survival analysis shown as KM-
plot for miR-98-5p high-expression group and low-expression group in gastric cancer patients. (e) The correlation of PITPNA-AS1 and
miR-98-5p based on qRT-PCR method in gastric cancer patients. (f) PITPNA-AS1 expression was measured by qRT-PCR in gastric
cancer patients stratified by local recurrence and nonlocal recurrence. (g) miR-98-5p expression was measured by qRT-PCR in gastric
cancer patients stratified by local recurrence and nonlocal recurrence.
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Figure 3: Continued.
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downregulating CDKN1A [44]. An existing study has
revealed that miR-129 could enhance chemosensitivity to
cisplatin by suppressing P-gp protein in GC cells [45].

Conjointly, these results suggest that miR-98-5p could be
served as a novel prognostic factors and critical therapeutic
target in GC by enhancing chemo-sensitivity for platinum
treatment against GC. However, downstream signal mole-
cule and other biological processes are required further
investigation.

4. Materials and Methods

4.1. Gastric Cancer Patients. The GC tissues and local recur-
rence GC tissues, as well as the corresponding para-cancer
tissues, were collected from the patients who were diagnosed
as GC by surgical resection at the First Affiliated Hospital of
Xi’an Jiao Tong University. All patients were treated with
800mg/m2

fluorouracil (civ 24 h, d1~5) and 80mg/m2 cis-
platin (ivgtt, d1) for 2 cycles before surgery and 2-4 cycles
after surgery. Routine blood test and chest and abdominal
CT were performed every 2 months during the follow-up.
Local recurrence was determined based on the CT results.
All of the samples were pathologically diagnosed and stored
in liquid nitrogen. All of the patients had signed a written
informed consent. The present study gained approval from
the Ethics Committee of The First Affiliated Hospital of
Xi’an Jiao tong University. And all experiments were con-
ducted in accordance with relevant guidelines and regula-
tions, which is consistent with the Declaration of Helsinki
regulations.

4.2. Cell Culture. The human GC cell lines MKN45 and AGS
were purchased from Shanghai Gaining Biological Technol-

ogy Co., Ltd. (Shanghai, China), and the human gastric epi-
thelial cell line GES-1 was obtained from American Type
Culture Collection (Virginia, USA). All the cells were cul-
tured in DMEM medium (HyClone, USA) containing 10%
fetal bovine serum (Gibco, USA) and 1% penicillin-
streptomycin (HyClone, USA) in a 37°C and 5% CO2 incu-
bator. The GC cells were then treated with continuous low-
dose of cisplatin in a stepwise manner to developed cisplatin
resistant GC (MKN45-CDDPR) cells.

4.3. Cell Transfection. The PITPNA-AS1 knockdown and
miR-98-5p overexpression plasmids were purchased from
GeneChem (Shanghai, China). The above plasmids were
delivered into MKN45 and AGS cell lines by using the Lipo-
fectamine 3000 (Invitrogen, Carlsbad, CA, USA) reagent
according to the manufacturer’s instruction.

4.4. RNA Sequencing. The RNA sequencing process was
guided and supported by GeneChem (Shanghai, China). In
brief, total RNA was extracted from 3 GC patients’ tissues
and corresponding normal tissues by using TRIzol (Invitro-
gen, Carlsbad, CA). And the RNA purification was per-
formed by using the RNA Clean XP Kit (Beckman Coulter,
Kraemer Boulevard Brea, CA) and the RNase-Free DNase
Set (QIAGEN, GmbH, Germany). Finally, the Illumina
HiSeq 2000/2500 (Illumina Inc., San Diego, CA) was used
for RNA sequencing.

4.5. qRT-PCR. Total RNA was extracted from GC tissues and
cell lines by using Trizol reagent (Invitrogen, Carlsbad, CA,
USA). The cDNA was generated by using the first-strand
cDNA synthesis kit (Tiangen Biotech, Beijing, China). The
expression levels of PITPNA-AS1 was tested by conducting
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Figure 3: PITPNA-AS1/miR-98-5p regulated cell proliferation and inhibits apoptosis in gastric cancer cell lines. (a) PITPNA-AS1
expression was measured by qRT-PCR in gastric cancer cells, MKN45 and AGS compared with normal gastric cell GES1. (b) miR-98-5p
expression was measured by qRT-PCR in gastric cancer cells, MKN45 and AGS compared with normal gastric cell GES1. (c) Cell
viability was measured by CCK-8 assay for PITPNA-AS1 silence AGS cells and negative control plasmids transduced AGS cells. (d) Cell
viability was measured by CCK-8 assay for PITPNA-AS1 silence MKN45 cells and negative control plasmids transduced MKN45 cells.
(e) Apoptosis was measured by caspase 3/7 activity kit for PITPNA-AS1 silence AGS cells and negative control plasmids transduced
AGS cells. (f) Apoptosis was measured by caspase 3/7 activity kit for PITPNA-AS1 silence MKN45 cell line and negative control
plasmids transduced MKN45 cells. (g) Cell viability was measured by CCK-8 assay for miR-98-5p overexpression AGS cells and negative
control plasmids transduced AGS cells. (h) Cell viability was measured by CCK-8 assay for miR-98-5p overexpression MKN45 cells and
negative control plasmids transduced MKN45 cells. (i) Apoptosis was measured by caspase 3/7 activity kit for miR-98-5p overexpression
AGS cells and negative control plasmids transduced AGS cells. (j) Apoptosis was measured by caspase 3/7 activity kit for miR-98-5p
overexpression MKN45 cells and negative control plasmids transduced MKN45 cells.
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qRT-PCR using SYBR® Premix Dimer Eraser kit (Takara
Shiga, Japan). And β-actin was used as the inner reference.
The miScript microRNA RT PCR kit (Qiagen, Toronto,
ON, Canada) was used for cDNA synthesis and qRT-PCR
process for miR-98-5p expression. U6 was used as the inter-
nal reference. ABI 7500 Real-Time PCR system (Applied
Biosystems, Carlsbad, CA, USA) was conducted to perform
the qRT-PCR process. The expression level was calculated
by 2 − ΔΔCt method.

4.6. Western Blot. The total proteins were extracted from
GC cells by using RIPA lysis buffer (Sigma-Aldrich, Darm-
stadt, Germany) and were quantified by BCA Protein
Assay Kit (Beyotime, Shanghai, China). Then, proteins
were diverted onto PVDF membranes (Millipore, USA)
after separated by SDS-PAGE. The transferred PVDF
membranes were blocked by using 5% skim milk and then
were incubated overnight at 4°C with primary antibodies,
which is including H3K27ac (1 : 1000, CST, Shanghai,
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Figure 4: PITPNA-AS1 negatively regulated the expression of miR-98-5p. (a) miR-98-5p expression was measured by qRT-PCR in
PITPNA-AS1 silence AGS cells. (b) miR-98-5p expression was measured by qRT-PCR in PITPNA-AS1 silence MKN45 cells. (c) Dual-
luciferase reporter gene assay was used to investigate the interaction between miR-98-5p and PITPNA-AS1 in AGS cell line. (d) Dual-
luciferase reporter gene assay was used to investigate the interaction between miR-98-5p and PITPNA-AS1 in MKN45 cell line. (e) RNA
pull down assay following qRT-PCR and PCR agarose gel electrophoresis was used to investigate the interaction between miR-98-5p and
PITPNA-AS1 in AGS cell line. (f) RNA pull down following qRT-PCR and PCR agarose gel electrophoresis was used to investigate the
interaction between miR-98-5p and PITPNA-AS1 in MKN45 cell line.
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China) and Histone H3 (1 : 2000, CST, Shanghai, China).
Subsequently, the membranes were incubated with the sec-
ondary antibody (1 : 10000, Beyotime, Shanghai, China).
Then, the enhanced chemiluminescence (ECL, Beyotime,
Shanghai, China) was used to quantify the protein expres-
sion levels.

4.7. Cell Proliferation. In order to evaluate the proliferation
and cisplatin resistance of GC cells, the cell counting kit-8
(CCK-8) kit (AbMole, USA) was used according to the man-
ufacturer’s protocol. Briefly, GC cells were seeded in 96-well
plates with a density of 5 × 103 cells per well, then 10μL of
CCK-8 reaction solution was supplemented into each well
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Figure 5: PITPNA-AS1 expression can be suppressed by cisplatin in gastric cancer cell lines. (a) IC50 of AGS to CDDP was detected by
CCK-8 assay. (b) IC50 of MKN45 to CDDP was detected by CCK-8 assay. (c) CDDP suppressed PITPNA-AS1 expression, which was
measured by qRT-PCR, in AGS cell line. (d) CDDP, which was measured by qRT-PCR, suppressed PITPNA-AS1 expression in MKN45
cell line. (e) CDDP induced miR-98-5p expression, which was measured by qRT-PCR, in AGS cell line. (f) CDDP induced miR-98-5p
expression, which was measured by qRT-PCR, in MKN45 cell line. (g) CDDP suppressed H3K27ac expression, which was measured by
Western blot, in MKN45 and AGS cell lines.
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Figure 6: Continued.
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every 24h followed by incubation for 2 h. Then, the optical
density (OD) values of GC cells at 450nm were detected to
assess cell proliferation of GC.

4.8. Cell Apoptosis Assay. The Caspase 3/7 Activity Apopto-
sis Assay Kit (Invitrogen) was used to detect the apoptosis
rate of GC cells. According to the manufacturer’s instruc-
tion, GC cells were plated into the 96-well plate overnight
at 20000 cells per well. Then, 50μL of caspase 3/7 substrate
(component A) was added into 10mL of assay buffer (com-
ponent B) to make caspase 3/7 assay loading solution. GC
cells were incubated in a 37°C, 5% CO2, incubator for 6 h
after treated with camptothecin to induce apoptosis. Then,
GC cells were added with 100μL/well of caspase 3/7 assay
loading solution, followed by supplemented with the assay
loading solution at room temperature under dark conditions
for 1 h of incubation. Finally, GC cells were centrifuged at
800 rpm for 2min, then the fluorescence intensity at Ex/

Em = 490/525 nm was monitored to evaluate cell apoptosis
rate.

4.9. Dual-Luciferase Reporter Gene Assay. The plasmids of
PITPNA-AS1 wild-type (PITPNA-AS1-WT) and
PITPNA-AS1 mutant type (PITPNA-AS1-Mut) were
cotransfected with the miR-98-5p-NC mimic into GC cells
by using Lipofectamine 2000 (Invitrogen, USA). And then
the miR-98-5p-WT and miR-98-5p-Mut vectors were
transfected into GC cells as well. Then, dual-luciferase
reporter system (Promega, Madison, WI, USA) was con-
ducted to estimate the luciferase activities based on the
manufacturer’s instruction.

4.10. RNA Pull-Down Assay. Biotin-labeled miR-98-5p-WT
and miR-98-5p-Mut were synthesized by GeneCreate
(Wuhan, China) and were transfected into GC cells which
were incubated with lysis buffer (Ambion, Austin, Texas,
USA). Then, the GC cell lysates were incubated with the
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Figure 6: PITPNA-AS1/miR-98-5p regulated by H3K27ac influenced the effect of platinum. (a) IC50 of MKN45-CDDPR to CDDP was
detected by CCK-8 assay. (b) PITPNA-AS1 expression, which was measured by qRT-PCR, in MKN45-CDDPR cell line was detected by
CCK-8 assay. (c) miR-98-5p expression, which was measured by qRT-PCR, in MKN45-CDDPR cell line. (d) H3K27ac expression, which
was measured by Western blot, in MKN45-CDDPR cell line. (e) CDDP suppressed the H3K27ac expression, which was measured by
Western blot, in MKN45-CDDPR cell line. (f) RIP assay was performed to show that H3K27ac enriched in the promotor region of
PITPNA-AS1 in parental cells. (g) RIP assay was performed to show that H3K27ac enriched more in the promotor region of PITPNA-
AS1 in MKN45-CDDPR cell line. (h) C646 suppressed the PITPNA-AS1 expression, which was measured by qRT-PCR. (i) CCK-8 assay
showed that PITPNA-AS1 knock down suppressed IC50 of MKN45-CDDPR, which be reversed by miR-98-5p knock down.

11Journal of Oncology



streptavidin Dynabeads (Invitgen, USA) precoated with
RNase-free bovine serum albumin (BSA) and yeast tRNA
(Sigma-Aldrich, USA) overnight at 4°C. After washed with
washing buffer, the bound RNA was purified by using Trizol.
Finally, the enrichment of PITPNA-AS1 was identified and
estimated by performing qRT-PCR.

4.11. Statistics. The SPSS 18.0 software and the GraphPad
Prism 8.2 software were used to analyze and visualize the
data involved in this study. The Limma package were used
for RNA sequencing analysis. A paired Student’s t-test was
used to evaluate the statistical differences between two
groups. And one-way ANOVA was applied for multiple-
group comparison. The Kaplan-Meier survival analysis was
used to estimate the prognosis of GC patients. Each assay
was independently repeated at least three times, and all the
statistical results presented in this work were expressed as
mean ± standard deviation (SD). A p value of <0.05 was
indicative of statistically significant difference.

Data Availability

Data would be made available on request by sending e-mail
to the corresponding author.

Conflicts of Interest

The authors declare that they have no competing interests.

Authors’ Contributions

Zhongling Ma designed and performed the experiments in
this study and completed the writing of the manuscript. Xin-
hanZhao and Hong Ren supervised the progression of the
study. Gang Liu completed the statistical analyses of the data
and contributed to the manuscript editing. Xiaojuan Zhao
plotted the statistic graphs. Suhong Hao helped to edit the
manuscript. All authors gave final approval of the version
to be published, and agreed to be accountable for all aspects
of the work.

Acknowledgments

We thanked for the contribution of Dr. Wang’s team to this
article. A preprint has previously been published [10.21203/
rs.3.rs-156344/v1] [46]. This study was financially supported
by the Innovation Capability Supporting Plan of Shaanxi
Province (2020TD-045).

Supplementary Materials

Sup1 Figure 1: FISH assay was used to show that PITPNA-
AS1 mainly resided in the plasma of MKN45 and AGS.
Sup Figure 2: (A) qRT-PCR was used to detect the expres-
sion of PITPNA-AS1 in PITPNA-AS1 silence AGS cells to
show the knocking down efficiency. (B) qRT-PCR was used
to detect the expression of PITPNA-AS1 in PITPNA-AS1
silence MKN45 cells to show the knocking down efficiency.
(C) qRT-PCR was used to detect the expression of miR-98-
5p in miR-98-5p overexpression AGS cells to show the over-

expression efficiency. (D) qRT-PCR was used to detect the
expression of miR-98-5p in miR-98-5p overexpression
MKN45 cells to show the overexpression efficiency.
(Supplementary Materials)

References

[1] A. Jemal, M. M. Center, C. DeSantis, and E. M. Ward, “Global
patterns of cancer incidence and mortality rates and trends,”
Cancer Epidemiology, Biomarkers & Prevention, vol. 19,
no. 8, pp. 1893–1907, 2010.

[2] J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, and D.M.
Parkin, “Estimates of worldwide burden of cancer in 2008:
GLOBOCAN 2008,” International Journal of Cancer,
vol. 127, no. 12, pp. 2893–2917, 2010.

[3] A. E. Dassen, J. L. Dikken, C. J. H. van de Velde, M. W. J. M.
Wouters, K. Bosscha, and V. E. P. P. Lemmens, “Changes in
treatment patterns and their influence on long-term survival
in patients with stages I–III gastric cancer in The Nether-
lands,” International Journal of Cancer, vol. 133, no. 8,
pp. 1859–1866, 2013.

[4] A. D. Wagner, N. L. X. Syn, M. Moehler et al., “Chemotherapy
for advanced gastric cancer,” Cochrane Database of Systematic
Reviews, vol. 8, p. CD004064, 2017.

[5] L. Jiang, K. H. Yang, Q. L. Guan, Y. Chen, P. Zhao, and J. H.
Tian, “Survival benefit of neoadjuvant chemotherapy for
resectable cancer of the gastric and gastroesophageal junction
a meta-analysis,” Journal of Clinical Gastroenterology, vol. 49,
no. 5, pp. 387–394, 2015.

[6] GASTRIC, “Benefit of adjuvant chemotherapy for resectable
gastric cancer,” Journal of the American Medical Association,
vol. 303, no. 17, pp. 1729–1737, 2010.

[7] J. Pan, Z. Xiang, Q. Dai, Z. Wang, B. Liu, and C. Li, “Prediction
of platinum-resistance patients of gastric cancer using bioin-
formatics,” Journal of Cellular Biochemistry, vol. 120, no. 8,
pp. 13478–13486, 2019.

[8] D. P. Gately and S. B. Howell, “Cellular accumulation of the
anticancer agent cisplatin: a review,” British Journal of Cancer,
vol. 67, no. 6, pp. 1171–1176, 1993.

[9] “Positive correlation between cellular glutathione and
acquired cisplatin resistance in human ovarian cancer cells,”
Cell Biology and Toxicology, vol. 11, no. 5, pp. 273–281,
1995.

[10] S. W. Johnson, R. P. Perez, A. K. Godwin et al., “Role of
platinum-DNA adduct formation and removal in cisplatin
resistance in human ovarian cancer cell lines,” Biochemical
Pharmacology, vol. 47, no. 4, pp. 689–697, 1994.

[11] H. Masuda, R. F. Ozols, G. M. Lai, A. Fojo, M. Rothenberg, and
T. C. Hamilton, “Increased DNA repair as a mechanism of
acquired resistance to cis-diamminedichloroplatinum (II) in
human ovarian cancer cell lines,” Cancer Research, vol. 48,
no. 20, pp. 5713–5716, 1988.

[12] N. Abu, K. W. Hon, S. Jeyaraman, and R. Jamal, “Long non-
coding RNAs as biotargets in cisplatin-based drug resistance,”
Future Oncology, vol. 14, no. 29, pp. 3085–3095, 2018.

[13] L. Yuan, Z. Y. Xu, S. M. Ruan, S. Mo, J. J. Qin, and X. D. Cheng,
“Long non-coding RNAs towards precision medicine in gas-
tric cancer: early diagnosis, treatment, and drug resistance,”
Molecular Cancer, vol. 19, no. 1, p. 96, 2020.

[14] J. Sun, Y. Zhang, B. Li et al., “PITPNA-AS1 abrogates the inhi-
bition of miR-876-5p on WNT5A to facilitate hepatocellular

12 Journal of Oncology

https://doi.org/10.21203/rs.3.rs-156344/v1
https://doi.org/10.21203/rs.3.rs-156344/v1
https://downloads.hindawi.com/journals/jo/2022/7981711.f1.docx


carcinoma progression,” Cell Death & Disease, vol. 10, no. 11,
p. 844, 2019.

[15] G. C. Shukla, J. Singh, and S. Barik, “MicroRNAs: processing,
maturation, target recognition and regulatory functions,”
Molecular and Cellular Pharmacology, vol. 3, no. 3, pp. 83–
92, 2011.

[16] L. Wei, J. Sun, N. Zhang et al., “Noncoding RNAs in gastric
cancer: implications for drug resistance,” Molecular Cancer,
vol. 19, no. 1, pp. 62–79, 2020.

[17] X. Li, Z. Zhang, M. Yu et al., “Involvement of miR-20a in pro-
moting gastric cancer progression by targeting early growth
response 2 (EGR2),” International Journal of Molecular Sci-
ences, vol. 14, no. 8, pp. 16226–16239, 2013.

[18] Y. Fang, H. Shen, H. Li et al., “miR-106a confers cisplatin resis-
tance by regulating PTEN/Akt pathway in gastric cancer cells,”
Acta Biochim Biophys Sin (Shanghai), vol. 45, no. 11, pp. 963–
972, 2013.

[19] Y. Shang, Z. Zhang, Z. Liu et al., “miR-508-5p regulates multi-
drug resistance of gastric cancer by targeting ABCB1 and
ZNRD1,” Oncogene, vol. 33, no. 25, pp. 3267–3276, 2014.

[20] Q.Wu, Z. Yang, L. Xia et al., “Methylation of miR-129-5p CpG
island modulates multi-drug resistance in gastric cancer by
targeting ABC transporters,” Oncotarget, vol. 5, no. 22,
pp. 11552–11563, 2014.

[21] N. M. Alajez, W. Shi, A. B. Y. Hui et al., “Enhancer of Zeste
homolog 2 (EZH2) is overexpressed in recurrent nasopha-
ryngeal carcinoma and is regulated by miR-26a, miR-101,
and miR-98,” Cell Death & Disease, vol. 1, no. 10, p. e85,
2010.

[22] H. Panda, T. D. Chuang, X. Luo, and N. Chegini, “Endometrial
miR-181a and miR-98 expression is altered during transition
from normal into cancerous state and target PGR, PGRMC1,
CYP19A1, DDX3X, and TIMP3,” The Journal of Clinical
Endocrinology and Metabolism, vol. 97, no. 7, pp. E1316–
E1326, 2012.

[23] L. X. Yan, X. F. Huang, Q. Shao et al., “MicroRNA miR-21
overexpression in human breast cancer is associated with
advanced clinical stage, lymph node metastasis and patient
poor prognosis,” Ribonucleic Acid, vol. 14, no. 11, pp. 2348–
2360, 2008.

[24] Y. Fu, X. Liu, Q. Chen et al., “Downregulated miR-98-5p pro-
motes PDAC proliferation and metastasis by reversely regulat-
ing MAP4K4,” Journal of Experimental & Clinical Cancer
Research, vol. 37, no. 1, p. 130, 2018.

[25] N. Nagarajan, D. Bertrand, A. M. Hillmer et al., “Whole-
genome reconstruction and mutational signatures in gastric
cancer,” Genome Biology, vol. 13, pp. 1–10, 2012.

[26] X. Jiao, X. Qian, L. Wu et al., “microRNA: the impact on can-
cer stemness and therapeutic resistance,” Cell, vol. 9, no. 1,
2019.

[27] X. D. Xiong, X. Ren, M. Y. Cai, J. W. Yang, X. Liu, and J. M.
Yang, “Long non-coding RNAs: an emerging powerhouse in
the battle between life and death of tumor cells,” Drug Resis-
tance Updates, vol. 26, pp. 28–42, 2016.

[28] A. G. Ewan, J. B. Carolyn, and L. L. Wan, “The functional role
of long non-coding RNA in human carcinomas,” Molecular
Cancer, vol. 10, no. 1, p. 38, 2011.

[29] S. Nagini, “Carcinoma of the stomach: a review of epidemiol-
ogy, pathogenesis, molecular genetics and chemoprevention,”
World Journal of Gastrointestinal Oncology, vol. 4, no. 7,
pp. 156–169, 2012.

[30] E. Van Cutsem, X. Sagaert, B. Topal, K. Haustermans, and
H. Prenen, “Gastric cancer,” The Lancet, vol. 388, no. 10060,
pp. 2654–2664, 2016.

[31] A. Digklia and A. D. Wagner, “Advanced gastric cancer: cur-
rent treatment landscape and future perspectives,”World Jour-
nal of Gastroenterology, vol. 22, no. 8, pp. 2403–2414, 2016.

[32] J. Cheng, M. Cai, X. Shuai, J. Gao, G. Wang, and K. Tao, “First-
line systemic therapy for advanced gastric cancer: a systematic
review and network meta-analysis,” Therapeutic Advances in
Medical Oncology, vol. 11, p. 1758835919877726, 2019.

[33] J. Li, W. Wang, P. Xia et al., “Identification of a five-lncRNA
signature for predicting the risk of tumor recurrence in
patients with breast cancer,” International Journal of Cancer,
vol. 143, no. 9, pp. 2150–2160, 2018.

[34] Y. Yu, L. Li, Z. Zheng, S. Chen, E. Chen, and Y. Hu, “Long non-
coding RNA linc00261 suppresses gastric cancer progression
via promoting slug degradation,” Journal of Cellular and
Molecular Medicine, vol. 21, no. 5, pp. 955–967, 2017.

[35] Y.-L. Xiu, K. X. Sun, X. Chen et al., “Upregulation of the
lncRNA Meg3 induces autophagy to inhibit tumorigenesis
and progression of epithelial ovarian carcinoma by regulating
activity of ATG3,” Oncotarget, vol. 8, no. 19, pp. 31714–
31725, 2017.

[36] J. Li, D. S. Zhai, Q. Huang, H. L. Chen, Z. Zhang, and Q. F.
Tan, “LncRNA DCST1-AS1 accelerates the proliferation,
metastasis and autophagy of hepatocellular carcinoma cell by
AKT/mTOR signaling pathways,” European Review for Medi-
cal and Pharmacological Sciences, vol. 23, no. 14, pp. 6091–
6104, 2019.

[37] H. Zhou, Z. Huang, X. Chen, and S. Chen, “miR-98 inhibits
expression of TWIST to prevent progression of non-small cell
lung cancers,” Biomedicine & Pharmacotherapy, vol. 89,
pp. 1453–1461, 2017.

[38] T. Jiang, M. Li, Q. Li et al., “MicroRNA-98-5p inhibits cell pro-
liferation and induces cell apoptosis in hepatocellular carci-
noma via targeting IGF2BP1,” Oncology Research, vol. 25,
no. 7, pp. 1117–1127, 2017.

[39] W. Zhu, Y. Huang, Q. Pan, P. Xiang, N. Xie, and H. Yu,
“MicroRNA-98 suppress Warburg effect by targeting HK2 in
colon cancer cells,” Digestive Diseases and Sciences, vol. 62,
no. 3, pp. 660–668, 2017.

[40] Q. Guo, L. Li, Q. Bo, L. Chen, L. Sun, and H. Shi, “Long non-
coding RNA PITPNA-AS1 promotes cervical cancer progres-
sion through regulating the cell cycle and apoptosis by
targeting the miR-876-5p/c-MET axis,” Biomedicine & Phar-
macotherapy, vol. 128, p. 110072, 2020.

[41] Z. Chen, T. Pan, D. Jiang et al., “The lncRNA-GAS5/miR-221-
3p/DKK2 axis modulates ABCB1-mediated adriamycin resis-
tance of breast cancer via the Wnt/β-catenin signaling path-
way,” Molecular Therapy-Nucleic Acids, vol. 19, pp. 1434–
1448, 2020.

[42] D. Fu, C. Lu, X. Qu et al., “LncRNA TTN-AS1 regulates oste-
osarcoma cell apoptosis and drug resistance via the miR-134-
5p/MBTD1 axis,” Aging (Albany NY), vol. 11, no. 19,
pp. 8374–8385, 2019.

[43] Y. Wang, W. Bao, Y. Liu et al., “miR-98-5p contributes to cis-
platin resistance in epithelial ovarian cancer by suppressing
miR-152 biogenesis via targeting Dicer1,” Cell Death & Dis-
ease, vol. 9, no. 5, p. 447, 2018.

[44] H. Guo, C. Ha, H. Dong, Z. Yang, Y. Ma, and Y. Ding, “Can-
cer-associated fibroblast-derived exosomal microRNA-98-5p

13Journal of Oncology



promotes cisplatin resistance in ovarian cancer by targeting
CDKN1A,” Cancer Cell International, vol. 19, no. 1, p. 347,
2019.

[45] C. Lu, Z. Shan, C. Li, and L. Yang, “MiR-129 regulates
cisplatin-resistance in human gastric cancer cells by targeting
P-gp,” Biomedicine & Pharmacotherapy, vol. 86, pp. 450–
456, 2017.

[46] Y. Liu, X. Zhao, Y. Chen, G. Guo, J. Wang, and S. He,
“PITPNA-AS1 activated by H3K27ac sponged miR-98-5p to
regulate cisplatin resistance in gastric cancer,” Research
Square, 2021.

14 Journal of Oncology



Research Article
The tRNA-Derived Fragment tRF-24-V29K9UV3IU Functions as a
miRNA-like RNA to Prevent Gastric Cancer Progression by
Inhibiting GPR78 Expression

Hui Wang ,1,2 Weikang Huang ,2 Xirui Fan ,2 Xiaoxue He ,2 Sijin Chen ,2 Su Yu ,2

and Yan Zhang 1

1Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
2Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, China

Correspondence should be addressed to Yan Zhang; hxzyan@163.com

Received 22 January 2022; Accepted 10 March 2022; Published 29 April 2022

Academic Editor: Fu Wang

Copyright © 2022 Hui Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Emerging studies have proved that tRNA-derived fragments (tRFs) play vital roles in tumor metastasis; however, the function of
tRFs in gastric cancer (GC) remains largely unclear. We investigated the role of tRF-24-V29K9UV3IU in growth and metastasis of
GC using a xenograft mouse model. Differential gene expression downstream of tRF-24-V29K9UV3IU was identified by
transcriptome sequencing, and interaction was then verified by a dual luciferase reporter and RNA immunoprecipitation.
MKN-45 cells were also used to explore the biological functions of tRF-24-V29K9UV3IU in vitro. Here, knockdown of tRF-24-
V29K9UV3IU promoted tumor growth and metastasis of GC in vivo. The expression of tRF-24-V29K9UV3IU and E-cadherin
(epithelial cell marker) was down-regulated in tumors of mice following tRF-24-V29K9UV3IU knockdown, whereas the
mesenchymal cell markers N-cadherin and vimentin displayed an opposite trend. Transcriptome sequencing identified 87
differentially expressed genes (DEGs) down-regulated in the tRF-24-V29K9UV3IU-overexpressed groups compared with the
control group. Among them, G-protein–coupled receptor 78 (GPR78), the most significantly down-regulated DEG, was also
predicted to be a target of tRF-24-V29K9UV3IU. Moreover, tRF-24-V29K9UV3IU could function as a miRNA-like fragment
and bind to AGO2 and directly silence GPR78 expression by complementing with the 3′-untranslated region of the GPR78
mRNA. Functionally, overexpression of tRF-24-V29K9UV3IU significantly suppressed proliferation, migration, and invasion
and promoted apoptosis of MKN-45 cells, whereas GPR78 attenuated these effects. Therefore, our data suggest that tRF-24-
V29K9UV3IU functions as a miRNA-like fragment to suppress GPR78 expression and thus inhibit GC progression. These
observations suggest that the tRF-24-V29K9UV3IU/GPR78 axis serves as a potential therapeutic target in GC.

1. Introduction

Gastric cancer (GC) ranks second in morbidity and mortal-
ity of various cancers in China, only after lung cancer [1].
Most GC patients already demonstrate advanced disease
and metastasis at the time of diagnosis; these patients cannot
be cured by simple radical surgical resection, which is
accompanied by an extremely high recurrence rate [2]. Epi-
demiological studies have shown that GC is most prevalent
in patients aged >55 years [3]. As the aging population of
China grows proportionally larger, the social burden caused
by GC will also rise; however, clinical treatment of these

patients is hampered by the lack of a clear understanding
of the molecular mechanisms underlying GC development
[4]. Therefore, revealing the molecular mechanisms underly-
ing invasion and metastasis in GC and finding non-invasive,
simple, and feasible new biomarkers to prevent and control
this malignant disease are of great importance.

tRNA-derived fragments (tRFs) are short non-coding
RNAs derived from tRNA, approximately 16–40 nucleotides
in length [5], which originate from mitochondrial or nuclear
tRNAs [6]. Currently, tRFs are known to be involved in var-
ious physiological and pathological processes, such as infec-
tious diseases and tumor formation, and in
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neurodegenerative diseases [7]. Schimmel reported that the
events of tRF production responded to many stresses such
as hyperosmotic stress, pro-oncogenic transcription under
hypoxia, and regulation of hematopoiesis [8]. The regulatory
role of tRFs on tumor progression has been extensively stud-
ied. tiRNA-Gly, a kind of 5′-tRNA halve, promotes migra-
tion and proliferation of papillary thyroid cancer cell
through binding to RBM17 and inducing alternative splicing
[9]. The tRF Lys-CTT-010 promoted malignant progression
of triple-negative breast cancer through glucose metabolism
regulation [10]. tRF-Leu-CAG promotes the proliferation
and cell cycle progression of non-small-cell lung cancer cells
[11]. These studies suggested that abnormally expressed
tRFs are associated with changes in tumor biological func-
tion, and it is expected that tRFs can serve as tumor diagnos-
tic or prognostic markers or even tumor therapeutic targets.
However, there are few studies on the role of tRFs in GC,
and the mechanism by which tRFs regulate biological func-
tions in GC remains unclear.

In our previous study, using small RNA sequencing, we
identified that tRF-24-V29K9UV3IU was prominently
down-regulated in GC tissues relative to adjacent tissues
[12]; the available genomes is Homo sapiens (hg19/
GRCh37). Moreover, pathway analysis showed that the tar-
get genes of tRF-24-V29K9UV3IU were involved in biolog-
ical processes related to cancer occurrence and metastasis,
such as cell adhesion and connection, cell migration, and
the cAMP signaling, Wnt signaling, MAPK signaling, and
cancer signaling pathways. Therefore, we attempted to fur-
ther explore the function and regulatory mechanisms of
tRF-24-V29K9UV3IU on the invasion and metastasis of
GC cells in vivo and in vitro using a xenograft tumor mouse
model and transcriptome sequencing.

2. Materials and Methods

2.1. Sample Collection of GC Patients. Ethics approval of this
study was received from the Ethics Committee of Kunming
Medical University. A total of 19 tumor tissues and 19 nor-
mal tissues were collected from a GC patient who underwent
surgical resection. All patients in this study read and signed
the informed consent. Preoperatively, the GC patient showed
no pathological changes in other organs, and did not receive
chemoradiotherapy and immunotherapy. The tissue was
instantaneously frozen in liquid nitrogen after isolation until
the experiment.

2.2. Cell Culture and Transfection. The human gastric cancer
cell line MKN-45 and 293T/17 cells were purchased from
Procell. GC cells were cultured in RPMI 1640 medium
(Corning, USA), contained with 10% fetal bovine serum
(FBS) and 1% penicillin/streptomycin (PS), in an incubator
at 37°C containing 5% CO2. For gain-of-function, experi-
ments, we designed a tRF-24-V29K9UV3IU sequence with
a 5′ phosphate group (5′-P-UAGGAUGGGGUGUGAU
AGGUGGCA-3′), and tRF-24-V29K9UV3IU mimics and
control sequences were transfected into MKN-45 cells using
Lipofectamine 2000 following the manufacturer’s protocol.
All sequences are shown in Supplemental Table 1.

2.3. Construction of a Stable Lentiviral Cell Line. The
lentivirus-mediated tRF-24-V29K9UV3IU knockdown
(LV-tRF-24-inhibitor sponge) vector and a negative control
(NC) vector were purchased from Genepharma (China).
The catalogue number of vector was C09004. In belief, the
LV3(H1/GFP&Puro)-tRF-24-inhibitor sponge vector was
constructed to express RNA sequences containing three
mature tRF-24 binding sites, and the mature tRF-24 was
bound by adsorption, thus exerting the inhibition effect of
tRF-24. Virus packaging was performed using 293T tool
cells, when cells reached 80–90% fusion, shuttle plasmid
(LV3-tRF-24-inhibitor sponge) and packaging plasmid
(pGag/Pol, pRev, pVSV-G) were added, and 300μL RNAi-
mate was also added. The virus was collected after 72 h of
culture. Then, when the confluence of MKN-45 cells reached
50%–70%, 50–200μL virus solution was added to each well
and mixed. To find the optimal concentration of puromycin
for selection, MKN-45 cells were treated with 0, 3, 6, 9, 12,
and 15μg/mL puromycin (Selleck, China) for 1–4 days. To
obtain stable transfections, MKN-45 cells with lentiviral
infection of NC or LV-tRF-24-inhibitor sponge were cul-
tured at optimal puromycin concentration for 14 days. The
surviving cells were collected for subsequent experiments.

2.4. Xenografts in Mice. To establish the xenograft mouse
model, 40 male BALB/c nude mice (5-week-old) were dis-
tributed at random into two groups (20 rats per group): a
LV-tRF-24-inhibitor group and an NC group. For in vivo
tumor growth assays (n = 5) [13], approximately 5× 106
MKN-45 cells were subcutaneously injected into the axilla
of the BALB/c nude mice. Tumor volume (mm3) was calcu-
lated every 3 days with a caliper and calculated as (length ×
width2)/2. All mice were euthanized after 21 days using CO2
inhalation followed by decapitation. The collected tumor tis-
sue was used for qRT-PCR and hematoxylin and eosin
(H&E) staining. For in vivo tumor metastasis assays (n = 5)
[14], approximately 2× 106 MKN-45 cells were injected into
the tail veins of BALB/c nude mice. After 50 days, lung tis-
sues from all BALB/c nude mice were subjected to H&E
staining. All experiments in mice were approved by the
Ethics Committee of Kunming Medical University.

2.5. H&E Staining. Tumor tissues (n = 3) and lung tissues
(n = 5) from each group of mice were harvested for H&E
staining to detect the tumorigenicity of tRF-24-
V29K9UV3IU. Tumor and lung tissues were fixed in 10%
formalin and paraffin embedded, then routine cut into
5μm sections, and mounted on slides. Following staining
with H&E staining, tissues were imaged under a light micro-
scope (Olympus, Japan).

2.6. qRT-PCR Analysis. TRIzol Reagent (Invitrogen, USA)
was used to extract total RNA from tumor and adjacent peri-
tumoral tissues of mice and then quality of RNA was
assessed by NanoDrop 2000 (Thermo Scientific, USA). For
tRF-24-V29K9UV3IU detection, to distinguish precursors
from mature tRF, we used a two-end adaptor method for
qRT-PCR. An adaptor was ligated at the 3′-ends of RNAs
followed by hybridized with 3′ primers and ligated a 5′
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adaptor. Finally, the product was amplified to create a cDNA
using the Thermo Scientific revertaid first strand cDNA syn-
thesis kit (Thermo Scientific, USA). For mRNA detection,
conventional cDNA synthesis and PCR amplification were
used. The specific PCR primers were designed and utilized
tomeasure specific tRF andmRNAs by qRT-PCR using ABso-
lute Blue SYBR Green Master Mix (Thermo Scientific, USA)
on the QuantStudio 6 Flex Real-Time PCR System (Thermo
Fisher Scientific, Inc.) according to the product instructions.
All primers used in this study were custom synthesized by
Shanghai Sangon Biotech and are shown in Supplemental
Table 1. The relative gene expression was normalized to
GAPDH and determined by the 2-ΔΔCq method [15].

2.7. Western Blotting. The method for western blotting was
adapted from previously described [16]. Total protein was
isolated from the tumors using RIPA lysis buffer and quan-
tified using the BCA Protein Assay Kit (Thermo Scientific,
USA). Next, equal amounts of protein were subjected to
10% SDS-PAGE, after that the proteins were transferred
onto PVDF membranes. The PVDF membranes were
blocked for nonspecific binding with 5% nonfat milk and
incubated with primary antibodies: vimentin (1 : 1000,
Abcam, ab8978), anti-Snail (1 : 1000, CST, 3879), and
GAPDH (1 : 1000, Proteint, 60004-1-Lg), at 4°C overnight.
Then, membranes were incubated with goat anti-mouse
IgG H&L (HRP-conjugated secondary antibodies) (1:
10000, Abcam, ab205719) at room temperature for 1 h. In
the end, the gels were photographed performed on the Bio-
Rad ChemiDoc XRS system.

2.8. Transcriptome Sequencing and Bioinformatics Analysis.
GC cells were harvested for transcriptome sequencing in
triplicates after transfection with tRF-24-V29K9UV3IU
mimics or NC. Total RNA was isolated using the TRIzol
Reagent and qualified using the NanoDrop 2000 (Thermo
Scientific, USA). Next, RNA was reversed transcribed and
amplified into a cDNA library using the RNA Seq Library
Preparation Kit for Transcriptome Discovery (Questge-
nomics, Nanjing, China), and RNA sequencing was per-
formed on an Illumina HiSeq 2500 platform. The
fragments per kilobase per million were used to normalize
the expression of sequences, and the normalized expression
was used to identify differentially expressed genes (DEGs)
using the DEGSeq algorithm. The DEGs parameter was set
to the absolute value of log2 (fold change, FC) was greater
than 1 and P was less than 0.05. DEGs were used for GO
classification and KEGG analysis.

2.9. Network Construction. To illustrate the regulatory net-
work of tRF-24-V29K9UV3IU on the basis of target gene
and KEGG analysis, we selected 8 DEGs and related path-
ways to perform the network. The network was centered
on tRF-24-V29K9UV3IU, with target gene-mediated path-
ways, and it was imaged using the Cytoscape version 3.6.1.

2.10. Dual Luciferase Activity Assay. G-protein–coupled
receptor 78 (GPR78) containing the wild-type (WT) or
mutant (MUT) putative binding sites of tRF-24-
V29K9UV3IU was synthesized by GenePharma (Shanghai,

China) and cloned into psiCHECK-2 vectors (Promega,
USA). Next, psiCHECK-2-GPR78-WT and psiCHECK-2-
GPR78-MUT reporters were co-transfected into 293T/17
cells (CL-0469, Procell, China) with tRF-24-V29K9UV3IU
mimics or controls (NC) using Lipofectamine 2000. After
48 h of transfection, luciferase activity was measured utiliz-
ing the Dual-Luciferase Reporter Assay System (Promega,
USA). All sequences are shown in Supplemental Table 1.

2.11. Argonaute 2 (AGO2) and RNA Immunoprecipitation
(RIP). The RNA immunoprecipitation (RIP) assay was con-
ducted by the Magna RIP™ RNA-Binding Protein Immuno-
precipitation Kit (Cat. 17-701, Millipore, USA) according to
the manufacturer’s instructions. Shortly, cells were lysed in
RIP lysis buffer (Magna RIP Kit, Millipore, MA, USA) and
incubated with anti-pan-AGO antibodies (MABE56; Milli-
pore), control IgG antibodies. Then, the RNA and proteins
in the immunoprecipitates were harvested in the TRIzol
Reagent or lysis buffer, respectively, for subsequent analysis.

2.12. CCK8 Assay. The proliferation ability of GC cells was
assessed by CCK8 assays. Shortly, about 1× 104 cells were
seeded into 96-well plates. Each group contained six repli-
cate wells. Then, 10μL of CCK-8 (Beyotime Biotechnology)
assay solution was mixed to each well and another cultured
for 1 h. Finally, OD values at 450nm were obtained using a
microplate reader.

2.13. Transwell Migration and Invasion Assays. The Trans-
well system was used to assess the migration and invasion of
GC cells. Transwell chambers (Corning, NY, USA) were cov-
ered with a layer of matrigel mix for invasion assays and not
coated for migration assays. GC cells were seeded into the
upper chamber and normal culture medium filled the bottom
chamber. After incubating for 24h, the upper chamber was
removed, fixed, and stained with crystal violet (Beyotime Bio-
technology). Cells were visualized and counted in five ran-
domly selected fields under a microscope (×100).

2.14. Flow Cytometry Analysis. Cell apoptosis was accessed
by flow cytometry; for this purpose, theharvested cell was
gently washed by PBS and centrifuged with high-speed to
remove the supernatant. Next, a cell suspension with a den-
sity approximately of 2–5× 105 cells/mL was precipitated
using 195μL Binding Buffer and mixed with 5μL Annexin
V-FITC solution (C1062, Beyotime, China) following incu-
bated for 15min at 25°C in the dark. Subsequently, cell mix-
ture underwent centrifugation and re-suspension and
washed by Binding Buffer. Finally, cells were incubated with
10μL propidium iodide. The stained cells were analyzed by
FACSVerse™ (BD Biosciences, USA), and apoptosis data
was processed using the Flowjo V10 software (Tree Star,
San Francisco, CA, USA).

2.15. Statistical Analysis. Statistical analysis of all data was
processed using SPSS 16.0 and significant differences
between two groups were assessed by t test, one-way
ANOVA followed by Tukey’s test used for four groups. For
all data, a P value less than 0.05 was deemed statistically sig-
nificant. Data are presented as means ± SD.
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3. Results

3.1. Knockdown of tRF-24-V29K9UV3IU Facilitates the
Growth and Metastasis of Xenograft Tumors In Vivo. The
tRF-24-V29K9UV3IU was identified by small RNA
sequencing in our previous study [12]. As shown in
Figure 1(a), tRF-24-V29K9UV3IU (Sequence: TAGGAT
GGGGTGTGATAGGTGGCA) was a 5′-tRF type cleaved
from tRNA-Gln-TTG, which was predicted by MINTbase
v2.0 (a database for the interactive exploration of mitochon-
drial and nuclear tRFs, https://cm.jefferson.edu/). We also
predicted the secondary structure of tRNA-Gln who pro-
duced tRF-24-V29K9UV3IU on the RNAstructure database
(http://rna.urmc.rochester.edu/RNAstructureWeb/ Servers/
Predict1/Predict1.html); it was exhibited a typically clover-
leaf structure (Figure 1(b)). The Cancer Genome Atlas
(TCGA) data showed that tRF-24-V29K9UV3IU was
expressed in multiple tumor samples, and compared with
non-TCGA, tRF-24-V29K9UV3IU was low expressed in
most tumor tissues, including colon adenocarcinoma
(COAD), esophageal carcinoma (ESCA), and stomach ade-
nocarcinoma (STAD) (Figure 1(c)). In short, tRF-24-
V29K9UV3IU is a novel small molecule that may be
involved in GC progression.

Next, to verify the function of tRF-24-V29K9UV3IU,
lentiviral vectors were used to interfere with the expression
of it. After 14 days of puromycin selection, we obtained an
MKN-45 cell line with stable lentivirus-mediated knock-
down of tRF-24-V29K9UV3IU, and the interference efficacy
is shown in Figure 2(a). To observe the potential biological
effects of tRF-24-V29K9UV3IU in GC tumor cells, MKN-
45 cells stably transfected with LV-tRF-24-V29K9UV3IU-
inhibitor sponge or NC vectors were injected subcutaneously
into BALB/c nude mice (Figures 2(b) and 2(c)). Compared
with the NC vector, knockdown of tRF-24-V29K9UV3IU
significantly increased tumor growth, as determined by
tumor weights and tumor volumes (Figures 2(d) and 2(e)).
The tumor burden of mice gradually increased with time,
but the volume of tumors in the LV-tRF-24-
V29K9UV3IU-inhibitor group was always significantly big-
ger than in the NC group (Figure 2(d)). tRF-24-
V29K9UV3IU knockdown-promoted tumor growth was
confirmed by H&E staining (Figure 2(f)). We also detected
the expression of tRF-24-V29K9UV3IU in tumor tissues;
as expected, the larger the tumor volume, the lower the
expression of tRF-24-V29K9UV3IU in the tumor
(Figure 2(g)). Moreover, in the BALB/c nude mice, tail vein
injection of MKN-45 cells stably transfecting LV-tRF-24-
V29K9UV3IU-inhibitor sponge resulted in higher number
of lung metastatic nodules than the injection of NC vector,
as shown by H&E staining (Figure 2(h)). To further confirm
the promotion of tumor metastasis after knocking down
tRF-24-V29K9UV3IU, qRT-PCR and western blotting were
performed for measuring the expression of epithelial–mes-
enchymal transition markers in tumor tissues. E-cadherin
expression was decreased and the expression of N-cadherin
and vimentin was up-regulated at the mRNA level, whereas
Snail and vimentin was also up-regulated at the protein level,
supporting that the knockdown of tRF-24-V29K9UV3IU

promoted the epithelial–mesenchymal transition of tumor
cells (Figures 2(i)–2(k)). These results suggested that tRF-
24-V29K9UV3IU has a tumor suppressor role in tumorigen-
esis and aggressiveness.

3.2. Gene Expression Profile Alterations Triggered by tRF-24-
V29K9UV3IU. To take an overview of molecular alteration
of tRF-24-V29K9UV3IU effect on GC cells, we first analyzed
the gene expression profile overexpression of tRF-24-
V29K9UV3IU by transfection with RNA mimics. Compared
with the NC group, tRF-24-V29K9UV3IU was significantly
overexpressed (Figure 3(a)). The overall gene expression
profile alterations triggered by tRF-24-V29K9UV3IU is
shown in Supplemental Table 2. Moreover, a total of 159
DEGs were identified, including 72 up-regulated and 87
down-regulated genes in the tRF-24-V29K9UV3IU-
overexpressing MKN-45 cells relative to NC MKN-45 cells
(Figure 3(b)). A heat map indicated significant
dysregulation of mRNAs in the tRF-24-V29K9UV3IU-
overexpressing MKN-45 cells compared with NC MKN-45
cells (Figure 3(c)). Therefore, we obtained the expression
profile of GC cells after overexpression of tRF-24-
V29K9UV3IU.

3.3. Functional and Pathway Analysis. To further investigate
the potential molecules that respond to tRF-24-
V29K9UV3IU overexpression, all DEGs were annotated in
the GO and KEGG databases. Functional GO analysis
showed that these DEGs were mainly enriched in the nega-
tive regulation of monocyte chemotaxis, negative regulation
of the inflammatory response, and positive regulation of NF-
kappaB import into the nucleus (Figure 4(a)). KEGG analy-
sis revealed that these DEGs were mainly involved in path-
ways associated with cancer and metastasis, such as
microRNAs in cancer, thyroid cancer, and cell adhesion
molecule pathways (Figure 4(b)). Therefore, we speculated
that the tRF-24-V29K9UV3IU might regulate the GC prog-
ress by the above DEG-mediated pathways.

3.4. tRF-24-V29K9UV3IU Inhibits GPR78 Expression by
Directly Binding to Its 3′-Untranslated Region (3′-UTR).
Considering that tRF-24-V29K9UV3IU is down-regulated
in tumor tissues, we focused on the DEGs predicted to be
targets of tRF-24-V29K9UV3IU via overlap in the Miranda
and RNAhybrid databases. There were a total of 8 DEGs that
met these conditions and attracted our focus (Figure 5(a)).
We constructed a network diagram to visualize the predicted
regulatory network for tRF-24-V29K9UV3IU. The GPR78,
ventricular zone expressed pH domain-containing 1
(VEPH1), and oxidized low-density lipoprotein (lectin-like)
receptor 1 (OLR1), elastin (ELN), and selectin L (SELL) were
down-regulation (green) in tRF-24-V29K9UV3IU-overex-
pressing MKN-45 cells compared with NC MKN-45 cells,
whereas the three remaining predicted target genes were
up-regulated (red) (Figure 5(b)). To verify whether the
expression of these genes was suppressed in GC cells after
tRF-24-V29K9UV3IU overexpression according to our tran-
scriptome data, we selected three genes with the highest
abundance for qRT-PCR validation (GPR78, VEPH1, and
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OLR1). Results showed that only down-regulation of GPR78
was confirmed in tRF-24-V29K9UV3IU-overexpressing
MKN-45 cells compared with NC MKN-45 cells by qRT-
PCR, while the expressions of VEPH1 and OLR1 were
inconsistent with the RNA sequencing data (Figures 5(c)–
5(e)). Therefore, GPR78 expression was selected as a down-
stream marker of tRF-24-V29K9UV3IU for subsequent
experiments.

Next, we explored the interaction between tRF-24-
V29K9UV3IU and GPR78. The full-length and mutant
sequence of the 3′-UTR of wild-type GPR78 (GPR78-

WT) and mutant GPR78 (GPR78-MUT) containing the
predicted tRF-24-V29K9UV3IU binding sites was cloned
into psiCHECK-2 vectors (Figure 5(f)). A luciferase
reporter assay indicated that only the GPR78-WT plas-
mids significantly decreased luciferase activity in tRF-24-
V29K9UV3IU mimics group, whereas there was no dif-
ference in the GPR78 mutants (Figure 5(g)). These results
indicated that there might be a direct interaction between
tRF-24-V29K9UV3IU and GPR78 at the 3′-UTR. Increas-
ing articles have demonstrated that tRFs can bind to the
Argonaute (AGO) complex and exert functions similar to
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Figure 1: The information of tRF-24-V29K9UV3IU. (a) The sequence information of tRF-24-V29K9UV3IU, which was a 5′-tRF type
cleaved from tRNA-Gln-TTG, in MINTbase v2.0. (b) Secondary structure of total tRNA-Gly. (c) The expression of tRF-24-
V29K9UV3IU in different tumors predicted by TCGA.

5Journal of Oncology



1.5

1.0

0.5

Re
la

tiv
e e

xp
re

ss
io

n 
le

ve
l o

f t
RF

-2
4

0.0
NC LV-tRF-24-inhibitor

⁎⁎⁎

(a)

NCLV-tRF-24-inhibitor

(b)

NC

LV-tRF-24
-inhibitor

(c)

LV-tRF-24-inhibitor

2000

1500

1000

500
Tu

m
or

 v
ol

um
e (

m
m

3 )

0
10d 12d

NC

15d 18d 21d

⁎⁎

⁎

⁎

⁎

(d)

0.0

0.5

1.0

1.5

2.0

Tu
m

or
 w

ei
gh

t (
g)

2.5

NC LV-tRF-24-inhibitor

⁎

(e)

20×

NC LV-tRF-24-inhibitor

(f)

1.5

1.0

2.5

2.0

0.5

Re
lat

iv
e e

xp
re

ss
io

n 
le

ve
l o

f t
RF

-2
4

0.0
NC LV-tRF-24-inhibitor

⁎⁎

(g)

20×

LV-tRF-24-inhibitorNC

(h)

Figure 2: Continued.

6 Journal of Oncology



miRNAs by complementarily binding to the 3′-UTRs of
mRNAs [17, 18]. Therefore, we performed an AGO2-
RIP assay in MKN-45 cells to pull down RNA transcripts
bound to AGO2. We found that tRF-24-V29K9UV3IU
was significantly enriched by AGO2-pulldown compared
with the input control, implying molecular interaction
between AGO2 and tRF-24-V29K9UV3IU (Figure 5(h)).
In the previous study, we examined the expression of
tRF-24-V29K9UV3IU in tumor tissues and normal tissues
[12]. To interrogate whether the expression of GPR78
and tRF-24-V29K9UV3IU is correlated in tumor tissues,
we examined GPR78 expression in 19 paired tumor tis-
sues and normal tissues, followed by Pearson’s analysis.

The results showed that the expression of GPR78 in
tumor tissues was strongly higher than that in normal
tissues (Figure 5(i)), and GPR78 expression was signifi-
cantly negatively correlated with tRF-24-V29K9UV3IU
(P < 0:001) (Figure 5(j)). Cumulatively, tRF-24-
V29K9UV3IU down-regulates GPR78 expression by
binding to AGO2 and complementing with the 3′-UTR
of GPR78.

3.5. tRF-24-V29K9UV3IU Inhibits the Biological Function of
GC Cells by Regulating GPR78. To explore whether tRF-24-
V29K9UV3IU exerts biological effects in GC cells via reg-
ulation of GPR78 expression, we conducted a series of
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Figure 2: Knockdown of tRF-24-V29K9UV3IU facilitates growth and metastasis of xenograft tumors in vivo. (a) The efficacy of lentivirus
interfering with tRF-24-V29K9UV3IU expression detected by qRT-PCR (n = 3). (b) Representative images of subcutaneous tumor
formation in mice after LV-tRF-24-V29K9UV3IU-inhibitor-expressing or NC MKN-45 cell inoculation (n = 5). (c) Representative
images of subcutaneous tumor tissues in mice (n = 5). The tumor (d) volume and (e) weight statistics after LV-tRF-24-V29K9UV3IU-
inhibitor-expressing or NC MKN-45 cell inoculation (n = 5). (f) Representative images for H&E staining in tumors (n = 3). Magnification
20x. These results implicated that knockdown of tRF-24-V29K9UV3IU facilitates growth of GC. (g) The expression of tRF-24-
V29K9UV3IU in tumor tissues after LV-tRF-24-V29K9UV3IU-inhibitor or NC MKN-45 cell inoculation (n = 3). (h) Representative
images of H&E staining in lung tissue following LV-tRF-24-V29K9UV3IU-inhibitor-expressing MKN-45 cell injection (n = 5).
Magnification 20x. (i) mRNA expression of E-cadherin, N-cadherin, and vimentin in tumor tissues after LV-tRF-24-V29K9UV3IU-
inhibitor-expressing or NC MKN-45 cell inoculation, detected by qRT-PCR (n = 3). ((j) and (k)) Protein expression of vimentin and
Snail in tumor tissues after LV-tRF-24-V29K9UV3IU-inhibitor-expressing or NC MKN-45 cell inoculation, detected by western blotting
(n = 3). These results implicated that knockdown of tRF-24-V29K9UV3IU facilitates lung metastasis of GC. t test, ∗P < 0:05, ∗∗P < 0:01,
∗∗∗ P < 0:001.
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rescue experiments. Flow cytometry results showed that
the overexpression of tRF-24-V29K9UV3IU prominently
increased apoptosis in MKN-45 cells; conversely, GPR78
overexpression significantly reduced the apoptosis of
MKN-45 cells (Figures 6(a) and 6(b)). In addition, the
cotransfection of tRF-24-V29K9UV3IU mimics and oe-
GPR78 partially eliminated the effect on MKN-45 cells
(Figures 6(a) and 6(b)). Similarly, growth curves suggested
that overexpression of tRF-24-V29K9UV3IU prominently
decreased the proliferative ability of MKN-45 cells, and
GPR78 overexpression had the opposite effect, whereas
the cotransfection of tRF-24-V29K9UV3IU mimics and
oe-GPR78 counteracted each other (Figure 6(c)). Transwell
assays implicated that the migratory and invasive capabil-
ities of MKN-45 cells were significantly inhibited by tRF-
24-V29K9UV3IU mimics but significantly enhanced by

the overexpression of GPR78 (Figures 6(d) and 6(e)).
Simultaneous action of tRF-24-V29K9UV3IU mimics and
oe-GPR78 could partially dilute the effect (Figures 6(d)
and 6(e)). Therefore, these results supported that tRF-24-
V29K9UV3IU altered the biological functions of GC cells
by down-regulating GPR78 expression.

4. Discussion

Accumulation studies prove that non-coding RNAs are
widely involved in the occurrence and development of
tumors [19]. Importantly, tRFs are expected to be an
important target in cancer treatment owing to their role
in tumor progression [20]. In this study, we provided evi-
dences that the low expression of tRF-24-V29K9UV3IU in
GC in vivo was related to the promotion of growth and
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Figure 3: Gene expression profile after overexpression of tRF-24-V29K9UV3IU. (a) The efficacy of tRF-24-V29K9UV3IU overexpression
by qRT-PCR. (b) Volcano plot of DEGs in MKN-45 cells after overexpression of tRF-24-V29K9UV3IU compared with the NC group. Red
means up-regulated DEGs, and blue means down-regulated DEGs. (c) Heat map showing the DEGs in MKN-45 cells after the
overexpression of tRF-24-V29K9UV3IU compared with the NC group. Red means up-regulated DEGs, and green means down-regulated
DEGs. “tRF-24” indicates cells overexpressing tRF-24-V29K9UV3IU. n = 3, t test, ∗∗∗ P < 0:001.
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metastasis of tumor cells. In addition, we found that tRF-
24-V29K9UV3IU directly inhibited GPR78 expression to
suppress the proliferation, invasion, and metastasis and
promote apoptosis of GC cells.

Increasing studies have showed that tRFs serve a pivotal
role in the development of tumors. For instance, tRFs (e.g.,
derived from the nuclear tRNAGly and tRNALeu, the mito-
chondrial tRNAVal and tRNAPro) and isoforms of miRNAs
(isomiRs) contributed to the race disparities in triplen-
negative breast cancer [21]. Londin et al. reported the abun-
dance profiles and biases in lengths of tRFs associated with
metastatase and patient survival in uveal melanoma [22]. A
novel mitochondrial tRF of i-tRF-Phe is a molecular prog-
nostic biomarker in chronic lymphocytic leukemia [23].
The tRF-24-V29K9UV3IU is a mitochondrial 5′-tRF discov-
ered in our previous work [12], and here, we demonstrate
that it plays a negative regulatory role in GC. Also, we found

that tRF-24-V29K9UV3IU is not only expressed in GC, but
also lowly expressed in TCGA STAD and other TCGA
COAD cancers. These results encourage us to believe that
tRF-24-V29K9UV3IU plays a key role in the progression
of GC and induces us to further explore its mechanism of
function.

Accumulating evidence has demonstrated that tRFs have
a functional mechanism similar to that of miRNAs. For
example, tRNA-derived fragments of CU1276 can interact
with AGO1-4 proteins, functioning just as miRNAs to mod-
ulate the proliferation and DNA damage response in B cell
lymphoma [17]. Green et al. found that tRF-3003a was
enriched in the AGO2/RNA-induced silencing complex,
and the inhibitory effects of tRF-3003a on JAK3 were abol-
ished by AGO2 knockdown [24]. 5′-tRFHis-GTG has also
been identified as a miRNA-like small non-coding RNA
whose function relied on AGO2 [25]. Thus, perhaps as
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Figure 5: tRF-24-V29K9UV3IU inhibits GPR78 expression by binding its 3′-UTR in GC cells. (a) Eight DEGs predicted to possibly bind
tRF-24-V29K9UV3IU through overlap of DEGs and the Miranda and RNAhybrid database. (b) The regulatory network of tRF-24-
V29K9UV3IU. The rounded rectangle represents tRF-24-V29K9UV3IU, the ellipse represents mRNA, the diamond represents a
pathway, and the red/green color indicates upregulation and down-regulation, respectively. ((c)–(e)) Expression of GPR78, OLR1, and
VEPH1 as verified by qRT-PCR. (f) Putative binding site of tRF-24-V29K9UV3IU on GPR78. (g) The luciferase activity of GPR78 in
MKN-45 cells after cotransfection with tRF-24-V29K9UV3IU mimics or NC. (h) An AGO2-RIP assay was conducted to confirm that
tRF-24-V29K9UV3IU associates with AGO2. (i) Expression of GPR78 in 19 pairs tumor and normal tissues detected by qRT-PCR.
Expression of GPR78 was up-regulated in tumor compared to normal tissues. (j) The expression of GPR78 and tRF-24-V29K9UV3IU
was negatively correlated, which was analyzed by Pearson’s correlation in tumors. The above experiments were repeated three times. t
test, ∗P < 0:05, ∗∗P < 0:01, ∗∗∗ P < 0:001.
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reviewed by Venkates et al., tRFs usually masqueraded as
miRNA [26]. We hypothesize that tRF-24-V29K9UV3IU
also acts in this manner. Because the function of miRNAs
depends on the AGO2 protein, we explored the relationship
between tRF-24-V29K9UV3IU and AGO2, and AGO2–RIP
revealed that the tRF-24-V29K9UV3IU was significantly
enriched by AGO2 antibody rather than IgG. Therefore,
tRF-24-V29K9UV3IU might bind to AGO2 and function
as a miRNA-like RNA to regulate target gene activity and
thus inhibit the progression of GC.

In addition, our results of transcriptome sequencing
and luciferase assay show that GPR78 is physically bound

and transcriptionally regulated by tRF-24-V29K9UV3IU.
GPR78 belongs to the G-protein–coupled receptor super-
family, which is composed of approximately 800 different
members, functioning as central nodes of many different
signaling pathways participated in various aspects of
human physiology [27]. The function of members of the
GPR Class A orphan subfamily in regulating tumor pro-
gression has been widely reported. For instance, GPR48/
LGR4 overexpression promoted thyroid tumor growth,
lymph node metastasis, and recurrence in vivo and prolif-
eration and migration of thyroid cancer cells in vitro [28].
The CXCL17-CXCR8 (GPR35) signaling axis promotes
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Figure 6: tRF-24-V29K9UV3IU inhibits the biological functions of GC cells by regulating GPR78 expression. (a) Representative images and
(b) statistical results of flow cytometry analysis utilized to determine the number of apoptotic cells in four groups. (c) Cell proliferation
assays of MKN-45 cells overexpressing tRF-24-V29K9UV3IU. (d) Transwell assays were used to detect the effect of overexpression of
tRF-24-V29K9UV3IU on MKN-45 cell migration (d) and invasion (e). These results showed that overexpression of tRF-24-
V29K9UV3IU promoted apoptosis, suppressed proliferation, migration, and invasion, while overexpression of BBB was opposite, and
overexpression of GPR78 weakened the function of tRF-24-V29K9UV3IU. The above experiments were repeated three times. One-way
ANOVA followed by Tukey’s test, ∗P < 0:05, ∗∗P < 0:01.
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the proliferation and migration of breast cancer cells
in vitro and in vivo [29]. Therefore, it is reasonable to
speculate that GPR78 is involved in the regulation of
tumor progression, and this has been partially confirmed.
GRP78 promotes malignant phenotype of hepatocellular
carcinoma by activating the Wnt/HOXB9 signaling path-
way and chaperoning LRP6 [30]. GPR78 activates the
Gαq-Rho GTPase pathway to promote lung cancer cell
migration and metastasis [31]. In this study, GPR78 was
shown to significantly block the inhibition of prolifera-
tion, migration, and invasion of GC cells caused by the
overexpression of tRF-24-V29K9UV3IU, suggesting that
GPR78 promotes GC progression, but its activity is regu-
lated by tRF-24-V29K9UV3IU. These results were consis-
tent with those of the abovementioned studies. Therefore,
we speculate that the inhibition effect of tRF-24-
V29K9UV3IU on GC is achieved by physically regulating
GPR78 expression.

Moreover, it is worth noting that in our previous stud-
ies, We found that tRF-24-V29K9UV3IU inhibited the
biological function of GC cells [12], which was consistent
with the results of this study. Also, using target and func-
tion prediction found that tRF target genes were major
enriched in focal adhesion, stem cell differentiation regula-
tion, cancer proteoglycan synthesis, Wnt, MAPK, and cal-
cium signaling pathways. However, in this study, the
pathway of KEGG enrichment was microRNAs in cancer,
thyroid cancer, and cell adhesion molecule (CAM) path-
ways. The reason for this discrepancy may be related to
the experimental design. In the previous study , the KEGG
analysis was based on target gene prediction and enrich-
ment of miRNA-like mechanism for all DEtRFs between
tumor and adjacent tissues, whereas this study was per-
formed enrichment for DEGs after tRF-24-V29K9UV3IU
knockdown, these DEGs included those regulated by
tRF-24-V29K9UV3IU through other mechanisms than
miRNA-like. In summary, the analyzed tRF and the based
regulatory mechanisms are different, so the enriched path-
ways will be different.

Interestingly, according to the results of MINTbase v2.0,
tRF-24-V29K9UV3IU may be originated from mitochon-
drial tRNAs. Telonis et al. first reported the existence of mul-
tiple sequences in human mitochondrial tRNAs that are
highly similar to human nuclear chromosomes, and called
it mitochondrial tRNA-lookalikes [6, 32]. The plenty of mito-
chondrial tRNA-lookalikes, repetitive representation of
tRNA templates in the nuclear genome, make it challenging
to definitively determine the source of tRFs. Only a few spe-
cific and sensitive methods like MINTbase v2.0 can distin-
guish between mitochondrial tRFs and nuclear tRFs [33].
Thus, we tentatively believe that tRF-24-V29K9UV3IU orig-
inates from mitochondria. To date, a few studies have
described the presence of mitochondrial tRFs and provided
clue for their mitochondrial origin and function [34, 35].
Meseguer proposed two models of mitochondrial tRF bio-
genesis: 1) one of mitochondrial tRF translocated out of
the mitochondria into cytoplasm where Dicer prepared
them and then incorporated with AGO2 to regulate the
expression of nuclear-encoded genes; 2) mitochondrial

tRF processed by Dicer and loaded in AGO2 was occurred
in the mitochondria, and then control the expression of
mitochondrial DNA-encoded genes [36]. In our study,
tRF-24-V29K9UV3IU incorporated with AGO2 and func-
tion as a miRNA-like RNA to regulate GPR78. Therefore,
we speculate that the working mechanism of tRF-24-
V29K9UV3IU is more plausible with the first model.

5. Conclusion

In summary, tRF-24-V29K9UV3IU inhibits growth and
metastasis of GC in vivo. Moreover, tRF-24-V29K9UV3IU
exerts a miRNA-like function and down-regulates GPR78,
thereby inhibiting the proliferation, invasion, and migration
as well as promoting apoptosis of GC cells in vitro. This
study identifies novel targets and diagnostic biomarkers to
develop molecular therapies for treatment of GC.
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In the tumor microenvironment (TME), cells secrete a cytokine known as transforming growth factor-β (TGF-β), which polarizes
tumor-associated neutrophils (TANs) towards a protumor phenotype. In this work, C57BL/6 mice with TGF-β1 gene knocked out
selectively in myofibroblasts receive orthotopic implantation of Lewis lung carcinoma (LLC). Then, TANs’ differentiation and
tumor growth are studied both in vivo and in vitro, to examine the potential effects of TGF-β levels in TME on neutrophil
polarization and cancer progression. Possible results are anticipated and discussed from various aspects. Though tumor
suppression via inhibition of TGF-β signaling has been widely studied in this field, this study is the first to present a detailed
experimental design for evaluating the potential antitumor effects of blocking TGF-β expression. This work provides a creative
approach for cancer treatment targeting specific cytokines, and the experimental design presented here may apply to future
research on other cytokines, promoting the development of novel cancer-treating strategies.

1. Introduction

1.1. NSCLC: Lethal Diseases That Lack Effective Diagnosis
and Treatment Strategies. Nonsmall cell lung cancer
(NSCLC) is a potentially lethal disease, whose incidence is
rising rapidly worldwide, especially in the past 50 years. In
2020, there were about 19.3 million new cancer cases and
10.0 million deaths worldwide, with lung cancer accounting
for 11.4% of new cases and 18% of deaths, making it the
leading cause of cancer death [1]. Apart from the high inci-
dence, the severity of NSCLC may be attributed to the diffi-
culty in its diagnosis. The asymptomatic early stages of
NSCLC cause the tumors in almost two-thirds of patients
to develop into the advanced stages even before diagnosis.

To attenuate tumor growth, patients with NSCLC are
usually treated surgically and postoperative chemotherapy

and/or radiotherapy. However, patients with advanced lung
cancer are not eligible for surgery, while conventional che-
motherapy and radiotherapy do not increase patients’ sur-
vival rate effectively and have severe adverse effects. To
improve NSCLC patients’ survival and quality of life, new
strategies for NSCLC treatment are in urgent need.

It is worth noticing that NSCLC tumor cells produce
multiple inflammatory cytokines, which recruit inflamma-
tory cells such as neutrophils to the tumor microenviron-
ment (TME) and activate them to promote cancer
progression [2]. The recruited immune cells and the cyto-
kines that activate them may be potential targets for cancer
treatment. This study will be focusing on the tumor-
associated neutrophils (TANs) and the transforming growth
factor-β (TGF-β), a cytokine that is believed to influence the
phenotypes of TANs. By exploring the effect of blocking the
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production of TGF-β on neutrophils differentiation and,
therefore, cancer progression, this study hereby proposes a
novel hypothetical treatment approach.

1.2. Vital Roles of Neutrophils in the Tumor
Microenvironment. Neutrophils play a key role in the
immune system and polarize into different phenotypes in
response to environmental signals [3]. They facilitate adap-
tive immunity by contributing to B lymphocyte maturation
via effector molecules and cytokines including BAFF and
APRIL [4]. In addition, neutrophils mediate innate immune
destruction of invading microorganisms through phagocyto-
sis, releasing lyase, and producing reactive oxygen-species
(ROS) [4]. They also release the neutrophils extracellular
traps (NETs) that disarm pathogens. These extracellular
fibrillary networks mainly consist of DNA and antimicrobial
proteins, which kill microbes extracellularly and prevent fur-
ther spread of pathogens [5].

Neutrophils play dual roles in the development of
tumors, depending on their phenotypes and effector mole-
cules produced [6]. To distinguish subsets of TANs, neutro-
phils with antitumor activities are known as N1 and the
protumorigenic neutrophils are known as N2 [6]. N1 and
N2 have different influences on TME, both directly and indi-
rectly through the recruitment and activation of other cells.
N1 neutrophils are capable of killing cancer cells by releasing
of reactive oxygen species and reactive nitrogen species, as well
as activating cytotoxic T cells and recruiting proinflammatory
macrophages [7]. In contrast, N2 neutrophils promote tumor
growth by inhibiting natural killer cell function and releasing
matrix metalloproteinase 9 (MMP9), which stimulates angio-
genesis and dissemination of cancer cells [7]. N2 neutrophils
also recruit anti-inflammatory macrophages and regulatory
T cells, which further facilitate cancer progression.

The role of TANs in NSCLC has not been extensively
studied. However, during the treatment of patients with
NSCLC, the neutrophil to lymphocyte ratio (NLR) is a com-
monly used prognostic marker of immunotherapy [8]. This
suggests that neutrophils may have important effects on
the progression of NSCLC and can be a potential target for
NSCLC treatment.

1.3. TGF-β: Functions and Origins. The phenotypic switch in
TANs is thought to be regulated by TGF-β, which is the
most well-studied cytokine in the TGF-β superfamily. As a
multifunctional cytokine, TGF-β has a great influence on
the inflammatory response, bone remodeling, and cell differ-
entiation. More importantly, it has been shown that TGF-β
contributes to the growth of tumor cells, which makes it a
potentially suitable target for cancer treatment. One of the
major ways by which TGF-β stimulates tumor growth is that
it induces N2 polarization of TANs, which inhibits the anti-
tumor function of T cell and NK cells [9]. It has been dem-
onstrated that blocking TGF-β activity inhibits the
progression of the colorectal cancer (CRC) via the polariza-
tion of TANs towards N1 [10]. However, the antitumor
effect of inhibiting TGF-β has not yet been tested in NSCLC.

In TME, tumors can promote TGF-β production
through different pathways. For instance, TC-1 and B16-

OVA tumor cells can secrete TGF-β in order to suppress
the immunological function of plasmacytoid dendritic cells
(pDC) [11]. Tumor cells can stimulate platelets to release
large amounts of TGF-β to assist metastasis [12], and osteo-
clasts during tumor bone metastasis produce a large amount
of TGF-β [13]. Thus, identifying and blocking the source of
the TGF-β surge in TME would be a viable cancer treatment
option. Hence, the authors hypothesize that blocking the
expression of TGF-β in vivo will attenuate tumor growth
in NSCLC, potentially mediated by skewing development
of TANs’ subpopulations.

Several research papers that have led to the novel immu-
notherapeutic approach to treat NSCLC are described in the
following section. The chosen papers have provided evi-
dence for the significance of the antitumor neutrophils sub-
population in resistance against selected cancers, as well as
the vital roles of TGF-β in the polarization of neutrophils
towards protumor phenotypes. The papers have also dem-
onstrated that inhibiting TGF-β activities leads to tumor
suppression, which has provided the foundation for the
hypothetic treatment for NSCLC by blocking the expression
of TGF-β.

2. Approach

2.1. Summary of Primary Research

2.1.1. Function of Neutrophils in Tumor Microenvironment.
In [7], neutrophils are a key player in the tumor microenvi-
ronment and are considered to be associated with cancer
progression. By performing both bulk and single-cell RNA
sequencing (scRNA-seq) assays on gene knockout mice,
the researchers demonstrated that neutrophils are required
for the activation of an interferon-gamma-dependent path-
way of immune resistance, mediated by the polarization of
a subset of CD4-CD8- unconventional αβ T cells (UTCαβ).
In selected human tumors, the researchers found that neu-
trophil infiltration was associated with a type 1 immune
response and better clinical outcome. To conclude, these
experiments showed the importance of neutrophils in resis-
tance against murine sarcomas and selected human tumors.

2.1.2. Anti-TGF-β Inhibits Cancer Progression via the
Polarization of TANs to an anti-Tumor Phenotype. The
[10] investigated the role of anti-TGF-β on the polarization
of TANs towards a tumor-suppressive phenotype. Firstly,
the researchers found that patients with colorectal cancer
(CRC) showed higher TANs’ infiltration and increased levels
of TGF-β compared to the control. To further evaluate the
roles of TANs and TGF-β in TME, SW480 cells established
from a primary adenocarcinoma of the colon were cultured
in vitro with primed neutrophils, which can be considered
as TANs. Anti-TGF-β was added to block TGF-β in order
to polarize TANs. The addition of anti-TGF-β not only sup-
pressed the tumor migration by decreasing the metastasis
chemoattractant produced by TANs but also promoted the
apoptosis of cancer cells by increasing the cytotoxicity of
TANs. This altered phenotype of TANs was potentially
due to increased GM-CSF and INF-γ expression, which are
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cytokines that regulate the polarization of TANs. Further
immunoblotting showed that the tumor-suppressive effect
was mediated by the inhibition of PI3K/AKT signaling path-
ways in TANs and TGF-β/Smad signaling pathways in the
tumor cells. Lastly, to explore the tumor-suppressive effect
of anti-TGF-β in vivo, mice models were treated with anti-
TGF-β. The tumors in the treated mice were significantly
smaller and showed reverse tumorigenesis. To conclude, this
study provided evidence that inhibiting TGF-β by anti-TGF-
β could attenuate cancer progression via the polarization of
TANs towards an antitumor phenotype, providing novel
ways to cancer treatment.

2.1.3. Integrin Subunit αV Expressed by Tumor Cells Activates
TGF-β. The [19] study showed that cancer cells express an
integrin subunit known as αV, which activates TGF-β in the
tumor microenvironment (TME). When first secreted,
TGF-β is bound to latency associated protein and has no
effector functions. The activation of TGF-β reshapes TME
by polarizing the neutrophils towards a protumor pheno-
type, helping the tumor cells to evade the attack of the
immune systems. Additionally, the inhibition of TGF-β
maturation via αV knockout promotes the differentiation
of activated cytotoxic T cells to granzyme B-producing
CD103+CD69+ resident memory T cells, which induce
apoptosis in tumor cells. To conclude, this study demon-
strated how the tumor cells evade the immune responses
via TGF-β activation, suggesting that TGF-β may be a good
target for cancer treatment.

2.1.4. Finding and Inhibiting the Origin of TGF-β in TME. In
[13], the authors revealed the role of TGF-β in the differ-
ences in the effectiveness of immune checkpoint therapy
(ICT) in subcutaneous and skeletal castration-resistant pros-
tate cancer (CRPC) models. They discovered that Th17 cells
without antitumor function replace antitumor Th1 cells in
the presence of abnormally high levels of TGF-β, which is
closely related to Th17 differentiation. Next, they hypothe-
sized the TGF-β surge results from the overabundance of
osteoclastic cells in bone metastases. To further support the
hypothesis, the writers blockaded the osteoclast differentia-
tion and activated factor NF-κB, significantly suppressing
the osteoclasts in the femur. Consequently, TGF-β levels
were significantly reduced while no significant changes in
other cytokine levels were observed. Thus, they identified
the main source of TGF-β overabundance in bone metasta-
ses as the osteoclast cells. Lastly, the authors found that the
survival rate of bone metastatic CPRC mice was significantly
enhanced after anti-TGF-β injection, and increased levels of
CD8+ Tc, a marker for ICT, were detected, confirming that
blocking TGF-β can be an effective way to strengthen the
effect of ICT. Considering TGF-β is a vital protumor cyto-
kine, the ideas provided in this paper for discovering and
inhibiting the origin of TGF-β in the tumor microenviron-
ment may have great potential in the treatment of other
tumors.

The studies discussed above have demonstrated the
importance of TGF-β in the polarization of TANs towards
tumor-suppressive phenotypes, which have been identified

as a key player in the immunity against cancers. The activity
of TGF-β may also be inhibited to suppress tumor by skew-
ing the development of TANs subsets. Combining these
findings, the authors of this work hypothesize that inhibiting
the expression of TGF-β in vivo assists in NSCLC treatment,
potentially via the polarization of TANs’ subpopulations.
The general approach and detailed experiment designs are
discussed in the next section.

2.2. Method and Materials

2.2.1. General Approach. A series of experiments will be per-
formed on four groups of C57BL/6 mice. The treatment
group is mice with the TGF-β1 gene knocked out specifically
in myofibroblasts, showing low production of TGF-β in
TME. One control group is wild type, healthy mice with
normal level of TGF-β in TME. The second control group
represents mice with TGF-β overexpression and consists
of wild type mice with frequent injections of purified TGF-
β to keep the level of TGF-β in TME high. The last group
is comprised of mice treated with 1D11, which is the mono-
clonal antibody specific to TGF-β. The blockade of TGF-β
has been shown to polarize TANs towards N1 and induce
antitumor response [10]; thus, this group of mice is set up
to examine the effectiveness of TGF-β1 gene knockout ther-
apy compared to the known antitumor effect of direct TGF-
β inhibition.

The level of TGF-β in TME will be measured, and their
N1 and N2 will be quantified to show how TGF-β level
affects TANs’ differentiation. The progression of cancer in
each group will be examined by studying tumor phenotypes
and marker expression. In addition, four media will be pre-
pared, each of which will contain Lewis lung carcinoma cells,
primed neutrophils, and myofibroblasts obtained directly
from a specific group of mice model. The media allow the
experiments to be repeated in vitro, so that it can be more
confidently concluded that the findings of this work solely
result from the change in TGF-β level in TME.

2.2.2. Mice Model and Animal Care. Pathogen-free C57BL/6
mice with mixed genders at 6 weeks old will be used in this
study. All mice will have free access to a standard laboratory
diet and water ad libitum. The mice will be kept under con-
trolled temperature and a 12 h light and dark cycle. The
experimental procedures will be performed based on institu-
tional animal care guidelines.

2.2.3. Tumor Cell Line. Lewis lung carcinoma (LLC) cell line
originated from mouse lung will be used in this study. LLC
cells will be maintained as monolayer cultures in Dulbecco’s
Modified Eagle Medium (DMEM) with 10% fetal bovine
serum (FBS) and penicillin/streptomycin and kept within
5% CO2 chamber and under 37 degrees Celsius.

2.2.4. Orthotopic Intrapulmonary Implantation of LLC.
C57BL/6 mice will be anesthetized with ether before surgery.
A limited skin incision to the left chest with a length of
approximately 5mm will be made to each mouse, and 3 ×
104 LLC cells will be suspended in PBS buffer and orthotopi-
cally injected into the lung parenchyma. After injection, the
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skin incision will be closed by a surgical skin clip. Through-
out the implantation procedure, the vital signs of mice
including respiration rate and heart rate will be monitored.
The transplanted tumors are allowed to develop for two
weeks before the mice are sacrificed by euthanasia.

2.2.5. Tissue Specific Knock-out Mice via Cre-loxP System.
C57BL/6 mice that are homozygous for a TGF-β1 gene
flanked by loxP sites will mate with C57BL/6 mice that are
hemizygous for myofibroblast-specific cre transgene and
homozygous for TGF-β1 genes that are not floxed. The cross
will generate mice that are heterozygous for the floxed allele
and hemizygous for the cre transgene. The F1 generation will
then mate with the homozygous floxed mice. One fourth of
the offspring will be homozygous for the floxed allele and
hemizygous for the cre transgene, and they will be the
TGF-β1 knock-out mice used in further experiments. The
cre transgenic mice without any loxP-flanked alleles will
have normal TGF-β expression and will be one of the con-
trol groups. If the Cre-loxP system fails, then CRISPR-Cas9
will be used as an alternative gene editing tool.

2.2.6. Tissue-Specific Gene Knockout via CRISPR-Cas9. Sin-
gle guide RNA (sgRNA) will be designed via GenScript,
whose algorithm is developed and validated by Feng Zhang
lab, Broad Institute of Harvard and MIT. A px330 plasmid
coding Cas9, sgRNA, and a myofibroblast-specific promoter
will be introduced to fertilized, one-celled oocytes of C57BL/
6 mice. The oocytes will then be transferred to pseudopreg-
nant females. In this way, C57BL/6 mice with TGF-β1 gene
specifically knocked out in myofibroblasts will be generated
via a Nonhomologous End Joining (NHEJ) approach.

2.2.7. Direct Inhibition of TGF-β via Monoclonal Antibody
1D11. TGF-β antibody 1D11 (R&D Systems, Inc., MN,
USA) is a highly potent TGF-β inhibitor that simultaneously
inhibits TGF-β1, TGF-β2, and TGF-β3, with the most sig-
nificant inhibitory effect on TGF-β1 signaling [14]. One of
the four groups of mice will be treated with 1D11 three times
per week, i.p, 5mg/Kg to inhibit TGF-β signaling in vivo. To
inhibit TGF-β signaling in the TME in vitro, one of the four
media will be prepared by coculturing LLC cells, primed
neutrophils, and myofibroblasts from wild-type mice in the
presence of 1D11.

2.2.8. LLC Conditioned Medium. LLC cells will be plated
under the conditions described in the “Tumor cell line” sec-
tion. When the cells are 50% confluent, the medium will be
replaced by DMEM with 1% FBS. After 48 hours, the condi-
tioned medium will be collected and used for neutrophils
priming.

2.2.9. Purification of Neutrophils. Around 10mL of blood
will be obtained from healthy, wild-type C57BL/6 mice and
anticoagulated with heparin. The neutrophils will be isolated
by density centrifugation, and their viability will be checked
via trypan blue exclusion. The purity of neutrophils may be
checked by Wright staining of cytocentrifuge slides.

2.2.10. Neutrophil Priming. Before being cocultured with
LLC cells in the presence or absence of 1D11, the purified
neutrophils need to be primed by culturing in the condi-
tioned medium of LLC cells for 6 hours. The primed neutro-
phils will adjust to the tumor microenvironment and may be
considered as TANs in subsequent in vitro assays.

2.2.11. Enzyme-Linked Immunosorbent Assay (ELISA). This
assay employs a quantitative sandwich enzyme immunoas-
say technique, using AssayMax Mouse TGF-β1 ELISA
(Enzyme-Linked Immunosorbent Assay) kit to detect TGF-
β1 in the supernatants of cell lysate and the plasma. TGF-
β1 molecules in the standard solutions and the samples will
be fixed to the plate by the immobilized antibody. Then, they
will be bound by biotinylated polyclonal antibodies specific to
mouse TGF-β1, which can be recognized by a streptavidin-
peroxidase conjugate. All the unbound substances are then
washed away, and a peroxidase enzyme substrate is added
for the color to develop. The color development will be
stopped and the absorbance at a certain wavelength will be
measured. Concentrations of TGF-β1 will be calculated by
comparing the absorbance with a standard curve generated
by ELISA assays on TGF-β1 in standards.

2.2.12. Measurement of Tumor Size and Weight. After the
mice are sacrificed, the tumors will be removed by surgery.
The weight of the tumors will then be measured, along with
the length (longest dimension) and width (shortest dimen-
sion) of the tumors. The size of the tumor can then be calcu-
lated by the formula V = 1/2 ðL ×WÞ2 [15].
2.2.13. Electrochemiluminescence Immunoassay (ECLI).
Tumor markers are molecules present in or produced by
malignant cells or tumor-associated cells, and their upregu-
lation often correlates with tumor growth. In this study,
CEA, CA125, NSE, and cyfra21-1 are selected as the tumor
markers for NSCLC, because increases in their serum con-
centrations are often detected in NSCLC patients. Prior to
ECLI, blood will be collected from all groups of mice and
centrifuged to obtain the serum. The level of the tumor
markers in the serum will be quantified, by measuring their
chemical electroluminescence. Elecsys1010 and kits pro-
vided by Roche in Germany will be used in the ECLI assay.

2.2.14. Immunohistochemical Analysis. DAB staining will be
performed on paraffin sections of lung tissues according to
the instructions of DAB staining kit (Abcam). Antibodies
specific to CD31 (Thermo Fisher) will be used in this study.

2.2.15. Fluorescence-Activated Cell Sorting (FACS). FACS
will be performed on the cells in TME to quantify N1 and
N2 neutrophils, which allows the researchers to study the
effect of blocking TGF-β expression on TANs’ polarization.
The cells in TME will be harvested and washed to prepare a
single cell suspension in ice cold FACS Buffer (PBS, 0.5-1%
BSA or 5-10% FBS, 0.1% NaN3 sodium azide). To identify
the TANs in the suspension, antibodies specific to LyG6
(Proteintech) will be added, which is expressed extensively
on neutrophils [16]. To further distinguish N1 from N2 neu-
trophils, the cells will be labelled with antibodies specific to
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CD206 (Abcam), which is expressed on the surface of N2
but not N1. The two types of antibodies have unique fluores-
cent tags attached to them, so the labelled cells will emit light
with different wavelengths when analyzed with a flow cyt-
ometer, allowing the identification of the distinct cell types.

3. Anticipated Results

3.1. TGF-β Expression in TME. To study the efficiency of
manipulating the expression of TGF-β in TME by specifi-
cally knocking out TGF-β1 gene in mice myofibroblasts,
the serum TGF- β1 level in mice will be quantified via
ELISA. Additionally, the TGF-β1 level in the media contain-
ing purified LLC cells, TANs, and myofibroblasts will also be
measured via ELISA. Since the level of TGF-β is not directly
influenced in mice treated with 1D11 or in the medium pre-
pared in the presence of 1D11, ELISA is not performed for
these two groups of samples. The two possible results for
the rest of the samples are shown in Figure 1 below.

3.2. Change in Tumor Growth in Response to TGF-β Level in
TME. All mice will be sacrificed 2 weeks after orthotopic
transplantation of NSCLC cells, and the size and weight of
the NSCLC tumor will be measured. The four possible out-
comes are shown in Figure 2.

3.3. Immunohistochemical Analysis. The lung tissues of mice
will be sliced and stained with H and E and immunohisto-
chemistry. It is expected that more blurred tumor margins
and more microvascular infiltration around the tumor tissue
are observed in mice with injections of additional TGF-β. In
TGF-β1 gene knockout mice and 1D11-treated mice, clearer
tumor tissue margins, less microvascular infiltration, and
fewer necrotic areas within the tumor sections are expected.

3.4. Detection of Tumor Markers. The level of tumor markers
CEA, CyFRA21-1, NSE, and CA125 in mice serum is mea-
sured to further study the progression of NSCLC under dif-
ferent TGF-β levels [17]. The two possible results are shown
in Figure 3.

3.5. The Relative Abundance of N1 and N2 TANs in TME. To
study the effect of inhibiting TGF-β production in myofibro-
blasts on the differentiation of TANs, FACS would be per-
formed on the cells in TME to quantify N1 and N2
subpopulations. The anticipated results are shown in
Figure 4.

4. Discussion

4.1. TGF-β Expression in the Tumor Microenvironment
(TME). The expected results are shown in Figure 1(a), where
the level of TGF-β decreases in TME with TGF-β1 knocked
out myofibroblasts. This confirms that the tissue-specific
gene knockout is successful, and myofibroblasts are a major
source of TGF-β. In Figure 1(b), however, similar TGF-β
levels are observed in the wild type and the TGF-β1 knock-
out models, indicating that the gene knockout is not effec-
tive. Before any further assay, the tissue-specific gene
knockout needs to be redone via CRISPR-Cas9. Alterna-

tively, the ineffective knockout may be because myofibro-
blasts are not a significant source of TGF-β in TME.
Therefore, in future experiments, TGF-β1 may be knocked
out in a different cell type or more than one cell type. Addi-
tionally, if the injection of purified TGF-β only leads to sig-
nificantly higher TGF-β level in vitro but not in vivo, it is
highly likely due to the catabolism of TGF-β in vivo, which
may be compromised by more frequent injections of TGF-β.

4.2. Tumor Size and Weight. In Figure 2(a), no significant
difference in the growth rate of tumors can be observed in
four groups of models. In this case, TGF-β has little effect
on tumor growth and the hypothesis is refuted. In Figure 2
(b), TGF-β1 knockout mice develop larger tumors than
wild-type mice, while 1D11 treatment suppresses tumor
growth. The reason behind the different outcomes between
the two inhibition mechanisms may be that 1D11 only
inhibits TGF-β in TME, while TGF-β1 knockout blocks
TGF-β expression in all myofibroblast cells throughout the
body. Since TGF-β1 is a multifunctional cytokine widely
present in the body, the knockout of TGF-β1 may have an
overall immune-suppressive effect, hence facilitating the
development of cancer. Figure 2(c) shows no significant dif-
ference in tumor growth rate between the TGF-β1 knockout
group and the wild-type mice, while mice with injections of
TGF-β develop larger tumors. It is likely that the gene
knockout in myofibroblasts does not effectively reduce the
TGF-β level in TME. As previously discussed, the tissue-
specific gene knockout method needs to be revised. Lastly,
in Figure 2(d), compared to the wild-type mice, tumor
growth in the TGF-β1 knockout mice is attenuated and the
mice with higher levels of TGF-β develop larger tumors.
Thus, reducing the expression of TGF-β shows antitumor
effects and the hypothesis is supported. The difference in
the limitation of tumor growth between the TGF-β1 knock-
out treatment and the 1D11 treatment also reflects the effec-
tiveness of tumor suppression by blocking TGF-β
production. However, the measurements of tumor size and
weight only examine the growth of primary NSCLC tumors,
while providing no information regarding tumor metastasis.
Thus, follow-up experiments are required to study the effect
of TGF-β level on tumor metastasis.

4.3. Immunohistochemical Analysis.More irregular tumor tis-
sue boundaries and increased microvascular infiltration typi-
cally represent a more malignant tumor. Thus, if clearer
tumor tissue margins and less microvascular infiltration are
observed in the TGF-β1 knockout mice compared to the wild
type mice, then inhibition of TGF-β expression is shown to
attenuate tumor growth, supporting the hypothesis. If the
morphology of the tumors shows no appreciable differences
among the mice models, the hypothesis might be refuted.
However, the qualitative nature of tumor morphology makes
the analysis inevitably subjective. Hence, the results need to
be analyzed with quantitative data from other experiments
in order to draw a more reliable conclusion.

4.4. The Level of Tumor Markers. Tumor markers such as
CEA, CyFRA21-1, NSE and CA125 are commonly used in
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cancer diagnosis. Their abnormal upregulation often pre-
cedes clinical symptoms and other detection signals [18],
so their concentrations may be measured to study the
tumor growth. In Figure 3(a), the levels of most tumor
markers decrease in mice with lower TGF-β expression,
indicating that blocking the production of TGF-β in

TME inhibits tumor growth, supporting the hypothesis.
The effectiveness of TGF-β1-knockout therapy may be
inferred by comparing the level of tumor markers in
knockout mice and mice treated with 1D11, which has
been shown to limit tumor growth via TGF-β inhibition
[10]. In Figure 3(b), the levels of most tumor markers
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Figure 1: Predicted plasma TGF-β1 concentration and TGF-β1 concentration in vitro (a) Blood TGF-β1 concentration in TGF-β1
knockout mice is reduced compared with wild-type mice. In addition, the TGF-β1 concentration of mice with injection of purified TGF-
β1 is significantly higher than that of wild-type mice. (b) Compared with the wild-type mice, there is no significant decrease in blood
TGF-β1 concentration in the TGF-β1 knockout group, indicating that the gene knockout model is not successful.
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Figure 2: Continued.
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are higher in mice with TGF-β overexpression, demon-
strating the protumor effects of TGF-β. However, the gene
knockout does not reduce the expression of tumor

markers, suggesting that TGF-β1 knockout in myofibro-
blasts is not effective and CRISPR-Cas9 should be used
as an alternative gene editing tool.
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Figure 2: Predicted tumor size and weight (a) There is no significant difference in tumor growth among all mice. (b) TGF-β1 gene knockout
mice and mice injected with additional TGF-β develop larger and more severe tumors than wild-type mice, while the injection of 1D11 leads
to reduced tumor growth. (c) There is no significant difference in tumor growth rate between the TGF-β1 knockout group and the wild-type
mice, while the tumors in mice injected with additional TGF-β are larger and heavier. The tumors in mice treated with 1D11 have reduced
size and weight compared to those in wild-type mice. (d) In comparison to wild-type mice, the tumors in the gene knockout mice and 1D11-
treated mice are smaller, while the tumors in mice treated with additional TGF-β develop more rapidly.
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Figure 3: Predicted level of tumor markers in serum (a) Compared with wild-type mice, the concentrations of various tumor markers in
both TGF-β1 gene knockout mice and 1D11-treated mice decrease, while the concentrations of most tumor markers in the additional
TGF-β1 injection group significantly increase. (b) Although additional TGF-β1 injections results in higher levels of most cancer markers,
the gene knockout does not reduce the concentrations of tumor markers, suggesting that TGF-β1 knockout therapy is ineffective.
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Figure 4: Predicted abundance of N1 TANs and N2 TANs quantified by flow cytometry. In each diagram, one solid black circle represents
one population of cells, and the area of the circle correlates with the number of cells in that population. (a) Compared with the control
group, the abundance of N1 (Ly6G+/CD206-) and N2 (Ly6G+/CD206+) cells in TME after gene knockout of TGF-β producing gene in
myofibroblasts might not change significantly, and N2 (Ly6G+/CD206+) subgroup might be still more than the N1 (Ly6G+/CD206-)
subgroup. After the addition of additional TGF based on the control group, the number of N2 (Ly6G+/CD206+) subgroup cells might
further increase, and the number of N1 (Ly6G+/CD206-) subgroup cells might further decrease. The addition of 1D11 leads to increased
N1 and decreased N2 population. (b) Compared with the control group, the number of N1 (Ly6G+/CD206-) subgroup significantly
increases, and N2 (Ly6G+/CD206+) subgroup significantly decreases after the knockout of TGF-β producing gene in myofibroblasts.
After the addition of additional TGF-β based on the control group, the number of N2 (Ly6G+/CD206+) subgroup cells might further
increase, and the number of N1 (Ly6G+/CD206-) subgroup cells might further decrease. The addition of 1D11 results in expanded N1
and reduced N2. (c) There can be little difference between in vivo and in vitro controls. In vivo, compared with the control group, gene
knockout of TGF-β producing gene in myofibroblasts might not affect the differentiation of N1 (Ly6G+/CD206-) and N2 (Ly6G
+/CD206+). However, in vitro, gene knockout of TGF-β producing gene in myofibroblasts might result in a significant increase in the
N1 (Ly6G+/CD206-) population and a significant decrease in the N2 (Ly6G+/CD206+) population. After the addition of additional
TGF-β based on the control group, the number of N2 (Ly6G+/CD206+) subgroup cells might further increase, and the number of N1
(Ly6G+/CD206-) subgroup cells might decrease further. The addition of 1D11 promotes N1 and suppresses N2 differentiation.
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4.5. The Relative Quantity of N1 and N2 TANs in TME. In
Figure 4(a), the differentiation of TANs into N1 and N2 both
in vivo and in vitro is not significantly affected by the TGF-
β1 gene knockout of myofibroblasts, indicating that myofi-
broblasts may not be an important source of TGF-β. In
future experiments, the TGF-β1 gene may be knocked out
in other types of cells to significantly reduce the amount of
TGF-β in TME. If the decrease in TGF-β level still has no
appreciable influence on neutrophils polarization, the
hypothesis may be refuted. In Figure 4(b), both in vivo and
in vitro, the tumor microenvironment (TME) with TGF-β1
knocked out myofibroblasts contains increased amount of
N1 and reduced amount of N2, compared to the control
group. In TME with overexpression of TGF-β, however,
the number of N1 decreases while the number of N2
increases. The results show a positive correlation between
the TGF-β level and the polarization of TANs towards N2,
which promotes tumor growth. Therefore, blocking the
expression of TGF-β in TME shifts the differentiation of
TANs towards an antitumor phenotype, supporting the
hypothesis. As shown in Figure 4(c), the differentiation of
TANs in vivo is not significantly affected byTGF-β1 knockout,
but more N1 and fewer N2 are observed in the in vitro media
with TGF-β1 knocked out myofibroblasts. The skewed differ-
entiation observed in vitro indicates that myofibroblast is
indeed a major source of TGF-β and that inhibiting TGF-β
expression in TME polarizes TANs towards N1. However,
there are more than one type of cells producing TGF-β
in vivo, so the reduced production of TGF-β due to TGF-β1
knocked out myofibroblasts may be compromised by other
cells, leading to TANs’ differentiation similar to the wild type
models. In future experiments, TGF-β1 may be knocked out
in more TGF-β producing cell types. Under all three circum-
stances, the inhibition of TGF-β signaling via 1D11 is pre-
dicted to shift the differentiation of TANs towards antitumor
(N1) phenotype, according to the results of Qin et al. [10].

4.6. Limitations. In this study, the production of TGF-β is
selectively blocked in mice myofibroblasts, but not other tis-
sues. The choice of myofibroblasts is based on the fact that
myofibroblasts are one of the most abundant TGF-β-pro-
ducing cells present in the NSCLC TME. Nonetheless, other
cells like thrombocytes and tumor cells are also major con-
tributors of TGF-β expression in TME. Hence, future exper-
iments may be performed with selective TGF-β1 knockout
in a different type of cells or multiple types of cells. Another
limitation is that the progression of cancer is only monitored
via the growth of primary tumor, while the metastasis of
NSCLC is not examined. Besides, the mechanism by which
TGF-β contributes to the polarization of TANs is still a mys-
tery. More in-depth research is in need to characterize the
signaling pathway of TAN differentiation.

5. Conclusion

Tumor-associated neutrophils (TANs) significantly influ-
ence the progression of nonsmall cell lung cancer (NSCLC),
and their effector functions are affected by a cytokine known
as transforming growth factor-β (TGF-β), which polarizes

the TANs towards a protumor phenotype. Thus, blocking
the production of TGF-β may attenuate tumor growth
through the polarization of TANs towards a tumor-
suppressive phenotype. In this study, the C57BL/6 mice are
divided into four groups, one with the TGF-β1 gene knocked
out in myofibroblasts, one with frequent injections of puri-
fied TGF-β, one containing wild type, healthy mice with
normal expression of TGF-β, the other containing wild type
mice treated with anti-TGF-β (1D11). After orthotopic
intrapulmonary implantation of Lewis lung carcinoma
(LLC), the mice’s N1 and N2 in TME are quantified by flow
cytometry to investigate to what extent TGF-β level influ-
ences TANs’ differentiation. The morphology of the tumors
and the level of tumor markers in serum are also examined
to study the tumor growth under different TGF-β levels.
The experiments are then repeated in vitro on media con-
taining LLC cells, TANs, and myofibroblasts obtained from
the mice model. Possible results are anticipated and dis-
cussed from various aspects. To conclude, this study pro-
vides experimental designs for studying the potential
antitumor effects of blocking TGF-β production. Since most
current studies in this field focus on the therapeutic potential
of directly inhibiting TGF-β signaling, rather than blocking
the production of TGF-β in TME, this study fills the knowl-
edge gap and presents a creative direction for cancer therapy
targeting specific cytokines. Combining with other cancer
treatments, the tissue-specific blockade of TGF-β produc-
tion may lead to promising outcomes and may have clinical
applications. Furthermore, the experimental design pre-
sented in this study may apply to other cytokines, facilitating
the development of novel cancer therapies.
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Background. The specific role and prognostic value of DNA repair and replication-associated miRNAs in gastric cancer (GC) have
not been clearly elucidated. Therefore, comprehensive analysis of miRNAs in GC is crucial for proposing therapeutic strategies
and survival prediction. Methods. Firstly, clinical information and transcriptome data of TCGA-GC were downloaded from the
database. In the entire cohort, we performed differential analysis in all miRNAs and support vector machine (SVM) was used
to eliminate redundant miRNAs. Subsequently, we combined survival data and cox regression analysis to construct a miRNA
signature in the training cohort. In addition, we used PCA, Kaplan-Meier, and ROC analysis to explore the prognosis value of
risk score in the training and testing cohort. It is worth noting that multiple algorithms were used to evaluate difference of
immune microenvironment (TME), microsatellite instability (MSI), tumor mutational burden (TMB), and immunotherapy in
different risk groups. Finally, we investigated the potential mechanism about miRNA signature. Results. We constructed miRNA
signature based on the following 4 miRNAs: hsa-miR-139-5p, hsa-miR-139-3p, hsa-miR-146b-5p, and hsa-miR-181a-3p.
Univariate and multivariate Cox regression analyses suggested that risk score is a risk factor and an independent prognostic factor
in GC patients. The AUC value of ROC analysis showed a robust prediction accuracy in each cohort. Moreover, significant
differences in immune functions, immune cell content, immune checkpoint, MSI status, and TMB score were excavated in
different groups distinguished by risk score. Finally, based on the above four miRNA target genes, we revealed that the signature
was enriched in DNA repair and replication. Conclusion. We have developed a robust risk-formula based on 4 miRNAs that
provides accurate risk stratification and prognostic prediction for GC patients. In addition, different risk subgroups may potentially
guide the choice of targeted therapy.

1. Introduction

Gastric cancer (GC) is one of the most common causes of
death across the world [1]. Its overall 5-year survival rate is
less than 20%, and although considerable progress has been
made in the treatment of GC, only slight improvements have
been seen in the past 20 years [2]. Microsatellite instability
(MSI) increases the rate of replication mistakes and hyper-

mutation state, increasing the risk of oncogene or tumor
suppressor gene alterations. Importantly, MSI status in
patients with GC has been proved to be useful for treatment
outcome prediction [3]. However, research combining
several miRNAs to predict MSI status and prognosis is
relatively uncommon.

Meanwhile, miRNAs are endogenous noncoding RNAs
ranging in length from 17 to 25 nucleotides that influence
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gene expression posttranscriptionally [4]. Increasing data
indicates that miRNA expression is varied in GC and is
linked with survival prognosis [5]. Numerous research pub-
lished in the last few years have identified miRNAs as possi-
ble diagnostic or prognostic indications for GC; however, the
findings have been conflicting, although recent studies sug-
gest that miRNAs play a complex role in tumorigenesis, drug
resistance, and cancer therapy. Studies of miRNAs in GC
still require more evidence at this time, as most studies have
only looked at a small number of miRNAs in cell lines. In

addition, support vector machine (SVM) is a robust machine
learning method and is widely used in classification [6].

Although there are a large number of studies based on
Cox and LASSO regression analysis to identify risk signa-
tures, there are fewer studies on signature in GC patients
with the SVM method. In order to obtain robust and stable
results, we used SVM and Cox regression analysis to con-
struct a miRNA signature. In conclusion, the construction
of a novel miRNA signature is critical for the prognosis pre-
diction of GC patients with the goal of exploring potential

Type
hsa-miR-6510-3p
hsa-miR-383-5p
hsa-miR-944
hsa-miR-1269b
hsa-miR-372-3p
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Figure 1: Screening of miRNAs: (a) the heat map of different expression miRNAs (DEmiRNAs); (b) volcano plot of DEmiRNAs; (c) the
results of SVM.
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Hazard ratio
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Figure 2: Continued.
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effects of miRNAs on immunotherapy, TME, biological pro-
cesses, and MSI status.

2. Materials and Methods

2.1. Datasets. The Cancer Genome Atlas (TCGA) database
was searched for transcriptome data and included 45 normal
samples and 389 GC samples. The UCSC Xena Browser con-
tains clinical data on TCGA-GC. Their survival information,
clinicopathology, and genetics were retrieved and analyzed
further. TCGA-GC cohort was randomly divided into 1 : 1
and represented as training set and testing set. The RNA-seq
transcriptome data in CPM format and corresponding clinical
data of GC patients were extracted from the database, and only
genes with CPM greater than 1 were considered.

2.2. Calculation of Risk Score. Clinical data from GC cases in
TCGA cohort were used to screen prognostic miRNAs
linked with OS using univariate Cox regression analysis,
and support vector machine (SVM) was used to eliminate
redundant miRNAs. We selected miRNAs with p value less
than 0.05 to undertake multivariate Cox regression analysis.
The expression levels of the miRNAs and coefficients were
then used to construct risk signature. The following formula
was used to calculate the risk score for each patient:

〠
n

i=1
Coef i ∗miRNAi: ð1Þ

We calculated the median score in TCGA-GC cohort to
divide patients into two groups and identify the most signif-
icant differences in prognosis between the risk subgroups.
To analyze the prediction performance of prognostic fea-
tures on overall survival, Kaplan-Meier survival curves and
ROC curves were used.

2.3. Biological Function Analysis. Differential expression
analysis (mRNAs and miRNAs) was performed using the
limma package. TargetScan, miRTarBase, and miRDB tools
were used to screen out target mRNAs. We overlapped tar-
get mRNAs and differential expression mRNAs. Finally,
the above genes were analyzed for gene enrichment.

2.4. Comprehensive Analysis. We used ssGSEA, XCELL,
TIMER, QUANTISEQ, MCPCOUNT, EPIC, CIBERSORT,
CIBERSORT-ABS, ESTIMETA, and TIDE algorithms for
estimating the abundance of immune cells, immune-related
pathway, immunotherapeutic response, and microsatellite
instability (MSI) status. p values and Pearson correlation
coefficients were obtained based on the study. Immune
checkpoint-related gene and human leukocyte antigen
(HLA) gene expression levels may be linked to immune
checkpoint inhibitor therapy response. We explored the dif-
ference in gene expression levels between the two groups.

3. Results

3.1. Calculation of Risk Score in GC Patients. Using 45 normal
samples as a control, we revealed that 138 were upregulated
miRNAs and 60were downregulatedmiRNAs. The volcano plot
and heat map showed the 198 miRNA expression landscape
(Figures 1(a) and 1(b)). In addition, SVM was used to screen
robust 18 miRNAs in the above miRNAs (Figure 1(c)). Subse-
quently, multivariate Cox regression analysis was applied to 18
miRNA expression data in the training cohort for avoiding over-
fitting (Figure 2(a)). In detail, the risk score was determined
according to the coefficients of eachmiRNA in the result ofmul-
tivariate Cox regression analysis, and the formula is as follows:
risk score = hsa −miR − 139 − 5p expression × 0:6271 + hsa −
miR − 139 − 3p expression × −0:4345 + hsa −miR − 146b − 5
p expression × −0:2398 + hsa −miR − 181a − 3p expression ×
0:2347. According to the above formula, the risk score
of each patient in TCGA-GC cohort was calculated.
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Figure 2: Construction of risk model. (a) A forest plot for results of multivariate Cox regression. PCA analysis of the entire cohort (b),
training cohort (c), and testing cohort (d).
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Subsequently, based on the median of risk score in the
training cohort, we divided patients into two risk subgroups.
PCA analysis showed that all samples from the different

risks could be well distinguished in the entire cohort
(Figure 2(b)), training cohort (Figure 2(c)), and testing
cohort (Figure 2(d)).
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Figure 3: Prognostic value of risk score. ROC analysis of the entire cohort (a), training cohort (c), and testing cohort (e). Kaplan-Meier
survival analysis of the entire cohort (b), training cohort (d), and testing cohort (f).
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Figure 4: Continued.
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3.2. Exploring Prognostic Value of Risk Score. To better eval-
uate the prognostic value of risk score, we performed ROC
analysis, and the AUC value showed a robust prediction
accuracy (AUC > 0:7) in each cohort, as shown in
Figures 3(a), 3(c), and 3(e). Meanwhile, the Kaplan-Meier
analysis and log-rank test were used to estimate the predic-
tive ability of the model for the clinical outcomes of GC
patients (p < 0:05). The results showed that the OS of
patients with low risk was better than those of high-risk
patients in the entire cohort (Figure 3(b)), training cohort
(Figure 3(d)), and testing cohort (Figure 3(f)). To determine
whether risk score is an independent prognostic factor in GC

patients, we included risk score and other clinical parame-
ters in Cox regression analyses. Excitingly, univariate and
multivariate Cox regression analyses suggested that risk
score is a risk factor (Figure 4(a)) and an independent prog-
nostic factor (Figure 4(b)). Specifically, in univariate and
multivariate regression, HR value of risk score is 1.726 and
1.971, respectively (p < 0:001).

3.3. Somatic Mutation and Cell Stemness Analysis. We fur-
ther analyzed the relationship between risk score and
somatic mutation. The waterfall plot showed that patients
in the low-risk group exhibited a wider range of mutations
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Figure 4: Somatic mutation analysis: (a) forest plot of univariate Cox regression analysis; (b) forest plot of multivariate Cox regression
analysis; (c) somatic mutation analysis in the high-risk group; (d) somatic mutation analysis in the low-risk group; (e) analysis of
differences in TMB in different risk groups; (f) correlation analysis between RNAs and risk score.
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Figure 5: MSI status and immune subtype analysis: (a) distribution of immune subtypes and risk subgroups; (b) analysis of differences in
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(Figures 4(a) and 4(b)). However, in different risk groups,
TTN, TP53, MUC16, and LRP1B were the major mutation
genes. In addition, the boxplot showed that low-risk patients
have a higher TMB score (Figure 4(c)). Considering the
effect of cell stemness on prognosis, we also analyzed cell
stemness of patients with risk score and found that they were
negatively related (Figure 4(d)).

3.4. Comprehensive Evaluation of Immune Function by
Multiple Algorithms. We performed ANOVA for different
risk patients and immune subtypes, and the differences were
statistically significant (Figure 5(a)). We also analyzed
microsatellite instability (MSI) of patients with different
risks and found that the MSI-H grouping has a lower risk
score (Figure 5(b)). The above results provide another
potential explanation for the poor prognosis of patients with
high risk score. Based on tumor pretreatment expression
profiles, this TIDE module can estimate multiple published
transcriptomic biomarkers to predict patient response [7].
In our risk subgroups, the high-risk group had higher TIDE
score (Figure 5(c)), dysfunction score (Figure 5(d)), and
exclusion score (Figure 5(e)) than the low-risk group. More-
over, XCELL, TIMER, QUANTISEQ, MCPCOUNT, EPIC,

CIBERSORT, and, CIBERSORTABS algorithms were used
to evaluate the content and correlation of immune infiltrat-
ing cells in different risk groups. In the person correlation
analysis, we found that most of the immune cells calculated
by 6 algorithms were negatively correlated with the risk
score. In the difference analysis, B cell and T cell showed sig-
nificant differences in most algorithm results, as shown in
Figure 6. Subsequently, we explored the tumor microenvi-
ronment using the ESTIMATE algorithm, and we found that
the high-risk group had higher estimate score, immune
score, and stromal score compared with the low-risk group
(Figure 7(a)). The ssGSEA algorithm also suggested that
there are also significant differences in immune function
between the different risk groups, including APC costimula-
tion, CCR, MHC class I, parainflammation, and IFN
response (Figure 7(b)). We selected 46 immune checkpoints
commonly used in treatment, and the results showed that 24
immune checkpoints were significantly different between
patients in the high- and low- risk groups (Figure 7(c)).
Interestingly, immunofunctional analysis confirmed signifi-
cant differences in HLA-related genes between the low-risk
and high-risk groups in TCGA and GEO cohorts, as shown
in Figure 7(d).
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3.5. miRNAs Participating in Signature May Be Revolved in
DNA Repair and Replication. TargetScan, miRTarBase, and
miRDB tools were used to screen out target mRNAs in 4
miRNAs participating in signature. Subsequently, we over-
lapped target mRNAs and differential expression mRNAs.
Finally, a potential functional regulation network is con-
structed (Figure 8(a)). To better understand the underlying
molecular mechanisms and functions of the above mRNAs,
interestingly, in KEGG analysis, we found that the above
mRNAs were associated with DNA repair, DNA replication,
and homologous recombination (Figure 8(b)).

4. Discussion

Gastric cancer (GC) is widely regarded as one of the most
common malignant tumors of the digestive system, with
high morbidity and mortality, and has attracted more and
more attention. A series of discoveries of miRNAs have
made significant progress in the field of cancer, especially
in immune [8]. In recent years, a number of critical discov-
eries have highlighted the growing interest in understanding
the mechanisms of miRNAs. And with the development of
artificial intelligence, more new tools have been applied in
the life sciences [9, 10]. However, the specific role and prog-

nostic value of miRNAs in GC have not been clearly eluci-
dated. In this study, using SVM-Cox model, we were able to
construct a risk score formula based on 4 miRNAs. The train-
ing and testing cohorts were used to validate the performance
of the risk score that was made. We also used the KEGG
enrichment analyses to investigate the function of these
miRNAs. XCELL, TIMER, QUANTISEQ, MCPCOUNT,
EPIC, CIBERSORT, and, CIBERSORTABS algorithms were
used to evaluate the content and correlation of immune infil-
trating cells in different risk groups. The findings of the study
imply that risk score has a significant impact on survival risk
in GC patients and could be used as biomarkers for therapeu-
tic targets.

The four miRNAs involved in the modeling have been
studied in gastric cancer. For example, SNHG3 functions
in an oncogenic manner to drive GC proliferation, migra-
tion, and invasion by regulating the miR-139-5p/MYB axis
[11]. In addition, circ-PTPDC1 promotes the proliferation,
migration, and invasion of GC cell lines via sponging miR-
139-3p by regulating ELK1 [12]. In the current study, quan-
titative analyses revealed that the high-risk group had a
higher percentage of immune-related cells and functions.
Previous research has demonstrated that ferroptosis can
emit damage-associated molecular or lipid mediators that
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Figure 7: Immune function and immune checkpoint analysis in risk subgroups: (a) estimate analysis in different risk subgroups; (b)
differential analysis of immune function; (c) differential expression analysis of immune checkpoint-related genes; (d) differential
expression analysis of HLA-related genes.
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Figure 8: miRNA-mRNA network: (a) miRNA-mRNA network; (b) a bubble plot for the results of KEGG analysis.
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attract antigen-presenting cells, triggering a cascade of
innate and adaptive immune responses [13]. Consistent with
previous studies, our study also shows that cells and func-
tions associated with the antigen presentation process are
significantly activated in the low-risk group, particularly in
T cells and B cells [14]. It is also noteworthy that both T cells
and B cells have a significant effect on the effect of antitumor
activity of OSCC. Furthermore, ferroptosis combined with
immune checkpoint inhibitors (ICIs) synergistically enhance
antitumor activity, even in ICI-resistant types [12]. We
identified several immune checkpoints that may guide our
future targeted therapy options in OSCC patients, such as
CD27, CD276, CD40, CD44, LAG3, LIGIT, TMIGD2, and
TNFSF15. We found that many types of immune cells are
different in different risk groups. In the current study,
CD8+ T lymphocytes have also been demonstrated to cause
lipid peroxidation in cancer cells and make cells more sus-
ceptible to ferrogenesis by releasing IFN [15]. As a result,
we believe that further research into the involvement of
these immune cells in ferroptosis and immune evasion is
required in the future. Finally, based on the findings of this
study, we can speculate that the poorer prognosis in the
high-risk group may be due to dysregulation of antitumour
immune function, which raises a more in-depth question:
whether the development of GC can be caused by miRNA
imbalance affecting antitumour immune function.

In conclusion, this study utilized comprehensive bioin-
formatics to analyze and establish 4-miRNA risk score
formula, including hsa-miR-139-5p, hsa-miR-139-3p, hsa-
miR-146b-5p, and hsa-miR-181a-3p, ultimately to identify
potential biomarkers for predicting GC progression. And
further analysis and study finally revealed the functions
and mechanisms of these miRNAs. Due to the small sample
size of the control group used for miRNA analysis in this
study, only limited data can be presented in the paper. In
summary, our data need to be further investigated and vali-
dated in a larger patient population and explored in future
research together.

Data Availability

Data is available at TCGA database (https://portal.gdc
.cancer.gov/).

Disclosure

The authors are accountable for all aspects of the work in
ensuring that questions related to the accuracy or integrity
of any part of the work are appropriately investigated
and resolved.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Y.W. conceived and designed the study. X.F. was responsible
for materials. F.X. drafted the article. Z.D., S.C., and J.Z.

revised the article critically. All authors had the final approval
of the submitted versions. Ya-nan Wang and Ya-ning Wei
contributed equally to this work.

Acknowledgments

This study was funded by the Department of Science and
Technology of Hebei Province (grant number 162777241).

References

[1] Global Burden of Disease Cancer Collaboration, “The global
burden of cancer 2013,” JAMA Oncology, vol. 1, no. 4,
pp. 505–527, 2015.

[2] N. Coburn, R. Cosby, L. Klein et al., “Staging and surgical
approaches in gastric cancer: a systematic review,” Cancer
Treatment Reviews, vol. 63, pp. 104–115, 2018.

[3] F. Pietrantonio, R. Miceli, A. Raimondi et al., “Individual
patient data meta-analysis of the value of microsatellite insta-
bility as a biomarker in gastric cancer,” Journal of Clinical
Oncology, vol. 37, no. 35, pp. 3392–3400, 2019.

[4] C. Wang, X. Leng, Y. Zhang et al., “Transcriptome-wide anal-
ysis of dynamic variations in regulation modes of grapevine
microRNAs on their target genes during grapevine develop-
ment,” Plant Molecular Biology, vol. 84, no. 3, pp. 269–285,
2014.

[5] Z. Yan, Y. Xiong, W. Xu et al., “Identification of recurrence-
related genes by integrating microRNA and gene expression
profiling of gastric cancer,” International Journal of Oncology,
vol. 41, no. 6, pp. 2166–2174, 2012.

[6] Z. Sun, J. Yang, X. Li, and J. Zhang, “DPWSS: differentially pri-
vate working set selection for training support vector
machines,” PeerJ Computer Science, vol. 7, article e799, 2021.

[7] J. Fu, K. Li, W. Zhang et al., “Large-scale public data reuse to
model immunotherapy response and resistance,” Genome
Medicine, vol. 12, no. 1, p. 21, 2020.

[8] S. Nagata and M. Tanaka, “Programmed cell death and the
immune system,” Nature Reviews. Immunology, vol. 17,
no. 5, pp. 333–340, 2017.

[9] H. Huang, N. Wu, Y. Liang, X. Peng, and S. Jun, “SLNL: a
novel method for gene selection and phenotype classification,”
International Journal of Intelligent Systems, 2022.

[10] H. H. Huang, X. D. Peng, and Y. Liang, “SPLSN: an efficient
tool for survival analysis and biomarker selection,” Interna-
tional Journal of Intelligent Systems, vol. 36, no. 10, pp. 5845–
5865, 2021.

[11] Y. Xie, L. Rong, M. He et al., “LncRNA SNHG3 promotes gas-
tric cancer cell proliferation and metastasis by regulating the
miR-139-5p/MYB axis,” Aging (Albany NY), vol. 13, no. 23,
pp. 25138–25152, 2021.

[12] Z. Li, Y. Cheng, K. Fu et al., “Circ-PTPDC1 promotes the pro-
gression of gastric cancer through sponging Mir-139-3p by
regulating ELK1 and functions as a prognostic biomarker,”
International Journal of Biological Sciences, vol. 17, no. 15,
pp. 4285–4304, 2021.

[13] J. P. Friedmann Angeli, D. V. Krysko, and M. Conrad, “Fer-
roptosis at the crossroads of cancer-acquired drug resistance
and immune evasion,” Nature Reviews. Cancer, vol. 19, no. 7,
pp. 405–414, 2019.

12 Journal of Oncology

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/


[14] R. Tang, J. Xu, B. Zhang et al., “Ferroptosis, necroptosis, and
pyroptosis in anticancer immunity,” Journal of Hematology
& Oncology, vol. 13, no. 1, p. 110, 2020.

[15] W. Wang, M. Green, J. E. Choi et al., “CD8+ T cells regulate
tumour ferroptosis during cancer immunotherapy,” Nature,
vol. 569, no. 7755, pp. 270–274, 2019.

13Journal of Oncology



Research Article
Screening and Validation of Significant Genes with Poor
Prognosis in Pathologic Stage-I Lung Adenocarcinoma

Yujie Deng,1,2,3 Xiaohui Chen ,4,5 Chuanzhong Huang,6 Jun Song,1,2 Sisi Feng,1,2

Xuzheng Chen,1,2 and Ruixiang Zhou 1,2

1School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, Fujian, China
2Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou 350108, Fujian, China
3Molecular Oncology Research Institute, *e First Affiliated Hospital of Fujian Medical University, Fuzhou 350005,
Fujian, China
4Department of *oracic Surgery, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou,
Fujian Province 350014, China
5College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou, China
6Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou,
Fujian 350014, China

Correspondence should be addressed to Ruixiang Zhou; rxzhou@fjmu.edu.cn

Yujie Deng and Xiaohui Chen contributed equally to this work.

Received 19 November 2021; Accepted 5 February 2022; Published 11 April 2022

Academic Editor: Fu Wang

Copyright © 2022 Yujie Deng et al. 0is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Although more pathologic stage-I lung adenocarcinoma (LUAD) was diagnosed recently, some relapsed or distantly
metastasized shortly after radical resection. 0e study aimed to identify biomarkers predicting prognosis in the pathologic stage-I
LUAD and improve the understanding of themechanisms involved in tumorigenesis.Methods. We obtained the expression profiling
data for non-small cell lung cancer (NSCLC) patients from the NCBI-GEO database. Differentially expressed genes (DEGs) between
early-stage NSCLC and normal lung tissue were determined. After function enrichment analyses on DEGs, the protein-protein
interaction (PPI) network was built and analyzed with the Search Tool for the Retrieval of Interacting Genes (STRING) and
Cytoscape. Overall survival (OS) and mRNA levels of genes were performed with Kaplan–Meier analysis and Gene Expression
Profiling Interactive Analysis (GEPIA). qPCR and western blot analysis of hub genes in stage-I LUAD patients validated the
significant genes with poor prognosis. Results. A total of 172 DEGs were identified, which were mainly enriched in terms related to
management of extracellular matrix (ECM), receptor signaling pathway, cell adhesion, activity of endopeptidase, and receptor. 0e
PPI network identified 11 upregulated hub genes that were significantly associated with OS in NSCLC and highly expressed in
NSCLC tissues compared with normal tissues by GEPIA. Elevated expression of ANLN, EXO1, KIAA0101, RRM2, TOP2A, and
UBE2Twere identified as potential risk factors in pathologic stage-I LUAD. Except for ANLN and KIAA0101, the hub genes mRNA
levels were higher in tumors compared with adjacent non-cancerous samples in the qPCR analysis.0e hub genes protein levels were
also overexpressed in tumors. In vitro experiments showed that knockdown of UBE2T in LUAD cell lines could inhibit cell
proliferation and cycle progression. Conclusions. 0e DEGs can probably be used as potential predictors for stage-I LUAD worse
prognosis and UBE2T may be a potential tumor promoter and target for treatment.

1. Introduction

Lung cancer is still the leading cause of cancer incidence and
mortality both in China and worldwide [1, 2]. Although the
5-year survival rate of stage-I non-small cell lung cancer
(NSCLC) is between 70% and 92%, there is still much

progress such as screening, early detection, and genome
analyses that have been made for lung cancer [3, 4], and they
shed light on the possibility of developing more reliable
prognostic biomarkers and sensitive predisposing genes in
the carcinogenesis of lung cancer, better understanding the
underlying mechanism and improving the treatment effect.
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Although more and more pathologic stage-I non-small cell
lung cancer (NSCLC) patients had been diagnosed and
cured, some of them still suffered from early relapse and
distant metastasis after surgery. 0us, the discrimination of
specific biomarkers to predict the clinical outcome of early-
stage NSCLC patients is indispensably necessary. Many
researchers had worked out a variety of schemes in the
prediction of resectable lung cancer patients [5, 6], while few
focused on the outcome foretelling especially in pathologic
stage-I patients. 0e use of gene chips can quickly detect
differentially expressed genes (DEGs) within cancerous and
normal tissues, identifying novel genetic predictors of lung
cancer, facilitating improvements to early detection, and
elucidating the mechanisms influencing carcinogenesis [7].

Ubiquitin-conjugating enzyme E2T (UBE2T) is a
member of the E2 family in the ubiquitin-proteasome
pathway that is located on chromosome 1q32.1. As one of
the post-translational modifications, the ubiquitin-
proteasome system regulates protein ubiquitination and
stability and is recognized as a key regulator of cell prolif-
eration, invasion, and differentiation [8]. UBE2T plays an
important role in the Fanconi anemia pathway [9] by
ubiquitinating FANCD2 and inducing the DNA damage
response (DDR). Overexpression of UBE2T has been de-
tected in different tumor types. UBE2T promotes tumor
progression by downregulation of BRCA1 in breast cancer
[10] and p53 ubiquitination in hepatocellular carcinoma
cells [11]. However, the role of UBE2T in early-stage LUAD
remains unclear. In vitro, we found that UBE2T promoted
the proliferation of LUAD cells, which verified its functions.

2. Materials and Methods

2.1. Patients and Tissue Samples. 0e study was approved by
the Ethics Committee of Clinical Research of Fujian Cancer
Hospital. LUAD and paired non-cancerous tissues were
obtained from seven patients diagnosed with stage-I lung
adenocarcinoma who underwent surgical resection at Fujian
Cancer Hospital between March 2014 and December 2014.
All the patients were pathologically confirmed. None of the
patients had received prior radiotherapy or chemotherapy.
Fresh frozen samples were stored at −80°C.

2.2. Microarray Data Acquisition and DEGs Data Processing.
Gene expression profile of GSE18842, GSE31210, and
GSE33532 NSCLC and normal lung tissues were obtained
from NCBI-GEO. All these microarray data were derived
from GPL570 platforms ((HG-U133_Plus_2) Affymetrix
Human Genome U133 Plus 2.0 Array). GSE18842 included
46 tumors and 45 controls; GSE31210 included 226 lung
adenocarcinomas and 20 normal lung tissues; and GSE33532
had 80 tumors and 20 matched normal lung tissues. DEGs
were identified via GEO2R online tools. 0e DEGs between
NSCLC and normal lung tissue were selected by the criteria
of │logFC│> 2 as well as an adjusted P value <0.05. 0e raw
data in TXT format were analyzed in Venn software online
(http://bioinformatics.psb.ugent.be/webtools/Venn/) to
evaluate the commonly DEGs within these 3 data sets. 0e

DEGs with logFC> 0 was taken as upregulated genes and
logFC< 0 as downregulated genes.

2.3.GeneOncologyandPPINetworkAnalysis. Gene ontology
analysis (GO) is used to define genes and their RNA or
protein products to identify unique biological properties.0e
Database for Annotation, Visualization, and Integrated
Discovery (David) was utilized to determine these DEGs
enrichment, including molecular function (MF), cellular
component (CC), biological process (BP), and Kyoto En-
cyclopedia of Gene and Genome (KEGG) pathways
(P< 0.05). Protein-protein interaction (PPI) was constructed
via STRING (https://www.string-db.org/). 0e STRING
database was used to determine the potential correlation
between these DEGs. 0en Cytoscape (version 3.7.1) was
applied to visualize the PPI network. Modules of the PPI
network was validated by the MCODE app in Cytoscape
(degree cutoff� 2, node score cutoff� 0.2, k-core� 2, and
max. depth� 100).

2.4. RNA Expression of Core Genes and Survival Analysis.
Gene Expression Profiling Interactive Analysis (GEPIA)
website was applied to analyze the DEGs mRNA expression
between NSCLC and normal tissues (P< 0.05).
Kaplan–Meier plotter (http://kmplot.com/analysis/index.
php?p�service&cancer�lung) was used to determine the
effect of genes on survival based on GEO (Affymetrix
microarrays only). Survival within groups was compared by
log-rank estimates (P< 0.05).

2.5. ROC Curve, Forest Plot, and Volcano Plot. 0e receiver
operating characteristic curve (ROC) analysis was applied to
evaluate the specificity and sensitivity of the core genes. 0e
pROC R packages were installed, and the area under the
curve (AUC) and P value were calculated (TCGA). Forest
plot R packages were installed and the forest plot of sub-
group analysis related to the stage of the candidate genes was
drawn. 0e ggplot2 R packages were installed to draw the
volcano plot labeled with hub genes.

2.6. Human Protein Atlas. 0e Human Protein Atlas
(https://www.proteinatlas.org/) is an online website that
includes pathology atlas of nearly 20 types of malignant
tumors. In our study, immunohistochemical data of ANLN,
TOP2A, and RRM2 were used to compare the expression in
normal and lung adenocarcinoma tissues. 0e intensity of
antibody staining indicated the protein expression of hub
genes.

2.7. Real-TimeQuantitative Reverse Transcription Polymerase
Chain Reaction and Western Blot Analysis. Total RNA of
fresh frozen tissues and cells were isolated using TRIzol
reagent (Invitrogen) and was transferred to cDNA using Evo
M-MLV RT Kit with gDNA Clean for qPCR (Accurate
biology, AG). 0e SYBR® Green Premix Pro Taq HS qPCR
Kit (Accurate biology, AG) and ROX Reference Dye (4 μM)
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(Accurate biology, AG) were used to perform PCR ampli-
fication on Agilent Mx3000p real-time PCR system. 0e
primers were synthesized by Sunya Biotechnology Co. Ltd.
(Fuzhou, China); GAPDH was used as the internal control.
Each measurement was performed in triplicate. 0e ex-
pression levels of hub gene mRNAs were evaluated using a
relative quantification approach (2−ΔΔCt method) against
GAPDH levels. Many more details of primer sequences for
qRT-PCR were in a supplementary appendix online (Sup-
plementary Table S2).

0e cell lines were collected and lysed on ice with
radioimmunoprecipitation assay (RIPA) buffer containing
0.1mg/ml PMSF (Sangon Biotech, Shanghai) and cocktail
(MCE). 0e fresh frozen tissues from seven patients paired
with lung adenocarcinoma (T) and adjacent non-cancerous
control tissues (N) were minced into small pieces before
being lysed. 0e protein lysates were obtained from the
supernatant through centrifugation at 12,000 g for 20min at
4°C. 0e total amount of protein for each sample was 25 μg,
run on 8%–12% gradient SDS-polyacrylamide gels, and then
transferred onto a PVDF membrane (Immobilon-PSQ,
Millipore, Merck, USA). 0e membranes were probed with
primary antibodies at 4°C overnight after blocking with 0.5%
BSA blocking buffer for 1 h at room temperature. 0e
membranes were then incubated with the appropriate sec-
ondary antibodies at room temperature for 1 hour and fi-
nally were detected by using an ECL blotting analysis system
(ImageQuant LAS 4000 mini, GE, USA). 0e details of
antibodies information can be found in Supplementary
Table S3).

2.8. In Vitro Experiment

2.8.1. Cell Culture and siRNA Transfection. 0e A549 and
H1299 LUAD cell lines obtained from Laboratory of Radiation
Oncology and Radiobiology, Fujian Medical University
Cancer Hospital, were cultured in RPMI-1640 (cytiva) con-
taining 10% fetal bovine serum (Biological Industries) with
100 units/mL penicillin and 100 μg/mL streptomycin (Gibco)
in a humidified 5% CO2 incubator at 37°C. 0ree small in-
terfering RNAs (si-UBE2T) against UBE2T (si-UBE2T-homo-
192, 5′-CUCCUCAG AUCCGAUUUCUTT-3′; si-UBE2T-
homo-374, 5′-GCUGACAUAUCCUCAGAAUTT-3′; and si-
UBE2T-homo-97, 5′-CCUGCGAGCUCAAAUAUUATT-3′)
and negative control siRNAs (si-NC, 5′-UUCUCCGAAC-
GUGUCACGUTT), which were obtained from GenePharma
(Shanghai, China), were transfected into cell lines using
siRNA-mate transfection reagent (GenePharma, Shanghai,
China) according to the manufacturer’s instructions.

2.8.2. Cell Proliferation Assays. Cell proliferation was
assessed by Cell Counting Kit-8 (CCK-8) and colony-
forming assays. A total of 5 ×103 transfected cells in 100 μL
medium per well were added to a 96-well plate for 4, 8, 24,
48, and 72 hours. At the indicated times, 10 μL (at a
concentration of 10%) CCK-8 solution (Vazyme, Nanjing,
China) was added to each well and incubated for 1 hour at
room temperature. 0e absorbance was assessed at a

450 nm wavelength under a plate reader (BioTek ELx800).
For the Colony-forming assays, transfected A549 and
H1299 cell lines were seeded (1 × 103 cells/well) into six-
well plates with 2mL complete medium and divided into
an si-NC and si-UBE2T groups. 0e colonies were fixed
with 4% methanol (Solarbio) after 7–10 days of culture and
then stained with 0.1% crystal violet solution (Biosharp,
China). After 15min, the cells were washed gently with
PBS 3 times and then air-dried. Finally, the colony-
forming units (consisting of ≥50 cells) were observed
under an inverted microscope (ZEISS Primo Vert) and
counted using ImageJ software. All experiments were
performed in triplicate.

2.8.3. Flow Cytometry. LUAD cells were added into 6-well
plates at a density of 1.3×105 cells per well for transfection
after 24 hours incubation. Transfected cells were digested by
0.25% trypsin-EDTA (Gibco), collected into a centrifuge
tube, and then fixed in 70% precooled ethanol overnight
at −20°C. 0e cells were washed twice with PBS. After
recollection by centrifugation at 1,500 rpm for 5min, the
cells were stained by 500 μL PI/RNase staining buffer (BD,
USA). Culturing for 15min at 37°C in dark, the cells were
analyzed by LSRFortessaX-20 (BD Biosciences). All exper-
iments were performed in triplicate.

2.9. Statistical Analysis. SPSS 18.0, GraphPad Prism 8.0, R
software (version 4.0.2), and ModFit LT were used to
conduct the analysis and generate graphs. 0e in vitro ex-
periments were repeated in triplicate, and all data from the
experiments were expressed as mean± SE. T-test was used to
evaluate the statistical significance of differences between
experimental groups. A paired-samples t-test was used to
assess the difference in hub genes expression between LUAD
and non-cancerous tissues. ∗P< 0.05 was considered sta-
tistically significant.

3. Results

3.1. Identification of DEGs in NSCLCs. In total, 352 NSCLC
and 85 normal lung tissues were included. A total of 1,044,
626, and 818 DEGs were extracted from GSE18842,
GSE31210, and GSE33532 by GEO2R online tool, respec-
tively (Table S1 and Table 1). A total of DEGs including 49
upregulated genes (logFC> 0) and 123 downregulated genes
(logFC< 0) were determined through Venn diagram soft-
ware (Figures 1(a)–1(b) and 2(b)).

3.2. DEGsGeneOntology Analysis in NSCLCs. All 172 DEGs
analyzed by David online tools and GO analysis indicated
roles in biological process (BP), cell component (CC), and
molecular function (MF). For BP, upregulated DEGs were
enriched in the regulation of collagen catabolic process,
extracellular matrix disassembly, proteolysis, collagen fibril
organization, sensory perception of sound, and inner ear
morphogenesis, and downregulated DEGs were mainly
enriched in angiogenesis, vasculogenesis, cell surface. For
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CC, proteinaceous ECM, collagen trimer, extracellular
region, and space were the main function that the upre-
gulated DEGs were enriched in. As indicated in Table 2,
downregulated DEGs consisted mainly of integral com-
ponent of plasma membrane, membrane raft, and integral
component of membrane. And molecular function of the
DEGs majorly lay in metalloendopeptidase activity, en-
dopeptidase activity, serine-type endopeptidase activity,
and receptor activity.

3.3. PPI Network andModular Analysis. All 172 DEGs were
imported into the network that screened a total of 119 nodes
and 283 edges, including 39 upregulated and 80 down-
regulated genes (Figure 1(c)). Fifty-three out of 172 DEGs
were not in the DEGs PPI network. 0en Cytoscape
MCODE analysis demonstrated 11 core nodes among the
119, which were all upregulated genes (Figure 1(d)).

3.4. Analysis of Core Genes by GEPIA and the Kaplan–Meier
Plotter. 0e expression level of the 11 core genes among
cancerous as well as normal lung tissues was assessed via
GEPIA, showing that in comparison to normal lung tissue,
ANLN, CCNA2, CDCA7, DEPDC1, DLGAP5, EXO1,
HMMR, KIAA0101, RRM2, TOP2A, and UBE2T were in-
deed highly expressed in both adenocarcinoma and squa-
mous cell cancerous tissue (Figures 3(a)–3(k)).
Kaplan–Meier plotter was used to identify the prognostic
values of these 11 core genes, demonstrating all 11 genes
were significantly correlated with worse prognosis and
shorter OS (Table 3) in NSCLC patients.0ese 11 genes were
then individually studied the different roles that would play

in the different histology of NSCLC, finding that none of
them demonstrated a significant effect on OS in lung
squamous cell carcinoma (LUSC; Table 3), while the other 9
genes, including ANLN, CCNA2, DEPDC1, DLGAP5,
EXO1, KIAA0101, RRM2, TOP2A, and UBE2T, demon-
strated potential in the prediction of survival based on the
expression level in LUAD (Figures 3(l)–3(t)) rather than
CDCA7 and HMMR (Table 3).

Further analysis was then managed to uncover the
prognostic effect of these genes on different pathologic stages
of lung adenocarcinoma patients. Interestingly, the results of
forest plot showed that genes such as ANLN (HR� 1.67; 95%
CI: 1.1–2.53; P � 0.0143), EXO1 (HR� 2.68; 95% CI:
1.76–4.07; P< 0.0001), KIAA0101 (HR� 2.41; 95% CI:
1.59–3.64; P< 0.0001), RRM2 (HR� 1.63; 95%CI: 1.09–2.42;
P � 0.0151), TOP2A (HR� 1.88; 95% CI: 1.25–2.32;
P � 0.002), and UBE2T (HR� 3.48; 95% CI: 2.16–5.61;
P< 0.0001) demonstrated significantly prognostic effect in
early disease, especially in pathologic stage-I lung adeno-
carcinoma patients. 0e risk ratio (HR) for UBE2T is the
most obvious. In addition, KIAA0101 also exhibited po-
tential in the prediction of OS in stage-II LUAD patients
(HR� 2.04; 95% CI: 1.25–3.33; P � 0.0037). CCNA2,
DEPDC1, and DLGAP5 demonstrated no difference in
different pathologic stage patients (Figure 2(a)). 0e dis-
tributions of six hub genes have been labeled in volcano plot
(Figure 2(b)).

3.5. ROC Curves of the Candidate Genes. According to ROC
curve analysis, in the pathologic stage-I LUAD, the AUCs of
ANLN, EXO1, KIAA0101, RRM2, TOP2A, and UBE2Twere
0.976 (95% CI: 0.960–0.988), 0.979 (95% CI: 0.964–0.991),
0.968 (95% CI: 0.949–0.984), 0.960 (95% CI: 0.938–0.978),
0.986 (95% CI: 0.974–0.995), and 0.990 (95% CI:
0.981–0.997), respectively (Figure 2(c); P< 0.001).

3.6. *e 6 Hub Genes Were up-Regulated in Stage-I LUAD
Compared with Normal Lung Tissues. To further determine
the clinical significance of the six hub genes, we investigated
the expression of UBE2T, ANLN, TOP2A, RRM2,
KIAA0101, and EXO1 in seven randomly selected pairs of
stage-I LUAD and adjacent non-cancerous tissues. 0e
seven patients’ characteristics were listed in Table 4. qRT-
PCR analysis showed that mRNA expression of UBE2T
(P � 0.046), TOP2A (P � 0.047), RRM2 (P � 0.007), and
EXO1 (P � 0.032) were significantly higher in the LUAD
tissues than in the adjacent non-cancerous tissues
(Figure 4(a)). We tried to explore the protein expression of
hub genes using Human Protein Atlas (HPA) after studying
the mRNA expression. Immunohistochemistry assays from
HPA showed that TOP2A and RRM2 protein was not
expressed in normal lung tissues. TOP2A staining was high
or medium in most LUAD tissues compared to low.
However, RRM2 was not detected in eight LUAD tissues.
0ere were also some IHC data of ANLN showing high and
medium staining in cancer samples, although mRNA ex-
pression levels were not significantly different between

Table 1: Patients’ demographic characteristics of three GEO data
sets.

GEO accession GSE18842 GSE31210 GSE33532
No. of patients
Normal 45 20 20
Tumor 46 226 80

Mean age (years) NR 59 64
Gender
Male NR 105 64
Female 121 16

Histology
LUAD 14 226 40
LUSC 32 0 16
Others 0 0 24

pTNM stage
I 38 168 56
II 4 58 24
III-IV 4 0 0

Smoking history
Yes NR 122 NR
No 104

Driven gene status
EGFR mutation NR 127 NR
KRAS mutation 20
EML4-ALK fusion 11
Triple negative 68
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cancerous and non-cancerous samples in our seven patients
(Figure 4(b)). Finally, we investigated the protein expression
of UBE2T, ANLN, TOP2A, RRM2, KIAA0101 (PAF15), and
EXO1 in the seven pairs of tissues. 0e results from western
blot analysis also indicated that these six hub genes were
overexpressed in tumor samples (Figure 4(c)). 0ese results
indicated that hub genes are overexpressed in stage-I LUAD
and might promote tumor genesis.

3.7. Validation of UBE2T in Vitro *at Promoted LUAD Cell
Proliferation. Interestingly, the hazard ratio (HR) of UBE2T
was the most obvious. And both mRNA and protein levels
showed differences between LUAD and adjacent non-can-
cerous tissues.

To explore the biological function of UBE2T in LUAD
progression, A549 and H1299 cells with transient UBE2T
knockdown were established. We transfected LUAD cells with
three independent small interfering RNAs (siRNAs) and a
negative control vector (si-NC group; Table 5). Transfection
efficiency was verified in UBE2T knockdown cells using real-
time quantitative PCR andwestern blot (Figures 5(a) and 5(b)).
Comparedwith the si-NC group, themRNA expression level of
UBE2T in A549 cells was markedly reduced by the transfection
of the si-UBE2T vectors (Figure 5(a)). UBE2T protein ex-
pression was effectively downregulated in si-UBE2T-192
transfected A549 cell line than that of si-UBE2T-374 and si-
UBE2T-97 (Figure 5(b)). 0e same results were observed in
H1299 cell lines (Figures 5(a) and 5(b)). Sowe chose si-UBE2T-
192 for further experiments in vitro.

(c) (d)

(a) (b)

GSE33532

GSE18842 GSE31210

logFC < 0

145

166 31

97
21

123

89

GSE33532

GSE18842 GSE31210

logFC > 0

147

109 14

96

12

49

29

Figure 1: A total of 172 DEGs in the data sets (GSE18842/GSE31210/GSE33532) via the Venn diagrams website and PPI network
constructed by STRING online platform and Cytoscape software. (a and b) 49 and 123 DEGs were upregulated (logFC> 0) and
downregulated (logFC< 0) in the three data sets, respectively. (c) A total of 119 DEGs in the PPI network complex. Nodes: proteins; edges:
interaction of proteins; red nodes were upregulated DEGs; and and yellow ones were downregulated DEGs. (d) Module analysis via
Cytoscape software (degree cutoff� 2, node score cutoff� 0.2, k-core� 2, and max. depth� 100).
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Figure 2: 0e OS for stage-I–III LUAD of nine candidate genes and ROC analysis: (a) six genes had a significantly worse survival in stage-I
lung adenocarcinoma, while three had no significant (∗P< 0.05); (b) the distribution of all DEGs and six genes in volcano plots including
GSE18842, GSE31210, and GSE33532; and (c) the ROC curves of six genes in pathologic stage-I LUAD. ROC: receiver operating
characteristic and AUC: area under the curve.
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0e results from the Cell Counting Kit-8 (CCK-8) assays
revealed that UBE2T knockdown (si-UBE2T-192) signifi-
cantly reduced the LUAD cell lines’ proliferative ability
(Figure 5(c)). Similarly, the colony-forming assays suggested
that UBE2T knockdown inhibited A549 cell line clonogenic
ability. We also detected the tendency of decreased number
of colonies after being transfected with si-UBE2T-192 in an
H1299 cell line, although there was no statistically significant
difference (Figure 5(d)). In addition, we analyzed cell cycle
distribution using flow cytometry and showed that de-
creased UBE2T inhibited cell cycle progression with the
accumulation of LUAD cell lines in G1-phase and reduction
in S-phase (Figure 5(e)). 0ese results demonstrated that as
one of the 6 hub genes, UBE2T depletion did inhibit the
proliferation of LUAD cells in vitro, and it might be a
potential biomarker for early-stage LUAD diagnosis and
prognosis.

4. Discussion

With the development of lung cancer screening and low-
dose CT (LDCT) scan technology, many pathologic stage-I
non-small cell lung cancer (NSCLC) patients have been
diagnosed and cured. However, some still suffered from
early relapse and distant metastasis after surgery, and few
researchers focused on the outcome foretelling especially in
pathologic stage-I LUAD patients. 0erefore, there is a

substantial need for novel therapeutic targets. In this study,
bioinformatics analysis was performed to identify the can-
didate core genes correlated with early-stage LUAD.

We analyzed RNA sequencing data from the three profile
data sets of early-stage NSCLC from the GEO data sets
(GSE18842, GSE31210, and GSE33532) via GEO2R and
Venn software, discriminated 172 DEGs including 49
upregulated and 123 downregulated genes compared to
normal lung tissue. 0e 172 DEGs were detected by GO
terms analyses.0e BP of upregulated DEGs was particularly
enriched in the management of extracellular matrix (ECM)
that facilitated tumor metastasis, and that of downregulated
DEGs was mainly enriched in cell surface receptor signaling
pathway, cell adhesion, and receptor internalization, which
might in part accelerate cellular detachment and eventually
promote distant metastasis. 0e CCs of upregulated DEGs
were also enriched in proteinaceous ECM, extracellular
region, and space. For MF, DEGs were significantly focused
on the activity of endopeptidase and receptor.0e GO terms
analysis revealed that the DEGs were obviously associated
with ECM-related functions. A previous study showed that
the extracellular matrix has crucial roles in lung cancer
metastasis [12, 13]. Next, the DEGs PPI network of 119
nodes and 283 edges was built, and eventually, 11 out of 39
upregulated genes were screened. Further validation of these
genes via GEPIA analysis indicated that all 11 genes
exhibited higher expression levels in both histologies (LUAD

Table 2: Gene ontology analysis of DEGs in NSCLC.

Expression Category Term Count P-value FDR

Upregulated

GOTERM_BP_DIRECT GO:0030574∼collagen catabolic process 8 4.6E− 1 0 6.5E− 7
GOTERM_BP_DIRECT GO:0022617∼extracellular matrix disassembly 6 2.2 E− 6 0.003069
GOTERM_BP_DIRECT GO:0007605∼sensory perception of sound 6 3.4E− 5 0.047394
GOTERM_BP_DIRECT GO:0030199∼collagen fibril organization 4 1.7E− 4 0.244070
GOTERM_BP_DIRECT GO:0006508∼proteolysis 7 0.002578 3.540562
GOTERM_BP_DIRECT GO:0042472∼inner ear morphogenesis 3 0.009302 12.233335
GOTERM_CC_DIRECT GO:0005578∼proteinaceous extracellular matrix 8 5.2E− 06 0.005507
GOTERM_CC_DIRECT GO:0005581∼collagen trimer 5 9.2E− 05 0.096644
GOTERM_CC_DIRECT GO:0005576∼extracellular region 13 6.1E− 04 0.638880
GOTERM_CC_DIRECT GO:0005615∼extracellular space 9 0.020704 19.761271
GOTERM_MF_DIRECT GO:0004222∼metalloendopeptidase activity 6 1.08E− 05 0.012389
GOTERM_MF_DIRECT GO:0004175∼endopeptidase activity 4 3.7E− 04 0.425928
GOTERM_MF_DIRECT GO:0004252∼serine-type endopeptidase activity 6 5.1E− 04 0.578533
GOTERM_MF_DIRECT GO:0003682∼chromatin binding 6 0.003359 3.771756

Downregulated

GOTERM_BP_DIRECT GO:0001525∼angiogenesis 11 7.1E− 07 0.001095
GOTERM_BP_DIRECT GO:0001570∼vasculogenesis 5 3.2E− 04 0.492091
GOTERM_BP_DIRECT GO:0007166∼cell surface receptor signaling pathway 8 0.001115 1.718397
GOTERM_BP_DIRECT GO:0007155∼cell adhesion 10 0.001443 2.218739
GOTERM_BP_DIRECT GO:0031623∼receptor internalization 4 0.002008 3.075026
GOTERM_BP_DIRECT GO:0002576∼platelet degranulation 5 0.003101 4.711874
GOTERM_CC_DIRECT GO:0005887∼integral component of plasma membrane 24 7.3E− 06 0.008643
GOTERM_CC_DIRECT GO:0045121∼membrane raft 8 2.3E− 04 0.267090
GOTERM_CC_DIRECT GO:0016021∼integral component of membrane 49 2.5E− 04 0.292185
GOTERM_CC_DIRECT GO:0005886∼plasma membrane 41 4.8E− 04 0.562068
GOTERM_CC_DIRECT GO:0009897∼external side of plasma membrane 7 0.001690 1.978880
GOTERM_CC_DIRECT GO:0016324∼apical plasma membrane 8 0.001739 2.035373
GOTERM_MF_DIRECT GO:0004872∼receptor activity 6 0.007296 9.063121
GOTERM_MF_DIRECT GO:0008201∼heparin binding 5 0.012256 14.785944
GOTERM_MF_DIRECT GO:0044325∼ion channel binding 4 0.025214 28.204372
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Figure 3: Continued.
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and LUSC) of NSCLC in comparison to normal lung tissue.
We then evaluated their prognostic effect on NSCLC pa-
tients via Kaplan–Meier plotter analysis and found them
having a significantly worse survival. Interestingly, final
analyses showed that none of the 11 genes had any signif-
icance on the outcome of patients with LUSC histology (all
P> 0.05), while 6 of the 11 genes (ANLN, EXO1, KIAA0101,
RRM2, TOP2A, and UBE2T) demonstrated statistical sig-
nificance on worse prognosis in patients with pathologic
stage-I LUAD histology (all P< 0.05). Chen et al. [14] also
verified that UBE2Tand KIAA0101 were highly expressed in
early-stage lung adenocarcinoma through bioinformatic
analysis and experiments in vitro. Moreover, to explore the
predictive ability of the six hub genes, the ROC curves were
performed. Notably, all six genes enabled a relatively high
capacity for discrimination stage-I LUAD patients, with
better clinical accuracy and higher diagnostic value.

Much effort has been tried to discriminate different
genetic subgroups of surgically resected pathologic stage-I
NSCLCs that would probably relapse and metastasize, in-
cluding gene panel biomarkers [3, 15] and tumor genotyping

[16, 17]. In the present study, we demonstrated that en-
hanced expression of either ANLN, EXO1, KIAA0101,
RRM2, TOP2A, or UBE2Tgenes in pathologic stage-I LUAD
patients was a risk factor of inferior outcome and shorter OS,
although this finding might need further validation in larger
sample size or in real-world studies.

ANLN overexpression correlated with worse outcomes
in a wide spectrum of malignancies including lung [18–21],
breast [22], and gastric cancer [23]. ANLN expression [18]
was essential for the growth of lung cancer cell lines, as well
as the maintenance of cellular motility and cytokinesis.
Interestingly, the endogenous ANLN could be detected in
various patterns of localization, either in nuclei and/or
cytoplasm, and NSCLC patients with nuclear localization of
ANLN had a significantly worse outcome compared to the
cytoplasmic pattern. Intracellular ANLN level was found to
change dynamically during mitosis, increase at a transition
period from G1 to S phase, peak at S phase, and decrease in
G2/M phase.0e reduction of ANLN induced apoptosis and
thus inhibited tumor proliferation in pancreatic cancer [24].
ANLN downregulation inhibited cell migration and
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Figure 3: 0e expression of the 11 hub genes analyzed by the GEPIA website and the prognosis identified by Kaplan–Meier plotter online
tools. (a–k) All the 11 genes demonstrated enhanced expression in both LUAD and LUSC compared to the normal specimen (∗P< 0.05).
Red and grey color stood for tumor and normal lung tissue, respectively. (l–t) Nine of 11 genes had a significantly worse survival (P< 0.05) in
LUAD.

Table 3: 0e expression and prognosis of 11 core genes.

Category Genes
Highly expressed genes in NSCLCs compared to normal
tissues (P< 0.05)

ANLN CCNA2 CDCA7 DEPDC1 DLGAP5 EXO1 HMMR KIAA0101
RRM2 TOP2A UBE2T

Genes with significantly worse OS in NSCLC (P< 0.05) ANLN CCNA2 CDCA7 DEPDC1 DLGAP5 EXO1 HMMR KIAA0101
RRM2 TOP2A UBE2T

Genes without significantly worse OS in LUSC (P< 0.05) ANLN CCNA2 CDCA7 DEPDC1 DLGAP5 EXO1 HMMR KIAA0101
RRM2 TOP2A UBE2T

Genes with significantly worse OS in LUAD (P< 0.05) ANLN CCNA2 DEPDC1 DLGAP5 EXO1 KIAA0101 RRM2 TOP2A
UBE2T

OS, overall survival; LUSC, lung squamous cell carcinoma; and LUAD, lung adenocarcinoma.
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Figure 4: 0e expression of six genes in stage-I LUAD: (a) the mRNA level expressions of six genes were analyzed in lung adenocarcinoma
and adjacent non-cancerous control samples from seven patients, using qRT-PCR (∗P< 0.05); (b) immunohistochemical analysis of ANLN,
TOP2A, and RRM2 in normal and lung adenocarcinoma tissues from the Human Protein Atlas (HPA); and (c) western blot of six markers
protein level expression in stage-I lung adenocarcinoma (T) and adjacent non-cancerous control samples (N) from seven patients. β-ACTIN
was used as an internal control.
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Table 5: Sequence of si-UBE2T and si-negative control group.

Category Forward primer (5′------3′) Reverse primer (5′------3′)
si-UBE2T-192 CUCCUCAGAUCCGAUUUCUTT AGAAAUCGGAUCUGAGGAGTT
si-UBE2T-374 GCUGACAUAUCCUCAGAAUTT AUUCUGAGGAUAUGUCAGCTT
si-UBE2T-97 CCUGCGAGCUCAAAUAUUATT UAAUAUUUGAGCUCGCAGGTT
si-NC UUCUCCGAACGUGUCACGUTT ACGUGACACGUUCGGAGAATT
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invasion in breast cancer, which was considered a biomarker
for global genomic instability and to play a vital role in
replicative immortality of tumor cells. Based on its adverse
prognostic effect onstage-I LUAD patients, we speculated
that ANLN over-expression might probably be an early
event in the carcinogenesis of NSCLC.

Exonuclease 1 (EXO1) gene locates at 1q42–43 and
encodes an 846 amino acid protein [25]. Owing to its role in
DNA repair, maintenance of chromatin stability, and
modulation of DNA recombination, the relationship be-
tween polymorphisms of EXO1 and the risk of cancer had
been well studied, with at least nine genetic variants iden-
tified [26–29]. However, its expressions in carcinogenesis
and prognosis in cancer entities were limited. Several studies
indicated EXO1 was remarkably overexpressed and corre-
lated with unfavorable patient prognosis in the colorectum,
liver, pancreas, prostate, and so on [30–33]. However, the
expression and prognostic value of EXO1 in NSCLC es-
pecially early-stage LUAD remains undefined, although
some reported several EXO1 SNPs were correlated with
worse prognosis in patients with NSCLC [27]. Here, we
defined enhanced EXO1 expression as a risk factor in
pathologic stage-I LUAD patients.

High expression of KIAA0101 (proliferating cell nuclear
antigen (PCNA) associated factor 15 (PAF15)), containing a
PCNA-binding motif and playing a key role in DNA repair,

cellular apoptosis, and cell cycle, had been observed in a variety
of human tumors including lung cancer [34–37]. High
KIAA0101 level was significantly associated with shorter sur-
vival in NSCLC patients, especially in LUAD [34], which was
consistent with our findings that KIAA0101 was bio-
informatically identified as a negative prognostic factor in
patients with pTNM stage-I (HR: 2.41; 95% CI: 1.59–3.64;
P< 0.0001) and stage-II (HR: 2.04; 95% CI: 1.25–3.33;
P � 0.0037). As a potential cell proliferation-related factor,
KIAA0101 might probably become a treatment target either in
human nasopharyngeal carcinoma [38] or in lung cancer
patients with poor response to immune checkpoint inhibitors
(ICIs) [35]. Further validation of this finding in real-world
prospective studies would be necessary for our future studies.

Ribonucleotide reductase M2 subunit (RRM2), a small
subunit of the ribonucleotide reductase complex that acts as
an oncogenic role under pathological conditions, and its
overexpression was found in various cancers including
NSCLCs [39, 40]. Tabbal et al. [41] revealed that RRM2
overexpression was associated with poor prognosis and
inhibition of RRM2 blocked cell proliferation, induced
apoptosis, and inhibited cell migration. Recent studies also
rendered RRM2 as a target in anti-cancer drug designation
for treatment with anti-RRM2 drugs could reduce ribonu-
cleotide reductase activity and consequently decreased the
synthesis of dNTPs with concomitant inhibition of DNA
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Figure 5: UBE2Tpromotes the malignant biological behaviour of LUAD cells: (a and b) the relative mRNA and protein expression in A549
and H1299 cell lines after being transfected with small interfering RNAs (siRNAs) against UBE2T, by qRT-PCR (∗P< 0.05); (c) CCK-8 assay
showed the inhibition of proliferation ability of LUAD cells with transient UBE2T knockdown (∗P< 0.05); (d) clone formation assay showed
the inhibition of proliferation ability of LUAD cells with transient UBE2T knockdown (∗P< 0.05); and (e) flow cytometry showed G0/G1
arrested in LUAD cells with transient UBE2T knockdown. si-UBE2Tgroup: A549 andH1299 cell lines transfected with si-UBE2Tvector and
si-NC group: LUAD cells transfected with control vector.
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replication, arrest of cells at S-phase, DNA damage, and
finally apoptosis [42].

Topoisomerase-II alpha (TOP2A) is an essential nuclear
enzyme regulating the topological state of DNA during
transcription and is involved in the processes of chromo-
some condensation and chromatid separation [43]. As a
marker of proliferation and chemotherapy resistance, a
higher TOP2A level was indicative of poor prognosis in
many human cancers and also the target for some most
widely used anti-cancer drugs [44, 45]. A recent study [46]
found that resistance of esophageal cancer cells to paclitaxel
can be reduced by the knockdown of the long non-coding
RNA DDX11-AS1 through TAF1/TOP2A inhibition. Wang
et al. [47] revealed that TOP2A had prognostic significance
in early-stage lung cancer patients, and its expression cor-
related with the levels of immune cell infiltration, especially
dendritic cells.

UBE2T (ubiquitin-conjugating enzyme, E2T), a typical
ubiquitin-conjugating enzyme, connects with a particular E3
ubiquitin ligase to degrade related substrates [48]. In normal
lung tissue, basal cells of pseudostratified ciliated columnar
epithelium with high self-renewal and differentiation ability
showed positive UBE2T immunohistochemistry staining,
suggesting that UBE2T was closely related to cell prolifer-
ation [49]. UBE2Tnot only involved in DNA repair [50] but
also regulated the protease in the glucose metabolism of
tumor tissue, leading to its ubiquitination and degradation,
ultimately promoting the tumor by glucose metabolism
[51, 52]. UBE2T knockdown inhibited NSCLC proliferation
and invasion by suppressing the Wnt/b-catenin signaling
pathway [53]. Tu et al. [20] found that high UBE2T and
ANLN expression correlated with worse outcomes in
NSCLCs, regardless of their histology. Neither their histo-
logic features nor combined diseases had been clarified,
which was quite different from the results of our study.

We verified both the mRNA and protein expression levels
of the six hub genes in stage-I LUAD. It was determined that
EXO1, RRM2, TOP2A, and UBE2T expression was signifi-
cantly upregulated in stage-I LUAD patients. Although there
was no significant difference in the mRNA expression of
ANLN and KIAA0101 between tumor and normal lung tis-
sues, the tendency of increased relative mRNA expression
could be detected, which also were probably ascribed to much
few of the matching specimens. Interestingly, the hazard ratio
(HR) of UBE2Twas the most obvious. To further support the
results of our bioinformatics analyses, we carried out UBE2T-
related in vitro experiments. 0e proliferative ability and cell
cycle progression of LUAD cell lines were inhibited after the
knockdown of the UBE2Tin A549 andH1299 cell lines.0ese
results indicated the hub genes might be potential biomarkers
for early-stage LUAD diagnosis and prognosis and played a
vital role in stage-I LUAD. UBE2Toverexpression might also
promote cancer development. Nevertheless, more stage-I
tumor samples would be needed to verify the expression of the
hub genes. We also planned to verify the gene function
in vitro and in vivo in our further study, and the underlying
molecular mechanisms of the hub genes in the development
and progression of early-stage LUAD remain to be further
explored.

5. Conclusion

Our bioinformatic analyses identified six DEGs (ANLN,
EXO1, KIAA0101, RRM2, TOP2A, and UBE2T) that could
probably be used as potential biomarkers in the prediction of
worse clinical outcomes in surgically resected stage-I LUADs
and could facilitate the selection of some defined patients
with a higher risk of postoperative relapse or distant me-
tastasis. We also concluded that UBE2T enhanced LUAD
cells’ proliferative ability and cell cycle progression. 0e
finding claims further validation with a larger sample size
and underlying molecular mechanisms of the hub genes in
the development and progression of early-stage LUAD.
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Accumulating evidence has revealed that delocalization of the transmembrane proteins, Claudin-1 and Claudin-7, to the
cytoplasm and/or nucleus occurs in various tumors. However, their subcellular distribution in terms of the membrane,
cytoplasm, and nucleus and relationship with signaling pathways have not been elucidated during carcinogenesis. We first
determined the expression of these proteins in the membrane, cytoplasm, and nucleus using ImageJ software and automatically
collected the immunohistochemical quantification of dysplasia (actinic keratosis (AK)), carcinoma in situ (CIS; Bowen’s disease
(BD)), and invasive cutaneous squamous cell carcinoma (SCC) for digital image analysis (DIA). The activity of p-ERK, p-AKT,
and p-mTOR and their correlation with subcellular Claudin-1 and Claudin-7 were also performed. Finally, we validated
Claudin-1 and Claudin-7 delocalization at the cytoplasm and nucleus in cultured human normal keratinocytes and cutaneous
SCC cells. Claudin-1 and Claudin-7 were delocalized as revealed by membranous, cytoplasmic, and nuclear staining in sun-
exposed skin, AK, BD, and SCC. In BD, both membranous and cytoplasmic Claudin-1 (nuclear Claudin-1 decrease but no
significant difference) were higher than AK, while Claudin-7 almost had the opposite situation. In SCC, cytoplasmic and
nuclear Claudin-1 (membranous Claudin-1 no significant difference) was lower than in AK and sun-exposed skin, while
Claudin-7 had higher membranous and cytoplasmic but lower nuclear expression. Moreover, p-AKT and p-mTOR (but not p-
ERK) were downregulated in the SCC. Subcellular Claudin-1 and Claudin-7 were not only correlated with each other, but also
correlated with p-ERK in BD and p-AKT and p-mTOR in SCC. Together, these results imply the delocalization of Claudin-1
and Claudin-7 and their correlation with MAPK/ERK and PI3K-AKT-mTOR signaling pathways in tumorigenesis and
infiltration in cutaneous SCC.

1. Introduction

The incidence of cutaneous squamous cell carcinoma (SCC) is
on the rise, making it the second-most-common keratinocyte-
derived carcinoma [1]. Its classic multistep carcinogenesis
involves several events, ranging from cumulative sun exposure
to precursor actinic keratosis (AK), carcinoma in situ (CIS;
Bowen’s disease (BD)), and invasive cutaneous SCC. There
are at least two pathways involved in cutaneous SCC: phos-
phatidylinositol 3-kinase- (PI3K-) AKT-mammalian target
of rapamycin (mTOR) pathway and the mitogen-activated

protein kinases/extracellular signal-regulated kinase (MAPK/
ERK) pathway. Overactivation of PI3K-AKT-mTOR is
observed in cutaneous SCC and its inhibition suppresses the
growth of human cutaneous SCC, both in vitro and in vivo
[2–5]. The level of phosphorylated-ERK1/2 (p-Erk1/2) is cor-
related with the size of cutaneous SCC, but not with its metas-
tasis [3]. However, the dynamic activities of these pathways in
tumorigenesis and infiltration of cutaneous SCC are not well
understood and, therefore, need to be clarified.

Claudins contain 27 transmembrane-protein-family
members which play important roles in tight junction (TJ)
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formation and regulate paracellular permeability, as well as
cell polarity in epithelial and endothelial cells. The TJ integ-
rity is often decreased in cancerous cells due to dysregulation
of tight junction proteins (TJPs), such as up- or downregula-
tion or delocalization of Claudins. Claudin-1 expression in
the membrane, cytoplasm, and nucleus is altered in human
malignancies including colon cancer [6], nasopharynx carci-
noma [7], thyroid carcinoma [8], breast cancer [9], and mel-
anoma [10, 11]. Moreover, subcellular Claudin-1 correlates
with aggressive tumor behaviors such as enhanced cell
migration, invasion, and proliferation, as well as decreased
apoptosis [7, 8]. Claudin alterations have also been reported
in cutaneous SCC and its precancerous lesions [12, 13],
whereby a faint or strong cytoplasmic, rather than primary
membranous, localization of Claudin-1 was found to be
parallel with the cutaneous SCC carcinogenesis process.
Additionally, Claudin-1 expression was found to be hetero-

geneous between keratinized and unkeratinized cutaneous
SCC [14]. However, digital image analysis of membranous/
cytoplasmic/nuclear Claudin-1 and Claudin-7 in multisteps
of carcinogenesis in cutaneous SCC has not been performed.
In this study, two auto-scored plugins of ImageJ software,
ImmunoMembrane plugin exclusive for membrane proteins
[15] and IHC profiler plugin for cytoplasmic/nuclear mole-
cules [16], were developed for a series of cutaneous SCC,
BD, AK, and sun-exposed skin to avoid subjective visual
and qualitative estimation.

Claudin-1 and Claudin-7 delocalization was determined
using membranous, cytoplasmic, and nuclear staining of
sun-exposed normal skin, AK, BD, and SCC. Both membra-
nous and delocalized cytoplasmic Claudin-1 was increased
in BD, compared with AK, but delocalized nuclear
Claudin-1 was decreased in SCC. Similarly, both membra-
nous and cytoplasmic Claudin-7 staining was found to be
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Figure 1: Immunohistochemical analysis. (a) Subcellular localization of Claudin-1 and Claudin-7 and p-ERK, p-AKT, and p-mTOR
expression in sun-exposed skin, precancerous actinic keratosis (AK), in situ Bowen’s disease (BD), and invasive cutaneous squamous cell
carcinoma (SCC) (×400). Quantitative analysis of Claudin-1 and Claudin-7 immunostaining for (b) membrane (Mem, IM scores), (c)
cytoplasm (Cyto, %), and (d) nucleus (Nuc, %) localization reflected by positive percentages in sun-exposed skin (green), AK (yellow),
BD (blue), and SCC (red). A comparison of positive percentages of (e) p-ERK, (f) p-AKT, and (g) p-mTOR. Relative to sun-exposed
skin: ∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001. Relative to AK tissue: #P < 0:05; ##P < 0:01; ###P < 0:001. Relative to BD tissue: †P < 0:05;
††P < 0:01; †††P < 0:001.
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Table 1: Staining expression value of tight junction proteins and signaling pathway proteins.

Specimens Claudin-1 Claudin-7 p-ERK p-AKT p-mTOR
Mean ± SEM n Mean ± SEM n Mean ± SEM n Mean ± SEM n Mean ± SEM n

NS

Mem

IM scores 3:19 ± 1:77

14

5:81 ± 1:49

7

—

14

—

4

—

11

Cyto

HP (%) 2:13 ± 2:69 1:63 ± 1:81 16:78 ± 8:33 4:35 ± 0:79 1:54 ± 1:49
P (%) 11:78 ± 8:10 12:86 ± 6:15 43:50 ± 10:44 26:83 ± 0:31 13:98 ± 7:36
LP (%) 30:07 ± 7:35 58:30 ± 3:69 37:71 ± 15:87 37:02 ± 1:56 48:81 ± 7:17
Neg (%) 56:03 ± 15:64 27:36 ± 7:01 2:00 ± 2:43 31:80 ± 0:99 35:67 ± 13:29

Nuc

HP (%) 24:99 ± 9:75 18:22 ± 7:39 44:28 ± 9:25 20:73 ± 9:52 21:47 ± 5:31
P (%) 54:18 ± 5:31 30:91 ± 4:96 43:36 ± 4:70 36:31 ± 3:36 35:02 ± 5:00
LP (%) 19:20 ± 7:56 33:95 ± 3:87 10:85 ± 4:61 31:17 ± 5:52 33:79 ± 4:00
Neg (%) 1:63 ± 1:06 16:91 ± 8:44 1:50 ± 0:74 11:79 ± 6:72 9:72 ± 3:82

AK

Mem

IM scores 2:25 ± 1:05

9

2:67 ± 1:12

10

—

10

—

7

—

10

Cyto

HP (%) 1:83 ± 1:81 0:75 ± 1:00 25:20 ± 15:00 2:53 ± 2:61 7:24 ± 6:42
P (%) 12:13 ± 7:84 9:64 ± 6:02 49:75 ± 7:72 14:06 ± 4:35 34:85 ± 11:21
LP (%) 33:11 ± 3:90 41:53 ± 6:96 23:32 ± 10:20 30:15 ± 4:35 44:88 ± 10:80
Neg (%) 52:93 ± 11:71 47:97 ± 11:97 1:72 ± 1:09 53:26 ± 13:21 13:03 ± 7:49

Nuc

HP (%) 31:14 ± 13:10 42:70 ± 10:52 47:20 ± 6:25 38:56 ± 5:45 37:72 ± 10:42
P (%) 39:28 ± 12:1 41:68 ± 3:80 33:62 ± 4:65 37:67 ± 4:79 31:31 ± 4:05
LP (%) 22:77 ± 12:35 13:82 ± 7:89 16:54 ± 4:23 20:86 ± 3:74 22:62 ± 5:49
Neg (%) 6:83 ± 12:2 1:79 ± 1:85 3:66 ± 1:72 3:97 ± 2:68 8:35 ± 5:68

BD

Mem

IM scores 5:19 ± 2:57

14

4:75 ± 3:23

14

—

13

—

15

—

14

Cyto

HP (%) 5:79 ± 8:40 0:97 ± 1:13 17:83 ± 11:54 3:03 ± 2:52 3:09 ± 4:06
P (%) 19:16 ± 10:35 9:83 ± 8:52 41:46 ± 8:50 19:73 ± 12:91 25:60 ± 12:36
LP (%) 32:16 ± 4:20 41:79 ± 14:18 36:30 ± 14:32 30:97 ± 9:17 51:33 ± 6:88
Neg (%) 42:83 ± 15:93 47:54 ± 19:35 4:42 ± 3:01 46:27 ± 21:93 19:98 ± 13:97

Nuc

HP (%) 25:37 ± 11:70 31:07 ± 11:63 38:77 ± 18:44 26:33 ± 7:72 24:72 ± 10:85
P (%) 42:98 ± 7:11 47:35 ± 11:99 34:23 ± 7:67 42:83 ± 4:47 30:60 ± 3:56
LP (%) 26:15 ± 11:01 18:83 ± 8:00 21:41 ± 12:67 25:75 ± 7:27 30:52 ± 6:15
Neg (%) 5:53 ± 5:63 2:46 ± 1:68 5:60 ± 5:61 5:09 ± 3:73 14:05 ± 7:17

SCC

Mem

IM scores 3:36 ± 1:67
11

11:46 ± 3:77
8

—

10

—

11

—

9Cyto

HP (%) 1:92 ± 2:22 1:34 ± 2:06 7:28 ± 4:68 3:90 ± 3:67 2:62 ± 2:80
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elevated in SCC when compared to AK and BD, while its
delocalized nucleus staining was reduced. Furthermore, the
relationships between Claudin-1 and Claudin-7 subcellular
localization and their correlation with p-ERK, p-AKT, and
p-mTOR were examined to analyze their alterations in
sun-exposed skin, AK, BD, and SCC.

2. Materials and Methods

2.1. Skin Samples. Sun-exposed skin (apparently normal
skin, abbreviated as N) samples were obtained from patients
with head-face orthopedics. According to the diagnosis by
two pathologists, all AK, BD, and SCC tissue sections
obtained from the head and face regions were selected and
fixed with paraffin. In addition, SCC samples were obtained
from skins without metastasis. There were no age and gen-
der differences among the patients. Skin samples were
obtained with the patient’s written informed consent after
pathological diagnosis.

2.2. Immunohistochemistry (IHC). All 4μm thick sections
were first deparaffinized and rehydrated, followed by antigen
retrieval by heating in a microwave oven for 30min. The
specimens were then treated with 3% H2O2 for 10min to
block endogenous peroxidase activity. All slides were incu-
bated with primary antibodies for 1 h at room temperature
and then with secondary antibody (DAKO) for 30min at
room temperature to detect the antibody-antigen complex.
Subsequently, the samples were stained with a chromogenic
substrate, 3,3′-diaminobenzidine tetrahydrochloride (DAB
substrate chromogen, DAKO), for different durations
according to our preliminary tests. The primary antibodies
used were the following: Anti-Claudin1 (1 : 200; ab15098,
Abcam, UK), Anti-Claudin7 (1 : 500; ab27487, Abcam),
Anti-p-ERK (1 : 400; 4376S, Cell Signaling Technology,
USA), Anti-p-Akt (1 : 250; 66444-1-Ig, Proteintech, USA),
and Anti-p-mTOR (1 : 100; 2976S, Cell Signaling
Technology).

2.3. Image Acquisition. Images were captured in triplicate at
×40 magnification using a light microscope (Leica™
DM2500) with CCD (Leica DFC320) by manual exposure

and white balance with identical parameters for each
marker. Identical contrast and brightness conditions were
applied for each antibody. All the images were saved in the
TIFF format.

2.4. ImageJ Analysis. The ImmunoMembrane plugin run-
ning in ImageJ was used to establish membrane-binding
proteins. Firstly, regions of interest (ROI) for each slide were
visually demarcated by two pathologists. Secondly, digital
image analysis (DIA) was automatically performed by
defined custom cutoff values using the ImmunoMembrane
(IM) score (0-20 points), depending on the membrane stain-
ing intensity and completeness, finally the M score for each
case.

At the same time, the DIA of the cytoplasmic and
nuclear expression was automatically scored using the IHC
profiler plugin running in ImageJ. The ROIs were selected
before the staining intensity was automatically assigned into
a four-tier system (high positive, positive, low positive, and
negative) for each image, all of which were in percentage
form. All data was presented as the average of the triplicates
for each case.

2.5. Cell Culture. Human cutaneous squamous carcinoma
A431 cell line and human immortalized HaCaT keratino-
cytes (Institute of Biochemistry and Cell Biology, Shanghai,
China) were cultured in Dulbecco’s modified Eagle’s
medium (DMEM), supplemented with both 10% heat-
inactivated Fetal Bovine Serum (FBS, Invitrogen) and 1%
antibiotic-antimycotic (Invitrogen) at 37°C and 5% CO2 in
a 95% humidified incubator.

2.6. Protein Extraction and Western Blot (WB) Analysis.
Nuclear and cytoplasmic proteins were isolated by Nuclear
and Cytoplasmic Protein Extraction Kit (Beyotime, Haimen,
China) following the manufacturer’s protocols. After quanti-
fication determined by the Enhanced BCA Protein Assay Kit
(Beyotime, Haimen, China), the protein samples were sepa-
rated by sodium dodecyl sulphate-polyacrylamide gel elec-
trophoresis (SDS-PAGE). Upper stacking gels (5%, 90V)
and lower separating gels (12%, 120V) were orderly run
containing 30μg samples, which were later transferred to

Table 1: Continued.

Specimens Claudin-1 Claudin-7 p-ERK p-AKT p-mTOR
Mean ± SEM n Mean ± SEM n Mean ± SEM n Mean ± SEM n Mean ± SEM n

P (%) 11:51 ± 8:91 16:01 ± 14:35 34:25 ± 12:91 14:94 ± 6:84 27:12 ± 11:11
LP (%) 33:11 ± 3:90 56:48 ± 4:89 49:56 ± 8:95 29:41 ± 5:33 52:87 ± 5:58
Neg (%) 58:83 ± 18:82 26:23 ± 13:54 8:90 ± 9:60 51:75 ± 12:73 17:39 ± 8:95

Nuc

HP (%) 17:69 ± 8:64 11:31 ± 12:40 24:10 ± 8:20 22:65 ± 6:97 16:69 ± 12:22
P (%) 36:58 ± 10:1 20:54 ± 5:57 40:03 ± 6:26 42:96 ± 7:17 24:47 ± 7:22
LP (%) 35:14 ± 9:36 33:05 ± 6:39 29:47 ± 8:26 29:79 ± 8:62 35:00 ± 6:19
Neg (%) 10:3 ± 6:26 35:10 ± 12:59 6:39 ± 3:08 4:59 ± 2:41 23:84 ± 13:10

NS: sun-exposed skin; AK: actinic keratosis; BD: Bowen’s disease; SCC: squamous cell carcinoma; Mem: membrane; Cyto: cytoplasm; Nuc: nucleus; HP: high
positive; P: positive; LP: low positive; Neg: negative.
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polyvinylidene fluoride (PVDF) microfiltration membrane
by Trans-Blot® Turbo™ Transfer System (BIO-RAD, Hercu-
les, CA, USA) under 200mA at 1min/kDa. After TBST con-
taining 5% skimmed milk sealing nonspecific sites for 1 h at
room temperature, the PVDF membrane was incubated
overnight at 4°C with corresponding antibodies against
Claudin-1, Claudin-7, and Histone (15 kDa, AF1684, Beyo-
time) and enhanced by chemiluminescence (ECL) substrate
(BIO-RAD, Hercules, CA, USA) and then quantified by the
ChemiDoc™ Touch Imaging System (BIO-RAD, Hercules,
CA, USA).

2.7. Statistical Analyses. Results are presented as mean ±
SEM. Statistical significance was calculated using the paired
t-test. Multivariate analysis was performed by two-way
ANOVA using GraphPad Prism 5 (GraphPad Software, La
Jolla, CA, USA). Scatterplot matrices and heatmaps are dis-
played by pairwise Pearson correlation coefficients using
JMP statistical software release 10.0 (JMP, a trademark of
SAS Institute).

3. Results

3.1. Claudin-1 and Claudin-7 Displayed Altered Membrane
Expression and Delocalized Subcellular Location in SCC.
We first detected the expression of Claudin-1 and Claudin-
7 in each tissue using IHC (Figure 1(a)) and subsequently
analyzed their staining expression values by ImageJ
(Table 1). Membranous Claudin-1 was upregulated in BD,
relative to N and AK. Similarly, membranous Claudin-7
was significantly increased in SCC compared to BD, AK,
and N (Figure 1(b)). The cytoplasmic Claudin-1 was
increased in BD and N, but decreased in SCC compared to
BD. Cytoplasmic Claudin-7 was obviously downregulated
in AK and BD compared to N, but elevated in SCC com-
pared to AK and BD (Figure 1(c)). Nuclear Claudin-1 was
downregulated in SCC, while nuclear Claudin-7 was reduced
in AK, BD, and SCC (Figure 1(d)).

3.2. p-AKT and p-mTOR (but Not p-ERK) Participate in
Tumorigenesis and Infiltration in Cutaneous SCC. Intracellu-
lar staining revealed that the activation level of p-AKT was
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Figure 2: Data correlation analysis. (a) Scatterplot matrix indicating correlations within the entire data set (all four groups: sun-exposed
skin, AK, BD, and SCC). Pairwise correlation analyses include the tight junction protein (TJPs) characteristics of membrane (Claudin-1-
M, Claudin-7-M), cytoplasm (Claudin-1-C, Claudin-7-C), and nucleus (Claudin-1-N, Claudin-7-N) and signaling pathway proteins (p-
ERK, p-AKT, and p-mTOR). Data about different groups is represented by different colors (sun-exposed skin, green; AK, yellow; BD,
blue; SCC, red). The red line represents the pairwise linear regression slope, while the pink shaded clouds represent the 95% bivariate
normal density ellipse. (b) Heatmap representation for the data set.
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reduced (Figure 1(f)). p-mTOR increased in AK but
decreased in SCC (Figure 1(g)) while the level of activated
p-ERK was not altered (Figure 1(e)). Collectively, these find-
ings suggest that the p-AKT and p-mTOR signaling path-
ways closely are associated with tumorigenesis and
infiltration of cutaneous SCC.

3.3. Correlations among Subcellular Claudin-1 and Claudin-
7 and p-ERK, p-AKT, and p-mTOR in Different Stages of
Cutaneous SCC. Pairwise correlation analyses for TJPs
(localization of membrane, M; cytoplasm, C; nucleus, N),
p-ERK, p-AKT, and p-mTOR in all samples are shown in
Figures 2 and 3. The data (Figures 2(a) and 2(b)) showed a
moderate positive correlation between Claudin-1-N and p-
ERK. p-mTOR exhibited a weak positive correlation with
Claudin-1-C and Claudin-7-N, but a weak negative correla-
tion with Claudin-7-M. Claudin-1-M had a strong positive
correlation with Claudin-1-C, but a moderate negative cor-
relation with Claudin-1-N, and a weak correlation with

Claudin-1-C and Claudin-1-N. Although Claudin-7-M
showed a moderate positive correlation with Claudin-7-C,
it was not correlated with Claudin-7-N, and there was a
weak negative correlation between Claudin-7-C and
Claudin-7-N. Claudin-7-N exhibited a moderate negative
correlation with Claudin-1-M, but a weaker positive correla-
tion with Claudin-1-C and Claudin-1-N. Additionally, a
moderate negative correlation was found between Claudin-
7-M and Claudin-1-N.

For sun-exposed skin, a strong positive correlation was
observed between Claudin-1-M and Claudin-1-C. Moreover,
Claudin-7-N was positively correlated with Claudin-7-M,
but negatively correlated with Claudin-7-C. There was no
correlation between subcellular TJPs and p-ERK, p-AKT,
or p-mTOR in sun-exposed skin (Figure 3(a)). For AK skin,
there was a significant negative correlation between Claudin-
1-M or Claudin-1-C and Claudin-1-N, while a strong posi-
tive correlation was found between Claudin-1-M and
Claudin-1-C. Similarly, Claudin-7-N was negatively
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Figure 3: Data correlation analysis for different groups. The same correlation analysis as in Figure 2 for (a) sun-exposed skin, (b) AK, (c)
BD, and (d) SCC.
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correlated with Claudin-1-M. Like in sun-exposed skin,
there was no correlation between subcellular TJPs and p-
ERK or p-AKT and p-mTOR in the AK group (Figure 3(b)).
In the BD group, Claudin-1-C was strongly positively corre-
lated with Claudin-1-M, while Claudin-1-N was negatively
correlated with Claudin-1-M and Claudin-1-C, but positively
correlated with Claudin-7-N. Meanwhile, Claudin-7-M was
positively correlated with Claudin-1-M, Claudin-1-C, and
Claudin-7-C, but negatively correlated with Claudin-1-N.
Claudin-1-N exhibited a moderate positive correlation with
Claudin-7-N. Surprisingly, there were obvious positive corre-
lations among p-ERK, Claudin-1-N, and Claudin-7-N
(Figure 3(c)). In SCC samples, there was a strong positive
correlation between Claudin-1-C and Claudin-1-M and a
strong negative correlation between Claudin-7-N and
Claudin-7-M. Significant positive correlations were also
found between p-AKT and Claudin-1-C and p-mTOR and
Claudin-1-N (Figure 3(d)).

3.4. Delocalization of Claudin-1 and Claudin-7 in HaCaT
and A431 Cell Lines. To further confirm the observation of

Claudin-1 and Claudin-7 delocalization in cutaneous SCC
and its precancerous lesions, we successively extracted cyto-
plasmic and nuclear proteins from both HaCaT and A431
cells by western blot analysis. As shown in Figure 4, both
Claudin-1 and Claudin-7 were delocalized to the cytoplasm
and nucleus of the two types of cells. Inconsistent with
markedly reduced Claudin-1 and Claudin-7 delocalization
to the cytoplasm (Figure 4(a)), nuclear Claudin-1 was exam-
ined with slight reduction but no significant alternation in
A431 cells compared with HaCaT cells (Figure 4(b)). How-
ever, Claudin-7 remained dramatically nuclear delocaliza-
tion in A431 cells relative to HaCaT cells (Figure 4(b)).
Collectively, the overall reduced Claudin-1 and Claudin-7
delocalization to the cytoplasm and nucleus in A431 cells
might indicate their roles in tumorigenesis.

4. Discussion

In this study, we determined the subcellular distribution of
TJPs in stepwise skin malignancies, such as epithelial dyspla-
sia (AK), CIS (BD), and cutaneous SCC, along with their
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Figure 4: Delocalization of Claudin-1 and Claudin-7 in HaCaT and A431 cells as demonstrated by western blotting. (a) Expression of
Claudin-1 and Claudin-7 in the cytoplasm in HaCaT and A431 cells. (b) Expression of Claudin-1 and Claudin-7 in the nucleus in
HaCaT and A431 cells.
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associated signaling pathway proteins, followed by support
of normal HaCaT keratinocytes and cutaneous SCC A431
cells experiment in vitro. We found that they participated
in tumorigenesis and infiltration of cutaneous SCC.

TJPs were aberrantly expressed in the subcellular skin
regions with malignant lesions. Although Claudin-1 and
Claudin-7 were found to have intact membranous expres-
sion in sun-exposed skin, slight cytoplasmic and strong pos-
itive nuclear immunostaining was observed. In both BD and
SCC, nuclear Claudin-1 and Claudin7 were significantly low.
Although they displayed no or impaired membrane-integ-
rity, their membranous and cytoplasmic immunoexpression
remained high. These findings are in contrast to those
obtained from three previous reports on Claudin-1 in cuta-
neous SCC. Heterogeneously expressed Claudin-1 after
keratinization was reported in one study [14], while another
reported overexpressed Claudin-1 with focal loss of staining
in poorly differentiated areas [12], but a third study showed
diminished membranous Claudin-1 in AK compared to nor-
mal skin and exclusive cytoplasmic Claudin-1 expression in
cutaneous SCC [13]. Several factors relating to technology,
experimental settings, and patient group selection in this
study might have contributed to these discrepant findings.
One drawback of this study is the lack of clinical data on
cutaneous SCC and precancerous cases. On the other hand,
overexpressed, but actually destructive TJPs might lack
membrane integrity accompanied by reduced nuclear
Claudin-1 and Claudin-7 translocation in cutaneous SCC
processes.

The reason for the translocation of Claudin-1 and
Claudin-7 from the membrane to the cytoplasm or nucleus
is not clearly known in sun-exposed skin, AK, BD, and
SCC. A similar result was obtained in melanocytic lesions;
Claudin-1 exhibited reduced nuclear localization but high
expression in the cytoplasm in both subcutaneous and vis-
ceral metastases. However, there was no nuclear localization
in lymph node metastases, indicating its metastatic potential
[10]. Overexpression of Claudin-1 directly contributed to
melanoma cell invasion, while Claudin-1 knockdown inhib-
ited invasion, which further supports the findings in this
study [10]. In addition, subcellular localization of Claudin-
1 was reported to be deactivated by protein kinase A
(PKA), but not protein kinase C (PKC), resulting in
Claudin-1 nuclear sequestration, from the nucleus to the
cytoplasm, although both PKA and PKC phosphorylation
resulted in Claudin-1 cytoplasmic distribution [11]. Surpris-
ingly, despite the existence of rich phosphorylated PKA,
reduced nuclear Claudin-1 was inexplicable, and therefore,
we hypothesize that a designated Claudin-1 threshold is
required before exclusion from the nucleus [11]. Conse-
quently, PKC-rich metastatic melanoma cells possess high
nuclear Claudin-1, and PKA phosphorylation leads to the
translocation of nuclear Claudin-1 to the cytoplasm [11].
Based on the above studies on melanoma, it can be con-
cluded that delocalization of Claudin-1 and Claudin-7 is
linked to carcinogenesis, invasiveness, and metastasis.
Therefore, it remains to be determined whether the subcellu-
lar localization of Claudin-1 and Claudin-7 contributes to
cutaneous SCC.

Contrary to these results, several studies have reported
that Claudin-1 translocated from the membrane to the cyto-
plasm and nucleus, which was also associated with carcino-
genesis, invasiveness, metastasis, and apoptosis. Claudin-1
was found to be expressed in the membrane and cytoplasm
in normal thyroid tissue, although it was found to be slightly
expressed in the nucleus in follicular adenoma and primary
follicular thyroid carcinoma. Additionally, it was not
expressed in the membrane but was highly expressed in
the nucleus in metastatic follicular thyroid carcinoma [8].
Transiently transfected nuclear Claudin-1 augmented
migration and invasion, and suppression of Claudin-1 by
siRNA inhibited migration and invasion [8]. Claudin-1-
transduced MDA-MB 361 breast tumor cell spheroids
induced significant apoptosis [9]. Cytoplasmic and nuclear
Claudin-1 delocalization was associated with decreased apo-
ptosis in nasopharyngeal carcinoma cell lines [7]. Unlike the
subjects selected in this study including hyperplasia, dyspla-
sia, in situ, and invasive carcinoma, most above-mentioned
findings were limited to the carcinoma group versus normal
group and only presented decreased or increased cytoplasm
or nuclear expression and location in the simple background
of it. Since carcinogenesis is a multistep, multistage, and
multifactor process, it should be analyzed in detail through-
out all carcinogenic stages, rather than in isolated cancers or
noncancer contexts. Consequently, the higher membranous
and cytoplasmic Claudin-1 and Claudin-7 expression in
SCC might mean classical membranous structure loss, dys-
functions, and even further tumorigenesis. However,
reduced nuclear delocalization would indicate its propensity
for carcinogenesis, invasiveness, metastasis, and apoptosis in
cutaneous SCC by automatic quantification which was
already applied in oral precancerous tissues and oral squa-
mous cell carcinoma [17].

The mechanism behind subcellular localization and
alternation of TJPs in cancers remains to be explored. Here,
we propose the following hypotheses. Firstly, considerable
attention should be given to the nutrient supply hypothesis,
in which tumor cells adopt uncontrolled and unlimited
access to nutrients due to increased paracellular permeability
caused by TJP deficiency [18, 19]. Claudin-1-transduced 3D
in breast tumor spheroid culture displayed plasma mem-
brane homing and reduced paracellular flux, which further
supports this hypothesis [9]. Interestingly, this study pre-
sents a paradoxical situation, where membranous Claudin-
1 in BD and Claudin-7 in SCC were highly scored, compared
to the classical membrane location, which further indicates
that dysregulation of TJ dynamics is linked to carcinogene-
sis. Additionally, Claudin-1 is a cancer invasion/metastasis
suppressor, prognostic predictor, and a potential drug [20].
Accordingly, it was speculated that Claudin-1-transduced
cutaneous SCC, although its precancerous cell might show
similar membrane homing, paracellular flux inhibition, and
increased apoptotic capacity, implying that it could be a
therapeutic strategy.

Correlations among subcellular Claudin-1, Claudin-7, p-
ERK, p-AKT, and p-mTOR were analyzed at different stages
of cutaneous SCC. Subcellular distribution of Claudin-1 and
Claudin-7 was correlated with the progress of cutaneous
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SCC, possibly indicating that altered membrane expression
contributes to their mislocalization and potential Claudin-
Claudin interaction. These possibilities need to be explored
further [21, 22]. Additionally, it was observed that p-ERK
correlated with Claudin-1-N and Claudin-7-N in BD, which
might explain why p-ERK participates in Claudin-1 and
Claudin-7 nuclear delocalization as well as in carcinogenesis.
Moreover, p-AKT was positively correlated with Claudin-1-
C, while p-mTOR was correlated with Claudin-1-N in cuta-
neous SCC, which points to their role in carcinogenesis.

5. Conclusion

In conclusion, the results presented here indicate that the
subcellular localization of Claudin-1 and Claudin-7 and the
correlations between them, and with PI-3K/AKT and
MEK/ERK signaling pathways, play roles in cutaneous SCC
tumorigenesis. The mechanism behind the TJPs delocaliza-
tion and its associated signaling pathways in cutaneous
SCC tumorigenesis, infiltration, and metastases requires fur-
ther research.
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Purpose. Poly(ADP-ribose) polymerase 1 (PARP1) is necessary for single-strand break (SSB) repair by sensing DNA breaks and
facilitating DNA repair through poly ADP-ribosylation of several DNA-binding and repair proteins. Inhibition of PARP1 results
in collapsed DNA replication fork and double-strand breaks (DSBs). Accumulation of DSBs goes beyond the capacity of DNA
repair response, ultimately resulting in cell death. This work is aimed at assessing the synergistic effects of the DNA-damaging
agent temozolomide (TMZ) and the PARP inhibitor niraparib (Nira) in human multiple myeloma (MM) cells. Materials and
Methods. MM RPMI8226 and NCI-H929 cells were administered TMZ and/or Nira for 48 hours. CCK-8 was utilized for cell
viability assessment. Cell proliferation and apoptosis were detected flow-cytometrically. Immunofluorescence was performed
for detecting γH2A.X expression. Soft-agar colony formation assay was applied to evaluate the antiproliferative effect. The
amounts of related proteins were obtained by immunoblot. The combination index was calculated with the CompuSyn
software. A human plasmacytoma xenograft model was established to assess the anti-MM effects in vivo. The anti-MM
activities of TMZ and/or Nira were evaluated by H&E staining, IHC, and the TUNEL assay. Results. The results demonstrated
that cotreatment with TMZ and Nira promoted DNA damage, cell cycle arrest, and apoptotic death in cultured cells but also
reduced MM xenograft growth in nude mice, yielding highly synergistic effects. Immunoblot revealed that TMZ and Nira
cotreatment markedly increased the expression of p-ATM, p-CHK2, RAD51, and γH2A.X, indicating the suppression of DNA
damage response (DDR) and elevated DSB accumulation. Conclusion. Inhibition of PARP1 sensitizes genotoxic agents and
represents an important therapeutic approach for MM. These findings provide preliminary evidence for combining PARP1
inhibitors with TMZ for MM treatment.

1. Introduction

Multiple myeloma (MM) represents a hematologic cancer
caused by clonal plasma cell growth in the bone marrow
[1]. Combination of proteasome inhibitor and immuno-
modulatory drug and myeloablative high-dose treatment
plus autologous stem cell transplantation (ASCT) is efficient
therapeutic approach for MM [2, 3]. However, almost all
MM patients eventually develop refractory disease and
relapse. To date, MM remains an incurable disease, and
new treatment approaches are urgently required for improv-

ing patient outcome. MM features common chromosomal
instability and deranged DNA repair [4, 5]. Cells can initiate
multiple DNA repair mechanisms to cope with genotoxic
stress such as nucleobase adduct removal and single- (SSB)
and/or double-strand DNA break (DSB) repair. Suppressing
DNA repair is considered a reasonable sensitization strategy
to improve genotoxic therapy [6].

PARP1 represents an important component of the base
excision repair (BER) of SSBs [6]. PARP1 suppression pro-
motes SSB accumulation and PARP1-DNA interactions.
Insufficient SSB repair results in DSBs during DNA
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replication, and PARP1 trapping inhibits replication fork gen-
eration [7]. Inhibition of PARP1 alters DNA repair, indicating
PARP1 suppressors could enhance the cytotoxicity of drugs.
Mounting evidence suggests PARP1 suppressors enhance the
antitumor properties of alkylating agents such as cisplatin,
oxaliplatin, cyclophosphamide, and temozolomide [8–10].
Temozolomide (TMZ) is an alkylating product employed in
glioma and leukemia treatment. TMZ damages the DNA via
methyl adduct addition to N7 guanine (70% of all adducts),
N3 adenine (9%), and O6 guanine (5%) [11]. TMZ causes
SSBs, cell cycle arrest, and apoptotic death [12]. However,
the doses applied for TMZ monotherapy are usually high
enough to cause intolerable toxicity to normal cells. Thus, a
combination strategy based on synergistic effects may be a bet-
ter approach to counter tumor progression and reduce toxic-
ity, ultimately improving disease prognosis. PARP inhibitors
have been examined in multiple tumors, e.g., small-cell lung
cancer, non-small-cell lung cancer, lymphoma, pancreatic
cancer, ovarian cancer, breast cancer, prostate cancer, and
Ewing’s sarcoma, and improve TMZ’s anticancer activities
in vitro and in xenograft models [13–16]. However, in the field
of MM therapy, combination of TMZ and PARP inhibitors
has not been previously reported.

Here, TMZ and the PARP inhibitor niraparib were
examined for synergism. We hypothesized that TMZ could
cause SSBs in MM cells, resulting in SSB buildup and
DNA replication fork collapse as well as the generation of
lethal DSBs in combination with PARP1 inhibitors. The
results provide evidence PARP inhibition has little effects
when used as a single agent on MM cells but could remark-
ably enhance TMZ cytotoxicity both in cultured cells and in
mice.

2. Materials and Methods

2.1. Cell Lines. Human MM RPMI8226 and NCI-H929 cells,
provided by the American Type Culture Collection
(ATCC), underwent culture in RPMI 1640 (Gibco) contain-
ing 10% fetal bovine serum (FBS; Sigma) and 1% penicillin/
streptomycin (Hyclone) at 37°C in a humid atmosphere
with 5% CO2.

2.2. Drugs and Chemicals. TMZ (MedChemExpress), Nira
(MK4827; MedChemExpress), and niraparib hydrochloride
(MK4827 hydrochloride; MedChemExpress) were main-
tained dissolved in dimethyl sulfoxide (DMSO). DMSO level
was always below 5% in all treatments. Antibodies against-
gamma H2A.X (phospho S139) (γH2A.X) (ab81299), ATM
(ab32420), ATM (phospho S1981, ab81292), RAD51
(ab133534), cyclin D1 (ab134175), CHK2 (ab109413),
CHK2 (phospho T68, ab32148), and GAPDH (ab128915)
were obtained from Abcam; antibodies targeting cleaved
caspase-3 (9664S) and anti-rabbit HRP secondary antibodies
(7074) were provided by Cell Signaling Technology.

2.3. Cell Viability Assay. A total of 2 × 104 indicated MM
cells underwent seeding into a 96-well plate and culture for
4 h, followed by the administration of different doses of
TMZ and/or Nira for 48 h. After drug exposure for a specific

time, cell viability was examined with Cell Counting Kit-8
(CCK8, China). After exposure for 48h with the drugs, add-
ing 20μL of CCK-8 solution to each well, the absorbance at
450 nm with a microplate reader was recorded after incuba-
tion for 2 h. CCK-8 kit uses a water-soluble tetrazolium salt
to quantify the number of live cells by producing an orange
formazan dye. The amount of formazan produced is directly
proportional to the number of living cells.

2.4. Cell Apoptosis Analysis. RPMI8226 and NCI-H929
underwent seeding in a 6-well plate at 2:0 × 105/well. Cells
were treated for 48h with DMSO, 30μM TMZ (RPMI8226),
20μM TMZ (NCI-H929), and 3μM Nira, respectively, for
both cell lines, or combined 3μM Nira and 30μM
(RPMI8226) or 20μM (NCI-H929) TMZ for 48h. The
Annexin V/propidium iodide (PI) detection kit (BD Phar-
mingen™) was utilized for apoptosis quantitation. In brief,
after treatment with specific drugs for 48 h, the cells under-
went incubation, shielded from light at ambient, with
Annexin V/FITC and PI for 15min. Analysis was performed
flow-cytometrically with an Epics flow cytometer. After
treatment for 48 h with the drugs, adding 5μL Annexin V
and 15μL PI for each sample, and incubation in the dark
for 15min, apoptosis analysis was performed by flow cyt-
ometer. Cells that were Annexin V/FITC positive (with
translocation of membrane phospholipid phosphatidylserine
(ps) from the inner to the outer leaflet of the plasma mem-
brane) and PI negative (with intact cellular membrane
excluding PI) were regarded as early apoptotic cells, whereas
positivity for both Annexin V/FITC and PI was considered
as late apoptotic or necrotic cells.

2.5. EdU Assay. An EdU Staining Proliferation Kit (iFluor
647) (Abcam, ab222421) was utilized in these assays. After
drug treatment, the culture medium was supplemented with
20μM EdU staining solution and incubated for 2 h at 37°C.
This was followed by 4% formalin fixation. An Epics flow
cytometer was utilized for analysis. After exposure for 48 h
with the drugs, cells were incubated with 20μM EdU
(Abcam, ab222421) for 2 h, followed by fixation, permeabili-
zation, and EdU staining according to the manufacturer’s
instructions; the EdU-positive cells were determined using
flow cytometer.

2.6. Soft-Agar Clonogenic Assay. Actively growing cells
underwent counting and resuspension in 0.3% agar in RPMI
1640 (maintained liquid at 41°C) containing 10% FCS and
specific drugs. This was followed by plating on 0.5% agar
in a 24-well plate (1 × 104/well) and incubation under stan-
dard conditions for 14–21 days. Colonies in each well under-
went 0.5% crystal violet staining. Colony counting was
performed under an inverted microscope (Leica, Germany).

2.7. Immunofluorescence. RPMI8226 and NCI-H929 cells
were incubated with specific drugs at 37°C for 48 h in four
groups (DMSO, TMZ, Nira, and TMZ plus Nira). After
treatment, cells were harvested, washed, and dropped on
adhesive slides. This was followed by fixation with 4% for-
malin for 15min and permeabilization and blocking using
PBS with 0.4% Triton X-100 and 2% BSA in PBS,
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Figure 1: Nira induces synergistic cytotoxicity with TMZ in MM cell lines. (a) RPMI8226 and (b) NCI-H929 cells were exposed to increased
Nira amounts for 48 h, before CCK-8 assay analysis of cell viability. (c) D MM cells were incubated for 48 h with increasing doses of TMZ
and Nira (3 μM), either alone or in combination, followed by the CCK-8 assay. (e, f) MM cells were administered TMZ and/or Nira for 48 h
(RPMI8226 cells, 30 μM and 3μM, respectively, and NCI-H929 cells, 20 μM and 3μM, respectively), followed by the CCK-8 assay.
(g, h) Fa–CI plots according to the Chou–Talalay equation, generated by CompuSyn v1.0. Round symbol indicates CI (combination
index) for a given Fa (fraction affected) at each dose. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001 versus control group; #P < 0:05,
##P < 0:01, and ###P < 0:001 versus TMZ group; +++P < 0:001 versus Nira group. TMZ: temozolomide; Nira: niraparib.
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respectively. Next, successive incubations with rabbit monoclo-
nal anti-γH2A.X antibodies (Abcam, 1 : 200) and Cy3-linked
goat anti-rabbit secondary antibodies were followed by DAPI
counterstaining. Cells with >10 nuclear foci were assessed for
percentage, among at least 100 cells counted in total.

2.8. Immunoblot. After treatment, the RIPA buffer contain-
ing protease inhibitors (Thermo Fisher) was utilized for cell
lysis. A BCA assay kit (Beyotime) was used for protein quan-
titation. Proteins underwent separation by 10-12% SDS-
PAGE and electrotransfer onto PVDF (polyvinylidene
difluoride) membranes (Millipore), which were blocked with
5% skimmed milk in 1× TBST. This was followed by succes-
sive incubations with primary and HRP-linked secondary
antibodies (CST). SuperSignal reagent (Millipore) was used
for visualizing immunoreactive bands.

2.9. In Vivo Xenograft Mouse Model. All procedures were
carried out following the Guide for the Care and Use of Lab-
oratory Animals by the US National Institutes of Health.
The study had approval from the Animal Ethics Committee
of Xijing Hospital, Air Force Military Medical University.
Briefly, 4–6-week-old female BALB/c nude mice (16–20 g,

Charles River Laboratories) underwent subcutaneous inocu-
lation of 1:0 × 107 RPMI8226 cells in 150μl 50% Matrigel
(Corning) in serum-free RPMI 1640. About 7-10 days post-
cell injection, with tumors measuring about 100mm3, the
animals were randomly assigned to 4 groups (each N = 5):
control group (saline containing 50% PEG300, intraperito-
neally (i.p.) administered 5 days/week), TMZ (30mg/kg
injected i.p. 5 days/week), Nira hydrochloride (20mg/kg
administered i.p. 5 days/week), and the TMZ and Nira com-
bination group. A Vernier caliper was utilized to measure
the tumors’ long- (a) and short- (b) axis diameters for 21
days at 3-day interval. Tumor volume was derived as V =
0:5a × b2. The mouse weight was also recorded by an elec-
tronic balance. At study end, euthanasia was carried out with
humane methods. The xenografts were histologically
analyzed.

2.10. Immunohistochemical Staining and TUNEL Assay.
Tumor xenograft tissue samples underwent fixation with
formalin, paraffin embedding, and sectioning at 5μm. The
sections underwent deparaffinization and rehydration with
graded alcohol dilutions for immunohistochemistry. After
sequential incubation with primary (overnight at 4°C) and
secondary (37°C for 30min) antibodies, the specimens
underwent treatment with streptavidin-HRP. The DAB kit
was utilized for visualization. Anti-Ki67 (Abcam, 1 : 200),
anti-cleaved caspase-3 (1 : 200, CST), anti-RAD51 (Abcam,
1 : 200), and anti-γH2A.X (Abcam, 1 : 200) primary anti-
bodies were utilized. For histological analysis, specimens
were examined after hematoxylin and eosin (H&E) staining
to identify morphological changes. Tissue specimens were
examined using a light microscope (Zeiss, Germany). Fur-
thermore, detection of in situ apoptosis was carried out by
TUNEL assay with the In Situ Cell Death Detection Kit,
POD (Roche, USA) as directed by the manufacturer.

2.11. Drug Synergy and Combination Index. The CompuSyn
software was utilized for combination index assessment [17],
with CI < 1, CI = 1, and CI > 1 indicating synergistic, addi-
tive, and antagonistic effects, respectively.

2.12. Statistical Analysis. Data analysis utilized GraphPad
Prism v8.0 (San Diego, CA). One-way analysis of variance
was performed with Statistical Package for Social Sciences
(SPSS) v22.0. All assays were performed thrice, and data
are mean ± standard deviation ðSDÞ.

3. Results

3.1. Nira Enhances the Toxicity of TMZ in MM Cell Lines.
For treatment of ovarian cancer, the recommended dose of
niraparib is 300mg per day for 21 days every 28-day cycle,
with plasma C max approximating 2μM following the initial
treatment and rising to 3.5~4.2μM at day 21 [18]. We first
tested whether the PARP inhibitor Nira monotherapy could
elicit direct cytotoxicity on MM cells in vitro. At physiolog-
ical concentrations (≤3.5μM), Nira caused no significant
cytotoxicity in RPMI8226 and NCI-H929 cells, as depicted
in Figures 1(a) and 1(b). Next, the effects of fixed low-dose

Table 1: Combination index data for TMZ and Nira in RPMI8226
cells.

Dose TMZ (μM) Dose Nira (μM)
Combination

effect∗
CI value

10 3 0.23 0.56554

20 3 0.31 0.58787

30 3 0.52 0.38529

50 3 0.58 0.49207

80 3 0.61 0.6861

100 3 0.68 0.67125

Notes: Combination index (CI) values for TMZ and Nira were based on the
Chou–Talalay’s method at 48 h. CI < 1, CI = 1, and CI > 1 reflect synergistic,
additive, and antagonistic effects, respectively. Independent experiments
were performed thrice. ∗Mean value of three replicates. In each condition,
standard deviation is less than 10%. Abbreviations: TMZ: temozolomide;
Nira: niraparib.

Table 2: Combination index data for TMZ and Nira in NCI-H929
cells.

Dose TMZ (μM) Dose Nira (μM)
Combination

effect∗
CI value

10 3 0.34 0.42312

20 3 0.55 0.3069

30 3 0.59 0.37772

50 3 0.62 0.54191

80 3 0.71 0.58941

100 3 0.79 0.49808

Notes: Combination index (CI) values for TMZ and Nira were based on the
Chou–Talalay’s method at 48 h. CI < 1, CI = 1, and CI > 1 reflect synergistic,
additive, and antagonistic effects, respectively. Independent experiments
were performed thrice. ∗Mean value of three replicates. In each condition,
standard deviation is less than 10%. Abbreviations: TMZ: temozolomide;
Nira: niraparib.
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concentrations of Nira combined with TMZ on the viabil-
ity of MM cells were examined with CCK-8. Upon 48h of
incubation, TMZ monotherapy markedly suppressed via-
bility in MM cells in comparison with control cells,
concentration-dependently (Figures 1(c) and 1(d)). We
used the physiological concentration of Nira at 3μM for
subsequent experiments. When cells were cotreated with
a fixed dose of Nira and different doses of TMZ, as
depicted in Figures 1(c) and 1(d), the IC50 of TMZ in
RPMI8226 cells was significantly reduced from 85μM to
30μM; the IC50 of TMZ in NCI-H929 cells declined from
65μM to 20μM. Combination of Nira and TMZ showed
very good therapeutic potential for MM cell lines
(Figures 1(e) and 1(f)). The CompuSyn software was used
to generate CI and Fa-CI plots for varying concentrations
of TMZ with fixed dose of Nira to determine the synergis-
tic effects. Figures 1(g) and 1(h) and Tables 1 and 2 indi-
cated synergistic effects for all the doses tested.

Combination of TMZ at 30μM (RPMI8226 cells) and
20μM (NCI-H929 cells) with 3μM Nira showed the
strongest synergistic effects. These doses were selected for
the next experiments to test whether this combination
was optimal.

3.2. Effects of TMZ and/or Nira on Apoptosis. In order to
assess whether administration of TMZ and/or Nira for 48h
affects apoptosis in MM cells, Annexin V/PI staining of
RPMI8226 and NCI-H929 cells was carried out. As presented
in Figures 2(a) and 2(c), single-agent TMZ or Nira did not
induce significant apoptosis. However, combined treatment
with TMZ and Nira induced more apoptosis (25% apoptosis)
(P < 0:01). We also evaluated the effects of TMZ and/or Nira
on apoptosis-associated protein levels in MM cells by immu-
noblot. Cleaved caspase-3 protein amounts in the combina-
tion group were markedly higher compared with controls
and TMZ and Nira monotherapies (Figure 2(e)).
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Figure 2: Effects of TMZ and/or Nira on proliferation and apoptotic death in MM cells. (a) RPMI8226 and NCI-H929 cells were administered
TMZ and/or Nira for 48h, and apoptosis was examined flow-cytometrically after Annexin V–FITC/PI staining. (b) RPMI8226 and NCI-H929
cells were administered TMZ and/or Nira for 48 h, and S-phase cells were detected flow-cytometrically by the EdU assay. (c, d) Quantification of
apoptotic and S-phase cells shown in (a). (e) Cell cycle-related and apoptosis-associated proteins in RPMI8226 and NCI-H929 cells were
quantitated by immunoblot. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001 versus control group; ##P < 0:01 and ###P < 0:001 versus TMZ group;
++P < 0:01 and +++P < 0:001 versus Nira group. TMZ: temozolomide; Nira, niraparib.
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3.3. Effects of TMZ and/or Nira on Cell Proliferation. To fur-
ther examine the above synergistic effects of TMZ and Nira
in the present study, this optimal drug combination was
assessed for its effects on the S-phase distribution of MM
cells treated with TMZ and/or Nira, for 48h flow-
cytometrically. Figures 2(b) and 2(d) show TMZ reduced
the proportion of cells in the S-phase at 48 h. Cotreatment
with TMZ and Nira significantly enhanced this effect com-
pared with TMZ alone. Furthermore, we performed soft-
agar colony formation assay to assess the antiproliferative
effect of Nira-TMZ. As depicted in Figures 3(a)–3(c), the
amounts of colonies following Nira-TMZ treatment were
starkly diminished in comparison with the TMZ monother-
apy, Nira monotherapy, and untreated control groups of
MM cells. These data suggested that combination of TMZ
and Nira markedly inhibited cell proliferation, with potent
synergistic cytotoxicity in MM cells. Accordingly, immuno-
blot showed that the cell cycle-associated protein cyclin D1
was significantly decreased in the combination group com-
pared with the Nira or TMZ alone group (Figure 2(e)).

3.4. Combination of Nira and TMZ Induces γH2A.X Foci
Formation and Blunts DNA Damage Repair in MM Cell
Lines. We used immunofluorescence to detect whether his-

tone H2A.X phosphorylation (γH2A.X) forms nuclear foci
after exposure to TMZ and/or Nira treatment for 48h. The
number of γH2A.X foci is considered to be tightly associated
with the amounts of cellular DSBs. The majority cells in the
control group had no γH2A.X foci in the nuclei, while TMZ
or Nira alone treatment caused sparse γH2A.X foci in MM
cells. The proportion of γH2A.X-positive cells and the num-
ber of γH2A.X foci per nucleus were overtly increased after
Nira plus TMZ treatment (P < 0:05) (Figures 4(a)–4(c)),
suggesting that the combination induced significant DNA
damage. This revealed that the PARP inhibitor Nira hin-
dered DNA damage response (DDR) aroused by TMZ
cytotoxicity.

3.5. Effects of Nira and/or TMZ on DDR Signaling in MM
Cells. In order to elucidate the mechanism responsible for
the synergistic effects of Nira and TMZ, the protein levels
of DDR signaling effectors were examined. Cotreatment
with TMZ plus Nira led to significantly increased p-ATM,
p-CHK2, RAD51, and γH2A.X compared with monother-
apy (Figure 5), indicating that TMZ-Nira combination ther-
apy could function via the DNA damage response. These
proteins are core members of the DDR when DNA con-
fronts genotoxic challenges such as genotoxic chemotherapy.
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Figure 3: Effects of TMZ and/or Nira on colony formation in MM cells. (a) RPMI8226 and NCI-H929 cells were administered TMZ and/or
Nira for 14-21 days, and colony formation ability was determined by soft-agar clonogenic assay. (b, c) Quantification of colonies shown in
(a). ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001 versus control group; ##P < 0:01 versus TMZ group; ++P < 0:01 versus Nira group. TMZ:
temozolomide; Nira: niraparib.
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Mounting evidence suggests the BER pathway efficiently
removes DNA nucleobase adducts and prevents DNA dam-
age and cell death associated with DNA alkylating agents,
including TMZ, cyclophosphamide, and carmustine [19].
Here, the PARP1 inhibitor Nira hampered the recruitment
of some core DNA repair proteins of the PARP/BER path-
way. Pharmacologically, the PARP1 inhibitor Nira ham-
pered the recruitment of some core DNA repair proteins of
the PARP/BER pathway, blocked SSB repair to some extent,
and caused SSB accumulation [20, 21]. And thus, unrepaired
SSBs were converted into lethal DSBs causing cell death and
proliferation arrest in MM cells, which could explain the
synergistic effects of TMZ and Nira.

3.6. In Vivo Effects of Nira and/or TMZ in an RPMI8226
Xenograft Model. The effects of daily TMZ (35mg/kg) and/
or Nira (20mg/kg), administered i.p. 5 days per week, on
RPMI8226 cell growth were examined in a human plasma-
cytoma xenograft model via subcutaneous injection. TMZ
plus Nira regimen resulted in significantly reduced tumor
volume and weight over time, compared with the vehicle
and single-agent treatment groups (Figures 6(a)–6(c)). Dur-
ing the three weeks of treatment, the combination regimen
showed no significant weight loss, and the animals showed
good general health and activity, with no signs of discomfort,
which showed a good tolerability for the Nira and TMZ
combination.
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Figure 4: TMZ and/or Nira induce γH2A.X foci formation and block DNA damage repair in MM cell lines. (a) Immunofluorescent staining
showing high amounts of γH2A.X foci in MM cells administered the TMZ/Nira combination regimen (TMZ at 30μM and 20 μM for
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At the end of drug administration, euthanasia was per-
formed, and tumors were extracted and analyzed by immu-
nohistochemistry (IHC) for Ki67 and cleaved caspase-3,
which are proliferative and apoptotic biomarkers in tumors.
The tumors were also examined by TUNEL assay to assess in
situ apoptosis to further confirm the above findings. Apo-
ptotic (TUNEL- and cleaved caspase-3-positive) cells in the
combination group were extensively increased as well as
the morphologic features of apoptosis (Figures 6(d) and
6(e)). On the contrary, proliferative (Ki67-positive) cells
were overtly decreased (Figure 6(e)), in accordance with
the previously observed proliferation arrest. Moreover, we
demonstrated that γH2A.X and RAD51 expression levels
were starkly higher in the combination treatment group
(Figure 6(e)), which suggested that the combination regimen
enhanced DNA damage and blocked DNA repair. Jointly,
these in vivo findings about tumor proliferation corrobo-
rated those obtained in cultured cells, further verifying our
hypothesis that TMZ-Nira cotreatment produces excellent
synergistic effects.

4. Discussion

MM comprises ~10% of all hematologic cancer cases. MM
cases show good response to alkylating agents initially, but
the quasi-totality of patients relapse eventually, including
those who achieved complete remission (CR) [22]. In addi-
tion, many patients develop refractory disease because of mul-
tidrug resistance (MDR). Recently, although novel therapeutic
approaches (newer proteasome inhibitors, IMiDs, CD38
monoclonal antibody, CAR-T therapy, and autologous stem
cell transplantation (ASCT)) have extended survival, many
patients still inevitably relapse and die of comorbidities [23].
Many patients are ineligible for auto-ASCT due to advanced
age at diagnosis. It is imperative to identify more effective ther-
apeutic options to improve curative effects in elderly and
advanced-stage patients [24]. Genotoxic agent-based chemo-

therapeutic regimens are important in MM treatment. MDR
represents the major obstacle hindering prognosis improve-
ment in MM cases. Many factors contribute to MRD such as
elevated drug efflux, altered drug resistance-related genes,
increased DNA damage repair, and reduced apoptosis [25,
26]. Previous reports have suggested that PARP1 inhibitors
synergize with several conventionally applied chemotherapeu-
tics such as TMZ. As shown above, in combination with the
PARP1 inhibitor Nira, the IC50 of TMZ was reduced signifi-
cantly. An early event following DNA DSBs is the generation
of phosphorylated histone H2AX (γH2A.X), which is consid-
ered the gold standard for DSB detection [27]. Therefore,
γH2A.X amounts reflect DNA damage resulting from chemo-
therapeutic agents in cancer cells, representing an index of cell
sensitivity to chemotherapy [28]. As shown above, after expo-
sure to combination treatment, upregulation of γH2A.X indi-
cated increased DSBs and enhanced drug sensitivity. RAD51
represents the most important protein that promotes strand
pairing and exchange between homologous DNAs during
homologous recombination repair (HRR) [29]. In this study,
immunoblot and IHC analysis demonstrated elevated expres-
sion of RAD51 in the combination group, suggesting severe
and lethal DNA DSB accumulation. Tumor cell sensitivity to
chemotherapeutics promoting DNA damage is function of
the balance between DNA damage and repair. Consequently,
targeting key factors in DNA repair response that protect cells
from death represent a promising approach for enhancing the
curative effect of routine cytotoxic molecules.

PARP1 mainly contributes to SSB repair, particularly via
the BER pathway. A PARP1 inhibitor was first successfully used
as monotherapy based on the concept of “synthetic lethal ther-
apy” for the treatment of cancers exhibiting intrinsic DNA
repair anomalies. BRCA1/2-mutated cancers with abnormal
DNA homogenous repair are vulnerable to further DNA
repair pathway suppression [30, 31]. The PARP1/BER path-
way is critical in clearing chemotherapy-induced DNA
adducts, which prevents cell cycle arrest and death. When
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DNA damage occurs, DNA lesions are recognized by DNA
glycosylase that performs hydrolysis of the altered base to
produce an apurinic-apyrimidinic (AP) base. This AP base
undergoes removal by AP endonuclease for generating a
DNA nick, which interacts with PARP1, resulting in DNA
polymerase h (Pol h) and DNA ligase complex recruitment
for repairing the DNA [32–34]. Temozolomide introduces
DNA damage through DNA alkylation or methylation.
Under normal conditions, temozolomide promotes methyl
adduct formation in DNA at guanine’s N7, guanine’s O6,
and adenine’s N3. Since methylpurines (N7-MeG and N3-
MeA) undergo repair quickly via BER, cytotoxicity mostly
results from methylation at guanine’s O6. PARP suppressors
affect PARP1 and PARP2, blunt BER, and sensitize malig-
nant cells to temozolomide [35, 36], constituting potential
combinatory agents for use with temozolomide in cancer.

This study explored the mechanism by which temozo-
lomide cytotoxicity was potentiated by the PARP suppres-
sor Nira. As demonstrated above, Nira monotherapy
yielded about 10% of cell viability inhibition (IC10) at
the clinical dose. In this study, temozolomide’s effect
was starkly enhanced by Nira. Indeed, we showed that
in MM cells, 48 h of exposure to Nira plus TMZ achieved
TMZ potentiation to a large extent. We hypothesized that
temozolomide-dependent nucleotide methylation was not
effectively repaired with BER blocking by Nira. The pro-
duced SSBs were subsequently converted into DSBs, caus-
ing MM cell apoptosis and proliferation arrest. Indeed,
the amounts of DSBs, reflected by γH2A.X expression,
were markedly elevated after combined administration of
temozolomide and Nira. The elevated amounts of DSBs
are correlated with enhanced cytotoxicity under these
conditions. Bryant and Helleday suggested PARP suppres-
sion alters endogenous SSB repair, resulting in collapsed
DNA replication forks [37]. This study provides some
evidence that DSBs are important in temozolomide-
dependent cytotoxicity in MM cells. Meanwhile, γH2A.X
level was confirmed in the current work as a useful index
for assessing the impact of PARP suppression on DNA
repair.

PARP suppressors as chemosensitizing agents are
scarcely applied in the clinical setting, probably because of
the complexities of combination therapies, e.g., identifying
the optimal dose [10]. Cotreatment with PARP1 inhibitors
and conventional chemotherapeutics was shown to highly
enhance the efficacy of chemotherapy that exerts cancer sup-
pressive effects at reduced doses [38].

The combination regimen not only inhibited cancer
cell proliferation and induced apoptosis but also reduced
human plasmacytoma xenograft growth in mice. Histo-
logic analysis confirmed that suppression of proliferative
markers, appearance of severer DNA damage and breaks,
and enhanced cell apoptosis corroborated xenograft
growth suppression.

A limitation of this study is that the dosing and schedul-
ing of TMZ (30mg/kg, i.p. ×5, three cycles) used in this ani-
mal model were different from the regimen employed in
clinical practice. Although the animals in this research did
not show signs of discomfort and significant weight loss in

the monotherapy and combination groups, the cooperative
mechanism of genotoxic agents and PARP1 inhibitors
remains to be further elucidated.

5. Conclusion

This study confirmed that Nira remarkably enhanced temo-
zolomide’s anticancer effects both in cultured cells and in
mice. The above preclinical findings provide a sound ratio-
nale for the use of Nira for chemosensitization of MM cases
to temozolomide in clinic. This research also provides a
novel treatment strategy for MM, particularly in patients
who have exhausted other treatment modalities. Nira has
excellent pharmacokinetic features in many species and
could cross the blood-brain barrier [8], making it particu-
larly suitable for combined use with temozolomide for treat-
ing intracranial tumors in clinical practice.
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Nucleotide excision repair (NER) is an important mediator for responsiveness of platinum-based chemotherapy. Our study is
aimed at investigating the NER-related genes expression in ascites tumor cells and its application in the prediction of
chemoresponse in high-grade serous ovarian cancer (HGSC) patients. The relationship between 16 NER-related genes and the
prognosis of ovarian cancer was analyzed in the TCGA database. NER-related genes including HELQ and XAB2 expressions
were determined via immunocytochemistry in ascites cell samples from 92 ovarian cancer patients prior to primary
cytoreduction surgery. Kaplan-Meier analysis and Cox model were used to investigate the association between NER-related
gene expression and prognosis/chemotherapeutic response. Predicting models were constructed using a training cohort of 60
patients and validated in a validation cohort of 32 patients. We found that high expression of HELQ and XAB2 in the training
cohort was associated with poor prognosis (for HELQ, P = 0:001, HR = 2:83, 95% CI: 1.46-5.49; for XAB2, P = 0:008, HR =
2:38, 95% CI: 1.23-4.63) and platinum resistance (for HELQ, P < 0:001; for XAB2, P = 0:006). In the validation cohort, the
combination of HELQ and XAB2 (AUC = 0:863) showed the highest AUC. The expression levels of HELQ (RR 5.7, 95% CI
1.7-19.2) and XAB2 (RR 3.2, 95% CI 0.9-10.8) in ascites tumor cells were positively correlated to the risk of platinum
resistance. In summary, we revealed that the expression levels of HELQ and XAB2 are candidate predictors for primary
chemotherapy responsiveness and prognosis in HGSC. Ascites cytology is applicable as a promising method for
chemosensitivity prediction in HGSC.

1. Introduction

Epithelial ovarian cancer (EOC) is the second most lethal
gynecologic cancer worldwide [1], with a 5-year survival of
46%. Primary cytoreductive surgery followed by platinum-
based chemotherapy has been the standard treatment of
EOC over the past decades [2, 3]. However, chemoresistance

is common in the later course of EOC. Unresponsiveness to
chemotherapy is associated with poorer prognosis in EOC
patients [4, 5]. Currently, the widely used predictor of the
response to platinum-based chemotherapy in ovarian cancer
has been the platinum-free interval (PFI). However, PFI is
not a valid predictor. The PFI is a retrospective evaluation
and may be influenced by the frequency and types of
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investigations a patient receives during follow-up. For
platinum-resistant patients, they cannot benefit from treat-
ment and have to endure the side effects of chemotherapy
drugs. Therefore, the prediction of chemosensitiveness
before primary treatment in EOC is a major clinical issue.

Platinum-based chemotherapy, such as carboplatin or
cisplatin, causes DNA damage by intercalating DNA
through interstrand cross-links (ICLs) between purine bases,
resulting in DNA double-strand breaks (DSBs) [6, 7]. In
response to genotoxic stress, cells activate the checkpoints
to prevent further progression through the cell cycle and ini-
tiate DNA repair [8], whereas in cancer cells, inappropriate
or aberrant activation of the DNA damage response network
is associated with resistance to platinum [9, 10]. Previous
studies have shown that NER was an important mediator
for responsiveness of platinum-based chemotherapy. NER
and high activity of NER was correlated with platinum resis-
tance in EOC [11, 12]. Therefore, the identification of the
key elements in NER pathways could provide biomarkers
for early detection of platinum chemoresistance.

It is acknowledged that advanced stage EOC is prone
to metastasize to the entire abdominal cavity via peritoneal
dissemination and large amount of ascites generally
ensues. Ascites cytology is a promising alternative to pri-
mary tumor tissue sampling, especially for the elderly or
patients with poor general condition, in whom invasive
procedures may be postponed due to comorbidities [13].
Zivadinovic et al. have observed good concordance
between ascites cytology and primary tumor tissue sam-
pling. The sensitivity of cytology was 98.92%, and the
specificity was 93.6% [14]. It has been reported that the
introduction of immunohistochemistry (IHC) staining of
cell blocks obtained from ascitic fluid further improved
that accuracy of diagnosis [15].

In this study, we first analyzed the correlation between
NER-related genes and the prognosis of ovarian cancer cases
from the TCGA database and found that the high-
expression levels of Helicase POLQ-like (HELQ), Xero-
derma pigmentosum group A-binding protein2 (XAB2),
and replication protein A2 (RPA2) were associated with
the poor prognosis of ovarian cancer. Then, we further eval-
uated the role of HELQ and XAB2 in ascites cell samples as a
predictive biomarker. The predictive performance of ascites
cytology was compared with paired primary tumor tissues.

2. Materials and Methods

2.1. Bioinformatics Analysis of TCGA Dataset. The normal-
ized mRNA high-throughput sequencing data and clinical
information of tubo-ovarian high-grade serous carcinoma
were downloaded from The Cancer Genome Atlas (TCGA,
https://portal.gdc.cancer.gov) via open access in December
2018. Sixteen NER-related genes (HELQ, ERCC1, ERCC3,
ERCC4, ERCC5, ERCC6, ERCC8, DDB2, RAD23A,
RAD23B, RPA1, RPA2, RPA3, XAB2, XPA, and XPC)
were included in the study [16]. Patients who have not
undergone platinum-based chemotherapy or incomplete
follow-up information were excluded. The rest of 339
patients were divided into high and low according to the

mRNA expression of each gene. The receiver operating
characteristic (ROC) curve was employed to determine
the optimal cut-off point for expression level. And the
value at maximum Youden’s index (sensitivity+specificity-
1) was selected as the cut-off value [17, 18]. Survival anal-
ysis of overall survival (OS) and progression-free survival
(PFS) was performed.

2.2. Study Cohorts and Clinical Information Collection. All
eligible patients of the study were from the Xiangya Hospital
of Central South University, China, between January 2014 to
September 2019 and were treated in strict accordance with
the version 1 2021 NCCN guidelines [19]. Eligible patients
had to meet the following criteria: (1) The diagnosis of ovar-
ian adenocarcinoma was reached by morphology and IHC
of the ascites and tissue samples. The protocol for IHC stain-
ing was described in the study by Uehara et al. IHC stains
that showed PAX8 (+), WT1 (+), CA125 (+), CK7 (+),
CDX-2 (-), CK20 (-), and CEA (-) were recognized as ovar-
ian origin [20], (2) treated by surgical debulking and histol-
ogically confirmed as high-grade serous ovarian cancer
(HGSC), and (3) underwent at least three cycles of
platinum-based chemotherapy after surgery. Patients who
met the following criteria were excluded: (1) accompanied
with other systemic malignancies; (2) received radiotherapy,
chemotherapy, and biological therapy before cytological
evaluation or debulking; (3) treated with platinum drugs
other than cisplatin or carboplatin; (4) with incomplete clin-
ical information; (5) loss of follow-up; and (6) lack of avail-
able biopsy specimens. A total of 92 patients were included
in the study, including 60 in the training cohort and 32 in
the validation cohort. Detailed description of the process of
participants through the research was shown in Figure S1.
The following clinical parameters were retrieved from
medical records: age, pretreatment level of CA-125, volume
of ascites, residual lesion, the International Federation of
Gynecology and Obstetrics (FIGO) stage, chemotherapy
regimen, OS, and PFS. Patient follow-up was terminated
on November 1st, 2020. Patients were deemed as platinum
resistant if they had disease progression during primary
chemotherapy or disease recurrence within 6 months after
completion of primary chemotherapy, while those without
disease progression after 6 months from the end of
primary chemotherapy were deemed as platinum sensitive.
Surveillance was implemented upon completion of the
initial treatment with 3-4m interval during the first 2
years, 4-6m interval from year 2 to year 3, 6m internal
from years 3-5, and annual visits after 5 years. These visits
included symptom management, examination including a
pelvic examination, chest/abdominal/pelvic CT and CA-
125 or other tumor markers measurements. Subsequent
imaging workup was indicated for patients with elevated
CA-125, including ultrasound, CT, MRI, or PET-CT. If the
lesion is found, it will indicate the recurrence or
progression. PFI > 6 months predicts favorable response to
retreatment; <6-month PFI is defined as platinum resistant
[16, 21]. The study was approved by the Ethics Committee
Xiangya Hospital of Central South University (No.
2017068222).
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Figure 1: HELQ and XAB2 were associated with poor survival in patients with ovarian cancer. (a–c) Kaplan-Meier curves of OS and PFS
according to the expressions of HELQ, XAB2, and RPA2 in TCGA tuboovarian high-grade serous carcinoma. (d–f) Kaplan-Meier survival
curves for OS and PFS of patients with HGSC from the study cohort according to expressions of HELQ, XAB2, and RPA2 in ascites tumor
cells. (g) Kaplan-Meier survival curves for OS and PFS of patients with HGSC from the study cohort according to HELQ-XAB2 stratification
in ascites tumor cells. HELQ: helicase, POLQ like; RPA2: replication protein A2; XAB2: XPA binding protein 2; TCGA: The Cancer Genome
Atlas; OS: overall survival; PFS: progression-free survival; HGSC: high-grade serous ovarian cancer.
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2.3. Ascites Cell Samples, Paired with Primary Tumor Tissues,
Immunohistochemistry. To clarify the relationship between
the expression levels of HELQ and XAB2 in ascites tumor
cells and clinical characteristics in HGSC patients, ascites
samples were obtained for immunocytochemistry staining.
In newly diagnosed ovarian cancer patients, ascites was col-
lected during peritoneal puncture before initial cytoreduc-
tive surgery. Firstly, all samples of ascites were submitted
for routine cytologic examination. Approximately 20 to
50ml ascites was spun down at 600 g for 5 minutes. After
discarding the upper layer, the samples were fixed in 10%
formalin overnight, embedded in paraffin and finally stained
with hematoxylin-eosin (HE) or immunocytochemistry. All
paired tumor tissue specimens were collected via surgical
resection and paraffin-embedded for immunocytochemistry
analysis in the Pathology Department of Xiangya Hospital.
Paraffin-embedded ascitic fluid cells and tissue blocks were
sliced into sections with a thickness of 2.5μm. Sections were
dewaxed by turpentine, hydrated by gradient alcohol, and
heated by microwave in citric acid buffer (pH = 6:0) at
100°C for 30min to antigen retrieval. After natural cooling
at room temperature, we used 3% hydrogen peroxide solu-
tion to block endogenous peroxidase and 5% bovine serum
albumin to reduce nonspecific binding. After being washed
once or twice in PBS, the sections were incubated with a
HELQ antibody (Abclonal, A12661, 1 : 300) and a XAB2
antibody (Abcam, ab228006, 1 : 400) at 4°C overnight. The
following day, the sections were washed twice in PBS and
kept at room temperature for 1 h of secondary antibody
incubation. The immunohistochemical reaction was
observed with 3,3,0-diaminobenzidine (DAB), and hema-
toxylin was used for nuclear staining of all the tissue

sections. Stained slides were scanned into digital images by
the automatic scanning system. Five fields with highest pos-
itive expression were selected for each slice by 200x and 400x
magnification and then analyzed by Vectra 2 system. All
assessments were blinded with respect to clinical patient
data.

2.4. Statistical Analysis. Kaplan-Meier analyses and log-rank
test were used to analyze the OS and PFS of patients. Univar-
iate analyses with enter method were performed by Cox
regression survival analyses. The correlation between gene
expression and clinicopathological features was estimated
by the chi-square test, Fisher’s exact test (for categorical
variables), and binary logistic regression (for numerical var-
iables). ROC curve analysis was used to assess the accuracy
of the predicted probabilities. A P value of < 0.05 was con-
sidered statistically significant. All statistical analyses were
performed with IBM-Microsoft SPSS version 22.0, Graph-
Pad Prism 8.0, and R version 4.1.0.

3. Results

3.1. HELQ and XAB2 Were Associated with Poorer Prognosis
of EOC Patients. We analyze the survival of 16 NER-related
gene expressions in EOC patients from the TCGA database.
The results showed that high expression levels of XAB2 (for
OS, P = 0:049; for PFS, P = 0:012, Figure 1(b)) and RPA2
(for OS, P = 0:032; for PFS, P = 0:049, Figure 1(c)) were asso-
ciated with poorer prognosis. According to our previous study
demonstrating HELQ as a novel indicator of platinum-based
chemoresistance for EOC [22], we included HELQ in this
study, even though it was not statistically significant in this

Table 1: Clinicopathologic characteristics of 60 HGSC patients in Xiangya hospital.

Clinicopathologic parameters Frequency (%)
Expression level in ascites tumor cells

HELQ XAB2
High Low P High Low P

Age (year) 0.153 >0.99
≤60 48 (80) 10 38 12 36

>60 12 (20) 5 7 3 9

FIGO stage — —

I-II 3 (5) 0 3 0 3

III-IV 57 (95) 15 42 15 42

Residual disease 0.637 0.428

R0 14 (23) 2 12 2 12

R1 29 (48) 8 21 7 22

>R1 17 (28) 5 12 6 11

Ascitic fluid (ml) 0.313 0.313

≤500 15 (25) 2 13 2 13

>500 45 (75) 13 32 13 32

Chemotherapy response <0.001 0.006

Sensitive 48 (80) 6 42 8 40

Resistant 12 (20) 9 3 7 5

P value was calculated by chi-square test. HGSC: high-grade serous ovarian cancer; FIGO: International Federation of Gynecology and Obstetrics. Statistically
significant (P < 0:05).
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analysis (for OS, P = 0:312; for PFS, P = 0:334, Figure 1(a)).
Details of 16 genes involved in the NER pathway are shown
in Table S1. In the training cohort of 60 patients, better
survival was strongly associated with low expression of
HELQ (Figure 1(d)) and XAB2(Figure 1(e)) in ascites tumor
cells. Given that RPA2 expression in ascites tumor cells (5-
year survival rate, 0.83 vs 0.68, P = 0:724; median PFS, 11.3
months vs. 19.8 months, P = 0:418) was weakly correlated
with poor prognosis of HGSC patients in training cohort
(Figure 1(f)), it was not included in subsequent analyses.

Next, we stratified samples into 4 groups based on the
combination of the HELQ and XAB2 expressions in ascites
tumor cells: a high-expression HELQ/high-expression
XAB2 group, a high-expression HELQ/low-expression
XAB2 group, a low-expression HELQ/high-expression

XAB2 group, and a low-expression HELQ/low-expression
XAB2 group. We subsequently performed a survival analy-
sis. Comparisons were made between the 4 groups. The
median PFS was 22.6, 16.8, 16.6, and 15.0 months, respec-
tively (P < 0:001), and the median OS was 55.1, 49.5, 38.6,
and 38.6 months (P = 0:012), respectively (Figure 1(g)).

3.2. High Expression of HELQ and XAB2 in Ascites Tumor
Cells Were Correlated with Platinum Resistance in HGSC
Patients. The characteristics of the 60 HGSC patients were
summarized in Table 1. Subsequent analyses of HELQ and
XAB2 expressions in ascites tumor cells and clinical data
showed statistically significant increased distribution of plat-
inum resistance in patients with high-expression of HELQ
(P < 0:001) and XAB2 (P = 0:006). Other clinical features
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Figure 2: HELQ and XAB2 expressions in ascites tumor cells associated with platinum-resistant phenotype. (a) Representative
immunohistochemistry images of HELQ and XAB2 in patients with platinum-resistant and platinum-sensitive phenotypes. (b)
Frequency of platinum-resistant patients from the study cohort was compared according to HELQ and XAB2 expressions. (c) Receiver
operator characteristic curves with AUC according to relative expressions of HELQ and XAB2 in ascites tumor cells of patients with
HGSC. AUC: area under the curve.

Table 2: Diagnostic performances of HELQ and XAB2 expression levels in ovarian cancer with platinum resistance.

Triage
Diagnostic accuracy (95% CI)

Sensitivity Specificity PPV NPV

High expression of HELQ 75% (43-93) 87.5% (74-95) 60% (33-83) 93.3% (81-98)

High expression of XAB2 58.3% (29-84) 83.3% (69-92) 46.7% (22-73) 88.9% (75-96)

High expression of both HELQ and XAB2 50% (22-78) 100% (91-100) 100% (52-100) 88.9% (77-95)

PPV: positive predictive value; NPV: negative predictive value.
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such as age, stage, and residual disease did not harbor any
significant distribution variation.

To confirm the correlation between HELQ and XAB2
expressions and platinum-based chemotherapy response in
HGSC, we noticed that high expression of HELQ and
XAB2 in ascites tumor cells were strongly correlated with
platinum resistance (Figure 2(a)). In addition, we compared
the frequency of platinum-resistant phenotype in cases with
high or low expression level of HELQ and XAB2. We
observed platinum resistance enrichment in the high expres-
sion of HELQ (9/15 vs. 3/45, P < 0:001) and XAB2 (7/15 vs.
5/45, P = 0:006) (Figure 2(b)), suggesting that HELQ and
XAB2 expressions in ascites tumor cells could be predictors
of platinum resistance in HGSC.

Then, we investigated the relative expression of HELQ
and XAB2 in ascites tumor cells utilizing ROC curves, to
evaluate the performance of HELQ and XAB2 as predictors.
ROC curves for HELQ alone, XAB2 alone, and combination
of HELQ and XAB2 demonstrated the highest area under
the curve (AUC) for the combination of HELQ and XAB2
(AUC = 0:944), followed by HELQ alone (AUC = 0:913)
and lastly by XAB2 alone (AUC = 0:865) (Figure 2(c)).

Table 2 showed the diagnostic performance of HELQ
and XAB2 expression levels in ovarian cancer with platinum
resistance in study cohort. Positive predictive values (PPV)
for high expression of HELQ and XAB2 individually in plat-
inum resistance were 60% and 46.7%, respectively. PPV for
platinum resistance improved (100%) when using dual
markers.

3.3. Expression of HELQ and XAB2 in Ascites Tumor Cells
Was Positively Correlated with Chemoresistance in HGSC
Patients in Validation Cohort. The clinicopathologic

characteristics of 32 HGSC in the validation cohort were
summarized in Table 3. A higher frequency of platinum
resistance in patients with high expression of HELQ (4/6
vs 3/26, P = 0:012) was observed in validation cohort.
However, the platinum resistance enrichment in the high
expression of XAB2 was insignificant (3/6 vs. 4/26, P =
0:101) (Figure 3(a)). Consistent with the study cohort,
ROC curves showed the highest AUC for the combination
of HELQ and XAB2 (AUC = 0:863), followed by HELQ
alone (AUC = 0:843) and lastly by XAB2 alone
(AUC = 0:720) (Figure 3(b)). We observed a 5.7 times higher
risk of developing platinum resistance in cases with high
expression of HELQ in ascites tumor cells (relative risk
(RR) 5.7, 95% CI 1.7-19.2). The platinum resistance risk
was also higher in cases with high expression of XAB2 (RR
3.2, 95% CI 0.9-10.8) and with coexpression of HELQ and
XAB2 (RR 5.2, 95% CI 1.8-15.2) (Figure 3(c)).

To validate the reliability of HELQ and XAB2 results in
ascites tumor cells, we also determined the expression of
HELQ and XAB2 in paired primary tumor tissues
(Figure 4(a)). Consistent with ascites samples, a trend
toward platinum resistance enrichment was observed in
cases with high expression of HELQ and XAB2 in paired
tumor tissues (Figures 4(b) and 4(c)), which supported
HELQ and XAB2 as predictors of platinum resistance.

4. Discussion

Platinum-based chemotherapy has drastically improved the
prognosis of EOC patients. Unfortunately, resistance to plat-
inum drugs frequently occurs and limits the efficacy of
chemotherapy. However, the absence of an effective

Table 3: Clinicopathologic characteristics of 32 HGSC patients in validation cohort.

Clinicopathologic parameters Frequency (%)
Expression level in ascites tumor cells

HELQ XAB2
High Low P High Low P

Age (year) 0.590 0.590

≤60 25 (78) 4 21 4 21

>60 7 (22) 2 5 2 5

FIGO stage 1.00 1.00

I-II 1 (4) 0 1 0 1

III-IV 31 (97) 6 25 6 25

Residual disease∗ 0.049 0.040

R0 13 (41) 0 13 0 13

R1 12 (38) 4 8 4 8

>R1 6 (19) 1 5 2 4

Ascitic fluid (ml) 0.361 0.059

≤500 13 (41) 1 12 0 13

>500 19 (59) 5 14 6 13

Chemotherapy response 0.012 0.101

Sensitive 25 (78) 2 23 3 22

Resistant 7 (22) 4 3 3 4
∗With one patient whose residual disease was unavailable. HGSC: high-grade serous ovarian cancer; FIGO: International Federation of Gynecology and
Obstetrics.
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predictor of chemoresistance prior to systemic therapy initi-
ation has resulted in patients receiving unindividualized
chemotherapy regimen regardless [23, 24]. DNA damage
repair (DDR) plays a critical role in the occurrence and
development of numerous cancers [25–28]. Abnormal acti-
vation of DNA damage repair, such as the NER pathway,
has been confirmed to be associated with the prognosis
and platinum resistance in ovarian cancer [22, 29]. Previous
study had confirmed that the high expression of HELQ in
EOC tissues was associated with poor prognosis and plati-
num resistance [30].

70% of ovarian cancer is diagnosed at advanced stages,
accompanied by extensive pelvic-abdominal metastasis and

large amounts of ascites [31, 32]. Systemic therapy is indi-
cated for these patients, and it is of great importance to
obtain an accurate pathological diagnosis prior to the initia-
tion of treatment. Ascites cytology, as a less invasive and
more accessible alternative to primary tumor tissue biopsy,
also provides prediction of chemoresistance. Therefore, the
number of studies concerning ascites in ovarian cancer has
been increasing. Goto et al. suggested that p16INK4a expres-
sion in ascites cells was a candidate marker in predicting
primary response to chemotherapy and prognosis [4]. How-
ever, concerns have been raised about the application of
ascites cytology in ovarian cancer regarding its reliability
[33]. Previously, ascites cytology has been investigated as
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Figure 4: HELQ and XAB2 expressions in tumor tissues were correlated with that in ascites tumor cells. (a) Representative
immunohistochemistry images of HELQ and XAB2 in tumor tissues of HGSC patients with platinum-resistant and platinum-sensitive
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part of the diagnostic module for ovarian cancer and its effi-
cacy has been proved [34, 35]. Additionally, ascites cytology
has demonstrated noninferiority to primary tumor tissue
sampling and blood samples in the determination of the
patient’s BRCA status [36, 37]. Our current finding showed
that HELQ and XAB2 expressions in the ascites tumor cells
correlated with HGSC patient’s response to platinum-based
chemotherapy and clinical outcomes indicate the potential-
ity of HELQ and XAB2 as independent biomarkers to
predict HGSC patients’ response to platinum drugs. More
importantly, we observed good accordance of HELQ and
XAB2 expressions between ascites tumor cells and paired
tumor tissues tumor tissues in our study. Hence, the assess-
ment of HELQ and XAB2 expression levels in ascites tumor
cells may help clinicians to design individualized treatment
strategies for HGSC patients.

Our study has confirmed that ovarian cancer patients
with the high expression of HELQ or XAB2 had decreased
PFS and OS, respectively. HELQ, an ATP-dependent 3′-5′
DNA helicase, plays a pivotal role in DNA processing,
including homologous recombination (HR) repair [30], by
regulating related proteins in the NER pathway which, in
turn, contributes to cellular response to cisplatin and
patients’ response to platinum-based chemotherapy [20].
In this study, the high expression of HELQ and XAB2 in
ascites tumor cells may lead to an increase of the ability of
DNA damage repair, such as the HR or NER pathway, and
a decrease in apoptosis, which led to tumor cell tolerance
to platinum drugs. As a member of the NER pathway,
XAB2 protein participates in many biological processes such
as transcription-couple DNA repair, ATRA-induced cellular
differentiation, splicing, mRNA export, and transcription
[38, 39]. Recent studies indicated that XAB2 also partici-
pated in the end step of HR [40]. However, the mechanism
of HELQ and XAB2 leading to platinum resistance in ovar-
ian cancer needs further exploration.

This study was limited by a relatively small number of
cases and possible selection bias. Further analysis by a large
prospective study is needed to confirm our findings. How-
ever, the results of our study suggested the assessment of
HELQ and XAB2 expression levels in cytology of ascites
could be a less invasive and convenient predictive method
in HGSC especially in consideration of chemotherapy.

5. Conclusion

In summary, our findings demonstrated that immunocyto-
chemistry for HELQ and XAB2 expressions in ascites tumor
cells are applicable in prediction of the primary response to
chemotherapy and prognosis. We recommend a large multi-
center prospective study to confirm the clinical significance
of HELQ and XAB2 in ascites tumor cells in HGSC be
performed.
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Purpose. The current clinical classification of hepatocellular carcinoma (HCC) cannot well predict the patient’s possible response
to the treatment plan, nor can it predict the patient’s prognosis. We use the gene expression patterns of patients with
hepatocellular carcinoma to reveal the heterogeneity of hepatocellular carcinoma and analyze the differences in prognosis and
immunotherapy response of different immune subtypes. Methods. Firstly, using the hepatocellular carcinoma expression profile
data of TCGA, combined with the single sample gene set enrichment analysis (ssGSEA) algorithm, the immune enrichment of
the patient’s tumor microenvironment was analyzed. Subsequently, the spectral clustering algorithm was used to extract
different classifications, and the cohort of hepatocellular carcinoma was divided into 3 subtypes, and the correlation between
immune subtypes and clinical characteristics and survival prognosis was established. The patient’s risk index is obtained
through the prognostic prediction model, suggesting the correlation between the risk index and various types of immune cells.
Results. We can divide the liver cancer cohort into three subtypes: stromal cell activated immune-enriched type (A-IS), general
immune-enriched type (N-IS), and non-immune-enriched type (non-IS). The 3-year survival rate of TCGA’s A-IS is higher
than that of N-IS and non-IS, and the three components are significantly different (p = 0:017). The 3-year survival rates of
ICGC’s A-IS and N-IS groups were higher than those of the non-IS group. The analysis of the correlation between the risk
index and immune cells showed that the patient’s disease risk was significantly positively correlated with cancer-associated
fibroblast (CAF) stimulated cell, activated stroma cell, and anti-PD-1 resistant cell. Conclusion. The tumor gene expression
characteristics of patients with hepatocellular carcinoma can be used as a basis for clinical patient classification. Different
immune subtypes are closely related to survival prognosis. Different immune cell states of patients may lead to different disease
risk levels. All these provide important references for the clinical identification and prognosis prediction of hepatocellular
carcinoma.
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1. Introduction

Liver cancer is still a global health challenge, which is
expected to have more than 1 million cases by 2025. Hepato-
cellular carcinoma (HCC) is the most common form of liver
cancer, accounting for 90% of cases [1, 2]. Its main risk fac-
tors include hepatitis B virus (HBV) and hepatitis C virus
(HCV) infections [3–6], and metabolic syndrome and alco-
hol intake are becoming more common risk factors [7, 8].

The classification of HCC is based on the Barcelona-
Clinical-Liver Cancer (BCLC) classification [2, 9, 10]. The
system defines five subcategories of HCC and provides spe-
cific treatment recommendations for each category, includ-
ing surgical resection, liver transplantation, radiofrequency
ablation, chemoembolization, and multikinase inhibitor
sorafenib [2]. However, the high recurrence rate of resect-
able liver cancer leads to a poor prognosis [11]. Recurrence
seriously affects the long-term survival of HCC patients
[12]. Due to the emergence of primary and secondary drug
resistance, sorafenib only works in some patients with
HCC, and its therapeutic effect is limited. Primary drug
resistance is mainly due to genetic heterogeneity [13]. To
make matters worse, almost all patients will develop second-
ary resistance to sorafenib within 6 months, and the recur-
rence rate of patients has not been significantly reduced
[14]. At present, it is generally believed that the high hetero-
geneity of HCC, including genetic heterogeneity and
immune heterogeneity, is the main reason for treatment fail-
ure [15, 16]. Among them, immune heterogeneity is one of
the main reasons why current therapies are ineffective
against most types of cancer, including HCC. Therefore, a
comprehensive and accurate understanding of the heteroge-
neity of the tumor immune microenvironment of HCC is
essential to improve the efficiency of personalized treatment
of HCC.

In recent years, analysis and research based on HCC
high-throughput data expression profile have been devoted
to unraveling the molecular characteristics of HCC hetero-
geneity [17–20]. Although researchers have stratified clinical
samples based on molecular markers, they have not yet fully
clarified the correlation between the new subtypes and clinic
pathological characteristics. Recently, researchers have
divided HCC patients into three subgroups from the per-
spective of metabolism, namely, metabolic subgroup (S-
Mb), microenvironment disorder subgroup (S-Me), and
proliferation subgroup. Among them, the S-Me subtype
enriched in proteins involved in immunity and inflamma-
tion and has a worse prognosis than S-Mb [21].

We evaluated the expression profile characteristics,
immune enrichment characteristics, matrix enrichment
characteristics, prognostic value, and other information of
the HCC cohort, aiming to characterize the molecular char-
acteristics of HCC by developing immune and matrix-
related gene expression profiles. Comprehensive analysis
was performed using the metadata set of 371 HCC human
samples from The Cancer Genome Atlas (TCGA), and
GSE144269 (n = 70), GSE14520_cohort1 (n = 22),
GSE14520_cohort2 (n = 225), GSE25097_GPL10687 (n =
268), GSE36376_GPL10558 (n = 240), and ICGC_LIRI_JP

(n = 232) data sets are used to verify the enrichment of
immune-related molecules.

All samples are associated with clinical information, and
the correlation between patient subtype and survival rate is
verified in the ICGC data set. Three subtypes of HCC have
been preliminarily identified: stromal cell-activated
immune-enriched type (A-IS), general immune-enriched
type (N-IS), and non-immune-enriched type (non-IS).
Then, we analyzed the metadata set of immune activity char-
acteristics, clinical characteristics, and prognostic value. Sub-
class A-IS shows active stromal enrichment, high
immunological activity, and good prognosis. The subtype
N-IS exhibits normal stromal activity, average middle
immune activity, and normal survival. The subtype non-IS
shows low matrix enrichment, low immune-related enrich-
ment, and poor prognosis. In this study, a new classification
of HCC was established based on the gene expression profile
of immunity and matrix, thereby further revealing the diver-
sity of human HCC.

2. Results

2.1. Classification of Gene Expression Patterns in Patients
Presenting with Hepatocellular Carcinoma. We applied the
spectral clustering algorithm to extract expression patterns
from liver cancer samples in TCGA cohort, based on the
expression profile data of TCGA (Figure 1(a)). At the same
time, we used t-Distributed Stochastic Neighbor Embedding
(tSNE) to show the subgroups among samples (Figure 1(b)).
Based on the above classification, we further analyzed the
immune enrichment situation of the tumor microenviron-
ment of each subgroup through the single sample gene set
enrichment analysis (ssGSEA) algorithm. The immune-
related gene set comes from the following references
(Table 1).

The analysis results showed that there was a subtype
with immune-related genetic enrichment (IS) in the cohort,
and the rest were non-IS types, that is, types with less
immune infiltration (Figure 1(c)). We found that patients
with immune-enriched subtypes were significantly enriched
in the characteristics of identifying immune cells or immune
responses (p < 0:05). In addition, even in the presence of
massive immune cells, stromal cells play an essential role
in tumor immune escape. Therefore, we further dissected
the enrichment of stromal cells in the gene expression profile
of immune enrichment subtypes. Likewise, we found that
there are features of activated stromal response in the cohort
by ssGSEA (Figure 1(c)). Overall, we divided hepatocellular
carcinoma cohort into three subtypes: A-IS, N-IS, and
non-IS.

2.2. Validation of Immune Subtype Classification of Cohort
Patients. As shown below, the three subtypes have the fol-
lowing immune differences (Figure 2(a)). Compared with
non-IS and N-IS (Figure 2(a), blue box), A-IS subtypes
showed significant enrichment in identifying immune cells
or immune response characteristics (all p < 0:01) including
B cells, immune enrichment score, macrophages, mast cells,
and Th1 cells. We further compared the differentially
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expressed genes of IS (including A-IS and N-IS) and non-IS
subtypes, mainly using the limma algorithm and p < 0:05 as
the criterion for significant differences (Table S1). At the
same time, the genes with significant differences between
A-IS and N-IS subtypes were compared (Table S2). We
found that representative genes with significant differences
are closely related to immune recognition and immune
response. In order to verify the accuracy and consistency
of the analysis method, we use the same strategy to verify
it in other independent data. Our verification strategy is to
select the top 50 genes that are differentially upregulated to
construct a gene set and use the ssGSEA algorithm to
predict the enrichment of other data. In addition, we
selected cells with significant differences in immunological
activity for verification. The analysis results were shown
below including the GSE144269 data set (Figure 2(b), n =
70), the GSE14520_cohort1_test data set (Figure 2(c), n =

22), the GSE14520_cohort2_train samples (Figure 2(d), n
= 225), the GSE25097_GPL10687 samples (Figure 2(e), n
= 268), GSE36376_GPL10558 (Figure 2(f), n = 240) data
set, and ICGC_LIRI_JP samples (Figure 2(g), n = 232). In
the Mongolian hepatocellular carcinoma (HCC) patient
cohort, we found that compared with the HCC1 patient
population, immune and stromal enrichment was common
in the HCC2 patient population (Figure 2(b)). Each subject
in the HCC2 panel has hepatitis virus HDV and HBV
infection [22]. Studies have shown that HDV RNA pattern
recognition can activate immunity [23], and it has also
been reported that L-HDAg, consisting of 214 amino acids,
can directly induce IFN signaling [24]. Moreover, HBV-
HDV coinfection shows a strong immune response [23].
xCell-aDC, B cells, immune enrichment score, myeloid-
derived suppressor cells (MDSC), activated stroma, and
other immune- and stromal-related features represented in

HCC6 HCC2 HCC4 HCC3 HCC5 HCC1 HCC7 HCC8
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NA
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Figure 1: Classification of gene expression patterns in patients presenting with hepatocellular carcinoma. (a) Classification of gene
expression patterns of hepatocellular carcinoma patients. The spectral clustering algorithm is used to extract expression patterns from
hepatocellular carcinoma samples in TCGA cohort. According to different expression patterns, patients can be divided into 8 subgroups
including HCC1, HCC2, HCC3, HCC4, HCC5, HCC6, HCC7, and HCC8. SpC stands for spectral clustering. (b) The plot shows the
tSNE clustering of different subsets, and the distribution of each subtype is relatively concentrated. (c) The ssGSEA algorithm reveals the
immune enrichment of the tumor microenvironment of each subtype, and divides all patients into three subgroups based on immunity
and stromal-related features. The latest taxa included stromal cell-activated immune-enriched subtype (A-IS), normal immune-enriched
subtype (N-IS) and non-immune-enriched subtype (non-IS).
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most of HCC2 in GSE14520_cohort1 (Figure 2(c)).
Similarly, certain subgroups of GSE14520_cohort2, mainly
including HCC1 (pink box) and HCC3 (blue box), arose
the enrichment of immune and stromal signatures
(Figure 2(d)). HCC3, HCC5, HCC6 and HCC7 in the
GSE25097_GPL10687 cohort showed biomarker
enrichment on the immune and stoma response (Figure 2
(e)). Certain subgroups in the ICGC_LIRI_JP cohort,
mainly including HCC6, HCC4, and HCC7, have
enrichment of immune and stromal features (Figure 2(f)).
However, in the GSE36376_GPL10558 (Figure 2(e))
cohort, multiple subtypes have patients with both immune-
and matrix-related enrichment and nonenriched. It
suggests that the existing HCC classification method
cannot cover all patients. Our research strategy might
provide more references for the clinical classification of
HCC patients.

2.3. Differences in Immune Subtypes Are Related to Clinical
Features and Survival Prognosis. We have preliminarily
determined that different patient subsets have differences
in immune- and matrix-related signatures. So, whether or
what clinical information might be associated with immune
alterations? Firstly, we collected and sorted out the clinical
information of all patients within three immune subtypes
(Table 2). The statistical results showed that clinical indica-
tors such as age_at_initial_pathologic_diagnosis, neo-
plasm_histologic_grade, and vascular_tumor_cell_type in
different subgroups are strikingly different among three sub-
populations (p < 0:01). The value of albumin_result_upper_
limit of the A-IS subgroup is significantly larger than that of
the N-IS and non-IS subgroups, since the age at initial path-

ologic diagnosis has differential survival advantages in fibro-
lamellar hepatocellular carcinoma (FLHCC) and
hepatocellular carcinoma (HCC) [25]. And, the albumin/
globulin ratio can provide guidance for the postoperative
prognosis and survival prediction of HCC patients [26].
Therefore, prognostic inquiry among all subtypes matters
hugely. Fortunately, we found that the three-year survival
of A-IS was higher than that of N-IS and non-IS, and there
is significance of intergroup variations (p value < 0.05) in
TCGA cohort (Figure 3(a)). Nevertheless, the five-year sur-
vival of A-IS was not improving in the same cohort
(Figure 3(b)). Similarly, the three-year (Figure 3(c)) and
ten-year (Figure 3(d)) survival of patients in the ICGC
cohort was compared in detail, which exhibited similar
trends; that is, A-IS and N-IS have higher survival than
non-IS.

2.4. Prognostic Prediction Model Based on Signatures of
Tumor Microenvironment. In order to clarify the molecular
markers related to the prognosis of HCC patients, we
screened the characteristic genes of immune subtypes, com-
bined with the random forest algorithm to construct a pre-
dictive model. We took TCGA data as the training set and
filter to the following signatures. At the same time, the risk
coefficient (β value) of Cox multiple regression is introduced
to predict the risk coefficient of each patient. We calculated
the risk score (risk score) of each patient based on the
expression of the 96-gene panel and the multiple Cox regres-
sion coefficient (Table 3). These 96 genes were enriched in
the calcium signaling pathway and neuroactive ligand-
receptor interaction pathway, which have been known to
be involved in the HCC. The risk index is used to analyze

Table 1: Immune-related signatures and references.

Signature name Reference

Immune enrichment score Yoshihara et al. Nat Commun. 2013 [37]

6-gene IFN-γ signature Chow et al. J Clin Oncol. 2016 (suppl) [56]

Activated stroma Moffitt et al. Nat Genet. 2015 [43]

Immune cell subsets Cancer Genome Atlas Network. Cell. 2015 [57]

T cells Bindea et al. Immunity. 2013 [58]

CD8 T cells Bindea et al. Immunity. 2013 [58]

T. NK. metagene Alistar et al. Genome Med. 2014 [59]

B-cell cluster Iglesia et al. Clin Cancer Res. 2014 [60]

Macrophages Bindea et al. Immunity. 2013 [58]

Cytotoxic cells Bindea et al. Immunity. 2013 [58]

Immunophenoscore Charoentong et al. Cell Rep. 2017 [61]

T cell-inflamed GEP Cristescu et al. Science. 2018 [36]

Expanded immune signature Ayers et al. J Clin Invest. 2017 [62]

TGF-β-associated ECM Chakravarthy et al. Nat Commun. 2018 [35]

MDSC Yaddanapudi et al. Cancer Immunol Res. 2016 [63]

CAF Calon et al. Cancer Cell. 2012 [64]

TAM M2/M1 Beyer et al. PLoS One. 2012 [65]

CD8 T cell exhaustion Giordano et al. EMBO J. 2015 [66]

T cell exhaustion early/late stage Philip et al. Nature 2017 [67]

Nivolumab responsive Riaz et al. Cell. 2017 [68]
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Figure 2: Validation of immune subtype classification of cohort patients. (a) Comparison of the striking differences in the immune
microenvironment of the three subtypes. The red box represents non-immune-enriched subtype (non-IS), the blue box represents stromal cell-
activated immune-enriched subtype (A-IS), and the green box represents normal immune-enriched subtype (N-IS). Anti-PD-1 resistant, B cell,
immune enrichment score, macrophages, and other immune characteristics were significantly different among three subgroups (ANOVA
test, p < 0:01). (b) The ssGSEA algorithm was performed on the GSE144269 data set (n = 70). Th1 cells, CD8 T cell exhaustion, MDSC,
expanded immune signature, and other immune signatures were enriched in HCC2 subtypes instead of HCC1. (c) The ssGSEA algorithm
was performed on the GSE14520 (cohort1_test) data set (n = 22). Compared with HCC1, majority of HCC2 subjects showed an enrichment
of immune and stromal-related features. It specifically included B cells, immune enrichment score, MDSC, macrophages, and other
signatures. (d) Molecular marker enrichment of patients in the GSE14520 (cohort2_train) data set (n = 225). Among existing clusters, HCC3
subclass showed strong immunity and stroma enrichment, followed by HCC1. (e) Enrichment of immune and stromal marker in subjects
from the GSE25097_GPL10687 data set (n = 268). Among existing clusters, HCC3 subclass showed strong immunity and stroma enrichment,
followed by HCC5 and HCC6. (f) Enrichment of immune and stromal marker in subjects from the GSE25097_GPL10558 data set (n = 240).
Among existing clusters, HCC1 and HCC6 subclass showed moderate immunity and stroma enrichment. (g) Enrichment of immune and
stromal marker in subjects from the ICGC_LIRI_JP data set (n = 232). Among existing clusters, HCC6 subclass showed strong immunity and
stroma enrichment, followed by HCC4 and HCC7. (h) A stack barplot for percentage of patients in non-IS, A-IS, and N-IS subtypes among
the data sets.
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Figure 3: Continued.
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Figure 3: Differences in immune subtypes are related to clinical features and survival prognosis. (a) Comparison of 3-year survival among
subgroups in TCGA cohort. The survival of patients was significantly different (p = 0:017) among the three types, and the survival of the A-
IS subgroup (yellow line) was higher than that of N-IS (blue line) and non-IS (red line). (b) Comparison of 5-year survival rate of TCGA
cohort. The analysis results showed that there was no significant difference among subtypes (p = 0:23). (c) Comparison of 3-year survival
rate of the ICGC cohort. The survival was different among subgroups, and the survival of the A-IS subgroup (yellow line) was slightly
higher than that of N-IS (blue line) and much higher than that of non-IS (red line). (d) Comparison of 6-year survival rates of ICGC
patients. Compared with N-IS and non-IS subtypes (5 years), the overall survival of A-IS (6 years) is longer.
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Table 3: Genes in the signature of survival prediction model.

Features Multi_beta Multi_HR Multi_95%_CI_for_HR Multi_p.value

ACRV1 0.284056 1.32851 0.974712-1.81072 0.0722009

AXDND1 0.666513 1.94743 1.493-2.54019 8.83E-07

B3GALT2 -1.88552 0.15175 0.0940178-0.244934 1.17E-14

ATP6V0D2 -0.266228 0.766265 0.628065-0.934874 0.00869992

ACPT -0.532479 0.587148 0.465202-0.74106 7.36E-06

BRDT 0.890815 2.43711 1.7581-3.37837 8.98E-08

C10orf90 -0.321027 0.725404 0.590832-0.890626 0.00216696

BCO2 -0.606966 0.545002 0.369291-0.804318 0.00223885

ADAM32 0.740927 2.09788 1.61513-2.72492 2.81E-08

APOC4 -0.44861 0.638515 0.492737-0.827422 0.000692331

BSND 0.177579 1.19432 0.979831-1.45577 0.0787091

C12orf56 0.651933 1.91925 1.47251-2.50152 1.42E-06

C3orf36 -0.51696 0.596331 0.471639-0.753988 1.57E-05

CCNJL 0.807457 2.2422 1.47032-3.41929 0.000176535

DRD1 -0.731418 0.481226 0.373178-0.620558 1.72E-08

BAI2 1.06687 2.90626 1.99042-4.24349 3.31E-08

ERMN -1.53079 0.216365 0.146571-0.319394 1.32E-14

ADAM12 3.4097 30.2563 12.0407-76.0287 4.08E-13

ADRA1A -0.520536 0.594202 0.462577-0.763281 4.62E-05

GPR17 0.60065 1.8233 1.45229-2.2891 2.29E-07

HOXD10 0.174129 1.19021 0.989576-1.43152 0.0644995

C6orf223 -0.451106 0.636924 0.515442-0.787036 2.94E-05

SPAG6 -0.237856 0.788316 0.663102-0.937174 0.0070345

ACADL -1.0514 0.349449 0.253158-0.482365 1.63E-10

CACNA1G -0.410589 0.663259 0.532399-0.826285 0.000250567

CCDC36 0.37175 1.45027 1.14484-1.83719 0.00206295

CLEC2L 0.659235 1.93331 1.54772-2.41497 6.31E-09

CRISPLD1 -1.56237 0.209639 0.139785-0.314403 4.17E-14

FAM163B 0.347517 1.41555 1.09563-1.82888 0.00784528

HAVCR1 -0.281462 0.754679 0.62655-0.909011 0.0030281

MAMDC2 -1.1539 0.315405 0.204155-0.487279 2.00E-07

SFTPD 0.383284 1.46709 1.16916-1.84095 0.000934926

TKTL1 0.302278 1.35294 1.11067-1.64806 0.0026775

PPP2R2C -0.546543 0.578948 0.46423-0.722013 1.23E-06

RTL1 0.444023 1.55897 1.22861-1.97815 0.000257703

TMC2 0.228553 1.25678 1.00585-1.57031 0.0442939

CYP19A1 0.410575 1.50768 1.23172-1.84548 6.88E-05

EPO 0.440563 1.55358 1.24005-1.94638 0.000127753

NKPD1 -0.297478 0.742689 0.575869-0.957833 0.0219126

SLC4A10 0.390634 1.47792 1.1312-1.9309 0.00418663

C15orf43 0.345474 1.41266 1.13902-1.75205 0.00166174

CLDN18 -0.545319 0.579657 0.462226-0.726921 2.34E-06

DPYSL4 1.17553 3.23985 2.29182-4.58003 2.82E-11

GNG4 0.383981 1.46812 1.16163-1.85547 0.0013088

GPM6A 0.777221 2.17542 1.57699-3.00094 2.19E-06

GPR18 -0.660017 0.516843 0.358506-0.74511 0.000405541

MYOCD -0.409451 0.664015 0.474862-0.928514 0.0166865

NAV2.AS4 0.368257 1.44521 1.16618-1.791 0.000766567
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Table 3: Continued.

Features Multi_beta Multi_HR Multi_95%_CI_for_HR Multi_p.value

PGA5 0.648481 1.91263 1.4807-2.47057 6.85E-07

SLC35F3 0.229401 1.25785 1.07694-1.46914 0.00378439

SOX8 -0.482409 0.617294 0.443993-0.858238 0.00411509

CD79A -2.0343 0.130772 0.073325-0.233227 5.52E-12

HOXC6 0.250183 1.28426 1.07384-1.53591 0.0061387

MAGEA10 -0.87019 0.418872 0.317794-0.552099 6.58E-10

NKAIN1 -0.316253 0.728875 0.602838-0.881263 0.00109518

NKX3.2 0.497165 1.64405 1.28246-2.1076 8.74E-05

POU3F2 -0.604137 0.546546 0.428564-0.697007 1.12E-06

PSAPL1 -0.189652 0.827247 0.692495-0.988221 0.0365659

RCOR2 -0.505268 0.603344 0.455672-0.798872 0.000418987

TRAT1 1.94154 6.96945 3.92159-12.3861 3.65E-11

UBASH3A -2.19459 0.111404 0.0547494-0.226683 1.41E-09

CDH10 0.579573 1.78528 1.39972-2.27703 3.03E-06

CHRND 0.165047 1.17945 1.00318-1.38669 0.0456736

CLEC17A -0.482991 0.616935 0.468195-0.812928 0.000600521

COL25A1 -0.198214 0.820195 0.673116-0.99941 0.0493201

COLEC10 0.563006 1.75594 1.27602-2.41638 0.000547644

CRHBP 1.5943 4.92489 2.96712-8.17444 6.97E-10

DHH 0.719224 2.05284 1.44977-2.90677 5.06E-05

FAM129C 0.676126 1.96625 1.41399-2.7342 5.84E-05

FAM72D 0.509919 1.66516 1.16518-2.37967 0.00512327

GABRQ 0.287478 1.33306 0.99848-1.77976 0.0512178

GPR182 -0.322767 0.724142 0.533903-0.982168 0.0379242

HOXD3 0.755311 2.12827 1.62083-2.79459 5.48E-08

IGJ 0.333382 1.39568 0.896479-2.17286 0.139915

MAGEA6 -0.372357 0.689108 0.565764-0.839343 0.000215221

MS4A1 0.565355 1.76007 1.26789-2.44331 0.00072941

OGN -0.228948 0.79537 0.647752-0.976629 0.0288351

OR13A1 0.299903 1.34973 1.10913-1.64252 0.00275417

SAA2 1.17003 3.22208 2.18463-4.75219 3.60E-09

VCX3A 0.585063 1.7951 1.36651-2.35812 2.63E-05

DLX2 -0.2672 0.76552 0.621962-0.942213 0.0116782

GFRA3 -0.263969 0.767997 0.644168-0.91563 0.00325573

KIF5A 0.319303 1.37617 1.09699-1.7264 0.00577724

MEP1A 0.354055 1.42483 1.18877-1.70777 0.000127605

PAGE2 -0.463863 0.62885 0.504242-0.78425 3.84E-05

PANX3 0.720169 2.05478 1.47722-2.85816 1.89E-05

PIP5K1B -1.29461 0.274003 0.190459-0.394195 3.03E-12

PNCK -0.505915 0.602954 0.485959-0.748116 4.29E-06

PRICKLE1 2.16419 8.70756 4.44639-17.0524 2.77E-10

RGS6 -0.611302 0.542644 0.41516-0.709275 7.67E-06

RSPO3 -0.412661 0.661887 0.493666-0.88743 0.00581211

SLC22A8 -0.259751 0.771243 0.6545-0.908811 0.00192368

SLC30A8 -0.295976 0.743806 0.565241-0.978781 0.0345933

TCF24 -0.526444 0.590702 0.448147-0.778603 0.000187066

TDRD5 0.277834 1.32027 1.11272-1.56653 0.00145269

XCR1 0.29765 1.34669 1.01721-1.78289 0.0376024
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Figure 4: Continued.
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its relationship with patient survival and to draw the K-M
survival curve (Figure 4(a)). Similarly, we use the patient’s
risk index to verify in the test set of the ICGC database
(Figure 4(b)).

Based on the patient’s immune subtypes and differences
in survival, we want to know which immune cells are related
to the patient’s disease risk. Therefore, by establishing the
correlation between the patient’s risk index and immune
cells in TCGA cohort, and taking p < 0:05 as the significant
correlation, the immune cells related to the patient’s disease
risk were screened out (Figure 4(c)).

3. Discussion

The HCC ecosystem, which is mainly composed of tumor
cells and immune cells, is complex and dynamic. Due to
drug resistance or immune escape, the heterogeneity at all

levels from single cells to lesions reduces the therapeutic
effect [27]. In the past decade, many efforts have been made
to use multiregional and high-throughput analysis to study
intratumoral heterogeneity [28–30]. Most studies focus on
the genetic changes of HCC cells; this study is an attempt
to use computational biology to study the immune-related
heterogeneity of HCC at the genomic level. In this study,
we tried to construct its correlation with survival prognosis
based on the patient’s immunotype and the differential genes
screened. Our findings confirm that the prognostic survival
of A-IS is significantly higher than that of N-IS. These find-
ings are consistent with existing studies, namely, other
microenvironmental factors (for example, angiogenesis and
extracellular matrix contribute more immune heterogeneity)
[27]. Therefore, intervention in the immune status of the
HCC microenvironment may be a suitable strategy, because
such treatments may affect all lesions of the individual and

Activated stroma

CAF–stimulated

Adipocytes

CD8 T cells

CD8+ naive T−cells

CLP
Cytotoxic cells
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Hepatocytes
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Figure 4: Prognostic prediction model based on signatures of tumor microenvironment. (a) Kaplan-Meier survival curve of the high- and
low-risk groups in TCGA training set. The horizontal axis represents time (unit: year); the vertical axis represents survival probability. The
low-risk group (blue line) presented a high three-year survival probability (35.12%); however, the high-risk group (yellow) presented a low
three-year survival rate (4.07%). (b) Kaplan-Meier survival curve of the high- and low-risk groups in the ICGC testing set. The low-risk
group (blue line) presented a high three-year survival probability (25.33%); however, the high-risk group (yellow) presented a low three-
year survival rate (14.29%). (c). Immune cells associated with the risk index of TCGA patients. The red line indicates a positive
correlation between the risk index and immune cells, and the gray line indicates a negative correlation between the risk index and
immune cells. The size of the circle indicates different correlation coefficients, and the larger the area of the circle, the larger the
correlation coefficient.
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may also be applicable for a group of patients. More impor-
tantly, many new tools for immunotherapy have been devel-
oped and improved. In addition, through comprehensive
analysis, we have observed that some immune cells are sig-
nificantly related to patient classification and disease risk,
providing a comprehensive new understanding of immuno-
phenotyping and risk prediction, and proposed possible tar-
gets for intervention in HCC.

Enhancing host immunity may be beneficial to the cure
of cancer. Researchers found infiltrating T cells in HCC
and discovered the enrichment of Treg cells and the deple-
tion of CD8+ T cells [31]. Studies have confirmed the
enrichment of immunosuppressive cells in patients with
HCC [32, 33]. Researchers revealed significant differences
between immune cells infiltrating HCC [34]. The similarity
of the immune microenvironment of some HCC patients
not only facilitates classification but also facilitates the
implementation of personalized treatment. In this case,
according to our new classification scheme, HCC patients
can be divided into three subtypes. More importantly, we
use an independent cohort of HCC patients to confirm the
classification results. Although there is significant heteroge-
neity in the immune status among patients, the three sub-
types of HCC are clearly identified, indicating that this
classification method can be applied to the HCC patient
population. Patients with N-IS subtype generally had normal
lymphocyte infiltration, but some patients have abundant
expression of immune-related genes. The upregulation of
features included expanded immune signature [35], T cell-
inflamed gene expression profile (GEP) [36], and immune
enrichment score [37]. T cell inflammation gene expression
profile (GEP) contains genes related to antigen presentation,
chemokine expression, cytotoxic activity, and adaptive
immune resistance [35]. They can divide cancer into differ-
ent subgroups and correspond to corresponding biological
patterns. Capturing immune-related feature sets can provide
accurate reference for reasonable construction and evalua-
tion of treatment plans [36]. Non-IS is like a “cold” tumor,
with almost no enrichment of immune- and matrix-related
molecules. For such patients, combination therapy is more
effective [38–40]. Enhanced T cell trafficking or suppression
of inhibitory MDSC may increase the response of these HCC
patients to immune checkpoint inhibitors [41, 42].

The three HCC subtypes we identified represent the clinical
situation of human patients. A-IS subtype patients have rela-
tively strong immune enrichment of stromal cell activation,
although in pancreatic ductal adenocarcinoma, compared with
patients with normal stromal subtype (N-IS), patients with acti-
vated stromal subtype samples (A-IS) have a worse survival
[43]. But in HCC patients, the situation is different; that is,
the 3-year survival performance of patients with an activated
stroma subtype is better than that of patients with a normal
stroma subtype (Figure 3(a)). However, the 5-year survival of
different patient subgroups did not differ significantly
(Figure 3(b)).

The current WHO classification of HCC highlights sub-
types with stromal characteristics [44] which include
lymphocyte-rich HCC. It is featured by lymphocyte infiltra-
tion into tumor and related to a better prognosis notably

[45]. Studies have shown that different tumor subtypes have
different types of immune microenvironments [46, 47] usu-
ally related to intratumoral heterogeneity [48]. The compo-
sition of the tumor immune microenvironment has been
analyzed by methods such as gene expression analysis,
single-cell RNA sequencing, and flow cytometry analysis
[16, 31, 48–50]. In liver cancer, studies have shown that
the number of immune cell infiltration, especially cytotoxic
T cells [51–53], and the molecular classification of the
immune microenvironment have clinicopathological signifi-
cance [16, 48, 54]. In our study, the stroma activation of
immune activity can indeed divide HCC patients into three
subgroups (Figure 1(c)), and it is significantly associated
with individuals’ survival (Figure 3(a)).

4. Methods

4.1. Project and Sample. Data sets of 371 liver hepatocellular
carcinoma donors were downloaded from TCGA database
with detailed clinical information (https://xenabrowser
.net/datapages/?dataset=TCGA-LIHC). The independent
data sets used for verification come from the GSE144269
data set (n = 70) (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE144269), the GSE14520_cohort1_
test data set (n = 22), the GSE14520_cohort2_train sam-
ples (n = 225) (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE14520), the GSE25097_GPL10687 sam-
ples (n = 268) (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE25097), the GSE36376_GPL10558
(n = 240) (https://www.ncbi.nlm.nih.gov/geo/query/acc
.cgi?acc=GSE36376) data set, and ICGC_LIRI_JP samples
(n = 232) (https://dcc.icgc.org/projects/LIRI-JP).

4.2. Bioinformatics Analysis

(1) ssGSEA algorithm: use the R package “GSVA (version
1.30.0),” and use ssGSEA to explore the HCC expres-
sion profile data of TCGA-LIHC cohort, and analyze
the immune enrichment of each patient’s tumor
microenvironment. According to the immune enrich-
ment status and stroma status of HCC samples, they
are divided into A-IS, N-IS, and non-IS subtypes.
According to the ssGSEA score obtained by each sam-
ple, the spectral clustering algorithm is used to extract
different classifications. In addition, the R package
“limma (version 3.41.18)” was used to analyze immu-
noenriched and non-immune-enriched patients, as
well as the significantly different genes of stromal cell
enrichment and nonmatrix enrichment, and p < 0:05
was taken as the significant difference

(2) The unsupervised clustering of the data set was per-
formed mainly based on tSNE which is embedded in
t-distributed random neighborhoods [55]. In this
study, we use tSNE to show the different subgroups
of TCGA-LIHC cohort

(3) We performed Kaplan-Meier survival analysis on the
samples and plotted survival curves. Survival analysis
divided the samples into high-index groups and low-
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index groups based on the median. Data visualiza-
tion is mainly done in the R environment (version
4.1.0). Kaplan-Meier survival analysis relies on the
use of the “survival (version 3.1-8)” package. The
ROC curve is drawn based on the “survivalROC
(version 1.0.3)” package

(4) Prognosis prediction model establishment process:
(a) use the training set to perform unit Cox regres-
sion on each gene to initially screen disease-related
genes; (b) after obtaining all Cox significant genes
in all units, perform 1000X LASSO regression to cal-
culate the frequency of each gene and rank it; (c)
according to the sorting result of the previous step,
build the gene set incrementally. Use each gene set
to perform multiple Cox regression to get the contri-
bution of each gene; (d) obtain the optimal gene set
according to the gene contribution degree, and per-
form multiple Cox regression analysis on these
genes. Finally, we determined the regression coeffi-
cient of each gene; (e) calculate the death risk score
of each patient through regression coefficients; (f)
the death risk score model is tested in the training
set (comparing the predicted situation with the
actual situation); (g) the same model is tested in
the independent testing set at the beginning (com-
parison of the predicted situation with the actual
situation)

(5) Construct the optimal multivariate Cox model based
on the LASSO algorithm. This analysis uses the
LASSO algorithm for gene screening: in the field of
statistics and machine learning, LASSO algorithm
(least absolute shrinkage and selection operator, also
translated as minimum absolute shrinkage and selec-
tion operator, LASSO algorithm) is a regression
analysis method that simultaneously performs fea-
ture selection and regularization (mathematics). It
is aimed at enhancing the predictive accuracy and
interpretability of statistical models. LASSO adopts
the linear regression method of L1-regularization,
so that the weight of some learned features is 0, so
as to achieve the purpose of sparseness, selection of
variables, and construction of the best model. The
characteristic of LASSO regression is to perform var-
iable selection and regularization while fitting a gen-
eralized linear model. Therefore, regardless of
whether the target dependent variable (dependent/
response variable) is continuous, binary, or discrete,
it can be modeled by LASSO regression and then
predicted

(6) We use the random forest algorithm to select the
best gene model based on the Cox multiple regres-
sion model and finally draw the unit Cox regression
model forest diagram based on the gene panel as fol-
lows: we calculate the risk score (risk score) of each
patient based on the expression of the gene panel
and the multiple regression coefficient. The formula
is as follows:

Risk score = 〠
n

i=1
βi ∗ xi: ð1Þ

where xi represents the expression level of each gene in the
panel and βi is the multivariate Cox regression beta value
(multi_beta) corresponding to each gene
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Background. Osteosarcoma (OS) is a bone malignancy frequently seen in pediatrics and has high mortality and incidence.
Ferroptosis is an important cell death process in regulating the apoptosis and invasion of tumor cells, so constructing the risk-
scoring model based on OS ferroptosis-related genes (FRGs) will benefit the evaluation of both treatment and prognosis.
Methods. The OS dataset was screened from the Therapeutically Applicable Research to Generate Effective Treatments
(TARGET) database, and OS-related FRGs were found through the Ferroptosis Database (FerrDb) using a multivariate Cox
regression model, followed by the generation of the risk scores and a risk-scoring prediction model. Further systematical
exploration for immune cell infiltration and assessing the prediction of response to targeted drugs was conducted. Results.
Based on OS-related FRGs, a risk-scoring model of FRGs in OS was constructed. The six FRGs played a role in the carbon
metabolism, glutathione metabolism, and pentose phosphate pathways. Results from targeted drug sensitivity analyses were
concordant to pathway analyses. The response to targeted drugs statistically differed between the two groups with different
risks, and the high-risk group presented a high sensitivity to targeted drugs. Conclusions. We identified a 6-ferroptosis-gene-
based prognostic signature in OS and created and verified a risk-scoring model to predict the prognosis of OS at 1, 3, and 5
years for OS patients independently.

1. Introduction

Osteosarcoma (OS) is one of the malignancies frequently
seen in pediatrics with high disability rates and mortality
[1]. The 5-year survival rate of OS patients is improved to
50–60% with developed understanding of cancer pathogene-
sis and the updating of diagnostic methods [2]. The under-
standing of tumor biology has advanced considerably over
the past decades [3]. As one of the vital cell death processes
participating in the pathophysiology of cells, ferroptosis is
involved in regulating apoptosis, invasion, and metastasis
of tumor cells [4]. As a new programmed cell death, ferrop-

tosis is iron-dependent and in contrast to apoptosis, cell
necrosis, and autophagy. The primary mechanism is that
unsaturated fatty acids from the cell membrane are catalyzed
in the presence of divalent iron or ester oxygenase, which
activates lipid peroxidation and induces cell death.

With the exploration of ferroptosis, plenty of evidence
may hold out molecularly targeted therapies for OS patients.
A previous study indicated that the mitogenic actions on
osteoblasts were related to stimulation of G6PD activity
[5]. Marinkovic et al. demonstrated that the correlation of
p63 with G6PD and PGD predicts a poor prognosis using
bioinformatics [6]. The other four FRGs were not subject
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to OS-related evidence, but they also played essential roles in
other tumor pathways. For example, ACSF2 could be one of
the FRGs to predict breast cancer [7]. Similarly, FADS2 was
proved as a predicting FRG of bladder cancer.

As yet, the traditional approaches based on histopathol-
ogic diagnosis and tumor staging system for prognostic pre-
diction of OS patients are not sufficient for precisely
evaluating the outcomes [8]. It forces the development of
robust and accurate prognostic biomarkers to assist clini-
cians to optimize therapy strategies. Hence, establishing an
effective risk-scoring model based on FRGs in OS could
assist in evaluating therapy and prognosis.

There are many online databases now, but there are few
samples in the data set about OS. As a database for pediatric
tumors, the TARGET database utilizes an integrative geno-
mic approach to determine the molecular alterations during
the onset and development of pediatric tumors and is aimed
at using data to help guide the development of more effective
and less toxic therapies [9]. And through data analysis, it
generates useful drug targets and prognostic markers for
researchers to develop new and more effective treatment
options [10].

In this study, an OS dataset from TARGET was down-
loaded for the prediction of the OS occurrence based on fer-
roptosis. FRGs were screened and normalized. Then, a risk-
scoring prediction model was constructed through the multi-
ple COX regression model [11], and the Kyoto Encyclopedia
of Genes and Genomes (KEGG) and gene ontology (GO)
database were utilized to determine related biological process
enrichment signaling pathways of FRGs.

2. Methods

2.1. Data Preparation. The gene set information including
85 samples (TARGET-OS) was contained as a training set
derived from the TARGET database [11]. The patient infor-
mation consisted of survival time and status, sex, age, disease
at diagnosis, primary tumor site, specific tumor region, and
eventual surgery (Table 1). The Ferroptosis Database
(FerrDb) was utilized for the ferroptosis information collec-
tion of FRG selection [12].

2.2. Model Establishment. To establish our model, we com-
bined univariate Cox-LASSO–multivariate Cox regression
with the clinical factors and finally constructed the risk-
scoring model using the selected FRGs. Univariate and mul-
tivariate Cox regression analyses were performed using R’s
“survival” package, and P < 0:01 was used as the filtering
condition of univariate Cox [13]. To prevent large variance,
we performed LASSO regression analysis using R’s
“GLMNET” package and determined K value by minimum
lambda [11]. The gene at the minimum of the Akaike infor-
mation criterion (AIC) was calculated and used as the vari-
able to be included in the model, and each patient’s gene
expression level was used to evaluate the risk score, with
the algorithm according to the previous studies [14, 15].
The median risk score of each patient is considered the ref-
erence standard for classifying the high and low groups,
followed by the analysis of the survival of the two groups

and drawing the survival curves using the Kaplan-Meier
method (K-M method) [16]. In virtue of the critical param-
eters and model scores and in combination with various
clinical factors, we drew a clinically relevant nomogram to
predict the 1-, 3-, and 5-year survival, and the scales on
nomograms represented the numerical ranges of each vari-
able [17].

2.3. Model Validation. We used the package of “Survival
ROC” to draw receiver operating characteristic curves
(ROC) and “RMS” for the calibration to evaluate the accu-
racy of the predicted survival rates and ROC curves for the
validation of each grouping variable [18].

2.4. GO and KEGG Analysis. We investigated the cellular
components (CC), BP, and molecular function (MF) in the
FRGs from the GO database. Furthermore, screened FRGs
were analyzed for the functional pathway analysis of KEGG
and for the functional enrichment analysis using R software
and ClusterProfiler package [19]. We then used the “corr-
plot” package to analyze the relationships between FRGs
by Pearson’s correlation coefficient.

2.5. Gene Set Enrichment Analysis (GSEA). GSEA is imple-
mented to enrich gene sets and determine the distribution
differences between whole gene sets and phenotypes,
thereby achieving enrichment. The grouping file of the
FRG expression differences and the downloaded expres-
sion matrix file of OS common transcription group were
input into GSEA4.0.3 software [20]. The data sets used

Table 1: Clinicopathological characteristics of OS patients from
TARGET database.

Characteristics
Patients
(N = 85)

No. %

Sex

Female 37 43.53

Male 47 55.29

Unknown 1 1.18

Age

≤14 (median) 44 51.76

>14 (median) 40 47.06

Unknown 1 1.18

Race

Race 51 60.00

Asian 6 7.06

Black or African American 7 8.24

Unknown 21 24.71

Disease at diagnosis

Metastatic disease 21 24.71

Nonmetastatic disease 63 74.12

Unknown 1 1.18

Primary tumor site

Arm/hand 6 7.06

Leg/foot 76 89.41

Pelvis 2 2.35

Unknown 1 1.18

Vital status
Dead 27 31.76

Alive 58 68.24

2 Journal of Oncology



for enrichment were C2 and C5 molecular sets from the
Molecular Characteristic Database (MSigDB), and the out-
put results were adjusted to 100 sheets [21]. Finally, the
enrichment gene sets were screened according to
Normalized Enrichment Score ðNESÞ > 1, False‐Discovery
Rate ðFDRÞ < 0:25, and P < 0:05.

2.6. Immune Cell Infiltration. The visualization was con-
ducted for proportions of immune cell signatures in the
training set. The cell infiltration level and the stromal con-
tent for OS samples were collected through the single-
sample GSEA (ssGSEA) algorithm, and consensus clustering
through the “ConsensuClusterPlus” package.
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Figure 1: Development of prognostic ferroptosis-associated gene signature. (a) Forrest plot of univariate Cox regression. (b) Forrest plot of
multivariate Cox regression.
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2.7. Prediction of Response to Targeted Therapy. Half-maxi-
mal inhibitory concentrations (IC50) of targeted therapeutic
drugs were plotted using R’s “ggplot2” and “pRRophetic”
packages. Box plots represented the connection of the
IC50s to two risk groups.

3. Results

3.1. Collation of FRGs. Combining gene expression infor-
mation of 85 OS patients obtained from TARGET and
61 FRGs on FerrDb, the OS-related FRGs as well as the
expression information and clinical information were
found. Nine survival-related FRGs were obtained as shown
in Figure 1(a). We then used multivariate Cox regression
and LASSO method to generate a categorizer to forecast
OS according to the expression of FRGs. Finally, a com-
bination of six genes (ACSF2, CBS, FADS2, G6PD,
MT1G, and PGD) remained as predictors in the model
(Figure 1(b)).

3.2. Data Preprocessing and Risk-Scoring Model
Establishment. Based on the median risk score in the train-
ing set, the patients were separated into two risk groups:
the low and the high. Survival analysis between groups
showed that the risk score negatively correlated to the prog-
nosis in the OS patients (Figures 2(a) and 2(b)). A heatmap
was drawn to display the six genes level from their signatures
(Figure 2(c)), showing lower expression of PGD, G6PD, and

ACSF2 of the high-risk group, together with higher levels of
MT1G, FADS2, and CBS. The survival rates and gene expres-
sion levels of each hub FRG are shown in Figures 3 and 4.

3.3. Nomogram Development and Verification. As shown in
Figure 5, an OS risk estimation nomogram was formed com-
bining the risk score and five independently related risk fac-
tors, including sex, age, disease at diagnosis, definitive
surgery, and risk score. K-M curves indicated that over time,
the survival rate of the low-risk group was higher than that
of the high-risk group (Figure 6(a)). The prediction accuracy
was evaluated in C-index (0.822) and calibration curve
(Figures 6(b) and 6(c)).

3.4. KEGG and GO Analysis. The KEGG signaling pathway
and GO functional process analysis were carried out specify-
ing the biology pathways and processes associated with the
six FRGs. The results indicated that these FRGs were func-
tional in ferroptosis-related processes such as carbon metab-
olism, glutathione metabolism, and pentose phosphate
pathway (Figure 7).

3.5. GSEA. The stratification was conducted in OS patients
depending on the median risk scores. The results disclosed
the enrichment of six FRGs in the provenzani metastasis,
peroxisomal protein import, neutrophil degranulation,
amino acids regulating mTORC1, peroxisome, T cell recep-
tor signaling pathway, regulation of calcium-mediated
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Figure 2: Establishment and validation of prognostic ferroptosis-associated gene signature. (a) Risk score plot, (b) survival status scatter
plot, and (c) heatmap for the levels of ACSF2, CBS, FADS2, G6PD, MT1G, and PGD.
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Figure 3: Survival rates of ACSF2, CBS, FADS2, G6PD, MT1G, and PGD.
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signaling, positive regulation of protein targeting to the
mitochondrion, and B cell activation involved in immune
response (Figure 8).

3.6. Immune Infiltrating. Except for activated dendritic cells
(aDCs) and immature dendritic cells (iDCs), the numbers of
other immune cells and immune functions of the low-risk
group were significantly eminent compared to that of the
high-risk group (Figures 9(a)–9(c)).

3.7. Response to Targeted Therapy. Based on the predicted
IC50s, the response to various targeted drugs differed signif-

icantly between the two groups with different risks. IC50s
were lower in the high-risk group, indicating a higher sensi-
tivity to targeted drugs (Figure 10).

4. Discussion

OS is the most common malignant tumor originated from
mesenchymal tissue, which is prone to teenagers, recurrence,
and lung metastasis with a poor prognosis. The main treat-
ment of osteosarcoma is extensive or radical amputation,
combined with chemotherapy. However, the multidrug
resistance of osteosarcoma restricts its chemotherapy effect
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and long-term prognosis. Therefore, it is necessary to find
new treatment methods.

Our research sifted six FRGs relating to OS that were
possibly targeted for novel molecular therapy. The results
from the risk prediction model in accordance with these
six key FRGs showed noticeably separated survival curves
between the two risk groups. In the time-dependent model,
the risk score and death number have been elevated remark-
ably over time, suggesting the critical importance of these six
FRGs on the prognosis prediction of OS. The key FRGs were

good predictors of prognosis for OS patients, as shown by
the ROC prediction results of 1-, 3-, and 5-year survival
rates. Similarly, the six FRGs have shown promising out-
comes in terms of clinical characterization studies.

According to the enrichment analyses results, OS’s fer-
roptosis is closely related to carbon metabolism, glutathione
metabolism, and the pentose phosphate pathway. Metabolic
adaptation of cancer occurs as efficient cellular energy and
biomass production alterations are indispensable for cancer
onset and progression [22]. The catabolic and anabolic
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Figure 5: Construction of a predictive nomogram. (a) Independent related risk factors (sex, age, disease at diagnosis, definitive surgery, and
risk score) were selected in the nomogram. (b) Nomogram for predicting 1-, 3-, and 5-year survival.
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procedures in cancer metabolism can easily adjust to the ele-
vated energy, and biological mass demands resulting from
rapidly proliferating tumors. Malignant and metastatic cells
of OS have elevated energy metabolism in comparison with
the benign cells [23]. Among these metabolic pathways, the
cysteine synthesis glutathione (GSH) pathway plays a lead-
ing role in the initiation of ferroptosis (Erastin induction
pathway). Erastin is one of the small molecules found in
chemical screening that can induce iron death in carcino-
genic Ras mutant cell lines [24, 25]. In the process of iron
death induced by Erastin, glutamate cysteine transporter,
also known as X-C system, is the most important target of

Erastin molecule. Cystine (the main form of intracellular
cysteine) is mainly transferred into cells through glutamate
cysteine transporter in the ratio of 1 : 1. Then, GSH and glu-
tathione peroxidase 4 (GPX4) are synthesized in cells. GSH
is mainly used as a cofactor in the process of protecting cells
from oxidative damage, and GPX4 catalyzes the reduction of
lipid peroxide to alcohols [26]. Therefore, targeting to cancer
metabolism is ongoing to develop new therapies for cancer.

The risk-scoring model revealed the positive correction
of risk scores with the sensitivity to targeted drugs. Prior
investigations documented the effect of these drugs on can-
cer cytology. For example, axitinib is a potent and selective
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Figure 10: Prediction of response to targeted drugs. (a) AG.014699. (b) AKT.inhibitor.VIII. (c) Axitinib. (d) AZD.2281. (e) BAY.61.3606. (f)
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inhibitor of VEGFR-1–3. In transfected or endogenous
RTK-expressing cells, axitinib potently blocked growth
factor-stimulated phosphorylation of VEGFR-2 and
VEGFR-3, thereby effectively inhibiting tumor growth,
angiogenesis, and distant metastasis [27, 28]. Fritsche-
Guenther et al. proved that AKT2 is a critical signal mole-
cule in the insulin signaling pathway, which needs to induce
glucose transport [29]. In our study, the group with high risk
presented high sensitivity to AKT inhibitor VIII. Therefore,
inhibiting AKT to interfere with glucose metabolism and
then controlling the occurrence or development of ferropto-
sis can be considered the future research direction.

It has been reported that ferroptosis can improve the
antitumor effect of immunotherapy by activating CD8+ T
cells, but whether FRG affects the occurrence and develop-
ment of OS by regulating the immune state of the tumor
microenvironment is still unclear [30]. In the process of
establishing and verifying the risk-scoring model, we found
that OS patients with different FRG expression matrixes
showed different immune states, and patients with more
active immune states had better prognosis. The tumor-
associated immune response vitally partakes in tumor cell
infiltration, whereas ferroptosis critically regulates the
tumor-related immune responses [31]. The immune cell
infiltration analysis in this study indicated that the immune
functions and the numbers of immune cells, except for aDCs
and iDCs, are noticeably higher in the low-risk group, indi-
cating the ferroptosis-related, antitumor immune response
processes that reduce the risk of death in low-risk patients.

Some limitations exist in this study. For example, the
sample size is comparatively insufficient, which needs future
study to include more samples to evaluate the model perfor-
mance further and elucidate the latent mechanism.

5. Conclusions

To sum up, a prognostic signature of OS based upon six
FRGs was determined, and a risk-scoring model based on
six OS-related FRGs was established. This risk-scoring
model shows commendable performance to independently
evaluate the prognosis of OS at 1, 3, and 5 years, which will
provide the potential guidance of OS targeted therapy.

Data Availability

The data used to support the findings of this study are
included within the article.

Ethical Approval

This study was approved by Guangxi Medical University
First Affiliated Hospital Ethical Review Committee
[approval No.: 2021 (KY-E-125)].

Conflicts of Interest

All authors have no conflicts of interest to declare and have
completed the ICMJE uniform disclosure form (available at
https://doi.org/xxxx).

Authors’ Contributions

Mingyang Jiang, Zifan Wang, and Xiaoyu He contributed
equally to this work and are co-first authors. The authors
are responsible for all aspects of the work in ensuring that
issues related to the accuracy or integrity of any part of the
work are appropriately investigated and resolved.

Acknowledgments

This work was supported by the Guangxi Natural Science
Foundation (2017JJA10088). The authors thank the First
Affiliated Hospital of Guangxi Medical University for the
assistance offered with data collection.

References

[1] B. Pingping, Z. Yuhong, L. Weiqi et al., “Incidence and mortal-
ity of sarcomas in shanghai, China, during 2002-2014,” Fron-
tiers in Oncology, vol. 9, p. 662, 2019.

[2] L. C. Sayles, M. R. Breese, A. L. Koehne et al., “Genome-
informed targeted therapy for osteosarcoma,” Cancer Discov-
ery, vol. 9, no. 1, pp. 46–63, 2019.

[3] C. Farquharson, J. Milne, and N. Loveridge, “Mitogenic action
of insulin-like growth factor-i on human osteosarcoma mg-63
cells and rat osteoblasts maintained in situ: the role of glucose-
6-phosphate dehydrogenase,” Bone and Mineral, vol. 22, no. 2,
pp. 105–115, 1993.

[4] A. D'Alessandro, I. Amelio, C. R. Berkers et al., “Metabolic
effect of TAp63α: enhanced glycolysis and pentose phosphate
pathway, resulting in increased antioxidant defense,” Oncotar-
get, vol. 5, no. 17, pp. 7722–7733, 2014.

[5] D. Wang, G. Wei, J. Ma et al., “Identification of the prognostic
value of ferroptosis-related gene signature in breast cancer
patients,” BMC Cancer, vol. 21, no. 1, p. 645, 2021.

[6] M. Marinkovic, M. Sprung, M. Buljubasic, and I. Novak,
“Autophagy modulation in cancer: current knowledge on
action and therapy,” Oxidative Medicine and Cellular Longev-
ity, vol. 2018, Article ID 8023821, 18 pages, 2018.

[7] B. Jin, D. Jin, Z. Zhuo, B. Zhang, and K. Chen, “Mir-1224-5p
activates autophagy, cell invasion and inhibits epithelial-to-
mesenchymal transition in osteosarcoma cells by directly tar-
geting plk 1 through pi3k/akt/mtor signaling pathway,” Onco-
targets and Therapy, vol. Volume 13, pp. 11807–11818, 2020.

[8] J. Levy, C. G. Towers, and A. Thorburn, “Targeting autophagy
in cancer,” Nature Reviews Cancer, vol. 17, no. 9, pp. 528–542,
2017.

[9] L. Fan, J. Ru, T. Liu, and C. Ma, “Identification of a novel prog-
nostic gene signature from the immune cell infiltration land-
scape of osteosarcoma,” Frontiers in Cell and Development
Biology, vol. 9, article 718624, 2021.

[10] R. Nagarajan, B. J. Weigel, R. C. Thompson, and J. P. Perent-
esis, “Osteosarcoma in the first decade of life,” Medical and
Pediatric Oncology, vol. 41, no. 5, pp. 480–483, 2003.

[11] S. Dong, H. Huo, Y. Mao, X. Li, and L. Dong, “A risk score
model for the prediction of osteosarcoma metastasis,” FEBS
Open Bio, vol. 9, no. 3, pp. 519–526, 2019.

[12] K. Homma, K. Suzuki, and H. Sugawara, “The autophagy data-
base: an all-inclusive information resource on autophagy that
provides nourishment for research,” Nucleic Acids Research,
vol. 39, no. Database, pp. D986–D990, 2011.

16 Journal of Oncology

https://doi.org/xxxx


[13] J. Li, Y. Li, X. Wu, and Y. Li, “Identification and validation
of potential long non-coding RNA biomarkers in predicting
survival of patients with head and neck squamous cell car-
cinoma,” Oncology Letters, vol. 17, no. 6, pp. 5642–5652,
2019.

[14] D. J. Birnbaum, P. Finetti, A. Lopresti et al., “A 25-gene classi-
fier predicts overall survival in resectable pancreatic cancer,”
BMC Medicine, vol. 15, no. 1, p. 170, 2017.

[15] Y. Mao, Z. Fu, Y. Zhang et al., “A six-microRNA risk score
model predicts prognosis in esophageal squamous cell carci-
noma,” Journal of Cellular Physiology, vol. 234, no. 5,
pp. 6810–6819, 2019.

[16] B. Han, H. Zhang, Y. Zhu et al., “Subtype-specific risk models
for accurately predicting the prognosis of breast cancer using
differentially expressed autophagy-related genes,” Aging
(Albany NY), vol. 12, no. 13, pp. 13318–13337, 2020.

[17] S. Liao, J. He, C. Liu et al., “Construction of autophagy prog-
nostic signature and analysis of prospective molecular mecha-
nisms in skin cutaneous melanoma patients,” Medicine
(Baltimore), vol. 100, no. 22, article e26219, 2021.

[18] Y. Jiao, Z. Fu, Y. Li, L. Meng, and Y. Liu, “High EIF2B5 mRNA
expression and its prognostic significance in liver cancer: a
study based on the TCGA and GEO database,” Cancer Man-
agement and Research, vol. Volume 10, pp. 6003–6014, 2018.

[19] R. S. Zhou, E. X. Zhang, Q. F. Sun et al., “Integrated anal-
ysis of lncRNA-miRNA-mRNA ceRNA network in squa-
mous cell carcinoma of tongue,” BMC Cancer, vol. 19,
no. 1, p. 779, 2019.

[20] A. Subramanian, P. Tamayo, V. K. Mootha et al., “Gene set
enrichment analysis: a knowledge-based approach for inter-
preting genome-wide expression profiles,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 102, no. 43, pp. 15545–15550, 2005.

[21] A. Liberzon, C. Birger, H. Thorvaldsdottir, M. Ghandi, J. P.
Mesirov, and P. Tamayo, “The molecular signatures database
hallmark gene set collection,” Cell Systems, vol. 1, no. 6,
pp. 417–425, 2015.

[22] D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the
next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011.

[23] R. Fritsche-Guenther, Y. Gloaguen, M. Kirchner, P. Mertins,
P. U. Tunn, and J. A. Kirwan, “Progression-dependent altered
metabolism in osteosarcoma resulting in different nutrient
source dependencies,” Cancers, vol. 12, no. 6, 2020.

[24] H. Yu, P. Guo, X. Xie, Y. Wang, and G. Chen, “Ferroptosis, a
new form of cell death, and its relationships with tumourous
diseases,” Journal of Cellular and Molecular Medicine,
vol. 21, no. 4, pp. 648–657, 2017.

[25] Y. Zhao, Y. Li, R. Zhang, F. Wang, T. Wang, and Y. Jiao,
“<p>The role of erastin in ferroptosis and its prospects in can-
cer therapy</p>,” Oncotargets and Therapy, vol. Volume 13,
pp. 5429–5441, 2020.

[26] T. Lei, H. Qian, P. Lei, and Y. Hu, “Ferroptosis-related gene
signature associates with immunity and predicts prognosis
accurately in patients with osteosarcoma,” Cancer Science,
vol. 112, no. 11, pp. 4785–4798, 2021.

[27] D. D. Hu-Lowe, H. Y. Zou, M. L. Grazzini et al., “Nonclin-
ical antiangiogenesis and antitumor activities of axitinib (ag-
013736), an oral, potent, and selective inhibitor of vascular
endothelial growth factor receptor tyrosine kinases 1, 2, 3,”
Clinical Cancer Research, vol. 14, no. 22, pp. 7272–7283,
2008.

[28] B. M. Fenton and S. F. Paoni, “The addition of ag-013736 to
fractionated radiation improves tumor response without func-
tionally normalizing the tumor vasculature,” Cancer Research,
vol. 67, no. 20, pp. 9921–9928, 2007.

[29] C. W. Lindsley, Z. Zhao, W. H. Leister et al., “Allosteric akt
(pkb) inhibitors: discovery and Sar of isozyme selective inhib-
itors,” Bioorganic &Medicinal Chemistry Letters, vol. 15, no. 3,
pp. 761–764, 2005.

[30] W. Wang, M. Green, J. E. Choi et al., “CD8+ T cells regulate
tumour ferroptosis during cancer immunotherapy,” Nature,
vol. 569, no. 7755, pp. 270–274, 2019.

[31] C. Marar, B. Starich, and D. Wirtz, “Extracellular vesicles in
immunomodulation and tumor progression,” Nature Immu-
nology, vol. 22, no. 5, pp. 560–570, 2021.

17Journal of Oncology



Research Article
Study on Mechanism of Yiqi Yangyin Jiedu Recipe Inhibiting
Triple Negative Breast Cancer Growth: A Network Pharmacology
and In Vitro Verification

Xin Sun ,1,2,3 Panling Xu ,3 Fengli Zhang,3 Ting Sun ,3 Haili Jiang ,3 Mei Zhang ,3

and Ping Li 1,2,3

1Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
2Anhui Provincial Hospital, Hefei, Anhui 230032, China
3Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei,
Anhui 230022, China

Correspondence should be addressed to Ping Li; 1964liping@sina.com

Received 21 January 2022; Revised 6 March 2022; Accepted 9 March 2022; Published 27 March 2022

Academic Editor: Fu Wang

Copyright © 2022 Xin Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. The present study explores the potential mechanism of Yiqi yangyin jiedu Recipe (YQYYJDR) on triple negative
breast cancer via adopting network pharmacology and experimental validation. Materials and Methods. The potential active
compounds and target genes of YQYYJDR were screened out from TCMSP database with OB ≥ 30% and DL index ≥ 0:18. The
potential pathways and function enrichment were identified from Metascape website. MDA-MB-231 and MDA-MB-468 cells
were tested for cell viability, invasion, and apoptosis by in vitro and in vivo experiments. Results. A total of 153 bioactive
compounds and 281 target genes of YQYYJDR were retrieved from TCMSP database. The top 5 enrichment pathways of
YQYYJDR target genes include pathways in cancer, AGE-RAGE signaling pathway in diabetic complications, proteoglycans in
cancer, IL-17 signaling pathway, and platinum drug resistance. 65 target genes were included in the pathway of cancer.
Biological function enrichment analysis of 65 genes showed YQYYJDR inhibited tumor growth mainly through apoptotic
pathway. In vitro experiments showed that YQYYJDR could inhibit the proliferation and invasion of MDA-MB-231 and
MDA-MB-468 cells, arrest cells in S stage, and induce cell apoptosis. YQYYJDR upregulated BAX, caspase3, and cleaved
caspase3 expression and downregulated BCL2 expression. In vivo experiments showed that YQYYJDR could inhibit tumor
growth. Conclusions. In this study, network pharmacology and experiment were used to explore the mechanism of YQYYJDR
on triple negative breast cancer. In vitro and in vivo experiments showed that YQYYJDR could inhibit the growth of triple
negative breast cancer and induce cell apoptosis. Apoptosis pathway plays a significant role in the treatment of triple negative
breast cancer.

1. Introduction

Triple negative breast cancer (TNBC) is an aggressive can-
cer with poor prognosis, which accounts for less than 30%
in breast cancer [1]. It is characterized by negative expres-
sion of estrogen receptor (ER), progesterone receptor (PR),
and human epidermal growth factor receptor 2 (HER-2)
[2]. The recurrence and disease metastasis rates in TNBC
are high, and the median survival for patients with
advanced disease is about 18 months [3], which emphasizes

the importance of developing more effective therapies
for patients. The current treatments on TNBC include che-
motherapy, targeted therapy, and immunotherapy. How-
ever, these treatments do not work well, and patients’
quality of life is impaired [4]. Therefore, it is very important
to find an alternative treatment for TNBC.

Yiqi yangyin jiedu Recipe (YQYYJDR) is a representative
prescription for the treatment on breast cancer. YQYYJDR is
composed of Angelica Sinensis, Astragalus Membranaceus,
Radix Pseudostellariae, Prepared Radix Rehmanniae, Fructus
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Amomi, Radix Scrophulariae, Semen Coicis, Fructus Lycii,
Rhizoma Atractylodis, Radix Isatidis, Lonicera Japonica,
Chrysanthemum, Fructus Forsythiae, Glossy Privet Fruit,
Subprostrate Sophora, and Chinese Yam. Researches had
proved that YQYYJDR can improve the clinical effect of
breast cancer treatment [5]. However, the efficacy and mech-
anism of YQYYJDR against TNBC still need to be elucidated.

Network pharmacology is an emerging subject for
explaining the mechanism of drug acting on disease [6].
The “drug-target-gene” model provides new perspective
and methods to explore the potential targets in compound
preparations, and furthermore, network pharmacology pro-
vides a more efficient platform to reveal the interactions
and internal relationships between drugs and diseases [7].
In recent years, network pharmacology has been widely
employed in compound preparation mechanism exploration
[8, 9]. However, the reports on pharmacology network anal-
ysis of YQYYJDR has not been seen yet.

In this study, the active chemical compounds and target
genes of YQYYJDR were searched using network pharma-
cology methods. And the drug-gene-disease network and
function pathways were analyzed. In vitro and in vivo exper-
iments were used to validate the antitumor effect and poten-
tial targets of YQYYJDR treating on TNBC.

2. Material and Methods

2.1. YQYYJDR-Related Compounds and Potential Targets.
Active compounds and potential targets of YQYYJDR were
searched in Traditional Chinese Medicine Database and
Analysis Platform (TCMSP, https://tcmsp-e.com/), with the
oral bioavailability ðOBÞ ≥ 30% and drug − likeness ðDLÞ ≥
0:18. OB represents the percentage of drugs that reach the
systemic circulation at the same oral dose; DL is used to
assess the degree to which a desired compound is “drug-
like,” which helps to optimize drug pharmacokinetics and
drug properties such as solubility and chemical stability
[10]. Compounds that meet the above criteria will be consid-
ered as bioactive compounds. Then, the potential targets
screened from TCMSP were imported into UniProt (http://
www.uniprot.org/) to search their information, including
gene name, functions, and gene ID [11].

2.2. Construction of YQYYJDR Network. The screened active
compounds and potential targets were introduced into
Cytoscape 3.7.2 (http://www.cytoscape.org/) to draw the
activity “herb-compounds-targets” network [12]. The nodes
in this network represent the active ingredients and targets
of YQYYJDR; the interactions and internal relationships
between the active compounds and the targets were encoded
by edges.

2.3. Potential Pathways of YQYYJDR. The targets of
YQYYJDR were inputted into Metascape website (https://
metascape.org/) for analyzing Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway and Gene Ontology
Consortium (GO) Biological Processes. KEGG and GO anal-
yses were enriched with p value < 0.01. Metascape is a

comprehensive annotated and analytical resource for exper-
imental biologists [13].

2.4. Preparation of YQYYJDR Aqueous Extract. YQYYJDR
consisted of 20 g Angelica Sinensis, 30 g Astragalus Membra-
naceus, 15 g Radix Pseudostellariae, 18 g Prepared Radix
Rehmanniae, 6 g Fructus Amomi, 15 g Radix Scrophulariae,
30 g Semen Coicis, 15 g Fructus Lycii, 15 g Rhizoma Atracty-
lodis, 12 g Radix Isatidis, 20 g Lonicera Japonica, 20 g Chry-
santhemum, 15 g Fructus Forsythiae, 15 g Glossy Privet
Fruit, 15 g Subprostrate Sophora, and 15 g Chinese Yam.
All crude herbs were provided by the Department of Phar-
macy, The First Affiliated Hospital of Anhui Medical Uni-
versity. 1000mL water was prepared to boil all above
mixed herbs for 2 h, and the herbal extract of YQYYJDR
was got. The obtained herbal extract was centrifuged for
30min at 10000 rpm, then extracted twice, mixed with
supernatants, and evaporated to dryness. The herbal powder
was redissolved in water at a concentration of 40mg/mL and
then filtered with a 0.22μm pore-size filter. Finally, the Chi-
nese herb liquors were stored at -20°C for further use.

2.5. Cell Culture. The human breast cancer cell lines MDA-
MB-231 and MDA-MB-468 were purchased from American
Type Culture Collection (ATCC, USA). MDA-MB-231 and
MDA-MB-468 cells were maintained in Leibovitz’s L-15
medium (Gibco, Massachusetts, USA), which supplemented
with 10% fetal bovine serum (FBS, Gibco, Massachusetts,
USA), 100U/mL penicillin, and 100mg/mL streptomycin
(Gibco, Massachusetts, USA). All cells were incubated at
37°C in a humidified incubator with 5% CO2. The morphol-
ogy of the cell lines was regularly assessed.

2.6. Cell Viability Assay. MTT assay was used to detect the
cytotoxicity of YQYYJDR on TNBC cell lines. In brief,
100μL cell suspension (1 × 105 cells/mL) was seeded into
96-well plates; after incubation overnight, several concentra-
tions of YQYYJDR were added into each well followed by a
48 h incubation. 10μL 3-(4,5-dimethyl-2-thiazolyl)-2,5-d
iphenyl-2-H-tetrazolium bromide (MTT, 5mg/mL; Sigma,
USA) in phosphate-buffered saline (PBS, Gibco, USA) was
added and incubated at 37°C for 4 h to produce formazan.
100μL DMSO (Sigma, USA) was added, and the absorbance
of the microplate reader was measured at 490nm (Spectra-
Max ABS plus, Molecular Devices, USA).

2.7. Cell Cycle Analysis. A cell cycle and apoptosis analysis
kit was used to test for cell cycle arrest. 5 × 105 cells were
inoculated in each well of 6-well plates. After the cells
were incubated overnight, they were treated with increasing
doses of YQYYJDR for 48 hours. The cells were digested
with trypsin to obtain the cell deposits, which were then
fixed with precooled 70% ethanol; the cells were stained
with propidium iodide solution and then detected by flow
cytometry.

2.8. Apoptosis Assay. An Annexin V-FITC Apoptosis Detec-
tion Kit (Beyotime, Shanghai, China) was used to analyze
cell apoptosis level. In brief, MDA-MB-231 and MDA-MB-
468 cells (5 × 105 cells/mL) were seeded in 6-well plates, then
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preincubated for 24 h. Different doses of YQYYJDR were
added in 6-well plates and then incubated at 37°C for 48h.
Annexin V-FITC and propidium iodide staining solution
were added to incubate for 20 minutes. Then, the cell apo-
ptosis level was evaluated using a flow cytometer (Cyto-
FLEXS, Beckman COULTER, USA).

2.9. Transwell Analysis. Cell invasion efficiency was verified
by transwell assay. In brief, 200μL Matrigel matrix was
added into each well of a 24-well plate, 2 × 105 cells were
cultured DMEM without FBS for 8 h, then inoculated in
each well of a 24-well plate, and DMEM with 20% FBS were
added into the bottom. After incubation for 24 hours, cells
in upper chamber were fixed with 4% paraformaldehyde
stained and stained with crystal violet staining solution after
wiping the matrix. An optical microscope was used to
observe.

2.10. RT-PCR. Total RNA from TNBC cells was extracted by
using TRIzol reagent (Invitrogen, USA). Then, cDNA were
obtained using TaKaRa PrimeScript RT reagent Kit. ABI
7900HT Real-Time PCR system (Applied Biosystems,
USA) was used to amplify cDNA for comparing gene
expression between different experimental groups. All reac-
tions were run in triplicate. The sequences of the primers
for genes are shown in Table 1.

2.11. Western Blotting. In order to verify the related path-
ways of drug action on cells, the cell protein samples were
extracted by RIPA lysis buffer. The protein concentration
of each protein sample was tested by BCA protein assay
kit. SDS-PAGE protein loading buffer was added to protein
samples for protein denaturation. After electrophoresis,
transfer, and blocking, primary antibody was used to incu-
bating with 0.22μm PVDF membrane for 1 hour, followed
by secondary antibody incubation and detection. The pri-
mary antibody in this study was shown below: α-Tubulin
Rabbit Polyclonal Antibody (AF0001, Beyotime, China),
Anti-BAX rabbit polyclonal antibody (D220073, BBI,
China), Anti-BCL2 rabbit polyclonal antibody (D160117,
BBI, China), and Anti-CASP3 rabbit polyclonal antibody
(D320074, BBI, China).

2.12. In Vivo Experiment. Twelve BALB/c nude mice were
obtained from GemPharmatech Co., Ltd. These mice
were kept in the Laboratory Animal Center, Anhui Medical
University. After one week of adaptive feeding, 1 × 107
MDA-MB-231 cells were injected under the skin of the right
armpit of the mice. 7 days after injection, these mice were
randomly divided into 3 groups with 6 mice in each group.
One group was intragastric with 0.2mL normal saline,
and the other two groups were intragastric with 20mg/kg
and 40mg/kg YQYYJDR once a day. 7 days after subcutane-
ous tumor injection, tumor length and diameter, as well as
body weight of mice, were recorded every 3 days. After 21
days drug intervention, pentobarbital sodium was used at
250mg/kg for mice anesthesia; subcutaneous tumors were
broken off. The tumors were fixed in 4% paraformaldehyde
for further detection.

2.13. Hematoxylin-Eosin Staining and Immunohistochemistry.
Tumors fixed with 4% paraformaldehyde were embedded in
paraffin, then sliced into 4μm slices. Hematoxylin and Eosin
Staining Kit was used to stain slices for 10 minutes, and then,
a light microscope was used for analysis. As for immunohis-
tochemistry, paraffin sections were dewaxed and sealed with
goat serum; primary antibodies and second antibodies were
incubated with paraffin sections. Tissue is then visualized
under a light microscope (200x, Leica, Wetzlar, Germany).

2.14. Statistical Analysis. Statistical analysis was performed
with the GraphPad Prism 9 software. All data were obtained
from three independent experiments; data were analyzed by
using Student’s t-test and described as the mean ± SD. P
values between groups were less than 0.05, indicating statis-
tically significant differences.

3. Results

3.1. Identification of Bioactive Compounds and Targets in
YQYYJDR. With the OB threshold ≥ 30% and DL index ≥
0:18, a total of 153 bioactive compounds were retrieved from
YQYYJDR, 2 of which belong to Angelica Sinensis, 18 of
which belong to Astragalus Membranaceus, 6 to Radix Pseu-
dostellariae, 2 to Prepared Radix Rehmanniae, 9 to Fructus
Amomi, 5 to Radix Scrophulariae, 6 to Semen Coicis, 36 to
Fructus Lycii, 4 to Rhizoma Atractylodis, 35 to Radix Isatidis,
17 to Lonicera Japonica, 18 to Chrysanthemum, 19 to Fructus
Forsythiae, 9 to Glossy Privet Fruit, 13 to Subprostrate
Sophora, 12 to Chinese Yam. 281 targets were predicted out
of the 153 bioactive compounds. A “herb-compounds-
targets” network was constructed (Figure 1). The network
consists of 450 nodes (153 bioactive compounds and 281 tar-
gets). It is worth noting that this network includes some com-
pounds with multiple targets, particularly the compounds
quercetin (MOL000098), kaempferol (MOL000422), beta-
sitosterol (MOL000358), wogonin (MOL000173), and 7-O-
methylisomucronulatol (MOL000378) with degree ≥ 45.

3.2. Potential Pathways of YQYYJDR. KEGG pathway
enrichment analysis was performed in Metascape website.
In total, forty pathways were observed to be significantly
associated with the gene input group (P < 0:001); the top
20 pathways are shown in Figure 2(a). The main pathways
included pathways in cancer, AGE-RAGE signaling pathway
in diabetic complications, proteoglycans in cancer, IL-17 sig-
naling pathway, and platinum drug resistance. 65 target
genes were included in the pathway of cancer. Biological
function enrichment analysis of 65 genes showed YQYYJDR
inhibited tumor growth mainly through the apoptotic path-
way, shown as Figure 2(b).

3.3. Apoptosis Network of YQYYJDR. A total of 30 apoptosis
genes in YQYYJDR were obtained. The apoptosis genes/
compounds/YQYYJDR network was drawn by Cytoscape
3.7.2, as shown in Figure 3. It can be seen that the main
compounds of YQYYJDR are quercetin (MOL000098),
beta-sitosterol (MOL000358), luteolin (MOL000006),
kaempferol (MOL000422), and acacetin (MOL001689).
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3.4. YQYYJDR Suppressed Cell Growth and Induced Cell
Apoptosis In Vitro. To verify the efficacy of YQYYJDR on
TNBC cancer cells, the cell viability assay of MDA-MB-231
and MDA-MB-468 cells was performed. YQYYJDR showed
a dose-dependent effect on the viability of cancer cells in
increasing concentrations (0-40mg/mL) at 48 h. The IC50
value at 48 h was 6.095mg/mL for MDA-MB-231 cells and
7.877mg/mL for MDA-MB-468 cells, as shown in Figure 4
(a). Based on the observed IC50 values, YQYYJDR was used
at concentrations of 0, 2.5, and 5mg/mL in subsequent anal-
ysis. FITC/PE staining was used to evaluate cell apoptosis in
cancer cells treated with YQYYJDR. YQYYJDR could induce
cancer cell apoptosis, as shown in Figure 4(b). YQYYJDR
arrested MDA-MB-231 and MDA-MB-468 cells in the S
phase and inhibited cell invasion, as shown in Figures 4(c)
and 4(d).

3.5. Apoptotic Mechanism Plays a Significant Role in the
Inhibition of YQYYJDR on TNBC. These apoptotic genes

were validated by RT-PCR in vitro, as shown in Figure 5;
the mRNA expressions of CASP8, BAX, CDKN1A, PTEN,
BAD, CASP3, MAPK8, GSK3B, and NKX3-1 were upregu-
lated in cancer cells, and the mRNA expressions of AR,
FASLG, HIF1A, MMP9, PPARD, RELA, BCL2L1, TGFB1,
PTGS2, RAF1, RB1, CASP9, AKT1, PRKCA, BCL2,
CTNNB1, E2F1, E2F2, JUN, MDM2, and TP53 were down-
regulated in cancer cells after the treatment with YQYYJDR.
The results showed that YQYYJDR could induce cell apo-
ptosis. Apoptosis-related proteins, such as BAX, BCL2, cas-
pase3, and cleaved caspase3, were validated by western
blotting in vitro; the results showed that YQYYJDR upregu-
lated BAX, caspase3, and cleaved caspase3 expression and
downregulated BCL2 expression, as shown in Figure 6.

3.6. YQYYJDR Inhibited TNBC Tumor Growth In Vivo.
MDA-MB-231 mouse xenograft tumors were used to evalu-
ate the tumor suppressive effect of YQYYJDR. The result
showed that YQYYJDR at 40mg/kg inhibited tumor growth

Table 1: The sequences of the primers for genes.

Gene Forward Reverse

AKT1 TGACCATGAACGAGTTTGAGTA GAGGATCTTCATGGCGTAGTAG

AR CTACATCAAGGAACTCGATCGT CATGTGTGACTTGATTAGCAGG

BAD ATGTTCCAGATCCCAGAGTTTG ATGATGGCTGCTGCTGGTT

BAX CGAACTGGACAGTAACATGGAG CAGTTTGCTGGCAAAGTAGAAA

BCL2 GACTTCGCCGAGATGTCCAG GAACTCAAAGAAGGCCACAATC

BCL2L1 GCATATCAGAGCTTTGAACAGG GAAGGAGAAAAAGGCCACAATG

CASP3 CCAAAGATCATACATGGAAGCG CTGAATGTTTCCCTGAGGTTTG

CASP8 CAAACTTCACAGCATTAGGGAC ATGTTACTGTGGTCCATGAGTT

CASP9 GGAACTCTTCTGCTGCCACTTCTG GCCCAGGTCTCCAACACAAACAG

CDKN1A GATGGAACTTCGACTTTGTCAC GTCCACATGGTCTTCCTCTG

CTNNB1 TGGATTGATTCGAAATCTTGCC GAACAAGCAACTGAACTAGTCG

E2F1 ATAGTGTCACCACCACCATCAT GAAAGGCTGATGAACTCCTCAG

E2F2 GAAAGGTCTTGCTGCCCACACTC GTGATACTGCTGCTGCTGGTCTG

FASLG CACAGCATCATCTTTGGAGAAG GTACAGCCCAGTTTCATTGATC

GSK3B AGGAGAACCCAATGTTTCGTAT ATCCCCTGGAAATATTGGTTGT

HIF1A AGTAATGGGATGGCTGGGTCAAATG GTGCTGGAGAGGATGTGGAGAAAC

JUN CAAACCTCAGCAACTTCAACC CTGGGACTCCATGTCGATG

MAPK8 ACACCACAGAAATCCCTAGAAG CACAGCATCTGATAGAGAAGGT

MDM2 CTTCTAGGAGATTTGTTTGGCG ATGTACCTGAGTCCGATGATTC

MMP9 CAGTACCGAGAGAAAGCCTATT CAGGATGTCATAGGTCACGTAG

NKX3-1 GGAAGTTCAGCCATCAGAAGTA TCGCTTAGTCTTATAGCGTCTG

PPARD GATCCACGACATCGAGACATT CGCCATACTTGAGAAGGGTAA

PRKCA GGTGAAGGACCACAAATTCATC CACCCGGACAAGAAAAAGTAAC

PTEN GACCAGAGACAAAAAGGGAGTA ACAAACTGAGGATTGCAAGTTC

PTGS2 TGTCAAAACCGAGGTGTATGTA AACGTTCCAAAATCCCTTGAAG

RAF1 TAAGACAAGCAACACTATCCGT CAGTATTCCAATCTAAGCGTGC

TGFB1 CTGTACATTGACTTCCGCAAG TGTCCAGGCTCCAAATGTAG

TP53 TTCCTGAAAACAACGTTCTGTC AACCATTGTTCAATATCGTCCG

RELA GCAGAGAAGTGGAGTGTCAGGTAAC GCAGTGTGGGTCAGTGTGTCTAAC

RB1 ATACACGCACAGATACGCTCCTTTC GGTTAGTGACGCCAGTGACTTCAG

GAPDH GGAGTGAGTGGAAGACAGAATGGAAG CCTACAGCAGAGAAGCAGACAGTTATG
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significantly with 53% inhibition rate (P < 0:01). And
YQYYJDR had no toxic effect on the body weight of the
mice. HE and immunohistochemistry results showed that
YQYYJDR inhibited the expression of Ki-67 protein in
tumors, as shown in Figure 7.

4. Discussion

YQYYJDR has been used in clinic for breast cancer treatment
[5]. Its main compounds include quercetin, kaempferol,
beta-sitosterol, wogonin, and 7-O-methylisomucronulatol.
Quercetin and wogonin have been reported to suppress cell

proliferation and metastasis and induce cell apoptosis in
TNBC cancer cells [14–17]. Kaempferol can suppress pro-
liferation and induce apoptosis and autophagy in human
lung cancer cells [18]. beta-Sitosterol could induce G1
arrest and cause depolarization of mitochondrial membrane
potential and sensitize cells to TRAIL-induced apoptosis in
breast carcinoma MDA-MB-231 cells [19, 20]. However,
the mechanism of YQYYJDR on TNBC has not been
reported. A variety of compounds in YQYYJDR have anti-
cancer effect, which suggests that the compound prepara-
tion of various herbs will receive certain attention in the
future research.

Figure 1: The “herb-compounds-targets” network diagram of YQYYJDR.
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Figure 2: The KEGG pathway and GO Biological Processes of YQYYJDR.
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The active compounds and target genes of traditional
herbs have been widely explored by using network pharma-
cology methods, and it provides a new thought in the
research of traditional medicine [21]. However, some new
problems are also emerging, such as mixed research, decen-
tralized and irregular data, and lack of scientific validation
[22]. Recently, the Network Pharmacology Evaluation
Method Guidance has been issued to solve these new prob-
lems [22]. In this study, the data of traditional herbs were
extracted from TCMSP database, and the KEGG pathways
were found out in Metascape database and proofed by
experiments, thus exploring the mechanism of YQYYJDR
on TNBC. As the information of compound targets in
TCMSP database is collected from existing research data,
some medicinal materials with little research may not be
comprehensive in the database, which leads to certain selec-
tion bias in the prediction of compound preparation targets.
However, this problem will be improved with the perfection
of database information.

The network pharmacology results of YQYYJDR show
that apoptotic mechanism may play a significant role in
the inhibitory effects of YQYYJDR on TNBC. Main com-
pounds that exert apoptosis-inducing functions include
quercetin, beta-sitosterol, luteolin, kaempferol, and acacetin.
The in vitro experiment showed that YQYYJDR could
inhibit MDA-MB-231 and MDA-MB-468 cell proliferation
and invasion, induce cells apoptosis, arrest cells in S stage,
and regulate mRNA expression. The upregulation RNAs
include CASP8, BAX, CDKN1A, PTEN, BAD, CASP3,
MAPK8, GSK3B, and NKX3-1, and the mRNA expressions

of AR, FASLG, HIF1A, MMP9, PPARD, RELA, BCL2L1,
TGFB1, PTGS2, RAF1, RB1, CASP9, AKT1, PRKCA,
BCL2, CTNNB1, E2F1, E2F2, JUN, MDM2, and TP53 were
downregulated. The result of western blotting showed that
YQYYJDR can induce cell apoptosis by regulating the
expression of BAX, BCL2, and caspase3. Combined with
above results, YQYYJDR induced apoptosis of triple nega-
tive breast cancer cells by regulating apoptosis-related pro-
teins, thus playing a role in inhibiting tumor growth.

Key compounds that regulate apoptosis in YQYYJDR
include quercetin, beta-sitosterol, and luteolin. Quercetin
had been reported to potentiate the antimetastatic effect of
5-fluorouracil and docetaxel on the MDA-MB-231 cell line
through induction of apoptosis and modulation of PI3K/
AKT, MAPK/ERK, and JAK/STAT3 signaling pathways
[23, 24]. Additionally, quercetin increased abundance of
the proapoptotic protein Bax and decreased the levels
of antiapoptotic protein Bcl-2 [25]. There are few such stud-
ies about the mechanism beta-sitosterol on MDA-MB-231;
only few articles had shown that it induces cell apoptosis
[20, 26]. Luteolin could enhance paclitaxel-induced apopto-
sis in human breast cancer MDA-MB-231 cells by blocking
STAT3 [27]. Most of the existing studies focus on the mech-
anism of TCM monomers enhancing the efficacy of chemo-
therapy for breast cancer, partly because of the poor tumor
suppressive effect of TCM monomers in mice, and on the
other hand, TCM monomers are in the early stage of basic
research and cannot be applied in clinical practice. As com-
pound preparations of these monomers, YQYYJDR has been
widely used in clinical practice, so their clinical significance

Figure 3: The apoptosis genes/compounds/YQYYJDR network.
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Figure 4: Continued.
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Figure 4: YQYYJDR suppressed in vitro triple negative breast cancer cell growth. (a) YQYYJDR showed a dose-dependent effect on the
viability of breast cancer cells. (b) YQYYJDR induced MDA-MB-231 and MDA-MB-468 cell apoptosis. (c) YQYYJDR blocked MDA-
MB-231 and MDA-MB-468 cells in the S phase. (d) YQYYJDR inhibited MDA-MB-231 and MDA-MB-468 cell invasion.

MDA-MB-231

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

AR

0.0

0.5

1.0

1.5

MDA-MB-468

MDA-MB-231

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

CASP3

0.0

0.5

1.0

1.5

MDA-MB-468 MDA-MB-231

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

JUN

0.0

0.5

1.0

1.5

MDA-MB-468 MDA-MB-231

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

MAPK8

0

40

60

80

MDA-MB-468

20

MDA-MB-231

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

MDM2

0.0

0.5

1.0

1.5

MDA-MB-468 MDA-MB-231

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

NKX3–1

0

20

40

50

MDA-MB-468

30

10

MDA-MB-231

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

TP53

0.0

1.0

1.5

MDA-MB-468

0.5

0 mg/mL

5 mg/mL
2.5 mg/mL

MDA-MB-231

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

BCL2L1

0.0

0.5

1.0

1.5

MDA-MB-468

MDA-MB-231

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

TGFB1

0.0

0.5

1.0

1.5

MDA-MB-468

MDA-MB-231

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

PRKCA

0.0

0.5

1.0

1.5

MDA-MB-468 MDA-MB-231

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

BCL2

0.0

0.5

1.0

1.5

MDA-MB-468 MDA-MB-231

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

CTNNB1

0.0

0.5

1.0

1.5

MDA-MB-468 MDA-MB-231

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

E2F1

0.0

0.5

1.0

1.5

MDA-MB-468

MDA-MB-231

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

RAF1

0.0

0.5

1.0

1.5

MDA-MB-468 MDA-MB-231

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

RB1

0.0

0.5

1.0

1.5

MDA-MB-468MDA-MB-231

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

PTGS2

0.0

0.5

1.0

1.5

MDA-MB-468

MDA-MB-231

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

CASP8

0

5

15

25

MDA-MB-468

20

10

MDA-MB-231

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

CDKN1A

0

5

15

25

MDA-MB-468

20

10

MDA-MB-231

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

PTEN

0

20

60

100

MDA-MB-468

80

40

MDA-MB-231

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

CASP9

0.0

0.5

1.5

MDA-MB-468

1.0

MDA-MB-231

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

GSK3B

0.0

0.5

1.5

MDA-MB-468

1.0

MDA-MB-231

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

E2F2

0.0

0.5

2.5

MDA-MB-468

2.0

1.5

1.0

MDA-MB-231

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

AKT1

0.0

0.5

1.5

MDA-MB-468

1.0

MDA-MB-231

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

BAD

0

10

30

40

MDA-MB-468

20

MDA-MB-231

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

BAX

0

50

150

MDA-MB-468

100

MDA-MB-231

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

FASLG

0.0

0.5

1.0

1.5

MDA-MB-468 MDA-MB-231

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

HIF1A

0.0

0.5

1.0

1.5

MDA-MB-468 MDA-MB-231

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n
MMP9

0.0

0.5

1.0

1.5

MDA-MB-468 MDA-MB-231

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

RELA

0.0

0.5

1.0

1.5

MDA-MB-468MDA-MB-231

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

PPARD

0.0

0.5

1.0

1.5

MDA-MB-468

Figure 5: The mRNA expression of apoptosis-related genes after the treatment of YQYYJDR. The mRNA expressions of CASP8, BAX,
CDKN1A, PTEN, BAD, CASP3, MAPK8, GSK3B, and NKX3-1 were upregulated in cancer cells, and the mRNA expressions of AR,
FASLG, HIF1A, MMP9, PPARD, RELA, BCL2L1, TGFB1, PTGS2, RAF1, RB1, CASP9, AKT1, PRKCA, BCL2, CTNNB1, E2F1, E2F2,
JUN, MDM2, and TP53 were downregulated in cancer cells after the treatment with YQYYJDR.
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Figure 7: YQYYJDR inhibited tumor growth in mice. (a, b, d) YQYYJDR inhibited MDA-MB-231 mouse xenograft tumor growth. (c)
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is greater than that of traditional Chinese medicine mono-
mers. Combined with the in vivo results in our study, we
believe that the compound preparation has better tumor
inhibition effect.

There are several limitations to this study. First, molecu-
lar docking between drugs and target proteins was not used
to predict possible drug targets in this study; second, the tar-
get proteins of apoptosis were not knocked out or overex-
pression to determine whether apoptotic targets are the
main targets of drug action; third, animal experiments were
used in this study to verify the efficacy of YQYYJDR; how-
ever, the mechanism of action in vivo remains unclear;
fourth, the HPLC result and pharmacokinetics of compound
preparations have not been studied in vivo. Therefore, it is
necessary to further explore the effect of YQYYJDR on
TNBC and clarify its mechanism.

5. Conclusions

In this study, network pharmacology techniques and exper-
imental methods were used to explore the mechanism on tri-
ple negative breast cancer with YQYYJDR. In vitro and
in vivo experiments showed that YQYYJDR could inhibit
the growth of triple negative breast cancer and induce cell
apoptosis. Apoptosis pathway plays a significant role in the
treatment of triple negative breast cancer.
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MutS homolog 2 (MSH2) is a crucial participant in human DNA repair, and lots of the studies functionally associated with it
were begun with hereditary nonpolyposis colorectal cancer (HNPCC). MSH2 has also been reported to take part in the
progresses of various tumors’ formation. With the help of GTEx, CCLE, and TCGA pan-cancer databases, the analysis of
MSH2 gene distribution in both tumor tissues and normal control tissues was carried out. Kaplan-Meyer survival plots
and COX regression analysis were conducted for the assessment into the MSH2’s impact on tumor patients’ clinical
prognosis. In an investigation to the association of MSH2 expression with immune infiltration level of various tumors and
a similar study on tumor immune neoantigens, microsatellite instability was subsequently taken. It was found that high
expression of MSH2 is prevalent in most cancers. MSH2’s efficacy on clinical prognosis as well as immune infiltration in
tumor patients revealed a fact that expression of MSH2 in prostate adenocarcinoma (PRAD), brain lower-grade glioma
(LGG), breast-invasive carcinoma (BRCA), and head and neck squamous cell carcinoma (HNSC) posed a significant
correlation with the immune cell infiltration level of patients. Likewise as above, MSH2’s expression comes in a similar
trend with tumor immune neoantigens and microsatellite instability. MSH2’s expression in the majority of tumors is a
direct factor to the activation of tumor-associated pathways as well as immune-associated pathways. MSH2’s early
screening or even therapeutic target role for sarcoma (SARC) diagnosis is contributing to the efficiency of early screening
and overall survival in SARC patients.

1. Introduction

Protein MutS homolog 2 (MSH2, ENSG00000095002) is a
component of DNA damage repair by guiding the genera-
tion of critical relevant protein. This protein helps repair
errors arising when DNA is replicated for cell division pro-
teins (the MSH2 protein binds to one of the MSH6 or
MSH3 (each produced by a different gene)) to form a dimer
of the two-protein complex [1], which recognizes the error-
occurring sites on DNA that begets in the course of DNA
replication. The MLH1-PMS2 dimer is formed with another
set of proteins, which subsequently combine with the MSH2
dimer to initiate the process of error repair by removing

mismatched DNAs and replicating a new fragment [2, 3].
DNA damage is an inducement of cancer genesis; hence,
the defection of DNA repair genes is primarily responsible
for many cancers’ initiation and development [4, 5]. Methyl-
ation in a promoter might contribute to a decline in DNA
repair via the 4 pathways where MSH2 is involved: the repair
to DNA loss of match, transcription-coupled repair, homol-
ogous recombination, and the repair to base excision [6–8].
This reduction in repair capacity might bring forth accumu-
lation of DNA damage and lead to carcinogenesis [9]. It was
reported in hereditary nonpolyposis colorectal cancer
(HNPCC) that 40% of the genetic variants are the disease-
associated ones of MSH2 and they are the primary

Hindawi
Journal of Oncology
Volume 2022, Article ID 9175402, 22 pages
https://doi.org/10.1155/2022/9175402

https://orcid.org/0000-0002-2179-903X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9175402


inducements of HNPCC development [10]. A study on the
MSH2 in non-small-cell lung cancer (NSCLC) suggested
that although the gene was not mutated, 29% of NSCLC
cases were found with decline in epigenetic expression of
MSH2 [11].

Likewise in the case of no MSH2 mutation found, MSH2
promoter methylation was found in 43% patients and 86%
relapsed patients [12, 13]. Our study is the first attempt to
conduct a pan-cancer analysis on MSH2 by using databases
of The Cancer Genome Atlas (TCGA), Genotype-Tissue
Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE),
and others integratedly with relevant factors including gene
expression, survival status, genetic alterations, immune infil-
tration, and associated cellular pathways, and we eventually
elucidated MSH2’s role in the pathogenesis or the prognosis
of cancers. We found that MSH2 expression was positively
correlated with the survival prognosis, the immune infiltra-
tion, and the tumor load of various tumors, whose correla-
tion with sarcoma (SARC) is more significant.

In the present study, MSH2 expression levels in SARC
were significantly associated with genetic differences, tumor
immune cell infiltration, and so on, and are likely to be used
as target genes for early screening or even therapeutic targets
in SARC, which can help improve more than the efficiency
of early screening but also the overall survival of SARC
patients.

2. Materials and Methods

2.1. Acquisition of Transcriptional Information. Our analysis
to the gene expression patterns in 31 tissues was accom-
plished with the Genotype-Tissue Expression (GTEx) data-
set (https://http://commonfund.nih.gov/GTEx/). Then, the
subsequent analysis went along with the information from
the CCLE (Cancer Cell Line Encyclopedia) database
(https://portals.broadhttp://institute.org/ccle/), which was
downloaded for each tumor cell line. The gene expression
patterns in 21 tissues were subjected to the analysis accord-
ing to tissue origin. Then, mRNA information was down-
loaded from the database of TCGA (https://www.cancer
.gov/about-nci/organization/ccg/research/structural-
genomics/tcga), which was for an analysis to 31 tumor
samples.

The Kruskal-Wallis test was implemented through the R
language version 3.6.3 (R Foundation for Statistical Comput-
ing, Austria) (https://www.r-project.org/) to determine the
expression differences amid organs.

2.2. Differential Gene Expression Analysis. We downloaded
the datasets of TCGA pan-cancer and GTEx from the UCSC
Xena database (https://xena.ucsc.edu/) to figure out the dif-
ferences in MSH2 expression patterns within our tumor
samples and their control normal tissues. First of all, distinc-
tion of MSH2 expression patterns within tumor tissues and
their control normal tissues in 20 tumor samples was
obtained from TCGA database. Given the tiny amount of
normal tissue samples in TCGA, we only make an integra-
tion of the information about the normal tissues separately
from the GTEx database and TCGA tumor tissues, so that

our analysis to the gene expression differences in 27 tumors
could be performed. Distinction with a threshold of P < 0:05
was calculated in R language.

2.3. Survival Analysis at the Pan-Cancer Level. To figure out
the association amid MSH2 expression patterns and the
prognosis of 33 tumors in TCGA cohort, taking into account
the possible presence of nontumor mortality factors during
follow-up, we performed univariate COX regression analysis
by using a threshold of COX (P < 0:05) for overall survival
(OS), disease-free survival (DFS), disease-specific survival
(DSS), disease-free interval (DFI), and progression-free
interval (PFI). Summary forest plotting was performed using
the R language forest plot package [14]. The tumors with a
significant correlation in the regression analysis were
selected, and our subjects were divided into two groups of
high and low expression on the basis of the median of
MSH2 expressions. Our Kaplan-Meier survival analysis
was conducted with our R language packages of survival ver-
sion 3.2.3 and survminer version 0.4.8. A log-rank test with a
threshold of P < 0:05 was used to calculate the significance of
the differences in survival rates.

2.4. Relationship between MSH2 Expression Levels and
Immunity. Detectable level of tumor-infiltrating lympho-
cytes (TILs) in tumorous microenvironment suggests an
improvement in prognosis and an efficient treatment out-
come to different types of cancer [15]. We conducted an
investigation to the correlation within MSH2 expression
and the level of immune infiltration in different types of
tumors. And our exploration on the MSH2’s relationship
with the immune infiltration level within all the association
amid MSH2 expression and tumor-infiltrating lymphocytes
in TCGA tumors (B cells, CD4+ T cells, CD8+ T cells, mac-
rophages, neutrophils, and dendritic cells) was carried out by
using the Immune-Gene module at the TIMER2 (tumor
immune estimation resource, version 2, http://timer
.cistrome.org/) online. According to the relevant literature,
we chose different study methods for different TILs to
improve the accuracy. We used the EPIC method to calcu-
late the relative proportions of B cells, CD4+ T cells, and
macrophages of multiple tumors and the QUANTISEQ
method to calculate the relative proportions of CD8+ T cells
in multiple tumors. After that, we calculated the relative pro-
portions of neutrophils and dendritic cells with the
MCPCOUNTER method [16]. When our association analy-
sis came with the QMCPCOUNTER method, we used the
function of Purity Adjustment, which means the usage of
the partial Spearman’s correlation. When it came to the
EPIC and QUANTISEQ methods, we affirmed that the
parameters of tumor purity and immune infiltration would
be negatively correlated; hence, the adjustment to purity
became unnecessary [17]. Immune cell infiltration level
was estimated with the ESTIMATE method in R language,
which comprised the immune microenvironment score as
well as the stromal score of 33 tumorous cell samples from
TCGA cohort [18]. We determined the association within
MSH2 and the immune cell scores above with the Spearman
correlation method.
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2.5. Relationship between MSH2 and Neoantigen, TMB, and
MSI. Point mutations, deletion mutations, gene fusions, and
so on are the primary reasons of genetic mutations in tumor
cells, and most of the mutated genes encode the nascent
antigen named neoantigen. New abnormal proteins differ
from the ones produced by normal cells. These proteins
are enzymatically cleaved to form peptide fragments that
are delivered to T cells, which facilitate T cells to be mature
activated T cells which could specifically recognize tumor
neoantigens and have themselves proliferate [19].

We hence had an estimation to the neoantigen amount
in each tumor sample and conducted an analysis on the
MSH2 expressions with immune neoantigens in a way of
using the Spearman correlation method gene marker corre-
lation [20]. Tumor mutational burden is a parameter usually
presented as the somatic mutation amount (nonsynon-
ymous mutations) begetting in an average of 1Mb bases
within the coding region (episomal region) in tumor
genomes, which is even straightly shown as the total number
of nonsynonymous mutations, as well as the types of muta-
tions which mainly include single-nucleotide variants (SNV)
and the insertions/deletions of small fragments’ various
forms of mutations. Here, we made a calculation separately
to the tumor mutational burden (TMB) of each tumor sam-
ple and an analysis on the association amid MSH2 expres-
sion and TMB with correlation coefficient of Spearman’s
rank.

Microsatellite instability (MSI) is a term to describe any
change in microsatellite length resulting from the insertion
or the deletion of repeat units in the particular microsatellite
of tumors versus normal tissue. Furthermore, emergence of
a new microsatellite allele could be deemed as a genetic phe-
nomenon [21]. We made use of the R data package “Pre-
MSIm” for the prediction on MSI from the gene
expression profiles of 33 cancers and commenced an analy-
sis to the relationship within gene expression and MSI by the
way of using the Spearman rank correlation coefficient [22].

2.6. Mutation Patterns of the MSH2 Gene in TCGA Tumor
Samples. Our mutation data were downloaded from TCGA
database for 33 malignant tumors, and the changes of the
MSH2 gene in these tumors were analyzed. We used the R
data package “maftools” to visualize the tumors with the
most MSH2 mutations [23].

2.7. Gene Enrichment Analysis of Pan-Cancer Patients in
TCGA. We first used the STRING website (https://string-
db.org/) to query the name “MSH2” using a single protein
and “organism” selected from “Homo sapiens.” We then
set the following main parameters: minimum required inter-
action score “low confidence (0.150),” meaning of network
edges “confidence,” max number of interactors to show
“no more than 50 interactors” in the 1st shell, and active
interaction sources “experiments.” Finally, the available
MSH2-binding proteins for the experimental assays were
obtained.

We used the “Similar Gene Detection” model of Gene
Expression Profiling Interactive Analysis 2 (GEPIA2,
http://gepia2.cancer-pku.cn/#index) to obtain the top 100

MSH2-related target genes based on data from all TCGA
tumors and associated normal tissues. We also performed
the Pearson correlation analysis of MSH2 by “correlation
analysis” mode of GEPIA2, and the scatter plots were
obtained using log2 TPM, P value, and the correlation coef-
ficient (P value). Value and the correlation coefficient (R)
have been represented in the graph. In addition, we used
the “Gene_Corr” model of TIMER2 to obtain heat map data
for the selected genes, including partial correlation (cor) and
purity-adjusted Spearman’s rank correlation test (s rank cor-
relation test).

We combined the two sets of data from the relevant tar-
get genes and the binding protein genes for Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway analysis.
Briefly, we selected identifier (“OFFICIAL_GENE_ SYM-
BOL”) and species (“Homo sapiens”) in the DAVID (Data-
base for Annotation, Visualization, and Integrated
Discovery) website to obtain functional annotation chart
data. The final visualization of the enrichment pathways
was obtained through the Sangerbox website (http://
sangerbox.com), where we also performed GO (Gene Ontol-
ogy) enrichment analysis, biological process (BP), cellular
component (CC), and molecular function (MF) data visual-
ized as centplots, and two-tailed P <0.05 was considered sta-
tistically significant.

3. Results

3.1. Gene Expression Analysis Data. We analyzed the differ-
ences in gene expression between cancer and paracancer in
individual tumor samples obtained from TCGA database,
as shown in Figure 1(c). In bladder urothelial carcinoma
(BLCA), BRCA, cholangiocarcinoma (CHOL), colon adeno-
carcinoma (COAD), esophageal carcinoma (ESCA), HNSC,
kidney chromophobe (KICH), liver hepatocellular carci-
noma (LIHC), lung adenocarcinoma (LUAD), lung squa-
mous cell carcinoma (LUSC), rectum adenocarcinoma
(READ), stomach adenocarcinoma (STAD), uterine corpus
endometrial carcinoma (UCEC) (P value <0.001), LGG,
and thyroid carcinoma (THCA) (P value <0.05), the tumors
in TCGA cohort did not show MSH2 expression levels lower
than those of the relevant control normal tissues.

After using normal tissues from the GTEx dataset as
controls, we further evaluated the differences of MSH2
expression in adrenocortical carcinoma (ACC), cervical
squamous cell carcinoma and endocervical adenocarci-
noma (CESC), acute myeloid leukemia (LAML), ovarian
serous cystadenocarcinoma (OV), testicular germ cell
tumors (TGCT), and uterine carcinosarcoma (UCS). As
shown in Figure 1(d), the MSH2 expression levels in
ACC, CESC, OV, TGCT, and UCS (P value <0.001) were
higher than those in the relevant control normal group
tissues.

In addition, the Kruskal-Wallis test showed significant
differences in MSH2 expression levels among organs
(Figures 1(a) and 1(b)), while MSH2 expression levels were
significantly higher in bone marrow tissues with a value of
log2 ðTPM + 1Þ > 6.
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Figure 1: MSH2 expression level in 31 normal tissues across (a) the GTEx dataset and (b) the CCLE database. We downloaded the
information of the distinction samples from (c) TCGA database and (d) GTEx datasets on individual gene expression between cancer
and paracancer.
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3.2. Survival Analysis Data. We investigated the relationship
between MSH2 expression levels and survival prognosis in
patients with different tumors. We first analyzed the rela-
tionship between expression and prognostic OS in 33
tumors of TCGA using gene expression profile data and
univariate survival analysis. The forest plots in 33 tumors
are shown in Figure 2(a), and among the significant
tumors, ACC, BLCA, KICH, kidney renal clear cell carci-
noma (KIRC), kidney renal papillary cell carcinoma
(KIRP), LGG, LIHC, mesothelioma (MESO), pancreatic
adenocarcinoma (PAAD), READ, SARC, thymoma
(THYM), and UCEC are selected as prognostic KM
curves. We divided cancer cases into high- and low-
expression groups according to the median expression
level of MSH2 and mainly applied the databases of TCGA
and GEO to investigate the relationship between MSH2
expression and prognosis of patients with different tumors.
According to Figure 3(a) high expression of MSH2 was

associated with poorer prognosis in ACC, BLCA, KICH,
KIRP, LGG, LIHC, MESO, PAAD, SARC, and UCEC,
while low expression of MSH2 was associated with poorer
prognosis in KIRC, READ, and THYM.

Also, considering the possibility of non-tumor-related
deaths during follow-up, we analyzed the relationship
between gene expression and DSS in 33 tumors of TCGA
cohort (Figure 2(b)); among the significant tumors, ACC,
KICH, KIRC, KIRP, LGG, LIHC, PAAD, PRAD, SARC,
THYM, and UCEC are selected as prognostic KM curves.
Cancer cases were divided into high- and low-expression
groups according to the median expression level of MSH2
for prognostic KM curves. As shown in Figure 3(b) MSH2
was expressed in ACC, KICH, KIRP, LGG, LIHC, PAAD,
PRAD, SARC, and UCEC in which high expression levels
were significantly associated with their poorer DSS, while
in KIRC and THYM, low MSH2 expression levels were asso-
ciated with poorer DSS.
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Figure 2: The relationship between expression and OS (a), DSS (b), DFI (c), and PFI (d) in 33 tumors of TCGA. Outcomes of univariate
COX regression analysis were shown through the forest plot.
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Figure 3: Continued.
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Figure 3: Continued.
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Figure 3: Continued.
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We further analyzed the relationship between gene
expression and DFI (Figure 2(c)) and PFI (Figure 2(d)) in
the 33 tumors of TCGA cohort. Significant tumors (ACC,
CESC, KIRP, LIHC, LUSC, PAAD and ACC, CESC, KICH,
KIRC, KIRP, LGG, LIHC, PAAD, and UCEC) were selected
in DFI and PFI survival analysis, and cancer cases were
divided into high- and low-expression groups according to
MSH2 expression levels for prognostic KM curves. As
shown in Figure 3(c), in the DFI survival analysis, high
expression of MSH2 was all associated with poorer progno-
sis in ACC, CESC, KIRP, LIHC, LUSC, and PAAD. As
shown in Figure 4 (d), in the PFI survival analysis, high
expression of MSH2 was associated with poorer prognosis
in ACC, CESC, KICH, KIRP, LGG, LIHC, PAAD, and
UCEC. And low expression of MSH2 was associated with a
worse prognosis for KIRC patients.

3.3. Relationship between Gene Expression and Immunity in
Individual Tumors. Tumor-infiltrating lymphocytes are

independent predictors of anterior lymph node status and
survival in cancer [24]. We investigated whether this gene
expression correlated with the level of immune infiltration
in different types of cancers.

The results showed that MSH2 expression levels were
significantly correlated with the level of B cell infiltration
in 18 cancers, CD4+ T cell infiltration in 23 cancers, CD8+
T cells in 10 cancers, macrophages in 12 cancers, neutrophils
in 26 cancers, and dendritic cells in 12 cancers. The three
most significantly correlated tumors in each immune cell
were selected. B cell infiltration levels were significantly cor-
related with MSH2 expression levels in LGG, KIRP, and
PRAD. CD4+ T cell infiltration level was significantly corre-
lated with MSH2 expression levels in THCA, HNSC, and
KIRC. CD8+ T cell infiltration level was significantly corre-
lated with MSH2 expression levels in THYM, LIHC, and
SARC. Macrophage infiltration levels were significantly cor-
related with MSH2 expression levels in LIHC, glioblastoma
multiforme (GBM), and SARC. Neutrophil infiltration levels
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Figure 3: A log-rank test was conducted for the determination on the significance of the overall survival differences (a), DSS differences (b),
DFI differences (c), and PFI distinctions (d) with a threshold of P < 0:05, whose results were presented by the way of Kaplan-Meier survival
curves versus the patients’ survival rates of low and high MSH2 expression in tumors.
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were significantly correlated with MSH2 expression levels in
THYM, KIRC, and PRAD. Dendritic cell infiltration levels
were significantly correlated with MSH2 expression levels
in BRCA, HNSC, and LIHC.

An increasing number of reports suggest that the tumor
immune microenvironment has an important role in tumor
development [25]. We observed the relationship between
gene expression and the immune score, stromal score, and
ESTIMATE score in 33 tumors and selected the three
tumors with the most significant relationship among each
score as shown in Figure 4. The results showed that the
expression levels of MSH2 in SARC, TGCT, and BRCA were

significantly and negatively correlated with the stromal
score. The MSH2 gene expression levels in SARC, UCEC,
and LUSC were significantly and positively correlated with
the immune score. In SARC, LUSC, and UCEC, MSH2 gene
expression levels were significantly and positively correlated
with the ESTIMATE score.

Under normal conditions, immune cells can recognize
and remove tumor cells from the tumor microenvironment
[26]. Tumor immunotherapy approaches control and elimi-
nate immune cells by restarting and maintaining the tumor
immune cycle as a means to repair the normal antitumor
immune response in the body. Immune checkpoint genes
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Figure 4: Correlation of MSH2 expression with the stromal score, immune score, and ESTIMATE score in SARC, LUSC, UCEC, TGCT,
and BRCA.

11Journal of Oncology



include monoclonal antibody-based immune checkpoint
inhibitors, therapeutic antibodies, cancer vaccines, cell
therapy, and small-molecule inhibitors [27]. As shown in
Figure 5, the horizontal coordinates indicate the 33
selected tumors and the vertical coordinates indicate the
relevant immune checkpoints. We found that the expres-
sion of MSH2 was positively correlated with the expres-
sion levels of immune checkpoint genes in KICH, KIRC,
and LICH, while the expression of MSH2 was negatively
correlated with the expression levels of immune check-
point genes in SARC.

3.4. Relationship between Gene Expression and Immune
Neoantigens, TMB, and Microsatellite Instability. The
immune activity of tumor neoantigens and neoantigen vac-

cines can be designed and synthesized according to the
mutation of tumor cells and immunized to patients to
achieve therapeutic effects [28]. Here, we counted the num-
ber of neoantigens in each tumor sample separately to ana-
lyze the relationship between MSH2 expression and the
number of antigens. As shown in Figure 6, the expression
levels of MSH2 in LUAD, LUSC, BRCA, STAD, THCA,
BLCA, PRAD, and LGG were found positively correlated
with the number of immune neoantigens.

TMB is used to reflect the number of mutations con-
tained in tumor cells and is a quantifiable biomarker. Here,
we counted TMB for each tumor sample separately using
Spearman’s rank correlation coefficient and analyzed the
relationship between gene expression and TMB as shown
in Figure 7(a). MSH2 gene expression level results such as
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BLCA, BRCA, LAML, LGG, LUAD, LUSC, PRAD, skin
cutaneous melanoma (SKCM), and STAD were significantly
and positively correlated with TMB, while ESCA, KIRC,
KIRP, THCA, and THYM showed a negative correlation
between MSH2 gene expression levels and TMB.

We analyzed the correlation between gene expression
and MSI using the Spearman rank correlation coefficient as
shown in Figure 7(b). The results were as follows: MSH2
gene expression levels in KIRC, LUSC, STAD, and UCEC
were positively correlated with MSI, while lymphoid neo-
plasm diffuse large B cell lymphoma (DLBC), PRAD, and

THCA showed a negative correlation between MSH2 gene
expression levels and MSI.

3.5. Mutation Patterns of Genes in Individual Tumor
Samples. We obtained mutation data from TCGA database
for 33 tumors and analyzed the mutations of MSH2 in these
tumors. As shown in Figure 8, MSH2 was observed to
mutate in BLCA, BRCA, COAD, GBM, LUAD, OV, PRAD,
SKCM, STAD, and UCEC. The top three tumors with the
highest MSH2 mutation rate were UCEC (rate = 7:36%),
COAD (rate = 4:51%), and BRCA (rate = 2:43%).
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Figure 6: MSH2’s correlation with neoantigens. Expression of MSH2 was positively correlated with the immune neoantigens’ amount in
LUAD, LUSC, BRCA, STAD, THCA, BLCA, PRAD, and LGG.
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3.6. Enrichment Analysis of MSH2-Related Partners. To fur-
ther understand the molecular mechanisms of MSH2 in
tumorigenesis, we screened for MSH2-binding proteins
and MSH2 expression-related genes for a series of enrich-
ment analyses. Based on the STRING website, we obtained
a total of 50 MSH2-binding proteins supported by experi-
mental evidence. The network diagram of the interactions
of these proteins is shown in Figure 9(a). Using the GEPI
A2 website, we combined the expression data of all tumor
and normal tissues in TCGA to obtain the top 100 genes
associated with MSH2 expression. As shown in
Figure 9(b), MSH2 expression levels were positively corre-
lated with MSH6, WDHD1, CDC25A, ERCC6L, and RCC2

(all P < 0:001). The corresponding heat map data also
showed a positive correlation between MSH2 and the above
five genes in most cancer types (Figure 9(d)). The intersec-
tion of the above two datasets showed three common genes,
MSH6, FANCD2, and EXO1 (Figure 9(c)).

We combined these two datasets to perform KEGG and
GO enrichment analysis, as shown in Figure 10, where the
KEGG data suggest that the “cell cycle” may be involved in
the influence of MSH2 on tumor pathogenesis, and the GO
enrichment analysis data further suggest that the molecular
mechanisms of these genes are mostly related to DNA met-
abolic pathways or chromosomal cell biology, such as “regu-
lation of DNA metabolic process” and “DNA replication.”
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Figure 7: MSH2’s correlation separately with TMB (a) and microsatellite instability (b).

14 Journal of Oncology



4. Discussion and Conclusions

China is the country with the most population worldwide;
with the rising amount of its aging population, the burden
of cancer in China comes to be severe [29]. Meanwhile, since
the novel coronavirus pandemic in 2019, studies have shown
that cancer patients in a state of systemic immunosuppres-
sion are considered highly vulnerable to the COVID-19 epi-
demic [30, 31].

We made a comprehensive examination on the MSH2
gene with a total of 33 different tumors in TCGA cohort

based on data from TCGA, CCLE, UCSC Xena, and GTEx
databases, as well as gene expression, gene variants, methyl-
ation, immune infiltration, and enrichment analysis [32].
Then, it turned out that expression of MSH2 was signifi-
cantly related to prognosis and immunity in several different
tumors. Therefore, we could assume that MSH2 might be a
screening indicator and a possible factor for multiple tumors
in the future.

We observed differences in MSH2 expression within
cancers and its control normal tissues. Moreover, MSH2
was significantly more highly expressed in sarcoma,
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hepatocellular carcinoma, lung cancer, bile duct cancer,
prostate cancer, gastric cancer, thyroid cancer, and common
genital tumors versus normal tissues, with MSH2 expression
being significantly higher in bone marrow tissues. The dele-
tion of MSH2 protein was associated with the inactivation of
MSH2, high mutation, and high tumor-infiltrating lympho-
cyte density in high-grade primary tumors [33]. Because
MSH2 protein directs the production of proteins that mod-
ulates DNA repair, the MSH2 gene was also considered an

oncogene in past studies [34], which is consistent with our
analysis that high MSH2 expression was associated with
OS in ACC, BLCA, and KICH patients. KIRP, LGG, LIHC,
MESO, PAAD, SARC, and UCEC were associated with
poorer prognosis in OS, and only KIRC and READ were
associated with better prognosis in our analysis. Based on
previous clinical studies, MSH2 plays different roles in dif-
ferent cancers, and high MSH2 expression in early-stage
lung cancer is significantly associated with poorer prognosis
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Figure 9: Enrichment analysis of MSH2-binding proteins and MSH2 expression-related genes. (a) We obtained the result of the
experimentally available determination to the MSH2-binding proteins with the STRING tool. (b) We obtain 100 of the genes with the
closest association with MSH2 expression. MSH2 expression levels were most positively correlated with MSH6, WDHD1, CDC25A,
ERCC6L, and RCC2. (c) The intersection of the above two datasets showed three common genes, MSH6, FANCD2, and EXO1. (d)
Information of the corresponding heat map also presented us a positive relationship amid MSH2 and the five genes above in most
cancer types.
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Figure 10: KEGG pathway GO enrichment analysis was performed on the basis of MSH2-binding and interacted genes. (a) KEGG pathway
analysis. (b) Biological process, (c) cellular component, and (d) molecular function information of GO analysis was presented as a bubble plot.

19Journal of Oncology



[35], and high expression of MSH2 in NSCLC could be used
as a prognostic indicator for prolonged survival [36]. This
may be because the action of MSH2 protein depends on
the regulation of tumor microenvironment; for example,
both class IIb HDACsh and MSH2 may influence tumor
pathogenesis through the cell cycle, and the deacetylation
of MSH2 by HDAC10 may lead to DNA mismatch repair
activity [37].

Our analysis to MSH2 expressions and immunity
showed that the MSH2 expression in SARC showed a nega-
tive correlation with B cells, CD4+ T cells, CD8+ T cells,
macrophages, neutrophils, and dendritic cells; it was also
alike in the immune score, stromal score, and ESTIMATE
score of ESTIMATE analysis. Progress of tumor develop-
ment is complex, where the interplays within the cancer
cells, microenvironment, and immune system hold impacts
on tumorigenesis and progression [38]. Immune cells, by
eliminating pathogens, have an important secondary role
in maintaining tissue integrity and normal function in differ-
ent states of homeostasis, infection, and noninfectious dis-
turbances of the body and have an impact on the clinical
outcome of tumors [39]. In addition, it has been shown that
high or moderate immune scores in SARC can lead to better
DFS or OS. Therefore, fortified MSH2 expression associated
with worse prognosis in SARC patients may be related to the
fact that MSH2 expression suppresses the infiltration of
immune cells in the tumor microenvironment and decreases
immune scores. Besides that, the MSH2 expressions in
SARC presented a significantly negative correlation with
most immune check genes, especially LGALS9 and VSIR.
Immune checkpoints are various immunosuppressive path-
ways that hold the balance of self-tolerance, regulating the
duration as well as the magnitude of immune responses in
the physical state [40]. Immune checkpoint blockade can
reduce immune escape of tumor cells and limit tumor
growth.

It was reported that the abnormal expression of MSH2 in
osteosarcoma cells has been proven a possible sign of drug
resistance to chemotherapeutic drugs [41], and case reports
have revealed the relationship between MSH2 variants and
the development of osteosarcoma, and the accumulation of
genetic damage due to MSH2 variants may contribute to
the development of osteosarcoma [42]. In a related study
on osteosarcoma tissue microarray, local expressions of
MSH6 and MSH2/6 were significantly related to shorter sur-
vival time, especially in chemotherapy-naive patients and
patients with metastatic tumors [43], which is consistent
with our findings. However, the study is limited in public
databases, and further investigation in MSH2 expression
affecting the diagnosis and prognosis of different cancer
types is needed. In particular, a potential role of MSH2 indi-
cates the SARC and contributes to the immunotherapy of
SARC. This inspirits the future research on verification of
the specific role of MSH2 expression on sarcoma and explor-
ing the mechanism of it. In conclusion, the present study
firstly conducted the pan-cancer analysis on MSH2 in gene
expression, survival status, genetic alterations, immune infil-
tration, and associated cellular pathways. The study revealed
that MSH2 may be an ideal prognostic indicator for SARC as

well as a therapeutic target for immunotherapy in the clini-
cal setting to improve patient prognosis and increase sur-
vival rates.
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The DNA damage repair (DDR) genes are increasingly gaining attention as potential therapeutic targets in cancers. In this study,
we identified the DDR genes associated with the tumor mutation burden (TMB) and prognosis of cervical squamous cell
carcinoma (CESC) based on The Cancer Genome Atlas (TCGA) database. Through LASSO Cox regression, the prognostic
signature involving five DDR genes (ACTR2, TEX12, UBE2V1, HSF1, and FBXO6) was established, and the risk score was
identified as an independent risk factor for CESC. The nomogram consisting of the five genes accurately predicted the overall
survival (OS) and the immunotherapeutic response of CESC patients. Finally, the loss of the copies of the transcription factor
(TF) SP140 in CESC patients may decrease the expression of FBXO6, improve DNA repair function, and reduce the diversity
of neoantigens, thereby lowering the response to immunotherapies. Therefore, the DDR gene signature is a novel prognostic
model and a biomarker for immunotherapies in CESC patients.

1. Background

With 530,000 newly diagnosed cases each year, cervical squa-
mous cell carcinoma (CESC) is the fourth most common
cancer worldwide and the third most common cancer in
women [1, 2]. Almost all CESC cases are the result of human
papillomavirus (HPV) infection [3]. While cervical screening
and antiHPV vaccination are effective preventive measures,
CESC remains the leading cause of cancer-related mortality
with approximately 270,000 deaths per year [2, 4]. Currently,
the primary treatment for CESC patients consists of radiation
and/or cisplatin-containing chemotherapy in addition to sur-
gical resection. Unfortunately, the majority of the patients are
at an advanced stage that limits therapeutic success when
diagnosed. Both local and distant recurrence is common,
which highlights the need for improved therapeutic options
[5, 6]. The clinical trials of therapeutic HPV vaccines, adop-

tive T cell therapy, and immune checkpoint inhibitors have
shown promising response rates [7–10]. It is nevertheless
crucial to identify more effective prognostic biomarkers for
CESC and modify the current treatment strategies.

The DNA damage repair (DDR) response maintains
genome stability and protects cells against endogenous and
exogenous DNA damage [11]. Variations in the DDR genes
in tumor cells are frequently associated with high somatic
mutation load, which in turn triggers the production
of tumor-specific neoantigens [12–15]. Consistently, as
reported in a recent study, the DDR gene signature of glioma
cells was predictive of patient prognosis and intratumoral
immune cell infiltration [16]. Furthermore, the Arg399Gln
polymorphism of the X-ray repair cross-complementing
group 1 (XRCC1) gene is associated with the prognosis of
nonsmall cell lung cancer (NSCLC) patients receiving plati-
num therapy, and the patients with the Gln/Gln genotype
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have a survival benefit [17]. Another study reported a
correlation between polymorphisms of DDR genes and the
response metastatic urothelial cancer patients to PD-1/PD-
L1 blockers [18]. Thus, DNA repair defects are potentially
novel biomarkers of immune checkpoint blockade response
[12]. Mutations in the DNA polymerase required during
DNA repair can also improve the overall survival rate of
patients by increasing mutations in DDR genes [19]. In
addition, mutations in DDR genes are closely related to the
resistance of tumors to radiotherapy and chemotherapy
[20, 21]. Few studies have reported the clinical significance
of DDR genes in CESC, and so far, only XRCC4 has been
associated with the progression of cervical cancer [22].
These studies indicate that DDR genes are emerging bio-
markers of the clinical prognosis and immunotherapeutic
response of various cancers. Furthermore, most DDR genes
are regulated by upstream transcription factors (TFs), such
as p53, BRCA1, AP-1, and NF-κB [23], which offers new
insights into the mechanisms underlying their role in cancer
prognosis.

The aim of this study was to identify novel DDR bio-
markers for the prognosis and immunotherapeutic response
of CESC. To this end, we screened for the differentially

expressed DDR genes in CESC from TCGA (The Cancer
Genome Atlas) and analyzed their relationship with the
immune microenvironment in CESC. A five-DDR gene sig-
nature was identified that can predict CESC prognosis and
immunotherapeutic response with high sensitivity.

2. Materials and Methods

2.1. Data Collection. RNA-seq data as well as clinical
information (age, days to death, vital status, clinical stage,
mutations, copy number variations, etc.) of 306 CESC sam-
ples were obtained from TCGA database (https://portal.gdc
.cancer). Besides, samples with incomplete clinical informa-
tion were excluded. DDR gene data was downloaded from
AmiGO2. (http://amigo.geneontology.org/).

2.2. Identification of Differentially Expressed Genes. The
RNA-seq data of DDR genes were processed using the
“limma” package. For high-tumor mutation burden (TMB)
and low-TMB samples, the differentially expressed genes
(DEGs) were screened between them. Univariate Cox regres-
sion of the overall survival (OS) was performed using the

RNA-seq expression profiles of 306 CESC samples and mRNA sequencing data
matching DNA repair genes were downloaded from TCGA; DNA repair genes were

taken from AmiGO2

“limma” R package screened out DEGs; “survival” R package performed univariate Cox
analysis on OS to screen DNA repair genes with prognostic potential

�e “glmnet” R package performs LASSO Cox regression analysis on prognostic genes,
penalizing the regularization parameter 𝜆 to avoid overfitting effects

Calculate the risk score according to the gene expression level and the corresponding
regression coefficient, and divide it into high and low risk groups

Create Kaplan-Meier curves and time-dependent ROC curves between the two groups to
assess the predictive power of gene signatures

�e “rms” R package completes predicted nomograms and calibration plots; the GSVA
and TIDE predict immunotherapy response; co-expression analysis identifies TFs

ATAC-seq data taken from TCGA to identify chromatin accessibility; Cistrome database
validation

Figure 1: The flow chart of the analysis process. CESC: cervical squamous cell carcinoma; TCGA: The Cancer Genome Atlas; DEGs:
differentially expressed genes; OS: overall survival; GSVA: Gene Set Variation Analysis; TIDE: tumor immune dysfunction and exclusion;
TFs: transcription factors.
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“survival” R package to identify DDR genes with prognostic
relevance.

2.3. Identification of Prognostic Genes as well as
Establishment of Prognostic Model. Analysis of the prognos-
tic genes was performed by LASSO Cox regression based on
the “glmnet” R package. To avoid overfitting, ten-fold cross-
validation was adopted to determine the penalized
regularization parameter λ in the model. For each patient,
the risk score was calculated as following: risk score = SUM
ðexpression level of each gene × corresponding coefficientÞ.
Based on the median of the risk score, CESC patients were
then categorized into the low-/high-risk groups. The
Kaplan-Meier curves of both groups were plotted using the
“survminer” R package. The “survivalROC” R package was
used to plot the time-dependent ROC curve in order to
evaluate the predictive power of the gene signature. The
independent prognostic predictors of OS were determined
by Cox regression using TCGA data. The nomograms and
corresponding calibration plots were constructed based on
the independent predictors with the “rms” R package, and
the predictive power of the nomogram was determined by
ROC curve analysis.

2.4. Predictors of Immunotherapeutic Response. Single-sam-
ple gene set enrichment analysis (ssGSEA) was carried out
on thirteen immune-related pathways. Meanwhile, the
infiltration of sixteen immune cell types was evaluated using
the “gsva” R package. The response of the CESC patients to
ICB was predicted on the basis of pretreatment genomics
using the tumor immune dysfunction and exclusion (TIDE)
program (http://tide.dfci.harvard.edu/).

2.5. Identification of the Upstream TFs. TFs coexpressed with
the key genes significantly were identified if their correlation
coefficients >0.50.

2.6. Validation of the Regulatory Mechanism of TFs. For
CESC samples, their ATAC-seq data was retrieved from
TCGA, and the accessibility of the chromatin located at
these biomarker genes were determined. The binding of
the TFs to the putative targets was validated by the Cistrome
database (http://cistrome.org/db/#/).

2.7. Statistical Analysis. Statistical analysis was carried out
using R software 4.0.3. For the gene expression levels,
Student t-test (2-sided) was used to compare the difference
of CESC and adjacent nontumor tissues. Besides, Kaplan-
Meier method was adopted to evaluate the OS, and log-
rank test was used for the comparison between groups.
The ssGSEA scores of immune pathways or cells were
compared using Mann–Whitney U test. p < 0:05 indicated
statistical significance.

3. Results

3.1. Identification of Prognostic DDR Genes in CESC. The
procedure of bioinformatics analysis is summarized in
Figure 1. To identify the prognostic DDR genes, CESC
patients were divided into the high and low TMB groups
according to the median TMB, and the differentially
expressed DDR genes were screened (Figure 2(a)). Univari-
ate Cox regression analysis revealed ACTR2, TEX12,
UBE2V1, HSF1, and FBXO6 as the potential prognostic
DDR genes (Figure 2(b)). We summarized the incidence of

Altered in 4 (1.38%) of 289 samples
10436
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Figure 2: Identification of prognostic genes related to DNA damage repair: (a) Differentially expressed genes in the high and low TMB
groups; (b) univariate Cox regression analysis to determine potential prognostic genes; (c) the incidence of major somatic mutations in
CESC; (d) the mutation frequency of 5 DNA damage repair genes.
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main somatic mutations in CESC (Figure 2(c)) and
detected low somatic mutation frequency in the above
genes (Figure 2(d)).

3.2. Correlation with Prognosis of CESC Patients. The
prognostic model consisting of ACTR2, TEX12, UBE2V1,
HSF1, and FBXO6 was established based on LASSO Cox
regression. The total risk score of these five genes was
calculated as ð0:418 × expression of ACTR2Þ + ð−1:995 ×
expression of TEX12Þ + ð0:147 × expression of UBE2V1Þ +
ð0:543 × expression of HSF1Þ + ð−0:217 × expression of
FBXO6Þ. Considering the median of the risk score as the

cutoff, the samples were categorized into low-/high-risk
groups (Figure 3(a)). Compared to the low-risk group, the
mortality rate of patients was higher in the high-risk group
with statistical significance (Figure 3(b)). Consistently,
compared to the high-risk patients, Kaplan-Meier analysis
discovered a better OS in low-risk group (Figure 3(c), p <
0:05). The areas under the receiver operating characteristic
curve (AUROCs) for 1-, 2- and 3-year OS were 0.744, 0.714
and 0.703, respectively (Figure 3(d)).

3.3. Construction and Verification of DDR-Related Prognostic
Model in CESC. For the risk score of DDR gene, univariate
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Figure 3: Prognostic analysis of the 5-gene marker in TCGA cohort: (a) risk score of samples from TCGA cohort; (b) the overall survival in
TCGA cohort; (c) Kaplan-Meier curves showing the overall survival of the high-/low-risk groups in TCGA cohort; (d) the area under
receiver operating characteristic curve showing the prognostic performance of the risk score.
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analysis was used to assess the prognostic value in different
subgroups of CESC patients. The risk score and tumor stage
were significantly associated with the survival rate of CESC
patients, and the risk score had a greater impact. However,
no significant difference was observed in the survival rates
of patients in terms of age (Figure 4(a)). Multivariate analy-
sis further revealed tumor stage as well as risk score to be
prognostic factors for CESC in TCGA cohort (Figure 4(b)).
A nomogram consisting of the risk scores and tumor stages
was then constructed to put the risk score into clinical
prediction (Figure 4(c)). We found that the nomogram
could predict the 3- and 5-year OS of cervical cancer
patients, and the risk score was the main influencing factor.
AUCs were 0.775, 0,734, and 0.726 for 1-, 2-, and 3-year OS,
respectively (Figure 4(d)). The prognostic nomogram also
showed good predictive ability and clinical value in
terms of calibration and decision curve analysis (DCA)
(Figure 4(e)). Taken together, the risk score consisting of
DDR genes can effectively predict the survival outcomes of
CESC patients.

3.4. Association between Risk Score and Immunotherapeutic
Response of CESC Patients. To determine the correlation
between risk score and immunotherapeutic response, we
quantified the different immune cell subpopulations and
activity of immune-related pathways using ssGSEA. Next,
the distribution of immune cells and activity score of
immune-related pathways between the high-risk group and
the low-risk group is used as reliable evidence to assess the

infiltration of immune cells. Compared to the low-risk
group, the infiltration of 15 immune cell types was lower
in the high-risk group with statistical significance, whereas
macrophage infiltration showed no difference (Figure 5(a)).
Furthermore, all but the type II IFN response immune
pathways scored significantly higher in the low-risk group
(Figure 5(b)). TIDE results further showed that CESC
patients with lower risk score had less immune deficiency
(Figure 5(c)) and were able to mount a more potent immune
response (Figure 5(d)). In other words, compared to the
high-risk patients, those with low-risk scores of DDR gene
responded better to immunotherapies. Therefore, the risk
score of DDR gene is a reliable biomarker for predicting
the immunotherapeutic response in CESC.

3.5. FBXO6 Is Downregulated in CESC due to Loss of SP140.
Thirty-five upstream TFs significantly associated with the
DDR genes were identified by coexpression analysis, of
which SP140 showed maximum copy number loss in CESC
(Figure 6(a)). There was clear correlation between the
expression levels of SP140 and FBXO6 (R = 0:523, p <
0:001) (Figure 6(b)). To further explore the underlying
mechanisms, we used the ATAC-seq data of SP140 and
FBXO6 in CESC samples from TGCA and verified their
binding in the Cistrome database. As shown in Figure 6(c),
there are multiple open chromatin regions in the promoter
of FBXO6, indicating that it is transcriptionally regulated
in CESC. We also detected multiple binding peaks corre-
sponding to SP140 in the FBXO6 sequence according to
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the chip sequence data of SP140 in the Cistrome database
(Figure 6(d)). Therefore, the loss of copy number of SP140
in CESC may be a critical factor for FBXO6 downregulation.

4. Discussion

DNA carries genetic information which is necessary to syn-
thesize RNA and proteins. Hence, to maintain the structural
and functional integrity of DNA is critical for the normal
development of all organisms. DNA damage due to endoge-
nous events (oxidative damage, replication fork collapse, or
errors that occur naturally during DNA replication or
immune cell maturation) or by exogenous factors (ultravio-
let rays, ionizing radiation, or chemical reagents) can result
in mutations, eventually leading to malignant transforma-
tion [24–27]. In order to maintain the integrity of the cellu-
lar genome, a series of DNA damage responses, such as
repair mechanisms, have evolved that can eliminate or adapt
to damage [28].

DDR pathways were consisted of direct repair (DR), base
excision repair (BER), nucleotide excision repair (NER),
double-strand break repair (DSBR), and interstrand cross-
link repair (ICLR) [28] and are regulated by specific genes
and their upstream TFs [23]. More than one DDR pathway
is often inactivated during cancer initiation and progression,
and mutations among DDR genes have been linked to the
chemoresistance of tumor cells as well [29, 30]. Thus, DDR
genes are prognostically relevant and can be used to predict
treatment response along with the overall prognosis of can-
cer patients. Based on above, we established a prognostic
model for CESC involving five DDR genes, which accurately
predicted the survival, immune infiltration, and the efficacy
of immunotherapy in CESC patients. Thus, this novel prog-

nostic signature can be used to select suitable patients for
immunotherapy.

Referring to the expression levels of the five DDR genes,
CESC patients are divided into low-/high-risk groups, and
the former exhibited worse prognosis in terms of the OS
rates. The TNM staging and risk scores of the low-/high-risk
groups were significantly different, whereas age did not have
a significant impact on the prognosis. Furthermore, the risk
score was identified as an independent prognostic factor.
The nomogram indicated high predictive power of the risk
score for 3- and 5-year OS, whereas ROC analysis showed
that 1-, 2-, and 3-year OS could be predicted by the risk
score. The accuracy of this prognostic model was also
validated by the decision curve analysis (DCA). Thus, the
DDR gene-based risk score can precisely forecast the
survival outcome of CESC patients and, at the same time,
provide more therapeutic options.

Interestingly, for the low-/high-risk groups, the infiltra-
tion of 15 immune cell types differed significantly, whereas
the infiltration of macrophages was similar. The low-risk
group showed greater immune cell infiltration, especially
that of T-helper cells, Treg cells, and CD8+ T cells. Further-
more, 13 immune-related pathways scored higher in the
low-risk group, while type II IFN response showed no signif-
icant difference between groups. In addition, the association
between the risk score of CESC and immunotherapeutic
response was evaluated by TIDE program and revealed
46% and 35% positive responders in the low-risk and high-
risk groups, respectively, which further underscores the role
of DDR genes in determining the response of CESC patients
to immunotherapy.

The checkpoint kinase CHK1 (CHEK1) recognizes DNA
damage, delays the cell cycle, and initiates DNA repair [31].
FBXO6 can specifically recognize activated CHEK1 and
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SP140 was the least; (b) SP140 is coexpressed with FBXO6; (c) multiple open chromatin regions in the FBXO6 promoter; (d) multiple peaks
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promote its ubiquitin-dependent degradation [32], thereby
inhibiting DNA repair and function and eventually leading
to increased neoantigen diversity and sensitivity to immuno-
therapy. Studies show that FBXO6 expression is related to
the OS of NSCLC patients, and in vitro experiments have
shown that FBXO6 inhibits cell proliferation, promotes
apoptosis, and sensitizes the cells to cisplatin [33]. Further-
more, FBXO6 also inhibits the antiviral response by interfer-
ing with the production of IFN-I [34]. Ji et al. reported that
the high expression levels of FBXO6 in tissues were corre-
lated with poor survival of patients with advanced ovarian
cancer. FBXO6 directly interacts with the tumor suppressor
gene RNASET2 to target it for ubiquitin-dependent degra-
dation, thus functioning as an oncogene in ovarian cancer
[35]. Wang et al. found that FBXO6 is one of the coex-
pressed genes on CD8+ T cells and promotes infiltration
of the cells into urothelial carcinoma tumors, which affects
the clinical phenotype and the immune microenviron-
ment [36].

TFs are the main regulators of gene expression in
eukaryotic cells [37]. SP140 belongs to the speck protein
(SP) family of TFs that are also known as human chromatin
“readers.” A chromatin reader is the core interpreter of the
epigenome that promotes cell-specific transcription and is
a therapeutic target for cancer and inflammation [38, 39].
SP140 is involved in various immune-related diseases such
as Crohn’s disease, chronic lymphocytic leukemia, and mul-
tiple sclerosis [40–42] and has recently been identified as the
main regulator of the immune response in ovarian cancer
[43]. We detected a significant decrease in the copy number

of SP140 in CESC patients, which correlated with the down-
regulation of its downstream target FBX06.

Our study is the first to show that SP140-FBXO6 is
related to the prognosis as well as immune microenviron-
ment of CESC. Loss of SP140 in CESC cells downregulated
the DNA repair gene FBXO6, which resulted an increased
DNA repair and decreased generation of tumor-specific
antigens (Figure 7). Thus, DDR genes are promising bio-
markers of prognosis and immunotherapeutic response of
CESC. Further studies are necessary to elucidate mechanism
of SP140/FBXO6 in cervical cancer. In addition, it will be
challenging to combine the DDR gene status with other
known biomarkers for clinical applications.

5. Conclusion

We identified five DDR genes that are related to the OS of
CESC patients, and the gene signature can predict prognosis
and the response to immunotherapy. Nevertheless, the
markers will have to be verified by functional analyses and
clinical tests, and further research on the molecular mecha-
nism of these genes is urgently needed.

Data Availability

The datasets generated during and/or analyzed during the
current study are available from the corresponding author
on reasonable request.
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Background. This study sought to perform a survival analysis and construct a prognostic nomogram model based on the Gleason
grade, total prostate-specific antigen (tPSA), alkaline phosphate (ALP), and TNM stage in patients with prostate cancer (PCa).
Methods. The progression-free survival (PFS) of 255 PCa patients was analyzed in this study. The prognostic value of tPSA and
ALP was evaluated using the Kaplan-Meier survival curves and Cox regression analysis, and a nomogram model based on the
Gleason grade, tPSA, ALP, and TNM stage was further established for PFS prediction in PCa patients. Results. PCa patients
with different Gleason grades, tPSA and ALP levels, and TNM stages presented distinct PFS. The Gleason grade, tPSA, ALP,
and TNM stage were four independent prognostic indicators. The C-index of the established nomogram was 0.705 for PFS in
the test cohort and 0.687 for the validation cohort, and the calibration curves indicated a good consistency between predicted
and actual PFS in PCa patients. Conclusion. The data of this study demonstrated that the Gleason grade, tPSA, ALP, and TNM
stage of PCa patients are independently correlated with PFS, and a nomogram model based on these indicators may be
valuable for the PFS prediction in PCa patient.

1. Introduction

Prostate cancer (PCa) is one of the most common malig-
nant tumors in male. The incidence of PCa has gradually
increased in recent years, which seriously threatens male
health [1]. Since the lack of obvious clinical symptoms,
most of PCa patients are diagnosed with advanced tumor
stage, leading to the significant increase in PCa mortality
rate [2, 3]. Despite the progresses in tumor therapeutic
approaches, the clinical outcomes and survival prognosis
of PCa remain unfavorable [4]. Therefore, it is important
to early identify patients with high risk of disease progres-

sion or death, which may assist the clinical treatment and
intervention in patients with PCa [5].

Prostate-specific antigen (PSA) and serum alkaline phos-
phate (ALP) have been identified as two critical molecular
biomarkers for the occurrence and development of PCa [6,
7]. Blood PSA with a concentration of >4.0 ng/mL is an indi-
cator for PCa screening, which has been widely used for PCa
clinical diagnosis [8]. Serum ALP can be used to predict
bone diseases and serves as an indicator for bone metastasis
in human malignancies [9]. There are about more than 85%
PCa-related deaths resulted from bone metastasis, implying
the potential relationship between ALP and PCa prognosis
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[10]. However, there is no uniform conclusion on the role of
total PSA (tPSA) and ALP in the prediction of PCa
prognosis.

Nomogram is an important statistical model to predict
cancer prognosis, which can easily and accurately calculate
survival probability by adding multiple variables that closely
associated with disease prognosis [11]. This study analyzed
the relationship between clinicopathological characteristics
and clinical outcomes in PCa patients and provided evidence
for tPSA, ALP, Gleason grade, and TNM stage as indepen-
dent indicators for PFS of PCa. A nomogram model based
on tPSA, ALP, Gleason grade, and TNM stage was con-
structed, and their predictive value for PFS (progression-free
survival) was assessed and verified in PCa patients. The
established nomogram may help to predict PCa progression
more intuitively and accurately and provides a basis for the
optimal clinical treatment decisions.

2. Material and Methods

2.1. Patients and Sample Collection. The data analyzed in this
study were collected from 255 PCa patients, who underwent
therapy in the Third Hospital of Sun Yat-sen University
(Guangzhou, China) and Yuebei People’s Hospital (Shao-
guan, China) from January 2012 to December 2018. The
regular follow-up was conducted to obtain their prognosis
status. Following are the inclusion and exclusion criteria
for patient recruitment:

The inclusion criteria were as follows: (1) tumor tissues
were histopathologically diagnosed with PCa; (2) patients
had biochemical recurrence or progressed to castration-
resistant PCa after ADT therapy; (3) patients were followed
up regularly.

The exclusion criteria were as follows: patients suffered
from other tumors, prostatitis, hepatobiliary diseases, or
other conditions that might affect the detection results of
tPSA and ALP.

The included PCa patients were randomly divided into
test cohort (n = 196) and validation cohort (n = 59) with a
ratio of 3 : 1. Table 1 summarizes the demographic and clin-
icopathological characteristics of the patients, including age,
history of diabetes and hypertension, bone metastasis,
indwelling catheter condition, urinary tract infection, Glea-
son grade, TNM stage, Soloway grade, and levels of tPSA
and ALP at initial diagnosis. The Gleason grades of the
patients were determined with the Gleason grading system
of the International Society for Urological Pathology (ISUP),
the TNM stage was confirmed according to American Joint
Committee on Cancer TNM 6th edition (2002), and the
criteria by Soloway grade were used for different bone
metastasis number. The electrochemiluminescence

Table 1: Comparison of baseline characteristics of PCa patients
between test set and validation set.

Features
Test set
(n = 196)

Validation set
(n = 59) χ2 P

value

Age, n (%) 3.098 0.212

≤60 years 19 (9.7) 10 (16.9)

60-70 years 50 (25.5) 17 (28.8)

>70 years 127 (64.8) 32 (54.2)

History of
diabetes

0.624 0.430

Yes 20 (10.2) 4 (6.8)

No 176 (89.8) 55 (93.2)

History of
hypertension

0.034 0.854

Yes 41 (20.9) 13 (22.0)

No 155 (79.1) 46 (78.0)

Bone metastasis 2.682 0.101

Yes 146 (74.5) 50 (84.7)

No 50 (25.5) 9 (15.3)

Indwelling
catheter

0.002 0.968

Yes 47 (24.0) 14 (23.7)

No 149 (76.0) 45 (76.3)

Urinary tract
infection

1.094 0.295

Yes 23 (11.7) 10 (16.9)

No 173 (88.3) 49 (83.1)

Gleason grade 7.130 0.129

1 3 (1.5) 0 (0.0)

2 22 (11.2) 4 (6.8)

3 37 (18.9) 6 (10.2)

4 75 (38.3) 22 (37.5)

5 59 (30.1) 27 (45.8)

TNM stage 5.477 0.140

I 4 (2.0) 0 (0.0)

II 25 (12.8) 3 (5.1)

III 11 (5.6) 4 (6.8)

VI 156 (79.6) 52 (88.1)

Soloway grade 4.660 0.198

0 47 (24.0) 8 (13.6)

I 29 (14.8) 7 (11.9)

II 25 (12.8) 12 (20.3)

III 95 (48.5) 32 (54.2)

tPSA (ng/mL) 8.897 0.064

≤10 15 (7.7) 0 (0.0)

10.1-20 10 (5.1) 5 (8.5)

20.1-50 30 (15.3) 8 (13.6)

50.1-100 32 (16.3) 5 (8.5)

>100 109 (55.6) 41 (69.5)

ALP (U/L) 7.149 0.067

≤67.0 46 (23.5) 19 (32.2)

67.1-83.0 55 (28.1) 7 (11.9)

Table 1: Continued.

Features
Test set
(n = 196)

Validation set
(n = 59) χ2 P

value

83.1-135.0 46 (23.5) 18 (30.5)

>135.0 49 (25.0) 15 (25.4)

tPSA: total prostate-specific antigen; ALP: alkaline phosphate.
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Table 2: Univariate and multivariate Cox regression analysis results.

Characteristics
Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P

Gleason grade

1 Reference Reference

2 0.686 (0.475, 0.990) 0.044 0.706 (0.480, 1.040) 0.078

3 0.503 (0.321, 0.790) 0.003 0.527 (0.334, 0.832) 0.006

4 0.354 (0.204, 0.612) <0.001 0.557 (0.308, 1.009) 0.054

5 0.418 (0.130, 1.350) 0.145 0.314 (0.089, 1.112) 0.073

tPSA (ng/mL)

≤10 Reference Reference

10.1-20 1.866 (0.768, 4.532) 0.168 1.842 (0.687, 4.935) 0.225

20.1-50 2.031 (0.983, 4.199) 0.056 1.835 (0.828, 4.065) 0.135

50.1-100 3.608 (1.746, 7.456) 0.001 2.516 (1.103, 5.738) 0.028

>100 3.854 (1.992, 7.457) <0.001 2.322 (1.076, 5.008) 0.032

ALP (U/L)

≤67.0 Reference Reference

67.1-83.0 1.348 (0.876, 2.076) 0.175 1.234 (0.795, 1.913) 0.349

83.1-135.0 1.943 (1.246, 3.031) 0.003 1.831 (1.148, 2.920) 0.011

>135.0 2.235 (1.437, 3.476) <0.001 1.600 (1.006, 2.544) 0.047

TNM stage

I Reference Reference

II 0.239 (0.084, 0.679) 0.007 0.593 (0.296, 1.187) 0.140

III 0.342 (0.205, 0.572) <0.001 0.483 (0.270, 0.864) 0.014

VI 0.530 (0.271, 1.038) 0.064 0.592 (0.171, 2.045) 0.407

Bone metastasis

Yes Reference — —

No 0.447 (0.308, 0.648) <0.001 — —

Soloway grade

0 Reference — —

I 1.357 (0.792, 2.325) 0.266 — —

II 1.868 (1.087, 3.210) 0.024 — —

III 3.144 (2.097, 4.712) <0.001 — —

Age (years)

≤60 Reference — —

60-70 0.966 (0.557, 1.674) 0.901 — —

>70 1.030 (0.622, 1.703) 0.909 — —

History of diabetes

Yes Reference — —

No 0.795 (0.474, 1.333) 0.384 — —

History of hypertension

Yes Reference — —

No 0.827 (0.571, 1.198) 0.316 — —

Indwelling catheter

Yes Reference — —

No 1.413 (0.973, 2.050) 0.069 — —

Urinary tract infection

Yes Reference — —

No 1.399 (0.820, 2.188) 0.244 — —

tPSA: total prostate-specific antigen; ALP: alkaline phosphate.
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immunoassay by Roche cobas e8000 was used for the detec-
tion of tPSA, and the colorimetry by Roche cobas c702
methods was applied for the analysis of ALP. The protocols
of this study were approved by the Ethics Committee of our
organization, and a signed informed consent was provided
by each participant.

2.2. Statistical Analysis. To facilitate the data analysis, tPSA
levels were organized into 5 groups based on ≤10, 10.1-20,
20.1-50, 50.1-100, and >100ng/mL, and ALP was divided
into 4 groups by the quartile ranges (≤25%, 25.1-50%,
50.1-75%, and >75%). All the data were expressed as fre-
quency (percentage) and analyzed using SPSS 19.0 software
(IBM, Armonk, New York). The R 3.6.1. Kaplan-Meier
method was used to compare the differences of PFS between
groups. The univariate and multivariate Cox regression anal-
ysis was conducted to examine the effect of tPSA, ALP, and
other risk factors on PFS in PCa patients. A nomogram
model for predicting 1-3-year PFS of PCa patients was con-
ducted based on the independent prognostic indicators.

Harrell’s concordance index (C-index) was calculated to ver-
ify the discrimination of the model. The consistency of the
nomogram model using calibration curves was predicted
by the internal and external validation. The results were con-
sidered statistically significant when the two-sided P value
was less than 0.05.

3. Results

3.1. Clinicopathological Characteristic Comparison between
Test and Validation PCa Cohorts. The 255 PCa patients
included 196 cases in test cohort and 59 cases in validation
cohort. The demographic and clinical features of the patients
were recorded and compared. The results summarized in
Table 1 showed that there were no statistically significant dif-
ferences between the two groups in age, diabetes history,
hypertension history, bone metastasis, indwelling catheter
condition, urinary tract infection, Gleason grade, TNM stage,
Soloway grade, and levels of tPSA and ALP (all P > 0:05).
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Figure 1: Kaplan-Meier curves for the PFS in patients with different Gleason grade, tPSA, ALP, and TNM stage. (a) Kaplan-Meier curves
based on Gleason scores. (b) Kaplan-Meier curves based on tPSA levels. (c) Kaplan-Meier curves based on ALP concentration. (d) Kaplan-
Meier curves based on TNM stages. ∗P < 0:05.
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3.2. Factors Associated with the PFS of PCa Patients. All of
the clinicopathological parameters, including tPSA and
ALP, were included in a Cox regression analysis to screen
the factors that might be associated with the PFS of PCa
patients. With the univariate analysis, the Gleason grade,
tPSA, ALP, TNM stage, bone metastasis, and Soloway grade
performed correlation with PFS (all P < 0:05, Table 2). The
subsequent multivariate analysis that includes all the signif-
icant factors obtained from univariate analysis demonstrated
that the Gleason grade, tPSA, ALP, and TNM stage were
independently associated with the PFS of PCa patients (all
P < 0:05). Meanwhile, the values of P could represent the
significance of the index. Specifically, the smaller value of P
, the higher significance is.

3.3. PFS in PCa Patients with Different Gleason Grades,
tPSA, ALP, and TNM Stages. Given the independent associ-
ation of the Gleason grade, tPSA, ALP, and TNM stage with
PFS in PCa patients, the PFS in patients grouped based on
these indicators was compared using Kaplan-Meier method.
The Kaplan-Meier survival curves is shown in Figure 1,
which indicated that PCa patients with high Gleason grade,
high levels of tPSA or ALP, or advanced TNM stage had a
poor PFS compared with those patients with low Gleason
grade, tPSA, ALP, or early TNM stage (P < 0:05). In addi-
tion, the median PFS data in different groups was assessed,

and the results listed in Table 3 revealed that the Gleason
classification, TNM stage, and serum ALP are inversely pro-
portional to the survival time of progression-free survival in
patients with PCa. As the classification is higher, the median
progression-free survival period is shorter. However, with
the increase of tPSA value, the median progression-free sur-
vival of patients showed a fluctuating trend, which may be
due to the influence of external factors on tPSA value.

3.4. Establishment of a Prognostic Nomogram Model for PFS
in PCa Patients. A nomogram model was constructed using
the Gleason grade, tPSA, ALP, and TNM stage, which were
identified as independent prognostic factors of PFS after
the multivariate Cox regression analysis (Figure 2). The
results showed that TNM stage contributed most to PFS,
followed by the Gleason grade, tPSA, and ALP. The likeli-
hood of survival of PCa patients could be calculated by
adding the scores of each variable, and the total score range
was 0-30. The 1-year PFS of PCa patients accounted 0.9-0.2
when the total score was 6 to 29, and the 2-year and 3-year
PFS could also be predicted by the constructed nomogram.
Table 4 lists the risk scores of the subgroups of each
independent variable included in the nomogram model.
The 1-3-year PFS could be predicted easily by summing up
the scores of the Gleason grade, tPSA, ALP, and TNM stage
for each PCa patients.

3.5. Nomogram Validation. In order to further formalize the
validity of the nomogram, this study used data from the test
set for internal verification. The results showed that C-index
(95% CI) was 0.705 (0.699, 0.711), suggesting a good dis-
crimination. The consistency test results shown in Figure 3
indicated that the predicted 1-3-year PFS was in excellent
agreement with the actual PFS in the PCa patients from test
set. Moreover, the C-index obtained by external validation in
patients from validation test was 0.687 (95% CI of 0.664,
0.710), indicating that the discrimination was within limits
of acceptability. The calibration curves shown in Figure 4
revealed that the predicted 1-3-year PFS in validation cohort
was slightly lower than that in the test cohort but still pre-
sents a considerable agreement with the actual observation.

4. Discussion

PCa remains the most frequent malignant tumor occurred in
males. This study analyzed the relationship between clinico-
pathological characteristics and PFS in PCa patients, aiming
to screen the variables that independently associated with
PFS. The Gleason grade, tPSA, ALP, and TNM stage were
demonstrated to be four independent prognostic indicators
for PFS prediction in PCa patients. Furthermore, a prognos-
tic nomogram was constructed based on the identified
variables, which could assist the prediction of 1-3-year PFS
and showed good discrimination in the validation from both
internal and external levels. In addition, the calibration
curves revealed that the nomogram model could predict 1-
3-year PFS accurately.

PSA is widely used for clinical screening of prostate dis-
eases, which greatly improves the early diagnosis of PCa [12,

Table 3: Comparison of median PFS in patients with different
Gleason grade, tPSA, ALP, and TNM stage.

Grouping Median (95% CI) (months) χ2 P value

Gleason grade 19.654 0.001

1 41.0 (0.0, 85.8)

2 34.0 (3.2, 64.8)

3 17.0 (13.4, 20.6)

4 15.0 (11.8, 18.2)

5 11.0 (9.9, 12.1)

tPSA (ng/mL) 25.082 <0.001
≤10 45.0 (22.7, 67.3)

10.1-20 12.0 (10.5, 13.5)

20.1-50 24.0 (17.4, 30.6)

50.1-100 12.0 (9.2, 14.8)

>100 12.0 (10.9, 13.1)

ALP (U/L) 16.938 0.001

≤67.0 22.0 (13.8, 30.2)

67.1-83.0 16.0 (11.5, 20.5)

83.1-135.0 12.0 (9.8, 14.2)

>135.0 11.0 (9.9, 12.1)

TNM grade 26.078 <0.001
I 45.0 (26.4, 63.6)

II 32.0 (17.9, 46.1)

III 18.0 (9.9, 26.1)

VI 12.0 (11.2, 17.8)

tPSA: total prostate-specific antigen; ALP: alkaline phosphate.

8 Journal of Oncology



13]. During the development of prostate diseases, PSA levels
are significantly elevated and associated with the disease
progression [14]. Likewise, this study also observed that
the PCa patients with high PSA levels had a poor PFS com-
pared with those low PSA cases. Patients with PSA levels of
4-10 ng/mL are considered with benign prostate hyperplasia,
and those with ≥10 ng/mL of PSA are considered with high
risk of PCa. However, some PCa cases also show PSA levels
of less than 10ng/mL, leading to the application limitation of
PSA [15]. Among the PCa patients included in this study,
there were 15 cases with tPSA ≤10 ng/mL, accounting 5.9%
of all the 255 PCa patients. Previous evidence and the sur-
vival analysis results of this study demonstrated the correla-
tion of elevated PSA with the reduced survival in patients
with PCa [16]. Nevertheless, PSA as a detection index for
PCa lacks of accuracy, owing that PSA is a detection index
for prostate rather than PCa [17]. It is considered that pros-

tate infection, inflammation, or benign prostatic hyperplasia
can also lead to the fluctuations of PSA levels [18]. In this
study, the median PFS results in patients with different levels
of PSA supported this view. Therefore, as an important indi-
cator for PCa diagnosis and prognosis, the clinical use of
PSA urgently needs to be improved.

ALP is important to indicate osteoblastic activity, which
can be detected from the liver, kidney, intestinal mucosa,
and bone tissues [19]. It is determined to be a predictive bio-
marker for tumor metastasis, especially for the metastasis to
the bone [20]. There are approximately 85% PCa-related
deaths caused by bone metastasis, implying the poor prog-
nosis of PCa cases with positive bone metastasis [21]. In
PCa patients, the serum upregulation of ALP has been doc-
umented to possess high predictive value for the occurrence
of bone metastasis [22]. Thus, as the close relationship with
bone metastasis, high levels of ALP generally predict a poor

Points
0 1 2 3 4 5 6 7 8 9 10

Gleason
1 2 5

3 4

tPSA
1 2 4

3 5

ALP
1 4

2 3

TNM
2 1

3 4

Total points
0 5 10 15 20 25 30

1−year survival
0.9 0.85 0.8 0.75 0.7 0.6 0.5 0.4 0.3 0.2

2−year survival
0.8 0.75 0.7 0.6 0.5 0.4 0.3 0.2 0.1

3−year survival
0.75 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Figure 2: Nomogram based on the Gleason grade, tPSA, ALP, and TNM stage for predicting 1-3-year PFS in PCa patients.

Table 4: Scores of factors involved in the prediction nomogram model.

Gleason grade Score tPSA (ng/mL) Score ALP (U/L) Score TNM grade Score

5 10 ≤10 0 ≤67.0 0 VI 6

4 7 10.1-20 5 67.1-83.0 2 III 2

3 4 20.1-50 5 83.1-135.0 5 II 0

2 5 50.1-100 8 >135.0 4 I 2

1 0 >100 7

tPSA: total prostate-specific antigen; ALP: alkaline phosphate.
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Figure 3: Continued.
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prognosis in PCa patients. In this study, ALP levels were
found to be independently associated with the PFS of PCa
patients, and the median PFS was reduced as the ALP con-
centration increases. However, a study by Wei et al. reported
that ALP only increased significantly after extensive bone
metastasis with limited sensitivity, and its clinical use for
prognosis prediction should be performed by the combina-
tion with other parameters [7].

Currently, the Gleason grade and TNM stage are two
critical references for prognosis prediction in PCa patients
[23]. This study also demonstrated the independent associa-
tion of the Gleason grade and TNM stage with the PFS of
PCa. There are five grades (grades 1-5) in the Gleason grad-
ing system and four stages (stages I, II, III, and IV) in the
TNM staging system. However, the clinical decision for
PCa management based only on the Gleason grade or
TNM stage maybe ambiguous and has to be confirmed by
some clinical experiences. Thus, the more intuitively and
accurately prognosis predictive methods are urgently
needed. Nomogram as a statistical model has been applied
in the prognosis prediction in various human malignancies
[24, 25]. It can accurately calculate the survival for each
patient by summing up multiple variables that are related
with prognosis. In PCa, Brockman et al. have established a
nomogram predicting model for the mortality in PCa
patients with biochemical recurrence after radical prostatec-
tomy [26]. Hou et al. have developed a prognostic nomo-
gram to predict bone metastasis in PCa patients according
to the date from SEER database [27]. The nomograms effi-
ciently assist the clinicians to predict the clinical outcomes
of patients by assessing their individualized parameters.

Considering the pivotal role of PSA and ALP in PCa
development, the two indicators were included in the sur-

vival analysis, and the Gleason grade, tPSA, ALP, and
TNM stage were confirmed as four important prognostic
indicators by multivariate analysis. Subsequently, a nomo-
gram model was constructed based on the four selected
variables. According to the scores in the nomogram, it is
easy to predict the 1-3-year PFS of PCa patients by calcu-
lating the scores of the Gleason grade, tPSA, ALP, and
TNM stage. In addition, by evaluating the survival data
in the test and validation sets, we confirmed the discrimi-
nation and the predictive accuracy of the nomogram
model. To our knowledge, this is the first time to develop
a prognosis predictive nomogram considering PSA and
ALP levels in PCa patients. The prediction of PFS may
be more easy and accurate with the help of this predictive
nomogram model. However, several limitations are
included in this study. First, the sample size is small,
which may limit the identification of significant prognostic
indicators. Second, some critical clinical features are miss-
ing in this study, such as smoking history, alcohol abuse,
and therapy. Thus, further investigations are necessary
with a larger cohort and more complete clinicopathologi-
cal data. Additionally, it is necessary to establish a regres-
sion equation, which could summarize the specific role of
each factor in the prediction of PFS, which should attract
special attention in the future studies.

The Gleason grade, tPSA, ALP, and TNM stage are four
independent prognostic factors for the PFS of PCa patients,
which are used to construct a predictive nomogram model.
The established nomogram can accurately predict the 1-3-
year PFS of PCa with a good discrimination. In clinical prac-
tice, the nomogram model may predict individualized sur-
vival risk and guild adjuvant therapy decisions for PCa
patients.
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Figure 3: Internal calibration curves of the nomogram for predicting 1-3-year PFS in PCa patients. (a) Internal calibration curves for 1-year
PFS. (b) Internal calibration curves for 2-year PFS. (c) Internal calibration curves for 3-year PFS.
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Figure 4: External calibration curves of the nomogram for predicting 1-3-year PFS in PCa patients. (a) External calibration curves for 1-year
PFS. (b) External calibration curves for 2-year PFS. (c) External calibration curves for 3-year PFS.
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Low serum sodium levels have been associated with poor prognoses for several cancers. However, the prognostic value of low
serum sodium levels in esophageal carcinoma (EC) has not been well elucidated. We examined the prognostic value of low
baseline serum sodium levels before radiotherapy or chemoradiotherapy for EC patients. A retrospective analysis of data from
EC patients who received radiotherapy or chemoradiotherapy at a single cancer center was performed. Patients were divided
into low serum sodium level (≤140.0mmol/L) or high serum sodium level (>140.0mmol/L) groups according to the median
pretreatment serum sodium level. The Kaplan–Meier model and Cox proportional hazards model were used for survival
analyses. The 5-year progression-free survival (PFS) and overall survival (OS) rates in the whole group were 16.9% and 21.8%,
respectively. The PFS and OS rates of patients in the low serum sodium levels group were significantly lower than those in the
high serum sodium levels group (p < 0:001). A similar association between PFS/OS and sodium levels was observed in the
treatment subgroups. The univariate analysis showed that low serum sodium levels, Karnofsky performance status (KPS),
clinical N stage, tumor site, clinical stage, and treatment mode were the influencing factors of OS. Multivariate analyses
indicated that low baseline serum sodium levels were an independent prognostic marker of poor PFS (HR, 1.744; 95% CI,
1.248-2.437; p = 0:001) and OS (hazard ratio (HR), 2.125; 95% confidence interval (CI), 1.555-2.904; p < 0:001). Pretreatment
levels of low serum sodium could be a new and helpful serum biomarker of the prognosis of EC patients receiving
radiotherapy or chemoradiotherapy.

1. Introduction

Esophageal carcinoma (EC) is a common malignancy, rank-
ing seventh in terms of prevalence and sixth in terms of
mortality worldwide. It is well established that the incidence
of EC and the mortality of EC patients vary among geo-
graphic areas in China, with some areas reporting an inci-
dence rate up to 116.87 per 100,000 and a mortality rate of
95.76 per 100,000 [1]. The 5-year overall survival (OS) rate
ranges from 15% to 25% worldwide [2]. Squamous cell car-
cinoma is the main pathological type and is one of the most
prevalent and lethal types, with a mortality rate of almost

90% in China [2]. Although there have been significant
developments in the pathology of EC and comprehensive
treatments are available, patient outcomes need to be
improved. Little attention has been focused on biomarkers
that can predict the prognosis. Therefore, it is necessary to
explore biomarkers as new prognostic indicators that could
potentially guide clinical practice.

Hyponatremia is a common serum disorder of electro-
lytes that frequently occurs in patients with solid tumors
[3–5]. Numerous studies have revealed that hyponatremia
is related to poor prognoses for several solid tumors,
including tumors of the bladder, lung, breast, liver, colon,
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and rectum, as well as head and neck [3, 6–9]. Serum sodium
is widely recognized as a time-saving, economical, repeat-
able, and routine prognostic biomarker that can predict
patient prognosis. Previous studies have shown that
hyponatremia is an adverse event that emerges in 16% to

59% of EC patients who undergo chemotherapy or chemora-
diotherapy [10–12].

To our knowledge, few studies have investigated the rela-
tionship between baseline serum sodium levels and survival
of EC patients. The incidence and prognostic value of serum

Table 1: Patient and tumor characteristics in relation to serum sodium levels.

Characteristic
Total
N (%)

Sodium levels (mmol/L)
p valueLow serum sodium group

N (%)
High serum sodium group

N (%)

N 256 133 (52.0) 123 (48.0)

Age (years) 64:38 ± 10:61 64:47 ± 10:25 0.942∗

Sex 0.127

Male 196 (76.6) 107 (80.5) 89 (72.4)

Female 60 (23.4) 26 (19.5) 34 (27.6)

KPS 0.184†

70 25 (9.8) 14 (10.5) 11 (8.9)

80 134 (52.3) 74 (55.6) 60 (48.8)

90 97 (37.9) 45 (33.8) 52 (42.3)

Tumor sites 0.302†

Cervical 24 (9.4) 8 (6.0) 16 (13.0)

Upper 76 (29.7) 42 (31.6) 34 (27.6)

Middle 112 (43.8) 58 (43.6) 54 (43.9)

Lower 44 (17.2) 25 (18.8) 19 (15.4)

Histopathology 0.480‡

Squamous 255 (99.6) 133 (100) 122 (99.2)

Nonsquamous 1 (0.4) 0 (0) 1 (0.8)

T stage 0.123†

T2 30 (11.7) 18 (13.5) 12 (9.8)

T3 138 (53.9) 75 (56.4) 63 (51.2)

T4a 36 (14.1) 16 (12.0) 20 (16.3)

T4b 52 (20.3) 24 (18.0) 28 (22.8)

Clinical N stage 0.514†

N0 16 (6.3) 8 (6.0) 8 (6.4)

N1 120 (46.9) 62 (46.6) 58 (47.2)

N2 107 (41.8) 52 (39.1) 55 (44.7)

N3 13 (5.1) 11 (8.3) 2 (1.6)

M stage 0.624

M0 207 (80.9) 106 (79.7) 101 (82.1)

M1 49 (19.1) 27 (20.3) 22 (17.9)

Clinical stage 0.713†

IIB 9 (3.5) 3 (2.3) 6 (4.9)

IIIA 15 (5.9) 7 (5.3) 8 (6.5)

IIIB 127 (49.6) 69 (51.9) 58 (47.2)

IVA 59 (23.0) 29 (22.8) 30 (24.4)

IVB 46 (18.0) 25 (18.8) 21 (17.1)

Treatment types 0.106

Radiotherapy 92 (35.9) 54 (40.6) 38 (30.9)

Chemoradiation 164 (64.1) 79 (59.4) 85 (69.1)

Abbreviation: KPS: Karnofsky performance status. ∗t-test. †Mann–Whitney test; ‡Fisher’s exact test. Other p values were tested by Pearson’s chi-square (χ2)
test. Serum sodium levels: low sodium: ≤140.0mmol/L; high sodium: >140.0mmol/L.
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sodium levels before any treatment for EC patients have
been underestimated. Therefore, we retrospectively reviewed
271 EC patients to address this issue. Pretreatment serum
sodium concentrations were assessed in association with
OS and progression-free survival (PFS). Additionally, the
association of pretreatment serum sodium levels with OS
and PFS after different types of procedures was analyzed.

2. Materials and Methods

Our study received approval from the Ethics Committee of
Sichuan Cancer Hospital, and informed consent was
exempted by the ethics committee. Patients with biopsy-
proven EC who had undergone radical radiotherapy or
chemoradiotherapy were enrolled at the Sichuan Cancer
Hospital between March 2006 and October 2016.

The inclusion criteria were as follows: Karnofsky score
≥ 70 points, pathologically confirmed EC, underwent radical
radiotherapy or chemoradiotherapy, no history of malignant
disease, and underwent a routine blood test and biochemical
examination within 1 week before any treatment. In con-
trast, the exclusion criteria were as follows: severe medical
disorders, underwent treatment at other institutions, had
not received radiation doses of above 50.4Gy, and insuffi-
cient information or incomplete laboratory or clinicopatho-
logical parameters.

Radical radiotherapy was administered for more than
five weeks with a cumulative dose of 50.4 to 60.0Gy. Some
of these patients underwent radiation therapy concomitant
with platinum-based chemotherapy. The patients were strat-
ified by treatment modalities and divided into low and high
serum sodium groups according to the median value.

2.1. Data Collection and Definition. The pretreatment serum
sodium concentration was acquired from venous blood
within one week before radiotherapy or chemoradiotherapy
and was conventionally available from the hospital’s labora-
tory at Sichuan Cancer Hospital. The baseline serum sodium
concentration was recorded as the median value. A low
serum sodium level was defined as ≤140.0mmol/L, and a
high serum sodium level was defined as >140mmol/L.

Clinical factors and demographic data were retrospectively
collected manually from the medical records. Clinicopatho-
logical data included the date of diagnosis, age, sex,
Karnofsky score, tumor histology, tumor site, staging, serum
sodium level, and follow-up information. All patients were
pathologically confirmed to have EC. The pathological stage
was reassessed based on the TNM classification system, as
defined by the American Joint Committee on Cancer (8th
edition). All cases were examined and followed up at least
every three months during the first two years, every six
months for the following one to three years, and every 12
months after five years. The information collected during
the follow-up period included the results of physical exami-
nations, endoscopic examinations, imaging, and laboratory
tests. Prognostic information included PFS and OS. PFS
and OS were defined as the length of time between the initi-
ation of treatment and the date of either death or disease
progression and the length of time between the initiation
of treatment and the date of all-cause death, respectively.

2.2. Statistical Analysis. Sample characteristics were com-
piled using descriptive statistics. Pearson’s chi-square (χ2)
test and Student’s t-test (the Mann–Whitney U test was per-
formed if the data were not normally distributed) were used
to assess the relationship between the patient’s tumor char-
acteristics and serum sodium levels. The Kaplan–Meier
model and Cox proportional hazards model were used for
survival analyses. Univariate and multivariable Cox propor-
tional hazards models were employed to assess factors asso-
ciated with esophageal cancer prognosis. After assessing the
p value (p) from the univariate model, variables with p < 0:1
were introduced into multivariable Cox proportional haz-
ards models. Statistical analyses were conducted using SPSS
software version 24.0 (SPSS Inc., Chicago, IL, USA).

3. Results

3.1. Patient Characteristics. In total, 271 patients of biopsy-
proven EC stage I-IVB were enrolled at Sichuan Cancer
Hospital from March 1, 2006, to October 31, 2016. However,
fifteen patients with the following criteria were excluded
from the analysis: recurrent EC that had been previously
treated (n = 4); patients with metastases to distant organs
(n = 5); patients who stopped any of the treatments (n = 1);
noncompletion of the treatment (n = 2); and incomplete
available information, such as follow-up data and clinico-
pathological or laboratory parameters (n = 3). Therefore,
only 256 patients were eligible for further analysis, including
92 patients who underwent radiotherapy alone and 164
patients who underwent chemoradiotherapy (Table 1). The
average age of all patients was 64 years (range, 35-92 years).
There were 196 men and 60 women with a Karnofsky score
≥ 70 points. According to the reference range of serum
sodium levels (135-145mmol/L), the rate of hypernatremia
(>145mmol/L) and the rate of hyponatremia (<135mmol/L)
for the enrolled patients were 1.6% and 6.3%, respectively.

The last follow-up was completed in February 2018, and
the median follow-up time was 35 months (range, 12.4-81.2
months). The median baseline serum sodium level was
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Figure 1: Graph showing distribution of serum sodium
concentration in 256 patients.
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140.0mmol/L (range, 130.0-149.0mmol/L) (Figure 1). Of
the 256 patients, 123 fell into the high serum sodium group
and 133 fell into the low serum sodium group. Of all the
patients, 76.6% were male, 47.3% were older than 65 years,
and 9.4% had a Karnofsky performance score of 70 points.
In addition, 99.6% of the patients had squamous cell carci-
noma, and 43.8% of tumors were localized in the middle of
the esophagus. None of the clinicopathological characteris-
tics (age, sex, Karnofsky score, tumor site, histopathology,
T and clinical N stage TNM classification, and type of treat-
ment regimen) was statistically associated with serum
sodium concentrations assessed before treatment (Table 1).

3.2. Survival Outcomes. The median PFS and OS for all
evaluable patients were 12.6 months and 16.9 months,
respectively. The overall 5-year PFS and OS rates were
16.9% and 21.8%, respectively. Analysis results indicated
that outcomes in the high serum sodium group were better
than those in the low serum sodium group (Figures 2(a)
and 2(b)) (OS p < 0:001, PFS p = 0:004). The 5-year PFS
rates were 22.4% and 11.5%, and the 5-year OS rates were
32.7% and 11.7% in the high and low serum sodium
groups, respectively.

Next, we performed a subgroup analysis according to
treatment modes. An analysis of OS with radiotherapy alone
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Figure 2: (a) Kaplan–Meier survival curves of the serum sodium concentration at the median cutoff value (140.0mmol/L) are shown
(p < 0:001). (b) Kaplan–Meier survival curves of the serum sodium concentration at the median cutoff value (140.0mmol/L) are shown
(p = 0:004).
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Figure 3: (a) Kaplan–Meier survival curves for OS according to the serum sodium concentration in the radiotherapy alone subgroup. (b)
Kaplan–Meier survival curves for OS according to the serum sodium concentration in the chemoradiotherapy subgroup.
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and chemoradiotherapy (Figures 3(a) and 3(b)) showed that
the high serum sodium group also had improved outcomes
compared to the low serum sodium group (both p < 0:001).

3.3. Association of Serum Sodium Concentration with
Inflammatory Response. Furthermore, we observed a signifi-
cant negative correlation between low pretreatment concen-
tration of serum sodium and neutrophil and leukocyte levels
(Figures 4(a) and 4(b)).

The relationships among clinicopathological factors
and serum sodium concentration are shown in Table 2.
These data clearly show that the neutrophil count was
negatively associated with the baseline serum sodium
level (p < 0:001), and a significant negative correlation was
observed between the serum sodium level and the
neutrophil-to-lymphocyte ratio (NLR) (p < 0:001). The trend
of the negative association between C-reactive protein (CRP)
levels and serum sodium concentrations was not statistically
significant (p = 0:137) (Figure 4(c)). In addition, there was no
correlation between serum sodium levels and lymphocyte
counts (p = 0:183) (Figure 4(d)). Alternatively, there was no
association between the neutrophil count and CRP level
(p = 0:325).
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Figure 4: The association of serum sodium concentration with blood indicators. (a) Scatterplot for relationship between sodium and
leukocyte count. (b) Scatterplot for relationship between sodium and neutrophil. (c) Scatterplot for relationship between sodium and
CRP. (d) Scatterplot for relationship between sodium and lymphocyte.

Table 2: Spearman’s correlation analysis of interrelationships
among hematological indicators.

Hematological Indices rs p value

Serum sodium

Leukocyte -0.219 <0.001
Neutrophil -0.237 <0.001

CRP -0.163 0.137

Lymphocyte 0.085 0.183

NLR -0.247 <0.001

Leukocyte

Neutrophil 0.910 <0.001
CRP 0.186 0.088

Lymphocyte 0.363 <0.001
NLR 0.381 <0.001

Neutrophil

CRP 0.108 0.325

Lymphocyte 0.088 0.167

NLR 0.634 <0.001

CRP
Lymphocyte 0.068 0.533

NLR 0.029 0.792

Abbreviation: NLR, neutrophil-to-lymphocyte ratio; CRP, C-reactive
protein. rs: Spearman’s correlation coefficient.
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3.4. Univariate andMultivariate Analyses. The univariate anal-
ysis showed that low serum sodium levels (≤140.0mmol/L),
Karnofsky performance status (KPS), clinical N stage, tumor
site, clinical stage, and treatment mode were the influencing
factors of OS (p < 0:05) (Table 3). Similarly, the prognostic fac-
tors that significantly and independently affected PFS were the
clinical stage of the carcinoma (p = 0:002), Karnofsky perfor-
mance score (p = 0:022), and serum sodium level (p = 0:005)
(Table 4).

In the multivariate Cox proportional hazards regression
models, the serum sodium levels (p < 0:001), Karnofsky
score (p < 0:001), treatment type (p < 0:001), clinical stage
(p = 0:017), and clinical N stage (p < 0:001) were identified
as significant and independent unfavorable outcome prog-
nostic factors (Table 3).

According to the results of stratified and multivariate
Cox proportional hazards model analysis for PFS and OS,
the low serum sodium group’s PFS (p = 0:001; HR [95%
CI], 1.744 [1.248-2.437]) and OS (p < 0:001; HR [95% CI],
2.125 [1.555-2.904]) hazards ratios were higher than those
of the high serum sodium group. In other words, patients
with baseline serum sodium concentrations ≤ 140:0mmol/L
had a lower survival rate than those with serum sodium levels
> 140:0mmol/L (Figures 2(a) and 2(b), Tables 3 and 4). This
suggests that a low baseline serum sodium level is an indepen-
dent and significant prognostic factor for poor survival.

4. Discussion

In the present study, we assessed the prognostic value of
baseline factors and pretreatment serum sodium levels by
performing a retrospective analysis of 256 EC patients. The
incidences of hypernatremia and hyponatremia (routinely
classified in the laboratory) for untreated patients were
1.6% and 6.25%, respectively. This observation is in accor-
dance with the previously reported incidence of hyponatre-
mia (range, 4–47%) [5, 13].

We confirmed that EC patients with baseline serum
sodium levels ≤ 140:0mmol/L had significantly shorter sur-
vival than those with high serum sodium levels (p < 0:001).
Similar results were obtained by performing a subset analysis
of the different treatment groups (p < 0:001 for both com-
parisons). In addition, Cox proportional hazards model
analysis showed that the risk of mortality in the low serum
sodium level group was 2.15 times that of the high serum
sodium level group, and the risk of disease progression was
1.744 times.

Our study demonstrated that the decrease in serum
sodium concentrations before initial treatment was inversely
associated with the outcomes of EC patients. A previous
study indicated that the reduction in serum sodium levels
(per 3mmol/L decrease) was significantly related to a 19%
increased risk of death [9]. However, the mechanisms

Table 3: Cox regression analysis of clinical characteristics of overall survival of EC patients who underwent radiotherapy alone or
chemoradiotherapy.

Univariate Multivariate
HR p value 95% CI HR p value 95% CI

KPS 2.207 <0.001∗∗∗ 1.408-3.462 2.974 <0.001∗∗∗ 1.862-4.751

70

80-90

Tumor sites

Cervical 1 (reference)

Upper 1.753 0.096 0.906-3.393

Middle 1.979 0.034∗ 1.052-3.723

Lower 2.611 0.005 1.331-5.119

Clinical N stage

N0 1 (reference) 1 (reference)

N1 1.964 0.112 0.855-4.512 3.617 0.003∗∗ 1.529-8.558

N2-3 2.690 0.019∗ 1.175-6.158 5.205 <0.001∗∗∗ 2.175-12.455

Clinical stage 1.371 0.038∗ 1.017-1.848 1.473 0.017∗ 1.070-2.026

II-III

IV

Treatment models 0.665 0.011∗ 0.487-0.910 0.475 <0.001∗∗∗ 0.340-0.663

Radiotherapy

Chemoradiotherapy

Serum sodium 1.966 <0.001∗∗∗ 1.448-2.669 2.125 <0.001∗∗∗ 1.555-2.904

>140mmol/L

≤140mmol/L

Abbreviation: EC: esophageal carcinoma; HR: hazard ratio; CI: confidence interval; KPS: Karnofsky performance status. ∗p < 0:05. ∗∗p < 0:01. ∗∗∗p < 0:001.
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underlying the development of low serum sodium levels
remain unclear, particularly for EC patients. Recently, an
increasing number of biological markers have been identi-
fied that may have an essential role in cancer patients with
serum sodium level abnormalities. Poor appetite, weight
loss, and cachexia are commonly found in malignant dis-
eases and particularly in EC patients who may develop mal-
nutrition. Decreased oral intake, in particular, leads to
decreased serum sodium levels.

Moreover, high tumor burden, gastrointestinal fluid loss,
and renal fluid loss may disturb the serum sodium balance,
which induces vomiting and diarrhea, resulting in hypovole-
mic hyponatremia [14]. Abnormal secretion of antidiuretic
hormone in tumor patients may increase the reabsorption
of water from the distal renal tubule and decrease plasma
osmolality [15, 16]. A systemic inflammatory response is
likely an additional factor that alters the serum sodium
levels. Furthermore, a vicious cycle of the exacerbation of
the production of inappropriate antidiuretic hormones
might exist between inflammatory states and serum sodium
levels [17].

We evaluated the association between low serum sodium
levels and inflammation. Concomitantly, we found that the
pretreatment serum sodium concentration was inversely
associated with CRP, leukocyte count, neutrophil count,
and NLR; however, it was positively associated with lympho-
cyte count in EC patients. Notably, no statistical differences

were observed in the association between pretreatment
serum sodium and CRP levels or lymphocyte counts. Simi-
lary, no significant correlation was found between the neu-
trophil count and CRP levels. This may be attributed to
variations in detection levels over time and incomplete
CRP data. A previous study consistently showed that white
blood cell count was the risk factor in EC patients [11]. It
has also been reported that CRP, IL-6, IL-1β, and neutrophil
counts are associated with hyponatremia. Furthermore, this
observation has been reported for nonmalignant diseases
[18]. Secretion of antidiuretic hormones from neurons is pro-
moted by the proinflammatory cytokines IL-6 and IL-1β in
the internal milieu [19, 20], and the inflammatory response
is further promoted through inflammasome activation in
macrophages, which might be induced by cell swelling-
stimulated osmolality [21]. Increasing evidence has suggested
that ion channels and pumps not only have a major role in
maintaining intracellular and extracellular pH and regulating
membrane potential stability but also have critical roles in
the regulation of cell migration [22]. These findings also sug-
gest that decreased serum sodium levels could be a prognostic
marker, although the underlying molecular mechanism
remains unclear.

In the present study, the 5-year OS for patients treated
with radiotherapy was 17.5%, which was lower than the
5-year OS of 34% reported by Lin et al. [23]. This could be
partially due to the fact that 36.2% of the patients recruited

Table 4: Cox regression analysis of clinical characteristics of progression-free survival of EC patients who underwent radiotherapy alone or
chemoradiotherapy.

Univariate Multivariate
HR p value 95% CI HR p value 95% CI

KPS 1.785 0.022∗ 1.088-2.928 1.707 0.035∗ 1.040-2.802

70

80-90

Tumor sites

Cervical 1 (reference)

Upper 1.444 0.225 0.798-2.615

Middle 1.618 0.097 0.916-2.857

Lower 2.11 0.018∗ 1.136-3.922

Clinical N stage

N0 1 (reference)

N1 1.623 0.298 0.652-4.038

N2-3 2.113 0.105 0.855-5.220

Clinical stage 1.689 0.002∗∗ 1.220-2.338 1.846 <0.001∗∗∗ 1.325-2.573

II-III

IV

Treatment models 0.892 0.617 0.571-1.395

Radiotherapy

Chemoradiotherapy

Serum sodium 1.594 0.005∗∗ 1.149-2.213 1.744 0.001∗∗ 1.248-2.437

>140mmol/L

≤140mmol/L

Abbreviation: EC: esophageal carcinoma; HR: hazard ratio; CI: confidence interval; KPS: Karnofsky performance status. ∗p < 0:05. ∗∗p < 0:01. ∗∗∗p < 0:001.
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for their study had stage I or II tumors, whereas only 3.5% of
the patients in our study had stage I or II. In the present
review, the 5-year OS rate for chemotherapy and radiother-
apy (23.6%) was significantly higher than that for radiother-
apy alone (17.5%) (p = 0:01), which is similar to other
findings [24, 25] and in accordance with the Radiation Ther-
apy Oncology Group 8501 data [26]. At 5 years of follow-up,
the OS for combined modality therapy was 26% compared
with 0% after radiation therapy. Based on previous clinical
data, chemoradiation is a standard strategy for EC patients.

The prognostic value of the tumor site in EC patients has
been previously reported. We found that cervical EC had a
better prognosis than carcinoma at other sites. However, fur-
ther multifactor analysis did not show statistical significance.
This may have been caused by confounding factors that
could have influenced our results, such as patient selection.

It is commonly recognized that the N stage has emerged
as a prognostic marker of outcomes of EC patients. Con-
comitantly, performance status has been determined to be
a predictor of outcomes. Previous studies revealed that better
performance status is associated with better tolerance of che-
moradiation in EC patients [27]. Our study found that
patients with a Karnofsky performance status of 70 had a
worse prognosis than those with a Karnofsky performance
status of 80 to 90 (p < 0:001).

To the best of our knowledge, this study is the first to
demonstrate the predictive and prognostic values of baseline
serum sodium concentrations of EC patients treated with
radiotherapy alone or chemoradiotherapy. Moreover, serum
sodium is regularly, quickly, and economically obtained dur-
ing routine blood tests. Nevertheless, the causal associations
among low serum sodium levels, ion channels and pumps,
and inflammation for EC patients remain unclear and
require further study.

Our study had several limitations. First, it was a retro-
spective, single-center analysis that spanned almost 10 years.
Additionally, the sample size was relatively small. Finally,
kinematic data of serum sodium were not collected.

5. Conclusions

We confirmed that low pretreatment serum sodium levels
are associated with poorer OS and PFS for patients treated
with radiotherapy alone or chemoradiotherapy. Serum
sodium concentrations have the potential to be a significant
prognostic factor of EC patients. However, a prospective
large-scale study of EC patients is needed to fully understand
the prognostic role of low serum sodium levels.
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Objective. +e correlation between laboratory indicators and clinical treatment effects and the prognosis of multiple myeloma
remains poorly understood. +erefore, our study investigated whether serum IgG subclasses could be employed as potential
indicators contributed to evaluate the therapeutic effect and prognosis of patients with multiple myeloma. Patients and Methods.
Records of patients with multiple myeloma were initially diagnosed at the First Affiliated Hospital of Soochow University, China,
fromAugust 1, 2017, to February 28, 2020.+e assessment abilities of serological indicators for therapeutic effect were evaluated in
patients compared with healthy controls. Results. In 560 study patients with multiple myeloma, serum IgA, IgG, IgM, κ-LC, and
λ-LC increased by15%, 33.04%, 1.96%, 27.50%, and 26.43%, respectively. Further analysis found that IgG1, IgG2, IgG3, and IgG4
were over the upper limit of the reference range with 26.38%, 6.09%, 8.12%, and 4.64%, respectively. κ-LC and λ-LC were found in
the urine in 65.13% and 29.70%, respectively. In peripheral blood, the proportion of CD3+CD4+, CD3−CD19+ cells, and CD4+/
CD8+ decreased, whereas CD3+CD8+ cells and CD16+/CD56+ increased, and the associated cytokines IL-2, IL-4, IL-6, TNF-α, and
IFN-c were upregulated in patients when compared with healthy controls. Furthermore, the serum levels of IgA, IgG, IgG1, IgG2,
IgG3, and IgG4 gradually decreased in patients before, during, and after treatment. Similar results were found in serum and urine
κ-LC and λ-LC. Conclusion. Serum IgG1 level could serve as the potential indicator for evaluating the therapeutic effect for
patients with multiple myeloma. κ-LC and λ-LC also have the potential to be prognostic indicators. More studies are warranted to
explore these serological indicators for personalized therapy in the future.

1. Introduction

Multiple myeloma (MM) is a common malignant tumor of
the blood system characterized by abnormal proliferation of
plasma cells [1,2]. Abnormal proliferation of plasma cells or
myeloma cells in the bone marrow leads to bone destruction,
and excessive secretion of monoclonal immunoglobulin
inhibits normal synthesis of polyclonal immunoglobulin,
leading to a series of clinical manifestations [1–3]. +at is to
say, multiple myeloma leads to multiple organ injuries, and
patients eventually suffer from bone pain, fracture, renal
insufficiency, anemia, bleeding, hypercalcemia, and sus-
ceptibility to infection, which are very complex and easy to
be misdiagnosed. In recent years, under the application of
bortezomib, thalidomide, Relidomide, and other targeted
new drugs, overall survival (OS) and progression-free

survival (PFS) of patients have been prolonged [4,5]. With
the continuous extension of the curative effect and survival
period, better biomarkers are needed to evaluate the
treatment effect and prognosis of multiple myeloma and to
provide better guidance for continuing treatment [6].

Multiple myeloma can be divided into the following
eight types according to the increased type of abnormal
immunoglobulin: IgG type, IgA type, IgD type, IgM type,
IgE type, light chain type, dual clone type, and nonsecreted
type, and two types according to the type of light chain: κ
type, λ type [7]. However, the correlation among serum IgG,
its subclasses, serum and urine κ-light chain (LC), λ-light
chain (LC) levels, and the therapeutic effect and prognosis of
multiple myeloma was not fully understood. In this study,
we retrospectively analyzed 560 cases of hospitalized mul-
tiple myeloma patients from August 1, 2017, to February 28,
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2020, in our hospital, and explored the potential biomarkers
for evaluating the treatment effects of patients with multiple
myeloma. +erefore, we hypothesized that total IgG level,
levels of IgG subclasses, κ-LC, and λ-LC predict respon-
siveness to the therapeutic effect of multiple myeloma. To
that end, we evaluated serum total IgG level, IgG subclasses,
and serum and urine κ-LC and λ-LC in patients with
multiple myeloma and healthy controls, and monitored total
IgA, IgG, and IgG subclasses, κ-LC, and λ-LC responses to
multiple myeloma patients before, during, and after treat-
ment. +erefore, by analyzing the serological tests of mul-
tiple myeloma patients as well as the relationship between
the examination indicators and the treatment effect, the aim
is to find better biomarkers for the evaluation of treatment
effects and prognosis of multiple myeloma.

2. Patients and Methods

2.1. Ethics Statement. +e study was conducted in accor-
dance with the Declaration of Helsinki and the Ethical
Guidelines for Clinical Research. All serological testing and
extractions of information from the database were approved
by the Ethics Committee of the First Affiliated Hospital of
Soochow University and performed in accordance with the
relevant guidelines and regulations. All informed consent
forms were signed by patients with multiple myeloma and
healthy control.

2.2. Study Population and Samples. 560 patients diagnosed
with multiple myeloma at the First Affiliated Hospital of
Soochow University, China, from August 1, 2017, to Feb-
ruary 28, 2020, were prospectively enrolled in this study.

A 5ml sample of peripheral blood was collected from
enrolled patients with multiple myeloma and healthy con-
trols for measurement of serum immunoglobulin and its
subclasses, κ-LC and λ-LC, cytokine concentrations, and
peripheral blood of patients with multiple myeloma was
collected before, during, and after treatment. An additional
5ml sample of peripheral blood was collected from patients
and healthy controls for measurement of the proportion of
CD3+CD4+, CD3−CD19+, CD4+/CD8+, CD3+CD8+, and
CD16+CD56+ cells. A 10ml sample of urine was collected
from enrolled patients with multiple myeloma and healthy
controls for measurement of κ-LC and λ-LC, and urine of
some patients was collected before, during, and after
treatment. +e healthy controls were age and sex matched to
patients with multiple myeloma.

2.3. Examination of Serum Immunoglobulin and Its Sub-
classes, κ-LC, λ-LC, Cytokine Concentration, and Urine κ-LC,
λ-LC Concentration. Serum from patients with multiple
myeloma and from healthy controls was extracted from
fresh peripheral blood after centrifugation. +ereafter, se-
rum IgA, IgG, IgM, κ-LC, and λ-LC levels were assessed by
an automatic immunology analyzer (Beckman Image 800,
CA, USA) following the method of scatter turbidimetry.
IgG1, IgG2, IgG3, and IgG4 were detected with SIMENS BN
II (Germany) following the method of scatter turbidimetry.

Serum IL-2, IL-4, IL-6, TNF-α, and IFN-c were measured
with ELISA kits (Beyotime Biotechnology, China) according
to the manufacturer’s instructions. Urine κ-LC and λ-LC
concentration were detected with an automatic immunology
analyzer (Beckman Image 800, CA, USA) following the
method of scatter turbidimetry.

2.4. Assessment of the Proportion of CD3+CD4+, CD3−CD19+,
CD4+/CD8+, CD3+CD8+, and CD16+CD56+ Cells in Pe-
ripheral Blood. Peripheral blood from multiple myeloma
patients and healthy controls was lysed with red blood cell
lysis buffer. +ereafter, the proportion of CD3+CD4+,
CD3−CD19+, CD4+/CD8+, CD3+CD8+, and CD16+CD56+
cells was analyzed by the BD Multitest™ IMK kit (Becton,
Dickinson and Company, New Jersey, USA) using a flow
cytometer (Becton, Dickinson and Company, New Jersey,
USA) following the manufacturer’s instructions.

2.5. Statistical Analysis. +e data were presented as the
mean±SD. Each biological indicator was tested three times
in this study. +e unpaired Student’s t-test was used for
differences between the two groups. An ANOVA followed
by the Newman–Keuls test was employed for multigroup
comparisons. P values <0.05 were considered to indicate
statistical significance for all statistical tests.

3. Results

3.1. Baseline Characteristics of Patients with Multiple
Myeloma. Criteria for the diagnosis of multiple myeloma
were fulfilled for 560 patients seen at the First Affiliated
Hospital of Soochow University in Suzhou, China, from
August 1, 2017, through February 28, 2020. In 560 patients,
three percent of patients were younger than 40 years, and
10.71% were 70 years or older (Table 1); the median age was
59 years, and the range was 28–95 years (Table 1). Of these
560 patients, 59.46% were men (Table 1). +e serum he-
moglobin, creatinine, calcium, cholesterol, and triglyceride
values are listed in Table 2. Anemia was present initially in
80.71% of patients, and a serum creatinine level of 73mg/dL
or more in 41.07%. Serum calcium levels were more than
2.52mg/dL in 5.54% and less than 2.11mg/dL in 19.11%.+e
cholesterol and triglyceride levels were increased by 21.96%
and 21.79%, respectively.

Table 1: Demographic data for 560 patients with multiple
myelomas.

Factor No. of patients % of patients Median Range
Age (y)
<40 17 3.04
40–70 483 86.25
>70 60 10.71

Median 59
Range 28–95
Sex

Male 333 59.46
Female 227 40.54
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3.2. Serum Levels of Immunoglobulin and Its Subclasses in
Patients with Multiple Myeloma. To determine the immu-
noglobulin level in patients with multiple myeloma, we
measured serum IgA, IgG, and IgM levels using chem-
iluminescence immunoassay. We found that serum IgA
levels were 4.52 g/L or more in 15% and less than 0.82 g/L in
62.68%; serum IgM levels were more than 3.04 g/L in 1.96%
and less than 0.46 g/L up to 68.04% (Table 3). However,
serum IgG levels were more than 15.6 g/L in 33.04% and
36.43% were less than 7.51 g/L (Table 3). +ese results in-
dicated that a higher proportion of patients with multiple
myeloma were of the IgG type.

To further analyze IgG subclass levels in patients with
multiple myeloma, we detected the serum levels of IgG1,
IgG2, IgG3, and IgG4. We found that IgG2, IgG3, and IgG3
increased by 6.09%, 8.12%, and 4.64%, respectively, in pa-
tients with multiple myeloma. However, IgG1 was up to
26.38% (Table 3). +ese results showed that IgG1 was the
main type in four IgG subclasses in multiple myeloma.

We also further analyzed the ratio of IgG subclasses and
total IgG. +e data showed that the IgG2/IgG ratio signif-
icantly decreased in patients compared with healthy controls
(Table 3). But IgG1/IgG, IgG3/IgG, and IgG4/IgG ratios
increased in patients with multiple myeloma compared with
healthy controls, especially IgG4 (Table 3).

3.3. Level of κ-LC and λ-LC Increased in Serum and Urine of
Patients with Multiple Myeloma. To analyze κ-LC and λ-LC
levels in patients with multiple myeloma, we measured the
κ-LC and λ-LC concentrations in serum and urine. In 560

patients, our results showed that κ-LC and λ-LC in serum
were increased in patients with multiple myeloma by 27.50%
and 26.43%; however, decreased by 45.00% and 42.86%,
respectively (Table 4). A similar result was found in urine,
κ-LC and λ-LC were increased in patients with multiple
myeloma, especially κ-LC up to 65.13% (Table 4).

3.4. Proportion of CD3+CD4+, CD3+CD8+, CD3−CD19+, and
CD16+CD56+ Cells and Associated Cytokines Concentration
in Peripheral Blood of Patients with Multiple Myeloma. In
order to further analyze the possible mechanism, we
measured the proportion of CD3+CD4+, CD3+CD8+,
CD3−CD19+, and CD16+CD56+ cells in peripheral blood of
patients with multiple myeloma. In 57 patients with
multiple myeloma, our results showed that the proportion
of CD3+CD4+ cells and CD4+/CD8+ significantly decreased
in peripheral blood compared with healthy controls (Ta-
ble 5). Similarly, the proportion of CD3−CD19+ cells was
decreased in most patients compared with healthy controls
(Table 5). However, CD3+CD8+ and CD16+CD56+ cells,
that were CTL cells and NK cells, significantly increased in
peripheral blood of patients compared with healthy con-
trols (Table 5).

We also further measured the immune cell-related cy-
tokines in serum of patients with multiple myeloma. In
serum of 57 patients, we found that IL-4, IL-6, IFN-c, and
TNF-α significantly increased in multiple myeloma com-
pared with healthy control, especially IL-6 and IFN-c (Ta-
ble 6). However, IL-2 also increased in serum with P value
<0.0762 (Table 6). In addition, C-reactive protein (CRP)

Table 2: Laboratory test results in 560 patients with multiple myeloma.

No. of patients Range Decreased N (%) Normal N (%) Increased N (%)
Hemoglobin (g/dL) 560 130–175 452 (80.71) 108 (19.29) 0
Creatinine (mg/dL) 560 41–73 36 (6.43) 294 (52.50) 230 (41.07)
Calcium (mg/dL) 560 2.11–2.52 107 (19.11) 422 (75.36) 31 (5.54)
Cholesterol (mg/dL) 560 <5.2 — 437 (78.04) 123 (21.96)
Triglyceride (mg/dL) 560 <1.7 — 438 (78.21) 122 (21.79)

Table 3: Concentration of serum monoclonal proteins in patients with multiple myeloma.

Decreased N (%) Normal N (%) Increased N (%)
IgA (N� 560; range: 0.82–4.52 g/L) 351 (62.68) 125 (22.32) 84 (15)
IgG (N� 560; range: 7.51–15.6 g/L) 204 (36.43) 171 (30.54) 185 (33.04)
IgM (N� 560; range: 0.46–3.04 g/L) 381 (68.04) 168 (30.00) 11 (1.96)
IgG1 (N� 345; range: 4.05–10.11mg/ml) 134 (38.84) 120 (34.78) 91 (26.38)
IgG2 (N� 345; range: 1.69–7.86mg/ml) 196 (56.81) 128 (37.10) 21 (6.09)
IgG3 (N� 345; range: 0.11–0.85mg/ml) 119 (34.49) 198 (57.39) 28 (8.12)
IgG4 (N� 345; range: 0.03–2.01mg/ml) 31 (8.99) 298 (86.38) 16 (4.64)

Table 4: Concentration of serum and urine light chains in patients with multiple myeloma.

Decreased N (%) Normal N (%) Increased N (%)
Serum κ-LC (N� 560; range: 629–1350mg/dL) 252 (45.00) 154 (27.50) 154 (27.50)
Serum λ-LC (N� 560; range: 313–723mg/dL) 240 (42.86) 172 (30.71) 148 (26.43)
Urine κ-LC (N� 543; range: <1.85mg/dL) — 189 (34.87) 353 (65.13)
Urine λ-LC (N� 543; range: <5mg/dL) — 381 (70.30) 161 (29.70)
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significantly upregulated in serum of patients with multiple
myeloma compared with healthy controls (Table 6).

3.5. Level of IgG Subclasses, κ-LC, and λ-LC Decreased in
Patients withMultipleMyeloma after Treatment. To evaluate
the role of IgA, IgG subclasses, κ-LC, and λ-LC in the
treatment of multiple myeloma, we extracted a part of pa-
tients with over upper limit of reference range of testing
items and analyzed the serum or urine levels of IgA, IgG,
IgG1, IgG2, IgG3, and IgG4 and κ-LC and λ-LC in patients
with multiple myeloma before, during, and after treatment.
Our results showed that the levels of IgG and IgG1 gradually
decreased before, during, and after treatment, and especially
after treatment, they obviously decreased (Table 7). Similar
results were found in IgA, IgG2, IgG3, and IgG4 in the
processes of before, during, and after treatment (Table 7).

We also extracted patients with over the upper limit of
the reference range and analyzed the serum and urine levels
of κ-LC and λ-LC in patients with multiple myeloma before,
during, and after treatment. +e results showed that the
serum levels of κ-LC and λ-LC gradually and significantly
decreased before, during, and after treatment (Table 8).
Similarly, the levels of κ-LC and λ-LC in urine gradually and
significantly decreased before, during, and after treatment,
especially after treatment compared with before treatment
(Table 8).

4. Discussion

In our present study, the age and sex distributions of the 560
patients were similar to those in foreign studies of the 1027
patients with multiple myeloma seen at the Mayo Clinic [8]
and a domestic study of the 304 patients with multiple
myeloma seen at the Beijing Chaoyang Hospital [9].

However, in the current study, 10.71% of patients were 70
years or older, compared with 38% in the earlier foreign
study. +e incidence of multiple myeloma is much lower in
the elderly population, and the lower percentage of patients
70 years or older in the current series is probably due to
regional differences. In addition, some patients may not seek
medical treatment due to differences in economic status,
health concepts, and medical resources, so there are some
differences in age distribution, especially among the elderly.
+is has yet to be proved. In this study, only 3.04% of
patients were younger than 40 years at diagnosis, and this
percentage is similar to foreign and domestic studies.

As expected, anemia was a major manifestation of
myeloma and was present initially in 80.71% of patients. +e
mechanism in most patients is inadequate production of red
blood cells due to either erythropoietin deficiency from
accompanying renal failure or pronounced marrow re-
placement by myeloma cells [10–12]. +e serum creatinine
level was increased in 41.07% of our patients. +e major
causes of renal failure are myeloma kidney and hypercal-
cemia [13,14]. And dehydration and hyperuricemia are also
reasons for renal failure [13–15].

Monoclonal immunoglobulin increases in the serum of
patients with multiple myeloma, leading to dysfunction for
the synthesis of normal polyclonal immunoglobulin, which
makes it is easy to cause infection [16–18]. In the early stages
of multiple myeloma, the sensitivity of immunoglobulin
quantification is lower, and it is easy to miss the detection.
However, in diagnosed patients, the determination of im-
munoglobulin content is helpful for observing the curative

Table 5: Proportion of immune cells in 57 patients with multiple myeloma compared with healthy controls.

Healthy control MM P value
CD3+ (N� 57; range: 61.1–77%) 68.90± 4.58 68.93± 14.64 <0.99079
CD3+CD4+ (N� 57; range: 25.8–41.6%) 35.31± 4.58 28.95± 14.10 <0.02259
CD3+CD8+ (N� 57; range: 18.1–29.6%) 24.90± 3.25 38.82± 16.11 <0.001
CD4+/CD8+ (N� 57; range: 0.9–1.9) 1.41± 0.31 0.96± 0.74 <0.00290
CD3−CD19+ (N� 57; range: 7.3–18.2%) 11.04± 3.21 7.12± 8.15 <0.01654
CD16+CD56+ (N� 57; range: 8.1–25.6%) 13.53± 4.36 22.86± 13.95 <0.001

Table 6: Concentration of serum cytokines in patients with
multiple myeloma.

Healthy
control

Multiple
myeloma P value

IL-2 (pg/ml, N� 57) 0.60± 1.23 2.08± 4.38 <0.0762
IL-4 (pg/ml, N� 57) 0.44± 0.83 2.13± 3.92 <0.0226
IL-6 (pg/ml, N� 57) 0.38± 0.64 10.18± 14.67 <0.0005
TNF-α (pg/ml,
N� 57) 1.52± 1.39 4.08± 6.88 <0.0268

IFN-c (pg/ml,
N� 57) 0.44± 1.34 4.06± 7.16 <0.0075

CRP (μg/ml,
N� 560) 3.21± 1.81 47.67± 66.26 <0.0001

Table 7: Concentration of serum monoclonal proteins in patients
with multiple myeloma before, during, and after treatment.

Before
treatment

During
treatment After treatment

IgA (N� 84) 28.80± 23.72 10.80± 11.98∗ 9.90± 13.92∗
IgG
(N� 185) 50.69± 33.24 17.43± 13.16∗ 13.25± 10.19∗#

IgG1
(N� 91) 37.45± 21.30 11.71± 6.92∗ 7.95± 3.54∗

IgG2
(N� 21) 17.11± 10.54 9.59± 5.45∗ 7.6± 9.01∗

IgG3
(N� 28) 5.82± 7.38 0.84± 0.49∗ 0.66± 0.39∗

IgG4
(N� 16) 35.51± 30.32 12.82± 18.92∗ 13.87± 7.26∗

Compared with the before treatment group, ∗P< 0.05; compared with the
during treatment group, #P< 0.05.
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effect. In this study, the expression of the IgG type was the
highest (33.04%) in patients with multiple myeloma, the
expression of the IgA type (15%) was lower than that of the
IgG type, and the expression of the IgM type (1.96%) was the
lowest, which was consistent with the previous study. +e
other part of patients with multiple myeloma showed lower
IgG, IgA, and IgM, owing to light chain type, nonsecreted
type, IgD type, IgE type, etc. Most myeloma cells not only
synthesize and secrete a large amount of monoclonal im-
munoglobulin but also have a imbalanced ratio of light and
heavy chains. Serum light chain is one of the higher sensitive
indicators for the clonal plasma cells in patients [19–21]. Our
results showed that κ-LC and λ-LC significantly increased in
the serum and urine of patients with multiple myeloma,
consistent with previous studies. Serum and urine levels of
light chain have high sensitivity and specificity, which are
expected to be helpful for early detection and rapid diagnosis
for patients with multiple myeloma via noninvasive
detection.

+e antitumor immune response of patients with
multiple myeloma is dominated by cellular immunity [22].
T cell subsets play an important role in regulating the im-
mune response and maintaining the immune stability in the
body. In this study, CD3+CD4+ and CD4+/CD8+ ratios were
significantly reduced, and CD3+CD8+ was increased in
patients with multiple myeloma at the initial and progressive
stages, which was consistent with the previous reports [23].
It can be seen that multiple myeloma patients have abnormal
cellular immune regulation, and the immune function is
closely related to the disease state. After effective treatment,
CD3+CD4+, CD4+/CD8+ ratio, and CD3+CD8+ basically
returned to normal.+erefore, bymeasuring Tcell subsets in
peripheral blood, the latest trends of the disease can be
monitored. B lymphocytes are the major cells in the immune
system that produce antibodies, present antigens, and se-
crete cytokines involved in immune regulation. Our data
showed that B cells were significantly lower than healthy
control in peripheral blood of patients with multiple mye-
loma, consistent with other researchers [23]. However, CRP
may inhibit the T helper cells function, which would restrain
IL-4 production, thereby interfering with polyclonal B cell
activation [24]. It had reported that IL-6 production could be
induced by TNF-α in a dose-dependent manner in myeloma
cells [25]. NK cells can directly kill tumors and virus-infected
cells. It plays an important role in the body’s immune
monitoring and early anti-infection immune process. Our
results showed that NK cells were significantly higher than
healthy controls in the initial stage, which was consistent
with the report of Chan et al. [26]. It indicated that multiple
myeloma patients still had the ability of immune self-

stabilization in the early stage, and the NK cell function was
significantly impaired in the progressive stage. +erefore,
multiple myeloma patients have extensive immunodefi-
ciency. Our research data indicate that there are abnor-
malities of CD3+CD4+, CD3+CD8+, CD3−CD19+, and
CD16+CD56+ cells in patients with multiple myeloma.
Whether these abnormalities are pathogenic factors of
multiple myeloma (MM) or the result of the onset of MM. It
is still poorly understood and needs to be further explored.
In conclusion, lymphocyte subsets and related cytokines play
an important role in the development of multiple myeloma,
and monitoring these indicators can be used as potential
biomarkers for the diagnosis of MM patients and moni-
toring treatment efficacy.

Several important prognostic factors were identified in
our and other researcher’s studies [8]. Most of these also
have been identified as markers of high-risk disease in other
studies [6]; thus, they are reliable and well-validated tools for
counseling and patient care decisions. Many of the prog-
nostic factors identified are simple clinical or laboratory
variables such as age, hemoglobin, serum calcium, and se-
rum creatinine values, all of which can be easily determined
in all patients [27]. Although not analyzed in this study,
other studies have shown that high lactate dehydrogenase
levels [28], deletion of chromosome 13 [29,30], and circu-
lating plasma cells [31] are other important adverse prog-
nostic factors in multiple myeloma. Our study made
interesting findings that IgG, IgG1, IgG2, IgG3, IgG4, κ-LC,
and λ-LC, especially IgG1, κ-LC, and λ-LC, showed great
changes in the process of treatment, that is, before, during,
and after treatment. +erefore, these factors could be con-
sidered as prognostic factors, even as potential biomarkers
for treatment effects for multiple myeloma.

5. Conclusion

In summary, by analyzing the serological and urine ex-
aminations of multiple myeloma patients as well as the
correlation between the examination indicators and the
treatment effect, we found that IgG1 expression was the
highest in patients with multiple myeloma, and IgG1
changed greatly before, during, and after treatment.
+erefore, IgG1 has great potential in predicting the pro-
gression and therapeutic efficacy of multiple myeloma pa-
tients. In this study, we also found that κ-LC and
λ-LC, lymphocyte subsets, and related cytokines can be used
to evaluate the therapeutic effect and prognosis of multiple
myeloma.

+is study, however, had some limitations. First, con-
siderable numbers of patients with multiple myeloma did

Table 8: Concentration of serum and urine light chains in patients with multiple myeloma before, during, and after treatment.

Before treatment During treatment After treatment
Serum κ-LC (N� 74) 5102.57± 5198.35 1580.39± 1214.76∗ 1169.37± 963.99∗†
Serum λ-LC (N� 83) 3488.49± 3816.87 1099.27± 1070.41∗ 761.48± 727.77∗†
Urine κ-LC (N� 164) 145.71± 526.10 33.50± 206.75∗ 15.82± 90.29∗
Urine λ-LC (N� 86) 656.10± 1413.11 130.30± 473.83∗ 168.07± 648.79∗

Compared with the before treatment group, ∗P< 0.05; compared with the during treatment group, †P< 0.05.
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not detect all test items, so there is not sufficient data to
support more accurate conclusions, such as IgG2 (n� 21),
IgG3 (n� 28), and IgG4 (n� 16) in this study. Second, the
correlation of IgG subclasses with overall survival (OS) and
progression-free survival (PFS) was not shown, because
there were not enough patients followed up.+erefore, more
prospective studies from different medical centers are
warranted to further characterize these factors for prediction
and evaluation of the treatment effect and prognosis of
multiple myeloma. +e use of powerful, independent
multiple prognostic factors in multiple myeloma has over-
come the limitations of the Durie–Salmon staging system,
which has been used for almost three decades as a staging
and prognostic system for multiple myeloma.
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léčba,” Vnitrnı́ Lékarstvı́, vol. 66, no. 7, pp. 425–431, 2020.

[16] S. V. Rajkumar and S. Kumar, “Multiple myeloma: diagnosis
and treatment,” Mayo Clinic Proceedings, vol. 91, no. 1,
pp. 101–119, 2016.

[17] T. Morrison, R. A. Booth, K. Hauff, P. Berardi, and A. Visram,
“Laboratory assessment of multiple myeloma,” Advances in
Clinical Chemistry, vol. 89, pp. 1–58, 2019.

[18] S. K. Kumar, N. S. Callander, M. Alsina et al., “Multiple
myeloma, version 3.2017, NCCN clinical practice guidelines
in oncology,” Journal of the National Comprehensive Cancer
Network, vol. 15, no. 2, pp. 230–269, 2017.

[19] M. Andrei and J. C. Wang, “Cutaneous light chain amyloidosis
with multiple myeloma: a concise review,” Hematology/On-
cology and Stem Cell �erapy, vol. 12, no. 2, pp. 71–81, 2019.

[20] H. Y. Ting, P. Sthaneshwar, P. C. Bee, H. Shanmugam, and
M. Lim, “Heavy/light chain assay in the monitoring of multiple
myeloma,” Pathology, vol. 51, no. 5, pp. 507–511, 2019.

[21] J. L. J. Heaney, J. P. Campbell, A. E. Griffin et al., “Diagnosis
and monitoring for light chain only and oligosecretory my-
eloma using serum free light chain tests,” British Journal of
Haematology, vol. 178, no. 2, pp. 220–230, 2017.

[22] Y. Kawano, A. M. Roccaro, I. M. Ghobrial, and J. Azzi,
“Multiple myeloma and the immune microenvironment,”
Current Cancer Drug Targets, vol. 17, pp. 806–818, 2017.

[23] J. F. San Miguel, M. Gonzale, A. Gascon et al., “Lymphoid
subsets and prognostic factors in multiple myeloma coop-
erative group for the study of monoclonal gammopathies,”
British Journal of Haematology, vol. 80, pp. 305–309, 1992.

[24] Y. Long, C. Xia, Y. Sun et al., “Increased circulating PD-
1hiCXCR5- peripheral helper T cells are associated with
disease severity of active ulcerative colitis patients,” Immu-
nology Letters, vol. 233, pp. 2–10, 2021.

[25] C. Lee, J. I. Oh, J. Park et al., “TNF αmediated IL-6 secretion is
regulated by JAK/STAT pathway but not by MEK phos-
phorylation and AKT phosphorylation in U266 multiple
myeloma cells,” BioMed Research International, vol. 2013,
Article ID 80135, 8 pages, 2013.

[26] W. C. Chan, L. B. Gu, A. Masih et al., “Large
granular lymphocyte proliferation with the natural killer-cell
phenotype,” American Journal of Clinical Pathology, vol. 97,
no. 3, pp. 353–358, 1992.

[27] S. V. Rajkumar and P. R. Greipp, “Prognostic factors in
multiple myeloma,” Hematology/Oncology Clinics of North
America, vol. 13, no. 6, pp. 1295–1314, 1999.

6 Journal of Oncology



[28] M. A. Dimopoulos, B. Barlogie, T. L. Smith, and R. Alexanian,
“High serum lactate dehydrogenase level as a marker for drug
resistance and short survival in multiple myeloma,” Annals of
Internal Medicine, vol. 115, no. 12, pp. 931–935, 1991.

[29] R. Fonseca, D. Harrington, M. M. Oken et al., “Biological and
prognostic significance of interphase fluorescence in situ
hybridization detection of chromosome 13 abnormalities
(delta13) in multiple myeloma: an eastern cooperative on-
cology group study,” Cancer Research, vol. 62, pp. 715–720,
2002.

[30] G. Tricot, J. R. Sawyer, S. Jagannath et al., “Unique role of
cytogenetics in the prognosis of patients with myeloma re-
ceiving high-dose therapy and autotransplants,” Journal of
Clinical Oncology, vol. 15, no. 7, pp. 2659–2666, 1997.

[31] T. Witzig, M. Gertz, J. Lust, R. Kyle, W. O’Fallon, and
P. Greipp, “Peripheral blood monoclonal plasma cells as a
predictor of survival in patients with multiple myeloma,”
Blood, vol. 88, no. 5, pp. 1780–1787, 1996.

Journal of Oncology 7



Research Article
miR-4731-5p Enhances Apoptosis and Alleviates
Epithelial-Mesenchymal Transition through Targeting
RPLP0 in Non-Small-Cell Lung Cancer

Chang Chang 1 and Meilin Xu2

1Department of Pathology, �e First Affiliated Hospital, and College of Clinical Medicine of Henan University
of Science and Technology, Luoyang 471003, China
2Department of Pathology, Tianjin Chest Hospital, Tianjin Province 300222, China

Correspondence should be addressed to Chang Chang; changchangpat@126.com

Received 24 December 2021; Revised 20 January 2022; Accepted 22 January 2022; Published 17 March 2022

Academic Editor: Fu Wang

Copyright © 2022 Chang Chang and Meilin Xu. (is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Background/Aim. MircoRNA-4731-5p (miR-4731-5p) is a new miRNA involved in different human cancers, but its function has
not been clarified in non-small-cell lung cancer (NSCLC). (e present study attended to resolve the role of miR-4731-5p in
NSCLC. Materials and Methods. (e expression level of miR-4731-5p or ribosomal protein large P0 (RPLP0) and NSCLC
clinicopathologic characteristics were analyzed. (e binding between miR-4731-5p and RPLP0 was confirmed by TargetScan
prediction and luciferase reporter experiment. Also, the probable role of miR-4731-5p in NSCLC via RPLP0 was elaborated by the
MTT, western blotting, immunofluorescence, transwell, flow cytometry, and TUNEL assays. Moreover, in vivo verification was
conducted in xenografted nude mice. Results. (e level of miR-4731-5p was notably declined in vivo and in vitro, which was
involved in the prognosis of lung cancer patients. (e miR-4731-5p mimic could remarkably restrain cell viability, invasion, and
the translational expression level of vimentin and e-cadherin, with promoted cell apoptosis in NSCLC, which were notably
reversed by RPLP0 overexpression. Conclusion. miR-4731-5p/RPLP0 axis might be an underlying therapeutic target for NSCLC.

1. Introduction

Lung cancer has become the dominating cause of death from
all kinds of cancers worldwide and is currently the most
frequently diagnosed malignancy [1]. It is reported that
about 80% of lung cancer is authenticated as non-small-cell
lung cancer (NSCLC), including cell carcinoma and ade-
nocarcinoma [2]. (e molecularly targeted systemic thera-
pies of NSCLC have significantly improved the outcomes for
patients, but the disease control rate and increased overall 5-
year survival rate remain poor [3]. (erefore, expounding
the pathogenesis of lung cancer is quite necessary and also
can contribute to the development of an effective treatment.

A growing body of researches has exhibited differential
expression of miRNAs in the development of NSCLC [4–6].
miR-4731-5p is a novel miRNA that has rarely been studied,

which is associated with tumor suppression [7], and was able
to distinguish tumor stage with high specificity and sensi-
tivity [8], indicating miR-4731 may have a tumor-sup-
pressive activity [7]. Some evidences show that miR-4731-5p
suppresses glioma development [9]. Additionally, miR-
4731-5p has been exhibited to be down-expressed in several
cancers, such as oral lichen planus [10] and glioblastoma
[9,11]. Nevertheless, the effect of miR-4731-5p on NSCLC
still needs further studies.

(e human ribosomal P complex, which contains
RPLP0, RPLP1, and RPLP2, accelerates protein synthesis
through recruiting translational factors. RPLP0 is a member
of the RPLP family and a crucial modulator in the progress
of many diseases, including cancers. (e overexpression of
RPLP0 mRNA is seen in human colorectal and hepatocel-
lular carcinomas [12]. RPLP0 contributes to the onset and
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development of gastric cancer [13] and gynecologic tumors
[14]. Although the previous study reports that RPLP0 always
acts as a reference gene for gene expression studies on
NSCLC [15], more and more literature confirm that RPLP0
is differently expressed in lung cancer. Ali et al. [16] show
that RPLP0 exhibits low expression stability in the NSCLC
cell lines NCI-H A549, NCI-H446, and NCI-H460. More-
over, the level of RPLP0 is demonstrated to be down-
regulated in samples from patients with squamous-cell
carcinoma compared to that in normal tissues based on the
RNA sequencing (RNA-Seq) analysis [17]. Furthermore, our
bioinformatics analysis, which predicted that RPLP0 and
miR-4731-5p were each other’s targets, led us to hypothesize
that RPLP0 was silenced by miR-4731-5p.

(us, the underlying mechanism of miR-4731-5p in
NSCLC was illuminated in the present study. (e results
demonstrated that the level of miR-4731-5p was dramati-
cally diminished in NSCLC tissues. (e upregulation of
miR-4731-5p may inhibit NSCLC development by directly
decreasing the expression of RPLP0.

2. Materials and Methods

2.1. Sample Collection. 35 pairs of NSCLC tissues and rel-
evant normal tissue were acquired from the Tianjin Chest
Hospital. All samples were resected during the operation and
instantly preserved in liquid nitrogen for the following
study. (e experiment was in agreement with the ethics
committee of the Tianjin Chest Hospital and all participants
enrolled in the study offered signed informed consent.

Five NSCLC cell lines, NCI-H1299, NCI-H596, NCI-
H1650, HCC827, and A549, and human normal lung epi-
thelial cell (BEAS-2B cell) were bought from the American
Type Culture Collection (ATCC, Manassas, VA, USA). Cell
lines were sustained in RPMI 1640 medium (Sigma-Aldrich,
St. Louis, MO, USA) supplied with 1% streptomycin-pen-
icillin (Sigma-Aldrich) and 10% fetal bovine serum (FBS,
Gibco, Rockville, MD, USA) at 37°C with 5% CO2.

2.2. Cell Transfection. Cells were plated into 6-well plates
with an inoculation density of 3×106 cells/well and then
maintained for 24 h at 37°C with 5% CO2. When the cells
reached 70–80% confluence, 100 nmol/L miR-4731-5p
mimic was transfected into the cells through Lipofectamine
3000 (Invitrogen, Carlsbad, CA, USA) based on the oper-
ating manual. For the up-regulation of RPLP0 expression,
pcDNA3.1 containing the full-length complementary DNA
(cDNA) of RPLP0 (5 μg) was used in the NSCLC cells. (e
cells were gathered for subsequent detection after 48 h of
transfection.

2.3. RNA Separation and qRT-PCR Detection. Total RNAs
were obtained using TRIzol reagent ((ermo Fisher, CA,
USA) based on the instructions. Next, the PrimeScript® RT
reagent kit (Takara Bio, Shiga, Japan) was applied to re-
versely transcribe 1 μg/ml RNA into cDNA. qRT-PCR re-
actions were conducted with a SYBR Green PCR kit (Takara,
Dalian, China) in a CFX96 real-time PCR detection system

(Bio-Rad, Hercules, CA, USA). (e PCR primer sequences
are listed as follows: miR-4731-5p, forward, 5′-
GGGGGCCACATGAGT-3′, reverse, 5′-
GGTCCAGTTTTTTTTTTTTTTTCACA-3′; RPLP0, for-
ward, 5′-TGGCTAGCATGCCCAGGGAAGACAGGGCG-
3′, reverse, 5′-CGGAATTCGGTCAAAG AGAC-
CAAATCCCATATCC-3′. (e PCR amplification condition
is listed as follows: 95°C for 10min, and 95°C for 20 s and
58°C for 60 s of 40 cycles. (e data were quantified with the
2−ΔΔCt method.

2.4. Western Blotting. (e harvested cells were disrupted
through RIPA lysis buffer (Beyotime, Shanghai, China) and
cellular proteins were collected via centrifugation. (e
protein concentration of the lysate was analyzed with the
BCA kit (Bio-Rad, Richmond, CA, USA). (e protein
samples were segregated through 10% SDS-PAGE, and
subsequently electroblotted onto PVDF membranes. (en,
the membrane sample was sealed with 5% skim milk
(Anchor, New Zealand) for 60min at room temperature,
and hatched with the corresponding primary antibodies at
4°C overnight. (e primary antibodies supplied in this
present study are listed as follows: anti-RPLP0 (1 :100;
ab23750), anti-e-cadherin (1 :100; ab18103), anti-vimentin
(1 :100; ab59396), anti-Bcl-2 (1 :1000; ab32167), and anti-
Bax (1 :1000; ab32517; all in Abcam, Cambridge, UK). (en,
the appropriate secondary antibodies were supplied and
hatched for 1 hour at 20°C. All bands were imaged with
Amersham ECL Kit (GE Healthcare, UK).

2.5.MTTAssay. Cells were plated into 96-well plates with an
inoculation density of 3×103 cells/well and hatched with
10 μl MTT solution (Sigma) at the indicated time for 4 h.
Subsequently, the supernatant fluid was abandoned, and
each well was appended with 100 μl DMSO to dissolve the
crystals. (e enzyme-labelling measuring instrument was
applied to determine the absorbance at 570 nm, and each
individual experiment was repeated for 3 times at least.

2.6. Electronic Microscope Observation. (e cells were
maintained in 6-well plates with an inoculation density of
1× 105 cells/ml and then maintained for 24 h to promote the
total attachment to the plates’ surface. Subsequently, the cells
were diverted with the miR-4731-5p mimic or mimic-NC.
(e cells were imaged by an inverted light microscope
(Nikon Corporation, Tokyo, Japan).

2.7. Immunofluorescence Staining. Cells were administrated
with vehicle for 24 h. After blocking in phosphate buffer
saline (PBS) containing 0.05% BSA, the cells were hatched
with primary antibodies overnight at 4°C. (en, the cells
were maintained with anti-rabbit immunoglobulin G (IgG)
coupled to Alexa-Fluor-630 or -488 (2 μg/mL) at room
temperature for 60min. (e nuclear component was
counterstained with DAPI (Vector Laboratories, Burlin-
game, CA, USA). (e results were imaged under a fluo-
rescence microscope (Carl Zeiss, (ornwood, NY, USA).
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2.8. Transwell Assays. Transwell inserts were used to mea-
sure the invasion abilities with matrigel. (e transwell
chamber was loaded with 200 μl of cell suspension with
5×105/ml cells. (en, the lower transwell chamber was
loaded with DMEM added with FBS (500 μl). (e cells were
rinsed by PBS buffer after being maintained at 37°C with 5%
CO2 for 36 h. Next, the cells were immobilized with 100%
ethanol and stained with 0.1% crystal violet solution. For
microscope-based observations, five random fields were
chosen to determine the cell numbers.

2.9. Apoptosis Analysis. Cell apoptosis was assessed with the
flow cytometry experiment. Briefly, the cells were gathered
and rinsed by PBS twice after transfection. Subsequently, 5 μl
Annexin V/FITC and propidium iodide (PI) were applied to
stain the cells for quarter at room temperature following
resuspension by 0.5ml of bind buffer. (e apoptosis of the
cells was measured on a FACScan flow cytometer via
CellQuest software (BD Biosciences).

2.10. TUNEL. (e in situ cell death detection kit (Roche,
Budapest, Hungary) was utilized to evaluate the TUNEL
assay based on the operating manual. (e tissue sample was
immobilized in 10% formaldehyde solution, and then em-
bedded with paraffin. 5 μm sections were cut and dehydrated
in graded concentrations of ethanol, cleared in xylene. (en,
the slides were hatched with proteinase K for 20min at 37°C,
blocked with 3% H2O2 for 10min, and fixed with 4%
paraformaldehyde. Next, the sections were hatched with the
TUNEL reaction mixture for 1 h at 37°C. For the detection of
fluorescein-labeled DNA, horseradish peroxidase (HRP)-
conjugated antibody was added. (e number of TUNEL-
positive cells among the total number of cells was counted.

2.11. Luciferase Reporter Experiment. (e possible binding
between miR-4731-5p and RPLP0 was predicted using the
TargetScan website (http://www.targetscan.org/vert_71/).
(e pmiRGLO vector (Promega, Madison, WI, USA) was
interposed with the wild type (WT) and mutant 3′-UTR of
RPLP0. (e miR-4731-5p-mimics or specified luciferase
reporter vectors were transfected into the cells. Luciferase
activities were assessed by a dual-luciferase reporter assay
system (Promega) after 48 h of transfection.

2.12. In Vivo Assay. (ymus-free nude mice (nu/nu; 8-week-
old males) were bought from the Experimental Animal
Center of Tianjin Chest Hospital. (e mice were housed
individually and fed in a temperature-controlled animal room
with 12 hours/12 hours light-dark cycle. Animal assays were
ratified by the Tianjin Chest Hospital (SYXK Jin 2019–0001).
(e lentiviral vector with OE- miR-4731-5p or its negative
control (OE-NC) acquired from GeneChem (Shanghai,
China) was injected into the backs of nude mice subcuta-
neously. (en, the tumor volume was supervised every 5 d by
an electronic vernier caliper when they were visible. (e mice
were sacrificed with an intraperitoneal injection of sodium
pentobarbital (200mg/kg) after the introduction of tumor

cells for 28 days, and also the tumors samples were removed
and weighed. (e tumor size was quantified based on the
formula: volume� 1/2× length×width2.

2.13. Immunohistochemistry. Immunohistochemistry was
performed using the e-cadherin (Abcam) and vimentin
antibodies (Abcam). Slides were repaired with sodium cit-
rate buffer (10mM, pH 6.0) at 94°C for 25min, and then got
back to room temperature. After rinsing, 1% bovine serum
albumin (BSA) was utilized to seal the sections for 30min.
(en, the sections were hatched with biotinylated secondary
antibody. Restaining with hematoxylin was performed after
the slices were washed with PBS for 3×10min.

2.14. Statistical Analysis. All statistical data were analyzed
through the SPSS 20.0 software (IBM, Armonk, New York,
USA). (e results were shown as mean± standard deviation
(SD). Statistical differences between the two groups were
determined by Student’s t-test, whereas differences among
multiple groups were tested by one-way analysis of variance
(ANOVA) followed by the post hoc Bonferroni test. (e
survival curve was established by the Kaplan–Meier method
and the difference was evaluated with the log-rank test.
p< 0.05 represents significant difference.

3. Results

3.1. miR-4731-5p LevelWas Reduced inNSCLCCell Lines and
Tissues and Related in the Prognosis of NSCLC. (e ex-
pressions of miR-4731-5p in the NSCLC tissues and five
NSCLC cell lines were first examined via qRT-PCR. In
comparison with the control group, the relative level of miR-
4731-5p was markedly declined in the tissues and cells of
NSCLC (Figures 1(a) and 1(b)). Since the expression level of
miR-4731-5p in A549 and NCI-H1299 NSCLC cells was
obviously diminished relative to that in the other three cell
lines, A549 and NCI-H1299 NSCLC cells were selected for
the following evaluation. Moreover, the transfection of the
miR-4731-5p mimic markedly elevated the level of miR-
4731-5p compared with the mimic-NC group in A549 and
NCI-H1299 cells (Figures 1(c) and 1(d)). Besides, the in-
teraction between the level of miR-4731-5p and NSCLC
clinicopathologic characteristics was examined (Table 1).
(e expression level of miR-4731-5p was observably related
in lymph node metastasis, distance metastasis, and TNM
stage, though no statistical difference was indicated between
the level of miR-4731-5p and age, gender, smoking, and
tumor size. Furthermore, patients with lower expression
levels of miR-4731-5p generally showed lymph node me-
tastasis, distance metastasis, and III/IV TNM stage. Alto-
gether, the results clarified that miR-4731-5p was declined in
NSCLC tissues and cell lines, which was tightly relevant in
the prognosis of NSCLC.

3.2. �e Upregulation of miR-4731-5p Reduced Cell Viability,
Invasion, and EMTwith Elevated Apoptosis in both A549 and
NCI-H1299Cells. To identify the role of miR-4731-5p in the
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NSCLC cells, the miR-4731-5p mimic and mimic-NC were
diverted into A549 and NCI-H1299 cells separately. (e
upregulation of miR-4731-5p notably dampened the cell
viability of A549 and NCI-H1299 cells relative to the mimic-
NC group (Figure 2(a)). Morphological alterations were also
discovered. As indicated in Figure 2(b), both A549 and NCI-
H1299 cells treated with the miR-4731-5p mimic became
sparser with an obvious spindle shape change compared
with those in the mimic-NC group. To illustrate the role of
miR-4731-5p in EMT, the translational expressions of
e-cadherin and vimentin were analyzed via western blot.(e
miR-4731-5p mimic prominently elevated the expression
level of e-cadherin protein with declined translational levels
of vimentin both in A549 and NCI-H1299 cells relative to

those in themimic-NC group (Figures 2(c)–2(e)). Moreover,
immunofluorescence results verified that the miR-4731-5p
mimic memorably attenuated the level of vimentin both in
A549 and NCI-H1299 cells (Figure 2(f)). Besides, the in-
vasion ability of A549 and NCI-H1299 cells transfected with
the miR-4731-5p-mimic was notably declined relative to that
in the mimic-NC group (Figure 2(g)). However, the
transfection of the miR-4731-5p-mimic signally promoted
the apoptosis rate of both the cells, as shown by an increase
in the apoptosis rate (Figure 2(h)), the Bax protein ex-
pression level (Figures 2(i)–2(k)), and TUNEL-positive cells
(Figure 2(l)), and a diminishment of the Bcl-2 protein ex-
pression level (Figures 2(i)–2(k)) compared with those in the
mimic-NC group. (erefore, the results elaborated that the

***

normal
tissues

NSCLC
tissues

2.0

1.5

1.0

0.5

0.0

Re
la

tiv
e 

m
iR

-4
73

1-
5p

 e
xp

re
ss

io
n

(a)

***

**
***

***
**

H
C

C
82

7

N
C

I-
H

12
99

N
C

I-
H

16
59

N
C

I-
H

59
6

A
54

9

BE
A

S-
2B

1.5

1.0

0.5

0.0

Re
la

tiv
e 

m
iR

-4
73

1-
5p

 e
xp

re
ss

io
n

(b)

8

***
6

4

2

0

co
nt

ro
l

m
im

ic
-N

C

m
iR

-3
70

-3
p 

m
im

ic

Re
la

tiv
e 

m
iR

-4
73

1-
5p

 e
xp

re
ss

io
n

A549

(c)

8

***

NCI-H1299

6

4

2

0

co
nt

ro
l

m
im

ic
-N

C

m
iR

-3
70

-3
p 

m
im

ic

Re
la

tiv
e 

m
iR

-4
73

1-
5p

 e
xp

re
ss

io
n

(d)

Figure 1: miR-4731-5p is down-expressed in NSCLC tissues and cell lines. (a) (e level of miR-4731-5p in NSCLC tissues and normal
tissues was measured by qRT-PCR. (b) (e level of miR-4731-5p in BEAS-2B and five NSCLC cell lines (A549, NCI-H596, NCI-H1650,
NCI-H1299, and HCC82) was assessed by qRT-PCR. (c, d) A549 and NCI-H1299 cells were treated with the miR-4731-5p mimic, and then
the level of miR-4731-5p in the two cells was examined by qRT-PCR. ∗∗p< 0.01 and ∗∗∗p< 0.001 relative to the control group.
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Table 1: Relevance between miR-4731-5p expression and clinicopathologic characteristics in patients with NSCLC.

Characteristics Cases (n� 35)
miR-4731-5p expression

p value
High (n� 14) Low (n� 21)

Age (years)
<60 15 5 10 0.728
≥60 20 9 11

Gender
Female 18 6 12 0.500
Male 17 8 9

Smoking
Yes 18 9 9 0.305
No 17 5 12

Tumor size (cm)
<4 12 4 8 0.721
≥4 23 10 13

Lymph node metastasis
Yes 20 4 16 0.013∗
No 15 10 5

Distance metastasis
Yes 17 3 14 0.015∗
No 18 11 7

TNM stage
I/II 16 11 5 0.002∗∗
III/IV 19 3 16
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Figure 2: Continued.
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upregulated level of miR-4731-5p repressed the cell viability,
invasion, and EMT with increased apoptosis in both A549
and NCI-H1299 cells.

3.3. RPLP0 Directly Targeted to miR-4731-5p. To deeply
assess the molecular role of miR-4731-5p in regulating
NSCLC, the relative level of RPLP0 in the NSCLC tissues was
examined. An increased level of RPLP0 in tissues of NSCLC
was observed relative to that in normal tissues (Figure 3(a)).
Additionally, in accordance with the results of miR-4731-5p,
the level of RPLP0 was also notably related in lymph node
metastasis, distance metastasis, and TNM stage, but no
statistical difference was found between the expression of
RPLP0 and age, gender, smoking, or tumor size. On the
contrary, patients with higher expression of RPLP0 usually
exhibited distance metastasis, lymph node metastasis, and
III/IV TNM stage (Table 2). Besides, the expression level of
RPLP0 was negatively involved in the level of miR-4731-5p
in NSCLC tissues (Figure 3(b)). (e expression of RPLP0
was measured in the five NSCLC cells. (e results exhibited
that the level of RPLP0 was signally overexpressed in the five
NSCLC cell lines relative to that in normal lung cancer cells,
among which the level of RPLP0 was higher in A549 and
NCI-H1299 cells relative to that in the other three cell lines
(Figure 3(c)). (e possible binding between miR-4731-5p
and RPLP0 was analyzed using the TargetScan (Figure 3(d)).
To deeply resolve the relation between miR-4731-5p and
RPLP0, the luciferase reporters carrying RPLP0 3’-UTR
mutant (RPLP0 3’-UTR mut) or RPLP0 3’-UTR wild type
(RPLP0 3’-UTR wt) were constructed. (e enhancement of
miR-4731-5p obviously declined the luciferase activity of
RPLP0 including 3’-UTR wt but not 3’-UTR mut in both the
cells (Figures 3(e) and 3(f)). Further findings demonstrated
that the miR-4731-5p mimics dramatically decreased the
transcriptional and translational expressions of RPLP0
compared with the mimic-NC (Figures 3(g) and 3(h)). (us,

the findings illuminated that RPLP0 was a direct target of
miR-4731-5p in the NSCLC cells.

3.4. miR-4731-5p Modulated Cell Viability, Invasion, Apo-
ptosis, andEMTinA549Cells viaTargetingRPLP0. To deeply
explore whether miR-4731-5p modulated the development
of NSCLC by targeting RPLP0, a cotransfection assay was
executed. (e repressive role of the miR-4731-5p mimic in
the translational level of RPLP0 was significantly antago-
nized by the cotransfection of the miR-4731-5p mimic and
OE-RPLP0 in A549 cells (Figure 4(a)).(eMTTassay results
indicated that the miR-4731-5p mimic inhibited the cell
viability, which could be reversed by OE-RPLP0
(Figure 4(b)). Phase contrast microscopic evaluation further
elucidated that A549 cells treated with OE-RPLP0 sup-
pressed the changes caused by the miR-4731-5p mimic
(Figure 4(c)). Cotransfection of the miR-4731-5p mimic and
OE-RPLP0 markedly diminished the translational level of
e-cadherin in A549 cells relative to that in the miR-4731-5p-
mimic group. (e opposite effect on vimentin was also
observed (Figures 4(d) and 4(e)). Immunofluorescence
detection displayed that the expression level of vimentin was
observably reduced in A549 cells treated with the miR-4731-
5p mimic and OE-RPLP0 relative to that in the miR-4731-
5p-mimic group (Figure 4(f )). Additionally, the transwell
and apoptosis assays revealed decreased cell invasion and
increased apoptosis following cotransfection, which was
different from the results from the only transfection with the
miR-4731-5p mimic (Figures 4(g) and 4(h)). Increased
counts of TUNEL-positive cells resulted by the miR-4731-5p
mimic were memorably inverted by the cotransfection of the
miR-4731-5p mimic and OE-RPLP0 in A549 cells
(Figure 4(i)). Besides, after A549 cells were cotreated with
the miR-4731-5p mimic and OE-RPLP0, the protein level of
Bax was markedly decreased with notably enhanced
translational expression of Bcl-2, Wnt1, and Nuc-β-catenin
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Figure 2:(e role of miR-4731-5p in cell viability, invasion, apoptosis, and EMTof the NSCLC cells. (a)(e role of the miR-4731-5pmimics
in the two cells’ viability was analyzed via MTT. (b) (e role of the miR-4731-5p mimics in the morphological characteristics of A549 and
NCI-H1299 cells was captured by the microscope. Scale bar� 50 μm (c–e) Protein expressions of EMT makers in the two cells with the
transfection with miR-4731-5p mimics were measured through the western blot analysis. (f ) (e effect of the miR-4731-5p mimics on the
expression level of vimentin in the two was measured via immunofluorescence staining. Scale bar: 0 μm. (g) (e influence of the miR-4731-
5p mimics in the invasion of the two cells was measured by the transwell assay. Scale bar� 50 μm. (h)(e apoptotic rate was assessed by flow
cytometry when miR-4731-5p was overexpressed. (i–k) (e expressions of Bax and Bcl-2 in the two cells with the transfection with miR-
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mimics was assessed by the TUNEL assay. ∗∗p< 0.01 and ∗∗∗p< 0.001 relative to the mimic-NC.
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vimentin relative to that in the miR-4731-5p-mimic group
(Figures 4(j) and 4(k)). In brief, these results clarified that
miR-4731-5p attenuated NSCLC cell growth and invasion
with enhanced apoptosis by targeting RPLP0.

3.5. miR-4731-5p Expression Restrained Tumor Growth In
Vivo. To investigate whether miR-4731-5p played an analo-
gous antitumor role was determined in vivo. (e backs of nude

mice received lentiviral vector with OE-miR-4731-5p, and a
negative control was established as well. As presented in
Figures 5(a) and 5(b), the elevation of miR-4731-5p promi-
nently reduced the tumor volume of mice. Also, the upre-
gulation of miR-4731-5p observably reduced the tumor weight
of mice (Figure 5(c)); however, no significant effect was found
on body weight (Figure 5(d)). (e Kaplan–Meier analysis also
exhibited that mice with a high level of miR-4731-5p in tumors
had longer recurrence-free survival time than the control group
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Figure 3: RPLP0 is the direct target of miR-4731-5p. (a) (e transcriptional level of RPLP0 was examined by qRT-PCR in NSCLC tissues
and normal tissues. (b) RPLP0 level was negative correlative to the miR-4731-5p mRNA level. (c) (e level of RPLP0 in BEAS-2B and
NSCLC cells was assessed via qRT-PCR. (d) RPLP0 was forecasted to be bound by miR-4731-5p according to the TargetScan. (e, f )(e effect
of the miR-4731-5p-mimic on the luciferase activity of the plasmid RPLP0-3’UTR-wt and RPLP0-3’UTR-mut. (g, h) RPLP0 expression in
the two cells with the transfection of the miR-4731-5p-mimics was analyzed via qRT-PCR and western blot experiments. ∗∗p< 0.01 and
∗∗∗p< 0.001 compared to normal tissues, or BEAS-2B, or mimic-NC.
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Table 2: Relevance between RPLP0 expression and clinicopathologic characteristics in patients with NSCLC.

Characteristics Cases (n� 35)
RPLP0 expression

p value
High (n� 18) Low (n� 17)

Age (years)
<60 15 5 10 0.092
≥60 20 13 7

Gender
Female 18 10 8 0.740
Male 17 8 9

Smoking
Yes 18 7 11 0.181
No 17 11 6

Tumor size (cm)
<4 12 7 5 0.725
≥4 23 11 12

Lymph node metastasis
Yes 20 15 5 0.002∗∗
No 15 3 12

Distance metastasis
Yes 17 13 4 0.007∗∗
No 18 5 13

TNM stage
I/II 16 5 11 0.044∗
III/IV 19 13 6
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Figure 4: miR-4731-5p regulates NSCLC cell viability, invasion, apoptosis, and EMT by targeting RPLP0. (a) RPLP0 protein expression
levels in A549 cells were determined through the western blot assay. (b) A549 cells’ viability with the transfection of RPLP0 overexpression
（OE-RPLP0）was determined using MTT. (c) (e morphological characteristics of A549 cells transfected with OE-RPLP0 were captured
under a phase-contrast microscope. Scale bar� 50 μm. (d, e) e-cadherin and vimentin translational levels in A549 cells treated with OE-
RPLP0 were measured with the western blot assay. (f ) (e level of vimentin in A549 cells treated with OE-RPLP0 was determined using
immunofluorescence staining. Scale bar� 10 μm. (g) Cell invasion in A549 cells with the transfection of OE-RPLP0 was determined using
the transwell assay. Scale bar� 50 μm. (h) Cell apoptosis in A549 cells with the transfection of OE-RPLP0 was evaluated by flow cytometry.
(i) A549 and NCI-H1299 cells with the transfection of OE-RPLP0 were assessed for apoptosis by the TUNEL assay. (j, k) Protein levels of
Bax, Bcl-2, Wnt1, and Nuc-β-catenin in A549 cells with the transfection of OE-RPLP0 were determined by the western blot analysis.
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Figure 5: miR-4731-5p expression restrained tumor growth in vivo. (a) Photographs of the NC and miR-4731-5p overexpression (OE-miR-
4731-5p) tumors at day 30. (b) Tumor growth curves were determined according to the tumor volume monitored every 6 days for 30 days.
(c) Effects of NC and OE-miR-4731-5p on tumor weight at day 30. (d) Effects of NC and OE-miR-4731-5p on body weight at day 30. (e)(e
Kaplan–Meier survival analysis (log-rank test) was applied for the analysis of the survival rate of the two groups of mice every 6 days for 30
days. (f, g)(e expressions of miR-4731-5p and RPLP0 of different groups in tumor tissues were evaluated by qRT-PCR. (h) Cell apoptosis in
tumor tissues was assessed by TUNEL. (i) Bax, Bcl-2, e-cadherin, vimentin,Wnt1, and Nuc-β-catenin expression levels in tumor tissues were
examined via western blot. (n� 6). ∗∗∗P< 0.001 compared with OE-NC.
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(Figure 5(e)). An increased level of miR-4731-5p and a de-
creased level of RPLP0 were indicated in NSCLC tissues rel-
ative to those in the adjacent tissues (Figures 5(f) and 5(g)).(e
TUNEL assay data further revealed that apoptosis was notably
elevated in the OE-miR-4731-5p group relative to the control
group (Figure 5(h)). (e IHC data presented that the level of
e-cadherin in NSCLC tissues overexpressing miR-4731-5p was
memorably increased relative to that in the control group with
an opposite pattern for vimentin (Figure 5(i)), which was
consistent with the results of western blotting (Figures 5(j)–
5(l)). (e translational expression of Bax was significantly
elevated following OE-miR-4731-5p treatment in NSCLC
tissues with reduced protein levels of Bcl-2, Wnt1, and Nuc-
β-catenin (Figures 5(j), 5(k), and 5(m)). (us, the findings
demonstrated that the upregulated level of miR-4731-5p re-
strained NSCLC tumor growth by suppressing RPLP0 at the
mRNA level.

4. Discussion

Lung cancer is a kind of heterogeneous disease derived from
the abnormal cells of the respiratory epithelium. MiRNAs play
a core role in initiating cancer and its development in different
types of malignancies [18]. A large number of evidences have
suggested the dysregulation of miRNAs related to a variety of
diseases, including lung cancer [19,20]. Extensive miRNAs are
dysregulated in NSCLC reported by the high-throughput
analysis [21,22]. (erein, miR-4731-5p has been confirmed to
be a tumor-suppressed miRNA in melanoma [7] and glioma
development [9].(e results of the current study suggested that
NSCLC was associated with low expression level of miR-4731-
5p, thereby indicating the altered level of miR-4731-5p might
be the usual characteristic of NSCLC.

Plenty of studies have shown thatmiR-4731-5p targets and
suppresses the level of oncogenes involved in cancer devel-
opment, such as cellular proliferation, migration, and apo-
ptosis [23]. (e upregulation of miR-4731-5p suppressed the
proliferation, migration, and invasion via targeting FOXM1 in
breast cancer [24]. miR-4731-5p/E2F2 axis also regulated the
progresses of glioma cells [9]. Interference of miR-4731-5p
promoted the growth, migration, and invasion of chorio-
carcinoma by targeting HIF3A as well [25]. In the present
study, the level of miR-4731-5p was consistently down-
regulated both in NSCLC tissues and cells. Plenty of studies
have reported that miRNAs exhibited a satisfactory prognostic
value in NSCLC [26,27]. Consistent with these findings, pa-
tients with a lower expression of miR-4731-5p usually
exhibited distance metastasis, lymph node metastasis, and III/
IV TNM stage, which indicated that the level of miR-4731-5p
was also correlative with the prognosis of lung cancer patients.
Moreover, in subsequent transfection assays, A549 and NCI-
H1299 treated with the miR-4731-5p mimic exhibited
markedly decreased cell viability, invasion, and EMT, as well
as strengthened apoptosis as relative to that in the controls.
(erefore, these data offered direct evidence of a tumor-
suppressive activity of miR-4731-5p against the NSCLC cells,
which was tightly correlative in the prognosis of lung cancer.

Previous studies have shown the importance of RPLP
protein inhibition, as their downregulation may be critical for

the therapy in cancer [28]. Growing evidence has indicated that
RPLP proteins are highly regulated in endometrial carcinoma,
ovarian cancer, colon carcinoma [14], and other numerous
types of cancers [29,30]. Except for the endometrial carcinoma,
ovarian cancer, and colon carcinoma [14], RPLP0, as a vital
member of the RPLP family, is also upregulated in acute
myeloid leukemia [31], clear cell renal cell carcinoma [32], and
breast cancer [33]. Moreover, it has been demonstrated that
patients with high expressions of RPLP0 are prominently
associated with poor prognosis in clear cell renal cell carcinoma
[32] and breast cancer [33]. In line with these findings, RPLP0
was also found markedly upregulated in NSCLC cell lines and
tissues in our study, and the level of RPLP0 was also related in
the prognosis of lung cancer patients. Furthermore, bio-
informatics analysis predicted a reciprocity betweenmiR-4731-
5p and RPLP0, and the findings displayed that miR-4731-5p
directly restrained RPLP0 by interacting with its 3’UTR. (e
results illustrated that miR-335-5p directly targets RPLP0.

Additionally, previous work has demonstrated that the
down-expression of RPLP proteins affected cell growth and cell
cycle progression [12]. RPLP0 has been found to regulate cell
apoptosis and cycle arrest of cervical tumor cells [34]. (e
down-regulation of RPLP0 led to G1 arrest of gastric cancer
cells [13]. Natalie et al. reported that RPLP0 was stably
expressed in melanoma cells [35]. RPLP0 also modulates a
variety of cellular functions in neurodegenerative diseases [36].
Overall, these results indicate that RPLP0 made vital contri-
butions to the cell activity in various diseases. Here, we dis-
covered that the over-regulation ofmiR-4731-5p resulted in the
low expression of RPLP0, leading to the retardation of NSCLC
cell viability and invasion, and consequently inhibited tumor
growth. Epithelial cells can obtain the mesenchymal features
during the EMTprocess [37]. In tumor, EMT is contacted with
the progress of tumor beginning, invasion, and metastasis
[38–40]. Furthermore, a growing body of research has indi-
cated EMT is correlative with the progress and metastasis of
NSCLC [41,42]. In the present study, we discovered that the
EMT restraint which was induced by the miR-4731-5p mimic
was significantly reversed by OE-RPLP0 in A549 cells. How-
ever, there is no relevant reports that describe the antitumor
effect of RPLP0 dysregulation modulated by other miRNAs;
thus, we discovered a novel target axis that might contribute to
the NSCLC treatment in the current study. Taken together,
further mechanistic experimentation revealed that RPLP0
contributed to the regulation of cell viability, invasion, EMT,
and apoptosis by miR-4731-5p in NSCLC.

It has been shown that animal experiment models are a
crucial method for NSCLC studies. Much evidence in vivo
has demonstrated that the dysregulation of miRNAs plays a
role in NSCLC development. For example, miR-367 pro-
motes NSCLC progression in vivo [43], overexpression of
miR-103 is capable of inhibiting NSCLC growth in vivo and
promoting mouse survival [44], miR-146a-5p is overex-
pressed in the NSCLC cell line, and the repressive role of
miR-146a-5p in the angiogenesis and tumorigenesis in a
tumor model is also found [45]. In the final step, based on
our findings, all animal experiments were implemented and
finished successfully. In vivo tumor growth was suppressed
by increasing miR-4731-5p. Besides, the overexpression of
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miR-4731-5p promoted apoptosis and inhibited EMT in
vivo. (ese in vitro effects were confirmed by adopting the
nude mice model under in vivo conditions.

In short, we discovered that miR-4731-5p and RPLP0
dysregulated NSCLC tissues and cell lines, which are involved
in lymph nodemetastasis, distancemetastasis, and III/IV TNM
stage, with no relation to age, gender, smoking, or tumor size.
(us, the level of miR-4731-5p and RPLP0 was related in the
prognosis of lung cancer patients. Besides, our findings elu-
cidated the mechanistic interaction between miR-4731-5p and
RPLP0 in NSCLC. miR-4731-5p-mediated modulation path-
way via targeting RPLP0 provides new insights into the
therapeutic strategies for NSCLC. Nonetheless, several limi-
tations of the study should be addressed: [1] although NSCLC
is greatly sensitive to chemotherapy, it quickly obtains resis-
tance. Only two NSCLC cell lines are utilized in this study, and
thus validation in other chemoresistance NSCLC cell lines and
clinical specimens is needed in subsequent studies; [2] the
results of miR-4731-5P influence on other RPLP family
members have been rarely reported. (e exact mechanism of
RPLP0 regulation of cell viability, invasion, apoptosis, and
EMT of NSCLC is still unclear and needs more studies.
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# Background. Because of the heterogeneity of hepatocellular carcinoma (HCC) and the complex nature of the tumor micro-
environment (TME), the long-term efficacy of therapy continues to be a clinical challenge. It is necessary to classify and refine the
appropriate treatment intervention decision-making in this kind of tumor.Methods. We used “ConsensusClusterPlus” to establish
a stable molecular classification based on the ferroptosis-related genes (FRGs) expression obtained from FerrDb. +e clinical
features, immune infiltration, DNA damage, and genomic changes of different subclasses were evaluated. +e least absolute
shrinkage and selection operator regression (LASSO) method and univariate Cox regression were utilized to construct the
ferroptosis-related prognosis risk score (FPRS) model, and the association between the FPRS model and HCC molecular
characteristics, immune features, and immunotherapy was studied. Results. We identified two ferroptosis subclasses, C1 with poor
prognosis and a higher proportion of patients in the middle and late stages infected with HBV and HCV, having higher DNA
damage including aneuploidy, HRD, fraction altered, and the number of segments, and higher probability of gene mutation and
copy number mutation. FPRS model was constructed on the basis of differentially expressed genes (DEGs) between C1 and C2,
which showed a higher area under the curve (AUC) in predicting overall survival rate in the training set and independent
verification cohort and could reflect the clinical characteristics and response to immunotherapy of different patients, being an
independent prognostic factor of HCC. Conclusion. Here, we revealed two novel molecular subgroups based on FRGs and develop
an FPRS model consisting of six genes that can help predict prognosis and select patients suitable for immunotherapy.

1. Introduction

Primary liver cancer has been reported to be the fifth-highest
occurring incidence of cancer in the world, which comprises
hepatocellular carcinoma (HCC) (accounting for approxi-
mately 75%–85% of all incidents) and intrahepatic chol-
angiocarcinoma (accounting for approximately 10%–15% of
all incidents) and other rare types [1]. As the most prevalent
type of primary liver cancer, the treatment of HCC has been
restricted by tumor heterogeneity, which greatly limits the

progress of individualized therapy [2]. +e histological
definition of morphological heterogeneity of liver cancer has
been modified and refined in the medical community to help
clinically choose treatment interventions for patients, but
this still does not solve all the problems [3]. Precision
medicine has been suggested to add a new perspective to
individualized cancer diagnosis and targeted therapy by
taking into account the heterogeneity of individual patients
[4]. Precision medicine focuses on the importance of ac-
curately classifying heterogeneous diseases into more
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accurate subsets with the aid of powerful identification
techniques and the incorporation of clinical characteristics.
Furthermore, clinicians should come up with more specific
diagnostic and therapeutic approaches for the disease sub-
type in order to optimize the efficacy and ultimately reduce
side effects [5].

Iron toxicity is an iron-dependent cell death program,
whose primary feature is the accumulation of lethal amounts
of lipid-reactive oxygen species in cells [6]. Over the past few
years, studies have suggested that the liver is prone to ox-
idative damage and iron overload is the cause of liver injury
as well as the progression of disease in most liver diseases [7].
+erefore, ferroptosis has attracted wide attention in a va-
riety of liver diseases, including HCC, hepatic fibrosis, liver
failure, hepatic ischemia-reperfusion injury, and nonalco-
holic steatosis [8]. In hepatocyte-specific Trf knockout mice,
feeding a diet with high iron increased their vulnerability to
liver fibrosis induced by iron death. And ferroptosis sup-
pressants can restore this condition [9]. A study conducted
inmice showed that ferroptosis is an inducer of nonalcoholic
steatohepatitis, leading to liver injury, immune cell infil-
tration, and inflammatory response [10]. Ferroptosis also
mediates acetaminophen-induced acute liver failure [11].
Multiple studies pointed to the induction of ferroptosis as a
possible effective tumor suppressor mechanism and useful
for prognosis prediction in HCC [7]. +e late first-line
therapeutic drug of HCC, sorafenib, has been proved to be a
strong inducer of ferroptosis [12]. Sorafenib increased the
survival rate of HCC patients to a certain degree, but it may
lead to serious harmful impacts and growing resistance
characteristics, resulting in a dismal prognosis [13].
+erefore, it is necessary to identify new molecular markers
of ferroptosis and downstream signaling pathways, which
will aid in the comprehension of the regulatory mechanism
of ferroptosis in the physiopathology of HCC.

At present, there are several systems biology methods to
identify biomarkers related to the prognosis of HCC and
construct gene features. Liang et al. identified a 10-gene
signature in the expression profile of iron death related genes
by LASSO regression analysis [14]. Liu et al. analyzed m6A
methylation related genes and identified five gene markers
with poor prognosis [15]. Xu et al. identified 6-gene sig-
nature by Cox regression analysis [16]. All three groups of
authors tested their gene signature in the internal data set
but did not verify the external independent data set, which
means that identifying robust lncRNA signature is still a
challenge and more queues are needed to verify the
signature.

In this research, we collected samples from four data-
bases, identified two distinct ferroptosis-related subclasses in
HCC patients based on the expression of 111 FRGs obtained
from the FerrDb website, and discussed the clinical, mu-
tation spectrum, and tumor immunological characteristics
between ferroptosis subgroups. In addition, the FPRS model
was constructed to quantify the survival probability of HCC
patients and to predict the response to immunotherapy.
Collectively, this FPRS model may be an excellent predictor
of HCC and may give insight into the development of in-
novative possible therapeutic techniques.

2. Materials and Methods

2.1. Acquiring and Preprocessing Sample Data. RNA-Seq
data containing 365 samples and valid clinical follow-up
information were acquired from TCGA-LIHC (https://portal.
gdc.cancer.gov/). In addition, transcriptome data and survival
messages from 221 cases of GSE14520 [17] and 115 cases of
GSE76427 [18] cohorts were collected from the Gene Ex-
pression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/
). Similarly, the ICGC-LIRI-JP data set in the HCCDB da-
tabase was also used for the collection of HCC data, including
212 samples. TCGA-LIHC served as the training set, while the
other cohort served as the independent verification set. +e
whole work flow chart of this study is shown in Figure S1.

2.2. Collection and Unsupervised Clustering of Ferroptosis-
Related Genes (FRGs). FerrDb (http://www.zhounan.org/
ferrdb) is reported to be the first repository of ferroptosis
modulators and indicators, as well as ferroptosis-disease
connections, which was manually collated [19]. We got 111
FRGs from this website. +en, the FRGs significantly cor-
related with the prognosis of HCC patients were selected
utilizing univariate Cox analysis. According to the levels of
FRGs expression, which is significantly correlated with the
prognosis of HCC, the R packet ConsensusClusterPlus [20]
was used to classify 365 HCC samples from TCGA-LIHC.
And the analysis measured the distance by “Euclidean” and
performed 500 times resampling iteration for both algo-
rithms with 80% of probe sets being subsampled to ensure
the stability of the clustering.

2.3. Computation ofMolecular Features and Immune Cellular
Fraction between Subtypes. Genomic Data Commons Data
Portal provided somatic mutation profiles identified by
VarScan, which were accessible to download [21]. Somatic
mutation frequency of more than 5 percent was regarded to
be appropriate for comparing values across different sub-
types [22]. +e “maftools” package [23] of R software was
employed to display the mutation spectrum of each subtype.
+e relative abundance of 22 different immune cells in
distinct subgroups in two HCC cohorts was calculated by
executing the CIBERSORT algorithm [24]. +e stromal,
immune, and ESTIMATE scores of each sample were
evaluated by ESTIMATE [25] to determine the degree of
immune cell infiltration of each subtype.

2.4. Differential Expression Analysis between Molecular
Subclasses. +e Limma package was employed to identify
differentially expressed genes (DEGs) between distinct
subgroups in the TCGA-LIHC data set [26]. +e genes
having an absolute log2 fold change (|logFC|)> 1.0, false
discovery rate (FDR)< 0.05, and Pvalue <0.01 were defined
as DEGs. +e “clusterProfiler” package of R [27] was applied
to implement the Gene Ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathways analysis
on DEGs between distinct subtypes and the critical value was
adjusted as P< 0.05.
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2.5. Establishment and Evaluation of Ferroptosis-Related
Prognosis Risk Score (FPRS) System. Univariate Cox re-
gression analysis and the least absolute shrinkage and se-
lection operator (Lasso) Cox regression analysis were
applied to build the prognostic risk model based on DEGs
between distinct subtypes, which was performed using R
packet (http://www.rstudio.org) “glmnet.” +e specific
formula was as follows: HPRS�Σβi× Expi, where β is the
Cox regression coefficient of the corresponding gene, i refers
to the prognostic related FRGs, and Exp is the prognostic
FRGs expression level. Similarly, the accuracy of FPRS
model was verified in two independent validation sets. +e
cut-off point of FPRS in each cohort was obtained according
to R packet “survminer.” Patients who were larger than the
threshold value were categorized into a high-risk group, and
those less than the threshold value were categorized into a
low-risk group.+e Kaplan–Meier curve was used to display
the overall survival (OS) of the sample, and the logarithmic
rank test was utilized to determine the statistical difference.
+e “timeROC” package of R was applied for the generation
of receiver operating characteristic (ROC) curve, and the
prediction accuracy of the model was examined by calcu-
lating the area under the curve (AUC) of one-, three-, and
five-year OS.

2.6. >e Function of Different FPRS Was Analyzed by Gene
Set Enrichment Analysis (GSEA). HALLMARK GSEA was
performed to estimate the biological signaling pathways in
different risk groups [28]. And single-sample GSEA
(ssGSEA) was conducted in the TCGA-LIHC cohort uti-
lizing the “GSVA” package of R to study molecular differ-
ences between samples with different FPRS.

2.7. Genomic Correlations with the FPRS. Aneuploidy
scores, homologous recombination deficiency (HRD),
fraction altered, number of segments, and tumor mutation
were derived [29]. +e differences in these five indicators
between the 2 risk groups were examined by Wilcoxon test.
+e correlation between FPRS and the above five genomic
variables was evaluated by Pearson’s correlation analysis.

2.8. Prediction of Response to Different Treatments. Immune
checkpoint expression data were obtained from the His-
gAtlas database [30] and compared between TCGA-LIHC
risk groups. Immunophenoscore (IPS) can be computed in
an unbiased way utilizing machine learning algorithms on
the basis of 4 primary gene types (immunomodulators,
MHC molecules, effector cells, and immunosuppressive
cells) that influence immunogenicity [31]. We acquired the
IPS of HCC from the TCIA database (https://tcia.at/home)
[32] and compared the IPS of the distinct FPRS risk group in
TCGA-LIHC to evaluate the responsiveness to immune
checkpoint blocking therapy. +e Tumor Immune Dys-
function and Exclusion (TIDE, http://tide.dfci.harvard.edu/)
algorithm was run in three cohorts to identify the TIDE
score difference between the low- and high-risk groups. We
employed the pRRophetic algorithm to estimate the

response to sorafenib, docetaxel, paclitaxel, and cisplatin
identified by the half-maximal inhibitory concentration
(IC50) for each TCGA-LIHC sample on the Genomics of
Drug Sensitivity in Cancer (GDSC) database.

2.9. Statistical Analysis. All statistical analyses and data
visualization were conducted in R (https://www.r-project.
org/, version 3.6.3). And all calculated P values were two-
tailed; P< 0.05 was considered significant.

3. Results

3.1. Two Ferroptosis Clusters in HCC Were Identified by
Consensus Clustering Based on FRGs. Univariate Cox re-
gression analysis of 111 FRGs selected from FerrDb showed
that 38 FRGs were considerably correlated with the prog-
nosis of HCC patients. According to the expression level of
these 38 FRGs (Supplementary Table 1), 365 samples in
TCGA-LIHC were clustered (Supplementary Table 2). +e
cumulative distribution function (CDF) of distinct clus-
tering techniques from k� 2 to 9 and the relative variations
of the area under CDF curves demonstrated that the area
under the CDF chart tended to be stable when k� 2
(Figures 1(a) and1(b)).+erefore, HCCwas divided into two
ferroptosis clusters, namely, C1 and C2 (Figure 1(c)). In the
TCGA-LIHC cohort, an obvious difference in prognosis
between the two ferroptosis clusters was shown, and the
prognosis of C2 was significantly stronger than that of C1
(Figure 1(d)). Survival analysis in ICGC yielded the same
results (Figure 1(e)). Heat maps of the expression of 38
prognostic FRGs in two ferroptosis clusters showed that
most prognostic FRGs were overexpressed in C1
(Figure 1(f )).

3.2. Association of Ferroptosis Clusters with Clinical Features.
Next, the relationship between two ferroptosis clusters and
clinicopathological factors was studied. +e proportional
distribution maps of different clinical bed characteristics are
generated. In the TCGA-LIHC cohort, the two ferroptosis
clusters did not exhibit any obvious differences in age (age
≤60 and age >60), gender (female and male), life status (alive
and dead), M stage (M0 and M1), N stage (N0 and N1), and
fibrosis (negative, portal fibrosis, fibrous septa, nodular
formation, and cirrhosis) distribution. And the distributions
of grade (G1, G2, G3, and G4), AJCC stage (stage I, stage II,
stage III, and stage IV), and Tstage (T1, T2, T3, and T4), viral
etiology (negative, HBV, HCV, and HBV+HCV), and life
state (alive and dead) between C1 and C2 in the TCGA-
LIHC cohort were significantly different. Among them, C2
samples were often from the AJCC stage, M stage, N stage, T
stage, survival patients with low tumor grade and hepatitis C
virus (HCV), and hepatitis B virus (HBV) infection
(Figure 2(a)). In the ICGC cohort, a significant difference
was shown between C1 and C2 only in the proportion of
different AJCC stages. In the C1 subtype, stage II and stage
III occupy the absolute majority of this subtype in a nearly
equal proportion. However, more than half of the samples of
the C2 subtype were in stage III. No significant differences
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were identified in age, gender, viral etiology, fibrosis, and
alcohol consumptions, and smoking between the two sub-
types in this cohort (Figure 2(b)).

3.3. Comparisons of the Somatic Variation between Two
Ferroptosis Clusters. To further investigate the molecular
mechanism behind the classification of ferroptosis subtypes,
mutation spectra of two ferroptosis subtypes were ana-
lyzed. +e ferroptosis subtypes were associated with
measures of DNA damage, including aneuploidy, HRD,
fraction altered, and the number of segments. Compared
with C1, C2 had a lower aneuploidy score, HRD, fraction
altered, and the number of segments. Nevertheless, no
significant differences were identified in tumor mutation
burden (TMB) between C1 and C2 (Figure 3(a)). Onco-
Print of gene mutation distribution between C1 and C2
patients showed a significant association between the

ferroptosis subtype and somatic mutations. +e relative
frequency of 20 altered genes in C1 was high. In addition, in
terms of copy number variation (CNV), C1 had a higher
frequency of copy number amplification and deletion than
C2 (Figure 3(b)).

3.4. Differences in Immune-Related Characteristics of Fer-
roptosis Subtypes. To examine the immune heterogeneity
between two ferroptosis subtypes, the immune character-
istics of two ferroptosis subtypes were analyzed. +e
abundance of 22 different kinds of immune cells in TCGA-
LIHC and ICGC cohort was computed utilizing the
CIBERSORT and compared between groups of ferroptosis
subtypes. In the TCGA-LIHC cohort, M0 macrophages,
regulatory T cells, helper follicular T cells, and activated
memory CD4 Tcells were strongly enriched in C1, while the
cells significantly enriched in C2 included monocytes,
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Figure 1: Consensus clustering analysis based on the prognosis on FRGs in HCC. (a)+e cumulative distribution function (CDF) of distinct
clustering methods from k� 2 to 9. (b) +e relative alterations of the area under CDF curves with the index from 2 to 9. (c) Clustering heat
map of TCGA-LIHC samples with the index k� 2. (d) Kaplan–Meier curves for ferroptosis clusters prognosis in TCGA-LIHC cohort. (e)
Kaplan–Meier curve of OS between two ferroptosis clusters. (f ) +e expression heat map of 38 prognostic FRGs in two ferroptosis clusters.
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resting memory CD4 T cells, naive B cells, M1and M2
macrophages, and resting mast cells (Figure 4(a)). In the
ICGC cohort, activated memory CD4 T cells and M0 mac-
rophages, naive B cells, and resting dendritic cells have

significantly different abundances in C1 and C2 (Figure 4(c)).
By comprehensive analysis of stromal, immune, and ESTI-
MATE scores of two ferroptosis subtypes in each cohort, C1
was greatly elevated as opposed to C2 (Figures 4(b) and 4(d)).
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Figure 2: Correlation of ferroptosis clusters with clinical features. (a) +e clinicopathological distribution diagram of two ferroptosis
clusters in the TCGA-LIHC cohort, including grade,M stage, sex, N stage, Tstage, AJCC, age, viral etiology, fibrosis, and life status. (b) In the
ICGC cohort, the age, gender, AJCC stage, viral etiology, fibrosis, alcohol consumptions, and smoking proportion distribution differences
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3.5. Identification of Genes Associated with Ferroptosis
Phenotype. To identify ferroptosis phenotypes related genes,
the differential expression analysis of two ferroptosis sub-
types was carried out (FDR <0.05 and | log2FC |> log2 (2)),
and 324 upregulated differentially expressed genes (DEGs)
and 274 downregulated DEGs were identified for the first
time. Among them, the top 5 genes with the highest ex-
pression in C1 are SPP1, AFP, PKM, CD24, andMYBL2, and
the top 5 genes with the highest expression in C2 are TAT,
CYP2A6, SLC10A1, CYP3A4, and HPD. +e functional
enrichment analysis of the DEGs between the two ferrop-
tosis subtypes was carried out, respectively. In TCGA-LIHC,
the top GO terms of DEGs included cell division, immune
cell activation, cell migration, and cytokine activity
(Figure 5(a)). Moreover, all the pathways generated from
KEGG analysis were associated with immune responses

(Figure 5(c)). For the ICGC cohort, all DEGs-enriched GO
terms and KEGG pathways were correlated with the
anabolism of cancer cells (Figures 5(b) and 5(d)). Univariate
Cox regression analysis illustrated that 137 genes had
prognostic significance in 598 DEGs (Figure 5(e)), which
were included in LASSO analysis. +e best parameter based
on 5-time cross-validation was 13 (Figures 5(f) and 5(g)).
+e stepAIC in the MASS package reduced the number of
genes from 13 to 6 and calculated each gene’s risk value in
the optimal model as shown in Figure 5(h).

3.6. Generation and Validation of a Risk Scoring Model Based
on Six FRGs. +e expression and coefficient of 6 FRGs were
used to construct the ferroptosis prognosis model, which was
used to calculate the risk value of HCC samples and rank them.
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Figure 3: Difference of the somatic variation between two ferroptosis clusters. (a) Relation of DNA damage with ferroptosis subgroups in
TCGA-LIHC cohort, including aneuploidy score, HRD, fraction altered, number of segments, and tumor mutation burden; Wilcoxon test.
(b) OncoPrint of gene mutation and CNV distribution between C1 and C2 patients. Fisher’s test, ∗∗P< 0.01, and ∗∗∗∗P< 0.0001.
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According to the cut-off point, 203 samples were classified into
the low-FPRS group and 162 samples into the high-FPRS
group.+e risk plots of TCGA-LIHC illustrated the expression,
survival status, and risk values distribution of the 6 FRGs of
each HCC patient (Figure 6(a)). +e Kaplan–Meier survival
curve showed obvious differences in OS among TCGA-LIHC
groups (Figure 6(b)).+e area under the curve (AUC) for one-,
three-, and five-year OS was 0.77, 0.732, and 0.76, respectively
(Figure 6(c)). In ICGC and GSE14520 external validation sets,
the survival advantage of low-risk samples was considerably
greater as opposed to that of high-risk samples (Figures 6(d)
and 6(f)). ROC curve showed that the FPRS model can ef-
fectively predict one-, three-, and five-year OS of HCC patients
in the ICGC cohort and GSE14520 cohorts (Figures 6(e) and
6(g)). Furthermore, we also compared the expression distri-
bution of six FRGs in two molecular subtypes. It can be

observed that CDCA8, SPP1, S100A9, EPO, and FTCD are
significantly overexpressed in C1 and CFHR3 is significantly
overexpressed in C2 (Figure S2(a)). In addition, among the six
FRGs, CDCA8, SPP1, S100A9, and EPO were significantly
positively correlated with FPRS, and FTCD and CFHR3 were
significantly negatively correlated with FPRS (Figure S2(b)).
We used the string database to analyze the interaction between
the six FRGs. It can be observed that there is no direct in-
teraction between the six FRGs, suggesting that these genes
may independently participate in different biological processes
(Figure S2(c)).

3.7. >e Manifestations of FPRS in Different Clinicopatho-
logical Features and Subtypes. When we studied the rela-
tionship between FPRS and clinical features, it was

**** *** ns ns ns **** **** *** **** * ** ns **** **** **** **** ns ns **** ns * *

0.0

0.2

0.4

0.6
B_

ce
lls

_n
ai

ve

B_
ce

lls
_m

em
or

y

Pl
as

m
a_

ce
lls

T_
ce

lls
_C

D
8

T_
ce

lls
_C

D
4_

na
iv

e

T_
ce

lls
_C

D
4_

m
em

or
y_

re
sti

ng

T_
ce

lls
_C

D
4_

m
em

or
y_

ac
tiv

at
ed

T_
ce

lls
_f

ol
lic

ul
ar

_h
el

pe
r

T_
ce

lls
_r

eg
ul

at
or

y_
.T

re
gs

.

T_
ce

lls
_g

am
m

a_
de

lta

N
K_

ce
lls

_r
es

tin
g

N
K_

ce
lls

_a
ct

iv
at

ed

M
on

oc
yt

es

M
ac

ro
ph

ag
es

_M
0

M
ac

ro
ph

ag
es

_M
1

M
ac

ro
ph

ag
es

_M
2

D
en

dr
iti

c_
ce

lls
_r

es
tin

g

D
en

dr
iti

c_
ce

lls
_a

ct
iv

at
ed

M
as

t_
ce

lls
_r

es
tin

g

M
as

t_
ce

lls
_a

ct
iv

at
ed

Eo
sin

op
hi

ls

N
eu

tr
op

hi
ls

Es
tim

at
ed

 P
ro

po
rt

io
n

TCGA

(a)

C1
C2

ns **** ***

−2000

0

2000

StromalScore ImmuneScore ESTIMATEScore

Es
tim

at
ed

 P
ro

po
rt

io
n

TCGA

(b)

B_
ce

lls
_n

ai
ve

B_
ce

lls
_m

em
or

y

Pl
as

m
a_

ce
lls

T_
ce

lls
_C

D
8

T_
ce

lls
_C

D
4_

na
iv

e

T_
ce

lls
_C

D
4_

m
em

or
y_

re
sti

ng

T_
ce

lls
_C

D
4_

m
em

or
y_

ac
tiv

at
ed

T_
ce

lls
_f

ol
lic

ul
ar

_h
el

pe
r

T_
ce

lls
_r

eg
ul

at
or

y_
.T

re
gs

.

T_
ce

lls
_g

am
m

a_
de

lta

N
K_

ce
lls

_r
es

tin
g

N
K_

ce
lls

_a
ct

iv
at

ed

M
on

oc
yt

es

M
ac

ro
ph

ag
es

_M
0

M
ac

ro
ph

ag
es

_M
1

M
ac

ro
ph

ag
es

_M
2

D
en

dr
iti

c_
ce

lls
_r

es
tin

g

D
en

dr
iti

c_
ce

lls
_a

ct
iv

at
ed

M
as

t_
ce

lls
_r

es
tin

g

M
as

t_
ce

lls
_a

ct
iv

at
ed

Eo
sin

op
hi

ls

N
eu

tr
op

hi
ls

** ns ns ns ns ns * ns ns ns ns ns ns **** ns ns **** ns ns ns ns ns

0.0

0.2

0.4

0.6

Es
tim

at
ed

 P
ro

po
rt

io
n

ICGC

(c)

StromalScore ImmuneScore ESTIMATEScore

ns **** **

−2500

0

2500

5000

Es
tim

at
ed

 P
ro

po
rt

io
n

ICGC

(d)

Figure 4: Immune-related features in each ferroptosis subtype. (a) Each immune infiltrating cell abundance of the two ferroptosis subtypes
in the TCGA-LIHC cohort. (b) Differences in stromal, immune, and ESTIMATE scores between the two ferroptosis subtypes in the TCGA-
LIHC cohort. (c) +e abundance of 22 immune infiltrating cells per ferroptosis subtypes in the ICGC cohort. (d) Stromal, immune, and
ESTIMATE scores of each ferroptosis subtype in ICGC cohort. ∗P< 0.05; ∗∗P< 0.01; ∗∗∗ P< 0.001; ∗∗∗∗P< 0.0001.
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established that the FPRS was associated with pathological
characteristics in TCGA-LIHC datasets, including T stage,
AJCC stage, grade, viral etiology, and survival status. In
addition, the distributions of FPRS were substantially varied

between the two molecular subgroups (Figure 7(a)). We
found that, in the ICGC cohort, FPRS was significantly
correlated with the AJCC stage, life status, and molecular
subtypes, but not with age, sex, smoking, viral etiology, and
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Figure 5: Recognition of genes associated with ferroptosis phenotype. (a) Top 10 GO terms of DEGs between two ferroptosis subtypes in
TCGA-LIHC. (b)+e KEGG pathways of DEGs between two ferroptosis subtypes in TCGA-LIHC. (c) All DEGs-enriched top 10 GO terms
in ICGC cohort. (d) All DEGs-enriched top 10 KEGG pathways in ICGC cohort. (e) Univariate regression between DEGs and HCC
prognosis. (f ) Distribution of LASSO coefficients of 137 genes with prognostic value. (g) 5-time cross-validation was used to select the best
parameters in the model. (h) +e coefficient of each gene in the optimal model.
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Figure 6: Generation and evaluation of risk scoring models based on six FRGs. (a) +e risk plots of TCGA-LIHC showed the expression,
survival status, and risk values distribution of the 6 FRGs of each HCC patient. (b) Kaplan–Meier curve for the OS of HCC patients in low-
and high-risk groups in the TCGA-LIHC cohort. (c) ROC curves for the predictive significance of risk scores for OS at 1, 3, and 5 years in the
TCGA-LIHC cohort. (d) Kaplan–Meier survival analysis between low- and high-risk patients in the ICGC cohort. (e) ROC curve was
employed to examine predictive efficacy of the FPRS model over one, three, and five years in the ICGC cohort. (f ) Kaplan–Meier curves of
the FPRSmodel for HCC patients in various risk groups in the GSE14520 cohort. (g) Time-dependent ROC curves for the FPRSmodel in the
GSE14520 cohort.

Journal of Oncology 9



fibrosis of HCC patients (Figure 7(b)). In the GSE14520
cohort, FPRS was related to the AJCC stage and cirrhosis
(Figure 7(c)).

3.8. Comparison of Molecular and Immune Characteristics
Using FPRS. We identified the relationship between FPRS
and genomic changes. We found that the two risk groups
have significantly different performance on aneuploidy

score, HRDs, fraction altered, and the number of segments.
High-FPRS samples had significantly higher levels of these
DNA damage-related variables (Figure 8(a)). Correlation
analysis also illustrated that FPRS had a positive correlation
with the score, HRDs, fraction altered, and the number of
segments (Figure 8(b)). Furthermore, the overall somatic
mutation rate, copy number amplification, and deletion in
high-FPRS samples were greatly elevated as opposed to the
ones in low-FPRS samples (Figure 8(c)).
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Figure 7: Association between FPRS and clinicopathological characteristics. (a) +e violin plot showed the FPRS distributions according to
age, gender, AJCC stage, grade, viral etiology, fibrosis, survival state, and molecular subtype in the ICGC cohort. (b) Correlation between
FPRS and pathological features of samples in the GSE14520 cohort, including age, gender, AJCC stage, HBV viral status, and cirrhosis.
Wilcoxon test was utilized for comparing the two groups, and the Kruskal-Wallis test was utilized for the differences between the two
groups. ∗P< 0.05; ∗∗P< 0.01; ∗∗∗P< 0.001; ∗∗∗∗P< 0.0001. (c) +e relationship between FPRS and pathological features of samples in the
GSE76427 cohort.

10 Journal of Oncology



FPRS−high
FPRS−low

****

0

10

20

30

FPRS−high FPRS−low

A
ne

up
lo

id
y 

Sc
or

e
wilcox.tests p=8.4e−06

****

0

20

40

60

FPRS−high FPRS−low

H
om

ol
og

ou
s R

ec
om

bi
na

tio
n 

D
ef

ec
ts

wilcox.tests p=2.1e−08
****

0.00

0.25

0.50

0.75

1.00

FPRS−high FPRS−low

Fr
ac

tio
n 

A
lte

re
d

wilcox.tests p=1.6e−05
***

0

500

1000

1500

2000

FPRS−high FPRS−low

N
um

be
r o

f S
eg

m
en

ts

wilcox.tests p=0.00064
ns

0

10

20

30

FPRS−high FPRS−low

Tu
m

or
 m

ut
at

io
n 

bu
rd

en
 

wilcox.tests p=0.23

(a)

0

10

20

30

−2 −1 0 1 2 3
FPRS

A
ne

up
lo

id
y 

Sc
or

e

p = 3.17e−06 ,rPearson = 0.25 p = 4.41e−15 ,rPearson = 0.40 p = 3.89e−05 ,rPearson = 0.22 p = 0.002 , rPearson = 0.16 p = 0.321 , rPearson = 0.06

0

20

40

60

−2 −1 0 1 2 3
FPRS

H
om

ol
og

ou
s R

ec
om

bi
na

tio
n 

D
ef

ec
ts

0.00

0.25

0.50

0.75

1.00

−2 −1 0 1 2 3
FPRS

Fr
ac

tio
n 

A
lte

re
d

0

500

1000

1500

−2 −1 0 1 2 3
FPRS

N
um

be
r o

f S
eg

m
en

ts

0

10

20

30

−2 −1 0 1 2 3
FPRS

N
on

sil
en

t M
ut

at
io

n 
Ra

te

(b)
Top20 of LIHC Gene Alternations

M
ut

D
el

A
m

p

0

10

20

30

Group

45%
31%
22%
19%
18%
18%
15%
14%
10%
10%

9%
9%
8%
7%
7%
6%
6%
6%
5%
4%

13%
13%
12%
12%
12%
12%
12%
10%
10%
10%
10%

9%
9%
9%
9%
9%
9%
9%
9%
8%

M
ut D
el

A
m

p

24%
23%
23%
23%
23%
17%
16%
15%
15%
14%
14%
14%
13%
13%
12%
12%
12%
12%
12%
10%

TP53
RB1
ATP1A2
CACTIN
DNAH10
AATK
DOCK2
CADPS
TLX3
ANO9
CHST3
NLRP2
ZNF98
CLASP2
AEBP1
NLRP12
HUWE1
CNOT1
SVIL
ATP8A1

0 20 40 60

ZNF878
CALR
ENSG00000257355
ZNF433
GADD45GIP1
RAD23A
DAND5
PTGR1
LPAR1
EPB41L4B
HSDL2
DNAJC25
OR2K2
PTBP3
DNAJC25−GNG10
ECPAS
FRRS1L
GNG10
SHOC1
OR13C8
UBQLN4
LAMTOR2
LMNA
MEX3A
RAB25
MMP17
RB1CC1
PCMTD1
MTFR1
ALKAL1
NPBWR1
IQGAP1
PLAG1
IMPAD1
MOS
ATP6V1H
CHCHD7
RPS20
LINC02583
CRTC3

Top20 of LIHC Gene Alternations

0

10

20

Group

21%
18%
11%

6%
6%

14%
11%

6%
9%
4%
3%
5%
3%
5%
3%
9%
1%
3%
3%
6%
3%
6%
3%
3%
5%
5%
5%
5%
2%
2%
2%
3%
3%
2%
3%
3%
2%
3%
2%
2%

12%
12%
13%
12%
12%

4%
5%
4%
3%
4%
4%
5%
2%
3%
3%
4%
2%
2%
2%
5%

0 20 40

Mut_Del_Amp pvalue
p<0.001
p<0.01
p<0.05
p<0.1
p>0.1

Alternations
Nonstop_Mutation

CNV_Del

Frame_Shi�_Ins
Missense_Mutation
Frame_Shi�_Del

CNV_Amp

In_Frame_Ins
Nonsense_Mutation
In_Frame_Del
Splice_Site
Translation_Start_Site
Multi_Hit

Group
FPRS−low
FPRS−high

(c)

Figure 8: Molecular characteristics analysis between the high-FPRS and low-FPRS groups. (a)+e difference of DNA damage-related index
between high-FPRS and low-FPRS groups; Wilcoxon test. (b) Pearson’s correlation analysis of FPRS and DNA damage-related indexes. (c)
OncoPrint of somatic mutation and CNV distribution between low-FPRS and high-FPRS groups; Fisher’s test; ∗∗∗P< 0.001; ∗∗∗∗P< 0.0001.
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To further study the immunological differences between
distinct FPRS groups, the relative abundance of 22 different
kinds of immune cells was computed utilizing CIBERSORT.
+e results showed that 16 kinds of immune cells showed
significantly different estimated proportions in high-FPRS
and low-FPRS groups and the proportion of immune cells
enriched in the low-FPRS group was higher (Figure 9(a)).
+e stromal score of the low-FPRS group was greatly ele-
vated in contrast to that of the high-FPRS group, while the
immune score was greatly decreased than in high-FPRS
group (Figure 9(b)). FPRS was also related to the levels of
resting CD4 memory T cell, activated CD 4 memory T cell,
neutrophils, regulated Tcells, resting dendritic cells, and M0
macrophages (Figure 9(c)). FPRS was closely related to
CNVs, DNA damage, and immune characteristics of HCC
patients.

3.9. >e Application of FPRS in Predicting Immune
Chemotherapies. To determine whether FPRS can predict
the response of HCC patients to immune checkpoint in-
hibitor (ICI) therapies, 21 immune checkpoint-related genes
were obtained from HisgAtlas database [30] and their ex-
pression in high-FPRS and low-FPRS patients was analyzed.
17 immune checkpoint-related genes were found to have
differential expression between low- and high-FPRS sam-
ples, and the expression level of 17 immune checkpoint-
related genes in high-FPRS samples was greater in contrast
with that in low-FPRS samples (Figure 10(a)). In addition,
the applicability of different FPRS samples to anti-CTLA4
treatment, anti-PD1 treatment, anti-CTLA4, and anti-PD1
combined therapy was compared by IPS. +e findings
showed that the IPS of the low-FPRS group treated with anti-
CTLA4 was relatively higher, indicating that the patients
with low FPRS had a better therapeutic effect on anti-CTLA4
(Figure 10(b)). +e high-FPRS patient had a greatly elevated
TIDE score as opposed to that of the low-FPRS patient in the
TCGA-LIHC cohort and ICGC cohort, indicating that a
greater trend for immune escape was illustrated by the high-
FPRS patient group, which may fail to respond to ICI
treatment (Figures 10(c) and 10(d)). It is noteworthy that no
significant differences were identified in the TIDE score
between low-FPRS and high-FPRS groups in the GSE14520
cohort (Figure 10(e)). In addition, when evaluating the
sensitivity of the two FPRS groups to sorafenib, docetaxel,
paclitaxel, and cisplatin, we found that patients with high-
FPRS had a greater sensitivity to sorafenib, docetaxel, and
cisplatin, while patients with low FPRS had a greater sen-
sitivity to paclitaxel (Figure 10(f)).

3.10. FPRS Combined with Clinicopathological Features of
Nomogram Improves Prognosis and Survival Prediction.
To construct a more effective nomogram model using the
FPRS model and other clinicopathological information,
multivariate and univariate Cox regression analysis showed
that FPRS was an independent prognostic indicator of HCC
(Figures 11(a) and11(b)). We established a nomogram in-
cluding FPRS and several other clinical factors (AJCC stage
and T stage) to anticipate OS of HCC patients and observed

that FPRS made the greatest contribution to the survival
prediction of nomogram (Figure 11(c)). +e calibration
curve illustrated that the anticipated probabilities of no-
mogram’s one-, three-, and five-year OS were very close to
the actually observed probabilities (Figure 11(d)). Decision
curve analysis confirmed that the net income of FPRS and
nomogram was considerably greater in contrast with that of
the extreme curve and showed the strongest predictive
ability of OS compared with other clinicopathological fea-
tures (Figures 11(e) and 11(f)).

4. Discussion

Owing to the variability of HCC and the tumor microen-
vironment (TME) complexity, determining the long-term
effectiveness of HCC continues to be a critical issue in
clinical practice [33]. It is necessary to classify and refine the
appropriate treatment intervention decision-making in this
kind of tumor [34]. In addition, the effectiveness of sorafenib
in treating advanced HCC strongly encourages the classi-
fication of HCC patients [34]. Several transcriptional group-
based classifications were widely accepted in HCC [35–37]
but lack genomic analysis. Recent studies have focused on
defining different HCC categories based on more detailed
biological characteristics to ensure maximum benefit and
minimum toxicity for specific treatments [38]. Given the
nonnegligible regulatory effect of sorafenib on ferroptosis,
we revealed the molecular subclasses of HCC from the
perspective of ferroptosis.

Transcriptome, genomic, and clinical data of 912 HCC
samples were retrieved from TCGA, ICGC, and GEO. Based
on the expression of 111 ferroptosis significantly associated
with HCC prognosis, HCC samples from each cohort were
separated into two heterogeneous subclasses, with signifi-
cant differences in OS between the two subclasses. By
comparing the clinical, genomic, and immune characteris-
tics between the two subgroups, we recognized that, in C1
with poor prognosis, there were more patients with ad-
vanced stage and infection with HBV and HCV, higher rates
of DNA damage including aneuploidy, HRD, fraction al-
tered, and the number of segments, and higher probability of
gene mutation and copy number variation. To some extent,
these results reveal the reason for the poor prognosis of C1,
because the TME cell components of HCC are mainly
composed of HCC cells, HCC-related fibroblasts, endo-
thelial cells, and immune cells. +e TME cell components of
HCC are mainly composed of HCC cells, HCC-related fi-
broblasts, immune cells, and endothelial cells [33]. Among
them, immune cells are most often studied, because the
infiltration levels of immune cells can largely reflect the
applicability of patients to immunotherapy [39]. HCC pa-
tients with C1 had higher levels of M0 macrophages, reg-
ulatory T cells, helper T cells, and activated memory CD4
T cells infiltration and higher immune score. In C2, there is
strong infiltration of resting memory CD4 T cells, naive
B cells, monocyte, resting mast cells, and M1and M2
macrophages. +erefore, there was strong heterogeneity
between C1 and C2, including clinical, molecular, and
immunological features.
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Additionally, we developed and validated a prognostic
model called FPRS, which is composed of CDCA8, SPP1,
EPO, S200A9, FTCD, and CFHR3 in three independent
cohorts. It shows considerable effect in predicting the OS
probability of HCC samples and can reflect the clinical
characteristics of different patients. It is an independent
prognostic factor for HCC. FPRS model assigned each
sample with a specific risk score, and patients were sub-
divided into different risk groups according to such score. In
line with our expectations, the prognosis of high FPRS was

considerably unfavorable in contrast with that of low FPRS.
Notably, from the study of Teresa Davoli, we learned that
copy number aberration contributed more to immune
characteristics than tumor mutation load and the low
burden of copy number increase/loss is related to the re-
sponsiveness to immunotherapy [40]. Indeed, our results
also found that the overall somatic mutation rate, copy
number amplification, and deletion in low-FPRS samples
were significantly lower than those in high-FPRS samples
and low-FPRS samples were more effective in anti-CTLA4
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Figure 10: +e role of the FPRS model in the prediction of immune/chemotherapeutic benefits. (a) Expression of 21 immune checkpoint-
related genes in low-FPRS and high-FPRS patients. (b) +e effect of different FPRS samples on IPS of anti-CTLA4 therapy, anti-PD1
therapy, and anti-CTLA4 and anti-PD1 combined therapy. (c) +e violin chart illustrated the difference in TIDE scores between high FPRS
and low FPRS in the TCGA-LIHC cohort. (d) In the ICGC cohort, the difference of TIDE score between low-FPRS and high-FPRS samples.
(e) In the GSE14520 cohort, the performance of TIDE score on high FPRS and low FPRS. (f ) Differential chemotherapeutic response
between low-FPRS and high-FPRS groups based on IC50 available in the TCGA-LIHC database. Wilcoxon test; ∗P< 0.05; ∗∗P< 0.01;
∗∗∗P< 0.001; ∗∗∗∗P< 0.0001.
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therapy at immune checkpoints. Moreover, we predicted
that patients who have low FPRS had a greater sensitivity to
paclitaxel, while patients who have high FPRS had a greater
sensitivity to sorafenib, docetaxel, and cisplatin.

In summary, on the one hand, our study revealed two
ferroptosis subclasses, which showed heterogeneity in
prognosis, clinical characteristics, genetic events, and im-
mune characteristics. On the other hand, a classifier called
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Figure 11: Nomogram of FPRS combined with clinicopathological features. (a) Univariate Cox regression analysis of the clinical variables.
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the FPRS model has been developed and validated, which
may help predict the prognosis and select patients suitable
for immunotherapy.
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Melanoma is a malignant tumor produced by highly aggressive and metastatic melanocytes. NRAS mutation is a relatively
commonmutation in melanoma cells. Mitogen-activated protein kinase (MAPK) signaling pathway and the PI3K/Akt pathway in
melanoma cells are relatively common signaling pathways. In this study, we investigated the effect of inhibition of Axl expression
on the targeted inhibition of the PI3K/Akt pathway in NRAS-mutant melanoma cells. In this study, immunohistochemistry and
western blot methods were used to detect the expression of Axl and Akt proteins inmelanoma cells. Axl inhibitor was added, and it
detected the inhibitory efficiency of Akt inhibitor in melanoma cells. Finally, a melanoma mouse model was established, and it
detected the proliferation and apoptosis of mouse tumor cells induced by Axl inhibitor and Akt inhibitor. )e results showed that
Axl and Akt were highly expressed in NRAS-mutant melanoma cells, and stimulation of Axl expression could reduce the
inhibitory effect of Akt inhibitor on melanoma cells. )e addition of Axl inhibitor can synergistically promote the effect of Akt
inhibitor, slow down the proliferation of tumor cells, and induce cell apoptosis. According to the experiment in this study, Axl
inhibitor combined with Akt inhibitor has a stronger therapeutic effect on melanoma than Akt inhibitor alone.

1. Background

Melanoma is a highly malignant tumor originating from
melanocytes. It mostly occurs in the skin but can also be
found in the mucous membrane and viscera. Melanoma is
highly malignant and can metastasize at an early stage [1].
According to the World Health Organization, about 50,000
people worldwide die of melanoma each year. In recent
years, the incidence and mortality of malignant melanoma
have been increasing year by year. Compared with other
solid tumors, the death age of malignant melanoma is lower
[2]. In addition to early surgical resection, malignant mel-
anoma lacks effective treatment and has a poor prognosis.
)erefore, the early diagnosis and treatment of malignant
melanoma are extremely important. Currently, the

treatment of melanoma is mainly divided into two thera-
peutic mechanisms [3]: (1) targeted therapy: small-molecule
inhibitors targeting the mitogen-activated protein kinase
(MAPK) signaling pathway; (2) immunotherapy: biological
monoclonal antibodies block cytotoxic T lymphocyte-as-
sociated antigen-4 (CTLA-4) and programmed cell death
protein 1 (PD-1). Both treatments have their own advan-
tages and disadvantages, and molecular targeted therapy is a
major research focus. Molecular targeted therapy is a
therapeutic method that specifically selects key enzymes
involved in the signaling pathway of cell canceration for
targeted inhibition according to different types of gene
mutations [4]. At present, a variety of targeted inhibitors
targeting different signaling pathways have entered pre-
clinical trials [5]. Among them, RAS/MAPK and PI3K/Akt
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signaling pathways have beenmore frequently studied [6], so
the development of targeted drugs targeting these two
pathways has a broad prospect of clinical application.

Abnormal activation of RAS/RAF/MEK/ERK signaling
pathway (MAPK signaling pathway) plays a key role in the
occurrence and development of melanoma, and genes re-
lated to this pathway are also the main mutation sites of
melanoma, especially RAF and RAS genes [7]. Studies have
found that 70% of melanomas are associated with BRAF and
NRAS gene mutations [8], so there are many studies on
BRAF- and NRAS-mutant melanoma. Various small-mol-
ecule inhibitors have been extensively studied in BRAF-
mutated melanoma cells. For example, the BRAF inhibitor
encorafenib can be used in combination with the MEK
inhibitor binimetinib to treat advanced BRAFV600E/K-mu-
tant melanoma [9]. Cobimetinib combined with vemur-
afenib in melanoma patients with advanced BRAFV600

mutations shows good antitumor activity [10]. )e study of
NRAS mutation is still under development, so this study
selected NRAS mutation melanoma as the research target
and studied the use of small-molecule inhibitors for NRAS
mutation melanoma.

In melanoma, NRAS is the most common type of
mutation in the RAS family, which is commonly seen in
congenital pigmented nevi but rarely seen in dysplastic nevi
[11]. RAS induces cell proliferation, metastasis, and cell
survival through the RAF/MEK/ERK pathway. )erefore,
the MAPK pathway plays an important role in the occur-
rence and progression of NRAS mutated melanoma. Studies
have shown that while NRAS activates the downstream
MAPK pathway, it also regulates the activation of phos-
phoinositide 3-kinase-serine/threonine protein kinase B
(PI3K-Akt) pathway and thus affects the occurrence of cell
apoptosis [12]. )erefore, this study chose MAPK pathway
and PI3K/Akt pathway to study melanoma.

In the PI3K/Akt pathway, PI3K is activated by extra-
cellular signals of various cytokine receptors, including ty-
rosine kinase receptor, nontyrosine kinase receptor, and
insulin receptor, which promotes the activation of Akt and
further activates a variety of downstream effectors. Akt can
affect the adhesion and motor ability of tumor cells by
regulating the PI3K/Akt pathway, which is of great signifi-
cance for the invasion andmetastasis of malignant melanoma
[13]. )erefore, inhibiting the activity of Akt can inhibit the
activity of the PI3K/Akt pathway and then inhibit the pro-
liferation of melanoma. Sanchez-Hernandez et al. [14] found
that in the absence of BRAF mutation in melanoma cells,
increased phosphorylation of Akt resulted in increased PI3K/
Akt pathway activity; inhibition of PI3K/Akt/mTOR pathway
activity resulted in increased tumor cell death level. Kuzu OF
found that [15], inmelanoma cells, Akt inhibition by targeting
alone was not obvious, but if targeted together with other
enzymes, it could synergistically kill melanoma cells and slow
down the growth of tumor cells by 90%.Multiple experiments
have shown that BEZ235, an inhibitor of the PI3K/Akt
pathway, can effectively inhibit the phosphorylation of Akt
and has a good inhibitory effect on the growth of tumor cells
in esophageal cancer and glioma cells [16, 17]. In canine
melanoma, the combination of BEZ235 and MEK inhibitors

effectively reduces the survival rate of melanoma cells and
inhibits cell growth [18]. In this experiment, we chose to
inhibit the combination of Axl and Akt inhibitors to explore
the growth and apoptosis of melanoma cells.

Axl is a tyrosine kinase (RTK), a member of the tumor-
associated macrophage (TAM) family. It is composed of
Tyro-3, Axl, and Mer [19]. GAS6 and ProS are ligands for
TAM. )e Axl immunoglobulin-like domain binds to the
laminin G-like domains of Gas6 to form the Gas6/Axl
complex with high affinity, and the Gas6/Axl complex has a
biological activity after translation modification. Axl me-
diates the proliferation of tumor cells, which is dependent on
the MAPK/ERK pathway and involves the activation of
PI3K. RAS, Twist, and NF-κB are downstream targets of Axl
[20]. )erefore, in melanoma cells, Axl can simultaneously
regulate the MAPK pathway and PI3K/Akt pathway, pro-
viding a broad research idea for the combination of multiple
inhibitors inmelanoma. For example, in melanoma, the high
expression of Axl makes tumor cells resistant to MAPK
pathway inhibitors, and the combination of Axl antibody
conjugate and BRAF/MEK inhibitor can synergistically
inhibit the growth of tumor cells [21]. Receptor tyrosine
kinase (RTK), such as Axl, has great application prospects in
melanoma.

)erefore, in this study, melanoma cells with NRAS
mutation were selected as the research object, and the ac-
tivity of Axl was stimulated by Gas6 or the expression of Axl
was inhibited by inhibitors, so as to explore the effect of Axl
expression on PI3K/Akt pathway and the therapeutic effect
of Axl expression on melanoma with NRAS mutation.

2. Materials and Methods

2.1. Cell Culture. Tumor and paracancerous tissues from
melanoma patients were collected, cut into 1mm [3] size,
added with trypsin, and digested at 37°C for 10min. After
elution with 10% FBS and centrifugation at 1,000 r/min for
10min, the supernatant was removed, and then, the pre-
cipitation was resuspended with DMEMmedium containing
FBS. After centrifugation for another 10min, the precipitates
were collected and resuspended with DMEM medium
containing FBS. )e cell density was adjusted and planted in
the culture flask, and the culture medium was changed once
in 2D. All the cells and tissues were cultured in an incubator
at 37°C and 5% CO2. Cells in the GAS6-induced group were
added with 100 ng/mL recombinant human GAS6 solution
and cultured for 12 h.

Human NRAS-mutant melanoma cell line SK-MEL-2 and
paracancerous normal tissue HEM were all from the Affiliated
Hospital of Qingdao University. )e sources of cells used in
this study have obtained the informed consent of patients.

2.2. Western Blot Assay. SK-MEL-2 cells or HEM cells were
collected, and the total protein was extracted from tissue
cells by protein lysate. An appropriate amount of protein was
taken and electrophoretically separated with SDS-PAGE
adhesive. Cellulose acetate membrane was used for constant
pressure membrane transfer, and then, skimmed milk
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powder was added to shake at room temperature and sealed
for 2 h. After washing with PBS twice, primary antibodies
such as rabbit anti-human polyclonal Axl antibody (Abnova
Corporation) or rabbit anti-human polyclonal Akt antibody
(Abnova Corporation) were added, respectively. )ey were
incubated overnight in a refrigerator at 4°C and washed three
times with PBS for 10 minutes each. )e second antibody
(Abnova Corporation) was added and incubated at room
temperature for 2 hours.)e PBS was washed three times for
10 minutes each time. Finally, ECL luminescence solution
was added for chemiluminescence development, and the
western blot fluorescence imager was used to take pictures.

2.3. RT-qPCR. )emelanoma cell and tissue were collected,
and total RNA was extracted using TRIzol Kit ()ermo
Fisher, Shanghai) for reverse transcription. )e cDNA ex-
pression level obtained by reverse transcription was detected
by QRT-PCR. )e reaction conditions of qRT-PCR were as
follows: pre-denaturation at 95°C for 30 s, 95°C for 5 s, 60°C
for 1min, and a total of 40 cycles. )e relative expression
levels of target genes were calculated using the 2−△△Ct

method. )e primers sequences were as follows: for Axl,
GGCAACCCAGGGAATATCACA (forward) and ACACG
AAGGTCTGATGTC CCA (reverse); for Akt, GTGCTGG
AGGACAATGACTACGG (forward) and AGCAGCCCTG
AAAGCAAGGA (forward); for β-actin, GTCCTGTGG
CATCCA CGAAAC (forward) and GCTCCAACCGAC
TGCTGTCAG (reverse).

2.4. Immunohistochemical. Melanoma tissue and para-
cancerous tissue were collected and fixed in paraformal-
dehyde at room temperature, rinsed with PBS for 3 times,
and embedded in paraffin and sectioned. )e sections were
dewaxed with xylene-ethanol solution, followed by sodium
citrate buffer (pH 6.0) for antigen repair, and rinsed with
PBS for 3 times. )ey were put in 30% hydrogen peroxide
solution and reacted for 30 minutes in dark at room tem-
perature. )ey were rinsed with PBS for 3 times. )ey were
blocked with 3% BSA at room temperature for 20min, then,
Axl antibody (Abcam) or Akt antibody (Abcam) was added
and incubated overnight in the refrigerator at 4°C.)ey were
rinsed with PBS for 3 times, and HRP-labeled secondary
antibody (Abcam) was added at the appropriate concen-
tration and incubated at room temperature for 30min. )ey
were rinsed with PBS 3 times, 5 minutes each time. DAB
chromo-developing solution (Solarbio®, Life Science) was
added for staining for 2min, and sections were rinsed with
running water. )e hematoxylin solution was redyed for
2min and rinsed with PBS for 15min. )e slides were
dehydrated in ethanol, then, 80% glycerin was added to the
slides, and the cover glass was sealed. Finally, microscope
observation was performed and photographs were taken
(magnification: ×200).

2.5. MTT Assay. Cells to be measured were taken and
cultured in a DMEM complete medium for 24 h for syn-
chronous treatment. )e cell density was adjusted, and then,

the cells were inoculated on 96-well plates for culture. Each
group was added with the corresponding drug and cultured
for a period of time. After the cells grew for a period of time,
5mg/mL MTT (Sigma) solution was added to each well and
placed in an incubator for culture at 37°C for 4 h. )e su-
pernatant was discarded, cleaned once with PBS, and 150 μL
DMSO (Sigma) was added to each well. )e absorbance OD
value at 490 nm was measured with a microplate analyzer
(Molecular Devices, Shanghai).

2.6. Flow Cytometry Was Used to Detect the Number of
Early-RegulatedDeaths. )e cells to be tested were placed in
the well plate and then cultured with drugs at the condition
of 5% CO2 and 37°C for 24 h. After the trypsin (without
EDTA) was added, the cells were washed with PBS for 3
times, centrifuged at 1,500 rpm for 5min, and the super-
natant was removed. )e procedure was performed
according to the instructions of the Annexin V-FITC/PI
Apoptosis Assay Kit (ImmunoChemistry, USA). )e cells
were resuspended by adding 100 μL× binding buffer, 5 μL
FITC-Annexin V, and 10 μL propidium iodide, and reacted
at darkroom temperature for 15min.)en, 400 μL× binding
buffer was added, and the apoptosis rate of apoptotic cells
was detected by flow cytometry.

2.7. Cell Clone Formation Experiment. Melanoma cells
were digested and dispersed with 0.25% trypsin and cultured
in a DMEM medium with 10% fetal bovine serum. NVP-
BEZ235 (AmyJet Scientific), RXDX-106 (CEP-40783, Sell-
eck), and GAS6 were added into the medium to grow clone
cells. )e dishes were washed twice with PBS and fixed with
paraformaldehyde for 15 minutes. )e fixed solution was
removed and stained with crystal violet. )e stain plate was
rinsed with PBS and allowed to dry at room temperature.
Images of the Petri dishes were taken under an inverted light
microscope.

2.8. Mouse Melanoma Model. Female BALB/c nude mice
were purchased from Beijing Vital River Laboratory Animal
Technology Co., Ltd. All the animals used in this experiment
have been approved by the Ethics Committee of the Affil-
iated Hospital of Qingdao University. RAS melanoma cell
lines were obtained from Tyr: NRASQ61K transgenic mice,
and then, these cell lines were inoculated into the back of
female BALB/C nude mice to establish NRAS-mutant
melanoma model. Mice were randomly divided into four
groups, which were, respectively, injected with normal sa-
line, BEZ235, RXDX-106 (Selleck), and the combination of
two drugs. )e tumor growth of mice was observed every
day. After 28 days, the mice were anesthetized and killed,
and the tumor tissue was surgically removed. )en, the
mouse melanoma SBcl2 cell line was taken for detection.

2.9. StatisticalAnalysis. SPSS 25.0 software was used for data
analysis in this experiment. )e t-test was used for com-
parison between the two groups, and the results were
expressed as mean± standard deviation (x‾ ± s). p< 0.05 was
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considered statistically significant. )e data were processed
by GraphPad 8.0 software and presented in the form of
charts.

3. Results and Discussion

3.1. Expressions of Axl in NRAS-Mutant Melanoma Tissues
andCell Lines. Previous experiments have shown that Axl is
expressed in a variety of cancer cells, but there are few
studies onmelanoma. In this study, we focused on the role of
Axl in melanoma cells in order to adopt more effective
treatment methods. First, the expressions of Axl and Akt in
melanoma tissues were detected by RT-PCR. Both Axl and
Akt were highly expressed in melanoma cells, which were
significantly higher than that in normal cells (Figures 1(a)
and 1(b)). We further selected NRAS-mutated melanoma
tissues and usedWB to detect the expressions of Axl and Akt
in NRAS-mutated melanoma tissues. )e results showed
that the expressions of Axl and Akt in NRAS-mutated
melanoma tissues were higher than that in paracancerous
normal tissues (Figure 1(c)). )e expressions of Axl and Akt
in melanoma cells were detected by IHC. In most melanoma
tissues, the expression of Axl was high in the cytoplasm but
lower in the paracancerous tissues than in the melanoma
tissues. Akt was highly expressed in both the cytoplasm and
nucleus of melanoma cells (Figure 1(d)). )ese results in-
dicate that both Axl and Akt may promote the growth and
proliferation of NRAS-mutated melanoma tissue, and it is
speculated that there is a synergistic effect between the two.

3.2. Activation of Axl Reduces the Efficiency of Akt Inhibitor
andPromotesCellGrowth. Previous studies have shown that
Ras is the downstream target gene of Axl. As a ligand of
TAM, GAS6 can activate Axl when combined with Axl and
promote the proliferation of tumor cells. )erefore, GAS6
was selected to stimulate melanoma cells, WB was used to
detect the phosphorylation level of Axl, and MTT was used
to detect the proliferation of melanoma cells after GAS6
stimulation.)e results showed that after GAS6 stimulation,
the phosphorylation of Axl in cells was significantly in-
creased, and pAxl activity was increased while the expression
remained unchanged (Figure 2(a)). We continued to study
the effect of Axl on Akt inhibitors. Melanoma cells with
NRAS mutation were treated with GAS6 stimulation and
Akt inhibitor (BEZ235) for induction culture, respectively,
and cell proliferation was detected by cell cloning assay.
Compared with the control group, cell proliferation was
reduced after the addition of BEZ235. However, after the
stimulation of GAS6, cell proliferation was increased and the
inhibitory effect of the Akt inhibitor was reduced
(Figure 2(b)). )is suggests that the activated expression of
Axl can reduce the inhibitory efficiency of Akt inhibitors and
promote the proliferation of melanoma cells.

3.3. Inhibition of Axl Promotes Apoptosis of NRAS-Mutant
Cells Induced by Akt Inhibitors. Since Axl can promote the
proliferation of melanoma cells, this study chose to add Axl
inhibitors to study the effect of Axl inhibitors on the

apoptosis of NRAS-mutant melanoma cells. Axl inhibitor
(RXDX-106) and Akt inhibitor (BEZ235) were added into
NRAS-mutant melanoma cells, respectively. )e activities of
phosphorylated Axl, Akt, and apoptosis signaling factor
caspase-3 were detected by WB. )e results showed
(Figure 3(a)) that the activities of pAxl and pAkt decreased
after the addition of the corresponding inhibitors, respec-
tively, and the activities of pAxl and pAkt were the lowest in
the group with the coinduction culture of the two inhibitors.
Compared with the control group, the activity of caspase-3
increased with the addition of inhibitor, and the activity of
caspase-3 was the strongest in the group cocultured with
RXDX-106 and BEZ235. Cell apoptosis was further detected
by flow cytometry. After the addition of inhibitors, the cell
apoptosis rate increased, and the cell apoptosis rate was the
highest in the group with the addition of two inhibitors
(Figure 3(b)). )erefore, inhibition of Axl can synergistically
increase the inhibitory effect of the Akt inhibitor and
promote cell apoptosis.

3.4. Axl Inhibitors Enhance the Efficacy of PI3K/Akt Pathway
Targeted �erapy In Vivo. A mouse model of NRAS-mu-
tated melanoma was established. Axl inhibitor and Akt
inhibitor were injected to observe the effects of two in-
hibitors on the growth and apoptosis of melanoma cells in
vivo. First, the IHC was used to examine the expressions of
phosphorylated Akt and Axl in the transplanted tumor. )e
results showed that the addition of RXDX-106 effectively
inhibited pAxl, while the addition of BEZ235 effectively
inhibited pAkt, and the combination of the two inhibitors
further enhanced the inhibition effect. )e pAxl and pAkt
were the weakest in the RXDX-106 +BEZ235 inhibitor
group (Figure 4(a)). )en, cell cloning was used to detect the
proliferation of tumor cells in different inhibitory groups.
)e results showed that compared with the control group,
the cell proliferation was significantly decreased in the
RXDX-106 and BEZ235 inhibitory groups, and the cell
proliferation efficiency was the lowest in the two inhibitor
groups (Figure 4(b)). Finally, the apoptosis rate was detected
by flow cytometry. With the addition of inhibitors, the
apoptosis rate of tumor cells increased. When RXDX-106
and BEZ235 were added at the same time, the cell apoptosis
rate was significantly increased (Figure 4(c)). Both RXDX-
106 and BEZ235 can effectively inhibit the activity of Axl and
Akt and inhibit the growth of melanoma cells. However, the
combination of the two inhibitors can more effectively in-
hibit pAxl and pAkt, and the effect of inhibiting tumor cell
proliferation and promoting cell apoptosis is greater than
that of one of the inhibitors alone.

4. Discussion

Melanoma is a skin tumor that easily metastasizes and is
difficult to treat. Patients with melanoma can be treated by
surgery at an early stage, but patients with metastasis are not
sensitive to radiotherapy or chemotherapy [22]. )is sug-
gests that targeted drugs targeting various enzymes will play
an important role. RAS has a high mutation rate in
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inhibitors. Compared with the control group, p< 0.05, and the difference was statistically significant.

HEM SK-MEL-2

∗

3.0

Re
lat

iv
e A

xl
 m

RN
A

 le
ve

l 2.5

2.0

1.5

1.0

0.5

0.0

(a)

HEM SK-MEL-2

∗

Re
lat

iv
e A

kt
 m

RN
A

 le
ve

l

2.5

2.0

1.5

1.0

0.5

0.0

(b)

HEM

Axl

Akt

β-actin

SK-MEL-2

Axl Akt

∗

∗

Re
lat

iv
e A

xl
 an

d 
A

kt
 ex

pr
es

sio
n 2.0

1.5

1.0

0.5

0.0

HEM
SK-MEL-2

(c)

Axl
(× 200)

Akt
(× 200)

HEM SK-MEL-2

50 µm 50 µm 

50 µm 50 µm 

(d)

Figure 1: )e expressions of Axl and Akt in mutant melanoma cells were detected. (a, b) )e expressions of Axl and Akt in mutant
melanoma cells were detected by RT-PCR. (c))e expressions of Axl and Akt inmelanoma cells were detected byWB. (d))e expressions of
Axl and Akt in melanoma tissues were detected by IHC. Compared with the control group, p< 0.05, and the difference was statistically
significant.

Journal of Oncology 5



melanoma, and studies have found that the inactivation of
RAS can lead to rapid death of tumor cells and tumor
degeneration, [23] and targeted inhibition of NRAS is also
an effective treatment method. However, it is a pity that
NRAS lacks the binding sites with small-molecule inhibitors,
which cannot be directly inhibited. )erefore, for many
years, the treatment of melanoma with NRAS mutation has
mainly selected targeted inhibition of its related pathway
enzyme components. A number of studies have shown that
NRAS-mutated melanoma requires the RAS/RAF/MEK/
ERK and PI3K/Akt pathways to induce and maintain ma-
lignant phenotypes, [24] and the growth of tumor can also be
controlled through the interference of this pathway. For
example, the MEK inhibitor binimetinib extends survival in
melanoma patients with NRAS mutations and is a new
treatment option for melanoma patients with NRAS mu-
tations that have failed immunotherapy [25]. Binimetinib, a
MEK inhibitor, has shown good efficacy in combination
with CDK4 inhibitors [26]. ERK inhibition combined with
PI3K/Akt inhibitor is effective in BRAF inhibitor-resistant
cell lines and NRAS-mutant cell lines [27].

)erefore, many experiments have shown that in NRAS-
mutated melanoma, the combination of multiple groups of
inhibitors can effectively inhibit tumor growth. In this study,
IHC, WB, and other detection methods were used to prove

that Axl and Akt were highly expressed in melanoma cells.
Both Axl and PI3K/Akt pathways are involved in the growth
of melanoma cells. Activation of Axl by GAS6, MTT, and cell
cloning detected an increased proliferation of tumor cells.
Compared with the BEZ235 inhibition group, Axl phos-
phorylation and cell proliferation were increased after Axl
activation, and the inhibitory effect was decreased. After the
addition of Axl inhibitor, tumor cell apoptosis increased. )e
combination of BEZ235 and RXDX-106 inhibitor signifi-
cantly increased the apoptosis rate of melanoma cells. )e
results showed that the activity of Axl could affect the PI3K/
Akt pathway activity. Inhibition of Axl activity can indirectly
inhibit the activity of the PI3K/Akt pathway, synergistically
promote the effect of PI3K/Akt inhibitor, inhibit the prolif-
eration of tumor cells, and induce cell apoptosis. To further
prove the experimental results, a mousemelanomamodel was
established, and two inhibitors were given to induce culture.
)e results showed that compared with the other two groups
of mice treated with one inhibitor alone, the tumor growth
area of the mice cultured with two inhibitor groups was
significantly smaller, the tumor growth rate was slowed down,
and the cell apoptosis rate was increased. Since both Axl and
PI3K/AKT pathways are involved in the development of
melanomawith other genemutations, the combination of Axl
inhibitors and PI3K/AKT pathway inhibitors can be
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Figure 3: Akt inhibitor BEZ235 was added to determine the apoptotic ability of cells. (a) )e phosphorylation activities of Axl and Akt and
the activity of apoptotic factor caspase-3 were detected by WB. (b) )e apoptosis rate was detected by flow cytometry. Compared with the
control group, p< 0.05, and the difference was statistically significant.
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considered for the treatment of melanoma with other gene
mutations in subsequent studies.

In the treatment of melanoma, the combination of a
variety of inhibitors is an important part of the research.)e
use ofMEK inhibitors in NRAS-mutated melanoma cells has
been extensively studied, and more novel inhibition
methods are needed. )is experiment verified that Axl in-
hibitor, when used together with PI3K/Akt pathway in-
hibitor, can promote the inhibitory effect of PI3K/Akt
pathway inhibitor, slow down the growth and proliferation
of tumor cells, increase the rate of apoptosis, and increase the
research direction of double inhibition. Compared with the
abovementioned combination of dual inhibitors in the
treatment of melanoma with gene mutation, the therapeutic

effect of this study is obvious, and the combination of drugs
is better.)ere are still some limitations in this study. Due to
the limited samples, there are only a few melanoma cell lines
with NRAS mutations. If more different kinds of melanoma
cell lines with NRAS mutation can be used, this study will be
enriched. )e RTK family has a large number of members,
and the next step is to explore more and more effective
therapeutic targets based on tyrosine kinase receptors.

Data Availability

)e datasets used and/or analyzed during the current study
are available from the corresponding author on reasonable
request.
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detected by flow cytometry.
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Objective. Low-grade glioma (LGG) mainly threatens the elderly population, with undesirable prognoses. )is study uncovered
the immune cell infiltration (ICI) landscape in LGG. Methods. RNA-seq profiles of LGG were retrieved from TCGA and CGGA
databases. CIBERSORTx and ESTIMATE algorithms were employed to characterize the ICI landscape in LGG tissues. )rough
unsupervised clustering analysis, ICI subtypes were clustered. ICI scores were computed via principal component analysis (PCA).
)e differences in survival, tumor-infiltrating immune cells, stromal scores, immune scores, immune checkpoint genes, immune
activity genes, and tumor mutation burden (TMB) were assessed between high and low ICI score groups. Results. )ree ICI
subtypes were constructed in LGG, with distinct survival outcomes, PD-L1 expression, and infiltration levels of immune cells.
Furthermore, ICI scores were developed. Both in TCGA and CGGA datasets, low ICI scores were indicative of undesirable
outcomes. High ICI scores were significantly correlated to increased infiltration levels of memory B cells, CD8 Tcells, CD4 näıve
Tcells, Tfollicular helper cells, macrophagesM0, and eosinophils, while low ICI scores were characterized by increased infiltration
levels of naı̈ve B cells, plasma cells, CD4 memory resting Tcells, Tregs, resting NK cells, macrophages M2, and activated dendritic
cells. High ICI scores exhibited correlations with lower immune activity genes and immune checkpoint genes. Furthermore, TMB
was distinctly reduced in the high ICI score group. Conclusion. )e ICI scores may serve as a promising prognostic index and
predictive indicator for immunotherapies, extending our understanding of immune microenvironment in LGG.

1. Introduction

Glioma is a common primary intracranial malignancy,
which is classified into four grades according to the 2007
WHO classification of tumors: Grades I and II are LGGs, and
Grades III and IV are high-grade gliomas [1]. Among them,
LGG represents the most common primary brain malig-
nancy [2]. LGG mainly occurs in old people. However, it is
predisposed to younger individuals (average age: 41 years
old), with mean survival time of approximately seven years
[3]. Despite the much progress in neurosurgical resection,
chemotherapy, and radiotherapy, it is ineluctable to expe-
rience resistance and recurrence [4]. Due to biological be-
haviors, this malignancy displays considerable
heterogeneity. Some subjects experience indolent outcomes,

while others develop into high-grade gliomas with unde-
sirable outcomes [5]. Despite the less aggressiveness of LGG,
patients usually have varied survival outcomes [6]. )ere-
fore, discovering precisely novel markers to predict patients’
prognosis is of importance in current studies.

Immunotherapies have exhibited considerable promise
in cancer therapy [7]. Novel immunotherapy has emerged as
a promising therapeutic strategy against LGG [8]. Never-
theless, only some patients respond to immunotherapy [9].
)e efficacy of immunotherapy is partly affected by tumor
microenvironment that contains immune cells as well as
stromal cells. Tumor-infiltrating immune cells may affect
response to immunotherapies and survival outcomes [10].
Uncovering the relationships between tumor and tumor
immune microenvironment is of importance for discovering
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prognostic markers, lowering drug resistance, and exploiting
novel therapeutic strategies [11]. )erefore, it is of signifi-
cance to construct ICI subtypes to differentiate LGG pa-
tients’ prognosis. Herein, this study developed ICI score
system to characterize the ICI landscape in LGG, which may
accurately predict patients’ outcomes as well as respon-
siveness to immunotherapies.

2. Materials and Methods

2.1. LGG Datasets. RNA-seq data and matched clinical in-
formation of LGG patients were retrieved from )e Cancer
Genome Atlas (TCGA; https://portal.gdc.cancer.gov/) da-
tabase. After removing samples with survival time of 0, 506
samples were retained as the training set. Furthermore, 596
LGG subjects were obtained from the Chinese Glioma
Genome Atlas (CGGA; https://www.cgga.org.cn/), and they
were utilized as the validation set. Table 1 lists the clinical
information of the two datasets. Fragments per kilobase of
transcript per million fragments mapped (FPKM) values
were downloaded from TCGA or CGGA database and
transformed into transcripts per kilobase million (TPM)
values.

2.2. Inferring Tumor-Infiltrating Immune Cells and Stromal
Cells. CIBERSORTx algorithm (https://cibersortx.stanford.
edu/) was applied to estimate the abundances of immune
cells in each LGG sample based on gene expression profiles
[12]. )e LM22 signatures were employed and permutations
were set as 1,000 times. Meanwhile, immune scores and
stromal scores were determined to infer the fractions of
stromal cells and immune cells in each specimen according
to expression data via ESTIMATE algorithm (https://
sourceforge.net/projects/estimateproject/) [13].

2.3. Unsupervised Clustering Analysis. Consensus clustering
method may provide quantitative evidence for determining
the number andmembership of possible clusters in a dataset.
LGG specimens were clustered utilizing “Consensu-
sClusterPlus” R package (version 1.58.0) [14]. When k� 2 to
9, consensus matrix, consensus cumulative distribution
function (CDF), delta area, and tracking plots were con-
structed to determine the optimal k value. )en, cluster
consensus and item consensus were calculated, respectively.
Clustering results were validated by principal component
analysis (PCA).

2.4. Differential Expression Analysis. Differentially
expressed genes (DEGs) with |fold change (FC)| > 2 and
adjusted p value < 0.05 were screened among ICI subtypes
through applying “limma” R package (version 1.9.6) [13].

2.5. ICI Scores. Unsupervised clustering analysis was applied
for categorizing all subjects based on DEGs. Furthermore,
DEGs that displayed positive and negative correlations to
gene clusters were separately named as ICI gene signatures A
and B. To lower the noise or redundant genes, the Boruta

algorithm was utilized for performing dimension reduction
in the ICI gene signatures A and B. Principal component 1
(PC1) was extracted as the signature score through applying
the PCA. According to previous studies [15, 16], the ICI
score of each subject was calculated as follows: ICI score�Ʃ
PC1A – PC1B.

2.6. Functional Enrichment Analysis. Gene ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses of ICI gene signatures A and B were
separately presented via “clusterProfiler” R package (version
2.2.7) [17]. Adjusted p value < 0.05 indicated significant
enrichment.

2.7. Gene Set Enrichment Analysis (GSEA). GSEA, a com-
putational method, may be utilized for determining whether
a set of genes display differential expression in two biological
states [18]. Here, this study employed GSEA to identify
differences in KEGG pathways between high and low ICI
score groups. Gene set permutations were presented 1000
times. ICI score was set as a phenotype label. Enriched
KEGG pathways were screened based on false discovery rate
(FDR)< 0.05.

2.8. Tumor Mutation Burden (TMB). TMB was defined as
the ratio of total count of variants and the total length of
exons [19]. )e differences in TMB between high and low
ICI score groups were compared by the Wilcoxon rank-sum
test. )e correlation coefficient between ICI scores and TMB
was computed via Spearman analysis.

2.9. Screening SmallMoleculeDrugs. DEGs with |FC| > 2 and
adjusted p value < 0.05 were filtered between high and low
ICI score groups utilizing “limma” R package. )e two lists

Table 1: )e clinical characteristics of LGG patients in TCGA and
CGGA datasets.

Characteristics TCGA (n� 506) CGGA (n� 596)
Age
≤50 352 501
>50 154 94
NA 0 1

Gender
Female 226 251
Male 280 345

IDH
Mutant 405 416

Wild-type 94 141
NA 7 39

1p19q
Codel 165 180

Noncodel 337 373
NA 4 43

MGMT
Methylated 416 287

Unmethylated 86 202
NA 4 107
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of upregulated and downregulated genes were analyzed
through the Connectivity Map (CMap; http://portals.
broadinstitute.org/cmap/) database [20]. Small molecular
drugs were filtered based on the enrichment value and
permutation p value. CMap mode-of-action (MoA) analysis
was applied for exploring underlying mechanisms of action.

2.10. Statistical Analysis. Statistical analysis was achieved via
R language. Kaplan-Meier curves of overall survival (OS)
were presented for LGG patients in different subgroups and
the differences were compared by log-rank test. Spearman
analysis was employed to determine the correlation coeffi-
cients. Kruskal-Wallis test was applied for comparing over
two subgroups, while Wilcoxon test was utilized for com-
paring two subgroups. )e X-tile software was employed for
classifying patients into high and low ICI groups to lower the
computational batch effects. Two-tailed p value < 0.05 in-
dicated statistical significance.

3. Results

3.1. Characterization of ICI Subtypes with Distinct Survival
Outcomes in LGG. Here, the CIBERSORTx and ESTIMATE
algorithms were employed for determining the infiltration
levels of immune cells in LGG tissues. On the basis of 506
LGG specimens plus corresponding ICI profiling, these
subjects were classified into three subtypes through the
“ConsensusClusterPlus” package (Figures 1(a)–1(c)). PCA
results confirmed the distinct classifications into three
subtypes: ICI subtype A (n� 245), ICI subtype B (n� 75),
and ICI subtype C (n� 186; Figure 1(d)).We further clarified
the differences in clinical phenotypes among the three ICI
subtypes, as shown in Figure 1(e). Novel immunotherapies
have brought hope to LGG patients, but not each patient can
respond to such therapies [21]. Since every tumor is dif-
ferent, it is important to investigate how to use the biology
behind tumor cells to successfully treat more cancer patients
[22]. “Cold” tumors with few T cells are generally less
sensitive to immunotherapy [23]. Among the three ICI
subtypes, ICI subtype A displayed the lowest infiltration
levels of Tcells (Figure 1(e)). Moreover, ICI subtype A was in
relation with undesirable survival outcomes (p � 0.007;
Figure 1(f )). )is classification pattern was confirmed in the
CGGA-LGG dataset (Supplementary Figure 1).

3.2. &e Landscape of Tumor Microenvironment Components
in the &ree ICI Subtypes of LGG. )e interactions between
tumor-infiltrating immune cells, immune scores, and stro-
mal scores in tumor microenvironment of LGG tissues were
analyzed in depth. Figure 2(a) depicts the correlation co-
efficients between them in tumor microenvironment. We
found that activated CD4 memory T cells were strongly
positively correlated to plasma cells. Meanwhile, there was a
strongly positive correlation between stromal scores and
immune scores. ICI subtype B was characterized by in-
creased infiltration levels of plasma cells, CD8 T cells, CD4
memory resting T cells, regulatory T cells (Tregs), macro-
phages M0, resting dendritic cells, resting mast cells, and

neutrophils (Figure 2(b)). ICI subtype C had the features of
increased infiltration levels of follicular helper T cells, ac-
tivated NK cells, monocytes, activated mast cells, and eo-
sinophils. Furthermore, ICI subtype A exhibited the
characteristics of elevated macrophage M2 levels, immune
scores, and stromal scores. PD-L1, as an immune inhibitory
receptor ligand, induces T cell dysfunction as well as apo-
ptosis, thereby suppressing inflammatory responses and
promoting tumor immune evasion [24]. Here, the expres-
sion of immune checkpoint PD-L1 was evaluated in each ICI
subtype. Our results showed that ICI subtype A had the
features of an increased PD-L1 expression, while ICI subtype
C had the features of decreased PD-L1 expression
(Figure 2(c)).

3.3. Identifying ICI Gene Clusters for LGG. )is study
unraveled potential biological features of the three ICI
subtypes. By differential analysis among subtypes, DEGs
were determined. )rough unsupervised clustering analysis,
four ICI gene subtypes were clustered based on these DEGs,
called gene clusters A, B, C, and D (Figures 3(a)–3(c)). 231
DEGs that had positive correlations to ICI gene subtypes
were called ICI gene signatures A, while 236 DEGs were
named as ICI gene signatures B (Supplementary Table 1).
)e heatmap depicted the clinical features and expression
patterns of ICI gene signatures of the four ICI gene clusters
(Figure 3(d)).)e ICI scores were compared among the gene
clusters. We found that gene cluster B was characterized by
decreased ICI scores, while gene cluster D had increased ICI
scores (p< 2.2e − 16; Figure 3(e)).

3.4.BiologicalCharacteristics of ICI-RelevantGeneSignatures.
To uncover the biological characteristics of ICI gene sig-
natures A and B, we presented functional enrichment
analysis. Our results revealed that ICI gene signatures Awere
mainly related to signal transduction-related biological
processes and pathways such as neurotransmitter transport,
synaptic vesicle cycle, vesicle-mediated transport in synapse,
modulation of chemical synaptic transmission, regulation of
transsynaptic signaling, neurotransmitter secretion,
GABAergic synapse, cholinergic synapse, and neuroactive
ligand receptor interaction (Figures 4(a) and 4(b)). Mean-
while, ICI gene signatures B were mainly enriched in im-
mune-related pathways such as leukocyte migration,
leukocyte cell-cell adhesion, leukocyte proliferation, neu-
trophil activation, regulation of lymphocyte proliferation,
regulation of mononuclear cell proliferation, antigen pro-
cessing and presentation, complement and coagulation
cascades, Toll-like receptor signaling pathway, )17 cell
differentiation, )1 and )2 cell differentiation, cytokine-
cytokine receptor interaction, and chemokine signaling
pathway (Figures 4(c) and 4(d)).

3.5. Development of the ICI Score System for LGG. Based on
ICI gene signatures A and B, PCA was presented for
computing ICI score of each LGG patient. All patients in the
TCGA-LGG dataset were separated into high or low ICI
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scores according to the optimal cutoff value. Figure 5(a)
depicts the distribution of ICI scores and survival status for
patients in the four ICI gene clusters. Patients with low ICI
scores exhibited an undesirable prognosis compared to those
with high ICI scores in the TCGA-LGG dataset (p< 0.001;
Figure 5(b)). )e prognostic efficiency of the ICI score
system was confirmed in the CGGA-LGG dataset (p< 0.001;
Figure 5(c)). To uncover the biological implications of ICI
scores, GSEA was presented. High ICI scores were distinctly
correlated to gap junction, neuroactive ligand receptor in-
teraction, and oxidative phosphorylation (Figure 5(d);
Supplementary Table 2). Meanwhile, low ICI scores were in
relation with apoptosis, B cell receptor signaling pathway,
cell adhesion, cytokine-cytokine receptor interaction, JAK

STAT signaling pathway, and Notch signaling pathway
(Figure 5(e); Supplementary Table 3).

3.6. &e Roles of ICI Score in Predicting Response to
Immunotherapy. High ICI scores were significantly corre-
lated to increased infiltration levels of memory B cells, CD8
T cells, CD4 näıve T cells, follicular helper T cells, macro-
phages M0, and eosinophils (Figure 6(a)). Meanwhile, low
ICI scores were characterized by increased infiltration levels
of naı̈ve B cells, plasma cells, CD4 memory resting T cells,
Tregs, resting NK cells, macrophages M2, and activated
dendritic cells as well as increased immune scores and
stromal scores. We also assessed the differences in the
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Figure 1: Characterization of ICI subtypes with distinct survival outcomes for LGG in TCGA-LGG dataset. ((a)–(c)) Unsupervised
clustering analysis for classifying three ICI subtypes by the “ConsensusClusterPlus” package. (a) Consensus cumulative distribution
function graph. (b) Delta area plot. (c) Heatmap for consensus matrix when k� 3. (d) PCA plots for the classification patterns of the ICI
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4 Journal of Oncology



expression of immune checkpoint genes and immune ac-
tivity genes between groups. As shown in Figure 6(b), high
ICI scores exhibited correlations with lower immune activity
genes including GZMA, TBX2, TNF, PRF1, IFNG, CXCL9,
and CXCL10 as well as reduced immune checkpoint genes
including LAG3, CD274, IDO1, PDCD1, HAVCR2, and
CTLA4. Furthermore, TMB score was distinctly reduced in
the high ICI score group compared to the low ICI score
group (p � 0.024; Figure 6(c)). Spearman analysis demon-
strated that ICI scores displayed a significant negative
correlation to TMB (r� −0.15, p � 8e − 04; Figure 6(d)).
)ese data indicated that LGG patients with high ICI scores
had lower responses to immunotherapy.

3.7. Potential Small Molecular Drugs Based on ICI Scores.
Small molecular drugs were further predicted by employing the
CMap database. Firstly, we identified 775 downregulated genes
and 366 upregulated genes in high ICI score group compared
to low ICI score group (Figure 7(a); Supplementary Table 4).

)rough the CMap database, underlying small molecular
compounds against LGG such as carbarsone, sulfabenzamide,
and phenazone were predicted based on downregulated and
upregulated genes, listed in Table 2. Furthermore, the potential
mechanisms of action were analyzed via MoA. Dopamine
receptor antagonist and PPAR receptor agonist were the most
shared mechanisms of action (Figure 7(b)).

4. Discussion

LGG displays great heterogeneity at the genetic and mo-
lecular levels, affecting the efficacy of immunotherapies [25].
)e immune microenvironment of LGG is a complex
neuroinflammatory network, involving positive as well as
negative immune regulators [26]. )is study characterized
the ICI landscape and developed ICI score system that may
predict survival outcomes as well as the response to im-
munotherapies, which extended our comprehension about
the immune microenvironment of LGG.
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Figure 2: )e landscape of tumor microenvironment components in the three ICI subtypes of LGG. (a) Correlations between tumor-
infiltrating immune cells, immune scores, and stromal scores in LGG tissues. )e more towards red, the greater the positive correlation
coefficient; the more towards blue, the greater the negative correlation coefficient. (b) Box plots for the infiltration levels of tumor-infiltrating
immune cells in each ICI subtype. (c) Violin plots for the expression of PD-L1 in each ICI subtype. Kruskal-Wallis test, ns: not significant;
∗p< 0.05; ∗∗p< 0.01; ∗∗∗p< 0.001.
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Immunohistochemistry and flow cytometry are two
commonly applied methods to detect tumor-infiltrating
immune cells, depending on a certain biomarker [27–29].

However, because many marker proteins are expressed in
distinct cell types, both are misleading and incomplete [30].
Here, we analyzed the fractions of 22 immune cells, immune

Kruskal−Wallis, p < 2.2e−16
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Figure 3: Construction of ICI gene clusters for LGG. ((a)–(c)) Unsupervised clustering analysis for identifying ICI gene clusters based on
DEGs among ICI subtypes. (d) Heatmap for clinical features and expression patterns of ICI gene signatures in each ICI gene cluster.
(e) Violin plots for the ICI scores in each ICI gene cluster. Kruskal-Wallis test, p< 2.2e − 16.
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Figure 4: Functional enrichment analysis of ICI gene signatures A and B; GO and KEGG pathway enrichment results of ((a) and (b)) ICI
gene signatures A and ((c) and (d)) ICI gene signatures B.
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scores, and stromal scores in LGG tissues by the CIBER-
SORTx and ESTIMATE algorithms [31]. We found that
there was a strongly positive correlation between stromal
scores and immune scores. Immune cells and stromal cells
are key components in the tumor microenvironment [32],
which exert a critical role in LGG progress and survival
outcomes [33]. Previously, immune scores and stromal
scores exhibited correlations to tumor grade as well as
outcomes in LGG [3]. Here, this study characterized three
ICI subtypes with distinct survival outcomes and infiltra-
tions of immune cells. ICI subtype B was characterized by
increased infiltration levels of plasma cells, CD8 Tcells, CD4
memory resting T cells, Tregs, macrophages M0, resting
dendritic cells, resting mast cells, and neutrophils. ICI
subtype C was featured by increased infiltration levels of
follicular helper T cells, activated NK cells, monocytes, ac-
tivated mast cells, and eosinophils. ICI subtype A exhibited
the characteristics of elevated macrophage M2 levels, im-
mune scores, and stromal scores. PD-L1 expression is a

critical marker for predicting response to immune check-
point inhibitor therapy [34]. We found that three ICI
subtypes showed correlations to PD-L1 expression, indi-
cating that subjects in the three subtypes could be differ-
entiated to the response to immunotherapy.

)is study constructed four ICI gene subtypes. Gene
cluster B displayed the features of decreased ICI scores, while
gene cluster D had the features of increased ICI scores. We
further uncovered the biological characteristics of ICI gene
signatures A and B. ICI gene signatures A were mainly
related to signal transduction. Malfunction of signal
transduction may induce LGG initiation [35]. Moreover, ICI
gene signatures B were primarily enriched in immune-re-
lated pathways such as Toll-like receptor pathway, chemo-
kine pathway, B cell receptor pathway, and )1, )2, and
)17 cell differentiation. ICI score system was developed for
prediction of LGG patients’ prognosis. Our results showed
that patients with low ICI scores exhibited undesirable
clinical outcomes, which were confirmed in the CGGA-LGG
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Figure 5: Development of ICI score system for LGG. (a) Alluvial diagram for the distributions of ICI scores and survival status in the four
ICI gene clusters. ((b) and (c)) Kaplan-Meier curves of OS for patients with high and low ICI scores in the (b) TCGA-LGG and (c) CGGA-
LGG datasets. Log-rank test, p< 0.001. ((d) and (e)) GSEA for the enrichment results in (d) high and (e) low ICI score groups.
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dataset. )us, this score system could be utilized for pre-
dicting LGG patients’ prognosis. We further probed into the
biological features based on ICI scores. High ICI scores
displayed correlations to gap junction, neuroactive ligand
receptor interaction, and oxidative phosphorylation. Fur-
thermore, low ICI scores were significantly related to apo-
ptosis, B cell receptor signaling pathway, cell adhesion,
cytokine-cytokine receptor interaction, JAK STAT signaling
pathway, and Notch signaling pathway. )e above pathways
may contribute to LGG progression. For example, IFN-c
may activate JAK/STAT pathway by binding to receptor,
thereby inducing PD-L1 expression on tumor cells [24].

Several tumor-suppressive factors containing cytokines like
TGF-β and IL-10 have been discovered in LGG [36].

Immunotherapies have emerged as promising therapeutic
strategies in LGG. Tumor-infiltrating immune cells affect re-
sponsiveness to such therapies as well as outcomes. )us, we
further characterized the infiltration levels of tumor-infiltrating
immune cells in high and low ICI score LGG samples. High ICI
scores exhibited correlations to increased infiltration levels of
memory B cells, CD8 Tcells, CD4 näıve Tcells, follicular helper
Tcells, macrophages M0, and eosinophils, while low ICI scores
were in relation with increased infiltration levels of näıve
B cells, plasma cells, CD4memory resting Tcells, Tregs, resting

* *** ** * ** ** ns *** *** ns * ns ns *** ns *** ns ** ns ns *** ns *** ***

0

4

8

12

B 
ce

lls
 n

ai
ve

B 
ce

lls
 m

em
or

y

Pl
as

m
a c

el
ls

T 
ce

lls
 C

D
8

T 
ce

lls
 C

D
4 

na
iv

e

T 
ce

lls
 C

D
4 

m
em

or
y 

re
sti

ng

T 
ce

lls
 C

D
4 

m
em

or
y 

ac
tiv

at
ed

T 
ce

lls
 fo

lli
cu

la
r h

el
pe

r

T 
ce

lls
 re

gu
la

to
ry

 (T
re

gs
)

T 
ce

lls
 g

am
m

a d
el

ta

N
K 

ce
lls

 re
sti

ng

N
K 

ce
lls

 ac
tiv

at
ed

M
on

oc
yt

es

M
ac

ro
ph

ag
es

 M
0

M
ac

ro
ph

ag
es

 M
1

M
ac

ro
ph

ag
es

 M
2

D
en

dr
iti

c c
el

ls 
re

sti
ng

D
en

dr
iti

c c
el

ls 
ac

tiv
at

ed

M
as

t c
el

ls 
re

sti
ng

M
as

t c
el

ls 
ac

tiv
at

ed

Eo
sin

op
hi

ls

N
eu

tr
op

hi
ls

Im
m

un
eS

co
re

St
ro

m
al

Sc
or

e

En
ric

h 
sc

or
e

ICI score

High
Low

(a)

*** *** *** *** *** ns *** *** *** *** *** *** *** *** ***

0

2

4

6

8

G
ZM

A

LA
G

3

CD
27

4

ID
O

1

TB
X2

G
ZM

B

TN
F

PR
F1

IF
N

G

CX
CL

9

PD
CD

1

CX
CL

10

CD
8A

H
A

V
CR

2

CT
LA

4

G
en

e e
xp

re
ss

io
n

ICI score

Low

High

(b)

0.024

0

1

2

Low High

Tu
m

or
 B

ur
de

n 
M

ut
at

io
n

ICI score
Low

High

(c)

R = −0.15, p = 8e−04

0.0

0.5

1.0

1.5

2.0

2.5

−2 −1 0 1 2
ICI score

Tu
m

or
 B

ur
de

n 
M

ut
at

io
n

geneCluster
A
B

C
D

(d)

Figure 6: Assessment of the roles of ICI score in predicting response to immunotherapy. (a))e correlations between ICI scores and tumor-
infiltrating immune cells. (b))e correlations of ICI scores with immune checkpoint genes and immune activity genes. (c))e TMB levels in
high and low ICI score groups. (d) Scatter plots for the Spearman correlation between TMB and ICI scores.Wilcoxon test, ns: not significant;
∗p< 0.05; ∗∗p< 0.01; ∗∗∗p< 0.001.
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Figure 7: Prediction of potential small molecular drugs based on ICI scores by the CMap database. (a) Heatmap for upregulated genes (red)
and downregulated genes (blue) between high and low ICI score groups. (b) Mechanisms of action shared by small molecular compounds.
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NK cells, macrophages M2, and activated dendritic cells.
Furthermore, LGG with low ICI scores had increased immune
scores as well as stromal scores. )ese data reflected the het-
erogeneity of tumor immune microenvironment between high
and low ICI score LGG tissues. Immunotherapies with
blockage of immune checkpoints have displayed clinical effi-
cacy in LGG [37]. Here, high ICI scores were characterized by
decreased immune activity genes including GZMA, TBX2,
TNF, PRF1, IFNG, CXCL9, and CXCL10 as well as reduced
immune checkpoint genes including LAG3, CD274, IDO1,
PDCD1, HAVCR2, and CTLA4. TMB has been an indepen-
dent prognostic index for glioma and increased TMB indicates
poorer survival outcomes [38]. Furthermore, TMBmay predict
the response to immune checkpoint inhibitors in advanced
cancers [39]. In the high ICI score group, there was a reduced
TMB score compared to the low ICI score group. Also, ICI
score displayed a negative correlation to TMB score. Hence,
LGG patients with high ICI scores might have less response to
immunotherapies. Based on DEGs between high and low ICI
scores, we predicted several small molecular drugs against LGG
such as carbarsone, sulfabenzamide, and phenazone. More
experiments should be presented to verify the effects of these
compounds on treating LGG in future studies.

However, several limitations should be pointed out. First
of all, our conclusion was acquired in public databases.)us,
it is indispensable to verify it through experiments. )e
clinical significance of ICI score in predicting prognosis and
immunotherapy in LGG should be confirmed in the future.
Despite these limitations, our study provides clues for the
ICI landscape in LGG for aiding immunotherapy.

5. Conclusion

Collectively, this study characterized the ICI landscape in
LGG by the CIBERSORTx and ESTIMATE algorithms.
)rough unsupervised clustering analysis, we established
three ICI subtypes and four ICI gene clusters. PCA was

applied to develop ICI score system for LGG. Patients with
high ICI scores exhibited favorable clinical outcomes but
lower sensitivity to immunotherapies. Despite this, this
scoring system should be validated in larger LGG cohorts.
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Table 2: Potential small molecular drugs based on ICI scores through the CMap database.

Rank CMap name Mean n Enrichment p Specificity Percent nonnull
1 Carbarsone 0.345 4 0.863 0.00048 0 50
2 Sulfabenzamide 0.312 4 0.8 0.00302 0.0072 50
3 Phenazone −0.359 3 −0.838 0.00853 0.0173 66
4 Prestwick-675 −0.468 4 −0.743 0.00869 0.0928 75
5 Epitiostanol −0.386 4 −0.712 0.0141 0.0432 50
6 Cinoxacin −0.5 4 −0.701 0.01675 0.0197 75
7 Econazole 0.508 4 0.7 0.01677 0.1282 75
8 Betulin 0.456 3 0.771 0.02396 0.0127 66
9 Mevalolactone −0.443 3 −0.77 0.02504 0.0514 66
10 Depudecin 0.391 2 0.887 0.0263 0.0188 50
11 Antazoline −0.433 4 −0.658 0.03127 0.0315 75

12
16,16-

Dimethylprostaglandin
E2

−0.388 3 −0.749 0.03219 0.0276 66

13 Naftidrofuryl −0.3 4 −0.653 0.03428 0.0065 50
14 Metixene −0.273 4 −0.65 0.03555 0.0615 50
15 Zidovudine 0.281 4 0.644 0.03873 0.0245 50
16 Metergoline 0.336 4 0.638 0.04205 0.1726 50
17 Harmaline −0.268 4 −0.636 0.04255 0.0353 50
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Supplementary Table 1: the list of ICI gene signatures A and
B. Supplementary Table 2: GSEA results in high ICI score
group. Supplementary Table 3: GSEA results in low ICI score
group. Supplementary Table 4: DEGs between high and low
ICI score groups. Supplementary Figure 1: validation of the
three ICI subtypes for LGG in the CGGA-LGG dataset.
(A–C) Unsupervised clustering analysis for validating the
classifications of three ICI subtypes. (A) Consensus cu-
mulative distribution function graph. (B) Delta area plot. (C)
Heatmap for consensus matrix when k� 3. (D) Heatmap of
tumor-infiltrating immune cells in different clinical phe-
notypes and ICI subtypes. (E) PCA plots for confirming the
classification patterns of the ICI subtypes. (F) Kaplan-Meier
curves for OS of LGG patients in the three ICI subtypes.
(Supplementary Materials)
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Background. Castration-resistant prostate cancer (CRPC), one of the prostate cancers, is a medical conundrum around the world.
Some studies have demonstrated that many long noncoding RNAs in exosomes are very important in many types of cancer,
including prostate cancer. However, until now, the function of exosomes in the occurrence and development of CRPC has not
been reported. Methods. In vitro, cell coculture was used in LNCap cells and PC-3 cells, while the isolation and purification of
exosomes and the subsequent treatment assays were used in functional studies. In vitro assays were performed to detect the
transformation of ADPC cells (androgen-dependent prostate cancer) into AIPC cells (androgen-independent prostate cancer).
Subsequently, a lncRNA-sequencing assay was performed to detect different lncRNA expression profiles in ADPC cells cocultured
with or without AIPC exosomes. ,e role of LINC01213 was analysed by a TCGA database after silencing the expression of
LINC01213. CCK-8, qRT-PCR, and Western blotting studies were performed to analyse the possible mechanism by which
exosomes participate in prostate cancer progression. Results. In the coculture system, ADPC cells acquired androgen deprivation
tolerance through exosome-mediated intercellular communication. Exosomes secreted by AIPC cells can promote the trans-
formation of ADPC cells into androgen-independent cells in vitro and in vivo. lncRNA sequencing showed that LINC01213 was
upregulated in exosomes derived from AIPC cell lines. ,e rescue experiments were preformed, and the results revealed that most
of the functions of LINC01213 were performed by Wnt/β-catenin. Conclusions. All the findings showed that exosomes play a key
role in CRPC progression by upregulating LINC01213 and activating Wnt/β-catenin signalling.

1. Introduction

Prostate cancer (PCa) is one of the most common malig-
nancies among men in the world [1]. In China, both inci-
dence and death rates from prostate cancer have also
increased significantly over the past decade [2]. Although
many treatments have been used to treat prostate cancer,
such as radical resection and radiotherapy [3], the thera-
peutic effect is not very satisfactory; most patients eventually
revert to castration-resistant prostate cancer (CRPC) [3].
Hence, finding out the pathogenesis of CRPC and further

studying its mechanism is the key step to solve this problem,
which also is the goal of the research.

Exosomes are extracellular vesicles (EVs) that have been
used as a new therapy tool, including drug delivery and
antitumor therapy, for a variety of diseases [4]. Almost all
cells release exosomes [5], including normal and tumor cells
[6, 7]. Exosomes are even found in blood [8], urine [9], and
saliva [10]. Exosomes contain not only proteins but also
multiple different types of RNA molecules, lncRNAs are
included [11], and exosomes also act as messengers between
cells that carry messages to each other [5, 12]. ,e study of
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exosomes in prostate cancer is increasing day by day, and the
function of exosomes in prostate cancer has been reported
by many researchers. It has been shown that lncRNA-p21 is
present in exosomes of PCA patients, and this level of
lncRNA-p21 may be helpful for improving the diagnosis and
prediction of the malignant state in PCA patients [13].
Zhang et al. reported that in prostate cancer, exosomes can
activate heme oxygenase-I to affect the progression of
prostate cancer [14].

Noncoding long RNA is a new kind of noncoding RNA,
which is more than 200 nucleotides (nT) in size and does not
encode any protein, and the main reason is that they lack an
open reading framework [15–17]. Current studies suggest
that lncRNAs can be implicated in various human cancers,
and there have been reports of breast cancer [18], lung
cancer [19], and gastric cancer [20]. With respect to prostate
cancer, there are also related reports, for example, PCA3 and
SChLAP1 were reported to be biomarkers for prostate
cancer [21–23]. PCGEM1 and PRNCR1 play a key role in
androgen-dependent transcription by promoting chromatin
cyclization between the AR-binding enhancer and promoter
of target gene [24]. In addition, a previous study confirmed
that LINC01213 plays an important role in cancers [25, 26];
Until now, the function of LINC01213 is in its infancy of
prostate research.

,e concept of the tumor microenvironment has been
proposed in recent years, andmany researchers have focused
on the role of tumor microenvironment in the development
and progression of tumors, including prostate cancer [27].
,erefore, tumor microenvironment may be involved in the
androgen resistance process. We are interested in exosomes
that play a key role in cell-cell interactions. ,e purpose of
this study was to investigate the exosomal role of LINC01213
in the transformation of androgen-dependent prostate
cancer cells into androgen-independent prostate cancer
cells.

2. Materials and Methods

2.1. Cell Culture. ,e prostate cancer cell lines LNCaP and
PC-3 were purchased from the American Type Culture
Collection (ATCC; Rockville, MD, USA). RPMI1640 me-
dium was supplemented with 10% fetal bovine serum (FBS,
Gibco, Grand Island, NY, USA) and 1% penicillin strep-
tomycin (Gibco). All cells were cultured in 5% CO2 incu-
bator humidified at 37°C.

2.2. Coculture of LNCAP Cells with PC-3 Cells. LNCaP cells
and PC-3 cells were cocultured in the transwell coculture
system (0.4 μm transwell insert). LNCaP cells seeded in
superior cavity and PC-3 cells were cocultured in inferior
cavity for 10 days. When PC-3 cells reached 90% confluence,
LNCAP cells were transferred to a new plate.

2.3. Exosomes Isolated by Ultracentrifugation. In order to
remove the dead cells, we centrifuged the harvested cultures
(300ml) in 500 g for 30min and then continued centrifuging
in 2000 g for 30min. After that, the supernatant was

collected and centrifuged at 10000 g for 30min, collected the
supernatant again, and centrifuged at 100000 g for 120min
for obtaining exocrine granules. At this step, the pellet was
collected and resuspended in PBS.

2.4. lncRNAs Sequencing. We used the miRNeasy kit
(Qiagen) to extract total RNA from DHT-treated LNCaP
cells. RNA mass was measured by the Agilent Bioanalyzer.
,en, according to the published scheme [27], all samples
were sequenced with Illumina HiSeq 2000 (read length
100 nT) according to the previous reports [28].

2.5. CCK-8 Determination. Cell proliferation was detected
with the CCK-8 kit (Kumamoto Dojindo, Japan). Seed the
cells in the 96-well plate at 1000/well density. After 0, 1, 2, 3,
and 4 days, 10 L CCK-8 (5mg/ml) was added to each well
and incubated at 37°C for 2 hours. Finally, the cells were
measured at 450 nm with an enzyme analyzer (,ermo-
Fisher Scientific, Waltham, MA, USA).

2.6. Cell Cycle Assay. ,e transfected cells were dissolved
overnight in precooled ethanol (75%) at 4°C, washed with
cold PBS once, and stained with BD, PharmingenTM, PI/
RNase at room temperature for 30min. Finally, cell cycles
(GO/G1, S, and G2) were analysed by flow cytometry (BD
Biosciences).

2.7. TumorigenicityAssay. Male NOD/SCIDmice (Shanghai
Bikai) aged 4–6 weeks were used to determine their tu-
morigenicity. ,e experimental design was approved by the
Local Ethics Committee of Minhang Hospital of Fudan
University (certificate no.: 2020-032-01K). Before the an-
drogen ablation experiment in vivo, we castrated the mice
carefully. After that, two groups of cells were injected into
mice; one group cell was treated with PBS, while another one
was treated with exosomes. After 40 days, the mice were
killed, and the tumors were removed.

2.8. Real-TimeQuantitativePCR (qRT-PCR). Total RNAwas
extracted from cells using TRIzol reagent (15596026, Invi-
trogen, Carlsbad, CA, USA). For qRT-PCR, the HiScript II
first strand cDNA synthesis kit (Vazyme Biotech Co.) was
used generate the first station cDNA. Gene expression was
detected with SYBR ex Taq premix (RR420A, Takara, Takara,
Dalian, China). All PCRs were detected by at least three
copies, and the results were standardized by GAPDH, which
were calculated using the 2−ΔΔCTmethod. ,e gene specific
primers were designed and synthesized by SprinGen Bio-
tech, and their sequences are given in Supplementary
Table S1.

2.9. Small Interfering RNA (siRNA) Transfection. ,e effec-
tive siRNA targeting human LINC01213 was purchased
from RiboBio (Guangzhou, China). Lipofectamine 2000
(11668019, Invitrogen, Carlsbad, CA, USA) was used to
transfect siRNA, and the final transfection concentration
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was 10 nM. Finally, qRT-PCR was used to detect the ex-
pression changes.

2.10. Western Blotting. ,e cells were scraped off with a
spatula and then lysed with RIPA buffer which was added
with protein inhibitors. ,e BCA protein assay kit (Beyo-
time, China) was used to determine the protein concen-
tration. ,e total protein (30 ug) or exosomes were then
isolated by SDS-PAGE gel and transferred to PVDF
membrane (1620177, PVDF, BioRad, Hercules, USA). ,e
membranes were sealed in 5% skimmilk for 60min and then
treated at 4°C with primary antibodies (PSA, AR, TSG101,
HSP70, and Alix) overnight; all primary antibodies dilution
ratios are 1–1000. On the second day, the membranes were
clear with PBS for 3 times, and the second antibody was then
incubated at room temperature for 1 hour. Finally, ELC
luminescence was used for measurement the protein bands.

2.11. Statistical Analysis. All experiments were made in
triplicate, and the data were analysed using GraphPad Prism
8 (CA, USA) software. All data were expressed as mean-
± standard deviation (SD). Student’ t-test was used to es-
timate the significance of the difference between the two
groups, and one-way analysis of variance (ANOVA) was
used to compare the two groups. ,e statistical significance
was P< 0.05 (∗) and P< 0.01 (∗∗), respectively.

3. Result

3.1. Androgen Deprivation Resistance Induced by
Coculture of LNCaP Cells and PC-3 Cells. To investigate
trend resistance, we choose two cells for this study: one is
LNCaP cell and another is PC-3. First, LNCAP cells and PC-
3 cells were cocultured in a transwell system, LNCaP cells
were cultured in lower cavity, and PC-3 cells were cultured
in upper cavity. After 10 days, we found that AR-responsive
genes and EMT marker genes were significantly changed
after coculturing; CDK1, CDK2, and GRBE1 were down-
regulated, and N-cadherin was upregulated, while E-cad-
herin was downregulated in LNCAP cells (Figures 1(a) and
1(b)). Compared with the normal medium control group,
the proliferation of LNCaP cells in the androgen-deficient
medium group increased significantly (Figures 1(c) and
1(d)). ,e results of flow cytometry showed that the S phase
was significantly increased in the cocultured group under
castration conditions, but there was no significant difference
under normal conditions. Western blotting assay was per-
formed to detect the protein level of AR and PSA, and the
result showed that both AR and PSA were significantly
decreased in the coculture condition (Figures 1(e) and 1(f)).

3.2. Isolationand Identificationof Exosomes. Why do LNCaP
cells have such a great influence on coculture? We suspected
that the exosomes of PC-3 cells played a key role, so the
exosomes were isolated from the culture supernatant of PC-
3 cells. Transmission electron microscopy showed that the
appearance of membrane-limited particles was uniform and

ranged from approximately 100 nm. Western blotting of
exosomal markers such as Alix, TSG101, and HSP70 showed
that the granules had exosomal characteristics and could be
separated uniformly (Figures 2(a) and 2(b)).

3.3. ExosomesDerived fromAIPCCells Promote Emasculation
Resistance in ADPC Cells. In order to further investigate the
role of PC-3 exosomes in the castration resistance of LNCaP
cells, we first incubated PC-3 exosomes (50 g/ml) with
LNCaP cells, and then, CCK-8 assay and flow cytometry
assay were used to detect the proliferation and cell cycles.
After incubating PC-3 exosomes, the proliferation of LNCaP
cells increased significantly not only in androgen-deprived
medium but also in general medium (Figures 3(a) and 3(b)).
Similar results occurred in the cell cycles assay; after in-
cubating PC-3 exosomes, the S phase of LNCaP cells in-
creased in both different condition (Figure 3(c)), and the
protein levels of PAR and PAR decreased significantly after
treated with PC-3 exosomes (Figure 3(d)).

In subsequent studies, animal experiments were per-
formed with intact and castrated NOD/SCID mice. ,e
tumorigenesis data showed that, after treated with PC-3
exosomes, the tumorigenicity of LNCaP cells was signifi-
cantly higher than that of normal LNCaP cells. It should be
noted that normal LNCaP cells cannot form tumors under
castration conditions, but some mice injected with the
treated LNCaP cells have the ability to form tumors
(Figure 3(e)), suggesting that AIPC cells may be induced by
androgen secretion.

3.4. LINC01213 May Play a Key Role in AIPC-Derived Exo-
somes in ADPC Cells. ,ere are many substances in exo-
somes, such as microRNA, lncRNA, or circRNA. To study
the underlying mechanism of exosome-induced castration
resistance, we focused on lncRNA. We performed the
lncRNA-sequencing assay; a heatmap of the lncRNA ex-
pression profiles showed 61 lncRNAs were found to be
significantly affected (1.5-fold change), with 52 lncRNAs
increased and 9 decreased (Figure 4(a)). KEGG pathway
analysis showed that the most affected ncRNAs were those
involved in tumor-related pathways, such as the Wnt/-
catenin pathway (Supplementary Figure 1).

,e first 10 lncRNAs were verified by qRT-PCR. In order
to evaluate the role of LINC01213 in prostate cancer, we first
analysed the expression of LINC01213 in the TCGA database
and found that it was upregulated in prostate cancer.We also
found that the expression of LINC01213 correlated with
prognosis of prostate cancer, and the higher the expression,
the worse the prognosis (Figures 4(c) and 4(d)).

3.5. LINC01213 Inhibits the Growth of ADPC Cells through
Wnt/-Catenin Signal Transduction and Partially Reduces
Androgen Dependence. In order to study the androgen-
dependent effect of LINC01213 on ADPC cells, LINC01213
was downregulated by siRNA, and CCK-8 assay was used to
detect the prefoliation again, and the result showed that the
prefoliation of LNCaP cells was inhibited under normal
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Figure 1:,e change of resistance of LNCaP cells in coculture with PC-3 cells. (a)-(b) qRT-PCR used to detect the gene level of E-cadherin,
N-cadherin, vimentin, AR, PSA, CDK1, CDK2, and GRBE1 after treatment. (c)-(d) CCK-8 used to detect the proliferation of LNCaP cells
and PC-3 cells in normal and androgen media. (e) ,e cell cycle of LNCaP cells and PC-3 cells cocultured on conventional or androgen
medium was detected. (f ),e protein level of PSA and AR in cocultured LNCAP/PC-3 cells analysed byWestern blot. ∗P< 0.05, ∗∗P< 0.01.
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Figure 2: ,e characterization of isolated exosomes. (a) Exosomes isolated from PC-3 cells identified by electron microscopy. (b) Western
blot analysis of exosome markers. CL, cell lysate; EXO, exosome.
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conditions (Figure 5(a)), and they cannot proliferate in the
absence of androgen (Figure 5(b)). Our results further
showed that downregulating LINC01213 in LNCAP cells
significantly decreased β-catenin protein levels (Figures 5(c)
and 5(d)).

4. Discussion

,e development of prostate cancer is a complex process,
and the transition from androgen-dependent to androgen-
independent is an even more complex process; sometimes,
ADPC cells and AIPC cells can coexist in a certain period of
time. ,erefore, exosomes may play a key role for this
transformation. Our results suggest that coculture with PC-3
cells in androgen medium can promote the proliferation of
LNCaP cells, but how PC-3 cells endow LNCaP cells with
castration resistance is still unclear.

Exosomes are 40–100 nanometre-sized vesicles that are
released into the extracellular space from many cell types. In

the human body, various body fluids contain these vesicles
[5, 29, 30]. Exosomes affect the phenotype of recipient cells
through intercellular communication. Until now, there are
few studies on exosomes. In recent years, researchers have
found that exosomes play multiple roles in many diseases,
such as inflammation [31], and there have beenmany studies
on exosomes in cancer, for example, the potential use of
exosomes as biomarkers for the diagnosis and treatment of
breast cancer [12]. Exosome-mediated miR-200b promotes
the proliferation of colorectal cancer [32]. In prostate cancer,
Husseini-Behesti et al. reported that prostate cancer-derived
excretion promotes proliferation and migration of LNCaP
cells [33]. Zhang et al. reported that in prostate cancer,
exosomes can activate heme-oxygenase-I to affect the pro-
gression of prostate cancer [14]. Nevertheless, there are less
reports that focus on function of exosomes in prostate
cancer, especially in the transformation. In the current re-
search, our results showed the role of exosomes not only
in vitro but also in vivo. ,e results showed that after treated
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Figure 4: Exosome PC-3 upregulates LINC01213, which may play a key role in prostate cancer. (a) Heatmap showing all differentially
expressed ncRNA between LNCaP cells cocultured with PC-3 exosomes and control cells. (b) qRT-PCR analysis confirmed the expression of
first 10 lncRNA. (c) LINC01213 levels in 492 PRAD and 152 normal tissues on the GEPIA website. (d) Kaplan–Meier survival analysis
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with PC-3 exosomes, the tumorigenicity of LNCAP cells was
markedly enhanced. Normal LNCAP cells could not grow
under castrated conditions, but with the treatment of PC-3
exosomes, cells had tumor-forming ability. ,ese results
show that exosomes play a key role in the process of the
transformation.

In order to further elucidate the mechanism of castration
resistance induced by AIPC exosomes, we used RNA-seq to
detect the differential expression of lncRNA in LNCaP cells
before and after PC-3 exosomes treatment. ,e results of
KEGG indicated that the differentially expressed lncRNAs
are associated with the regulation and cancer-related
pathways such as the Wnt/β-catenin pathway.

,ere are two kinds of ncRNA: short ncRNA and long
noncoding RNA (lncRNAs) [34]. lncRNAs have been

confirmed to participate in the regulation of tumorigenesis
and its progression into tumor suppressor genes or onco-
genes [35, 36], including prostate cancer [37]. LINC01213 is
a long noncoding intergenic RNA, which has been reported
in breast cancer [26]. We found that the expression of
LINC01213 was overexpression in prostate cancer. At the
same time, upregulation of LINC01213 activated the Wnt/
β-catenin pathway. Taken together, our findings suggest that
LINC01213 may be a novel therapeutic target for CRPC
patients.

To sum up, our study reveals the existence of LINC01213
molecule in exosomes of prostate cancer cells for the first
time. Our findings may help to clarify the role of tumor
microenvironment in the development of CRPC and pro-
vide a new direction for the treatment of CRPC.
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Cervical cancer (CC) is the 4th principal source of cancer death in females with 604,000 new patients and 342,000 deaths in 2020
worldwide. It has been extensively shown that circRNAs are involved in regulating CC development. Nevertheless, the function
and mechanisms of hsa_circ_0004543 in regulating CC need to be clearly elucidated. Herein, hsa_circ_0004543 expressions were
compared between 40 paired paracancerous and cancerous specimens from CC patients and between 6 CC cell lines and a normal
human cervical epithelial cell line based on qRT-PCR. Potential complementary binding sites between hsa-miR-217 and
hsa_circ_0004543 were predicted using the interactome, while binding sites for the hypoxia-inducible factor-1a (HIF-1a) were
predicted by TargetScan.,e function andmechanism of hsa_circ_0004543 in the development of CC were estimated by silencing
hsa_circ_0004543 with/without hsa-miR-217 or HIF-1a overexpression. ,e association between gene expressions was evaluated
with Pearson’s correlation analysis. Molecular mechanisms were explored by ribonucleic acid (RNA) pulldown, dual-luciferase
activity, and rescue experimental assays. Our results revealed that the hsa_circ_0004543 expression was considerably increased in
CC tissues and cells. Its silencing repressed proliferation and metastasis, while it increased apoptosis of CC cells. ,e investigation
of the mechanism showed that hsa-miR-217 silencing or HIF-1a overexpression rescued hsa_circ_0004543, and silencing
inhibited malignant phenotypes of CC cells. hsa_circ_0004543 upregulated the HIF-1α expression by sponging hsa-miR-217 in
CC development. ,erefore, the hsa_circ_0004543 functioned as a competing endogenous RNA (ceRNA) of hsa-miR-217 to
increase CC oncogenesis and metastasis by the upregulation of the HIF-1α expression. Consequently, targeting the hsa_-
circ_0004543/hsa-miR-217/HIF-1α axis might be a potential treatment approach for CC.

1. Introduction

Cancer is now commonly acknowledged as a worldwide
hazard to international development [1]. ,e latest United
Nations high-level meeting on noncommunicable diseases
(NCDs) confirmed this statement and further emphasized
the slow development in meeting the 2011 Political Decla-
ration on NCD prevention and control [1]. ,e lack of
sufficient molecular mechanisms to detect new biomarkers
for early diagnosis, antidrug development, and clinical
outcome prognosis has been recognized as the main
problems in reaching these goals. As a result, it is of great
significance to discover novel biomarkers in cancers.

As the 4th most commonly diagnosed malignancy,
cervical cancer (CC) is the 4th principal source of female
cancer deaths, with 604,000 new patients and 342,000 deaths
in 2020 worldwide [2, 3].

CC is commonly asymptomatic and may be diagnosed
during pelvic examination or routine screening in the early
stages, with the symptoms of abnormal or postcoital vaginal
bleeding [4].,e presence of large amounts of smelly vaginal
discharge may also be a symptom [4, 5]. ,e triad of flank
pain, lower-limb edema, and sciatica indicates pelvic side-
wall invasion. ,e vaginal passage of urine is a bladder
invasion symptom of vesicovaginal fistula, whereas the
vaginal passage of feces is a rectum invasion symptom of
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rectovaginal fistula. Race, age, histological type, grade, stage,
location, lymph-node involvement, treatment status, and
tumor volume are all the prognostic factors for locally ad-
vanced cervical cancers [4–6]. Surgery combined with
chemoradiation or chemotherapy is the main management
of CC in its early stages.

Despite the fact that diagnostic and therapeutic advances
of surgical treatment with concurrent chemoradiotherapy
have improved the overall five-year survival to about 70% in
advanced CC patients, the metastasis and recurrence of CC
still result in a quite poor prognosis with a 5-year overall
survival <30% in the majority of regions and countries
owing to restricted clinical strategies [3]. Furthermore, al-
most 30% of patients die from disease relapse or develop-
ment. Hence, to explore the molecular mechanisms involved
in the development and progression of CC [7].

As a newly identified noncoding RNA (ncRNA) class,
circular RNAs (circRNAs) are preserved throughout species
and are more stable than linear RNAs [8–10]. Increasing
evidence implies that circRNAs have the crosstalk capacity
with RNA binding proteins to act as sponges of miRNA for
regulating downstream gene expression [11]. circRNAs have
been reported to be related to CC progression through
various mechanisms, where the most important one is
serving as a microRNA (miRNA) sponge [12–15]. Conse-
quently, it is essential to find out the abnormal circRNAs and
the involved new molecular mechanisms to develop the
therapeutic targets for CC management.

hsa_circ_0004543 was significantly increased in CC
patient tissues based on circRNA microarray analysis [12].
However, the specific role and related molecular mechanism
of hsa_circ_0004543 in CC oncogenesis and metastasis need
to be explored further.

Hypoxia-inducible factor-1 α (HIF-1α) is a key
responser adapted to cancer hypoxia. HIF-1α signaling
activated in hypoxia conditions contributes to cell biology
associated with oncogenesis, a key issue restraining the
chemotherapy efficiency in various cancer treatment in-
cluding CC [16, 17]. As a main property of CC [18, 19],
hypoxia regulates all steps of cancer metastasis from the
initial step to eventually colonizing the target organs [20, 21].
Increased intratumor hypoxia stabilizes and activates HIF-
1α, which may activate many metastatic sequences to pro-
mote local and distant site cancer recurrence [22, 23]. As a
result, targeting hypoxia via diverse methods may decrease
extensive cancer-intrinsic metastasis [21, 24].

Moreover, miR-217/HIF-1α/AXL signaling has been
reported to be involved in lncRNA-HOTAIR-promoted
renal cell carcinoma carcinogenesis, which provides a new
target for the diagnosis and treatment of renal cell carcinoma
[25].

,erefore, we speculated that hsa_circ_0004543 may
stimulate CC development by hsa-miR-217/HIF-1α signal-
ing. Herein, we intend to explore the function andmolecular
mechanisms of hsa_circ_0004543 in CC oncogenesis and
development, thus providing a potential biomarker for
better management of CC. After analyzing the expressions of
hsa_circ_0004543, hsa-miR-217, and HIF-1α in 40 paired
CC and paracancerous tissues with qRT-PCR, which

revealed that hsa_circ_0004543 and HIF-1α were increased,
while hsa-miR-217 was decreased in tissues of CC patients;
hsa_circ_0004543 was further found to increase HIF-1α
expression via sponging hsa-miR-217. ,us, this promoted
CC oncogenesis and development. ,ese findings may en-
able the progress of clinical management strategies against
CC.

2. Materials and Methods

2.1. Reagents. ,e following reagents and instruments were
used in this study: dual-luciferase reporter assay system
(Promega Madison, US), fetal bovine serum (FBS), Dul-
becco’s modified eagle medium (DMEM) cell culture me-
dium (Gibco, Rockford, US), radio immunoprecipitation
assay (RIPA) buffer (Beyotime, Shanghai, China), Matrigel
(BD, New Jersey, US), cell counting kit-8 (CCK8) assay kit
(Dojindo Corp, Kyushu, Japan), Gene Mutation Kit and
SYBR Green Premix Ex Taq™ II (TaKaRa, Dalian, China),
PierceTM Magnetic RNA-Protein Pull-Down kit, Lipofect-
amine 3000, M-MLV reverse transcriptase kit, miRNA re-
verse transcriptase kit, TRIzol reagent, and SuperSignal
West Dura Extended Duration Substrate (,ermo Fisher
Scientific, Inc., Waltham, US). Antibodies were purchased
from Santa Cruz (Dallas, US). Propidium iodide and APC-
Annexin V were purchased form Sigma-Aldrich (St. Louis,
USA). ,e PsiCHECK™-2 vector was purchased from
Promega (Madison, US).

2.2. Patient Specimens, Consents, and Ethics. We collected
the cancerous and paracancerous specimens from 40 CC
patients during surgical treatment and stored them at -80°C.
All patients provided written informed consent. All ex-
perimental procedures were approved by the Ethics Com-
mittee of the Beijing Chao-Yang Hospital at Capital Medical
University.

2.3. Cells and Culture. ,e Committee on Type Culture
Collection of the Chinese Academy of Sciences (Shanghai,
China) provided all CC and normal human cervical epi-
thelial (End1/E6E7) cells, which were routinely cultured in
DMEM medium containing FBS (10%), penicillin (100 IU/
mL), and streptomycin (100mg/mL) [26].

2.4. Cell ViabilityAnalysis. Cell viability was evaluated using
the CCK-8 kit following the manufacturer’s guidelines. In
brief, 10 μL of CCK-8 reagent was applied to each well of
cells cultured in a 96-well plate with an original 2000 cells/
well and incubated in the dark for 2 h at 37°C. ,e optional
density (OD) value was determined at a wavelength of
450 nm with a microplate reader (Bio-Rad, Hercules) [27].

2.5. Colony Proliferation Evaluation. Cells were seeded in 6
well plates with 1000 cells/well and incubated for 10 days at
37°C to form colonies, followed by fixation in 4% parafor-
maldehyde for 10min and staining in 0.5% crystal violet for
5min. Colony numbers were determined using the software
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ImageJ (National Institutes of Health, Bethesda, MD, USA)
and images were acquired with a light microscope (Olym-
pus, Japan) [27].

2.6. Apoptosis Evaluation. Cells washed with precold
phosphate buffer solution were fixed and incubated for
15min with propidium iodide and APC-Annexin V, re-
spectively, in dark conditions at room temperature. Apo-
ptotic cells were then detected using a BD FACSCalibur flow
cytometer. Apoptotic rates were determined using Cell
Quest software (BDIS, San Jose, USA) [27].

2.7. Invasion and Migration Evaluation. A transwell (24-
well, Corning Costar) was applied to evaluate cell invasion
(with Matrigel coating) and migration (without Matrigel
coating) abilities. In brief, 600 μL of 10% FBS-supplied
culture medium was loaded in the lower chamber, and
3×105 cells in 200 μl of serum-free medium were loaded in
the upper chamber. After being cultured for 24 h (migration
assay) or 48 h (invasion assay), the commonly used time
points for cell migration and invasion assays to avoid the
influence of cell proliferation, the migrated or invaded cells
were fixed and stained [27].

2.8. Potential Binding Gene Prediction. Potential hsa_-
circ_0004543 sponged miRNAs were predicted with the
online tool Circular RNA Interactome (https://
circinteractome.nia.nih.gov/) [28]. Potential mRNAs bind-
ing to hsa-miR-217 were predicted with the TargetScan
online tool (http://www.targetscan.org/) [29].

2.9. qRT-PCR Assay. Sangon (Shanghai, China) synthesized
the primers. Cells were lysed in Trizol to isolate the total
RNA according to the protocols. RNAs were reversely
transcribed using the M-MLV reverse transcriptase kit or
miRNA reverse transcriptase kit following the accompa-
nying instructions. SYBR Green Premix Ex Taq™ II was
mixed with cDNA and specific primers for qRT-PCR assay
on a CFX96TM real-time PCR detection system (Bio-Rad
Laboratories, Hercules, USA). Relative gene expressions
were calculated using the 2−ΔΔCt method with GAPDH as an
internal control for mRNAs and circRNAs, and U6 as an
internal control for miRNAs [27, 29].

2.10. Dual-Luciferase Evaluation. Cells cotransfected with
hsa-miR-217 mimics or negative control (miR-NC), psi-
CHECK-2/hsa_circ_0004543 3′-UTR (WT), or psiCHECK-
2/hsa_circ_0004543 3′-UTR mutated (MT) plasmid were
used for hsa_circ_0004543 activity analysis, while cotrans-
fected with psiCHECK-2/HIF-1A 3′-UTR (WT) or psi-
CHECK-2/HIF-1A 3′-UTR mutated (MT) plasmid were
used for HIF-1A activity analysis using Lipofectamine 3000.
,e dual-luciferase reporter assay kit was then used fol-
lowing the manufacturer’s procedures [26, 29].

2.11. RNA Pull-Down Evaluation. GenePharma (Shanghai,
China) provided biotin-labeled hsa_circ_0004543 probes
(hsa_circ_0004543) and negative controls (oligoes). Pier-
ceTM Magnetic RNA-Protein Pull-Down kit was used for
RNA pull-down assay. Briefly, the miRNA binding to
hsa_circ_0004543 was determined by qRT-PCR after it was
enriched by incubating streptavidin agarose magnetic beads
with biotin-labeled hsa_circ_0004543 probes or negative
control first, and then with the cell lysates from SiHa or C-4I
cells [30].

2.12. Western Blotting Investigation. Total protein was
extracted with RIPA lysis buffer. Proteins (25 μg) were used
for target protein expression determination based on sep-
aration on an 8% SDS-PAGE gel, followed by the transfer on
a polyvinylidene fluoride (PVDF) membrane, incubating at
4°C overnight in primary and secondary antibodies for 1 h at
RT, and developing with SuperSignal West Dura Extended
Duration Substrate after it was washed three times with
TBST [26, 27].

2.13. Statistical Assay. SPSS 19.0 (IBM, SPSS, Chicago, US)
was used. Tests were conducted with one-way analysis of
variance followed by Tukey’s post hoc test for multiple
groups and Student’s t-test for two groups. Associations
between gene expressions were evaluated with Pearson’s
correlation assay. P< 0.05 was statistically significant.

3. Results

,e purpose of the current work was to explore the role and
the ceRNA mechanism of hsa_circ_0004543 in regulating
CC oncogenesis and metastasis. Based on the bioinformatics
analysis and literature review, we hypothesized that hsa_-
circ_0004543 expression was upregulated in CC cells and
tissues, which contributed to increased CC cell viability,
colony proliferation, migration, and invasion. It also
inhibited cell apoptosis by regulating the hsa-miR-217/HIF-
1α axis. Hsa_circ_0004543 levels in human CC tissues and
cells were determined with qRT-PCR. Direct binding be-
tween hsa-miR-217 and hsa_circ_0004543 or HIF-1a was
predicted by the interactome or TargetScan and was verified
with a dual-luciferase reporter gene assay with or without
RNA pull-down. Aggressive phenotypes of CC cells in-
cluding cell viability, colony proliferation, apoptosis, mi-
gration, and invasion were detected with the CCK-8 assay,
colony formation assay, flow cytometry assay, and transwell
assay, respectively. ,e mechanism of hsa_circ_0004543 in
CC development was further assessed by silencing hsa_-
circ_0004543 with/without hsa-miR-217 silencing or HIF-1a
overexpression. Associations between gene expressions were
evaluated with Pearson’s correlation analysis.

3.1. hsa_circ_0004543 Is Upregulated in CC Tissues and Cells.
To explore the function of hsa_circ_0004543 in CC onco-
genesis and progress, we first collected paired CC and self-
matched negative control (NC) paracancerous tissues from
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40 CC patients, followed by the analysis of the hsa_-
circ_0004543 expression by qRT-PCR. ,e data proved that
hsa_circ_0004543 expression was extremely higher in CC
tissues versus NC tissues (Figure 1(a)). We also analyzed the
hsa_circ_0004543 level in CC cells, and the hsa_-
circ_0004543 level was significantly higher in CC cells (SiHa,
CaSki, C-4I, C-33A, SW756, and HeLa) versus End1/E6E7
cells (Figure 1(b)).

3.2. hsa_circ_0004543 Stimulates CC Growth and Metastasis.
To explore the effects of hsa_circ_0004543 on CC malignant
phenotypes, silencing RNA (siRNA) specifically targeting
hsa_circ_0004543 (si-hsa_circ_0004543) was respectively
transfected to two CC cells (SiHa and C-4I) and yielded the
highest hsa_circ_0004543 expression for hsa_circ_0004543
knockdown. ,e results showed that transfecting si-hsa_-
circ_0004543 in SiHa and C-4I cells produced a significantly
reduced hsa_circ_0004543 expression (Figure 2(a)). Via-
bilities of SiHa and C-4I cells at 0, 24, 48, and 72 h after
transfecting si-NC or si-hsa_circ_0004543 were determined
with the CCK-8 test. ,is revealed that hsa_circ_0004543
silencing significantly decreased the viability (OD value) of
both SiHa and C-4I cells (Figure 2(b)). ,e colony prolif-
eration abilities of SiHa and C-4I cells were evaluated with
the colony formation assay, which revealed that hsa_-
circ_0004543 silencing significantly repressed the colony
proliferation abilities of both the SiHa and C-4I cells
(Figure 2(c)). In the meantime, flow cytometric assays
confirmed that apoptosis rates were considerably amplified
in SiHa and C-4I cells after hsa_circ_0004543 silencing
(Figure 2(d)). Moreover, invasion and migration capabilities
of SiHa and C-4I cells were evaluated with a transwell assay,
which indicated that hsa_circ_0004543 knockdown signif-
icantly repressed CC cell migration (Figure 2(e)) and in-
vasiveness (Figure 2(f )) capabilities.

3.3. hsa_circ_0004543 Sponges hsa-miR-217 in CC Cells to
Increase HIF-1α Expression. To explore the molecular
mechanism of hsa_circ_0004543 in CC carcinogenesis and
development, the potential miRNAs which had comple-
mentary binding sites with hsa_circ_0004543 were first
predicted based on the use of the Circular RNA Interactome
(https://circinteractome.nia.nih.gov/) (Figure 3(a)). ,is
analysis was followed in SiHa and C-4I cells by dual-lu-
ciferase reporter activity analysis and RNA pull-down assays,
respectively. ,e luciferase activity of the wild-type hsa_-
circ_0004543 3′UTR reporter gene in SiHa and C-4I cells
was significantly inhibited when hsa-miR-217 was overex-
pressed withmimics, while the inhibited luciferase activity of
the hsa_circ_0004543 3′UTR reporter gene was rescued
when the predicted binding sites of hsa_circ_0004543
3′UTR with hsa-miR-217 was mutated (Figure 3(b)). ,e
interaction between hsa_circ_0004543 and hsa-miR-217 in
SiHa and C-4I cells was further confirmed by the RNA
pulldown, which showed that the hsa_circ_0004543 probe
(hsa_circ_0004543) could pulldown more hsa-miR-217 than
control oligoes (Figure 3(c)). Moreover, the relationship
between hsa_circ_0004543 and hsa-miR-217 was explored

based on the determination of the hsa-miR-217 level in CC
cells and tissues by qRT-PCR. ,e data confirmed that the
hsa-miR-217 expression was meaningfully decreased in CC
cells (SiHa, CaSki, C-4I, C-33A, SW756, and HeLa) com-
pared to normal human cervical epithelial cells (Figure 3(d))
and was considerably declined in CC tissues compared to
paired paracancerous normal tissues from 40 local CC pa-
tients (Figure 3(e)). Meanwhile, significantly upregulated
hsa-miR-217 expression was found in SiHa and C-4I cells
after the hsa_circ_0004543 was silenced (Figure 3(f)). As-
sociations between hsa_circ_0004543 and hsa-miR-217 ex-
pressions were evaluated further using Pearson’s correlation
coefficient, which showed that hsa_circ_0004543 level was
significantly negatively related to the hsa-miR-217 level in
CC tissues from 40 CC patients (Figure 3(g)).

To reveal the ceRNA network trigger by hsa_-
circ_0004543, potential mRNAs which had complementary
binding sites with hsa-miR-217 were first predicted with the
online tool TargetScan (http://www.targetscan.org/)
(Figure 4(a)), followed by the dual-luciferase reporter ac-
tivity assay in SiHa and C-4I cells, respectively.,e luciferase
activity of the wild-type HIF-1a 3′UTR reporter gene was
considerably inhibited when hsa-miR-217 was overex-
pressed using mimics in SiHa and C-4I cells, while inhibited
luciferase activity of the HIF-1a 3′UTR reporter gene was
rescued when predicted binding sites of HIF-1a 3′UTR with
hsa-miR-217 were mutated (Figure 4(b)). Moreover, we
investigated whether hsa_circ_0004543 sponges hsa-miR-
217 to control HIF-1α level, and HIF-1a expression in CC
cells was first detected with qRT-PCR. ,e data showed that
hsa_circ_0004543 silencing in CC cells inhibited HIF-1α
expression considerably at both mRNA (Figure 4(c)) and
protein (Figure 4(d)) levels, which was partly reversed by the
cotransfection of the hsa-miR-217 inhibitor (inh-hsa-miR-
217) (Figures 4(c) and 4(d)). Furthermore, the expression of
HIF-1a was measured by qRT-PCR in 40 CC patient tissues,
which showed that HIF-1a expression was significantly
amplified in CC tissues compared with paracancerous
normal tissues (Figure 4(c)). Moreover, the association
between hsa_circ_0004543 and HIF-1a expressions in 40 CC
patient tissues was analyzed using Pearson’s correlation
analysis. ,is revealed that the hsa_circ_0004543 level was
considerably positively related to HIF-1a expression
(Figure 4(d)). ,ese findings suggested that hsa_-
circ_0004543 stimulated CC oncogenesis and development
via sponging hsa-miR-217 induced the upregulation of HIF-
1α.

3.4.>e hsa-miR-217/hsa-miR-217/HIF-1αAxis Promotes CC
Cell Malignant Phenotypes. After being cotransfected using
si-NC, si-hsa_circ_0004543, si-hsa_circ_0004543 + inh-hsa-
miR-217, or si-hsa_circ_0004543+HIF-1a, viabilities of SiHa
and C-4I cells were first determined based on the use of the
CCK-8 assay, and the data validated that hsa_circ_0004543
silencing time-dependently decreased OD value (0–72 h)
and was partly rescued by hsa-miR-217 silencing or HIF-1a
overexpression (Figure 5(a)). Colony proliferation abilities
of SiHa and C-4I cells after hsa_circ_0004543 silencing with/
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Figure 1: hsa_circ_0004543 was amplified in cervical cancer tissue and cells. hsa_circ_0004543 expression was determined with quantitative
reverse transcriptase polymerase chain reaction (qRT-PCR). (a) ,e hsa_circ_0004543 expression was considerably upregulated in CC
patient tissues compared with paired paracancerous normal tissues (NC) (n� 40). (b) ,e hsa_circ_0004543 expression was considerably
upregulated in CC cells (SiHa, CaSki, C-4I, C-33A, SW756, and HeLa) compared with End1/E6E7 (normal human cervical epithelial cells)
(∗p< 0.05, ∗∗p< 0.01, and ∗∗∗p< 0.001).
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Figure 2: Continued.
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Figure 2: hsa_circ_0004543 silencing inhibited viability, colony formation, migration and invasion, and prompted apoptosis in CC cells.
(a) ,e qRT-PCR assay validated successful hsa_circ_0004543 silencing with si-hsa_circ_0004543 in SiHa and C-4I cells. (b) Viability,
(c) colony formation ability, (d) apoptosis, (e) migration capacity, and (f) invasion capacity of SiHa and C-4I cells after they were transfected
with si-NC or si-hsa_circ_0004543 (∗p< 0.05 and ∗∗p< 0.01).
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Figure 3: hsa_circ_0004543 was identified to serve as a sponge for hsa-miR-217 in CC cells. (a) Diagram of potential binding sites between
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(e) Relative HIF-1a expressions in paired CC and paracancerous (NC) tissues determined with qRT-PCR (n� 40). (f ) Association between
HIF-1a and hsa_circ_0004543 expressions in CC patient tissues investigated by Pearson’s correlation analysis (n� 40) (∗p< 0.05, ∗∗p< 0.01,
and ∗∗∗p< 0.001).

1.5

1.0

0.5

0

O
D

 4
50

 n
m

0h 24h 48h 72h

C-4I

*
**
**

si-NC
si-hsa_circ_0004543
si-hsa_circ_0004543
+inh-hsa-miR-217
si-hsa_circ_0004543
+HIF-1α

2.0

1.5

1.0

0.5

0

O
D

 4
50

 n
m

0h 24h 48h 72h

siHa

*
**
**

si-NC
si-hsa_circ_0004543
si-hsa_circ_0004543
+inh-hsa-miR-217
si-hsa_circ_0004543
+HIF-1α

(a)

SiHa C-4I
0

50

100

150

200

*** ***** **
****

N
um

be
r o

f c
lo

ne
s

si-NC
si-hsa_circ_0004543
si-hsa_circ_0004543
+inh-hsa-miR-217
si-hsa_circ_0004543
+HIF-1α

SiHa

C-4I

N
C

si-
hs

a_
ci

rc
_0

00
45

43

si-
hs

a_
ci

rc
_0

00
45

43
+i

nh
-h

as
-m

iR
-2

17

si-
hs

a_
ci

rc
_0

00
45

43
+H

IF
-1

A

(b)

Figure 5: Continued.

8 Journal of Oncology

http://www.targetscan.org/


without inh-hsa-miR-217 or HIF-1a overexpression were
detected by the colony formation assay, which showed that
hsa_circ_0004543 silencing in SiHa and C-4I cells inhibited
colony proliferation abilities (Figure 5(b)), and this inhib-
itory efficacy was partly rescued by hsa-miR-217 knockdown
or HIF-1a overexpression. Finally, cell migration and in-
vasiveness capacities in SiHa and C-4I cells were investigated
based on the transwell assay without or with Matrigel. ,e
data showed that hsa_circ_0004543 silencing inhibited both
migration (Figure 5(c)) and invasiveness (Figure 5(d)) ca-
pabilities, which was partly reversed by hsa-miR-217
knockdown or HIF-1a overexpression. ,ese findings in-
dicated that hsa-miR-217 knockdown or HIF-1a over-
expression reversed hsa_circ_0004543 silencing and
inhibited malignant phenotypes in CC cells.

4. Discussion

circRNAs are noncoding RNAs that are highly stable in
eukaryotic cells. Hsa_circ_0004543 has been newly identi-
fied as a significantly upregulated circRNA in CC tissues by

circRNA microarray [12]. Nevertheless, its function and
clinical implication in malignancy are still unknown.
,erefore, we performed a comprehensive investigation of
hsa_circ_0004543 in CC oncogenesis and its progression. In
this work, we first confirmed a considerably higher hsa_-
circ_0004543 expression in CC tissues versus paired para-
cancerous normal tissues from 40 local CC patients, as well
as in six different CC cell lines compared with normal
human cervical epithelial cells, indicating the potential
oncogenic role of hsa_circ_0004543 in CC. Secondly, we
revealed that hsa_circ_0004543 silencing in CC cells sig-
nificantly inhibited cell viability, colony proliferation, mi-
gration and invasiveness, and induced apoptosis.

Accumulating evidence has shown that transcriptional
regulation between ncRNAs and mRNAs plays an essential
function in CC cancer progression, including growth, mi-
gration, invasion, and multidrug resistance. As an important
class of ncRNAs, miRNAs also play a critical role in regu-
lating cell functions via degradation of target genes, there-
fore regulating cell proliferation, apoptosis, and metastasis.
circRNAmay be competitive endogenous RNA (ceRNA) for
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Figure 5: hsa-miR-217 knockdown or HIF-1a overexpression rescued hsa_circ_0004543 silencing inhibited malignant phenotypes in CC
cells. (a) Viability of SiHa and C-4I cells after hsa_circ_0004543 silencing with/without inh-hsa-miR-217 or HIF-1a overexpression
determined using the CCK-8 assay. (b) Colony proliferation abilities of SiHa and C-4I cells after hsa_circ_0004543 silencing with/without
inh-hsa-miR-217 or HIF-1α overexpression determined using colony formation assay. (c) Cell migration capability of SiHa and C-4I cells
after hsa_circ_0004543 knockdown with/without inh-hsa-miR-217 or HIF-1a overexpression detected by transwell assay without Matrigel.
(d) Cell invasion capability of SiHa and C-4I cells after hsa_circ_0004543 silencing with/without inh-hsa-miR-217 or HIF-1α overexpression
detected using transwell assay with Matrigel (∗p< 0.05; ∗∗p< 0.01, and ∗∗∗p< 0.001).

Journal of Oncology 9



miRNAs to regulate expression of downstream targets of
mRNAs, and the ceRNA networks are important mecha-
nisms to elucidate the posttranscriptional regulation in CC
[26, 31–35]. ,erefore, we explored further the ceRNA
network mediated by hsa_circ_0004543 in the current study.

We used the online tool Circular RNA Interactome
which predicted miRNAs harboring complementary bind-
ing sequences with hsa_circ_0004543 and identified the
potential candidate of hsa-miR-217. ,e direct binding
between hsa_circ_0004543 and hsa-miR-217 was further
confirmed with dual-luciferase reporter activity examination
in SiHa and C-4I cells. Meanwhile, hsa-miR-217 was
identified to be inhibited in both CC cell lines and tissues,
indicating the oncosuppressor role of hsa-miR-217 in CC.
Moreover, hsa_circ_0004543 silencing in SiHa and C-4I cells
considerably upregulated hsa-miR-217 expression, and
Pearson’s correlation assay discovered a negative association
between hsa-miR-217 with hsa_circ_0004543 expressions in
40 CC patient tissues. ,ese findings suggested that hsa_-
circ_0004543 directly interacted with hsa-miR-217 to pro-
mote the aggressive phenotypes of CC cells.

We used the online tool TargetScan to predict the mRNAs
harboring complementary binding sequences with hsa-miR-
217 and identified the potential candidate of HIF1A. ,e
direct binding between HIF1A and hsa-miR-217 was further
confirmed with a dual-luciferase reporter activity assay in
SiHa and C-4I cells. Hypoxia is a typical representative of
middle-late stage solid cancers and plays a key role in pro-
moting malignancy cells to adapt to the hypoxia microen-
vironment in cancer by regulating the HIF transcriptional
factors [36]. HIF-1α, encoded by HIF1A, is a commonly
expressedHIFα isoform in various cells and themost essential
regulator of oxygen homeostasis [37]. HIF-1α changes are
associated with the outcomes of patients with various cancers,
suggesting its critical role in carcinogenesis [38]. Our ad-
vanced investigation revealed that HIF-1a mRNA levels were
considerably increased in CC tissues and were positively
associated with hsa_circ_0004543. Meanwhile, knockdown of
hsa_circ_0004543 considerably inhibited the expression of
HIF-1α at both the mRNA and protein levels, and led to
reduced viability and colony proliferation ability in CC cells.
,ese effects were partly reversed by inhibiting hsa-miR-217
or overexpressing HIF-1a. Outcomes indicated that HIF-1a
directly interacted with hsa-miR-217 via the sponging activity
of hsa_circ_0004543 to stimulate CC progression. Hence,
hsa_circ_0004543 may function as a ceRNA of hsa-miR-217
to inhibit HIF-1α degradation and thus stimulate the growth
and metastasis of CC cells.

In conclusion, our current work showed that the
hsa_circ_0004543 level was significantly amplified in CC
patients and cells that promoted viability, colony prolifer-
ation, migration and invasiveness, and repressed apoptosis
by sponging hsa-miR-217 to upregulate the HIF-1α level in
CC cells. ,ese changes thus contributed to the CC cell’s
oncogenesis and progression. Our results emphasized the
potential function of hsa_circ_0004543 as a newly identified
oncogenic ncRNA and that targeting the hsa_circ_0004543/
hsa-miR-217/HIF-1α axis may provide a new therapeutic
strategy to treat CC.
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(1) circ_0004543 is an oncogenic factor in CC. (2)
circ_0004543 acts as a ceRNA of hsa-miR-217 to upregulate
HIF-1α. (3) Targeting the hsa_circ_0004543/hsa-miR-217/
HIF-1α axis is a potential management strategy for CC.
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&e stem characteristics of tumor cells have been proposed in theory very early, and we can use the signature of gene expression to
speculate the stemness of tumor cells. However, systematic studies on the stemness of breast cancer as well as breast cancer
subtypes, and the relationship between stemness and metastasis and prognosis, are still lacking. In the present research, using the
transcriptome data of patients with breast cancer in the TCGA database, a stemness prediction model was utilized to derive the
stemness of the patients’ tumors. We compared the stemness values among different subtypes and the differences with metastasis.
COX regression was employed to evaluate the correlation between stemness value as well as prognosis. Using the Lasso-penalized
Cox regression machine learning model, we obtained the gene signature of the basal subtype that is related to stemness and can
also predict the prognosis of the patient. Patients can be stratified into two groups of high and low stemness, corresponding to
good and poor prognosis. Based on further prediction of tumor infiltration by CIBERSORTand prediction of drug response by a
connectivity map, we found that the difference in stemness between these two groups is associated with the activation of tumor-
killing immune cells and drug response. Our findings can promote the understanding and research of subtypes of basal breast
cancer and provide corresponding molecular markers for clinical detection and therapy.

1. Introduction

According to statistics from global tumor data in 2018,
breast cancer has the highest incidence and mortality among
women [1]. With the development of science and tech-
nology, the ability to identify and diagnose breast cancer has
significantly improved, and the past anatomy-based treat-
ment is shifting to diagnosis and treatment through different
biological mechanisms. Gene array technology divides
breast cancer into different biological subtypes. New sys-
temic drugs have significantly improved survival rates and
are expected to enable patients with metastatic tumors to
survive longer.

&ere are five subtypes of breast cancer, LumA, LumB,
Basal, HER2, and normal. Among them, LumA and LumB
subtypes have many types of mutations in the key genes, and

the overall gene mutation rate of Basal and HER2 subtypes is
higher than others. Different subtypes have different mo-
lecular expression profiles. According to the gene expression
in cells, we can diagnose and treat patients accordingly. In
terms of relationship with prognosis, Luminal has a better
overall prognosis, and HER2 subtype has a worse overall
prognosis and will relapse early. &e Basal subtype has the
worst prognosis. Moreover, as it is triple-negative, the only
treatment option is chemotherapy.&e normal subtype has a
prognosis between Luminal and Basal and is not sensitive to
chemotherapy [2].

Stemness, considered as the capacity to self-renew and
differentiate from the precursor cells, was initially explored
in normal stem cell-related studies, which has the capability
to produce all cell types in adult organisms [3]. A significant
proportion of genomic, proteomic, epigenomic, and
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transcriptomic markers have been shown to be related to
cancer stemness in recent years. Over the last ten years, &e
Cancer Genome Atlas (TCGA) has shed light on the mo-
lecular environments of primary tumors by delivering
thorough molecular profiles that include epigenomic,
transcriptomic, genomic, and (post-translational) proteomic
properties [4, 5], as well as clinical and histopathological
annotations. &e materials generated on the basis of the
TCGA data enable us to thoroughly examine the cancer stem
in a large sample of breast tumors and their subtypes.

&e objective of this study was to perform cell stemness
calculations using TCGA breast cancer data and to explore
the relationship between cell stemness and prognosis. After
subtyping the highly relevant factors, the signatures that can
predict prognosis are finally calculated. &e biological sig-
nificance and clinical value of these predicted signatures are
analyzed to provide a theoretical basis and reference basis for
further research.

2. Materials and Methods

2.1. Collection and Processing of Data

2.1.1. Breast Cancer Data. We acquired breast cancer
clinical data through the GDC Data Portal with a total of
1097 valid patients and collected clinical source data as
follows: clinical.tsv containing the latest updated prognostic
information and the more detailed information was in
https://nationwidechildrens.org_clinical_patient_brca.txt.
In addition, molecular subtypes of breast cancer samples
were obtained through TCGAbiolinks, and those with

complete clinical and subtype information (n� 1095) were
selected for subsequent integration and analysis (Table 1).
&rough TCGAbiolinks, the expression data of breast cancer
samples including mRNA and lncRNA were obtained.

2.1.2. Stem Cell Data. &e Synapse is the portal for the
Progenitor Cell Biology Consortium (PCBC), an NHLBI
sponsored endeavor to discover and define progenitor cell
lineages, to govern the development of stem and progenitor
cells into ideal cell fates, and to create innovative ways to
resolve certain problems when these cells are transplanted.
Stem cell gene expression, methylation, SNV (copy-number
variation), and other information are stored on the Synapse
database. Synapse provides a variety of interfaces, and re-
searchers can obtain them on the platform through R,
Python, and other software and share these data.

2.2. Calculate Sample Stemness Index According to mRNA
Expression. Malta et al. [3] developed a prediction model by
means of the OCLR algorithm on pluripotent stem cell
samples from the PCBC dataset [6, 7] to develop a stemness
signature, which was then used to determine the mRNAsi
value. &ere are 11 774 genes in the expression profiles
derived from the mRNA expression-based signature. More
information on the stemness indices and the flowchart that
was used in the present research to produce the afore-
mentioned indices are available on the following website:
https://bioinformaticsfmrp.github.io/PanCanStem-Web.
&e OCLR algorithm was used to calculate the eigenvector
weights for the RNA expression matrix, respectively. &e

Table 1: Clinicopathological characteristics in each subtype of breast cancer.

Items Level
Subtype

Basal Her2 LumA LumB Normal
N 183 81 559 208 40

Race (%) Nonwhite 71 (40.3) 33 (46.5) 82 (15.8) 46 (25.8) 11 (28.2)
White 105 (59.7) 38 (53.5) 438 (84.2) 132 (74.2) 28 (71.8)

Age (median (IQR)) 54.00 (48.00,
62.50)

57.00 (50.00,
64.00)

61.00 (49.00,
69.00)

58.50 (50.00,
68.25)

53.00 (46.00,
62.50)

Pathologic_T (%)

T1 37 (20.3) 17 (21.0) 175 (31.4) 37 (17.8) 11 (27.5)
T2 121 (66.5) 52 (64.2) 291 (52.2) 135 (64.9) 18 (45.0)
T3 18 (9.9) 7 (8.6) 74 (13.3) 24 (11.5) 11 (27.5)
T4 6 (3.3) 5 (6.2) 17 (3.1) 12 (5.8) 0 (0.0)

Pathologic_N (%)

N0 117 (63.9) 29 (37.7) 255 (46.5) 84 (41.2) 21 (53.8)
N1 46 (25.1) 28 (36.4) 194 (35.4) 77 (37.7) 8 (20.5)
N2 14 (7.7) 11 (14.3) 56 (10.2) 33 (16.2) 4 (10.3)
N3 6 (3.3) 9 (11.7) 43 (7.8) 10 (4.9) 6 (15.4)

Pathologic_M (%) M0 159 (98.1) 70 (95.9) 449 (98.0) 178 (97.3) 33 (97.1)
M1 3 (1.9) 3 (4.1) 9 (2.0) 5 (2.7) 1 (2.9)

Pathologic_stage (%) Stage I-II 151 (83.9) 56 (70.9) 410 (75.4) 142 (68.9) 28 (70.0)
Stage III-IV 29 (16.1) 23 (29.1) 134 (24.6) 64 (31.1) 12 (30.0)

ER_status_by_IHC (%) Negative 157 (89.2) 47 (62.7) 11 (2.0) 3 (1.5) 14 (37.8)
Positive 19 (10.8) 28 (37.3) 526 (98.0) 194 (98.5) 23 (62.2)

PR_status_by_IHC (%) Negative 163 (93.7) 62 (80.5) 54 (10.1) 39 (19.8) 17 (45.9)
Positive 11 (6.3) 15 (19.5) 480 (89.9) 158 (80.2) 20 (54.1)

HER2_status_by_IHC
(%)

Negative 114 (92.7) 13 (20.6) 304 (82.8) 99 (74.4) 20 (87.0)
Positive 9 (7.3) 50 (79.4) 63 (17.2) 34 (25.6) 3 (13.0)
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mRNAsi stem cell index of breast cancer samples was cal-
culated based on the obtained RNA expression data of breast
cancer samples and the weights of eigenvectors calculated
before. &e stemness indices were utilized to stratify the
breast cancer samples, which were then employed for the
integrative analysis.

2.3. Calculating the Relationship between Breast Cancer
Stemness Index and Clinical Features. In order to clarify the
correlation between the stem index of breast cancer and the
types and metastasis status, we compared mRNAsi of dif-
ferent subtypes (LumA, LumB, Basal, Normal, Her2 sub-
types) and metastasis (non-metastasis) status. Assessing
mRNAsi differences between groups to see if our calculated
breast cancer stem cell index correlates with clinical traits of
the disease.

&e stemness index was treated as an independent
continuous covariate in the present research. Using a three-
phase approach, we investigated the correlation between
stemness indices and OS in breast cancer. Specifically, we
utilized the univariate Cox proportional hazard regression to
compute hazard ratios (HRs) for overall survival (OS). Some
of the parameters included mRNAsi gender, metastatic
status, tumor histology, age, and subgroup. &e results of
Cox univariate regression showed the clinical indicators of
breast cancer associated with the patients’ prognosis. In
addition, patients were divided into high- and low-risk
groups according to their mRNAsi levels, which were ob-
tained utilizing the “cutp” module of the R package
“survMisc” (https://cran.r-project.org/web/packages/
survMisc) with default settings, and the differences in
survival among subjects with elevated mRNAsi and those
with reduced mRNAsi were assessed utilizing Kaplan–Meier
(K–M) survival plots. Finally, only patients in the Basal
subgroup were shown to have a statistically significant
survival difference between those with higher mRNAsi and
those with lower mRNAsi.

With the aid of the “createDataPartition” module of the
R package “caret” (https://cran.r-project.org/web/packages/
caret), we were able to divide the Basal subgroup dataset at
random into two parts, namely, the 70 percent training set
and the 30 percent validation set. We then utilized non-
default parameters for the “createDataPartition” module as
follows: P � 0.7 and list� FALSE. &e Chi-square test for
categorical variables and Kruskal–Wallis test for continuous
variables were utilized to examine the distributions of
clinical features across the training set as well as the vali-
dation set. In the training set, we divided the gene expression
data into mRNA, lncRNA, and performed Cox univariate
regression, respectively. Significantly related genes were
selected, and then the correlation between their expression
and the stem cell index of samples was calculated.&ose with
correlation coefficients cor >0.2 and correlation test P-value
<0.05) were selected as candidate genes.

2.4.Lasso toBuild theBestMultivariateCOXModel. &is step
uses machine learning to further filter the candidate
lncRNAs and mRNAs, to construct the best gene predicting

panel in the Basal subtype. We calculated the lncRNA panel
and mRNA panel risk score for each sample based on ex-
pression and multiple regression coefficients. &e equation
for determining risk scores is shown below:

Riskscore � 
n

i�1
βi
∗
xi. (1)

&e samples were divided into high index group and low
index group according to the risk index (only 2 miRNAs
were not screened by Lasso, they were divided into high
expression group and low expression group according to
their expression levels and drawn, respectively),
Kaplan–Meier survival analysis was performed, and survival
curves were drawn. Furthermore, based on the risk index of
mRNA and lncRNA, ROC curves of three-year, five-year,
and ten-year survival periods were drawn. We explored
whether the models were accurate predictors based on the
area under the curve (AUC) of a time-dependent receiver
operating characteristic (ROC) study.

2.5. Assessment of Relationships between Stemness Indices and
the Immune Landscape. By means of CIBERSORT
(a deconvolution algorithm according to gene expression)
(https://cibersort.stanford.edu/) [8], we calculated the rel-
ative abundance of the immune cells in the sample that was
received. Using ESTIMATE [9], we calculated individual
immunity scores to anticipate the level of infiltration of
immune cells in each basal sample. &e association between
mRNAsi and immunological score was also analyzed.

2.6.CMapPredictmRNAsi-RelatedDrugs. &e newly revised
CMap (September 2017) [10] is a data-driven and systematic
technique for uncovering associations among genes,
chemicals, and biological circumstances, to screen for
prospective substances that could target pathways associated
with breast cancer stemness. Using the CMap database, a
sum of 42080 perturbation factors were analyzed and 473647
reference signatures were generated. &e CMap workflow
consists of querying the CMap reference signature dataset
(a LISTof DEGs associated with the biologic state of interest)
using a pattern-matching algorithm. &e scores fell within
the range of −100 to 100. Molecular compounds are ordered
on the basis of their proportion to produce the most similar
as well as the most opposite compounds.&e website https://
clue.io provides the CMap data as well as relevant tools. &e
“lmFit” module of the R package “limma” was utilized to
determine the DEGs between the Basal subgroup samples
that had elevated mRNAsi and those with reduced mRNAsi
on the basis of default settings [11]. A number of genes that
had differential expression across Basal subgroup samples
with elevated mRNAsi and reduced mRNAsi was compiled,
and the topmost 300 genes (150 of which were upmodulated
and 150 of which were downmodulated) were chosen for
further investigation in the CMap database. Compounds
having an enrichment score of ≤−95 were identified as
promising chemotherapeutic drugs for the treatment of
basal breast cancer.
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2.7. Statistical Analysis. In the present research, all statistical
analyses were conducted utilizing R (version: 3.4.1) (R Core
Team, R Foundation for Statistical Computing, Vienna,
Austria). In the case when using the default settings of the R
package “gelnet,” the OCLR technique was applied suc-
cessfully [12]. We calculated the P values for the correlations
between stemness indices and the immune milieu utilizing
Pearson’s correlation coefficient tests, followed by multiple
testing utilizing the BH technique. Statistical significance
was reached when the value of P was less than 0.05.

3. Results

3.1. Breast Cancer Stemness Indices Predicated on mRNA
Expression. On the basis of the analysis of the relationship
between stemness index and survival of patients, there is an
overall significant difference among each subtype
(P � 0.0374) (Figure 1(a)). We also found the Basal subtype
has higher mRNAsi compared with others, and significant
different mRNAsi among them (P< 0.05). Significant dif-
ferences were not observed between metastatic (M0) and
nonmetastatic (M1) samples, as well as in each subtype of
M0 and M1 samples (Figures 1(b)–1(d)). Based on their
specific mRNAsi values (ranging from low to high stemness
index), we graded the breast cancer samples and searched for
correlations with any demographic/molecular/clinical
characteristics that were associated with either a higher or
lower stemness index (Figure 1(e)).

3.2. Associations between Breast Cancer Stemness Indices and
Clinical Outcome. Based on sample survival data, a uni-
variate Cox regression analysis was conducted to test the
association between clinical indicators and patients’ overall
survival (OS). &e forest chart is displayed in Figure 2(a). To
address the effect of mRNAsi on survival, we did the K–M
plots by splitting all patients or each subtype sample into low
and high mRNAsi groups (Figures 2(b)–2(g)). &e results
showed that mRNAsi exhibited a statistically significant
impact on OS for Basal patients (HR, 0.32; P � 0.01). &en,
in basal patients, we conducted cox regression analysis for
gene expression and survival. All genes with a significant
survival relationship (P< 0.05) were subjected to correlation
analysis with mRNAsi, and the genes with significant cor-
relation (|cor|> 0.2, P< 0.05) were selected for statistical
analyses. As a result, we got 2 miRNAs, 111 lncRNAs, and
389 mRNAs (Tables S1–S3).

After the lasso machine learning on candidate 389
mRNA and 111 lncRNA, the mRNA panel (FAM72C,
ZFP36, GRASP, FOSB, SERPINE1, P2RX6), the lncRNA
panel (AC104260.1, AC126177.4, LINC02511,
DKFZp779M0652, AC025040.1), and the miRNA panel
(hsa-mir-143 and hsa-mir-221) for Basal breast cancer were
identified. Using univariate (Figures 3(a)–3(c)) and multi-
variate (Figures 3(d)–3(f )) cox regression beta index anal-
ysis, the expression of majority genes in each panel
contributed to the prognosis of patients with Basal breast
cancer (P< 0.05). Combined with gene expression and beta
index of multivariate cox regression, we calculated the risk

scores (RS) for each sample and then separated them into
two groups in each panel, high RS and low RS. Based on the
different RS level, three-year, five-year, and ten-year survival
ROC curves were drawn for each panel (Figures 4(a)–4(c)).
&e prediction performance of the prognostic model was
evaluated by computing the AUC of the ROC curves. With
regard to the mRNA set, the AUCs concerning the 6-mRNA
biomarker prognostic model were 0.748, 0.766, and 0.843 for
the 3-, 5-, and 10-year survival times (Figure 4(a)). In the
lncRNA set, AUCs concerning the 5-lncRNA biomarker
prognostic model were 0.755, 0.822 and 0.547 for the 3-, 5-,
and 10-year survival times (Figure 4(b)). For the 2 miRNA-
based prognostic model, the AUCs were 0.575, 0.568, and
0.618 for the 3-, 5-, and 10-year survival (Figure 4(c)). &en,
the K–M plot was produced between low and high-risk score
groups. &e results showed that the risk model of mRNA,
lncRNA, and miRNA panels were all significantly related to
the survival of Basal patients (Figures 4(d)–4(f )). Taken
together, mRNAsi-related genes were independent factors
affecting the prognosis of Basal breast cancer.

3.3. Relationship between Stemness Indices and the Immune
Milieu. We evaluated associations between specific kinds of
immune cells and mRNAsi in order to better understand the
relationships between stemness in Basal patients and the
tumor immune milieu in the present study. CIBERSORT
was used to calculate the relative abundance of immune cells
in each sample based on the expression profile data of the
sample (Supplementary Figure S1), and the corresponding
immune index of each sample was obtained from ESTI-
MATE. Combining the relative abundance and immune
score of the immune cells of each subtype sample, the re-
lationships between mRNAsi index and immune cell, four
immune cell activation status, and immune score in different
subtypes were investigated. Out of all other subtypes of
breast cancer, Her2 enrichment and Normal subtypes have
higher immune activity, while the LumA subtype has lower
immune activity. Among them, Basal subtype mRNAsi has a
high positive correlation with the activation status of T cells
and NK immune cells and a negative correlation with the
resting or naive immune cells (Figures 5(a)–5(b)).

3.4. Analysis of the Connectivity Map Reveals New Potential
Drugs that Target the Basal Stemness Signature. For the
purpose of developing efficacious drugs that can target the
pathways correlated with Basal stemness, we utilized mRNA
expression signatures to query the connectivity map (CMap)
database, followed by the analysis of differential expression
in low or highmRNAsi values on breast cancer subgroups. A
total of 1,308 potential drugs were obtained, of which the top
ten most relevantly positive-regulated drugs were HC toxin,
cytochalasin B, dopamine, oxamic acid, cantharidin, dex-
verapamil, corynanthine, GW-8510, verteporfin, and eto-
fenamate. &e top ten most relevantly negative-regulated
drugs were 5286656, demecolcine, 2-deoxy-D-glucose,
sulindac sulfide, tyrphostin AG-1478, DL-PPMP, 5186324,
benzbromarone, BW-B70C, and topiramate (Figure 5(c)).
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Figure 1: Survival for patients in the subtypes and clinical characteristics correlated with the mRNA expression-based stemness index
(mRNAsi) in breast cancer. (a) Patients’ survival curves in distinct the subtypes for breast cancer. (b) Individual sample boxplots of mRNAsi
classified by subtypes. (c) Individual mRNAsi boxplots classified by metastatic status. (d) Individual mRNAsi boxplots for each subtype
classified by metastatic state. (e) Summary of the known associations between clinical and molecular characteristics (subtype, stage, race,
pathologic TNM stage, and age) and mRNAsi in breast cancer.
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Figure 2: Association between OS of patients and mRNAsi. &e K–M survival curves depict the OS rate for patients with low- and high
mRNAsi, classified by the ideal threshold. (a) Cox regression studies of univariate data on clinical andmolecular characteristics related to OS
in MB patients. (b) K–M curves depicting the OS of all patients in breast cancer having a low or high mRNAsi. (c–g) K–M curves depicting
the OS of patients respectively in subtype Basal (c), Her2 (d), LumB (e), LumA (f), and Normal (g).
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4. Discussion

Using a stemness index model-based OCLR machine-
learning algorithm, we calculated the stemness index of
breast cancer samples in the TCGA database. With the aid of
the stemness index, we compared the differences in stemness
characteristics of distinct breast cancer subtypes and ana-
lyzed the association between breast cancer stemness and
patient survival, as well as tumor immune invasion. We
found that the stemness of different subtypes is significantly
different. Although the survival time of patients within
different subtypes is significantly different, we found no
substantial association between the stemness index and the
overall survival of patients in all breast cancer samples.
Stemness also has no significant correlation with the pa-
tient’s stage or metastasis. &en, we stratified the patients
according to the subtype and found that the tumor stemness
index in the Basal subtype is relatively high. At the same
time, there are two groups of patients with low and high
stemness only in the Basal subtype, which have significant
differences in overall survival. Patients with high stemness
have a longer overall survival, and patients with low
stemness have a short overall survival. &ese suggest that the
Basal subtype has higher internal heterogeneity and com-
plexity in tumor stemness than other subtypes.

Stemness refers to cells with the capacity for self-renewal
and differentiation, while tumor cells lose their original
cellular characteristics during progression and alienate into
poorly differentiated and highly proliferating cells, somehow
similar to normal stem cells. It is generally believed that these
stem cells with elevated stemness have a high likelihood of
being migrated to distant organs due to high proliferation
and invasion, which will result in an unfavorable prognosis

of patients [13, 14]. However, our study found that higher
stemness tumors are not as malignant. &e breast stemness
index of each subtype in breast cancer is not significantly
correlated with the presence or absence of distant metastasis
of tumors, and the prognosis of patients with high stemness
in Basal is better. &is is contrary to the oncogenic dedif-
ferentiation in most malignant tumors, which tends to be
stem-like. In fact, the association between high dryness and a
good prognosis is not identified in all breast tumors. &e
stemness value of the Basal subtype is relatively high, al-
though we know that the prognosis of patients with basal
subtype is usually not good. To be noted, the two groups of
high and low stemness we found here are stratified in Basal.
&is difference between high and low can only suggest that
there are different types of Basal subtypes, and the stem cell
genes signature could be applied in this classification. &en,
we found that this stemness signature is actually related to
tumor immune cell infiltration. &e prognosis of the patient
may be due to the difference in infiltrated immune cells.

With respect to the Basal subtype, we found that the
stemness index was substantially correlated with the status of
tumor immune infiltration. A strong positive association
was observed between the ratio of stemness index and
follicular helper T cells, also known as antigen-experienced
CD4+T cells. Moreover, the stemness index was signifi-
cantly correlated with immune cells participating in tumor
killing, such as CD8+Tcells, macrophageM1 type, activated
NK, DC, and CD4+memory T cells, while being negatively
correlated with macrophage M2 type and naı̈ve B and
CD4+Tcells.&is suggests that tumors with a high stemness
index tend to trigger activated immune cells infiltration,
which has the tumor-killing effect. &is result also explains
why we found that patients with higher stemness have a
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Figure 3: Univariate andmultivariate cox regression beta index analysis inmRNA, lncRNA, andmiRNA panel. (a–c) Predictive significance
of each gene in mRNA, lncRNA, and miRNA panel using univariate cox regression beta index analysis. (d–f) Predictive significance of each
gene in mRNA, lncRNA, and miRNA panel using Multivariate cox regression beta index analysis.
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better prognosis than patients with lower stemness. Our
findings show that the differentiation of M1 and M2 is
significantly related to the stemness of the tumor. Patients
with high tumor stemness have a high proportion of M1
infiltration, long overall survival, and patients with low
tumor dryness have a high M2 infiltration ratio and poor
prognosis. &is is completely in line with the findings of
earlier studies on tumor immunity [15–17].

Comparing the two groups of Basal subtypes with high
and low stemness, we first identified the related mRNA and
lncRNA and then screened and constructed a prognostic
model based on 6 mRNA or 5 lncRNA, which can be a very
good predictor for the patient’s overall survival. It indicates
that the expression of genes in this model is related to the
tumor’s stemness, and it can be associated with patients’
prognoses. &e clinical examination of these genes may be

utilized to anticipate the patients’ prognoses. Among these
genes, ZFP36 is negatively correlated with drug resistance
and proliferation [18]. FOSB is a transcription factor that
affects tumor differentiation, proliferation, and metastasis in
breast cancer [19]. SERPINE1 affects metastasis by affecting
EGFR signaling [20]. To our knowledge, these lncRNAs have
not been reported to be associated with breast cancer. &e
genes identified in these prognostic models can be used as
new molecular markers for Basal subtyping of breast cancer.

We used the CMap database to analyze the differentially
expressed genes of two groups of patients with high and low
stemness whose prognosis is significantly different in the
Basal subtype and obtained some drug compounds that can
respond to these gene expression changes. Most of these
compounds that are positively related to stemness are drugs
that inhibit tumor metastasis and progression [21–25],
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Figure 4: Predictive significance of the mRNA-, lncRNA-, and miRNA-based prognostic model in Basal subgroup patients. (a–c) Time-
dependent ROC curves illustrated the prediction power of the mRNA-, lncRNA-, and miRNA-based on the prognostic model in Basal
patients. (d–f) K–M curves for Basal patients showed the prediction power of the mRNA-, lncRNA-, and miRNA-based on risk scoring
prognostic model.
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indicating that these patients with high stemness are under
the effective control of tumor metastasis and progression.
Compounds that are negatively related to stemness are
generally not used for tumor therapy, indicating that pa-
tients with low stemness need more effective tumor drug
treatment to inhibit tumor progression.

Of course, this study also has some limitations. First, most of
the samples in this study are Caucasian and African American
(69.3%), so whether our results are also applicable to large
sample data of other populations needs more data to support.
Second, regarding the genes involved in our prognosismodel, we
only speculate that the function of these genes is associated with
the occurrence and progression of breast cancer, and we need to
add more experimental evidence to prove their molecular
mechanism. &ird, although we can explain why high-stemness
tumor tissue has a better prognosis in the perspective of immune
infiltration, more single-cell breast cancer data are still needed to
confirm that stem-like cells in breast tumor tissues will induce or
recruit more activated immune cells.

5. Conclusions

&e present research is the first to refine the concept of
tumor stem cell index into different subtypes of breast
cancer. Among the subtypes, Basal is the one with the
most closely related stem cell index and survival. We
identified a stratification of Basal subtypes that are not
only related to the stemness but also the prognosis and
built a 6 mRNA-based or 5 lncRNA-based prognostic
models for patients’ overall survival. Further tumor im-
mune infiltration and drug analysis confirmed that the
two groups have different immune microenvironments
and that different tumor drugs should be applied for their
treatment. &e classification signature in the present re-
search might be used to improve individualized prediction
of the prognosis of basal breast cancer and serve as a
promising biomarker for basal breast cancer prognosis
and responsiveness to differentiation treatments in clin-
ical practice.
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Purpose. To study the prognostic value of CD47 in endometrial carcinoma (EC) and its correlation with clinicopathological
variables.Methods. Next-generation sequencing data from+e Cancer Genome Atlas was analyzed with the Kaplan–Meier curve,
Cox’s regression model, and ROC curve. A cohort of 544 specimens, including 344 cases of endometrial cancer, 92 cases of
endometrial hyperplasia (EH), and 118 cases of normal endometrium (NE), were evaluated with immunohistochemistry and
analyzed with statistical methods. Results. For TCGA data, CD47 expression in EC was considerably greater than in NE tissues.
CD47 expression correlated significantly with age, clinical stage, histological grade, histological type, and menopause status.
Kaplan–Meier analysis and Cox’s regressionmodel revealed that elevated CD47 expression was positively correlated with a poorer
prognosis. ROC curve showed that CD47 had high specificity and sensitivity as an independent prognosis factor. In our cohort,
CD47 expression was significantly stronger in EC than in NE. +e strongly positive expression of CD47 could be observed in EC,
but none was observed in NE.+e CD47 expression rate ranked in descending order: atypical endometrium hyperplasia, complex
endometrium hyperplasia, and simple endometrium hyperplasia. Atypical endometrium hyperplasia CD47 expression rate was
much greater than either simple endometrium hyperplasia or complex endometrium hyperplasia. A substantial connection
existed amongst CD47 expression and the clinical stage. Kaplan–Meier survival analysis demonstrated that CD47 expression was
connected with overall survival (OS). Univariate analysis instead of the multivariate analysis revealed that CD47 expression was
associated significantly with prognosis. Conclusions. CD47 is a critical part of the progress of pathogenesis in EC. CD47 expression
correlates with multiple clinicopathological variables and is a potential prognostic risk factor.

1. Introduction

Endometrial cancer (EC) is one of the most common female
reproductive system malignant tumors with distinct bio-
logical behavior. About 634 per 100,000 newly diagnosed
cases and 21.8 per 100,000 mortalities in 2017 were claimed
by this disease in China [1].

EC is traditionally categorized into two histological
types. Type I EC (endometrioid carcinoma) is the most
common and is related to estrogen excess, and this type
generally belongs to low grade. Type II EC consisting of
serous carcinoma, clear cell carcinoma, and others is much

more likely to be high grade [2]. EC can be early diagnosed
by fractional curettage or endometrial biopsy with the onset
symptom of postmenopausal vaginal bleeding. However,
about 30% of advanced stage endometrial cancer diagnosed
patients do not improve long-term survival even with rec-
ommended treatment strategy including surgery, platinum-
based chemotherapy, and radiotherapy [3, 4]. +e appli-
cation of CA-125 in clinical practice may be useful in ad-
vanced stages and serous carcinoma [5]; however, there is no
biomarker with special sensitivity and specificity to predict
prognosis and therapeutic effects. +us, exploring the
pathological mechanism and looking for desirable
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biomarkers to increase the rate of early diagnosis of EC are
the key to ameliorate prognosis.

CD47 is a transmembrane immune-regulatory protein
expressed on a variety of cell membranes [6]. +is molecule
has a ligand to interact with signal regulatory protein alpha
(SIRPα) on neutrophils, dendritic cells, macrophages, and T
and B lymphocytes to activate various cellular metabolisms,
such as nitric oxide, calcium homeostasis, and hydrogen
sulfide biosynthesis [7]. +e overexpression of CD47 on the
aged and superfluous cells initiates the phagocytosis by
macrophages to keep the vitality of a healthy cell population.
In ovarian carcinoma, breast carcinoma, melanoma, and
gastric carcinoma, overexpression of CD47 was found to
correlate with poor survival [8–12]. On the contrary,
inhibiting CD47 expression could increase the ability of
macrophages to eradicate different types of cancer [13].
+ese exciting experiment results make CD47 a promising
new biomarker for cancer therapy and prognosis assess-
ment. Although CD47 has been involved in cancer pro-
gression, at the cell level in vitro CD47 was discovered to be a
critical part in enhancing cell migration ability, viability, and
inhibiting apoptosis in endometrial carcinoma cells via the
PI3K_Akt_mTOR Signaling Pathway [14]. Its prognostic
value and its correlation with clinicopathological variables in
large numbers of endometrial cancer stay vague.

+is study explored CD47 expression and available
clinical variables from +e Cancer Genome Atlas (TCGA)
data and also detected CD47 expression in EC, EH, and NE
with our collected samples to provide a theoretical basis for
screening a potential biomarker to evaluate prognosis and
promote new drug development.

2. Materials and Methods

2.1. TCGA Data Analyses. RNAseq data including 552 ECs
and 35 adjacent cancer tissues in HTSeq-FPKM (Fragments
Per Kilobase Per Million) format and the clinical records
were downloaded from TCGA. Some items of the clinical
records were incomplete. +e RNAseq data in the FPKM
format was adapted to the TPM (transcripts per million
reads) format and conducted with Log2 conversion before
bioinformatics analysis. Preprocession and bioinformatics
analysis of the downloaded raw data were conducted using
the R 3.6.3 software.

2.2. Ethics Approval. +e research was conducted following
the Helsinki Declaration as well as given approval from the
Ethics Committee of Xiangyang Central Hospital (reference
number 2021005). Medical data were completely anony-
mized. Investigators were blinded for all the clinical in-
formation during the analyses.

2.3. Case Selection. A group of 544 formalin-fixation par-
affin-embedded specimens, containing 344 EC cases, 92
endometrial hyperplasia cases, and 118 normal endome-
trium cases, were obtained from Xiangyang Central Hos-
pital, Hubei province, from 2006 to 2011 with needed clinical
data. All the patients were Han People. +e age of

endometrial cancer patients was between 29 and 83 years,
mean± SD (55.05± 8.70) years; endometrial hyperplasia
patients between 29 and 68 years, mean± SD (45.80± 6.22)
years; normal endometrium participants between 24 and
57 years, mean± SD (39.86± 8.32) years. EC information on
clinicopathological variables was listed in Table 1. EH in-
cluded 57 cases of simple hyperplasia, 15 cases of complex
hyperplasia, and 20 cases of atypical hyperplasia. NE
comprised 83 cases of proliferative phase and 35 cases of
secretory phase. Two senior pathologists examined all cases
individually for a second time to guarantee the diagnosis
precision. For EC cases, tissue blocks with abundant car-
cinoma and adjacent normal endometria were selected.

2.4. Immunohistochemistry. +e Ventana Benchmark UL-
TRA automated staining system (Ventana Medical Systems,
Tucson, AZ) CD47 was utilized for immunohistochemical
staining implemented with 3 µm thick sections following
manufacturer protocol. Mouse monoclonal anti-CD47 an-
tibody (Clone No. 12730, 1 :100 dilution, Santa Cruz) was
the primary antibody used. +e reaction was visualized with
3,3′-diaminobenzidine (DAB). Determined EC cases with
CD47 strong expression were selected as the positive control.
PBS was applied as a negative control in place of the primary
antibody. Pictures were scanned with TEKsqray Digital Slide
Scanner (Shengqiang Tech Ltd., Shenzhen, China).

2.5. Immunohistochemical Scoring. Positive immunostain-
ings were located on membranes and cytoplasm of cancer
cells, and any immunostainings in endothelial, lymphocytic,
or desmoplastic tissue were discounted. Scoring of CD47
immunostaining was completed as earlier explained using
minor modification [15]. Positive cell intensity and per-
centage were obtained by counting cancer cells under 400 ×

magnification from 10 randomly chosen visual fields. +e
intensity of immunostaining was scored 0, 1, 2, 3, accounting
for no signal, weak signal (light yellow), moderate signal
(yellowish-brown), and strong signal (brown), individually.
Scores of 0–4 for positive cell percentage were 0�<5%,
1� 5%–25%, 2� 21%–50%, 3� 51%–75%, and 4�>75%. +e
final results for a single case were established by the sum of
the two scores: negative (−) 0 or 1 sum, weakly positive (+) 2
or 3 sum, moderately positive (++) 4 or 5 sum, and strongly
positive (+++) greater than 6 sum. Two senior pathologists
assessed all sections independently. +e results were judged
by a third pathologist once a disagreement occurred.

2.6. Data Statistics. +e correlation amongst CD47 ex-
pression and clinicopathological variables was tested by chi-
square tests and Fisher exact test. +e Kaplan–Meier curve
presented the survival probability and was analyzed using
the log-rank test. Cox’s regression model identified the
prognostic risk factors. +e specificity and sensitivity of
CD47 as an independent prognostic factor were evaluated
with the performance of the ROC curve analysis. P< 0.05
was deemed statistically significant. Statistical calculation
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was done using the SPSS 23.0 software (IBM, Chicago, IL,
USA).

3. Results

3.1. Upregulation of CD47 Expression in EC Using TCGA
Data. To explore CD47 expression levels in EC, we analyzed
TPM values with Log2 conversion. +e expression of CD47
was higher than that of normal endometrial tissues (p< 0.001,
Figure 1(a)).

3.2. Correlation between CD47 Expression and Clinicopath-
ological Variables Using TCGA Data. CD47 expression
correlated significantly with histological grade (p< 0.001),
histological type (p< 0.001), age (≤60 vs. >60, p< 0.001),
clinical stages (stages I + II vs. stages III + IV, p� 0.024), and
menopause status (p � 0.002, Table 2). +ere were no sig-
nificant differences in weight, height, BMI, tumor invasion,
and hormones therapy between the low and high CD47
expression group (p> 0.05, Table 2).

3.3. 5e Prognostic Value of CD47 Expression in EC Using
TCGA Data. Kaplan–Meier analysis revealed that high
CD47 expression was positively correlated with a poorer
prognosis (HR� 2.03, CI� 1.31–3.16, p< 0.001, Figure 1(b)).
Subgroup OS analysis pointed out that patients >60, stages
III + IV, serous carcinoma, BMI >30, diabetes, and histo-
logical grade G3 combined with the high CD47 expression
had a poorer prognosis when weighed against those with the
low CD47 expression (p< 0.01, Figures 1(c)–(h)).

Univariate regression analysis showed that clinical stage
(stages I and II vs. stages III and IV), age (>60 vs. ≤60),
histological type (mixed and serous vs. endometrioid),
histologic grade (G3 vs. G1 and G2), tumor invasion (≥50 vs.
<50), and CD47 (low vs. high) were the factors influencing
OS (p< 0.05). Multivariate regression analysis revealed that

the clinical stage and CD47 were the independent risk
factors for EC progression (p< 0.05, Table 3).

A ROC curve showed that CD47 could be chosen as a
biomarker to foresee EC prognosis with high specificity and
sensitivity (AUC� 0.952, CI� 0.927–0.977, Figure 1(i)).

3.4. CD47 Expression in Normal Endometrium and Endo-
metrialHyperplasiaandEndometrialCarcinoma. Two CD47
expression statuses including positivity and strong positivity
were set to look for a suitable cut-off value to distinguish a
significant difference between groups. CD47 positive and
strongly positive expression rates in the endometrial cancer
group were considerably greater than the endometrial hy-
perplasia group and the normal endometrium group
(P< 0.01). A declining trend of CD47 positive and strongly
positive expression rate existed from EC to EH and then to
NE. Comparing between the simple hyperplasia group and
the complex hyperplasia group, CD47 positive and strongly
positive expression rates did not show significant differ-
ences; however, comparing between either of the two groups
and the atypical hyperplasia group, the positive and strongly
positive expression rates showed significant differences
(P< 0.01). CD47 positive and strongly positive expression
did not show significant differences between the prolifera-
tion phase group and the secretory phase group (P> 0.05,
Table 4). Examples of CD47 immunostainings in EC, EH,
and NE were represented in Figure 2.

3.5. Relationship between CD47 Expression and Clinico-
pathological Variables of Endometrial Cancer. CD47 posi-
tive and the strongly positive expression rates did not
show significant differences in EC types, histological
types, histological grade, and Ki67 expression. Significant
differences existed among different clinical stages
(P< 0.01). For infiltration depth, lymph node metastasis,
and P53 expression, CD47 positive and strong positive
expression rates revealed different results. For CD47
strongly positive expression rates, a significant difference
existed among infiltration depth and lymph node me-
tastasis groups; however, there was no significant dif-
ference among these two groups for the positive
expression rate of CD47 (P< 0.01). Comparing between
P53 wild-type and mutant type, the CD47 positive ex-
pression rate was significantly different (P< 0.01); how-
ever, there was no significant variation for the strongly
positive CD47 expression rate (Table 5).

3.6. Prognosis Analysis. Kaplan–Meier survival analysis
demonstrated that endometrial cancer patients with positive
CD47 expression had considerably greater mortality than
those with no positive CD47 expression (P< 0.01). Subgroup
Kaplan–Meier survival analysis demonstrated that, in stages
III-IV and Ki67> 50% groups, high CD47 expression cor-
related significantly with a poorer prognosis (P< 0.01,
Figure 3).

Univariate analysis showed that age, CD47 expres-
sion, clinical stage, histological grade, infiltration, lymph

Table 1: Baseline characteristics of EC patients.

Characteristics Levels N (%)
n 344
Age, mean± SD 29–83 55.05± 8.70

Histological type I 325 (94.5%)
II 19 (5.5%)

Clinical stage

1 247 (71.8%)
2 62 (18%)
3 33 (9.6%)
4 2 (0.6%)

Histological grade
G1 190 (55.2%)
G2 96 (27.9%)
G3 58 (16.9%)

Infiltration depth <50% 270 (78.5%)
>50% 74 (21.5%)

P53 Mutant 79 (23%)
Wild 265 (77%)

Ki67 <50% 268 (77.9%)
>50% 76 (22.1%)

Lymph node metastasis
Yes 31 (9.0%)
No 184 (53.5%)

No lymph node cleaning 129 (37.5%)
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Figure 1: Analysis of CD47 expression and prognosis in EC using TGCA data. (a) CD47 expression differences between NE and EC are
shown in the box-and-whisker plot. (b) Overall survival curve. Subgroup survival curve according to age >60: (c) stage III, (d) histological
type: serous, (e) BMI >30, (f ) diabetes, (g) histological grade: G3, and (h) ROC curve according to CD47 expression (i).
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node metastasis, and Ki67 index correlated significantly
with prognosis (P< 0.05). However, only the clinical stage
and lymph node metastasis show a significant correlation
with prognosis by multivariate analysis (P< 0.05,
Table 6).

4. Discussion

+e immune checkpoint is a type of costimulatory and
inhibitory molecule responsible for antigen recognition
regulation of Tcell receptors (TCR) in the immune response

Table 2: CD47 expression in endometrial cancer with different clinicopathological variables using TCGA dada.

Characteristics Low expression of CD47 (%) High expression of CD47 (%) P value
n 276 276
Age, mean± SD 62.04± 11.79 66.12± 9.9
Clinical stage 0.024
Stages I + II 209 (37.8%) 184 (33.3%)
Stages III + IV 57 (12.1%) 92 (16.7%)
Age <0.001
≤60 126 (23%) 80 (14.6%)
>60 149 (27.1%) 194 (35.3%)
Weight (Kg) 0.057
≤80 111 (21%) 132 (25%)
>80 155 (29.4%) 130 (24.6%)
Height (cm) 0.364
≤160 119 (22.8%) 128 (24.5%)
>160 145 (27.7%) 131 (25%)
BMI 0.730
≤30 105 (20.2%) 107 (20.6%)
>30 158 (30.4%) 149 (28.7%)
Histological type <0.001
Endometrioid 245 (44.4%) 165 (29.9%)
Mixed 9 (1.6%) 15 (2.7%)
Serous 22 (4%) 96 (17.4%)
Histologic grade <0.001
G1 60 (11.1%) 38 (7%)
G2 73 (13.5%) 47 (8.7%)
G3 141 (26.1%) 182 (33.6%)
Tumor invasion (%) 0.882
<50 139 (29.3%) 120 (25.3%)
≥50 113 (23.8%) 102 (21.5%)
Menopause status 0.002
Pre 27 (5.3%) 8 (1.6%)
Peri 11 (2.2%) 6 (1.2%)
Post 216 (42.7%) 238 (47%)
Hormones therapy 1.000
No 148 (43%) 149 (43.3%)
Yes 23 (6.7%) 24 (7%)

Table 3: Univariate and multivariate analysis of the prognosticators of EC using TCGA data.

Characteristics Total (n)
Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value
Clinical stage (stages I and II vs. stages III and IV) 542 3.270 (2.145–4.984) <0.001 2.671 (1.266–5.637) <0.001
BMI (>30 vs. ≤30) 519 0.967 (0.636–1.470) 0.876
Age (>60 vs. ≤60) 549 1.847 (1.160–2.940) <0.010 1.301 (0.625–2.711) 0.482
Weight (>80 vs. ≤80) 528 1.060 (0.699–1.607) 0.784
Height (>160 vs. ≤160) 523 1.153 (0.758–1.753) 0.507
Histological type (mixed and serous vs. endometrioid) 552 2.628 (1.746–3.957) <0.001 1.620 (0.772–3.402) 0.202
Histologic grade (G3 vs. G1 and G2) 541 3.281 (1.907–5.643) <0.001 1.344 (0.618–2.923) 0.455
Tumor invasion (%) (≥50 vs. <50) 474 2.813 (1.744–4.535) <0.001 1.222 (0.603–2.475) 0.578
Menopause status (post vs. pre and peri) 506 1.050 (0.507–2.175) 0.895
Diabetes (yes vs. no) 451 1.172 (0.731–1.878) 0.510
Hormones therapy (yes vs. no) 344 0.801 (0.380–1.689) 0.560
CD47 (low vs. high) 552 1.021 (1.010–1.032) 0.015 1.018 (1.007–1.029) 0.021
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process [16]. By dysregulating immune checkpoint-related
proteins, cancer cells are able to easily escape immune at-
tacks. Immune checkpoint inhibitors block immune
checkpoint-related proteins from binding with their

partners and thereby allow the T-cells to kill cancer cells [17].
Nowadays, the most successful example is the development
of anti-PD-1/PD-L1 antibodies. Durvalumab, atezolizumab,
nivolumab, and pembrolizumab were put into a clinic in

Table 4: CD47 expression in normal endometrium, endometrial cancer, and endometrial hyperplasia.

Tissue type Case - + ++ +++ Positive cases Positive rate (%) Strong positive cases Strong positive rate (%)
Endometrial cancer 344 85 143 85 31 259 75.29∗ 116 33.72 ∗
Endometrial hyperplasia 92 65 23 4 0 27 29.34 4 4.34
Simple hyperplasia 57 49 8 0 0 8 14.04∗∗ 0 0
Complex hyperplasia 15 11 4 0 0 4 26.67 0 0
Atypical hyperplasia 20 5 11 4 0 15 75.00 4 20.00
Normal endometrium 118 89 29 0 0 29 24.58 0 0
Proliferative phase 83 66 17 0 0 17 20.48 0 0
Secretory phase 35 23 12 0 0 12 34.29 0 0
Note. ∗ weighed against endometrial hyperplasia group and normal endometrium group, P< 0.01; ∗∗ weighed against the atypical hyperplasia group, P< 0.01.

(a) (b) (c)

(d) (e) (f )

(g) (h)

Figure 2: Representative illustrations of the CD47 expression in EC, EH, and NE with immunohistochemistry. (a) G1 endometrioid
carcinoma. (b) G2 endometrioid carcinoma. (c) G3 endometrioid carcinoma. (d) Serous carcinoma. (e) Clear cell carcinoma. (f ) Atypical
endometrial hyperplasia. (g) Proliferation phase endometrium. (h) Secretory phase endometrium. 100X pictures were presented. Scale bars,
300 μm.
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succession, and many patients get to benefit from them with
gastric cancer, lung cancer, and esophagus cancer [18]. Yet,
not all PD-L1-positive cancers react to anti-PD-1/PD-L1
antibodies, and side effects such as rash, diarrhea, and colitis
occur in some patients. +e success of anti-PD-1/PD-L1
antibody development and its drawback make immune
checkpoint a most potential research area, and scientists are
still on the hunt for a new target.

CD47 like PD-L1 is widely overexpressed on the
membrane of many solid tumors, including triple-negative
breast cancer, ovary cancer, bladder cancer, gastric cancer,
and so on [8–10, 12, 19]. CD47 overexpression is a useful
strategy for solid tumors to escape from immune attack by
delivering a “do not eat me” signal to avoid phagocytosis via
the binding of SIRPα expressed on phagocytes [6, 7].
Currently, Hu5F9-G4, a humanized anti-CD47 antibody, is

Table 5: CD47 expression in endometrial cancer with different clinicopathological variables.

Features Cases Positive
cases

Positive
rate (%)

Strong
positive cases

Strong
positive rate

(%)

P value
(positive)

P value (strong
positive)

EC types I 321 244 76.01 106 33.02 0.315 0.362II 23 15 65.22 10 43.48

Histological type

Endometrial
adenocarcinoma 321 244 76.01 106 33.02

0.335 0.46Serous carcinoma 14 10 71.43 7 50.00
Clear cell carcinoma 9 5 55.56 3 33.33

Infiltration depth <1/2 muscle layer 270 197 72.96 62 22.96 0.068 <0.01>1/2 muscle layer 74 62 83.78 36 48.65

Clinical stage
I 247 171 69.23 51 20.65

<0.01 <0.01II 62 58 93.55 39 62.90
III + IV 35 30 85.71 26 74.29

Histological
grade

G1 190 146 76.84 60 31.58
0.714 0.265G2 96 71 73.96 31 32.29

G3 58 42 72.41 25 43.10

Lymph node
metastasis

No 184 134 72.83 50 27.17

0.406 <0.01Yes 31 26 83.87 20 64.51
No lymph node

cleaning 129 99 76.74 46 35.66

P53 Mutant 79 49 62.03 24 30.38 0.03 0.501Wild type 265 210 79.25 92 34.72
Ki67
proliferation
index

>50% 76 56 73.68 27 35.53
0.763 0.784<50% 268 203 75.75 89 33.20

Overall survival 
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Figure 3: Kaplan–Meier survival analysis of EC patients with various CD47 expression levels. (a) Overall survival curve. (b) Subgroup
survival according to stages III + IV. (c) Ki67> 50%.
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undergoing evaluation in a phase I trial, and it was reported
that Hu5F9-G4 could significantly suppress the progression
of advanced solid malignancies [20]. It brings a new hope for
doctors and patients to treat solid malignancies. Advanced
EC patients also need a new medicine in their drug box, and
thereby, evaluating the prognostic value of CD47 expression
on EC appears very important.

In this study, we first analyzed the TCGA data and
discovered that CD47 expression in EC was drastically
greater than in normal endometrial tissues. Additional
analysis of the relationship amongst CD47 expression and
clinicopathological variables demonstrated that CD47 ex-
pression correlated significantly with age, clinical stage,
histological type, histological grade, and menopause status.
Kaplan–Meier analysis revealed that high CD47 expression
was positively correlated with a poorer prognosis. Subgroup
OS analysis showed that age >60, stages III + IV, serous
carcinoma, BMI >30, diabetes, and histological grade G3
combined with the high CD47 expression had a poorer
prognosis. Univariate and multivariate analysis indicated
that only the clinical stage and CD47 could be the inde-
pendent risk factors to evaluate the prognosis of EC. A ROC
curve showed that CD47 had high specificity and sensitivity
as an independent prognosis factor.

Sercan et al. stated that CD47 expression was consid-
erably higher in EC and was associated with histologic grade
[21]. However, CD47 expression was not in association with
OS and other clinicopathological variables. Sercan’s con-
clusions do not exactly coincide with our observation with
TCGA data.

We next analyzed the CD47 expression in our collected
cohort. It was discovered that the CD47 expression is
considerably stronger in endometrial cancer than in normal
endometrium. +e strongly positive expression of CD47
could be observed in endometrial cancer, but none was
observed in normal endometrium. We also explored the
CD47 expression in endometrial hyperplasia. Endometrial
hyperplasia could be divided into simple endometrium
hyperplasia, complex endometrium hyperplasia, and atyp-
ical endometrium hyperplasia. Atypical endometrium hy-
perplasia is a precancerous lesion. +e CD47 expression
ranks in descending order, atypical endometrium hyper-
plasia> complex endometrium hyperplasia> simple endo-
metrium hyperplasia. No significant difference existed
between simple endometrial hyperplasia and complex

endometrial hyperplasia; however, the atypical endome-
trium hyperplasia CD47 expression rate was much greater
compared to either simple endometrium hyperplasia or
complex endometrium hyperplasia. +e CD47 expression in
precancerous lesions was barely reported in published lit-
erature, and our results support that CD47 possibly takes
part in oncogenesis and has a critical position in the pro-
gression from normal, hyperplasia, and atypia then to EC.

By analyzing our cohort, a significant correlation existed
between CD47 expression and the clinical stage. However,
the establishment of a significant correlation between in-
filtration, lymph node metastasis, P53, and CD47 expression
depended on the choice of cut-off value (positive or strongly
positive). Kaplan–Meier survival analysis demonstrated that
CD47 expression was linked with OS. Subgroup
Kaplan–Meier survival analysis demonstrated that stages III-
IV and Ki67> 50%, combined with high CD47 expression
correlated significantly with a poorer prognosis. Univariate
analysis showed that age, CD47 expression, clinical stage,
histological grade, infiltration, lymph node metastasis, and
Ki67 index correlated significantly with prognosis. However,
only the clinical stage and lymph node metastasis show a
significant correlation with prognosis by multivariate
analysis.

Comparing the results from TCGA data with our
cohort, the clinical stage is the most stable prognosticator
compared to others with different statistical methods.
Routine clinical practices have demonstrated that the
clinical stage is a scientific and reasonable prognosticator
with overall consideration of infiltration depth, lymph
node invasion, and distal metastasis. CD47 showed a
significantly different expression in descending order
from normal and atypia then to EC. Survival analysis
discovered that high CD47 expression had a poorer
prognosis. CD47 expression had a significant correlation
with several clinicopathological variables especially the
clinical stage. Cox’s regression model also showed that
CD47 had an important prognosis value for EC except for
multivariable analysis with our cohort. More serious
carcinoma and cases with rare pathological types were
included in TCGA data, and to ensure the integrity of
clinical data, some cases with incomplete information
were not incorporated in our cohort. +ese data differ-
ences may account for the reasons of nonstatistical sig-
nificance in multivariable analysis with our cohort.

Table 6: Screening of prognosticators in EC patients with univariate and multivariate analysis.

Characteristics n HR (95% CI) univariate
analysis

P value univariate
analysis

HR (95% CI) multivariate
analysis

P value multivariate
analysis

Age 344 1.066 (1.026–1.108) <0.001 1.031 (0.984–1.080) 0.201
CD47 (positive vs. negative) 344 0.438 (0.218–0.881) 0.021 0.754 (0.349–1.630) 0.473
Cancer type (I vs. II) 344 10.275 (5.011–21.070) <0.001 1.928 (0.629–5.907) 0.251
Clinical stage (I and II vs. III and IV) 344 3.907 (2.714–5.625) <0.001 2.410 (1.280–4.535) 0.006
Histological grade (G3 vs. G1 and G2) 344 2.491 (1.756–3.532) <0.001 0.861 (0.463–1.601) 0.636
Infiltration depth (<1/2 vs. >1/2) 344 4.533 (2.250–9.131) <0.001 0.432 (0.129–1.438) 0.171
P53 (mutant vs. wild type) 344 0.777 (0.349–1.733) 0.538
Ki67 (>50% vs. <50%) 344 2.244 (1.094–4.603) 0.028 1.218 (0.545–2.719) 0.631
Lymph node metastasis (yes vs. no) 344 13.845 (6.872–27.894) <0.001 4.675 (1.358–16.096) 0.015
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Several studies had reported that the CD47 over-
expression is associated with poor prognosis and clini-
copathological variables in different cancer patients
[8, 9, 11]. Cell and animal studies revealed that down-
regulation of CD47 significantly suppressed the prolif-
eration and metastasis of cancer cell lines and caused
tumor reduction in heterotopic and orthotopic xenograft
mouse models [22]. Further researches on molecular
mechanisms showed that activated STAT3 pathway by
IL-6 upregulated CD47 expression in hepatocellular
carcinoma cell lines, and the IL-6-STAT3 axis blockage
reduced cancer cells’ antiphagocytic ability via down-
regulation of CD47 expression [23]. Literature of molecular
mechanisms on the pathogenesis of EC is rare. PI3K/Akt/
mTOR signaling pathway activation via upregulation of
CD47 expression enhances cellular viability and migration
ability but suppresses endometrial carcinoma cell apoptosis
[14]. Blocking the CD47-SIRPa interaction promotes
phagocytosis of polarized-M2 macrophages to suppress
tumor progression [24]. +ese experiment results demon-
strated that CD47 could be a critical part of the progress of
pathogenesis in EC.

Several drawbacks existed in our study. In our cohort,
multivariable Cox’s regression did not show CD47 cor-
related with prognosis. We have explored the possible
reasons for nonstatistical significance. Multiple clinico-
pathological variables influence the relationship between
CD47 and prognosis. More specimens particularly with
rare pathological types should be brought into our study
and maybe achieve a possible positive result. A standard
cut-off like PD-L1 and HER-2 is important to evaluate
immunohistochemistry and predict the relationship be-
tween biomarkers and clinicopathological variables
[25, 26]. Multiple studies have put forward different cut-
offs to evaluate CD47 expression, which brings incon-
sistent observation results [12, 27, 28]. Further studies
need to be performed to validate the practicability of
these cut-offs. Clinical data shows that CD47 is an im-
portant molecule in the pathogenesis of EC; however,
complex molecular mechanism is still unclear. Future
studies to determine CD47 details on molecular onco-
genesis of endometrial carcinoma are warranted.

5. Conclusion

In conclusion, CD47 could be a critical part of the progress
of pathogenesis in EC. CD47 expression correlates with
multiple clinicopathological variables and is a potential
prognostic risk factor.
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“Clinicopathologic and prognostic significance of CD47 ex-
pression and tumor-associated macrophages in endometrial
carcinoma,” International Journal of Gynecological Pathology,
vol. 2021, 2021.

[22] Z. Xiao, H. Chung, B. Banan et al., “Antibody mediated
therapy targeting CD47 inhibits tumor progression of he-
patocellular carcinoma,” Cancer Letters, vol. 360, no. 2,
pp. 302–309, 2015.

[23] J. Chen, D.-X. Zheng, X.-J. Yu et al., “Macrophages induce
CD47 upregulation via IL-6 and correlate with poor survival
in hepatocellular carcinoma patients,” OncoImmunology,
vol. 8, no. 11, Article ID e1652540, 2019.

[24] S. Gu, T. Ni, J. Wang et al., “CD47 blockade inhibits tumor
progression through promoting phagocytosis of tumor cells
byM2 polarized macrophages in endometrial cancer,” Journal
of Immunology Research, vol. 2018, pp. 1–12, 2018.

[25] J. Yu, X. Wang, F. Teng, and L. Kong, “PD-L1 expression in
human cancers and its association with clinical outcomes,”
OncoTargets and 5erapy, vol. 9, pp. 5023–5039, 2016.

[26] A. C. Wolff, M. E. H. Hammond, K. H. Allison et al., “Human
epidermal growth factor receptor 2 testing in breast cancer:
American society of clinical oncology/college of American
pathologists clinical practice guideline focused update,” Ar-
chives of Pathology & Laboratory Medicine, vol. 142, no. 11,
pp. 1364–1382, 2018.

[27] T. Hu, H. Liu, Z. Liang et al., “Tumor-intrinsic CD47 signal
regulates glycolysis and promotes colorectal cancer cell
growth and metastasis,” 5eranostics, vol. 10, no. 9,
pp. 4056–4072, 2020.

[28] O. Arrieta, A. Aviles Salas, M. Orozco Morales et al., “As-
sociation between CD47 expression, clinical characteristics
and prognosis in patients with advanced non small cell lung
cancer,” Cancer Medicine, vol. 9, no. 7, pp. 2390–2402, 2020.

10 Journal of Oncology



Research Article
Correlation between Tumor Microenvironment and Immune
Subtypes Based on CD8 T Cells Enhancing Personalized
Therapy of Gastric Cancer

Jianyu Wu,1 Yajie Xiao,2 Weiqi Lu,1 Zijing Zhang,1 Haigan Yang,1 Xiaoli Cui,2

Dongfang Wu ,2 and Yuzhong Chen 1

1No. 2 Surgery Department, �e First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine,
Guangzhou 440100, China
2YuceBio Technology Co., Ltd., Shenzhen 440300, China

Correspondence should be addressed to Dongfang Wu; wudf@yucebio.com and Yuzhong Chen; cyz1103603@21cn.com

Received 3 December 2021; Accepted 18 January 2022; Published 28 February 2022

Academic Editor: Fu Wang

Copyright © 2022 Jianyu Wu et al. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Immunotherapy is a promising therapy for metastatic gastric cancer (GC) patients. However, the component of
tumor microenvironment (TME) is a pivotal factor hindering immunotherapy outcome. CD8 Tcells suppress tumor progression.
+is study developed an immune subtyping system and a prognostic model for guiding personalized therapy of GC patients.
Methods. Marker genes related to CD8 T cells were identified by weighted correlation network analysis (WGCNA). Consensus
clustering was used to develop immune subtypes. Univariate Cox regression analysis was performed to screen prognostic genes.
Functional analysis (KEGG and GO annotation) and gene set enrichment analysis were applied. Results. Based on marker genes
related to CD8 Tcells, we identified three immune subtypes (IC1, IC2, and IC3) with distinct prognosis and differential TME. In
IC3, CD8 T cell function was impaired by high activation of CXCR4/CXCL12 axis, and impaired T cell function predicted high
response to immune checkpoint blockade. IC1 was sensitive to chemotherapeutic drugs but showed low response to immu-
notherapy. We also developed an 8-gene prognostic signature with robust performance to stratify GC patients into high-risk and
low-risk groups. Conclusions. +is study identified three immune subtypes and a prognostic signature, and both were effective in
direct personalized therapy for GC patients. +e correlation between TME and immunotherapy was further characterized from a
new perspective.

1. Introduction

Although the incidence and mortality of gastric cancer (GC)
have declined over the past decades, GC is still the leading
cause of cancer death [1]. +e discovery and application of
curative modalities for GC treatment increased the 5-year
overall survival (OS) rate from 18.8% to 28.0% according to
the statistics of the Surveillance, Epidemiology, and End
Results (SEER) program [2]. However, a large number of
metastatic patients still face the difficulties of seeking an
effective therapy. Currently, immunotherapy targeting im-
mune checkpoints seems a promising strategy for treating
advanced gastric cancer [3].

Tumor microenvironment (TME) is highly associated
with tumor cell proliferation, invasion, migration, and
immunotherapy outcome [4, 5]. To a large extent, infiltra-
tion of different types of immune cells is decisive of the
prognosis of immunotherapy [6]. An extensive immuno-
genomic analysis on pan-cancer performed with+e Cancer
Genome Atlas (TCGA) identified 6 immune subtypes, and
GC can be classified into 5 immune subtypes [7]. +e pan-
caner study further characterized the critical role of TME to
drive personalized cancer immunotherapy. Focusing on
tumor immune infiltration in gastric cancer, Zhou et al.
developed two immune subtypes (Immune Activation
Subtype and Immunosuppressive Subtype), which were
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predicted to have different responses to different immu-
notherapies [8].

A link between increased levels of cytotoxic CD8 T cells
and strong antitumor effects has been discovered in many
cancer types such as breast cancer [9], glioblastoma, cervical
cancer [10, 11], and gastric cancer [12]. In the TME, re-
ceptors of PD-L1 and CD80 expressed by tumor cells or
tumor-related immune cells can interact with PD-1 and
CTLA-4 expressed by CD8 T cells, respectively, to impair
CD8 T cell function [13, 14]. +ese interactions may be the
potential targets for immunotherapy [15, 16]. Current
studies also proved that anti-PD-1/PD-L1 and anti-CTLA-4
inhibitors can suppress cancer cell proliferation [17].
Clinical trial of anti-PD-1 antibody combined with apatinib
revealed a positive outcome in advanced GC patients [18].
Immune infiltration of CD8 T cells plays a pivotal role in
inhibiting cancer cell progression, and its function is closely
correlated with TME. In addition, immune response acti-
vated by targeted immunotherapy is highly related to the
status of infiltrated CD8 T cells and TME [19].

+e current study focused on CD8 Tcells and examined
the role of CD8 T cells in immunotherapy. Integrative
bioinformatics analysis identified genes related to CD8
Tcells, based on which three immune subtypes with distinct
prognosis were determined. A link between immune sub-
types and personalized therapy such as immunotherapy was
comprehensively described in the study. Furthermore, we
constructed an 8-gene prognostic signature to predict the
outcomes of GC patients and guide immunotherapy.

2. Materials and Methods

2.1. Data Information and Study Design. GC samples and
expression data of immune cells were obtained from public
databases. TCGA-STAD dataset was downloaded from
TCGA (https://portal.gdc.cancer.gov/). GSE26942 [20],
GSE66229 [20], and GSE84437 [21] datasets containing GC
samples were downloaded from Gene Expression Omnibus
(GEO, https://www.ncbi.nlm.nih.gov/geo/). Expression data
of immune cells was obtained from GEO, including
GSE13906 [22], GSE23371 [23], GSE27291 [24], GSE27838
[25], GSE28490 [26], GSE28726 [27], GSE37750 [28],
GSE39889 [29], GSE42058 [30], GSE49910 [31], GSE59237
[32], GSE6863 [33], and GSE8059 [34] (Supplementary
Table S1). GSE78220 [35] contains the immunotherapy data
of metastatic melanoma patients. IMvigor210 [36] dataset was
from https://research-pub.gene.com/IMvigor210CoreBio
logies. +e workflow of this study is shown in Figure 1.

2.2. Data Preprocessing. Of TCGA-STAD dataset, samples
without survival status, survival time, or follow-up data were
excluded. Using R software package hgu133plus2.db to
convert Ensembl ID to gene symbol, genes with relative
expression level <1 in over 50% samples were excluded. +e
median of expression was selected when one gene had more
than one gene symbol. In this way, 353 samples were in-
cluded in TCGA-STAD dataset (Supplementary Table S2).
Of GC samples in GSE cohort, normal samples, and samples

without survival status, survival time or follow-up data were
excluded. Genes in probes were converted to gene symbol.
Finally, 826 samples were included in the GSE cohort
(Supplementary Table S2).

+e RMA procedure in affy package [37] was used
process raw data of Affymetrix GeneChip data for GSE
cohort. +en, batch effect among different batches was
removed using the function “removeBatchEffect” in limma
R package [38]. +e principle component analysis (PCA)
was applied to display the expression data before and after
the removal of batch effect. No difference was observed in
TCGA-STAD datasets and immune cell datasets after
removing the batch effect (Supplementary Figures S1 and
S2).

2.3. Weighted Correlation Network Analysis (WGCNA).
WGCNAwas applied to identify coexpression gene modules
from immune cell data, and to construct weight coex-
pression networks [39]. Pearson correlation coefficients
between genes were calculated. +e optimal power of soft
threshold (β) was confirmed, according to the coefficient
between log (k) and log (p(k)). For a scale-free network, the
coefficient between log (k) and log (p(k)) up to 0.85 was
selected. +en, expression matrix was converted to adjacent
matrix and topological overlap matrix (TOM). Using av-
erage-linkage hierarchical clustering, genes were clustered
with at least 100 genes in one gene module based on hybrid
dynamic shear tree and TOM. Gene modules were further
clustered according to the eigengenes of each module under
the criteria of height� 0.25, deepSplit� 2, minModuleSize
� 150.

2.4. Gene Enrichment Analysis. R package of clusterProfiler
(v3.14.0) was employed to annotate Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways and gene ontology
(GO) terms of marker genes related to CD8 T cells [40].
CIBERSORT [41] (https://cibersort.stanford.edu/) was used
to calculate the enrichment score of 22 types of immune
cells. GSVA R package was applied for single sample gene set
enrichment analysis (ssGSEA) to analyze the relation be-
tween risk score and KEGG pathways [42].

2.5. Identification of Immune Subtypes Based on CD8 T Cells.
Marker genes related to CD8 T cells were identified by
WGCNA. Univariate Cox regression analysis screened
genes related to prognosis from TCGA-STAD dataset and
GSE cohort. +e intersected genes between the two
datasets were selected for consensus clustering in TCGA-
STAD dataset. ConsensusClusterPlus R package was ap-
plied to perform unsupervised consensus clustering [43].
+e optimal cluster number k � 3 was confirmed by cu-
mulative distribution function (CDF) and the relative
change in area under CDF curve. Kaplan-Meier survival
analysis was performed to verify the effectiveness of
classification. GSE cohort was used to validate the ro-
bustness of classification.
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2.6.�e Relation between Immune Subtypes and Personalized
�erapy. TIDE (https://tide.dfci.harvard.edu/) was used to
predict the potential correlation between immune subtypes
and immune response. Higher TIDE score integrating T cell
dysfunction and Tcell exclusion was positively related to the
possibility of immune escape. GSE78220 dataset containing
anti-PD-1 immunotherapy data of melanoma patients was
used for submap analysis on TCGA-STAD samples. Lower p

value represented a higher similarity of treatment outcomes
among samples. Bonferroni-correction was performed to
correct p value. In addition, estimated IC50 of chemo-
therapeutic drugs including cisplatin, cyclopamine, and
rapamycin was analyzed in different immune subtypes.
Lower estimated IC50 represented higher drug sensitivity.

2.7. Construction of a Prognostic Model. A total of 826
samples in GSE cohort were randomly divided into training
group and test group at a ratio of 8 : 2 for 100 times.+emost
ideal training group and test group were selected under two
conditions: (1) similar proportion of gender and survival
status in two groups; (2) close number of binary classifi-
cation samples after clustering expression profiles. Finally,
659 samples in the training group and 165 samples in the test
group were confirmed, and no statistical difference was
observed between the two groups (Chi-square test, p> 0.05,
Supplementary Table S3). TCGA-STAD dataset was an
independent validation group.

Survival R package of “coxph function” was conducted
for univariate Cox regression analysis in the training group.
Differentially expressed genes with coefficients were
screened under p< 0.05. Least absolute shrinkage and se-
lection operator (LASSO) regression analysis in the glmnet
package [44] and step Akaike information criterion

(stepAIC) in the MASS package [45] were employed to
optimize the prognostic model defined as: risk score� gene 1
expression ∗ coefficient 1 + gene 2 expression ∗ coefficient
2 + . . .+ gene n expression ∗ coefficient n. Risk score was
converted to z-score, and z-score� 0 was the cut-off for
stratifying samples into high-risk and low-risk groups.
Receiver operating characteristic (ROC) curve and Kaplan-
Meier survival curve were used to assess the prognostic
model.

2.8. Statistics Analysis. All the statistics analyses were per-
formed in R (v3.6.2). p< 0.05 was considered as a statistical
significance. All statistics methods were shown in figure
legends.

3. Results

3.1. Identification of Marker Genes Related to CD8 T Cells.
We first extracted marker genes associated with CD8 Tcells.
To this end,WGCNAwas used to analyze expression profiles
of immune cells and identify coexpressed gene modules.
Hierarchical clustering analysis classified a number of im-
mune-related genes into various branches (Figure 2(a)). For
ensuring a scale-free topology nature, the Pearson correla-
tion coefficient between log (k) and log (p(k)) should reach
0.85. +erefore, β� 8 where β represents power of soft
threshold selected (Figure 2(b)). Based on the soft threshold
and correlation coefficient between genes, a topological
overlap matrix was built, and a series of gene modules were
identified. Finally, after merging adjacent modules accord-
ing to eigengenes, 14 coexpressed gene modules were de-
termined (Figure 2(c)). +ese 14 gene modules were
differently associated with various types of immune cells;

Immune Cell datas
GSE28490

GSE49910 .etc

Batch remove

Prognostic model
immunotherapy

ConsensusClusterPlus

TIDE analysis

CD8 T cells maker genes

TME analysisimmune analysis
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Figure 1: +e flow chart of developing immune subtypes and prognostic genes based on genes related to CD8 T cells.
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here, pink module with 446 genes was found to be closely
associated with CD8 T cells (coefficient� 0.58, p � 2e − 17,
Figure 2(d)).

KEGG and GO analysis on 446 CD8 T cells-related
genes demonstrated a strong relation between these genes
and immune function. +e number of annotated terms of
biological process, cellular component, and molecular
function were 284, 46, and 26 (p< 0.05), respectively, and
the top 10 terms were listed (Figures 3(a)–3(c)). +ese
genes were closely involved in T cell receptor signaling
pathway, antigen receptor-mediated signaling pathway,
T cell differentiation, immune response-activating cell
surface receptor signaling pathway, lymphocyte differen-
tiation, etc. KEGG analysis annotated 33 pathways sig-
nificantly correlated with these genes including multiple
immune-related pathways, such as primary immunodefi-
ciency, +1 and +2 cell differentiation, T cell receptor
signaling pathway, +17 cell differentiation, and natural
killer cell mediated cytotoxicity (Figure 3(d)).

3.2. Construction of CD8 T Cells-Related Immune Subtypes.
After 446 marker genes of CD8 T cells were extracted, CD8
T cells-related immune subtypes were constructed. By using
univariate Cox regression analysis, 45 and 127 genes asso-
ciated with GC prognosis were identified from TCGA-STAD
dataset and GSE cohort, respectively.+e intersection of two
sets displayed a total of 28 genes, with 3 genes positively
correlated with overall survival (OS) and 25 genes related to
a worse OS (p< 0.05, Figure 4(a)). According to the ex-
pression of 28 genes, we conducted consensus clustering on
353 samples from TCGA-STAD dataset. CDF curve showed
the highest relative change in area under CDF curve when
cluster number k� 3, suggesting that the optimal cluster
number was 3 (Figure 4(b), Supplementary Table S4).
Consensus matrix classified 353 samples into three immune
subtypes of IC1, IC2, and IC3 (IC, immune cluster;
Figure 4(c)). Survival analysis revealed the distinct OS
among the three subtypes with the optimal OS in IC1 and the
worst OS in IC3 (p � 0.035, Figure 4(d)). Likewise, we
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Figure 2: WGCNA for identifying marker genes related to CD8 Tcells from immune cell datasets. (a) Hierarchical clustering tree based on
179 expression profiles in immune cells datasets. (b) Confirmation of soft threshold (power) by scale independence and mean connectivity.
(c) Identification of 14 gene modules with different colors from clustering dendrogram. Grey represents gene clusters that cannot merge
with others. (d) Pearson correlation rank analysis between 14 gene modules and 14 types of immune cells.
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observed the same results in GSE cohort (p< 0.0001,
Figure 4(e)), indicating that this immune subtyping system
was valid in different datasets.

3.3.�eDistribution of Immune Subtypes in Clinical Features.
To analyze if there was a relation between immune subtypes
and clinical features, we analyzed the distribution of three
subtypes in different clinical features including survival
status, T stage, N stage, M stage, stage I to IV, age, and
gender. +e results showed that three subtypes were dif-
ferentially distributed in survival status, T stage, stages I to
IV, and age; however, no difference was shown in N stage, M
stage, and gender (Figure 5). +e proportion of deceased
samples in IC3 was higher than IC1 (p< 0.05, Figure 5(a)),
which was consistent with the worse OS of IC3. As for T
stage, IC1 had the highest proportion of T1, while IC3 had
the highest proportion of T4 p< 0.05, Figure 5(b)), showing
that T stage was tightly correlated with immune subtypes.

+e proportion of stage I from IC1 to IC3 was decreasing
(p< 0.05, Figure 5(e)), which may be one of the reasons
contributing to the optimal prognosis of IC1 and the worst
prognosis of IC3. Interestingly, age ≤65 consisted of the
majority in IC3, which was opposite to IC1 and IC2
(p< 0.05, Figure 5(f )).

3.4. �e Correlation between Immune Subtypes and Tumor
Mutation Burden. We calculated the tumor mutation bur-
den (TMB) of each sample in TCGA-STAD dataset using
mutect2 software. Distinct TMB was shown in three im-
mune subtypes, with the highest TMB in IC1 and the lowest
TMB in IC3 (p � 2.6e − 8, Figure 6(a)). Consistently, IC1
had the most numbers of mutated genes, while IC3 had the
least (p � 1.8e − 10, Figure 6(b)). Furthermore, 10031 genes
were screened with a mutation frequency up to 3%; here,
1636 genes were found to be significantly mutated usingChi-
square test (p< 0.05). +e mutation patterns of the top 15
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Figure 3: Go function and KEGG analysis of 446 genes related to CD8 T cells. (a–d) +e top 10 enriched terms annotated in biological
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mutated genes were displayed in Figure 6(c). +e proportion
of TP53 mutations accounted for 37%, and other highly
mutated genes such as MUC16, LRP1B, and ARID1A were
reported to be closely associated with various cancers.

3.5. Differential Expression of Chemokines and Immune
Checkpoints among Immune Subtypes. Chemokines play a
pivotal role in determining TME by recruiting and or-
chestrating immune cells, which can elicit or inhibit
antitumoral responses. +rough binding with chemokine
receptors, chemokines promote tumor proliferation, tu-
mor angiogenesis, and migration. +erefore, we assessed
the expression of 41 chemokines and 18 chemokine re-
ceptors of three immune subtypes and observed that 28
out of 41 chemokines and 11 out of 18 chemokines re-
ceptors were differentially expressed among the three

subtypes, and that the majority of them were higher-
expressed in IC3 (Figures 7(a) and 7(b)), which may lead
to a distinct TME. As chemokines are critical for tumor
angiogenesis that is necessary for tumor proliferation and
migration, we also evaluated the angiogenesis score of
each sample in TCGA-STAD dataset according to a series
of genes related to angiogenesis [46]. Significant differ-
ence was observed among three subtypes that the an-
giogenesis score was the lowest in IC1 but the highest in
IC3, which was consistent with their prognosis
(Figures 7(c) and 4(d)). Immune checkpoints are re-
sponsible for transducing signals between immune cells;
thereby, they can regulate cytokine secretion in response
to TME. We obtained 47 genes related to immune
checkpoints from previous research [47] and analyzed
their expression of each sample. +e result showed that 25
out of 47 genes were differentially expressed among IC1,
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Figure 4: Construction of an immune subtyping system. (a) +e Venn plot of genes related to prognosis screened from TCGA-STAD
dataset and GSE cohort. Risk represents the negative correlation between gene expression and prognosis. Protective represents the positive
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TCGA-STAD dataset (d) and GSE cohort (e). Log-rank test was performed.
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IC2, and IC3 (Figure 7(d)), suggesting that these 25 genes
related to immune checkpoints were closely involved in
contributing to different TMEs.

3.6. Differential Enrichment of Immune Cells and Oncogenic
Pathways among Immune Subtypes. As the expression of
chemokines and genes related to immune checkpoints
varied in three immune subtypes, we further analyzed the
distribution of immune cells and activity of tumor-related
pathways. CIBERSORT was employed to calculate enrich-
ment score of 22 types of immune cells. Among these im-
mune cells, CD8 T cells, resting memory CD4 T cells, M0
macrophages, and M2 macrophages were apparently higher
enriched than others, and 8 immune cells were differentially
enriched in three subtypes, including naive B cells, activated
memory CD4 T cells, helper follicular T cells, resting NK
cells, monocytes, M0 macrophages, M2 macrophages, and
resting dendritic cells (Figures 8(a) and 8(b)). Activated
memory CD4 T cells were highly enriched in IC1, enabling
more active antitumor response, although no difference of
enrichment of CD8 T cells was observed in the three sub-
types. A low proportion of M0 macrophages and a high
proportion of M2 macrophages were found in IC3, which
could explain the increased number of tumor-associated
macrophages (TAMs). IC3 had the highest immune score
than IC1 and IC2, which may result from a high expression
of chemokines and chemokine receptors in IC3
(Figures 8(d), 7(a) and 8(b)).

In addition, we evaluated the enrichment of 10 oncogenic
pathways in the three subtypes [48], and all pathways were
differentially enriched in the three subtypes (Figure 8(c)).
Noticeably, IC3 was significantly higher-enriched than IC1
and IC2 in the most pathways, including Hippo signaling
pathway, Notch signaling pathway, PI3K signaling pathway,
TGF-β signaling pathway, RAS signaling pathway, and WNT
signaling pathway (p< 0.0001, Figure 8(c)).

According to various aspects of analysis, the three im-
mune subtypes presented significant difference and correla-
tion in prognosis, TME, and oncogenic pathways,
demonstrating the effectiveness of this immune subtyping
system. Compared with the previous immune subtypes in a
pan-cancer research [7], a close relation was also discovered.
+e pan-cancer research divided gastric cancer into five
immune subtypes (C1, C2, C3, C4, and C6) with different OS,
and the distribution of five subtypes was assessed in IC1, IC2,
and IC3 (Figure 8(e)). C2 subtype with favorable OS consisted
of a high proportion of IC1 and a low proportion of IC3. C3
subtype with worse OS than C2 was densely gathered in IC3,
and C6 subtype with the worst OS only presented in IC1 and
IC2 (Figure 8(e) and Supplementary Figure S3). +e results
further proved that our immune subtyping system was solid
and reliable in predicting gastric cancer prognosis.

3.7. Immune Escape and T Cell Function Analyzed by TIDE.
Next, we analyzed whether there was a difference among
IC1, IC2, and IC3 on their immune response using TIDE
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Figure 5:+e relation between immune subtypes and clinical features, including survival status (a), Tstage (b), N stage (c), M stage (d), stage
I to IV (e), age (f ) and gender (g).

Journal of Oncology 7



methodology [49]. In TCGA-STAD dataset, IC1 had the
lowest TIDE score, and IC3 had the highest (Figure 9(a)),
indicating a high possibility of immune escape in IC1. +e
function of T cells is an important factor that can directly
affect the immune response against tumor cells. +erefore,
we also analyzed the manifestation of T cell function from

the aspects of dysfunction and exclusion. IC1 showed the
lowest score of both T cell dysfunction and exclusion, while
IC3 had the highest score of the two (Figures 9(b) and 9(c)),
suggesting impaired function of T cells to kill tumor cells in
IC3. +e similar results were also found in GSE cohort
(Figures 9(d)–9(f)).
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Figure 7: Expression of chemokines, chemokine receptors and genes related to immune checkpoints in TCGA-STAD dataset. ((a) and (b))
Expression of 41 chemokines (a) and 18 chemokine receptors (b) in three subtypes. (c) Differential angiogenesis score among three subtypes.
(d) Expression of 47 genes related to immune checkpoints in three subtypes. ANOVA was performed. ∗p< 0.05, ∗∗p< 0.01, ∗∗p< 0.001,
∗∗∗∗p< 0.0001.
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3.8. Differential Sensitivity of�ree Immune Subtypes to PD-1
Inhibitor and Chemotherapeutic Drugs. Anti-PD-1/PD-L1
therapy using PD-1/PD-L1 inhibitors to active or reactive
immune response to tumor cells is one of the most
promising immunotherapies for treating many cancer types.
We performed submap analysis to compare the similarity of
TME between samples treated by anti-PD-1 inhibitor in

GSE78220 dataset and three immune subtypes. High sim-
ilarity with a low p value indicated a high efficacy of anti-PD-
1 therapy. IC3 was shown to be not sensitive to anti-PD-1
therapy in both TCGA-STAD dataset and GSE cohort
(Bonferroni-corrected p � 0.001, Figures 10(a) and 10(b)).
However, IC1 and IC2 showed different responses to anti-
PD-1 therapy in two datasets. Furthermore, we also
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Figure 8: Immune features of three immune subtypes in TCGA-STAD dataset. (a) +e heatmap presenting the distribution of 22 immune
cells. (b) Comparison of enrichment score of 22 immune cells among three subtypes. (c) +e enrichment of 10 oncogenic pathways in three
subtypes. (d) Total immune score of three subtypes. (e) +e distribution of pan-cancer immune subtypes in three subtypes. ANOVA was
performed. ns, no significance. ∗p< 0.05, ∗∗p< 0.01, ∗∗p< 0.001, ∗∗∗∗p< 0.0001.
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examined the response to chemotherapeutic drugs by cal-
culating estimated IC50. Lower IC50 was indicative of a
higher drug sensitivity and possibly a more favorable out-
come. In TCGA-STAD dataset, IC1 displayed the lowest
estimated IC50 of all three drugs (cisplatin, cyclopamine,
and rapamycin), indicating that IC1 had the highest sen-
sitivity to these drugs (Figures 10(c)–10(e)); however, IC3
could only limitedly benefit from the treatment of these
drugs. Simultaneously, consistent results were observed in
GSE cohort (Figures 10(f )–10(h)).

3.9. Construction of a Prognostic Model Based on Marker
Genes Related to CD8 T Cells. Although the immune sub-
typing system can stratify GC patients into three subtypes
with distinct prognosis and can largely guide chemotherapy
and immunotherapy, it is not effective in predicting the
treatment outcomes of GC patients. Based on the genes
related to CD8 T cells, we constructed a prognostic model
with the least number of genes to simply and efficiently
predict prognosis. To this end, GSE cohort was randomly
divided into training group and test group (Supplementary
Table S3), with TCGA-STAD dataset as an independent
validation group.

Within the training group, we screened 107 differentially
expressed genes related to OS using univariate Cox re-
gression analysis (p< 0.05). +en, LASSO regression anal-
ysis was conducted to compress the model and reduce
number of genes. +e coefficient of each gene was close to
zero with the increasing value of lambda (Supplementary
Figure S4A). 10-fold cross validation was applied to con-
struct model with different lambda, and the confidential
interval of different lambda was calculated (Supplementary
Figure S4B). When lambda� 0.0671, the optimal model
consisting a total of 12 genes was developed (Supplementary
Figure S4).+en, we applied stepAIC to further optimize the
model, and finally an 8-gene prognostic model was con-
structed as follows:

Risk score � 0.358∗ FBLN5 + 0.307∗ENPP5

− 0.665∗KLHDC4 − 0.620∗CD160

+ 0.890∗ZNF578 + 0.751∗ LBH

− 0.864∗KLRD1 + 0.215∗TCEAL2.

(1)

+e risk score of each sample was counted using the 8-
gene signature, and risk score was converted to z-score. Each
sample was classified into low-risk and high-risk groups by
the cutting of z-score� 0. In the training group, 327 samples
and 332 samples were classified into high-risk and low-risk
groups, respectively, with the high-risk group showing more
deceased samples (Figure 11(a)). ZNF578, TCEAL2, LBH,
FBLN5, and ENPP5 were highly expressed in high-risk
group, while KLHDC4, KLRD1, and CD160 were low-
expressed in low-risk group (Figure 11(a)). ROC analysis
manifested the reliability of the classification that AUC of 1-
year, 3-year, and 5-year was 0.60, 0.68, and 0.70, respectively
(Figure 11(b)). Survival curve revealed the significantly
distinct OS between two groups, with a better prognosis in
low-risk group (p< 0.0001, Figure 11(c)). Risk score could

be an independent factor to efficiently predict prognosis
(HR� 1.62, 95% CI� 1.47–1.79, Figure 11(c)). We therefore
assessed the prognostic model in the test group. 165 samples
were stratified into high-risk and low-risk groups with
distinct OS (p< 0.0001, Supplementary Figure S5). +e
robustness of the prognostic model was also validated in
TCGA-STAD dataset, and 353 samples were classified into
low-risk and high-risk groups with differential OS
(p � 0.002, Supplementary Figure S6). In addition, we also
analyzed the expression differences of these eight genes
between cancer and adjacent samples. We can observe that
most of these genes have significant expression differences,
such as KLHDC4, ZNF578, LBH, and KLRD1 that are
significantly overexpressed in tumor samples and tceal2 that
is significantly underexpressed in adjacent samples (Sup-
plementary Figure S7A). Further, we observed the expres-
sion differences of these genes in three molecular subtypes;
FBLN5, LBH, and TCEAL2 were specifically highly
expressed in IC3, and KLHDC4 was specifically low
expressed in IC3 (Supplementary Figure S7B). +e above
results indicated that the 8-gene signature was effective in
GC prognosis prediction.

3.10. Risk Score was Associated with Clinical Features and
Immune Subtypes. +en, we analyzed the relation between
risk score and clinical features including T, N, M stage,
stages I to IV, gender, and age and found that low risk score
was presented in T1, N0, M0 stage, and stage I with clinically
mild progression (Figures 12(a)–12(d)). Especially, signifi-
cantly differential risk score was distributed in T stage
(p � 0.00021), stages I to IV (p � 0.00054). However, gender
and age were not the factors affecting risk score
(Figures 12(e) and 12(f)). Notably, a strong correlation was
observed between risk score and immune subtypes, where
IC1 had the lowest risk score and IC3 showed the highest
risk score (p � 5.8e − 27, Figure 12(g)). +ese results further
demonstrated the viability of the prognostic signature.
Moreover, hazard ratio of clinical features and risk type was
assessed with univariate and multivariate Cox regression
analysis using TCGA-STAD dataset. Risk type was signifi-
cantly associated with overall survival, with HR� 1.66 (95%
CI� 1.18–2.32, p � 0.003) and HR� 1.52 (95% CI� 1.05
–2.19, p � 0.025) in univariate and multivariate Cox re-
gression analysis, respectively (Figure 13). Moreover, age
and M stage were also risk factors, with HR >1, which could
be included to delineate nomogram together with risk score.

3.11.�eCorrelation betweenRisk Score andKEGGPathways.
To further examine whether risk score and functional
pathways were correlated, ssGSEA was performed to cal-
culate enrichment score of each sample in TCGA-STAD
dataset, followed by correlation analysis between enrich-
ment score in functional pathways and risk score using
Pearson correlation analysis. |Correlation coefficient| ≥0.4
was set as a cut-off to screen the functional pathways closely
associated with risk score. 64 KEGG pathways, including 18
pathways negatively correlated with risk score and 46
pathways positively correlated with risk score, were
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identified (Figure 14(a)). Pathways related to cell cycle, DNA
replication, and DNA repair were greatly enriched in the
samples with low risk score, while tumor-related pathways,
such as VEGF signaling pathway, NOTCH signaling path-
way, TGF-β signaling pathway,WNTsignaling pathway, and
MAPK signaling pathway, were highly enriched in the
samples with high risk score (Figure 14(b)). +e strong
correlation between high risk score and high enrichment of
oncogenic pathways showed that the 8 prognostic genes may
be closely involved in promoting tumor progression through
activating or regulating oncogenic pathways.

3.12. Construction of a Nomogram to Predict Prognosis.
To more precisely predict overall survival, we constructed a
nomogram combining three risk factors (risk score, M stage,
and age). Each risk factor corresponds to a point according

to clinical information, and the total points correspond to
the predicted death possibility in 1-, 3-, and 5-year
(Figure 15(a)). +e predicted OS was corrected by the ob-
served OS (Figure 15(b)). Decision curve analysis (DCA)
was performed to evaluate the effectiveness of the nomo-
gram. As a result, nomogram was more advantageous to
predict prognosis than risk score only (Figure 15(c)).

3.13. Prognostic Significance of Risk Score in Immunotherapy.
We further examined whether the 8-gene signature was
associated with the efficacy of immunotherapy. Imvigor210
dataset containing metastatic urothelial carcinoma patients
treated by anti-PD-L1 immunotherapy was used in the
following analysis. Kaplan-Meier survival curve showed a
more favorable OS in low-risk group (p< 0.0001,
Figure 16(a)). In comparison to neoantigen (NEO) and
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Figure 9: TIDE analysis for predicting the efficacy of immunotherapy in different subtypes. (a–c) TIDE score (a), T cell dysfunction score
(b), and Tcell exclusion score (c) of samples in TCGA-STAD dataset. (d–f) TIDE score (d), Tcell dysfunction score (e), and Tcell exclusion
score (f ) of samples in GSE cohort. ANOVA was performed. ns, no significance. ∗p< 0.05, ∗∗p< 0.01, ∗∗p< 0.001, ∗∗∗∗p< 0.0001.
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TMB, risk score with an AUC of 0.83 (95% CI� 0.67–1.00,
Figure 16(b)) was the most effective when predicting
prognosis. Between high-risk and low-risk groups,

differential responses to immunotherapy were detected,
where the proportion of complete response (CR) and stable
disease (SD) was found to be significantly higher in low-risk
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Figure 10: Different responses to immunotherapy and chemotherapy among three immune subtypes. ((a, b)) Submap analysis between
GSE78220 and TCGA-STAD dataset (a), GSE78220 and GSE cohort (b). Bonferroni correction was applied to correct (p) value. Anti-PD-
1_NR and anti-PD-1_R groups represent nonresponsive and responsive to anti-PD-1 therapy respectively. (c–e) Estimated IC50 of cisplatin
(c), cyclopamine (d) and rapamycin (e) in TCGA-STAD dataset. (f–h) Estimated IC50 of cisplatin (f ), cyclopamine (g) and rapamycin (h) in
GSE cohort. ANOVA was performed. ns, no significance. ∗p< 0.05, ∗∗p< 0.01, ∗∗p< 0.001, ∗∗∗∗p< 0.0001.
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group (p< 0.05, Figure 16(c)). In the relation to immune
infiltration, risk score was negatively related tomany types of
immune cells such as CD8 T cells, cytotoxic lymphocytes, B
lineage, and NK cells, while NEO and TMB were not

obviously correlated with these immune cells (Figure 16(d)).
Moreover, lower risk score was related to higher NEO and
TMB, suggesting that patients with higher NEO and TMB
could benefit much more from anti-PD-L1 therapy.

-2.5

0.0

2.5

5.0
Ri

sk
Sc

or
e

RiskType

High

Low

0

5

10

Ti
m

e

Status

Alive

Dead

CD160

ENPP5

FBLN5

KLHDC4

KLRD1

LBH

TCEAL2

ZNF578

Samples

–2 –1 0 2
z-score of expression

1

(a)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False positive fraction

Tr
ue

 p
os

iti
ve

 fr
ac

tio
n

Type
1-Years, AUC = 0.6,95%CI (0.54-0.66)

3-Years, AUC = 0.68,95%CI (0.64-0.73)

5-Years, AUC = 0.7,95%CI (0.66-0.74)

(b)

p < 0.0001

3.
3

HR = 1.62 95CI% (1.47-1.79)0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

327 190 110 49 28 2
332 255 193 100 41 4Low

High

0 2.5 5 7.5 10 12.5
Time

G
ro

up
s

Groups
High

Low

(c)

Figure 11: Assessment of the prognostic model in the training group. (a) +e distribution of high-risk and low-risk groups, and the
expression of 8 prognostic genes corresponding to risk score. (b) ROC analysis and AUC of 1-year, 3-year and 5-year OS predicted by the 8-
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Figure 12: +e relation of risk score to T stage (a), N stage (b), M stage (c), stage I to IV (d), gender (e), age (f ) and immune subtypes (g).
Wilcoxon test was performed.
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Figure 13: Univariate (a) and multivariate (b) Cox regression analysis between potential risk factors and prognosis.
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Figure 14: +e relation between risk score and KEGG pathways. (a) 64 KEGG pathways related to risk score identified by Pearson
correlation analysis. |correlation coefficient| >0.4. (b) +e relation between enrichment of pathways and risk score. Horizontal axis
represents the increasing risk score from left to right. Red means positive correlation and blue means negative correlation.
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In addition, we analyzed the risk score in different kinds
of groups, including treatment response, immune cells,
tumor cells, and immune phenotype. CR patients had the
lowest risk score among CR, PD, PR, and SD patients
(Figure 17(a)). Previous study divided immune cells (IC)
and tumor cells (TC) into three groups, according to the
percentage of PD-L1 positive cells: IC0/TC0 (<1%), IC1/TC1
(≥1% but <5%) and IC2+/TC2+ (≥5%) [50]. +e result
showed that IC2+ and TC2+ group had the lowest risk score
(Figures 17(b) and 17(c)), indicating that patients showing
TME enriched with PD-L1-positive cells could be treated by
anti-PD-L1 therapy. In terms of three immune phenotypes
(desert, excluded, and inflamed), inflamed phenotype has
been reported to be actively responsible to immunotherapy,
which was consistent with the present result that inflamed
group had the lowest risk score (p< 0.0001, Figure 17(d)).

+ese analyses demonstrated that the prognostic signature
was robust to predict outcomes for patients who have un-
dergone immunotherapy.

4. Discussion

+e antitumor effects of cytotoxic CD8 T cells rely on CD8
Tcell differentiation and its infiltration in tumor site but can
be suppressed by cytokines and chemokines secreted from
tumor cells and immune cells in TME. It has been dem-
onstrated that the inhibition of PD-1/PD-L1 can activate the
function of cytotoxic CD8 Tcells, thereby suppressing tumor
proliferation. However, the anti-PD-1/PD-L1 therapy is only
effective to certain cancer patients due to differential TME of
patients. +erefore, an effective molecular subtyping system
is strongly needed to characterize TME and status of CD8
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T cells, so as to predict the outcomes of immunotherapy.
Although previous studies have developed various types of
molecular subtypes for gastric cancer [7, 51], none of them
focuses on CD8 Tcells. In the present study, we constructed
three immune subtypes (IC1, IC2, and IC3) based onmarker
genes related to CD8 Tcells and fully characterized the tight

relation among immune subtypes, TME, oncogenic path-
ways, chemotherapy, and immunotherapy.

Chemokines play a critical role in facilitating the mi-
gration of immune cells to tumor site and can also modulate
tumor cell metastasis and growth [52]. Differential ex-
pression of chemokines and chemokine receptors was shown
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in three immune subtypes, which may explain the distinct
OS outcomes of the three. CCL2, CCL5, CCL17, and CCL22
can induce immunosuppressive cell migration through their
interactions with their receptors of CCR2, CCR5, and CCR4
in macrophages and regulatory Tcells [53]. High expression
of CCL2, CCL5, CCL17, and CCL22 and their receptors were
observed in IC3 (Figure 7), which was related to a poor
prognosis of IC3. CXCR4 can direct the migration of CD8
T cells and NK cells to tumor sites [54] but can also impede
the infiltration of T cells to tumor cells through CXCL12
[55]. Pharmacological studies targeting CXCR4/CXCL12
axis demonstrated that CXCR4 antagonist releases T cells

from CXCL12-rich stroma and increases Tcell infiltration to
tumor sites [55–57]. Moreover, CXCL12 can induce epi-
thelial-mesenchymal transition (EMT) and gastric cancer
metastasis possibly through the interaction between MET
proto-oncogene (c-MET) and CXCR4 [58]. Among three
immune subtypes, the expression tendency of CXCL12 was
corresponding with CXCR4 expression, and IC3 had the
highest expression level of them, which was consistent with
its poor outcome. In addition, previous studies discovered
that low expression of CXCL8 is associated with unfavorable
prognosis in gastric cancer [59, 60], and the same phe-
nomenon is also observed in the present study. +ese
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observations proved that our immune subtyping system
based on CD8 T cells was reliable.

Immune checkpoint blockade, such as inhibiting PD-1/
PD-L1 axis, is a promising immunotherapy for the man-
agement of metastatic cancer patients. PD-1 expressed by
CD8 T cells can interact with its ligand PD-L1 expressed by
immune cells or tumor cells in TME, leading to T cell ex-
haustion and apoptosis, which refers to immune escape [61].
TIDE analysis revealed that IC3 had the highest score of
Tcell exhaustion and exclusion, indicating its impaired Tcell
function and poor prognosis (Figure 9). High expression of
CXCL12 and CXCR4 was the possible reason for promoting
the interaction between PD-1 and PD-L1, further triggering
T cell dysfunction. In other words, high immune escape
score of IC3 probably resulted from the activation of
CXCL12/CXCR4 and PD-1/PD-L1 axis. Various immune
checkpoint inhibitors have been examined in cancer pa-
tients; however, only around 20% of patients can obtain
long-term benefits [3]. Our immune subtyping system could
guide a better personalized therapy to GC patients.

+e three immune subtypes manifested differential
enrichment in oncogenic pathways, especially cell cycle,
HIPPO, NOTCH, PI3K, TGF-β, RAS, and WNT signaling
pathways. Apart from cell cycle pathway, activation of
remained pathways is closely related to poor prognosis of
cancer patients. Some inhibitors targeting HIPPO,
NOTCH, PI3K, TGF-β, and WNT signaling pathways
have been applied in clinical trials [62–65]. High en-
richment of PI3K signaling pathway in GC samples, es-
pecially in IC3, may be a potential target for effective
targeted drug therapy for GC patients. As for chemo-
therapeutic drugs, the subtyping system can also provide a
direction for their clinical use; here, IC1 was found to be
the most sensitive to cisplatin, cyclopamine, and rapa-
mycin (Figures 10(c)–10(h)).

To further evaluate the clinical outcomes of GC patients,
we developed an 8-gene prognostic signature and con-
structed a nomogram with an easy application in clinical
practice. +e signature can calculate the risk score of each
patient and clearly stratify the patients into high-risk and
low-risk groups with distinctly different prognosis. Func-
tional analysis demonstrated that the risk score was closely
associated with oncogenic pathways, such as cell cycle,
NOTCH, WNT, and TGF-β signaling pathways (Figure 14).
Furthermore, the signature also exhibited robust perfor-
mance in screening metastatic urothelial carcinoma patients
treated by anti-PD-1 (Figures 16(a)–16(c)). As for the re-
lation between risk score and immune infiltration, high
infiltration of CD8 T cells, cytotoxic lymphocytes, and NK
cells is negatively correlated with risk score (Figure 16(d)),
suggesting that immune infiltration was a critical factor of
prognosis of patients who received anti-PD-1 therapy.
Consistent with previous studies, in this study, patients with
immune-desert phenotype had poor outcome of immuno-
therapy, while those with immune-inflamed phenotype can
benefit much from immunotherapy [66] (Figure 17(d)).

By an integrated analysis on functional pathways, TME,
immune response, immunotherapy, etc., we comprehen-
sively characterized the links among them and demonstrated

the reliability of the immune subtyping system. +is sub-
typing system based on CD8 T cells together with the
prognostic signature has demonstrated its applicability in
clinical practice.

5. Conclusion

In conclusion, based on genes related to CD8 T cells, we
developed three immune subtypes and an 8-gene prognostic
signature to guide personalized therapy for GC patients.
+ree immune subtypes manifested differential responses to
chemotherapy and immunotherapy. +e prognostic signa-
ture can predict whether GC patients can benefit from
immunotherapy.
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Esophageal squamous cell carcinoma (ESCC) is a typical neoplastic disease and a frequent cause of death in China. ,e prognosis
of most ESCC patients is still poor. Previous studies demonstrated that MMP12 is involved in tumor metastasis. However, its
clinical significance and association with cancer immunity remained largely unclear. In this study, we first analyzed the expressing
pattern of MMPs in ESCC from TCGA datasets and found that several MMPs expression was distinctly increased in ESCC.
However, only MMP12 expression was associated with five-year survival of ESCC patients. ,en, we focused on MMP12 and
found its high expression was positively related to advanced clinical stages of ESCC specimens. KEGG assays revealed MMP12
may influence the activity of several tumor-related pathways, such as the Toll-like receptor signaling pathway, TNF signaling
pathway, and IL-17 signaling pathway. ,en, we sought to determine whether MMP12 expressions were related to immune cell
infiltration in ESCC. We observed that increased MMP12 levels were positively associated with the infiltration levels of mast cells
activated andmacrophagesM0. However, eosinophils, B cells näıve, andmast cells resting exhibited an opposite result. Finally, we
showed that knockdown of MMP12 suppressed the proliferation of ESCC cells. Overall, our findings proved that high expression
of MMP12 may be a novel and valuable prognostic factor in ESCC.

1. Introduction

Esophageal squamous cell carcinoma (ESCC) remains the
most prevailing histological subtype of esophageal cancer in
developing nations or regions, such as China and Iran [1].
Among many types of clinical features associated with ESCC
progression, distant metastases remain the critical ele-
ment for unfavorable survivals [2]. Although the significant
progresses have been achieved in the effective treatments of
ESCC by the use of chemoradiotherapy and surgery in recent
years, the 5-year survival rate remains <40% [3, 4]. Con-
sequently, it is urgent to comprehend the genetic and
molecular mechanism of ESCC to develop potential diag-
nostic therapy and treatment on ESCC.

As a family of zinc-dependent proteolytic enzymes, the
matrix metalloproteinases (MMPs) are able to degrade the

extracellular matrix and basement membrane [5]. More and
more studies have demonstrated the positive effects of MMPs
on the tumor grow, neoangiogenesis, migration, and me-
tastasis [6, 7]. In the past two decades, several suppressors of
MMPs have been developed in many types of tumors [8, 9].
However, although in vitro and in vivo experiments are very
beneficial, the clinical experiments failed due to the lack of
susceptibility and serious adverse reactions. Many researchers
have analyzed the possible reason, and several MMPs which
exhibit tumor-suppressor functions may be the most im-
portant one [10, 11]. With the developments of understating
the potential function of MMPs in tumor progression, the
sensitive narrow-spectrum MMPs inhibitors were currently
being developed. In addition, some studies have reported the
dysregulation of MMPs and their association with clinical
outcome in several types of tumors [12–14].
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In recent years, the effect of MMP12 has been verified in
tumors. For example, MMP12 was highly expressed in
adamantinomatous craniopharyngioma, while its knock-
down inhibited the proliferation and attack of ada-
mantinomatous craniopharyngioma cells [15]. Lin et al.
reported that MMP12 was overexpressed in cervical cancer
cells, and its silence clearly inhibited cell migration and
invasion both in vitro and in vivo [16]. High expressions of
MMP12 were related to the prognosis of several types of
tumors, such as hepatocellular carcinoma and cutaneous
melanoma [17, 18]. However, the expression and function of
MMP12 in ESCC were rarely reported.

,is study is to sort out the clinical significance of
MMP12 on ESCC and its contribution to cancer immunity.

2. Methods and Materials

2.1. Data Collection from the TCGA Database. ,e data of
RNA transcriptome and the corresponding clinicopatho-
logical and survival for patients were obtained from the
Cancer Genome Atlas (TCGA, https://cancergenome.nih.
gov/). All assays were carried out based on the publication
guidelines of TCGA. 160 ESCC samples and 11 nontumor
samples were enrolled in this study.

2.2. Cell Culture and Transfection. Het-1A and ESCC cell
lines (KYSE30, EC-1, Eca109 and EC9706) were bought
from the Shanghai Institute of Biochemistry and Cell Bi-
ology (Shanghai, China). ,e cells were cultured in RPMI-
1640 medium supplemented with 10% fetal bovine serum
(FBS) (Gibco BRL, USA) and maintained in a humidified
incubator at 37°C with 5% CO2.

MMP12 small interfering RNA (si-MMP12) and the
corresponding control RNA (si-NC) were purchased from
Jinlai Biology (Beijing, China). Lipofectamine 3000 was
applied for cellular transfection.

2.3. Identification of Differently Expressed MMPs. “Limma”
package of R was applied to sort out the differently expressed
MMPs between ESCC specimens and nontumor specimens.
,e keys with |logFC|≥ 1 and p value <0.05 were defined as
significant cutoff points. In addition, gene annotation and its
data files of the differently expressed MMPs were collected
through R software.

2.4. Prognosis-RelatedMMPs Screening. We constructed the
Kaplan–Meier plots of MMPs in the TCGA dataset to
comprehend the overall survival (OS) and verified it by log-
rank tests.

2.5. Screening of Dysregulated Genes and GO and KEGG
Pathway Assays. We carried out GO and KEGG pathway
assays on the dysregulated genes between high MMP12
expression group and low MMP12 expression group: GO
assays included molecular function (MF), cell component
(CC), and biological process (BP). KEGG (http://www.
genome.jp/) was a novel method for exploring the related

regulatory pathways involved in gene functions. Cluster-
Profiler package was applied for GO and KEGG pathway
assays, while GOplot package was applied for cluster assays
[19]. Besides, it was thought to grind a significant difference
when both the p value and q value were less than 0.05 only.

2.6. Assessment of Immune Infiltration. As a deconvolution
algorithm, CIBERSORT applied the expressions of 547 tag
genes to define the structure of immune cells in specimens.
Hence, the associated proportion of 22 infiltrating immune
cells was examined by the use of CIBERSORT in all samples
from TCGA datasets. P< 0.05 was deem as statistically
valuable.

2.7. Quantitative Real-Time PCR. RNA was isolated using
TRIzol (Invitrogen, Pudong, Shanghai, China) following the
manufacture’s protocols. A Transcript RT kit (Vazyme,
Nanjing, Jiangsu, China) was applied to compound the first
strand cDNA. Real-time RT-PCR was performed to detect
the expression of CRNDE using the One-Step SYBR Pri-
meScript RT-PCR Kit (Takara). GADPH was used as en-
dogenous controls. ,e relative expressions were calculated
using the 2−ΔΔCt method.

2.8. CCK-8 Assays. Cellular proliferation was examined
applying the Cell Counting Kit-8 (Beyotime, Haidian,
China). Cells were seeded into 48-well plates at 3×103 cells/
well cell concentration. ,en, 15 μL CCK-8 solution was
added to each well. At a wavelength of 450 nm for each well,
the absorbance was examined.

2.9. Statistical Analysis. We adopted R (version 3.6.0) to
conduct statistical analyses. ,e Wilcox test was applied to
determine the dysregulated genes and infiltrative immune
cells. We obtain the survival curves by the Kaplan–Meier
method and compared by the log-rank test. P value <0.05
was considered statistically significant.

3. Results

3.1. Identification of the Dysregulated MMPs in ESCC. To
screen the dysregulated MMPs in ESCC, we analyzed TCGA
datasets using Limma and edgeR packages. ,e dysregulated
MMPs were shown in heat map (Figure 1(a)). We noticed
that the behaviors of MMP12 were distinctly enhanced on
ESCC specimens comparing to nontumor specimens, in-
cluding MMP1 (Figure 1(b)), MMP3 (Figure 1(c)), MMP7
(Figure 1(d)), MMP8 (Figure 1(e)), MMP9 (Figure 1(f )),
MMP13 (Figure 1(g)), MMP10 (Figure 1(h)), MMP11
(Figure 1(i)), MMP12 (Figure 1(j)), MMP14 (Figure 1(k)),
MMP17 (Figure 1(l)), and MMP20 (Figure 1(m)).

3.2. �e Survival-Related MMPs in ESCC. ,en, we per-
formed Kaplan–Meier methods to screen survival-related
MMPs in ESCC. Only high MMP12 expression was asso-
ciated with a short overall survival of ESCC patients
(Figure 2(a)). For other MMPs, the results indicated no
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Figure 1: Continued.
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obvious difference in the survival rate between patients with
high MMPs and low ones (Figures 2(b)–2(l)). ,us, our
attention focused on MMP12.

3.3. Correlation between MMP12 Behaviors and Clinical
Trials in ESCC Patients. We further examined the associa-
tions between MMP12 patients’ clinical features and the
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Figure 1: Identification of the dysregulatedMMPs in ESCC. (a) Hierarchical clustering analysis of differently expressedMMPs in ESCC and
normal tissues. (b)–(m) An increased expression of (b) MMP1, (c) MMP3, (d) MMP7, (e) MMP8, (f ) MMP9, (g) MMP13, (h) MMP10, (i)
MMP11, (j) MMP12, (k) MMP14, (l) MMP17, and (m) MMP20 observed in ESCC specimens compared with nontumor specimens.
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Figure 2: Identification of survival-relatedMMPs. (a) Survival analysis forMMP12 in ESCC. Patient with highMMP12 expression showed a
shorter overall survival of ESCC patients. (b)–(l) Survival analysis for (b) MMP1, (c) MMP3, (d) MMP7, (e) MMP8, (f ) MMP9, (g) MMP10,
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MMP12 expressions and concluded that MMP12 expres-
sions were not associated with age (p � 0.81, Figure 3(a))
and gender (p � 0.85, Figure 3(b)). However, we observed
that the expressions of MMP12 in ESCC were distinctly
linked to stage (Figure 3(c)).

3.4. Functional Enrichment Analysis of Genes �at Were
Coexpressed with MMP12. To explore the biological func-
tion of MMP12 in ESCC, we divided all ESCC specimens
into two (high and low) based on the mean expression of
MMP12 in all ESCC samples. A total of 15 differently
expressed genes between low and high MMP12 expres-
sion groups were screened. Next, 15 genes were chosen to
perform GO and KEGG analyses using the ClusterProfiler
R package. ,e results showed that MMP12-associated
dysregulated genes were mainly involved in processes like
the collagen catabolic process, extracellular matrix dis-
assembly, collagen-containing, blood microparticle, metal-
loendopeptidase activity, and chemokine activity (Figure 4(a)).
Meanwhile, KEGG pathway analysis showed that path-
ways were significantly enriched (Figure 4(b)) in-
cluding the relaxin signaling pathway, Toll-like receptor
signaling pathway, TNF signaling pathway, IL-17 sig-
naling pathway, and transcriptional misregulation in
cancer [20–22].

3.5. Distribution of Tumor-Infiltrating Immune Cells. We
explored the pattern of immune cells by the use of the
CIBERSORTmethod. Its composition on ESCC samples and
the associations among immune cells are shown in
Figures 5(a) and 5(b), respectively. However, we found that
there were no significant differences in the levels of tumor-
infiltrating immune cells between tumor and nontumor
specimens (Figures 6(a) and 6(b)). Several studies had
proved that immune cells might serve as independent in-
dicators of survivals and immunotherapy efficacies in ESCC
[23, 24]. ,en, we needed to finalize whether MMP12 be-
haviors were associated with immune cells. Importantly, we
observed that the levels of MMP12 were in positive asso-
ciation with the infiltrated levels of mast cells activated

(Figure 7(a)) and macrophages M0 (Figure 7(b)). However,
eosinophils (Figure 7(c)), B cells naı̈ve (Figure 7(d)), and
mast cells resting (Figure 7(e)) exhibited an opposite result.

3.6. �e Oncogenic Roles of MMP12 in ESCC Progression.
To demonstrate the expression of MMP12 in ESCC, we
performed RT-PCR using four ESCC cell lines and observed
that MMP12 expression was distinctly increased in four
ESCC cell lines compared with Het-1A cells (Figure 8(a)).
Given that Eca109 and EC-1 exhibited a relatively higher
level among four ESCC cells, we chose them for further
study. We used loss-of-function experiments to explore the
possible effects of MMP12 in ESCC. ,e interference effi-
ciencies of siRNA are shown in Figure 8(b), suggesting that
siRNA efficiently decreased MMP12 expressions. CCK-8
assays revealed that Eca109 and EC-1 proliferation was
distinctly suppressed when silencing MMP12 (Figures 8(c)
and 8(d)).

4. Discussion

,e research for effective molecular markers for diagnosis
and prognosis of ESCC is very important for prognosis of
patients [25]. In the last decade, more and more tumor-
related genes have been well studied. For instance, as a main
RNA N6-adenosine methyltransferase, METTL3 was highly
expressed in gastric cancer. Clinical assays disclosed that
overexpression of METTL3 predicted a poor outcome
of gastric cancer patients [26]. Hu et al. outlined that
HIF-1α was distinctly enhanced on ESCC and was in line
with metastasis, recurrence, and poor prognosis. Func-
tionally, knockdown of HIF-1α suppressed the metastasis
of ESCC cells via targeting SP1 [27]. ,ese findings en-
couraged us to further identify functional genes involved
in ESCC progression.

MMPs are commonly expressed in normal specimens
[5]. It has been demonstrated that the expressions and ac-
tivities exhibited an increased trend during inflammation
and tumor progression [28, 29]. In this study, we analyzed
the expressing pattern of MMPs in ESCC specimens based
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on TCGA datasets and identified 12 dysregulated MMPs in
ESCC, including MMP1, MMP12, MMP20, MMP17,
MMP14, MMP11, MMP10, MMP13, MMP9, MMP8,
MMP7, and MMP3. Among the above genes, only MMP12
was associated with five-year survival of ESCC patients, and
its high expression was also associated with advanced clinical
stages in ESCC specimens. To explore the possible function
of MMP12 in ESCC progression, we performed KEGG
assays, which revealed that the genes associated with
MMP12 were mainly enriched in several tumor-related
pathways including PI3K-Akt signaling, estrogen signaling,
and relaxin signaling [30–32]. Moreover, we also proved that
knockdown of MMP12 distinctly suppressed the prolifera-
tion of ESCC cells. Besides, the effect of MMP12 has been
reported in several tumors. For instance, MMP12 was highly
expressed in lung adenocarcinoma, and its knockdown
distinctly inhibited the growth and invasion of lung ade-
nocarcinoma cells [33]. In hepatocellular carcinoma, high
MMP12 expression predicted a poor prognosis. Importantly,
the prognostic value of MMP12 was also demonstrated in 93
patients, which was consistent with our findings [34]. ,us,
together with previous findings, these results indicated
MMP12 as a novel prognostic biomarker for ESCC patients.

Several antibodies targeting immune checkpoints for
the treatments of ESCC were approved by the FDA for the
sake of its efficacy [35, 36]. Biomarkers would be tre-
mendously valuable in improving therapeutic decision
making in ESCC [37]. In this study, we elaborated on the
impact of MMP12 on the immune systems. However, we
did not observe a distinct different of the level of immune
cells between ESCC specimens and nontumor specimens.
,en, we needed to figure out whether MMP12 expression
was related to immune cell on ESCC and observed that
upregulated MMP12 was positively in line with the infil-
tration levels of macrophages M0 and mast cells activated.
In addition, downregulated MMP12 was negatively cor-
related with the infiltration of B cells naı̈ve, eosinophils, and
mast cells resting. Our findings provided evidence that
MMP12 may be a potential immunotherapeutic object for
ESCC.

,ere are some limitations in our study. ,e first one is
the limited sample size that needs to be improved. ,e
second one is the lack of the exploration of mechanisms
underpinningMMP12-medicated tumor immunity and the
prognostic values of immune signatures. ,e third one is
that examining the biomarkers in the serum/plasma
samples might help monitor the therapy response in real-
time.

5. Conclusion

We identified several dysregulatedMMPs in ESCC, and their
function needed to be further studied. We provided clinical
evidence thatMMP12 was highly expressed in ESCC and can
serve as an independent prognostic marker for survival in
ESCC. Our conclusion is that MMP12 might play a role in
controlling the tumor immune microenvironments. Addi-
tional investigation is required to confirm the findings be-
fore the clinical application of MMP12.
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Objective. To evaluate the safety of bevacizumab combined with platinum-based thoracic perfusion for treating lung cancer-
related malignant pleural effusion (MPE) through meta-analysis. Methods. (e CNKI, PubMed, Cochrane Library, Embase,
Chinese Science and Technology Journal Database (VIP), andWanfang Databases were searched for randomized controlled trials
(RCTs) of bevacizumab combined with platinum-based thoracic perfusion for the treatment of MPE. (e references included in
the articles were manually searched for additional studies. A meta-analysis of the RCTs was conducted using the RevMan 5.3
application. Results. A total of 8 studies involving 540 patients (271 cases in the test group and 269 cases in the control group) were
included in the meta-analysis. (e test group had a significantly greater risk of elevated blood pressure as well as a higher rate of
complete remission (CR) compared to the control group (P< 0.05). In contrast, the incidence of partial remission (PR) was only
slightly higher in the test group (P> 0.05), and the risks of leukopenia, vomiting or nausea, rhinorrhea, diarrhea, gastrointestinal
bleeding or hemoptysis, proteinuria, abnormal kidney and liver function, arrhythmia, and rashes were not significantly different
between the test and control groups (P> 0.05). Conclusion. Bevacizumab combined with platinum-based thoracic perfusion can
achieve CR ofMPE in patients with advanced lung cancer without significantly increasing the risk of adverse effects.(e rate of PR
was similar for the combination treatment and platinum-based infusion.

1. Introduction

(epresence of malignant pleural effusion (MPE) in patients
with advanced lung cancer is mainly due to cancer cell
infiltration or metastasis into the pleura.(emolecular basis
of MPE pathogenesis is not completely clear, although
overexpression of immune-related factors and vascular
permeability regulators has been implicated [1]. MPE seri-
ously affects the quality of life, and the median survival of
lung cancer patients with MPE is about six months [2, 3].
Currently, advanced lung cancer complicated with MPE is
primarily treated with systemic drug therapy and local
treatment of the chest cavity. Intraluminal drainage com-
bined with intraluminal injection is the most common local

treatment modality; selecting an effective intracavitary can
increase therapeutic efficacy with fewer complications [4–7].
Combined intrathoracic perfusion therapy is also an effec-
tive treatment modality for MPE, and several studies have
reported better outcomes and lower drug toxicity with this
approach. However, there are also reports of potential side
effects of local perfusion, especially when two groups of
drugs are combined. Since the pleural absorption kinetics of
drugs differ significantly compared to that of intravenous
administration, there are concerns regarding the safety of
two-drug perfusion therapy. We conducted a meta-analysis
to analyze the safety and efficacy of the combination of
bevacizumab and platinum-based thoracic infusion in the
treatment of lung cancer-associated MPE.
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2. Data and Methods

2.1. Case Exclusion Standards and Inclusion

2.1.1. Study Type. (is is a published Phase III RCT.

2.1.2. Study Subjects. Patients with pathologically or cyto-
logically confirmed advanced non-small-cell lung cancer
(NSCLC) or small-cell lung cancer (SCLC)-associated MPE.

2.1.3. Interventions. (e RCT group was treated with bev-
acizumab in combination with platinum-based thoracic
perfusion, and the control group was treated with platinum-
based thoracic perfusion alone.

2.1.4. Outcome Indicators. Efficacy evaluation: the efficacy
was determined according to the WHO evaluation criteria
[8]. Complete remission (CR) was defined as the disap-
pearance of pleural effusion for over four weeks, partial
remission (PR) as the significant reduction in the volume of
pleural fluid by at least 50% for over four weeks, no sig-
nificant remission (NC) as less than 50% reduction in pleural
fluid or no significant change, and progressive disease (PD)
as a significant increase in pleural fluid volume and wors-
ening of symptoms after treatment [8]. (e patients in each
treatment and dosage group were monitored for adverse
reactions according to the National Cancer Institute-
Common Toxicity Criteria (NCI-CTC) [8].

2.1.5. Exclusion Criteria. (1) Phase I and II RCT studies, (2)
reviews or case-control studies, and non-RCTstudies such as
retrospective cohort studies, (3) concurrent radiotherapy as
first-line therapy, (5) incomplete data and unclear study
indices, and (6) published in languages other than English
and Chinese [9].

2.2. Literature Search Strategy. (e Wanfang databases,
Cochrane Library, Embase, CNKI, PubMed, and VIP da-
tabases were systematically searched for RCTs conducted on
the safety and efficacy of bevacizumab in combination with
platinum for treating lung cancer-related MPE. (e search
was limited to articles published till December 31, 2019. (e
keywords used for searching articles published in English
included Bevacizumab, Avastin, lung cancer, cisplatin, and
carboplatin, whereas the search terms for Chinese literature
included Bevacizumab, Avastin, lung cancer, MPE, cisplatin,
and carboplatin. (e search terms for interventions (“cis-
platin or carboplatin,” “Bevacizumab or Avastin,” “thoracic
perfusion,” “thoracic perfusion,” “Bevacizumab or Avastin”)
were combined with related diseases (“lung cancer and
MPE,” “lung cancer and MPE”) using Boolean logic. (e
references included in each study were manually retrieved to
expand the search. In addition, the ProQuest and CNKI
platforms were also screened to collect abstracts of disser-
tations or scientific conferences. Journals in relevant spe-
cialized fields were supplemented with manual or other
searches to avoid missing relevant literature [9].

2.3. Literature Screening and Data Extraction. (e literature
was reviewed independently by two researchers, and the
decision to include any study was made on the basis of the
review results. In case of any disagreement, a third re-
searcher was consulted, and the final decision was made
through a joint discussion among all three reviewers. (e
data were extracted from the studies by two researchers
independently and cross-checked. Any inconsistencies in
the data were resolved by discussing them with a third
researcher. (e following data were included in the meta-
analysis: (i) writer ranking, (ii) publication year, (iii) country
of publication, (iv) histological type, (v) the total number of
studies, (vi) median age, (vii) treatment regimen, (viii)
number of evaluable indicators, and (ix) outcome indicators
such as treatment efficacy and complications [9].

2.4. Risk ofBiasAssessment. (e risk of bias was evaluated by
applying the Bias Assessment Tool’s Cochrane Risk, which
includes (i) random sequence generation (selective bias), (ii)
allocation concealment (selective bias), (iii) implementation
of blinding (implementation bias), (iv) blinded assessment
results (measurement bias), (v) completeness of data
(missing visit bias), (vi) selective reporting (reporting bias),
and (vii) other bias (issues that could clearly lead to a risk of
bias, e.g., apparent benefit and early discontinuation of the
trial). (e risk of bias was classified as low, unclear, and high
[9].

2.5. Statistical Analysis. Meta-analysis was conducted using
the RevMan 5.3 application, with a relative risk (OR) as the
outcome. (e results were presented using 95% confidence
intervals (95% CI), and P< 0.05 was set as a statistically
significant difference. (e heterogeneity between the in-
cluded studies was analyzed using the Q test and quantified
using the I2 index.(e fixed-effects model was used in case of
low heterogeneity (P> 0.05, I2< 40%) [9]; otherwise, the
random-effects model was applied.

2.6. Evaluation of Publication Bias. Publication bias was
assessed based on the symmetry of outcome indicators using
a funnel plot. A symmetrical funnel plot indicated a lack of
any publication bias, whereas an asymmetrical plot sug-
gested publication bias [7].

3. Results

3.1. Preliminary Literature Screening Results. A total of 316
articles were initially screened, including 40 from PubMed,
168 from Embase, 44 from the Cochrane Library, 22 from
CNKI, 24 from the Wanfang database, and 18 from VIP.
Eight studies were finally included after excluding duplicate
or ineligible literature, including seven studies on combined
cisplatin perfusion [8, 10–15] and one on combined car-
boplatin perfusion [16], involving a total of 540 patients (271
cases in the trial group and 269 cases in the control group).
(e details are summarized in Figure 1.
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3.2. Basic Characteristics of the Included Studies. Six of the
included studies had been conducted on NSCLC patients
and two on lung cancer patients. All patients were treated
with thoracic perfusion. Bevacizumab and cisplatin perfu-
sion were used in eight studies, and bevacizumab and
carboplatin perfusion in one study, with cisplatin or car-
boplatin as the control group. (e administered dosage of
bevacizumab was 200mg/dose in one study, 300mg/dose in
two studies, and 5mg/kg in 6 studies (Table 1). In six studies,
MPE was diagnosed by ultrasound, whereas two did not
specify whether the diagnostic modality was CT or ultra-
sound. Nevertheless, the same diagnostic modality was used
to compare pre- and posttreatment status in all studies.

3.3. Risk of Bias Assessment. All eight studies showed a low
risk of bias. (e risk percentages of individual biases in each
study are shown in Figure 2. (e overall risk of individual
biases is summarized in Figure 3.

3.4. Results of Meta-Analysis

3.4.1. Rate of PR. All studies included in the meta-analysis
(271 cases in the trial group and 269 cases in the control
group) reported PR. Due to low heterogeneity between the
studies (P � 0.52, I2 � 0), meta-analysis was conducted using
the fixed-effects model. (e rate of PR was higher in the trial
group compared to the control group, albeit not statistically
significant (OR� 1.11, 95% CI: 0.78–1.57, P> 0.05). (e data
are summarized in Figures 4 and 5.

3.4.2. Rate of CR. All studies included in the meta-analysis
(271 cases in the trial group and 269 cases in the control
group) reported CR. Statistical heterogeneity between the
studies was significant (P � 0.06, I2 � 49%), which warranted
the random-effects model. (e rate of CR was significantly

higher in the test group compared to the control group
(OR� 3.10, 95% CI: 1.68–5.71, P< 0.05). (e data are shown
in Figures 6 and 7.

3.4.3. Risk of Leukopenia. Six studies, including 194 patients
in the trial group and 194 patients in the control group,
reported leucopenia. Statistical heterogeneity between the
studies was low (P � 0.94, I2 � 0), and the fixed-effects model
was used. (e risk of leukopenia was lower in the test group
compared to the control group, although the difference was
not statistically significant (OR� 0.88, 95% CI: 0.56–1.40,
P> 0.05). (e data are shown in Figures 8 and 9.

3.4.4. Risk of Nausea and Vomiting. All studies reported the
frequency of nausea and vomiting in the test and control
groups. Statistical heterogeneity between the studies was low
(P � 0.52, I2 � 0), and the fixed-effects model was used. (e
test group had a slightly lower risk of nausea compared to the
control group (OR� 0.72, 95% CI: 1.48–1.07, P> 0.05). (e
data are shown in Figures 10 and 11.

3.4.5. Risk of Diarrhea. Diarrhea was reported in four
studies that included 123 patients in the trial group and 119
patients in the control group. (e fixed-effects model was
used due to the low statistical heterogeneity between the
studies (P � 0.84, I2 � 0). (e risk of diarrhea was higher in
the test group compared to the control group, albeit without
statistical significance (OR� 1.24, 95% CI: 0.62–2.52,
P> 0.05). (e data are shown in Figures 12 and 13.

3.4.6. Risk of Nosebleeds, Hemoptysis, or Gastrointestinal
Bleeding. Five studies reported the frequency of nasal
bleeding, hemoptysis, or gastrointestinal bleeding among
134 patients in the trial group and 132 patients in the control

Obtain literature related literature through database search (n=316) 

Preliminary exclusion of literature (n=242), which included:
Duplicate literature (n=176)
Non-Phase III clinical trials (n=35)
Case reports (n=2)
Overviews (n=8)
Retrospective survey studies (n=17)
Single-arm trials (n=4)

Included in the analysis literature (n=74)

Literature finally included in the Meta-analysis (n=8)

Exclusion of literature that did not meet the inclusion criteria (n=66), which included:
Literature on first-line treatment with non-bevacizumab in combination with platinum
(n=49)
Literature on control group treatment with bevacizumab (n=7)
Literature not describing adverse effects of bevacizumab (n=10)

Figure 1: Preliminary literature screening results.
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group. An increased risk of these events was observed in
the trial group compared to the control group using the
fixed-effects model (P � 0.82, I2 � 0), although the dif-
ference was not statistically significant (OR � 4.01, 95% CI:
0.43–37.44, P> 0.05). (e data are shown in Figures 14
and 15.

3.4.7. Risk of Elevated Blood Pressure. Five studies, including
134 patients in the trial group and 132 patients in the
control group, reported elevated blood pressure. Sta-
tistical heterogeneity between the studies was low
(P � 0.66, I2 � 0), and the fixed-effects model was used.

(e risk of high blood pressure was significantly higher
in the test group compared to the control group
(OR � 3.46, 95% CI: 1.43–8.36, P< 0.05). (e data are
shown in Figures 16 and 17.

3.4.8. Risk of Proteinuria. Four studies, including 106 pa-
tients in the trial group and 106 patients in the control
group, reported proteinuria. Statistical heterogeneity
between the studies was low (P � 0.94, I2 � 0), and the
fixed-effects model was used. (e risk of proteinuria was
higher in the test group compared to the control group,
albeit not statistically significant (OR � 3.60, 95% CI:
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Figure 2: Risk of single-item bias in the included literature.
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0.86–15.11, P> 0.05). (e data are shown in Figures 18
and 19.

3.4.9. Incidence of Kidney and Liver Dysfunction. (ree
studies, including 120 patients in the trial group and 124
patients in the control group, reported abnormal liver and
kidney function. (e fixed-effects model was used on ac-
count of the low heterogeneity between the studies
(P � 0.54, I2 � 0). (e patients in the test group showed a

slightly lower risk of aberrant kidney and liver function
compared to the control group (OR� 0.67, 95% CI:
0.33–1.35, P> 0.05). (e data are shown in Figures 20 and
21.

3.4.10. Risk of Arrhythmia. (ree studies, including 124
patients in the trial group and 122 patients in the control
group, reported arrhythmia. Statistical heterogeneity between
the studies was low (P � 0.87, I2 � 0), and the fixed-effects
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model was used. (e risk of arrhythmia was slightly lower in
the test group compared to the control group (OR� 0.75,
95% CI: 0.35–1.58, P> 0.05). (e data are shown in Fig-
ures 22 and 23.

3.4.11. Risk of Rashes. Two studies, including 96 patients in
the trial group and 96 patients in the control group, reported
an incidence of rashes. Since the statistical heterogeneity
between the studies was significant (P � 0.20, I2 � 40%), the

random-effects model was used. Patients in the test group
were at a slightly higher risk of developing rashes compared
to the control group (OR� 0.56, 95% CI: 0.15–2.13,
P> 0.05). (e data are shown in Figures 24 and 25.

4. Discussion

MPE is a frequent complication of intestinal cancers, breast
cancer, pleural mesothelioma, etc., and the highest incidence
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is observed in lung cancer patients (about 35%) [17]. (e
pathogenesis of MPE is complex. (e key factors include
lymphatic vessel obstruction, vascular endothelial cell
damage, and increased vascular permeability, in addition to
the decrease in plasma colloid osmotic pressure due to
hypoproteinemia. However, the mechanisms through which
tumor cells induce vascular damage are unclear.

Vascular endothelial growth factor (VEGF) promotes
tumor neovascularization by increasing fibrinase production,

which lyses the basement membrane and interstitial fibers of
blood vessels, thereby encouraging the growth of new vessels.
In addition, VEGF also participates in the formation of
pleural effusion by malignant tumor cells [18–21]. Chen et al.
found that VEGF competitively binds to receptors on en-
dothelial cells and activates the mitogen-activated protein
kinase signaling pathway, which induces their differentiation
and promotes the formation of intercellular gaps, thereby
increasing vascular permeability [22–26]. Li et al. reported
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that the significant increase in VEGF expression in MPE
could distinguish the latter from benign pleural effusion, and
treatment with bevacizumab led to VEGF blockade [6].
(erefore, VEGF is a key factor in MPE production and a
predictive factor of its therapeutic regression.

MPE is routinely treated by thoracic infusion of che-
motherapeutic drugs such as cisplatin, carboplatin, lopres-
sor, and oxaliplatin, all of which are associated with systemic

or local side effects and require multiple perfusions. Local
perfusion of platinum drugs into the pleural cavity can al-
leviate MPE by directly killing the tumor cells and indirectly
promoting the adhesion between the two layers of the pleura,
which in turn inhibits MPE production. Although cisplatin
and carboplatin have different pharmacokinetic character-
istics, there is no significant difference in their therapeutic
effects when administered intravenously. Studies comparing
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the effects of the intrathoracic/intrapleural instillation of
cisplatin or carboplatin are limited. Xi et al. did not detect
any significant difference between the therapeutic efficiency
of intrathoracically instilled cisplatin and carboplatin.
Xiaoyan et al. found that the therapeutic efficacy of cisplatin
administered by pleural perfusion is only 50–60% [27],
whereas Liang et al. reported 73.3% efficacy of similarly
administered lobaplatin [28]. (erefore, local perfusion of
platinum drugs is routinely combined with thymidine,

Conrad injection, thermal perfusion therapy, interleukins,
targeted drugs, etc., for treating MPE, and the combination
therapies are superior to individual perfusion schemes in
terms of efficacy and side effects. Lu et al. conducted a meta-
analysis of eight RCTs, including a total of 328 patients, and
found that thoracic perfusion of thymidine and oxaliplatin
achieved greater efficacy against MPE compared to oxali-
platin alone, along with fewer side effects [29]. (e majority
of the studies included in the present meta-analysis showed
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that bevacizumab combined with platinum drugs was more
effective than the individual drugs, albeit with a trend to-
wards increased side effects compared to carboplatin alone.
Nevertheless, it cannot yet be assumed that the dual drug
combination increased the risk of adverse effects. Previous
studies have also shown that the secondary increase in blood
pressure due to bevacizumab is manageable and does not
cause serious secondary damage.

Since VEGF is also essential for maintaining normal
vascular endothelial cell function, blocking the VEGF sig-
naling pathway can lead to endothelial dysfunction and
hypertension. Several studies have shown that bevacizumab
increases the risk of hypertension [30–32]. (erefore, blood
pressure ≥150/95mmHg before or during initial treatment
warrants anti-hypertensive intervention and reevaluation of
bevacizumab treatment after at least two weeks [33].
Amlodipine is recommended as the first choice for patients
taking anti-hypertensive medications [33]. In addition,
blood pressure measurement is recommended for patients
prior to each administration of bevacizumab. Another
concern of intrathoracic perfusion therapy is the extrava-
sation of the perfused drugs into the subcutaneous tissues.
Although it is a very rare occurrence, it is still necessary
to verify the location of the intrathoracic tube before
each infusion. Most studies included in this meta-analysis

emphasized the need for multiple position changes after
perfusion therapy to reduce the risk of drug extravasation
and promote drug absorption.

To summarize, thoracic perfusion of bevacizumab
combined with platinum-based drugs improves the survival
and clinical outcomes of lung cancer patients with MPE
without significantly increasing the risk of complications.
However, the impact of this regimen on the long-term
survival of MPE patients still needs to be further validated in
a multicenter prospective study on a larger cohort.

(e limitation of this meta-analysis is that we compared
the effects of the combination treatment with carboplatin or
cisplatin but not with bevacizumab due to the lack of data on
bevacizumab as the control group. (erefore, more pro-
spective studies should be done to analyze the difference
between single-drug perfusion and multiple-drug perfusion
therapy or between single-drug perfusion and thoracic fever
perfusion. Recent meta-analyses suggest that intravenous
and intrathoracic administration of bevacizumab have the
same efficacy, whereas our data indicate that chest infusion
has greater therapeutic benefit.

5. Conclusion

Bevacizumab combined with platinum-based thoracic per-
fusion can achieve CR of MPE in patients with advanced
lung cancer without significantly increasing the risk of
adverse effects. (e rate of PR was similar for the combi-
nation treatment and platinum-based infusion.
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Sirtuin 6 (SIRT6), a DNA repair-related gene, has undergone an extremely thorough study for its involvement in the development
of many different cancers. 0e objective of our study was to explore the function and mechanism of SIRT6-induced regulation of
prostate cancer (PCa). RT-PCR was performed to validate the levels of SIRT6 in PCa cell lines. Cell proliferation, migration, and
invasion of cells with SIRT6 knockdown were assessed using CCK-8 assay, colony formation assay, wound-healing assay, and
transwell assay. Western blot was applied to assess the related proteins. We found that SIRT6 expression was distinctly
upregulated in PCa specimens and cells. Loss-of-functional assays revealed that SIRT6 silence suppressed the proliferation and
metastasis of PCa cells. Mechanistic studies revealed that SIRT6 silence inhibited Wnt/β-catenin signaling and EMT progress.
Overall, the study confirmed the upregulation of SIRT6 in patients with PCa and its association with the progression. SIRT6
promoted PCa progression by regulating Wnt/β-catenin signaling, providing a promising biomarker and treatment approach for
preventing PCa.

1. Introduction

Prostate cancer (PCa) is one of the most common malig-
nancies in elderly males around the world [1]. 0e incidence
rates are increasing over the last two decades. 0e clinical
outcome of many patients with PCa has achieved a positive
situation after the application of early surgical excisions [2].
However, a poor prognosis was frequently observed in
patients with advanced stages or unresectable tumors [3]. In
addition, neoadjuvant chemotherapy and surgery are nec-
essary for the improvement of long-term survivals [4, 5].
Although plenty of effort has been made to improve the
treatment efficiency of PCa, the potential mechanisms in-
volved in PCa progression have limited the development of
effective treatments.

Sirtuin 6 (SIRT6) is a nicotinamide adenine dinucle-
otide (NAD+)-dependent histone deacetylase which has
been confirmed to remove acetyl groups from histone 3
lysine 9 and histone 3 lysine 56 motifs [6, 7]. More and

more evidence have demonstrated that histone deacety-
lase exhibited multiple effects, such as inhibition of
suppression of cellular transformation, maintenance of
genome stability, and glucose homeostasis [8, 9]. As a
multifunctional nuclear protein, the functions of SIRT6
are complex. It has been demonstrated that SIRT6
exhibited a regulatory effect in several biological pro-
gressions, including bone disorders, inflammation, dia-
betes, heart and liver diseases, neurodegenerative, glucose
metabolism, longevity, genome stability, and various tu-
mors [10, 11]. Besides, several research studies have re-
ported that SIRT6 plays an important role in DNA
damage, repair, and mutagenesis [12, 13]. In recent years,
more and more studies have reported the distinct dys-
regulation of SIRT6 in many types of tumors [14, 15].
However, the expressing pattern of SIRT6 exhibited a
different trend based on the types of tumors. In pancreatic
cancer, SIRT6 expression was distinctly decreased and its
overexpression suppressed tumor metastasis [16].
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However, SIRT6 was found to be overexpressed in diffuse
large B-cell lymphoma and promote the proliferation and
invasion of tumor cells via mediating PI3K/Akt signaling
[17]. 0e potential function of SIRT6 in PCa remained
largely unclear.

In this research, we aimed to examine the expression of
SIRT6 in PCa patients, investigate its possible functions, and
characterize molecular mechanisms involved in SIRT6 roles
in PCa progression. Our findings provided a novel per-
spective therapeutic target of SIRT6 in PCa.

1.1. Patients and Methods

1.1.1. Cell Transfection. A panel of PCa cell lines including
PC-3, 22RV1, and DU145 cells and a human normal prostate
cell line (WPMY) were all obtained from BeNa Company
(Suzhou, Jiangsu, China) and maintained in RPMI-1640
media (Beikai, Changsha, Hunan, China) with 10% FBS.
Besides, TransEasy transfection reagent kits (Fujiyin,
Chengdu, Sichuan, China) were then applied to perform the
cell transfection in accordance with the kits’ protocols. 0e
siRNAs (si-NC and si-SIRT6) were purchased from JiMa
Biological Corporation (Suzhou, Jiangsu, China).

1.1.2. Real-Time PCR. TRIzol reagents (Qianchen, Pudong,
Shanghai, China) were employed to extract total RNAs. 0e
first-strand cDNA synthesis was carried out with a High-
Fidelity 1st Strand cDNA synthesis kit (Agilent, Chaoyang,
Beijing, China), and the qRT-PCR analysis for SIRT6 de-
tection was carried out by the use of SYBR-Green Real-Time
Mix kits (Shenggong, Songjiang, Shanghai, China). 0e
expressing values of SIRT6 were normalized to GAPDH and
calculated using the 2−△△Ct method. 0e PCR primers were
designed as follows: SIRT6 forward, 5′-CCCACGGAG
TCTGGACCAT-3′ and reverse, 5′-CTCTGCCAGTTTGT
CCCTG-3′ and GAPDH forward, 5′-CTGGGCTACACTG
GCACC-3′ and reverse, 5′-AAGTGGTCGTTGAGGGC
AATG-3′.

1.1.3. Cell Viability Detection. 0e cell viability was assessed
by CCK-8 assays. In short, 2000 PC-3 or DU145 cells after
treatment with si-NC were seeded in 96-well plates per well.
After culturing for 48 h, 72 h, and 96 h, the cells were treated
with CCK8 reagents (10 μl; BOSTER, Wuhan, Hubei,
China).0en, the absorbance at 450 nm at the indicated time
point was evaluated by a microreader.

1.1.4. Colony Formation Assay. Briefly, PC-3 or DU145 cells
after treatment with si-NC were plated into 6-well plates at a
density of 500 cells per well. Cells were then cultured for
about 2 weeks. 0en, paraformaldehyde (4%) (Sigma,
Yangfu, Shanghai, China) and crystal violet (0.1%) (Solarbio,
Tongzhou, Beijing, China) were applied to fix and stain the
cell colonies, respectively. Finally, the cell colonies were
observed using a microscope (XHC-BV1; DongFangHuaCe,
Chaoyang, Beijing, China).

1.1.5. Wound-Healing Assay. In short, PC-3 or DU145 cells
were treated with si-NC. 0en, cells were planted into 12-
well plates and continued to be cultured until 100% cell
confluence. A pipette tip (200 μl) was then employed to
generate a wound field. After that, the cells were washed and
observed by a microscope at 0 h and 48 h (XHC-BV1;
DongFangHuaCe, Chaoyang, Beijing, China).

1.2. Transwell Assay. Cellular invasion was evaluated by
transwell invasion assays using Corning Costar transwell
inserts (Lianshuo Biotech, Qingpu, Shanghai, China). First,
the upper chambers of the transwell inserts were treated with
Matrigel. 0en, PC-3 or DU145 cells after treatment with si-
NC were resuspended in serum-free media and then planted
into the upper chambers of the inserts. In addition, the lower
chambers were loaded with a medium containing 15% FBS.
After 24 h, the invaded cells in the lower chamber were fixed
in 4% paraformaldehyde and stained with 0.1% crystal violet.
Finally, these cells were observed and photographed under
an inverted microscope (XHC-BV1; DongFangHuaCe,
Chaoyang, Beijing, China).

1.3. Western Blot. In brief, the PC-3 or DU145 cells were
lysed using a cell lysates extraction kit (X-Y Bioscience,
Minhang, Shanghai, China), and the lysates were quantified
by a BCA kit (Jingke Chemical Technology, Jinshan,
Shanghai, China). Subsequently, 20 μg of the protein sample
was fractionated by 10% SDS-PAGE, which was then
transferred to PVDF membranes (Millipore, Bedford,
Massachusetts, USA). Proteins were blocked by 5% skim
milk and then were examined by corresponding antibodies
using a super-enhanced ECL detection kit (Servicebio,
Wuhan, Hubei, China). 0e primary antibodies against
β-catenin, cyclin D1, and c-myc were purchased from
Wuhan BOSTER Co., Ltd. (Wuhan, Hubei, China).

1.4. Statistical Analysis. Data analysis was performed using
SPSS 19.0 statistical software (SPSS, Chicago, IL, USA). 0e
Student’s t-test was applied to two-group analysis. A value of
p< 0.05 was considered to indicate statistical significance.

2. Results

2.1. Upregulation of SIRT6 in PCa Tissues and Cell Lines.
To explore the possible function of SIRT6 in PCa, we
searched “GEPIA”, which can be used to analyze the ex-
pressions of various genes in tumors based on TCGA data
sets [18], finding that SIRT6 expression was distinctly
upregulated in PCa specimens compared with normal
specimens (p< 0.01, Figure 1(a)). Moreover, the levels of
SIRT6 in three PCa cell lines were also higher than those in
WPMY-1 (Figure 1(b)). In addition, survival assays revealed
that high SIRT6 expression was associated with a shorter
overall survival of PCa patients (Figure 1(c)). Overall, our
findings revealed SIRT6 as a possible regulator in the
progression of PCa.
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2.2. Overexpression of SIRT6 Contributed to the Inhibition of
Cellular Proliferation in PCa Cells. Because SIRT6 was lowly
expressed in PCa, we next conducted gain-of-function
studies using si-NC transfection to examine the functions of
SIRT6 in PCa. 0e results of qPCR suggested the distinct
overexpression of SIRT6 in PC-3 or DU145 cells
(Figure 2(a)). CCK8 assays were then carried out to evaluate
the potential biological roles of SIRT6 in PCa cell prolif-
eration. After transfecting si-SIRT6, the cellular growth of
PCa cells was significantly decreased at 72 h and 96 h
(Figures 2(b) and 2(c)). In addition, the colony formation
assays demonstrated that the silence of SIRT6 distinctly
suppressed the clonogenic abilities of PCa cells (Figures 2(d)
and 2(e)).

2.3. Effects of SIRT6 on the Migration and Invasion of PCa
Cells. To further explore the roles of SIRT6 in the migration
and invasiveness of PCa cells, we conducted wound healing
and transwell invasion assays using PC-3 or DU145 cells
after treatment of si-SIRT6. 0e data of wound healing
assays validated that knockdown of SIRT6 dramatically
suppressed the width of wounded areas (Figure 3(a)).
Furthermore, with the downregulation of SIRT6, the inva-
sive capability of PCa cells was notably reduced when they
were assessed by transwell invasion assays (Figure 3(b)). In
addition, to elucidate the mechanisms of SIRT6 on cell
metastasis, we carried out Western blot analysis to evaluate
the levels of N-cadherin and vimentin which were involved
in epithelial-mesenchymal transition. 0e data demon-
strated that silence of SIRT6 led to obvious decline of
N-cadherin and vimentin protein levels in PCa cells
(Figures 3(c) and 3(d)). Collectively, these data provided
evidence that SIRT6 served as an important regulator in
modulating the migration and invasion of PCa cells.

2.4. Depression of SIRT6 Impeded the Activation of Wnt/
β-CateninSignaling inPCaCells. We next aimed to ascertain
the detailed mechanisms by which SIRT6 orchestrated
cellular ability. Wnt/β-catenin signaling, a well-known
signaling which was closely associated with the functional
regulation of multiple cancers, was investigated in the fol-
lowing experiments [19]. Hence, Western blot assays were
utilized to evaluate the protein levels of molecules involved
in Wnt/β-catenin signaling. 0e results indicated that the
protein levels of c-myc, cyclin D1, and β-catenin were re-
markably decreased in PC-3 and DU145 cells (Figures 4(a)
and 4(b)). Overall, these data revealed that the activation of
Wnt/β-catenin signaling was suppressed by SIRT6 knock-
down in PCa cells, and our above results implied that SIRT6
modulated the development and progression of PCa via
affecting Wnt/β-catenin signaling.

3. Discussion

To date, many PCa patients with advanced stages have an
unfavorable clinical outcome because of limited chemo-
therapy and the antibiotic drugs [20]. 0us, the identifica-
tion of novel therapeutic targets is very important for the
clinical outcome of PCa patients. Here, our group observed
that SIRT6 expression was distinctly increased in PCa
specimens compared with nontumor specimens. 0en, the
knockdown of SIRT6 was shown to suppress the prolifer-
ation, migration, and invasion of PCa cells, indicating its
oncogenic roles in PCa progression. Previously, several
studies reported the dysregulation of SIRT6 in several types
of tumors [16, 21]. For instance, SIRT6 was shown to be
lowly expressed in colorectal cancer stem cells, and its
overexpression suppressed the cell proliferation, colony
formation, and induced G0/G1 phase arrest in colorectal
cancer stem cells via regulating CDC25A [22]. However,
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Figure 1: SIRT6 was upregulated in PCa specimens and cell lines. (a) GEPIA was used to analyze the expression of SIRT6 in PCa specimens
(n� 492) and nontumor specimens (n� 52) based on TCGA data sets. (b) qPCR detected the relative SIRT6 levels in PCa cells. (c) Survival
value of SIRT6 expression in PCa patients based on TCGA data sets. ∗∗p< 0.01.
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high levels of SIRT6 were observed in diffuse large B-cell
lymphoma, and its overexpression promoted the metasta-
sizing capacity of tumor cells and drug resistance of diffuse
large B-cell lymphoma by mediating PI3K/Akt signaling
[17].0ese findings suggested a different role of SIRT6 based
on the types of tumors. Our findings indicated SIRT6 as an

oncogene, which was not consistent with its function in
breast cancer and lung cancer [23, 24].

Epithelial-mesenchymal transition (EMT) is a process in
which epithelial cells acquire mesenchymal features [25]. It
has been demonstrated that EMT is involved in cancer
progression, metastatic competency, and problems of drug
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Figure 2: Knockdown of SIRT6 suppressed the proliferation of PC-3 or DU145 cells. (a) qPCR assays detected the expression levels of SIRT6
in PCa cells after transfected with si-SIRT6 or si-NC. (b, c) CCK-8 assays evaluated the cellular growth after treatment with si-SIRT6 or si-
NC at 48 h, 72 h, and 96 h. (d and e) Colony formation assays assessed the effects of SIRT6 knockdown on the clonogenic capacity of PCa
cells. ∗∗p< 0.01.
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resistance [26, 27]. In recent years, more and more studies
have shown that some tumor-related genes displayed their
oncogenic or antioncogenic functions on tumor progression
via modulating the EMTpathway [28, 29]. In this study, we
also observed that SIRT6 knockdown distinctly suppressed
EMT progress. Previously, SIRT6 was reported to promote

an aggressive phenotype and the EMT in papillary thyroid
cancer, which was consistent with our findings [30].
However, more experiments were needed to further explore
the possible effects of SIRT6 on EMT progress.

Wnt/β-catenin signaling is evolutionarily conserved and
required for embryonic development and tissue homeostasis
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Figure 3: Knockdown of SIRT6 impaired the invasion andmigration of PCa cells. (a)Migration was inhibited in PCa cells when transfecting
with si-NC or si-SIRT6. (b) Transfection of si-SIRT6 reduced the invasion of PCa cells. (c, d)Western blot measured the protein expressions
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[31]. Wnt/β-catenin signaling is frequently reported to
participate in the development and progressions of various
types of tumors [32, 33]. 0is signaling pathway is highly
conserved throughout evolution, and it is important in
intercellular communication [34]. Growing evidence indi-
cate that enhancing Wnt/β-catenin signaling elements’ ex-
pression, like receptors and downstream targets, is
important in overcoming drug resistance and the reversal of
the EMT phenotype [35, 36]. In this study, PCa cells were
transduced with si-SIRT6, and we found that the protein
level of c-myc, cyclin D1, and β-Catenin were remarkably
decreased, suggesting this pathway was inversely modulated
by SIRT6 in PCa cells. 0us, our findings indicated that
silence of SIRT6 suppressed PCa progression via modulating
Wnt/β-catenin signaling.

4. Conclusions

Our findings provided novel evidence that SIRT6 was highly
expressed in PCa and promoted the proliferation and me-
tastasis of PCa cells. Mechanistically, SIRT6 silence sup-
pressed the activity of Wnt/β-catenin signaling. Together,
our findings suggested that SIRT6 could become a novel
prognostic biomarker and potential therapeutic target in
PCa.
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Pituitary tumor-transforming gene-1 (PTTG1), one type of DNA repair-related gene, has been reported to be dysregulated in
several tumors and serve as a tumor promotor. Previously, the oncogenic roles of PTTG1 were also reported in lung adeno-
carcinoma (LUAD). However, the prognostic values of PTTG1 in LUAD and the possible mechanism of its dysregulation have not
been clarified. We analyzed TCGA datasets and reported that PTTG1 expression showed a distinct increase within LUAD
specimens in comparison with nontumor specimens. Further survival study revealed that patients containing a great PTTG1 level
had noticeably less overall survival and progression-free survival as compared with patients containing a low PTTG1 level.
Multivariate analyses confirmed that PTTG1 expression was a factor of prognosis that is independent in terms of LUAD patients.
Besides, PTTG1 methylation had a negative regulation on PTTG1, so PTTG1 had a high expressing level in LUAD tissues.
However, the relation between hypermethylation and overall survival was not demonstrated using TCGA datasets. In addition, we
observed that LUAD specimens with advanced stages exhibited a higher level of PTTG1. Finally, the dysregulated genes related to
PTTG1 expression were screened, and KEGG assays revealed that the above genes were involved in the p53 signaling pathway,
indicating the possible regulatory function of PTTG1 in the p53 signaling pathway. Overall, our findings suggest that PTTG1 may
serve as an efficient clinical biomarker and a therapeutic target for patients suffering from LUAD.

1. Introduction

Lung carcinoma has been recognized as a highly common
malignant tumor worldwide [1]. Lung carcinoma turns out to
be the first main factor causing people in China’s urban regions
to die [2]. Lung adenocarcinoma (LUAD) refers to the com-
monest among lung carcinoma and has become a popularly
aggressive carcinoma [3]. -ough LUAD treatment and di-
agnosis using surgical methods and/or adjuvant chemotherapy
have greatly progressed, patients impacted still have poor
prognostic results since over 80% patients impacted have the
advanced-stage diagnosis [4, 5]. Accordingly, probable prog-
nosis factors should be explored according to survivors for
gaining more insights into LUAD malignancy and developing
alternatives to treat various subgroups of patients with LUAD.

Pituitary tumor-transforming gene-1 (PTTG1), a ubiqui-
tously expressed factor of transcription, is proven with the

overexpression within several types of tumors, including lung
carcinoma, ovarian carcinoma, prostate carcinoma, and breast
carcinoma [6–8]. In recent years, growing evidence has shown
that PTTG1 exhibits regulatory functions in the progression of
angiogenesis, DNA damage repair, programmed cell death,
and differentiation [9, 10]. In addition, it has also been con-
firmed that the dysregulation of PTTG1 was related to the
abilities of proliferation and metastasis. For instance, PTTG1
expression was distinctly increased in cholangiocarcinoma, and
its knockdown suppressed tumor growth via modulating the
pathway of MAPK signaling [11]. PTTG1 was also shown with
an ability of promoting the invasion of migration of LUAD
cells, and its levels were regulated by miR-186, implying a
possible role for PTTG1 in LUAD [12]. In addition, the
prognostic values of PTTG1 were also reported. However, the
studies are limited, and the possible mechanism of PTTG1
dysregulation has not been clarified.

Hindawi
Journal of Oncology
Volume 2022, Article ID 3507436, 10 pages
https://doi.org/10.1155/2022/3507436

mailto:doctorjing55121@163.com
mailto:doclienxiao@sina.com
https://orcid.org/0000-0002-8689-1726
https://orcid.org/0000-0001-5225-0173
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3507436


DNA methylation, frequently occurring at CpG dinu-
cleotides, is demonstrated to be related to clinical pro-
gression of patients suffering from LUAD, such as TP53
status, carcinoma status, WHO grade, and clinical stages
[13, 14]. In recent years, several studies have demonstrated
the positive relation between the pattern of single gene and
methylation state [15, 16]. However, the specific clinical
significance of the methylated markers in LUAD subtypes
and the complex role of DNA methylation remained largely
unclear, which needed to be further demonstrated in clinical
cohorts of patients suffering from LUAD. -is paper aimed
at exploring the expressing pattern of PTTG1 within patients
suffering from LUAD. An analysis was conducted on the
relation of PTTG1DNAmethylation and PTTG1 expression
within the LUAD dataset of TCGA datasets. Finally, we
examined the prognostic significance of PTTG1 expression
in LUAD patients and its DNA methylation.

2. Materials and Methods

2.1. Raw Data. Transcriptome RNA-seq data of 59 normal
samples and 526 tumor samples were downloaded fromTCGA
database (https://portal.gdc.carcinoma.gov/) with level 3. -e
following samples were excluded: (1) “0” gene expression value
and (2) insufficient survival information. A total of 513 patients
with LUAD with the corresponding clinical characteristics
were enrolled in this paper. -en, we downloaded the meth-
ylation profiles of patients with LUAD from TCGA database
via UCSC Xena (https://xena.ucsc.edu/).

2.2. Relation Assays of PTTG1 Expressions andMethylation of
CpG Sites. -e relations of PTTG1 expressions with the
methylation of CpG sites in different regions of the PTTG1
gene were studied by the use of Pearson’s relation tests. -e
relations of PTTG1 expressions with the methylation of each
CpG site were examined.

2.3. Relation of PTTG1 CpG Sites with the Characteristics of
LUAD. -e clinical characteristics of patients suffering from
LUAD were extracted, including patients’ age, clinical stage,
and sex. PTTG1 CpG sites at which methylation states were
distinctly related to OS were applied to study their relation
with clinical characteristics of LUAD.

2.4. GO and KEGG Enrichment Analyses of the Differentially
Expressed Genes. Patients with LUAD from TCGA datasets
were initially divided into two groups (high and low). -e
dysregulated genes between the two groups were selected
with p< 0.05. To study potential biological processes (BP),
cellular components (CC), molecular functions (MF), and
pathways of the differentially expressed genes, we performed
GO and KEGG assays by the use of the “clusterProfiler”
package in R with a statistical threshold of p< 0.05 [17].

2.5. StatisticalAnalysis. All statistical analyses were based on
R language 3.6.1 version. With the use of Fisher’s exact test
or Pearson chi-squared test, an investigation was conducted

on the relation of PTTG1 and clinical feature variables.
Kaplan–Meier methods with log-rank tests were applied to
determine the overall survival (OS) and progression-free
survival (PFS). Significant variables in univariate models
were further analyzed by multivariate assays for the iden-
tification of independent prognosis factors. p≤ 0.05 was
considered to indicate a statistically significant difference.

3. Results

3.1. �e Distinct Upregulation of PTTG1 in LUAD and Its
Prognostic Value. To delve into the potential function of
PTTG1 in LUAD, we analyzed TCGA datasets and found that
PTTG1 expression was distinctly increased in LUAD specimens
in comparison with nontumor lung specimens (Figure 1(a)).
We also performed survival assays which revealed that patients
with high PTTG1 expression exhibited a shorter OS (p< 0.001,
Figure 1(b)) and PFS (p< 0.024, Figure 1(c)) as compared with
those with low PTTG1 expression. -e predictive performance
of PTTG1 expression for OS was assessed according to time-
dependent ROC curves, and the area under the curve (AUC)
reached 0.618 at 1 year, 0.609 at 3 years, and 0.601 at 5 years
(Figure 1(d)).Moreover, the results of univariate assays revealed
that PTTG1 expression and clinical stage were related to OS of
patients suffering from LUAD (Figure 2(a)). Further results by
multivariate analyses confirmed that PTTG1 expression
(HR� 1.302, 95% CI: 1.122–1.510, p< 0.001) as well as stage
(HR� 1.619, 95% CI: 1.408–1.861, p< 0.001) was an inde-
pendent prognosis factor for the patients with LUAD
(Figure 2(b)). Overall, our findings suggested that PTTG1 was
an overexpressed gene in LUADand predicted a poor prognosis
of patients suffering from LUAD.

3.2. �e Relation of DNA Methylation with PTTG1 and Its
Survival Analysis. -en, we analyzed the level of methylation
sites of PTTG1.-e distribution of 8 PTTG1CpG sites is clearly
exhibited in Figure 3(a). In addition, a strong negative relation
betweenPTTG1 expressions andPTTG1DNAmethylationwas
found (Figure 3(b)). -en, Pearson’s relation assays were
conducted to screen the PTTG1 CpG sites involved in PTTG1
mRNA expressions. We observed that methylation of
cg19619065, cg21784134, cg2302444, cg26775866, and
cg09468767 was negatively related to the expressions of PTTG1
(Figures 3(c)–3(g)). However, methylation of cg12430567,
cg00116688, and cg27185377 was not related to the expression
of PTTG1 (Figures 3(h)–3(j)). On the contrary, to explore the
prognostic value of methylation of CpG sites, we performed
Kaplan–Meier methods and observed that all CpG sites were
not related to OS of patients suffering from LUAD from TCGA
datasets (Figure 4). However, patients with high methylation of
cg12430567 achieved a shorter PFS as comparedwith thosewith
low methylation of cg12430567 (Figure 5(a)). Other CpG sites
showed no relation with PFS of patients suffering from LUAD
(Figures 5(b) and 5(c)). -e chi-square test was performed for
investigating the specific relation of PTTG1 expression and
PTTG1 methylation with several clinical characteristics. As
shown in Tables S1 and S2, the expression of PTTG1was closely
related to N stage, clinical stage, and PTTG1 methylation. -e
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relation between PTTG1 expression and clinical characteristics
is also shown in Figures 6(a)–6(f), and the relation between
PTTG1 methylation and clinical characteristics is shown in
Figures 6(g)–6(l). Our results indicated that the levels of PTTG1
were modulated by methylation. However, the prognostic value
of most CpG sites of PTTG1 was also confirmed.

3.3. Functional Analyses of the Dysregulated Genes in TCGA
Cohort. For a clarification of the functional effect of
PTTG1 on LUAD, we divided all patients suffering from
LUAD into two groups (high and low) based on the mean

expression of PTTG1. -en, we screened the dysregulated
genes between samples containing high PTTG1 expres-
sion and samples with low PTTG1 expression. -e dys-
regulated genes are presented in Table S3. Subsequently,
we performed GO assays using the “clusterProfiler” R
package and found that, in the BP group, the dysregulated
genes were primarily involved in the regulation of mitotic
sister chromatid separation, cytoskeleton organization
involved in mitosis, nuclear division, mitotic nuclear
division, chromosome segregation, and sister chromatid
segregation. In the CC, the dysregulated genes were
mainly involved in condensed chromosome kinetochore,
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Figure 1:-e distinct upregulation of PTTG1 in LUAD patients and its prognostic value. (a)-e expression of PTTG1 in LUAD specimens
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kinetochore, centromeric region, condensed chromo-
some, spindle, chromosomal region, midbody, and mi-
totic spindle. In the MF group, the dysregulated genes
were mainly involved in microtubule binding, tubulin
binding, motor activity, microtubule motor activity, water
channel activity, water transmembrane transporter ac-
tivity, histone kinase activity, and aspartic-type endo-
peptidase activity (Figure 7(a)). KEGG analysis showed
that the dysregulated genes are mainly enriched in cell
cycle, oocyte meiosis, progesterone-mediated oocyte
maturation, cellular senescence, and p53 signaling path-
way (Figure 7(b)). Our findings suggested that PTTG1
expression was related to progression of LUAD.

4. Discussion

New strategies for treatment in terms of LUAD are increasingly
designed, which consist of immunotherapy, gene therapy, and
molecular targeted therapy [18, 19]. Nevertheless, therewere not
any satisfactory therapeutic results, and a low survival rate of
LUAD has been achieved. New therapeutic and prognostic
methods aiming to optimize the outcome of LUAD patients
require an overall insight into the molecular mechanism of
tumor initiation and progression [20, 21]. Recently, DNA re-
pair-related genes emerge as a novel gene regulator class in
various malignancies [22, 23].

As a DNA repair-related gene, the expression and function
of PTTG1 have been reported in several tumors. For instance,

PTTG1 expression was distinctly increased in glioma, and its
knockdown suppressed cell angiogenesis and metastasis in
glioma cells [24]. A previous study reported that PTTG1, an
overexpressed gene in seminoma tumor, promoted the mi-
gration and invasion of tumor cells via activation of MMP-2
[25]. In addition, the prognostic values of PTTG1 were also
reported in several tumors, such as breast carcinoma and
prostate carcinoma [8, 26]. According to the findings above,
PTTG1 is an oncogene in the above tumors. Importantly, Li
et al. also reported that PTTG1 was highly expressed in lung
carcinoma, and its knockdown distinctly suppressed the in-
vasion and migration of lung carcinoma cells. In their cohort,
they also reported upregulation of PTTG1 was related to poor
prognosis of patients with lung carcinoma [12]. However, the
sample size was small in their cohort. In this paper, we analyzed
TGCA datasets and also confirmed that expressions of PTTG1
were distinctly increased in LUAD specimens. Survival assays
revealed that patients with high PTTG1 expression showed a
shorter OS and PFS as compared with those with low PTTG1
expression. More importantly, in a multivariate Cox model,
PTTG1 expression was reported as a poor prognosis factor that
is independent in terms of 5-year OS. Clinical stage has been
considered to be a very important prognostic factor for LUAD
patients, which was also further demonstrated in this study.
-us, whether PTTG1 expression may be associated with
clinical stages of LUAD patients needed to be further explored.
Overall, our findings suggested PTTG as a novel biomarker for
LUAD.
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Figure 3: -e associations between PTTG1 expressions and methylation of several sites. (a) Histogram of the methylation level in eight
methylation sites. (b) -e expressions of PTTG1 were negatively modulated by PTTG1 DNA methylation. (c–j) Correlation analysis of
PTTG1 with the methylation of (c) cg19619065, (d) cg21784134, (e) cg2302444, (f ) cg26775866, (g) cg09468767, (h) cg12430567, (i)
cg00116688, and (j) cg27185377.
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Increasing evidence proved that the dysregulation of
DNA methylation significantly impacts the developments
and progressions of LUAD [27, 28]. Our group firstly
examined if the PTTG1 methylation state could have an
effect on PTTG1 expressions by the use of Pearson’s
coefficients. A potent negative relation of PTTG1 meth-
ylation and PTTG1 expressions was found in LUAD
tissues. Such a negative relation could effectively account
for the high LUAD expression within LUAD tissues.
Subsequently, we further screened the specific CpG sites.
It is noteworthy that nearly all the CpG sites with the
exception of cg27185377 and cg00116688 were obviously

related to PTTG1 expressions. In previous studies, the
relationship of specific gene expression and its DNA
methylation had a range (weak to moderate), and rare
genes under the significant regulation by DNA methyl-
ation had been found [29, 30]. Furthermore, the prognosis
value of PTTG1 DNA methylation and 8 selected CpG
sites was explored, and we found that the levels of PTTG1
methylation were not related to the OS and PFS in patients
suffering from LUAD. Only cg12430567 was related to OS
and patients suffering from LUAD. Our findings sug-
gested PTTG1 was negatively regulated by PTTG1
methylation. However, more experiments were needed to
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Figure 4: -e survival assays of methylation of CpG sites in LUAD patients using Kaplan–Meier methods.
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Figure 5: (a) -e 5-year progression-free survival rate of LUAD patients with high levels of cg12430567 was distinctly lower than that of
those patients with low levels of cg12430567. (b, c) Kaplan–Meier plots of overall survival in patients with LUAD and with low and high
levels of methylation sites.
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Figure 6: Correlation between PTTG1 expression/methylation and clinicopathologic features in TCGA datasets. (a) Age and PTTG1
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further demonstrate the prognostic value of the PTTG1
methylation state.

-ere were several limitations in this research. Firstly,
the sample size was relatively small, and more clinical
experiments were necessary to demonstrate our findings.
Secondly, we did not perform in vitro and in vivo ex-
periments to study the potential function of PTTG1 in
LUAD progression. Finally, we did not explore the
downstream factors which PTTG1 modulated.

5. Conclusion

-is paper identified PTTG1 hypermethylation state as a
prognosis factor in LUAD. Methylation of cg12430567 was
related to the survival of patients suffering from LUAD. Our
findings indicated the effects of PTTG1 methylation on the
pathogenesis of LUAD and provided new targeting genes for
predicting the clinical outcomes of patients suffering from
LUAD.
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Background. Quinolinic acid phosphoribosyltransferase (QPRT) is a rate-limiting enzyme that encodes the uronic acid pathway,
which is involved in cell cycle progression and cancer cell metabolism. Some studies have demonstrated the progrowth effect of
QPRTon breast cancer (BRCA) tumour cells, but its mechanism of action requires further exploration.Methods. We investigated
the expression of QPRT and the prognosis of patients with different tumours by performing a pan-cancer analysis of QPRT.
Prognostic values for overall survival (OS) were determined using uni- and multivariate Cox proportional hazard analyses. +e
prognostic survival of patients with a different pathological staging of BRCA and with QPRT high and low expression was also
analysed. We also explored the relevant pathways by which QPRT affected BRCA tumorigenesis by gene set enrichment analysis
(GSEA) and western blotting. +e impact of QPRT on the PI3K/Akt pathway was also evaluated. Results. Pan-cancer analysis
revealed significant QPRTexpression in pan-cancer and correlated with prognosis in most tumour patients. QPRTwas also highly
expressed in BRCA when patients had poor prognoses, and its expression was associated with different pathological BRCA
subtypes. GSEA revealed an association between BRCA progression and the cell cycle and the phosphatidylinositol 3-kinase
(PI3K)/Akt signalling pathway, and this association was confirmed by western blotting. Conclusion. QPRT is highly expressed in
breast cancer and particularly in HER2 breast cancer. Upregulated QPRTexpression is an independent predictor of breast cancer
prognosis and promotes breast cancer progression by activating the PI3K/Akt signalling pathway.

1. Introduction

As of 2020, invasive breast cancer (BRCA) (2.26 million cases)
remains one of the most commonly diagnosed cancer types
worldwide [1] and is the leading cause of cancer death in
women aged 20–59 years [2]. Currently, standard screening
methods for BRCA include mammography, magnetic reso-
nance imaging (MRI), computed tomography (CT), and biopsy
[3]. Despite significant advances in diagnostic tools and
treatment strategies, BRCA continues to rise in prevalence and
affects approximately one in twenty countries worldwide [4],
with higher rates in developed countries [5]. BRCA is classified,
based on differences in gene expression patterns, into five
major categories, luminal A, luminal B, HER2 overexpression,
basal_like, and normal_like, with HER2 overexpressing breast
tumours having the poorest prognosis [6]. BRCA is metastatic
cancer and can spread to distant organs, such as the bone, liver,
and lung, a condition that is often incurable, whereas early

diagnosed BRCA generally has a better prognosis and survival
rate [7]. +e 5-year survival rate of patients with stage I BRCA
can be as high as 100%, while in patients with stage IV BRCA, it
decreases to 26% [8].

In BRCA cells, a reduction in cellular levels of nico-
tinamide adenine dinucleotide (NAD+) may induce apo-
ptosis [9]. NAD+ is a critical coenzyme involved in the redox
reactions of cancer cell metabolic pathways [10] and plays a
role in DNA repair, gene transcription regulation, the cell
cycle, apoptosis, metabolism, and other biological processes
[11]. +e production of NAD+ is promoted by the activity of
quinolinate phosphoribosyltransferase (QPRT), the rate-
limiting enzyme encoding the kynurenic pathway, via ca-
tabolism tryptophan. QPRT is upregulated in cancer cells,
and this upregulation is resistant to inhibitors of nicotin-
amide phosphoribosyltransferase (NAMPT) [12], the rate-
limiting enzyme of the NAD+ salvage pathway [13]. Studies
have shown that high expression of NAMPT is related to the
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aggressive biological characteristics of BRCA [14] and can
regulate the PI3K-AKT signalling pathway and promote
tumour cell proliferation [15]. Similarly, QPRT expression
has shown great relevance to the migration and invasive
ability of BRCA cancer cells [16], and tumour xenograft
assays have demonstrated the growth-promoting effect of
QPRT overexpression in BRCA tumour cells [17].

+e mechanism of action of QPRT on BRCA onset and
progression has not been adequately studied. +erefore, the
present study aimed to analyse the impact of QPRT on the
expression and prognosis of BRCA tumours. +e biological
functions and pathways of QPRTwere studied through gene
set enrichment analysis (GSEA), the relationship between
QPRT and signalling pathways was established by western
blot analysis, and the mechanism of QPRT effects on breast
cancer progression was determined.

2. Materials and Methods

2.1. Data Sources and Processing. Data were obtained from
+e Cancer Genome Atlas (TCGA) dataset, Cancer Cell Line
Encyclopedia (CCLE), and Genotype-Tissue Expression
(GTEx) dataset, including clinical information data and gene
expression matrices for normal tissues, tumour tissues, and
tumour cell lines. In total, 33 tumour samples were obtained
from the TCGA dataset, RNA sequencing data for 21 tumour
cell lines were obtained from the CCLE dataset, and expression
profile data were obtained for 27 cancer and paracancer tissues
by integrating the TCGA and GTEx datasets. +e expression
matrices of GSE46563 and GSE59246 were obtained from the
GEO database (https://www.ncbi.nlm.nih.gov/geo/). GSE46563
contains 75 HER− and 19 HER+ samples, and GSE59246
contains a total of 50 HER− and 19 HER+ samples.

2.2. Analysis of QPRT Expression and Survival in Each
Tumour. +e Kruskal–Wallis test was used to analyse dif-
ferences in tumour tissues and normal tissues. Survival
analysis was performed using the R survival package, and the
disease-specific survival (DFS) between QPRT expression
and patients with different tumours was examined using
one-way Cox risk proportional regression analysis, with data
expressed as forest plots. Kaplan–Meier (KM) analysis was
used to test the association between QPRT and survival
among patients with different tumours. A value of P< 0.05
was considered statistically significant.

2.3. Expression and Survival Analysis of QPRT in BRCA.
+e differences in QPRT expressions in different pathological
subtypes of BRCA were analysed using the R package Limma.
+e log-rank test was used to test the survival differences be-
tween the high and low QPRT expression groups, and KM
curves were plotted to show the overall survival (OS) and
progression-free survival (PFS) of different pathological staging.
Univariate and multifactorial Cox risk proportional regression
analyses were performed to compare the relationship between
QPRT expression and each clinicopathological feature with
breast cancer survival for BRCA.+eR package “RMS”was also
used to plot nomograms for 1, 3, and 5 year survival rates.

2.4. Immunohistochemistry (IHC) to Detect Protein
Expression. Immunohistochemical staining results of QPRT
protein in breast cancer tumor tissues and normal tissues
were compared using human Protein Atlas (HPA) database.

2.5. Functional and Pathway Enrichment Analyses. Based on
the median expression of QPRTin breast cancer for high and
low expression groups, gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) functional
and pathway enrichment analyses were performed using the
R package clusterProfiler. GSEA was used to demonstrate
the activation or repression of biological pathways mediated
by QPRT expression [18] and was performed using the R
package clusterProfiler to search for potential biological
mechanisms of QPRT in breast cancer. Biological pathway
enrichment of high and low QPRTexpressions was analysed
using the Reactome gene sets in GSEA.

2.6. Cell Culture and Transfection. Human breast cancer
MDA-MB-231 cell line (ATCC® HTB-26™) was cultured in
Dulbecco’s Modified Eagle Medium (DMEM-high glucose, 01-
052-1A, Biological Industries, Beit HaEmek, Israel) containing
5% FBS (04-001-1A, Biological Industries, Beit HaEmek, Israel)
and 4mM glutamic acid base, incubated at 37°C in a humidified
atmosphere of 5% CO2. Lentivirus vector is constructed (ob-
jective: HBLV-h-QPRT-ZsGreen-PURO, control: HBLV-h-
ZsGreen-PURO), plasmid extraction kit (DP117, TIANGEN
BIOTECH CO., LTD, China) was used to extract the plasmids,
and 293T cells were co-transfected with Lipofectamine 3000 kit
(L3000001, +ermo, USA). After infection, MDA-MB-231 cells
were infected with the virus supernatant. After infection, the
fusion rate of cells reached 80–90%, the cells were transferred to
petri dishes, and 0.5μg/mL puromycin was added to screen
positive cells under pressure. When the fluorescence rate and
survival rate of cells were better than 95%, cell lines with stable
expression were obtained.

2.7. Western Blotting (WB). Cells were lysed in RIPA buffer
(50mM Tris-HCl, pH 7.4, 150mM NaCl, 1% sodium deoxy-
cholate, 1% NP-40, 0.1% SDS, 100mM PMSF, 1mM pepstatin
A, and 1mM E64). +e released proteins were separated on an
8–12% SDS polyacrylamide gel, transferred to a PVDF mem-
brane (IPFL00010, Millipore, Burlington, MA, USA), and
treated with a primary antibody.+e specific primary antibodies
are as follows: QPRT (ab171944, rabbit monoclonal antibody,
dilution 1 :1000), Akt (ab8805, rabbit polyclonal antibody, di-
lution 1 : 500), P-Akt (ab38449, rabbit polyclonal antibody,
dilution 1 : 500), PI3K (ab32089, rabbit monoclonal antibody,
dilution 1 :1000), P-PI3K (ab278545, rabbit monoclonal anti-
body, 0.5µg/ml), MDM2 (ab16895, mouse monoclonal anti-
body, used at an assay-dependent concentration), P-MDM2
(ab170880, rabbit monoclonal antibody, dilution 1 : 50000), and
β-actin (ab8226, mouse monoclonal antibody, 1µg/ml). +en
the primary antibody was incubated at 4°C overnight, and the
TBST buffer (100 mM TrIS-HCl, pH 7.5, 150 mM NaCl) was
oscillated and washed for 3 times, 5 minutes each time. +e
second antibodywas incubated at room temperature for 1h, and
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the film was washed 3 times with TBSToscillation for 5 minutes
each time. After the membrane was incubated with TMB
substrate for 1 minute, the membrane was soaked in developing
solution until the strip was clear and cleaned with tap water.
+en the membrane was fixed with fixing solution, and the
imaging was observed with a gel imaging analysis system (XR+,
Bio-RAD Laboratories, China).

2.8. StatisticalAnalysis. Statistical analysiswas carried out using
SPSS software (version 20.0, SPSS Inc., Chicago, IL, USA). Data
were expressed as mean±SD. Student’s t-test was employed to
determine p values. +e χ2 test and Fisher’s exact test were
employed to assess the association between factors. Survival
curves were created by the Kaplan–Meiermethod and compared
by the log-rank tests.Multivariate survival analysiswas conducted
with the multivariate Cox proportional hazard regression model.
Significant difference was recognized at P< 0.05.

3. Results

3.1. QPRT Was Significantly Expressed in Most Tumour
Tissues. Analysis of the CCLE dataset showed that QPRTwas
significantly expressed in all 21 tumour cell lines (Figure 1(a)).
Integration of data in TCGA and GTEx revealed upregulation
of QPRT expression in 16 tumours, including BRCA, COAD,
and GBM, and downregulation in 10 tumours, including
CHOL, KICH, and KIRP, among 27 tumour types.

3.2. QPRT Was Associated with the Prognosis of Certain
Tumours. High QPRT expression was significantly associ-
ated with poor OS prognosis in patients with BRCA, KIRP,
LGG, SKCM, and UVM, and the relationship between high
and low QPRT expressions and patients with each tumour
was further confirmed using KM curves (Figures 2(a) and
2(b)). To avoid the impact of nontumour death during
follow-up, the relationship between QPRT expression levels
and prognostic DSS (disease-specific survival) was analysed,
and QPRT was found to be prognostically significant only
with BRCA, KIRP, LGG, and READ tumours (Figure 2(c)).
QPRT was hypothesized to be a prognostic marker for tu-
mour DSS based on the KM curve (Figure 2(d)).

3.3. QPRT Expression Was Significantly Associated with
DifferentPathological Staging of BRCA. QPRTexpression was
significantly correlated with poor prognosis in BRCA patients,
and QPRT expression was significantly higher in BRCA tu-
mour tissues than in normal tissues (Figure 3(a)). Subsequent
analysis of expression in different pathological subtypes of
BRCA revealed significant differences in QPRT expression in
all pathological subtypes, with the highest expression in the
HER2 type (Figure 3(b)).+e data analysis in the two validation
sets (GSE46563 and GSE59246) revealed a significant differ-
ential expression of QPRT in HER2 breast cancer (Figures 3(c)
and 3(d)). +e immunohistochemical results (Figure 3(e))
showed that QPRT was localized in the cytoplasm, cell
membrane, and nucleus and showed a positive expression in
pathological breast cancer tissues but not in normal tissues.

3.4. ;e Prognosis of BRCAWas Significantly Associated with
Many Factors. Survival analysis showed that breast cancer
patients with low QPRT expression had higher OS and PFS
than those with high expression (Figures 4(a) and 4(b)).
Survival analysis of different pathological staging of BRCA also
showed that the median survival time was significantly longer
in basal-like and HER2-enriched than in luminal A, luminal B,
and normal-like (Figure 4(c)). In addition, high QPRT ex-
pression was significantly associated with the prognosis of
breast cancer patients with different pTNMstages (Figure 4(e)).

We also developed a prognostic model for BRCA to
assess the impact of each factor on survival. In univariate
survival analyses, BRCA cases with high QPRT expression
had a poor OS. In Cox risk proportional regression analysis,
after adapting for age, grade, tumour size, and subtype,
QPRT was still an independent prognostic factor for OS
(Figures 5(a) and 5(b)). Columnar tables were established to
predict the prognostic survival of breast cancer patients at 1,
3, and 5 years, and the ROC curves showed that the 1-year
(AUC� 0.695, 95% CI: 0.599–0.791) survival prediction
model was the best model (Figures 5(c) and 5(d)).

3.5. QPRTMay Be Involved in BRCA Progression through the
PI3K/Akt Signalling Pathway. Enrichment analysis revealed
(Figures 6(a) and 6(b)) that oxygenation levels and the de-
velopment of the reproductive systemwere themost significant
biological functions; the PI3K-Akt signalling pathway was the
most significant KEGG pathway; some of the related functions
and pathways are listed in Table 1. Subsequent GSEA showed
that the oestrogen signalling pathway and cell cycle were the
most significant KEGG pathways and that the cell cycle and
mitosis were the most significantly related biological processes
in the Reactome gene set (Figures 6(c) and 6(d)).

3.6. QPRT Activated the PI3K/Akt Signalling Pathway in
Breast Cancer Cells. We confirmed the influence of QPRTon
the PI3K/Akt signalling pathway by western blotting (Figure 7).
Phosphorylation and protein levels of P-PI3K (ab278545) and
P-Akt (ab38449) were significantly increased in MDA-MB-231
cells with foreign expression of QPRT. We also evaluated the
PI3K/Akt downstream protein kinase P-MDM2 (ab170880)
and found a significant enhancement of its phosphorylation and
protein levels. +ese results indicate that QPRT may promote
breast cancer progression through the PI3K/Akt pathway.

4. Discussion

Cancer is a significant factor affecting the health and lon-
gevity of people worldwide, with nearly 20 million new
cancer cases and nearly 10 million deaths reported world-
wide in 2020 [19]. Pan-cancer analysis can identify the
similarities and differences in the tumour genomes and
provide helpful information for cancer diagnosis and
treatment [20]. In the present study, we evaluated the ef-
ficacy of QPRTfor pan-cancer analysis. QPRTis significantly
expressed in most tumours, and its expression is related to
prognosis. Among them, the expression of QPRT has a
prominent effect on the prognosis of breast cancer patients.
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Because of the strong relationship found for QPRT in
breast cancer, this study mainly analysed the relationship
between QPRT and breast cancer. +e TCGA dataset as the
test set revealed significant QPRT expression in breast
cancer, especially HER2 breast cancer. +ese results were
reproduced in two GEO validation sets. A study screening

for prognosis-related candidate genes in breast cancer
showed that QPRT expression was significantly associated
with prognosis in breast cancer patients [21]. +e analysis in
the present study shows that QPRT is an independent
prognostic factor of breast cancer and is related to different
pathological subtypes.
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Figure 1: Expression levels of QPRT in different tumours: (a) QPRT expression in the CCLE dataset, total 21 tumour cell lines; (b) QPRT
expression in the integrated GTEx and TCGA dataset, total 27 tumors. ∗P< 0.01, ∗∗P< 0.001, and ∗∗∗P< 0.0001.
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Figure 2: OS and DSS of high and low expressions of QPRT in each tumour: (a) forest plot of OS of QPRT in each tumour; (b) forest plot of
DSS of QPRT in each tumour; (c–g) KM survival curve to show the OS of patients with high and low QPRTexpressions in different tumors;
(h–n) KM survival curve to show the DSS of patients with high and low QPRT expressions in different tumors.
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Normal tissue Tumour tissue.

(e)

Figure 3:+e expression of QPRT in BRCA: (a) differential expression of QPRT in BRCA tumour tissues and normal tissues; (b) expression
of QPRT in different pathological staging of BRCA; ((c), (d)) the high and low expression distribution of QPRT in HER2 breast cancer, the
data come from GSE46563 and GSE59246, respectively; (e) breast cancer immunohistochemical map.
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In breast cancer, HER2 gene amplification can lead to the
proliferation of specific aggressive breast cells, and HER2
expression has been identified as an independent factor for
the poor prognosis of breast cancer patients [22]. Targeted
therapy is one of the treatments aimed at improving the
survival rate of HER2-positive breast cancer patients, but the
selection of targeted genes still needs further study [23].

QPRT catalyses the production of nicotinic acid
mononucleotide (NMN), which in turn promotes the syn-
thesis of nicotinamide adenine dinucleotide (NAD+), which
plays a crucial role in cell survival [24]. Zhang et al. used in
vivo and in vitro experiments to confirm that QPRT pro-
motes growth, migration, and invasion of breast cancer and
inhibits cell apoptosis [17]. Liu et al. also provided strong
evidence that upregulation of QPRTpromotes breast cancer
progression [16]. Earlier work indicated that QPRT might
have an antiapoptotic function (Ullmark et al., 2017).
Furthermore, QPRT was identified as a potential prognosis
biomarker of BC [21]. However, whether QPRT is an in-
dependent prognostic factor in invasive breast cancer and
the mechanisms by which QPRTmay contribute to invasive
breast cancer remain undefined. +us, the present study was
based on this previous research and aimed to explore the
mechanism underlying promoting breast cancer progression
by QPRT.

QPRToverexpression is known to activate the PI3K/Akt
signalling pathway in cancer cells [25], but this has not been
proven in breast cancer. +e GSEA results presented here
showed that QPRT expression was related to the PI3K/Akt

signalling pathway, and western blot analysis showed that
overexpression of QPRT can increase the phosphorylation
levels of PI3K and Akt, indicating that QPRT and the PI3K/
Akt signalling pathwaymay have a positive feedback effect in
breast cancer.

Phosphoinositide 3-kinase (PI3K) can integrate sig-
nals from growth factors, cytokines, and other extracel-
lular stimuli, and the modification of this pathway is
closely related to the pathogenesis of cancer [26, 27].
Protein kinase B (PKB, also known as Akt) is an essential
mediator of the PI3K pathway and the signalling endpoint
of various growth factors and cytokines [28]. +e PI3K/
Akt signalling pathway is one of the phosphatidylinositol
signalling systems involved in tumorigenesis, cell growth,
proliferation, metabolism, survival, and apoptosis [29].
+e PI3K/Akt signalling pathway is activated in various
cancers and has been proven to be one of the most im-
portant signalling pathways in cancer development [30].
+e PI3K/Akt signalling pathway has attracted increasing
attention in breast cancer research as activating this
pathway can promote breast cancer cell proliferation,
inhibit apoptosis [31], and modulate cell invasion [16].
Human epidermal growth factor receptor-2 (HER2) is
involved in the development of breast cancer through the
PI3K/Akt/mTOR pathway [27], and the PI3K/Akt/mTOR
pathway is an important pathway involved in chemo-
resistance and survival of triple-negative breast cancer
(TNBC) [32]. However, the current study also had some
limitations. +is research was based on microarray data

Type
1−Years,AUC=0.695,95%CI (0.599−0.791)
3−Years,AUC=0.591,95%CI (0.526−0.656)
5−Years,AUC=0.623,95%CI (0.566−0.68)

0.25 0.50 0.75 1.000.00

False positive fraction

0.00

0.25

0.50

0.75

1.00

Tr
ue

 p
os

iti
ve

 fr
ac

tio
n

(d)

Figure 5: Prognosis of the BRCA prediction column line graph: (a) single-factor Cox regression analysis of the risk relationship of BRCA
with age, race, and pTNM; (b) multifactor Cox regression analysis of the risk relationship of BRCA with age, race, and pTNM; (c) column
line graphs for predicting the overall survival of BRCA patients at 1, 3, and 5 years; (d) ROC curve graphs for overall survival at 1, 3, and 5
years.
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analysis. +e samples from the datasets were insufficient
and without cancer stage information, and data from
biological samples carried out no confirmation. Conse-
quently, large-scale, potential, and widespread clinical

examinations are required to confirm our results. It was
necessary to obtain a single gene to profile QPRT ex-
pression in BRCA. +e mechanism of QPRTneeds further
findings through in vivo and in vitro models.
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Figure 6: BRCA whole gene enrichment analysis: (a) enrichment of GO function in QPRTexpression; (b) enrichment of KEGG function in
QPRT expression; (c) enrichment of the KEGG pathway in GSEA with high and low QPRT expressions; (d) enrichment of biological
processes in the Reactome gene set with high and low QPRT expressions. P< 0.05 is statistically significant.

Table 1: +e most significant GO biofunction and KEGG pathways in the enrichment analysis.

Class Function/pathway p value p. adjust q-value

BP

Response to hypoxia 7.92E-09 3.08E-05 2.57E-05
Response to decreased oxygen levels 1.50E-08 3.08E-05 2.57E-05

Response to oxygen levels 5.54E-08 7.58E-05 6.32E-05
Reproductive structure development 9.59E-08 9.10E-05 7.58E-05
Reproductive system development 1.11E-07 9.10E-05 7.58E-05

Pattern specification process 6.59E-07 0.000450942 0.00037565
Urogenital system development 1.52E-06 0.000852121 0.000709846

Axonogenesis 1.66E-06 0.000852121 0.000709846
Response to glucocorticoid 2.04E-06 0.000874411 0.000728415

Acute inflammatory response 2.34E-06 0.000874411 0.000728415

KEGG

PI3K-Akt signalling pathway 3.00E-05 0.007825176 0.007132445
PPAR signalling pathway 7.00E-05 0.009139327 0.00833026
MAPK signalling pathway 0.000198423 0.014943102 0.01362025

Oocyte meiosis 0.000229013 0.014943102 0.01362025

10 Journal of Oncology



5. Conclusions

Collectively, our results here support a vital role for QPRT in
breast cancer and indicate that its upregulation is related to
the poor prognosis of patients with BRCA. Subsequently, in
vitro experimental results show that QPRT upregulation
may affect breast cancer progression by activating the PI3K/
Akt signalling pathway. +e current study implies that
QPRTmay therefore be a novel specific therapeutic target for
breast cancer treatment.
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Background. ,e homeobox (HOX) gene family has been found to be involved in human cancers. However, its involvement in
hepatocellular carcinoma (HCC) has not been well documented. Here, we comprehensively evaluated the role of HOXs in HCC.
Methods. RNA sequencing profile of TCGA-LIHC and LIRI-JP were obtained from the Cancer Genome Atlas (TCGA) and the
International Cancer Genome Consortium (ICGC), respectively. Data of TCGA-LIHCmethylation were downloaded fromUCSC
Xena. Genetic alteration data for the TCGA samples was obtained from cBioPortal and GSCA. ,e diagnostic efficiency was
assessed using ROC curves. ,e prognostic significance was evaluated by the Kaplan–Meier method and Cox regression analysis.
Subsequent functional analysis was performed through the clusterProfiler package. ssGSEA, ESTIMATE, and TIDE algorithms
were employed to explore the relationship between HOXs and the HCC microenvironment. Finally, pRRophetic package and
NCI-60 cancerous cell lines were applied to estimate anticancer drug sensitivity. Results. ,e mRNA levels of HOXs in HCC
tissues were higher than those of noncancerous tissues and were correlated with poor overall survival (OS). HOXA6, C6, D9, D10,
and D13 could serve as independent risk factors for OS. Further functional analysis revealed that these five HOXs regulate the cell
proliferation, cell cycle, immune response, and microenvironment composition of HCC. In addition, the aberrant expression and
methylation of HOXs is of great value in the diagnosis of HCC. Conclusion. HOXs play crucial roles in HCC and could serve as
potential markers for HCC diagnosis and prognosis.

1. Introduction

Hepatocellular carcinoma is an important cause of human
cancer-related deaths worldwide, and its incidence continues to
rise [1]. Meanwhile, it is also one of the cancers with the worst
prognosis. According to statistics, the median survival time of
advanced cases is only 2-3 years [2]. Surgery is the most
important treatment for early HCC. However, due to the lack
of specific symptoms, patients miss the best opportunity for
surgery [1]. Posthepatic resection recurrence is another con-
siderable challenge. Even in patients with early HCC, the 5-year

recurrence rate was close to 70% [3]. ,e high recurrence rate
and poor curative effect are related to the complicated path-
ogenesis of HCC, as various networks of molecules and sig-
naling pathways are involved in its occurrence and
development [4]. ,erefore, the discovery of new molecules
involved in HCC progression and the identification of new
diagnostic markers and therapeutic targets is critically im-
portant for improving HCC patients’ prognosis.

,eHOX genes share a DNA sequence called “homeobox”
which consists of a 120-base pair and encodes a polypeptide
consisting of 61 amino acids, known as a homeodomain [5].
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For the first time, HOX genes were found to be involved in the
embryogenesis of Drosophila melanogaster [6]. Notably,
structural and developmental variations were observed in
mutant D. melanogaster, such as the replacement of antennae
with legs. ,ese anomalies, caused by mutations, are called
“homeotic” transformations. In 1921, geneticists proposed the
existence of genes that specifically regulate these transforma-
tions [7]. Seventy years later, the protein structures of such
genes were identified in humans, and termed “homeotic” or
“HOX” genes [8, 9].,e discovery of theHOXgene is crucial to
understanding the genetic control mechanisms of embryonic
development. In mammals, diverse HOXmembers control the
development of different parts of the body [10].

,irty-nine HOXs were identified in the human genome,
located on chromosomes 2, 7, 12, and 17, and divided it them
into four gene clusters (A, B, C, and D, respectively). Each
cluster was also divided into 13 paralog groups. Each gene
cluster contains from 9 to 11 members (Figure S1) [11]. Over
the past century, many studies found that HOXs were closely
related to human cancers [12–15]. Meanwhile, the aberrant
methylation of HOX genes was also identified as a char-
acteristic of cancers [16]. All these findings have shown the
potential of HOXs as biomarkers for human cancers.

In HCC, the abnormal expression of few HOX members
was established to be involved in disease progression
[17, 18]. However, the significance of most HOXmembers is
still not clear. Here, we integrally analyzed the genomic data
of HOXs in HCC, and assessed their diagnostic and prog-
nostic value.

2. Materials and Methods

,e flowchart of this study is presented in Figure 1.

2.1. Datasets Sources and Processing. ,e RNA-seq (FPKM
format) and clinical data of TCGA-LIHC were downloaded
from the GDC Data Portal (https://portal.gdc.cancer.gov/).
,e RNA-seq (FPKM) of LIRI-JP was downloaded from
ICGCData Portal (https://dcc.icgc.org/).,e limma package
[19] in R software was applied to identify HOX genes dif-
ferentially expressed between cancerous tissues and adjacent
noncancerous tissues. ,e threshold was set as |log2 Fold
Change| >1.5 and a P value <0.05. ,e methylation data for
TCGA-LIHC was downloaded from the University of
California, Santa Cruz (UCSC; Santa Cruz, CA, USA) Xena
data portal (https://xena.ucsc.edu/).,e beta values from the
same sample but from different vials/portions/analytes/ali-
quotes were averaged, whereas the beta values from different
samples were combined into a genomic matrix.,e Corrplot
[20] package in R software was used to evaluate the cor-
relation between the gene expression or the methylation
levels of the CpG sites and the corresponding gene
expression.

2.2. Assessment of Genetic Alterations in HOX Genes.
cBioPortal is an interactive open-source platform that
provides large scale cancer genomics data sets (https://www.
cBioPortal.org/) [21]. We obtained the genomic data of

samples in TCGA-LIHC (Firehose Legacy), including mu-
tations, putative copy-number alterations from GISTIC, and
mRNA expression z-Scores (RNASeq V2 RSEM) with a
z-score threshold± 2.0. All samples were divided into two
groups. ,e altered group included 59 samples with mu-
tations or CNA, whereas the unaltered group consisted of
301 samples without mutations or CNA. ,en, the differ-
ences in the overall survival and disease-free statuses (since
initial treatment) between the two groups were analyzed
using K–M survival analysis.

Gene Set Cancer Analysis (GSCA) is an integrated da-
tabase for the analysis of cancer genomics (http://bioinfo.
life.hust.edu.cn/GSCA/#/) [22]. We obtained the details of
the SNV and CNV of HOX family genes in TCGA-LIHC
from the GSCA database. ,e mutation data showed seven
types of deleterious mutations. ,e CNV data were pro-
cessed through GISTICS2.0. Based on the GISTIC score,
CNV was divided into four categories.

2.3. PPI Network and Functional Enrichment Analysis.
,e genes coexpressed with HOX genes in TCGA-LIHC
were collected from the UALCAN database (https://ualcan.
path.uab.edu/) [23]. A correlation coefficient ≥0.4 was
considered to indicate a significant correlation. Based on
genes significantly correlated with HOXs, we constructed a
PPI network using STRING v.10.0b (https://string-db.org/)
[24]. Next, we screened the hub genes and visualized the
STRING results using Cytoscape v3.8.0 (https://cytoscape.
org/cy3.html) [25]. ,en, the clusterProfiler package [26] in
R was employed to identify the Gene Ontology (GO) terms
(including cellular component, biological process, and
molecular function) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways that were enriched by hub
genes and to visualize the results.

2.4. Relationship between HOXs and HCC
Microenvironment. ,e abundance of 24 immune cell types
was predicted by calculating the single-sample gene set
enrichment analysis (ssGSEA) scores based on the gene set
signatures of each type of the immune cells through
ImmuCellAI (http://bioinfo.life.hust.edu.cn/ImmuCellAI/
#!/) [27]. Further, we obtained bubble plots presenting
the correlation between the mRNA expression of the HOX
genes and the estimated abundance of immune cells from
the GSCA database. ,en, the ssGSEA scores of 13 immune
functions of each HCC sample were quantified using the
GSVA package [28] in R software.

Afterwards, the stromal cell levels in HCC tissues were
estimated using the ESTIMATE algorithm, which analyzes
the composition of the microenvironment and calculates the
tumor purity based on the gene expression data [29].

2.5. Role of HOXC6 in Immune-Checkpoint Inhibitor
Treatment. First, the correlation of HOXC6 with two types
of immune-checkpoint inhibitor treatment response-related
biomarkers, immune-checkpoint genes, and tumor muta-
tion burden (TMB) was evaluated. Gene expression and
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somatic mutation data were obtained from TCGA-LIHC,
and TMB was calculated based on the somatic mutation data
collected.

,en, the Tumor Immune Dysfunction and Exclusion
(TIDE) algorithm (http://tide.dfci.harvard.edu/login/) [30]
was applied to predict the response to anti-PD-1 and anti-
CTLA4 treatment.

2.6. Anticancer Drug Sensitivity Prediction. We analyzed the
relationship between HOX genes expression and anticancer
drugs sensitivity by estimating the half-maximal inhibitory
concentration (IC50). ,e IC50 of sorafenib in each HCC
sample was predicted using the pRRophetic package [31] in
R.

,e NCI-60 human cancer cell line panel [32] was
previously used by cancer investigators and the NCI De-
velopmental ,erapeutics Program (DTP) to discover novel
anticancer drugs [33]. We obtained data of the RNA-seq/
composite expression and the compound activity (average z
score) of DTP NCI-60 from CellMiner v2.6 (https://
discover.nci.nih.gov/cellminer/home.do) [34].

2.7. Statistical Analysis. Statistical analyses were conducted
in R software (version 4.0.2). Wilcoxon rank-sum test was
used to analyze the differences between the two subgroups.

,en, the Kaplan–Meier method and the log-rank test were
utilized to analyze the differences in the survival between the
groups of patients. ,e best cut-off values of the groups were
determined using the survminer package in R. Moreover,
independent prognostic analysis was conducted via Cox
proportional hazards models. We factored gender, age,
tumor stage, and tumor differentiation into confounding
factors and excluded patients with multiple sets of expres-
sion data, missing expression data, or without the afore-
mentioned clinical information. Pearson correlation test was
employed to measure the correlation between variables.
Receiver operating characteristic curves were established to
evaluate the diagnostic values of HOXs, and the pROC
package was used to quantify the area under the curve
(AUC). In all statistical analyses, a P value <0.05 was
considered statistically significant.

3. Results

3.1. Increased HOX Family Genes Expression in HCC. We
first compared the transcriptional expression of HOXs in
374 HCC and 50 noncancerous samples from TCGA-LIHC
(Figure 2(a)). ,e result showed that the mRNA levels of
HOXs were generally higher in HCC. ,en, we analyzed the
differences between 243 HCC and 202 noncancerous
samples from the LIRI-JP cohort. Similar to our previous
result, the mRNA levels of the HOX family members in HCC

Methylation data Gene expression
data

Clinical and
survival data

Genetic alternation
data

Differentially expressed
HOX genesROC curve

Drug sensitivity Univariate Cox
regression

Kaplan-Meier
curve

Multivariate Cox
regression

Tumor micro-
environment

GO, KEGG
analysis

Diagnosis

Mechanism

�erapy Prognosis

Figure 1: Flowchart of the present research.

Journal of Oncology 3

http://tide.dfci.harvard.edu/login/
https://discover.nci.nih.gov/cellminer/home.do
https://discover.nci.nih.gov/cellminer/home.do


were generally higher than those in the noncancerous
samples, except for HOXB4. A total number of 25 members
(Figure 2(b)); HOXA3, 6-7, 9-11, 13, HOXB8-9, 13,
HOXC5-6, 8-11, 13, HOXD1, 3-4, 8-11, and D13 were
significantly upregulated (|log2 FC|> 1.5, P< 0.05) in the
two cohorts (Figures 2(c) and 2(d)) (Table S1).

Altogether, the expression of HOX genes was generally
increased in the HCC tissues, suggesting that they may play
important roles in HCC.

3.2. Methylation Patterns of HOX Genes in HCC. We first
analyzed the correlation between the methylation levels of
different CpG sites in the promoters of the HOX genes and
the corresponding expression of the HOX genes based on
the data of the TCGA-LIHC cohort (Figure S2). A total
number of 5 CpG sites showed a significant negative cor-
relation (r<−0.3) between the methylation level and the
corresponding gene expression (Figure 3(a)). ,en, we
analyzed the differences in their methylation levels between
HCC samples and noncancerous samples (Figure 3(b)). We
found that the methylation levels of cg20712820 in HCC
were significantly lower than those in the noncancerous
samples. Conversely, the methylation levels of cg06397837
and cg07083464 in HCC were significantly higher than those
in the adjacent noncancerous samples. ,ese data suggested
that these three CpG sites may be closely associated with
HCC.

3.3. Diagnostic Value of HOXs in HCC. First, the diagnostic
value of HOX genes expression was assessed by performing
ROC curve analysis based on the expression data collected
from the TCGA and ICGC databases (Figures 4(a) and 4(b)).
We established that a total number of five HOX members
(HOXA10, 13, D1, 3, and D4) had superior predictive power
(AUC >0.8) in both cohorts. Among them, the AUC of
HOXA13 was higher than 0.9 (0.91 and 0.92, respectively).

Next, we also assessed the diagnostic value of three
differentially methylated CpG sites (Figure 4(c)). We de-
tected a correlation between the methylation of cg20712820
and cg07083464 andHCC incidence (AUCs of 0.74 and 0.79,
correspondingly).

,e above data suggested that the expression of
HOXA10, 13, D1, 3, and D4 could serve as potential markers
for the diagnosis of HCC, especially HOXA13. Besides, the
methylation levels of cg20712820_HOXA3 and
cg07083464_HOXA13 also had moderate value for the
identification of HCC.

3.4. Prognostic Value of HOXs in HCC. ,e clinical char-
acteristics of all HCC patients included in our survival
analysis are displayed in Table 1. First, the prognostic
value of the HOX family members was evaluated using
the K–M method. As can be observed in Figure 5(a), the
high expression of HOXA3, 6, 9-11, 13, B8-9, 13, C6, 8-11,
13, D3, 8-10, and D13 was related to poor OS. Moreover,
the results of the Cox regression model revealed that the
elevated expression of HOXA6, 9, B8, C6, 8, D9-10, and

D13 was significantly associated with unfavorable OS
(Figure 5(b)). Five of them (HOXA6, C6, D9-10, and
D13) were independent risk factors (Figure 5(c)). ,ese
results indicated that HOXA6, C6, D9-10, and D13 could
serve as markers for predicting the prognosis of HCC
patients.

3.5. Genetic Alterations of HOXs inHCCPatients. To further
explore the role of HOX family in HCC patients, we
assessed the genetic alterations of the HOX members. We
first analyzed the mutation, CNA, and the expression data
of TCGA-LIHC using the cBioPortal. ,e genetic alter-
ations percentages of HOXs in HCC varied from 1.9% to
8% (Figure 6(a)). We next obtained the details of CNV and
the mutations of HOXs from the GSCA database. We
established that heterozygous amplification was the main
type of CNV (Figure 6(b)), and missense mutations con-
stituted the largest proportion of the mutations
(Figure 6(c)). Moreover, the results of the K–M analysis
obtained by using the cBioPortal showed poor OS and DFS
in cases with mutations and CNV of HOX genes
(Figures 6(d) and 6(e)).

In conclusion, the genetic alterations of HOXs in HCC
patients were also associated with poor prognosis.

3.6. Functional Enrichment Analysis of Prognosis-Related
HOXs. To further explore the mechanism by which the five
HOXs influence HCC patients’ prognosis, we first obtained
the genes that were significantly correlated (|r| ≥ 0.4) with
these HOXs in TCGA-LIHC from the UALCAN database.
,en, STRING analysis was conducted to construct a PPI
network, and Cytoscape was applied to screen the hub
genes. As can be seen in Figure 7(a), there were 145 genes
in the core network. ,e gene (CDK1) with the darkest red
color and the largest node size had the highest degree in
the network. ,en, GO and KEGG enrichment analysis
were performed to understand the potential function of
the hub genes (Table S2, S3). ,e top 30 enriched cate-
gories of each GO group are depicted in Figures 7(b)–7(d).
,e KEGG pathways are illustrated in Figure 7(e). ,ese
results revealed that the hub genes were involved mainly in
cell proliferation, cell cycle regulation, and immune
response.

3.7. Relationship between the Five Prognosis-Related HOX
Genes and the TumorMicroenvironment. To further explore
the roles of the five HOXs in tumor microenvironment
(TME), we first used the GSCA database to analyze the
correlation between the expression levels of these HOXs
and the estimated abundance of 24 immune cell types
(Figure 8(a)). We found that the five HOXs were associated
with a number of immune cell types. ,en we used the
ssGSEA algorithm to analyze the effect of the five HOX
genes on immune functions (Figure 8(b)). All HCC sam-
ples were divided into two groups based on the median
HOXs expression level. ,e HCC samples with high
HOXA6 expression had lower scores of their cytolytic
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activity. In contrast, the samples with high HOXC6 ex-
pression showed higher scores in multiple immune func-
tions, such as check point, but obtained lower scores in the
type II IFN response. Meanwhile, the scores of CCR, APC
costimulation, and parainflammation of the groups with
high expression of HOXD9 and HOXD10 were lower than
those in the groups with low expression of these two HOXs.
,e samples with high expression of HOXD10 and

HOXD13 had lower scores in both IFN response types. In
addition, the higher expression of HOXD9 was also as-
sociated with a lower score of type II IFN response but a
higher score of MHC class I.

Further, using the ESTIMATE algorithm, we also ex-
plored the association of the five HOXs with stromal cells,
another important component of TME. As visible in
Figure 8(c), the stromal scores in the tissues with high
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Figure 2: Expression profile of HOXs in HCC. (a) Heatmap of HOX family genes expression in TCGA-LIHC; (b) venn diagram of
differentially expressed HOX genes in two HCC cohorts; (c) expression of 25 DEGs in TCGA-LIHC; (d) Expression of 25 DEGs in LIRI-JP.
(∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001).
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HOXC6 expression were higher than those in the tissues
with low HOXC6 expression. However, the results of
HOXD9 and HOXD10 were opposite to those of HOXC6.

,e further KM analysis showed that the patients with
higher stromal scores had better overall survival
(Figure 8(d)).
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Figure 3: Methylation patterns of HOX genes in TCGA-LIHC. (a) Correlation between the methylation and expression of HOX genes. ,e
methylation levels of 5 CpG sites were negatively correlated with the expression of the corresponding HOX gene (r<−0.3); (b) differences in
the methylation levels of 5 CpG sites in HCC and noncancerous tissues. ,ree of the five CpG sites were differentially methylated positions
between HCC and noncancerous tissues.
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Taken together, the role of the five prognosis-related
HOXs in HCC may be achieved in part by influencing the
compositions and functions of TME.

3.8. Relationship between HOXC6 and Immune-Checkpoint
Inhibitor 8erapy. To elucidate the relationship between
HOXC6 and immune checkpoint, we first investigated the
expression differences of 46 immune-checkpoint genes

between tissues with low and high HOXC6 expression. As
can be seen in Figure 9(a), the median expression level of
most immune-checkpoint genes was higher in the tissues
with high HOXC6 expression than in those with low. ,en,
we measured the correlation between the expression of
HOXC6 and immune checkpoints (Figure 9(b)). Our results
evidenced that the expression of 25 genes was correlated
with HOXC6 expression. Among them, PDCD1LG2
(r� 0.32), CD70 (r� 0.52), TNFRSF8 (r� 0.37), and CD276
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Figure 4: Diagnostic value of HOXs in HCC. ROC curves of HOX genes expression in TCGA-LIHC (a) and LIRI-JP (b); ROC curves of the
methylation levels of three differentially methylated CpG sites in TCGA-LIHC (c). AUC: area under the curve.
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(r� 0.35) were closely correlated with the expression level of
HOXC6. It should be noted that the expression of PD-1
(PDCD1) had little correlation (r� 0.13) with the expression
of HOXC6, and CTLA4 expression was independent of
HOXC6 expression. Meanwhile, the Pearson correlation
coefficient between PD-L1 (CD274) expression and HOXC6
expression was 0.23.

,en, TIDE algorithm was employed to predict the
clinical response to anti-PD1 and anti-CTLA4 treatments.
,e TIDE score in HCC samples with high HOXC6 ex-
pression was higher than that in tissues with low HOXC6
expression (Figure 9(c)). However, HOXC6 expression was
independent of TMB.

In conclusion, the high expression of HOXC6 in HCC
might suggest poor outcome of anti-PD1 and anti-CTLA4
therapy. However, some other checkpoint genes, such as
CD70, were associated with HOXC6, suggesting that
HOXC6 might be a potential marker for therapy targeting
these immune checkpoints in HCC.

3.9. Correlation between HOXs and Anticancer Drug
Sensitivity. In the past decade, sorafenib has been the only
systemic agent with proven clinical efficacy for patients with
advanced HCC [35]. We first compared the estimated IC50
of sorafenib in tissues with low and high expression of HOX
genes. As shown in Figure 10(a), tissues with high HOXA6,
B9, C5, 8, 10, and D1 expression were less sensitive to
sorafenib.

,en, the NCI-60 cancerous cell lines were used to
measure the correlation between HOXs expression and the
sensitivity to 218 FDA approved anticancer drugs. ,e
expression of HOXC9, D10, and D11 were positively
correlated with the IC50 of lenvatinib (Figure 10(b)),
which was the first new drug approved for advanced stage
HCC in the first-line setting in over 10 years [36].
Meanwhile, there were also significant correlations be-
tween the IC50 values of many drugs and the expression of
HOX genes (Table S4).

Taken together, the expression of HOXs may be asso-
ciated with the efficacy of many anticancer drugs, which
might be another factor affecting the prognosis of cancer
patients.

4. Discussion

,e HOX genes were discovered in the human body at the
end of the 20th century, and have attracted widespread at-
tention since then [8, 9]. Apart from their well-known roles
in embryogenesis, for over 20 years, the links between HOX
genes and human cancer have been comprehensively in-
vestigated. Accumulating evidence has shown the role of
HOXs in many cancers [12–15]. However, the significance of
most HOX members in HCC has remained unclear. To
address this scientific gap, we conducted the present study,
which is the first to comprehensively analyze the role of
HOXs in HCC using multiple bioinformatics algorithms.
We found that the increased mRNA levels of HOX genes in
HCC were associated with poor prognosis. Among them,
HOXA6, C6, D9, D10, and D13 were identified as inde-
pendent risk factors. Functional analysis suggested that cell
proliferation, cell cycle, and microenvironment regulation
might be the main mechanisms of the involvement of these
five HOXs in HCC development. Meanwhile, multiple HOX
members (such as A13) showed excellent diagnostic value in
HCC.

A previous study showed that the transcription of HOXs
was silent in adult noncancerous liver tissues, whereas the
expression levels of most HOXs in HCCwere increased [37].
Moreover, in almost all HCC samples analyzed in another
study, the mRNA content of HOXA13 in HCC tissues was
over 100 times higher than that in normal liver tissues,
strongly suggesting that HOXA13 was closely related to
HCC [38]. In our study, the HOXA13 expression fold
change was 191 in TCGA cohort and 161 in ICGC cohort
after outliers’ removal. Our results on the expression of HOX
genes in HCCwere consistent with those of previous studies.
Abnormal methylation of HOX genes was also evidenced to
be characteristic for some human cancers [16]. However, the
published reports on the significance of methylation of
HOXs in HCC are scarce. ,e hypothesis that HOXD3 was
upregulated in HCC by methylation modification was
proposed [39]. Here, we identified five CpG sites that might
regulate the expression of corresponding HOX genes.
Among them, the hypomethylation of cg20712820_HOXA3
and the hypermethylation of cg07083464_HOXA13 were
closely related to HCC. ,erefore, further research of these
two CpG sites may be conducive to better understanding the
role of HOXs in HCC.

Several studies have elucidated the clinical significance of
these five HOXs in some cancers. HOXA6 was found to be
associated with the proliferation, apoptosis, migration and
invasion of CRC [40]. In ccRCC, HOXA6 inhibited cell
proliferation and induced cell apoptosis by the suppression
of the PI3K/AKTsignaling pathway [41]. Our present results
also suggested that HOXA6 may affect the proliferation and
apoptosis of HCC. In an earlier investigation, the increased
HOXC6 expression promoted the proliferation of HCC and
reduced the sensitivity to 5-FU [42]. Meanwhile, HOXC6
promoted the invasion of HCC cells by driving EMT [43]. In
addition, HOXD9 enhanced EMT and cell metastasis in
HCC by ZEB1 regulation [44]. ,e HOXD10/RHOC/
UPAR/MMPs pathway is related to the migration and

Table 1: Clinical characteristics of the HCC patients.

Characteristic Type N Proportion (%)

Age ≤65 232 62.70
>65 138 37.30

Gender Male 249 67.30
Female 121 32.70

Histologic grade
G1-2 232 62.70
G3-4 133 35.95

Unknown 5 1.35

Pathologic stage
Stage I-II 256 69.19

Stage III-IV 90 24.32
Unknown 24 6.49

Vital status Dead 130 35.14
Alive 240 64.86

8 Journal of Oncology



p=0.033
0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10

Time (years)

O
ve

ra
ll 

su
rv

iv
al

HOXA3
high
low

HOXA6
high
low

p<0.001
0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10

Time (years)

O
ve

ra
ll 

su
rv

iv
al

HOXA9
high
low

p=0.007
0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10

Time (years)

O
ve

ra
ll 

su
rv

iv
al

HOXA10
high
low

p=0.025
0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10

Time (years)

O
ve

ra
ll 

su
rv

iv
al

HOXA11
high
low

p=0.001
0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10

Time (years)

O
ve

ra
ll 

su
rv

iv
al

HOXA13
high
low

p=0.043
0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10

Time (years)

O
ve

ra
ll 

su
rv

iv
al

HOXB8
high
low

p=0.007
0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10

Time (years)

O
ve

ra
ll 

su
rv

iv
al

HOXB9
high
low

p=0.033
0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10

Time (years)

O
ve

ra
ll 

su
rv

iv
al

HOXC6
high
low

p=0.005
0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10

Time (years)

O
ve

ra
ll 

su
rv

iv
al

HOXB13
high
low

p=0.012
0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10

Time (years)

O
ve

ra
ll 

su
rv

iv
al

HOXC8
high
low

p<0.001
0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10

Time (years)

O
ve

ra
ll 

su
rv

iv
al

HOXC9
high
low

p=0.007
0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10

Time (years)

O
ve

ra
ll 

su
rv

iv
al

HOXC10
high
low

p=0.016
0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10

Time (years)

O
ve

ra
ll 

su
rv

iv
al

HOXC11
high
low

p=0.023
0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10

Time (years)

O
ve

ra
ll 

su
rv

iv
al

HOXC13
high
low

p=0.018
0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10

Time (years)

O
ve

ra
ll 

su
rv

iv
al

HOXD3
high
low

p=0.019
0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10

Time (years)

O
ve

ra
ll 

su
rv

iv
al

HOXD8
high
low

p=0.005
0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10

Time (years)

O
ve

ra
ll 

su
rv

iv
al

HOXD9
high
low

p<0.001
0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10

Time (years)

O
ve

ra
ll 

su
rv

iv
al

HOXD10
high
low

p<0.001
0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10

Time (years)

O
ve

ra
ll 

su
rv

iv
al

HOXD13
high
low

p<0.001
0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10

Time (years)

O
ve

ra
ll 

su
rv

iv
al

(a)

HOXA6
HOXA9
HOXB8
HOXC6
HOXC8
HOXD9
HOXD10
HOXD13
Age
Gender
Grade
Stage

0.041
0.015
0.043
0.004
0.002
0.012
0.011

<0.001
0.174
0.188
0.490

<0.001

pvalue

2.139(1.031−4.437)
1.968(1.138−3.401)
1.192(1.006−1.412)
1.439(1.126−1.840)
1.600(1.196−2.140)
1.117(1.024−1.219)
1.232(1.050−1.445)
1.228(1.102−1.368)
1.010(0.996−1.025)
0.776(0.531−1.132)
1.141(0.784−1.661)
2.500(1.721−3.632)

Hazard ratio

Hazard ratio

0 1 2 3 4

(b)

Figure 5: Continued.
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Figure 5: Prognostic value of HOXs in HCC. (a) K–M analysis for OS of patients stratified by HOX genes expression; (b) univariate Cox
analysis; (c) multivariate Cox analysis of HOX family genes and clinical factors.

HOXA1
HOXA2
HOXA3
HOXA4
HOXA5
HOXA6
HOXA7
HOXA9
HOXA10
HOXA11
HOXA13
HOXB1
HOXB2
HOXB3
HOXB4
HOXB5
HOXB6
HOXB7
HOXB8
HOXB9
HOXB13
HOXC4
HOXC5
HOXC6
HOXC8
HOXC9
HOXC10
HOXC11
HOXC12
HOXC13
HOXD1
HOXD3
HOXD4
HOXD8
HOXD9
HOXD10
HOXD11
HOXD12
HOXD13

4%
4%
7%
6%
8%
5%
5%
3%
8%
5%
6%
3%
4%
6%
5%
6%
7%
7%

2.8%
3%
6%
6%

2.8%
5%
4%
8%
6%
3%

1.9%
3%
4%
8%
7%
7%
7%
6%
4%
5%

2.8%

Genetic Alteration

Missense Mutation (unknown significance)
Truncating Mutation (unknown significance)

Amplification
Deep Deletion

mRNA High

No alterations

(a)

Hete. Amp.
Homo. Amp.
Hete. Del.
Homo. Del.
None

LI
H

C

HOXC10
HOXC11
HOXC12
HOXC13
HOXC4
HOXC5
HOXC6
HOXC8
HOXC9
HOXD1
HOXD10
HOXD11
HOXD12
HOXD13
HOXD3
HOXD4
HOXD8
HOXD9
HOXB13
HOXB7
HOXB1
HOXB2
HOXB3
HOXB4
HOXB5
HOXB6
HOXB8
HOXB9
HOXA1
HOXA10
HOXA11
HOXA13
HOXA2
HOXA3
HOXA4
HOXA5
HOXA6
HOXA7
HOXA9

CNV percentage

(b)

DEL

SNP

0 10 20 30 40 50

Variant Type

C>A
C>G
C>T
T>C
T>A
T>G

0.
00

0.
25

0.
50

0.
75

1.
00

SNV Class

12
8

11
7
9

2

Frame_Shift_Del

Nonsense_Mutation

Missense_Mutation

0 10 20 30 40 50

Variant Classification

0

1

2

4

Variants per sample
Median: 1

0

1

Variant Classification 
summary

HOXA13
HOXA5
HOXB4
HOXB5
HOXA2
HOXA3
HOXA6
HOXB2
HOXD4
HOXA4

0 1 3 5

Top 10
mutated genes

5%
5%
5%
5%

7%
7%
7%
7%
7%
5%

(c)

Figure 6: Continued.
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Figure 6: Genetic alterations of HOXs in TCGA-LIHC. (a) ,e genetic alteration rate of HOXs; (b) the constitute of CNV of HOXs; (c) the
details of SNV of HOXs; (d, e) Differences in OS and DFS between patients with CNV or SNV and patients without CNV or SNV.
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invasion of HCC [45]. ,e aforementioned in vitro exper-
iments have evidenced that these HOXs are involved in the
progression of HCC. We also confirmed the effect of HOXs
on the clinical outcomes of HCC patients by analysis of
large-sample follow-up data. Notably, the drug sensitivity
data of the present study suggested that HOX genes may
have guiding significance in the treatment of HCC and even
pan-cancer.

,e disturbance of various components of TME also
contributes to the malignant features of HCC [46]. As one of
the main components of TME, the abundance of immune
cells, especially T cells, is closely associated with tumor
progression [47]. Tregs are the major immunosuppressive
and anti-inflammatory cells that can inhibit the T-cell re-
sponse through IL-17 and IL-6 activities, leading to T-cell
exhaustion and immune escape [48, 49]. NK cells were found
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Figure 10: Relationship between the HOXs expression and anticancer drug sensitivity. (a) Differences in the estimated IC50 of sorafenib
between HCC tissues with different expression levels of HOXs; (b) correlation between the HOXs expression and IC50 of lenvatinib in NCI-
60 cancerous cell lines.
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to be the main antitumor cells in the liver [50]. NKTcells can
directly kill tumor cells by recognizing the CD1d antigen or
by activating NK cells, and the number of NKT cells is
positively correlated with OS and RFS of HCC patients
[51, 52]. Here, we also focused our attention on some crucial
immune response processes. Cytolytic activity (CYT) reflects
the ability of cytotoxic Tcells and NK cells to lyse tumor cells
[53]. A recent study found that higher CYT values in HCC
indicate greater immunogenicity and more favorable TME,
which leads to better prognosis [54]. ,is might be a
mechanism by which HOXA6 expression is associated with
poor prognosis. ,e absence of the costimulatory molecules
renders tumors invisible to the immune system, whereas
inhibitory molecules protect tumors from effective T cells
[55]. Chemokines are the bridge between inflammation and
tumor, and control several aspects of tumor biology, such as
immune infiltration, angiogenesis, proliferation and mi-
gration [56]. IFN response plays crucial roles in promoting
host antitumor immunity and is considered to be pivotal
components in the cancer-elimination phase of the cancer
immunosurveillance [57]. ,e expression of HLA is related
to tumor immune escape, and it is considered to act as a
tumor suppressor [58]. It can be inferred that these HOX
genes may be regulators of TME that influence the patient’s
clinical outcome by their effects on antitumor immunity.
Nevertheless, the mechanisms through which they shape the
TME remains to be further explored.

Certain limitations of our study are to be acknowledged.
First, we analyzed the expression of the HOX family genes
only at the mRNA level. ,us, it is necessary to further
investigate the role of HOXs at the protein level. Second, our
results on the molecular mechanism of HOXs need to be
verified by further experiments. We will focus on addressing
these issues in future studies.

5. Conclusions

In conclusion, HOX genes expression was generally upregu-
lated and correlated with poor prognosis in HCC. HOXA6, C6,
D9-10, and D13 are independent risk factors that might affect
patients’ prognosis through multiple pathways. ,e tran-
scription and methylation characteristics of HOXs also had
excellent diagnostic efficacy. ,erefore, the HOX family genes
might play important roles in the occurrence and development
of HCC and thus could be exploited as effective biomarkers for
HCC diagnosis and prognosis.
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Background. Ai-Tong-An-Gao-Ji (ATAGJ) has been extensively applied for acute bone cancer pain treatment with a satisfactory
efficacy, while the specific mechanisms remain unclear and require further investigation. Methods. Overlapped genes of ATAGJ
and CIBP obtained from SwissTargetPrediction website and GeneCards database were presented as a Venn diagram. A network
diagram of drug-component-target was further established using the Cytoscape 3.6.0 software. )e effect of fisetin onWalker 256
cell proliferation was observed by clone formation assay and EDU assay, and the interaction between fisetin and AKTwas revealed
using the immunoprecipitation assay. Effects of fisetin on AKT/HIF-1α signaling pathway in Walker 256 cells were ultimately
detected using Western blot and qPCR assays. Results. )e key component fisetin and core target gene AKTwere sorted out using
the drug-component-target network with a binding energy between fisetin and AKT less than −5 kcal/mol. Clone formation assay
and EDU assay showed that fisetin substantially suppressed the proliferation of Walker 256 cells. Immunoprecipitation assay
results revealed that the combination of fisetin and AKTdecreased the level of AKT/HIF-1α signaling pathway ofWalker 256 cells.
Conclusions.)e fisetin of ATAGJ canmarkedly suppressWalker 256 cells, and the mechanismsmay be intimately associated with
the combination of fisetin and AKT. Furthermore, fisetin decreased the level of p-AKTand inhibited the expression of the AKT/
HIF-1α signaling pathway.

1. Introduction

As the treatment techniques for cancers advance, the five-
year survival rate of cancer patients has been substantially
improved. However, cancer-induced bone pain (CIBP) is
ongoing and bothers the patients seriously, which greatly
reduces their quality of life [1, 2]. Numerous studies have
revealed that 55% of cancer patients and 66% of patients
with advanced, metastatic, or terminal disease fall victim to
CIBP [3].

CIBP represents the most common form of pain in
cancer patients. About two-thirds of advanced cancer pa-
tients have a propensity to bone metastasis, which is
reckoned to be a frequently encountered cause of cancer
pain [4–6]. Currently, most strategies for CIBP treatment
focuses on opioids, radiation therapy, and chemotherapy
[7]. Unfortunately, the administration of opioids causes
serious side effects, which often attenuates the therapeutic

effect and the quality of life for cancer patients. A bunch of
treatment methods based on traditional Chinese medicine
including internal administration of decoction, external
application, and acupuncture has achieved satisfactory
clinical effects for cancer pain treatment. )ese therapeutic
methods have the advantages of quick onset, safety, nontoxic
side effects, and easy acceptance by patients [8, 9].

ATAGJ acts as effective preparation for CIBP manage-
ment, and the main components of ATAGJ consist of
borneol, spina gleditsiae, pillworm, faeces trogopterori,
resina draconis, and semen strychni. )e compound fisetin
was contained in the spina gleditsiae, and it has been proved
to play a role in antitumor by inhibiting tumor cell pro-
liferation, inducing apoptosis, and mediating tumor cell
migration [10–13].

Hypoxia-inducible factor-1α (HIF-1α) is a transcription
factor at an extensive presence in mammals and humans
under low oxygen levels. It responds to hypoxic tissue cells
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by elevating the expression of hypoxia-inducible genes,
which represents the key link of adaptation to hypoxia. HIF-
1α protein is highly expressed in most tumor tissues and the
corresponding metastases. AKT pathway is a regulatory
pathway of HIF-1α. AKT mainly regulates the changes of
HIF-1α proteins [14–16].

We predicted active ingredients and related targets of
cancer pain using the ointment in a network pharmaco-
logical approach. )e targets of active ingredients and the
target genes of CIBP were overlapped to identify core targets;
GO analysis and KEGG pathway enrichment were subse-
quently conducted. )e main components and core targets
were selected for molecular docking. Additionally, whether
fisetin acted on the proliferation and migration of Walker
256 cells were investigated by cloning, EDU, and transwell
experiments, and the effects of fisetin on the AKT/HIF-1α
signaling pathway Walker 256 cells were investigated by
Western blot and qPCR assays.

2. Methods

2.1. Experimental Herbal Formulation. ATAGJ consists of
borneol (BP), spina gleditsiae (ZJC), pillworm (SF), faeces
trogopterori (WLZ), resina draconis (XJ), and semen
strychni (MQZ). )e ATAGJ administration dosage in-
cluded low (10 g/d), medium (20 g/d), and high (30 g/d)
doses. Female SD rats were employed as the laboratory
animals and they were randomly classified into 5 groups: a
sham group, a model group, a low dose ATAGJ group, a
medium dose ATAGJ group, and a high dose ATAGJ group,
with 10 rats in each group. )e modeling procedures were
described as follows: Walker 256 breast cancer cell lines were
selected as the model cells. )e rats were anesthetized with
0.3% sodium pentobarbital (1ml/100 g). )e white patellar
ligament was exposed on the skin.)e upper part of the tibia
inferior to the white patellar ligament of the right hind limb
was perforated. After the penetration into the bone marrow
cavity, 4 μLWalker 256 cell suspension at a concentration of
4×104 cells/mL was injected into the model group. )e rats
were administered with low (10 g/day), medium (20 g/day),
and high doses (30 g/day) of ATAGJ for 10 h and lasted for
14 d.

2.2. Cell Culture and Treatment. )e Walker 256 breast
cancer cell line was selected using 89% high glucose medium
containing various amino acids and glucose (H-DMEM,
High glucose Dulbecco’s Modified Eagle Medium) + 10%
fetal bovine serum (FBS) + 1% penicillin/streptomycin (P/S)
[17].

Culture conditions were set at 37°C, 95% air, and 5%
carbon dioxide. )ese cells were treated with fisetin (10 μM,
20 μM, and 30 μM) and Cisplatin (5 μM) in the positive
control group for 24 h.

2.3. Network Pharmacology Analysis. Based on the principle
of network pharmacology, the main components and targets
of ATAGJ were predicted. )e active ingredients of ATAGJ
(BP, ZJC, SF, WLZ, XJ, and MQZ) were detected from the

TCMSP website (https://tcmspw.com/tcmsp.php). Related
targets were predicted and exported from the Swis-
sTargetPrediction website. Human CIBP related genes were
collected from the gene disease database, a PPI protein
interaction network diagram was constructed using String,
and the diagram network of drug-component-target was
established using the Cytoscape 3.6.0 software. GO analysis
and KEGG pathway enrichment were performed on 92
targets by Cytoscape ClueGO, and enrichment analysis
results were visualized ultimately.

2.4. Molecular Docking. )e 3D structure of fisetin was ini-
tially obtained from the TMMSP website. Meanwhile, the 3D
structures of the key targets AKT and VEGFA were collected
from the Protein Data Bank (https://www.rcsb.org/pdb). )e
AutoDock 4.2.6 software was used to hydrogenate the receptor
protein and to calculate the charge treatment. )e molecular
docking between the receptor protein and the ligand small
molecule was subsequently carried out by AutoDock Vina
1.1.2. )e confirmation was obtained by docking and the
binding energy was scored. )e best binding energy was ob-
tained and analyzed. PyMOL was used to visualize the in-
teraction between the receptor protein and the ligand small
molecule.

2.5. Paw Withdrawal 0reshold (PWT). )e PWT of rats in
each group was assessed every 7 days. During the process,
the rats were put into a plexiglass cage equipped with a metal
screen at the bottom for 5min. )e central skin of the hind
paw at the molding side of the rats was vertically stimulated
with Von Frey cilia mechanical stimulation probe so that the
cilia were bent to the point where the rats had a paw
constriction reflex. If there was no paw constriction reflex, a
more intense cilia mechanical stimulation probe was
replaced. Starting from 0.6 g, the stimulation of each in-
tensity was 5 times and the mechanical stimulation interval
was 15 s. )e minimum ciliate stimulation probe strength
was recorded as PWT with an upper limit of 15.0 g when 3
paw constriction reflexes occurred in the 5 tests [18].

2.6. Transwell Assay. )e Transwell assay was performed to
evaluate the capability of cell invasion. Cells of 6×104 were
initially followed by a cycle of washing with PBS and
resuspended in 200ml of serum-free medium. )e upper
Transwell chamber was precoated with Matrigel before the
cells were supplemented. Simultaneously, the lower chamber
was supplemented with a medium containing 10% FBS for
incubation in 5% CO2 at 37°C for 24 h, followed by the
addition of 4% paraformaldehyde (PFA) for fixation 15min
and stained for 3min using crystal violet. Quantification was
ultimately carried out using Axio Imager A2.

2.7. Clone Formation Assay. Cells at 1× 103 were planted in
each well of 6-well plates and cultured at 37°C 5% CO2 for
14 d. )e medium was refreshed every 3 days. Following two
cycles of washing of the cell colonies using PBS, the cells
were fixed with 4% paraformaldehyde for 30min before
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being stained with 0.1% crystal violet for 20min. Cell clone
was triplicated three times.

2.8. EdUAssay. To perform the EdU assay, Walker 256 cells
were inoculated into a 24-well plate. Following the in-
structions of the EdU kit, 2×EdU reaction solution was
prepared and added to a 24-well plate. Following incubation
in the reaction solution for 2 h in the dark, the cells were
fixed at room temperature for 20min with 4% parafor-
maldehyde and added with 500 μL 0.3% Triton X-100. PBS
was subsequently added for rinsing 3 times when the re-
action lasted 10min at room temperature. AZIDE 555-Click
reaction solution was subsequently prepared, 200 μL of the
solution was added to each well, and followed by incubation
in the dark at room temperature for 30min. )e reaction
solution was removed after three cycles of washing with PBS,
and the nucleus was restained by Hoechst and then followed
by the immunofluorescence technique.

2.9. Coimmunoprecipitation Assay. )e kit used for biotin
labeling fisetin was EZ-Link TM Biotin-LC-Hydrazide
()ermo Scientific). All procedures were carried out
according to the operating instructions. )e biotin-labeled
fisetin was inoculated into Walker 256 cell suspension, and
the cells were collected by centrifugation after 24 h of cul-
ture. Precooled coimmunoprecipitation assay A buffer was
added. Cells were collected and centrifuged. )e beads were
washed twice with PBS, protein A agarose beads were added
and centrifuged. Rabbit antibody was supplemented, and the
antigen-antibody mixture was slowly shaken at 4°C over-
night. Protein A agarose beads were subsequently added and
shaken slowly at 4°C overnight. )e agarose bead-antigen
antibody complex was ultimately centrifuged, and electro-
phoresis was performed.

2.10. Western Blot Assay. Cells were collected and cleaved
with immunoprecipitation assay lysate. After centrifugation
at 13,000 rpm 4°C for 20min, the supernatant was collected,
and the total protein was separated utilizing 10% SDS-
PAGE. )en the protein was transferred to a PVDF
membrane, sealed with skimmed milk at room temperature
for 1 h, and TBST was used to wash 3 times. Primary an-
tibody was added for incubation at 4°C overnight, and
second antibody was supplemented for incubation on the
next day for 1 h. Finally, ECL color development was per-
formed. )e primary antibodies were listed below: anti-
AKT, anti-p-AKT, anti-HIF-1α, anti-VEGF, and β-actin
antibodies were from Cell Signaling Technology (Shanghai,
China).

2.11. qPCR Assay. Total RNA was extracted using a Trizol
reagent. Retranscription of the first cDNA strand was
conducted using a Prime Scr immunoprecipitation assay kit
[19]. When determining the relative expression level of
genes, the reaction system and procedures of qPCR followed
the instructions of the TB Green Premix TaqII. Relative

expression levels of genes were measured and then calcu-
lated using 2−∆∆CT algorithm methods.

2.12. StatisticalAnalysis. All data from the experiments were
expressed as the mean± standard deviation (SD). Student’s
t-tests were adopted for pairwise comparison and one-way
analysis of variance (ANOVA) was for multiple group
comparison. Statistical analysis was conducted using
GraphPad Prism 7.0 software (LaJolla, CA, USA) and the
differences were significant at P values < 0.05.

3. Results

3.1. GO and KEGG Analysis of CIBP Treated by ATAGJ.
ATAGJ has been proved to be effective for CIBP through
long-term clinical trials in this group. ATAGJ is composed of
BP, ZJC, SF, WLZ, XJ, andMQZ. To investigate the effects of
ATAGJ on CIBP, we first identified the active components
and related targets of ATAGJ. )ere were 332 targets in
ATAGJ, 198 targets in CIBP, and 28 overlapped targets
(Figures 1(a) and 1(b)). To elucidate the function of ATAGJ
targets and the role of potential targets in the signaling
pathways, we analyzed the 28 targets utilizing GO and
KEGG analysis and visualized the results of enrichment
analysis. GO enrichment analysis revealed that the effects on
eux transmembrane transporter activity, ATPase-coupled
xenobiotic transmembrane transporter activity, NADPH as
one donor, and incorporation of one atom of oxygen were
more significant in biological processes. )e effects of
monooxygenase activity, nuclear receptor activity, positive
regulation of phospholipase C activity in molecular function
were more significant (Figures 1(c) and 1(d)). )e results of
the KEGG pathway analysis indicated that the 28 potential
targets of ATAGJ for CIBP were positively related to the
HIF-1α signaling pathway. Next, we verified the effect of
ATAGJ on the HIF-1α signaling pathway (Figure 1(e)).

3.2. Component-Target Network Mapping and Molecular
Docking inATAGJTreatment ofCIBP. A network diagram of
PPI protein interaction (Figure 2(a)) was construed via the
String platform. We found that fisetin was one of the key
components of ATAGJ, and AKT1 and VEGFA were the
core target genes with high degree values (Figure 2(b)). )e
results showed that fisetin, AKT, and VEGFA were less than
−5 kcal/mol. )e amino acid residues ALA-5, ILE-6, and
Glu-49 of AKT and fisetin formed hydrogen bond inter-
action and hydrophobic interaction with amino acid resi-
dues VAL-4, LYS-30, LEU-28, ILE-36, ARG48, and TYR38.
)e amino acid residues VAL-216, LYS-48, SER-50, and
CYS-51 of VEGFA and fisetin formed hydrogen bond in-
teraction and hydrophobic interaction with amino acid
residues ILE-215, MET-197, TYR-165, and PRO-49. Mo-
lecular docking results showed that fisetin, the key com-
ponent of ATAGJ, might affect CIBP by regulating AKT or
VEGFA (Figures 2(c) and 2(d)).)e KEGG pathway analysis
revealed that the HIF-1α signaling pathway might play a
pivotal role in treating CIBP following ATAGJ adminis-
tration, and the AKTpathway was the regulatory pathway of
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HIF-1α. )erefore, we suspected whether ATAGJ and fisetin
could regulate the HIF-1α signaling pathway by combining
AKT.

3.3. ATAGJ Alleviates CIBP in Rats by AKT/HIF-1α Signaling
Pathway. Despite ATAGJ produced satisfactory clinical
efficacy in patients with CIBP, its specificmechanism has not
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Figure 1: GO and KEGG pathway enrichment analysis; (a) Venn diagram of intersection gene between ATAGJ and bone cancer pain target;
(b) gene venn diagram of intersection between borneol (BP), spina gleditsiae (ZJC), pillworm (SF), faeces trogopterori (WLZ), resina
draconis (XJ) and semen strychni (MQZ), and bone cancer pain target. (c, d) Bubble diagrams of biological process and molecular function
via GO analysis.)e Y axis on the left is the name of the GO channel, and the X axis is the P value.)e larger the circle is, the more genes are
compared.)e darker the color is, the more genes are compared. (e) KEGG pathway enrichment analysis circle diagram, the right side of the
outermost layer is the names of the signaling pathways, and the left side is the genes.)e left inner circle represents the significant P values of
the pathways of the corresponding genes.
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been defined yet.We analyzed CIBP in patients with possible
AKT/HIF-1α signaling pathway regulation by ATAGJ in a
network pharmacology approach. To figure out the mo-
lecular mechanism of ATAGJ affecting CIBP treatment, the
SD rats were selected and divided into a sham group, a
model group, a low dose ATAGJ group, a medium dose
ATAGJ group, and a high dose ATAGJ group. At 9 a.m.,
ATAGJ was applied at low (10 g/d), medium (20 g/d), and
high (30 g/d) doses, respectively, for 10 h and lasted for 14 d.
)e PWTof the model group was markedly lower than that
of the sham group at day 7 (P< 0.01), which indicated that
the pain threshold was decreased and the CIBP model was
constructed successfully. No significant difference was
exhibited between both groups (P> 0.05), which indicated
that ATAGJ could substantially increase PWT and improve
the pain threshold of the rats (Figure 3(a)). )e effects of
ATAGJ on the AKT/HIF-1α signaling pathway were sub-
sequently detected using Western blot experiments, which
suggested that the levels of p-AKT, HIF-1α, and VEGF were
elevated markedly in the model group compared with the
sham group (P< 0.01). )e levels of p-AKT, HIF-1α, and
VEGF decreased largely when compared with the model

group (P< 0.01) (Figures 3(b) and 3(c)).)e results of qPCR
suggested that the levels of HIF-1α and VEGF rose sub-
stantially in the model group in contrast to those of the sham
group (P< 0.01). Compared with the model group, the
levels of HIF-1α and VEGF decreased significantly
(P< 0.01) (Figure 3(d)).

3.4. ATAGJ’s Monomer Fisetin Inhibits Tumor Growth.
Fisetin was regarded as the key component (with the most
connections) of ATAGJ through network pharmacology
analysis. It is a compound derived from natural plants and
characterized by a wide range of pharmacological effects.
To investigate whether ATAGJ monomer fisetin affected
the proliferation of Walker 256 cells, we classified Walker
256 cells into a control group, a cisplatin group, a low dose
fisetin group, a medium dose fisetin group, and a high dose
fisetin group. Walker 256 cells were treated with fisetin
(10 μM, 20 μM, and 30 μM) and Cisplatin (5 μM) in the
positive control group for 24 h.

)e results of the colony formation assay showed that the
cisplatin group could apparently inhibit the proliferation of

(a) (b)

fisetin-AKT

(c)

fisetin-VEGFA

(d)

Figure 2: )e key components and core targets of ATAGJ in treating bone cancer pain were analyzed by network pharmacology: (a) interaction
analysis of 28 proteins; (b) drug-component-target gene network diagram. ATAGJ refers to compound MQZ, BP, ZJC, SF, WLZ, and XJ. MQZ
refers to the borneol, spina gleditsiae, pillworm, faeces trogopterori, resina draconis, and semen strychni; (c)molecular docking between fisetin and
AKT; (d) molecular docking between fisetin and VEGFA.
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Walker 256 cells in both medium and high dose fisetin
groups (P< 0.01) (Figures 4(a) and 4(b)). Further detection
on the effects of fisetin was performed to identify the mi-
gration ability of Walker 256 cells by the Transwell exper-
iment, indicating that the cisplatin group could substantially
inhibit the migration of Walker 256 cells in both low and
high dose fisetin groups (P< 0.01) (Figures 4(c) and 4(d)).
Meanwhile, EDU experiment results showed that the cis-
platin group could significantly inhibit the proliferation of
Walker 256 cells in medium and high dose fisetin groups
(P< 0.01) (Figures 4(e) and 4(f )).

3.5.ATAGJMonomerFisetin InhibitsTumorGrowthviaAKT/
HIF-1α Signaling Pathway. )rough network pharmacol-
ogy, we found that AKT1 and VEGFA were the core target

genes with a high degree. KEGG pathway analysis showed
that the HIF-1α signaling pathway might be of great im-
portance in the treatment of CIBP by ATAGJ, and the AKT
pathway was the regulatory pathway of HIF-1α. )e results
of molecular docking indicated that fisetin might regulate
the HIF-1α signaling pathway by binding to AKT. To verify
the relationship between fisetin and AKT1, we labeled fisetin
with biotin to investigate whether this monomer could bind
to AKT1. Co-IP results indicated that fisetin could be
combined with AKT1 (Figure 5(a)). To investigate whether
fisetin inhibited tumor growth through the AKT/HIF-1α
signaling pathway, we found that fisetin could significantly
reduce the levels of p-AKT, HIF-1α, and VEGF (P< 0.01)

(Figure 5(b)). Meanwhile, fisetin was indicated to sub-
stantially decrease the levels of HIF-1α and VEGFR
(P< 0.01) (Figures 5(c) and 5(d)).
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Figure 3: ATAGJ affects AKT/HIF-1α signaling pathway in CIBP rats; (a) mechanical pain threshold of rats in all groups; (b, c) western blot
detection of protein expressions of p-Akt, HIF-1α, and VEGF. β-actin expression was regarded as an internal control. (d) qRT-PCR
detection of mRNA expression levels of the indicated genes. Student’s t-tests (two groups) or one-way ANOVA was employed and followed
by Tukey’s tests (more than two groups) (n≥ 3). ∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001.
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Figure 4: Continued.
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Figure 4: Fisetin affects tumor cell proliferation; (a) colony formation assay of each group of cells; (b) quantification of several colonies in
Figure 4(a); (c) transwell experiment of cells in each group; (d) quantification of several cells in Figure 4(c); (e) EDU experiment of each
group; (f ) quantification of EDU+ cells in Figure 4(e). We divided theWalker 256 cells into a control group, cisplatin group, low dose fisetin
group, medium dose fisetin group, and a high dose fisetin group. Walker 256 cells were treated with fisetin (10 μM, 20 μM, and 30 μM) and
cisplatin (5 μM) in the positive control group for 24 h Student’s t-tests (two groups) or one-way ANOVA was employed and followed by
Tukey’s tests (more than two groups) (n≥ 3). ∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001.

VEGFA

Akt

in
pu

t

bi
ot

in
-fi

se
tin

Ig
G

(a)

P-AKT

HIF-1α

VEGF

β-actin

Co
nt
ro
l

Ci
sp
la
tin

L-
fis
et
in

M
-fi
se
tin

H
-fi
se
tin

(b)

Figure 5: Continued.

8 Journal of Oncology



4. Discussion

Cancer pain has been well-recognized as one of the common
complications suffered by patients with a range of cancers,
occurring approximately 25% for the first time [20]. )e
incidence of pain in advanced cancer patients can reach up
to 60∼80%, and 1/3 of the patients suffer from ongoing
severe pain. At present, most therapeutic methods preferred
by western medicine in treating cancerous pain mainly
include analgesic drugs, nerve block, primary lesion surgery,
and chemoradiotherapy [9]. )e treatment principles of
drug analgesia are mainly based on the “third-order ladder”
recommended by WHO [21]. Despite some effects that have
been achieved in clinical practice, adverse reactions in-
cluding gastrointestinal reaction, constipation, vertigo, re-
spiratory depression, and mental disorder are also present
[22]. It is, therefore, an urgent need to find a satisfactory
therapy that can win the confidence of cancer pain patients.

ATAGJ functions as an effective therapeutic option for
CIBP relief and pain management. Its main components
consist of borneol, spina gleditsiae, pillworm, faeces tro-
gopterori, resina draconis, and semen strychni. Spina gle-
ditsiae contains the compound fisetin, which represents a
kind of yellow bioactive pigment [23]. )e molecular formula
of fisetin is C15H10O6, with a molar mass of 286.2363 g/mol
and a density of 1.688 g/mL. It is soluble in ethanol, acetone,
acetic acid, and hydroxide base solution [24, 25]. In general,
some pain inducing mediators including tumor cells and
inflammatory cells are reckoned to be involved in the oc-
currence and development of CIBP. Also, continuous acti-
vation of osteoclasts is considered to be related to this pain.

Furthermore, tumor expansion on the nerve compression and
damage is also a source of pain [26]. Tumors are not highly
dominated by sensory neurons. However, rapid tumor
growth has a propensity to bind to and damage nerves,
resulting in mechanical damage, compression, ischemia, or
direct proteolysis. As the proliferation of tumor cells, they first
compress then destroy the hematopoietic cells that normally
make up the bone marrow and the sensory fibers that nor-
mally dominate the bone marrow and mineralized bone [1].

We initially identified the active components and related
targets of ATAGJ by network pharmacology. And the GO
analysis and KEGG pathway analysis were performed using
the Cytoscape ClueGO plugin. )e findings of the KEGG
pathways revealed that the 28 potential targets of ATAGJ
treatment for CIBP were mainly correlated to the HIF-1α
signaling pathway. HIF-1α was the core regulator of in-
ducing hypoxia gene and intracellular oxygen environment
repair, which could regulate cell growth, proliferation, mi-
gration, inflammation, and apoptosis. High expression of
HIF-1α protein was indicated in most tumor tissues and
their metastatic sites [14–24, 27–29]. )en Zhang et al.
reported that CIBP was alleviated through inhibiting the
HIF-1α/vascular endothelial growth factor signaling path-
way [30].)erefore, we concluded that ATAGJmight reduce
CIBP by inhibiting the expression of HIF-1α. We then
validated the hypothesis by constructing a CIBP model of
rats. )e mechanical pain thresholds of the low, middle, and
high dose ATAGJ groups were higher than that of the model
group at day 21 (P< 0.01). No significant difference was
exhibited between both groups (P> 0.05), which indicated
that ATAGJ had a satisfactory effect on reducing CIBP.
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DAPIVEGF Merge
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Cisplatin
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(d)

Figure 5: Fisetin affects the Akt/HIF-1α signaling pathway in tumor cells. (a) Coimmunoprecipitation assay showed fisetin-AKT in-
teractions in Walker 256 cells. (b) Protein expressions of p-Akt, HIF-1α, and VEGF. (c, d) HIF-1α and VEGF were detected by im-
munofluorescence assay. Red represented HIF-1α and VEGF. Blue represented DAPI.
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Furthermore, we observed that the expression levels of
p-AKT, HIF-1α, and VEGF were markedly elevated in the
model group instead of sham group (P< 0.01). Compared
with the model group, those of p-AKT, HIF-1α, and VEGF
decreased greatly in H-ATAGJ treatment group (P< 0.01).
)e results suggested that ATAGJ could reduce CIBP in rats
by reducing AKT/HIF-1α signaling pathway. We visualized
the drugs, components, and targets using the Cytoscape 3.6
software and found that fisetin was the key component in
ATAGJ (with the most connections). It indicated that the
fisetin group could markedly inhibit the proliferation of
Walker 256 cells in both low and high dose fisetin groups
(P< 0.01). Further, we analyzed whether fisetin acted on the
migration of Walker 256 cells by the Transwell experiment.
Significant inhibition of the fisetin group on the migration of
Walker 256 cells was revealed in medium and high dose
fisetin groups (P< 0.01). Concomitantly, the EDU experi-
ment indicated that the fisetin group could markedly inhibit
the proliferation of Walker 256 cells in medium and high
dose fisetin groups (P< 0.01). )e previously described
results indicated that fisetin could greatly suppress the
proliferation and metastasis of tumor cells.

AKT1 and VEGFA are the core target genes with high
degree scores. )e results of molecular docking indicated
that fisetin, AKT, and VEGFA were less than −5 kcal/mol.
We, therefore, speculated that fisetin might affect CIBP by
regulating AKT or VEGFA. We then labeled fisetin with
biotin to investigate whether it could bond to AKT1. Co-IP
results revealed that fisetin could be combined with AKT1.
From this, we hypothesized fisetin could regulate the HIF-1α
signaling pathway by binding to AKT. In addition, we found
that fisetin could significantly reduce the levels of HIF-1α,
p-AKT, and VEGF (P< 0.01). )is suggested that fisetin
inhibited the AKT/HIF-1α signaling pathway in tumor cells
by binding to AKT.

5. Conclusion

We initially predicted the potential targets and pathways of
ATAGJ for CIBP management using a network pharma-
cology approach. )e clone formation and proliferation of
Walker 256 cells were detected after fisetin treatment.
Furthermore, experiments were performed to detect the
AKT/HIF-1α signal pathway expression in CIBP rats and
Walker 256 cells.)e molecular docking and IP experiments
verify the binding of fisetin and AKT. )e results demon-
strated the effect of ATAGJ in CIBP rats and the key
component fisetin could suppress Walker 256 cells prolif-
eration and downregulate the expressions levels of HIF-1α,
p-AKT, and VEGF through targeting AKT.
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Background. Nearly half of patients with prostate cancer will develop metastasis. Immunotherapy is currently a promising
strategy for treating metastatic prostate cancer. -is study aimed to construct an immune subtyping system and provide a
more comprehensive understanding of tumor microenvironment. Methods. Data were downloaded from TCGA database
and cBioPortal database. Consensus clustering was used to identify immune subtypes. Immune features were scored by
ESTIMATE and CIBERSORT. Efficacy of different subtypes in immunotherapy was predicted by TIDE tool. Immune
landscape was delineated through “monocle.” Coexpressed gene modules were identified by weighted correlation network
analysis. Univariate Cox regression analysis and LASSO analysis were applied to construct a prognostic model. Results. Four
immune subtypes (IS1 to IS4) were identified. Prognosis, mutation patterns, expression of immune genes, immune
biomarkers, immunohistochemical biomarkers, and prediction efficacy of immunotherapy were significantly different
among four immune subtypes. Five coexpressed gene modules were identified and an 11-gene prognostic model was
constructed based on the modules. Conclusions. -e study developed a novel immune subtyping system and an 11-gene
prognostic model of prostate cancer, which could guide personalized treatment and immunotherapy for patients with
prostate cancer.

1. Introduction

Prostate cancer (PCa) is a commonly diagnosed male ma-
lignancy, which accounted for 10% of cancer-caused deaths
[1]. Traditional therapies such as androgen depravation
therapy (ADT), radiotherapy, and radical prostatectomy are
usually applied treatment options for PCa patients, but not
all patients will develop a positive prognosis. Over 40% of
PCa patients with prostatectomy will experience disease

recurrence [2]. ADT is the mainstay of managing metastatic
PCa, despite an initial active response during the treatment,
metastatic castration resistant prostate cancer (mCRPC) still
occurs to a majority of patients [3].

Immunotherapy has been greatly improved in treating
various cancers in the last decades, especially in the man-
agement of renal cell carcinoma, melanoma, and lung cancer
[4–6]. Particularly, immune checkpoint inhibitors have been
reported to possess impressive efficacy. However, only a
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small number of PCa show positive response to immuno-
therapy. Evidence proved that tumor microenvironment
(TME) plays an essential role in each process of tumori-
genesis, driving the outcome of prognosis [7]. -e different
components of TME can result in differential efficacy of
immunotherapy. Although biomarkers have been widely
explored to predict PCa prognosis [8–10], a guide tool for
predicting the response of immunotherapy has not been
developed.

In the present study, we aimed to comprehensively
characterize an immune signature for PCa. We proposed a
novel molecular subtyping system based on immune genes
to predict the efficacy of immunotherapy. An immune
landscape was delineated to complementary the immune
subtyping system, and a prognostic model was constructed
to predict the overall survival (OS) of PCa patients. Analysis
was performed according to workflow diagram (Supple-
mentary Figure S1).

2. Materials and Methods

2.1. Data Acquisition. TCGA-PRAD dataset including
RNA-Seq and CNV data was downloaded from TCGA
database (https://portal.gdc.cancer.gov/). MSKCC-PRAD
dataset (MSKCC, Cancer Cell 2010) was downloaded from
cBioPortal database (https://www.cbioportal.org/). TCGA-
PRAD and MSKCC-PRAD were defined as training dataset
and validation dataset, respectively. A total of 1989 immune-
related genes including immune cell-specific genes, genes of
costimulatory and coinhibitory molecules, genes of cyto-
kines and cytokine receptors, genes for antigen processing
and presentation, and other immune-related genes (Sup-
plementary Table S1) were collected by extensively reviewing
previous studies. In the below strategies, we followed the
methods of Xia et al. [11].

2.2. Data Preprocessing. In TCGA-PRAD dataset, samples
without survival data were excluded, while those whose
transcripts per million (TPM)� 0 were in more than 50%
samples were excluded. Ensembl gene ID was transferred to
gene symbol. 495 samples and 20088 genes in TCGA-PRAD
dataset were retained (Supplementary Table S2). InMSKCC-
PRAD dataset, samples without survival data and probes
without value were also excluded. Probes were matched to
gene symbol, but one probe mapped to multiple genes was
excluded. Median value of expression data was calculated if
multiple probes mapped to one gene. Finally, 63 samples and
22486 genes were included in this study (Supplementary
Table S3).

2.3. Identification of Immune Subtypes.
ConsensusClusterPlus R package was performed to
cluster immune-related genes from TCGA-PRAD dataset
[12]. Partitioning around medoids (PAM) algorithm and
Canberra distance was employed in consensus clustering.
80% of the total samples in TCGA-PRAD dataset were
included in each time of bootstrap, which was imple-
mented for 500 times. Groups (k) were set from 2 to 10,

and the most optimized clusters were determined by
cumulative distribution function (CDF) curve and con-
sensus CDF. Kaplan–Meier survival curve and log-rank
test were used to evaluate the performance of the immune
subtyping system.

2.4. Immune Landscape of PCa. Monocle is an unsupervised
algorithm and has been previously used to reduce dimen-
sionality and construct a two-dimensional landscape [13].
-e algorithm ofMonocle represented the expression data of
each sample as a point in a high-dimensional Euclidean
space, allowing each sample to be casted as a point in the
two-dimensional graph. Finally, a tree structure manifesting
the immune features of each sample was established by
Monocle.

2.5. Identification of Coexpressed Gene Modules. Weighted
correlation network analysis (WGCNA) R package was
performed to identify immune-related gene modules [14].
-e most optimized cluster was defined with a condition of
the negative relation between log(k) and log(p(k)), R2> 0.85,
and soft threshold (power)� 12. Topological overlap matrix
(TOM) was established based on adjacency matrix. We
applied average-linkage hierarchical clustering and dynamic
branch cutting to identify co-expression modules that
contained at least 30 genes.

2.6. Gene Enrichment Analysis. Single sample gene set en-
richment analysis (ssGSEA) in the GSVA R package was
implemented to score immune cells [15]. ANOVA was
performed to assess the relation between immune subtypes
and 56 types of immune-related biomarkers [16]. Enriched
biological processes in gene ontology (GO) terms of six
immune-related gene modules were annotated by David
(v6.8) [17].

2.7. Identification of Prognostic Model. Univariate Cox re-
gression analysis was conducted to identify gene modules
and prognostic genes significantly correlated with OS in
TCGA-PRAD dataset. Least absolute shrinkage and selec-
tion operator (LASSO) regression in the glmnet R package
and stepAIC in the MASS R package were applied to reduce
the quantity of prognostic genes and optimize the prognostic
model [18, 19]. Risk score was defined as coefficient 1∗ gene
1 expression + coefficient 2∗ gene 2 expression + · · ·+ co-
efficient n∗ gene n expression. Kaplan–Meier survival curve
and log-rank test were used to evaluate the model
performance.

3. Results

3.1. Construction and Validation of Immune Subtypes of
Prostate Cancer. Gene expression profiles of 1909 immune-
related genes in TCGA-PRAD dataset were extracted ini-
tially. After conducting univariate Cox regression analysis, a
total of 534 immune-related genes were found to be sig-
nificantly associated with OS. Gene expression profiles of
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these 534 genes were then used to determine molecular
subtypes. According to the algorithm of consensus clus-
tering, the optimal cluster was defined by cluster numbers
(k) from 2 to 10. -e most stable cluster when k� 4
(Figures 1(a) and 1(b)) was delineated by CDF and CDF
delta area curves, and four immune subtypes (IS, IS1 to IS4)
were constructed (Figure 1(c)). Survival analysis revealed
that the four immune subtypes varied in OS; specifically, IS4
group had the favorable prognosis, while IS1 group had the
worst prognosis (p< 0.0001, Figure 1(d)). Moreover, we also
described the distribution of four immune subtypes in the
conventional TNM staging system within TCGA-PRAD
dataset. -e analysis showed that the proportion of IS4
group decreased from T1 to T4, N0 to N1, and M0 to M1,
while the proportion of IS1 group increased oppositely,
which was consistent with the tendency of disease pro-
gression (Figures 1(e)–1(g)). In addition, a significant dif-
ference of distribution of immune subtypes was also
observed between age <60 and age ≥60 groups (Figure 1(h)).
To further verify the robustness of this immune subtyping
system, another independent dataset, MKSCC-PRAD
dataset, was classified into four groups. Similarly, significant
difference was shown within four immune subtypes, and IS4
group still showed the best OS (Figure 1(i)).

3.2. Tumor Mutation Burden and Mutation Patterns of Four
Immune Subtypes. In TCGA-PRAD dataset, mutect2 soft-
ware was employed to calculate tumor mutation burden
(TMB). IS4 group showed the lowest TMB and number of
mutated genes when compared with other groups (p< 0.001,
Figures 2(a) and 2(b)). We further assessed the mutation
patterns of each group. Copy number alternations, especially
deletions, were the majority mutations in all groups
(Figure 2(c)). Reasonably, IS1 group comprised the largest
amount of mutations, and IS4 group had the least mutations.
-e top 10 mutated genes were TP53, ACAP1, AP3B1,
NXPE4, CHRNA6, APC, AP1G1, ALX4, NCOR2, and
TIAM2. -e mutation frequencies of TP53, NXPE4, and
CHRNA6 were the highest in IS1 group, while ACAP1,
AP3B1, APC, AP1G, 1NCOR2, and ADPRM genes showed
themostmutations in IS2 group (p< 0.001). Interestingly, the
frequencies of copy number variations of BTNL2, AGPAT1,
APOM, ATP6V1G2-DDX39B, C6orf136, CCDC154, and
CFB genes were greatly higher than other groups (p< 0.001).

3.3. Differential Expression of Chemokines, Chemokine Re-
ceptors, and Immune Checkpoints among Four Immune
Subtypes. Chemokines together with cytokines play a crit-
ical role in TME. Chemokine receptors secreted by tumor
cells are involved in tumor proliferation and metastasis and
can serve as biomarkers of immunotherapy. -erefore, we
evaluated the expression of chemokines and chemokine
receptors and compared in the four immune subtypes. In
TCGA-PRAD dataset, a total of 39 types of chemokines were
expressed; noticeably, the expression level of each gene
varied significantly among four immune subtypes (p< 0.01,
Figure 3(a)), and the expression of chemokine receptors was
also differential among the four groups (p< 0.01,

Figure 3(b)). In MKSCC-PRAD dataset, 38 out of 41 che-
mokines expressed differentially, and the expression of
chemokine receptors was differential among the four groups
(p< 0.05, Figures 3(c) and 3(d)). Furthermore, the expres-
sion level of immune checkpoints was calculated. Among 47
immune checkpoints, 46 genes expressed differentially in
TCGA-PRAD dataset, and 40 genes expressed differentially
in MKSCC-PRAD dataset (p< 0.05, Figures 3(e) and 3(f )).
-ese results supported the fact that the expression of
chemokines, chemokine receptors, and immune checkpoints
was different among IS1, IS2, IS3, and IS4 groups.

3.4. Differential Expression of PCa Immunohistochemical
Biomarkers. Immunohistochemistry is commonly used in
biopsy, and prostate-specific antigen (PSA) is one of the
most popularly performed tests in PCa. To examine
whether there was a correlation between immune sub-
types and PCa immunohistochemical biomarkers, we
incorporated a series of biomarkers currently used from
Abcam website (https://www.abcam.cn/cancer/). In both
TCGA-PRAD and MKSCC-PRAD datasets, significant
expression difference of biomarkers among IS1, IS2, IS3,
and IS4 groups was detected. -ere was no difference of
FOLH1 and ERG in MKSCC-PRAD dataset, but the
remaining biomarkers were all differentially expressed
among the four groups (Figure 4).

3.5. Immune Features of Four Immune Subtypes. To inves-
tigate whether there was immune heterogeneity among the
four immune subtypes, ESTIMATE and CIBERSORT tools
were applied to score the samples in TCGA-PRAD and
MKSCC-PRAD datasets. -e enrichment score of the two
datasets significantly varied among the four immune sub-
types (Figures 5(a)–5(d)). In TCGA-PRAD dataset, IS1
group had the highest ESTIMATE score, but IS2 group had
the lowest ESTIMATE score (p< 0.0001, Figure 5(a)). In
MKSCC-PRAD dataset, IS2 group had the highest ESTI-
MATE score, but IS3 group had the lowest ESTIMATE score
(p< 0.0001, Figure 5(c)). 22 types of immune cells were
scored by CIBERSORT tool. In the two datasets, IS4 group
exhibited a high enrichment score in plasma cells, macro-
phages M0, and resting mast cells, while IS1 group showed a
high score in CD8+ Tcells and regulatory Tcells (p< 0.0001,
Figures 5(b) and 5(d)).

A pan-cancer research classified cancers into six immune
subtypes C1 to C6 based on IFN-c, TGF-β,
macrophage, lymphocyte, and wound healing, and PCa was
stratified into C1 to C4 four groups [16]. Reasoning that the
same TCGA-PRAD dataset was used, a comparison between
C1 to C4 groups and IS1 to IS4 groups was conducted in this
study. A significant difference of C1 to C4 distribution was
observed from IS1 to IS4 groups. C2 group mostly accu-
mulated in IS1 group, and a majority of C1 and C4 groups
were in IS2 group (p< 0.05, Figure 5(e)). Moreover, we
evaluated the correlation between IS1 to IS4 groups and
immune biomarkers from the literature [16]. A total of 56
immune biomarkers were included, and 38 of them had
differential enrichment score among the four immune
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Figure 1: Continued.
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Figure 1: Four immune subtypes of PCa and its relation with clinical features. (a) CDF curve containing cluster numbers k from 2 to 10.
(b) CDF delta area curve with k� 2 to 10. (c) -e consensus matrix when k� 4. (d) Kaplan–Meier survival curve of four immune subtypes
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subtypes (FDR< 0.01, p< 0.05, Figure 5(f)). A majority of
immune biomarkers were enriched in IS1 group, especially
leukocyte fraction, macrophage regulation, lymphocyte in-
filtration, IFN-c response, TCR Shannon, TCR richness,
dendritic cells and lymphocytes; however, these biomarker
were less enriched in IS2 group (p< 0.01, Figure 5(f )).

3.6. /e Differential Performance of Immunotherapy within
Four Immune Subtypes. We then analyzed the immuno-
therapeutic performance of IS1 to IS4 using TIDE software
(http://tide.dfci.harvard.edu/). A higher TIDE score repre-
sents higher possibility of immune escape, indicating less
benefit from immunotherapy. IS1 and IS3 groups showed
higher TIDE score than IS2 and IS4 groups, indicating lower

effectiveness of immunotherapy of IS1 and IS3 groups
(p � 6.5e − 12, Figure 6(a)). In addition, we also calculated
the scores of Tcell dysfunction and Tcell exclusion, as shown
in Figures 6(b) and 6(c), respectively. T cell dysfunction was
the strongest in IS1 group, and this was correlated with
unfavorable survival, although its T cell exclusion score was
the lowest. Immune response was significantly different
among these immune subtypes, showing the worst immu-
notherapeutic efficacy in IS3 group and the optimal immune
response in IS2 group (Figure 6(d)).

3.7. An Immune Landscape of PCa and an Extension for
Immune Subtyping System. To further examine the immune
features and subtypes of PCa, we applied a reduced
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Figure 3: -e differential expression of chemokines, chemokine receptors, and immune checkpoints among four immune subtypes. (a-b)
-e expression of chemokines (a) and chemokine receptors (b) in TCGA-PRAD dataset. (c-d) -e expression of chemokines (c) and
chemokine receptors (d) in MKSCC-PRAD dataset. (e-f ) -e expression of total 47 immune checkpoints in TCGA-PRAD dataset (e) and
MKSCC-PRAD dataset (f ). ANOVA was performed. ∗p< 0.05, ∗∗p< 0.01, and ∗∗∗p< 0.001. ns: no significance.
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Figure 4:-e differential expression of PCa immunohistochemical biomarkers in TCGA-PRAD dataset (a) andMKSCC-PRAD dataset (b).
ANOVA was performed. ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001, and ∗∗∗∗p< 0.0001. ns: no significance.
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Figure 5: Differential immune features of immune subtypes. (a-b) Immune features of four immune subtypes scored by ESTIMATE (a) and
CIBERSORT (b) tools in TCGA-PRAD dataset. (c-d) Immune features of four immune subtypes scored by ESTIMATE (c) and CIBERSORT
(d) tools in MKSCC-PRAD dataset. (e) -e distribution of C1 to C4 groups in IS1 to IS4 groups. (f ) 38 immune biomarkers significantly
varied in IS1 to IS4 groups. ANOVA was performed. ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001, and ∗∗∗∗p< 0.0001. ns: no significance. ?Low
expression cannot be calculated.
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dimensional method where each sample was casted as a point
in a two-dimensional space in a latent tree structure. Com-
ponent 1 and component 2 were two independent immune-
related gene sets generated by principle component analysis.
An immune landscape of PCa was constructed, and four
immune subtypes were labeled with different colors
(Figure 7(a)). Next, we assessed the correlation between two
components and immune biomarkers. Component 1 was
found to be negatively related to leukocyte fraction, mac-
rophage regulation, lymphocyte infiltration signature score,
TGF-β response, TCR Shannon, and TCR richness, which

was consistent with the previous result (|R|> 0.5, p< 0.001,
Figures 7(b) and 5(f)). Component 2 was significantly as-
sociated with wound healing, T cells follicular helper, IFN-
gamma response, and Tcells CD4memory resting (p< 0.001,
Figure 7(c)). According to the immune landscape, IS1 and IS3
groups could be further subdivided into IS1A and IS1B, IS3A
and IS3B. -e immune features of subgroups showed subtle
difference between two groups scored by CIBERSORT, and
differential enrichment score was calculated by ESTIMATE
(Figure 7(d)). Additionally, survival analysis revealed that
three branches of the tree structure showed differences in OS

ns

****
****

**
*

****

0

IS1 IS2 IS3 IS4

2

4

TI
D

E
ANOVA tests p=6.5e-12

(a)

IS1 IS2 IS3 IS4

****

****
****

ns
****

****

-2

0

2

4

D
ys

fu
nc

tio
n

ANOVA tests p=8.8e-32

(b)

IS1 IS2 IS3 IS4

****

****
****

*
****

****

-2

0

2

4

Ex
clu

sio
n

ANOVA tests p=8.2e-25

(c)

IS1 IS2 IS3 IS4

IS1
IS2
IS3
IS4

-log10 (anova p value)

1.24 0.84 4.84 (*) 0

1.68 (*) 8.51 (*) 0 4.84 (*)
3.32 (*) 0 8.51 (*) 0.84

0 3.32 (*) 1.68 (*) 1.24

0.00

0.25

0.50

0.75

1.00

False

Group

True

(d)

Figure 6: Prediction of immunotherapeutic efficacy among four immune subtypes. (a) Immune response scored by TIDE. (b-c) -e
performance of T cell dysfunction (b) and T cell exclusion (c) in four groups. (d) Prediction of immunotherapeutic efficacy in four groups.
True and false represents the positive and negative immune response to immunotherapy, respectively. ANOVA was performed. ∗p< 0.05,
∗∗p< 0.01, ∗∗∗p< 0.001, and ∗∗∗∗p< 0.0001. ns: no significance.
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Figure 7: Construction of immune landscape within TCGA-PRAD dataset. (a) -e distribution of four immune subtypes in the immune
landscape. (b) -e relation between component 1 (PCA1), component 2 (PCA2), and immune biomarkers. (c) Subdivision of IS1 and IS3
groups. (d) Immune features of IS1A and IS1B, IS3A, and IS3B scored by ESTIMATE and CIBERSORT tools. (e) Immune landscape
grouped by branches 1, 3, and 5. (f ) Kaplan–Meier survival curve of groups 1, 3, and 5. Log-rank test was performed. ∗p< 0.05, ∗∗p< 0.01,
∗∗∗p< 0.001, and ∗∗∗∗p< 0.0001. ns: no significance.
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(p � 0.036), indicating that this immune landscape was re-
liable and effective in further supplementary the immune
subtypes (Figures 7(e) and 7(f)).

3.8. Identification of Coexpressed Gene Modules Based on
Immune-RelatedGenes. We also identified coexpressed gene
modules to further explore immune-related genes by
WGCNA. Under the condition of the negative relation
between log(k) and log(p(k)), R2> 0.85 and soft threshold
(power)� 12 were defined to meet a scale-free network
(Figures 8(a) and 8(b)). Using average-linkage hierarchical
clustering and dynamic branch cutting, co-expression
modules containing at least 30 genes in each module were
identified. Modules with close distance were then merged,
and five modules were identified when height� 0.3, deep-
Split� 4, and minModuleSize� 30 (Figure 8(c)). Finally,
1905 immune-related genes were classified into five modules
colored as turquoise, grey, green-yellow, blue, and black
(Figure 8(d), Supplementary Table S4). In each module, all
eigengenes varied significantly within four immune sub-
types, which supported the effectiveness of the immune
subtyping system (p< 0.0001, Figure 8(e)). Furthermore,
close relation between modules and immune subtypes was
demonstrated. IS1 and IS3 groups were positively related to
modules, especially to the black and blue modules, while IS2
and IS4 were negatively correlated with the modules
(Figure 8(f)). However, clinical features including age, T, N,
and M stages were not tightly associated with modules. -e

scatter diagram demonstrated close association of black
module with IS3 group (coefficient� 0.82, p< 0.0001) and
blue module with IS1 group (coefficient� 0.58, p< 0.0001)
(Figures 8(g) and 8(h)).

3.9. Function of Coexpressed Gene Modules and Screening of
Prognostic Genes. Gene set enrichment analysis was con-
ducted to determine enriched biological processes of blue
and black modules.-e results showed that blue module was
largely enriched to biological processes such as T cell acti-
vation, regulation of lymphocyte activation, and leukocyte
proliferation, and it was negatively correlated with com-
ponent 1 (R� −0.816, p< 0.0001, Figures 9(a) and 9(b)). For
black module, biological processes of extracellular structure
organization and extracellular matrix organization were
enriched, and the module was also negatively correlated with
component 1 (R� −0.736, p< 0.0001, Figures 9(c) and 9(d)).

Genes closely related to prognosis were screened, and a
total of 243 genes with R> 0.85 were detected from the blue
and black modules. LASSO regression analysis was applied
to construct a prognostic model. When lambda� 016636511,
the model was optimal, and 17 genes were identified. To
further simply the model, we conducted Akaike information
criterion to reach a high fitting degree through including the
minimum amount of genes. Finally, based on FGD2, IL2RG,
LRMP, NCF1, VAV1, ZNF831, COL5A1, EBF1, PCDH18,
PLXND1, and PTGIS, an 11-gene prognostic model was
defined as follows.

Risk Score � 0.4463861∗ FGD2 − 0.3572187∗ IL2RG − 0.5703754

∗ LRMP∗ 0.5567643∗NCF1 + 0.5364159∗VAV1 − 0.3522158∗

ZNF831 + 0.6454266∗COLA1 − 0.4826737∗EBF1 − 0.5881331∗

PCDH18 + 0.4988597∗ PLXNDI − 0.4001723∗PTGIS.

(1)

-e risk score of each sample in TCGA-PRAD and
MKSCC-PRAD datasets was calculated and converted to z-
score, which was then used to divide the samples that were
divided into high-risk or low-risk group. -e result showed
that OS in low-risk group was higher than high-risk group in
both datasets (p< 0.001, Figures 9(e) and 9(f )). In addition,
we compared the expression differences of these 11 genes in
cancer and adjacent samples and observed that FGD2,
LRMP, VAV1, EBF1, PCDH18, and PTGIS were signifi-
cantly underexpressed in tumor samples (Supplementary
Figure S2A). Further, we analyzed the relationship between
these 11 genes and immune infiltration and observed that
these genes were significantly related to multiple immune
infiltrating cells, especially with T_ cells_ CD4_ memory_
Resting and dendritic_ cells_ Resting showed a significant
positive correlation (Supplementary Figure S2B). -e cor-
relation analysis of immune checkpoint genes showed that
ZNF831, VAV1, NCF1, LRMP, IL2RG, and FGD2 showed a
significant positive correlation with a variety of immune
checkpoint genes (Supplementary Figure S2C). Further, we

mapped these 11 genes to the string database to analyze the
interaction between these genes. It can be observed that
there is little direct interaction between these genes, but
more indirect interaction, suggesting that these genes may
play different roles in different time and space (Supple-
mentary Figure S2D).

4. Discussion

For mCRPC patients, immunotherapy is now the only
available treatment. Sipuleucel-T, which is the only cancer
vaccine approved by Food and Drug Administration (FDA)
in treating mCRPC, was a significant improvement in
mCRPC treatment [20, 21]. Extended OS was observed in
the sipuleucel-T trials with tolerated adverse effects [21, 22].
According to a large-scale research onmCRPC patients, only
approximately 10% could benefit from sipuleucel-T, indi-
cating the limitation of the cancer vaccine in wide appli-
cation [23]. Immune checkpoint inhibitors against PD-1,
PD-L1, and CTLA-4 have found to be able to prolong the OS
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Figure 8: Continued.
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of mCRPC patients. However, the efficacy of current
monoclonal antibodies is not satisfactory, and new clinical
trials of updated strategies are still ongoing [24]. To some
extent, immunotherapy of PCa is still far from mature.
Evidence revealed that TME is of great importance for tumor
progression and can suppress or stimulate the efficacy of
immunotherapy [25]. -erefore, a comprehensive under-
standing of the TME of Pca plays a critical role in guiding
immunotherapy.

In the current study, we explored an immune subtyping
system that has not been reported before. Based on immune-
related gene expression profiles of TCGA-PRAD dataset, a
unique molecular subtyping system was generated through
substantial informatics analysis. All patients could be clas-
sified into four immune subtypes (IS1 to IS4). -e OS was

different among the groups, with the optimal prognosis in
IS4 group and the worst prognosis in IS1 group. -e pro-
portion of IS1 group in the TNM staging system was
consistent with the progressing stages. In addition, IS1 group
had the highest mutation frequency, especially increased
copy numbers. -e different mutation patterns may explain
the differential component of TME.

Immune infiltration is a pivotal component of TME
and represents the immune signatures of cancers. Che-
mokines are a family of chemotactic cytokines that can
regulate the positioning and expression of immune cells
[26, 27]. As chemokines and chemokine receptors are
responsible for cancer metastasis, they have also been
considered to be the possible targets of cancer immu-
notherapy [28]. -e expression of chemokines and

Module−trait relationships
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Figure 8: Identification of coexpressed genemodules. (a-b) Analysis of the scale-free fit index (a) andmean connectivity (b) for various soft-
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chemokine receptors in PCa was evaluated in our study.
Differential expression was observed among the four
immune subtypes, indicating that expression patterns of
chemokines and chemokine receptors may result in dif-
ferent outcomes of PCa development.

According to the previous researches, tumors can be
divided into three infiltration patterns (immune-inflamed or
immune-active (‘hot’), immune-excluded, and immune-
deserted (‘cold’)) in terms of the components of TME
[29, 30]. PCa has been stratified into immune-desert pattern
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and is inactively responsive to immunotherapy [31];
therefore, only a small number of patients can benefit from
the immunotherapy. To ascertain whether the infiltration
pattern would be different among the four immune sub-
types, we assessed 56 immune biomarkers and scored their
enrichment.-e expression of immune biomarkers varied in
four immune subtypes. -e results showed that according to
the enrichment level of leukocyte fraction, stromal fraction,
TIL regional fraction proliferation, macrophage regulation,
IFN-c response, TCR richness, CD8+ T cells, and TGF-β
response, IS1 group was classified into immune-excluded
pattern and IS2 group was immune-desert pattern. Fur-
thermore, TIDE analysis also revealed that patients in IS2
and IS4 groups were more suitable to receive immuno-
therapy than those in IS1 and IS3 groups. -e specific
stratification of infiltration patterns and efficacy prediction
of immunotherapy can provide a guidance for personalized
immunotherapy.

By introducing a graph-learning landscape, IS1 and IS3
groups were further subdivided. -e enrichment of immune
biomarkers was significantly different in the subdivisions.
-e immune landscape of PCa supplemented the immune
subtyping system and visualized the immune signatures,
providing a better understanding of the tumor microenvi-
ronment. In addition, co-expression gene modules were
constructed, and 11 prognostic genes were identified from
the models. -e 11-gene prognostic model can predict the
prognosis and further facilitate personalized treatment of
PCa.

5. Conclusion

In conclusion, we defined a new molecular subtyping system
based on immune-related genes. PCa patients were classified
into four immune subtypes and showed significant differ-
ence in prognosis, immune signatures, response of immu-
notherapy, and infiltration patterns. An immune landscape
of PCa was generated and helps further understand the
TME. -is novel immune subtyping system can be a
guidance in the development of immunotherapy and per-
sonalized treatment of PCa patients.
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MFAP2 has been reported to play an oncogenic role in several types of human cancers. However, the expression profile of MFAP2
in various cancers and its impact on prognosis and immune infiltration remain unclear. In this study, the mRNA expression and
protein expression of MFAP2 in normal tissues, tumor cell lines, and 33 malignant tumor tissues were analyzed comprehensively
using Genotype-Tissue Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE), and +e Cancer Genome Atlas (TCGA),
Oncomine and UALCAN databases, and the expression of MFAP2 in different grades and stages of cancers was assessed using
Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and Tumor and Immune System Interaction Database (TISIDB). In
general, MFAP2 showed distinct expression in most tumor and normal tissues, closely associated with higher tumor grade, higher
tumor stage, and poor survival in multiple cancers. A search of the UALCAN database and the cBioPortal database revealed that
this difference in mRNA level expression could be partly attributed to abnormal DNAmethylation and mutations at the genomic
level. In addition, MFAP2 expression was also associated with tumor mutation burden, microsatellite instability, and neoantigens
in different cancer types. More importantly, the TIMER and TISIDB databases also showed that MFAP2 levels were significantly
correlated with immune infiltration abundance and immune-related gene markers, as well as ESTIMATE scores. By qPCR,
MFAP2 expression was validated in four kinds of tumor tissue samples. +e present study combined several databases and
performed a pan-cancer analysis of the expression profile, methylation, and mutation for MFAP2 and its implications for
prognosis and immune infiltration, suggesting that MFAP2 could contribute to malignant properties of many tumors. MFAP2
may be an important biomarker with prognostic value and has the potential to be a target for tumor immunotherapy.

1. Introduction

Immunotherapy is considered to be a promising treatment
for cancers [1]. However, due to the heterogeneity of tumors,
only 10–20% of the population can benefit from current
immunotherapy [2, 3]. For example, anti-CTLA4 has poor
clinical efficacy in gastric cancer [4]. Anti-PD-1 and anti-
PD-L1 have shown partial response in progressive colorectal
cancer [5]. With the development of high-throughput se-
quencing technologies, abundant data are available to the
public, such as TCGA database containing transcriptome
data for 33 tumors. It is possible and necessary to perform

pan-cancer analyses of genes and to assess their correlation
with clinical prognosis and immune infiltration [6]. New
biomarkers are urgently needed to predict prognosis and to
find new immune-related therapeutic targets.

MFAP2 consists of a 183-amino-acid protein with 2
domains [7]. MFAP2 exists in two forms. One is extracel-
lular MFAP2, which is a protein binding to fibrin, collagen
VI, tropoelastin, deproteinized, and biglycan14. +e other is
intracellular protein, which is a functional protein upre-
gulating downstream genes related to cell adhesion,
movement, and matrix remodeling. In the last decade, ab-
errant expression of MFAP2 was found in various malignant
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tumors. MFAP2 is overexpressed in melanoma with its
capacity of manipulating EMT-related proteins and Wnt/
β-catenin pathway to enhance melanoma invasion and
migration ability [8]. Upregulation of MFAP2 in gastric
carcinoma has been found, in which MFAP2 accelerates
cancer cell migration via MFAP2/integrin α5β1/FAK/ERK
pathway [9, 10]. +e ability of MFAP2 in activating TGF-
β/SMAD2/3 pathway in gastric carcinoma has also been
reported, and this activation accelerates the transformation
of gastric carcinoma from an epithelial cell phenotype to a
mesenchymal phenotype [11]. Previous studies have pointed
out that MFAP2 possesses a hyperaffinity to TGF-β su-
perfamily member in adipose tissue [12–14].

However, there are no pan-cancer studies on the rela-
tionship between MFAP2 and various cancers. Here, we
retrieved multiple databases, GTEx, CCLE, Oncomine,
TCGA, UALCAN, GEPIA2, and TISIDB, to analyze MFAP2
expression in pan-cancer and its relationship with prognosis.
In addition, we explored the relationship between MFAP2
expression and gene mutations, promoter methylation, tu-
mor neoantigens, tumor mutation burden (TMB), micro-
satellite instability (MSI), mismatch repair (MMR) genes,
and immune infiltration. Our results suggested that aberrant
expression of MFAP2 was associated with its altered pro-
moter methylation, affected immune infiltration in the tu-
mor microenvironment, and also acted as a prognostic risk
factor for a variety of cancers. +is study was expected to
provide a theoretical basis for gaining insight into the role of
MFAP2 in tumor immunotherapy.

2. Materials and Methods

2.1. Gene Expression Analysis. We downloaded the nor-
malized pan-cancer datasets TCGA and GTEx from the
UCSC database, extracted the expression data of MFAP2
gene in each sample, and further transformed each ex-
pression value as log2(x+1). +e MFAP2 expression in 33
cancers was obtained. In addition, data of each tumor cell
line were also downloaded from the CCLE database and
analyzed the expression levels of MFAP2 in 21 tumor cell
lines. Data analysis was performed using RStudio version
1.1.456 (RStudio Inc., USA) and the R package ggpubr.
Moreover, the expression levels of MFAP2 gene in different
cancers were identified in the Oncomine database [15], with
the thresholds of p-value� 0.05, fold change� 2, and gene
rank�ALL. MFAP2 protein expression was investigated in
UALCAN database, providing us a platform for protein
expression analysis of Clinical Proteomics Cancer Analysis
Alliance dataset [16]. Finally, we explored MFAP2 expres-
sion in different pathological stages and grades of TCGA
tumors via GEPIA2 and TISIDB databases.

2.2. Prognostic Analysis. We first analyzed the relationship
between MFAP2 expression in the 33 tumors and overall
survival (OS) using TCGA data and visualized it with forest
plots using univariate Cox regression analysis.
Kaplan–Meier curves were further plotted to show the
prognostic significance of MFAP2. Considering the

possibility of non-tumor-related deaths during follow-up,
we analyzed the relationship between MFAP2 expression
and disease-specific survival (DSS), disease-free interval
(DFI), and progression-free interval (PFI) in the 33 TCGA
tumors.

2.3. Genetic Changes Analysis. On the website cBioPortal
[17], we selected “TCGA Pan Cancer Atlas Studies” datasets.
+e mutations and copy number of MFAP2 were investi-
gated, and MFAP2 mutation sites were displayed in sche-
matic and 3D structure maps.

+e TMB andMSI scores of all samples were determined
from the somatic mutation data downloaded from TCGA,
and the correlation between MFAP2 expression and TMB
and MSI was assessed using Spearman’s rank correlation
coefficient. +e number of tumor neoantigens in each tumor
sample was counted and its relationship with MFAP2 ex-
pression was analyzed. Moreover, TCGA expression profile
data were used to analyze the expression of MMR genes,
including MutL homologous gene (MLH1), MutS homol-
ogous gene (MSH2), MSH6, increased separation after
meiosis (PMS2), and epithelial cell adhesion molecule
(EPCAM) in different tumors. +e correlation between
MFAP2 and MMR genes was visualized in a heat map using
the Reshape2 and R ColorBrewer packages.

2.4. DNAMethylationAnalysis. +e UALCAN database was
used to show the methylation levels of MFAP2 in different
tumors and corresponding normal tissues. In addition, we
analyzed the correlation betweenMFAP2 expression and the
expression of the four methyltransferases, including
DNMT1, DNMT2, DNMT3A, and DNMT3B.

2.5. Immune Infiltration Analysis. We used TISIDB data-
base, and TIMER, microenvironment cell populations
(MCP)-counter and XCELL algorithms to explore the re-
lationship between MFAP2 expression and immune infil-
tration in all TCGA tumors. We analyzed the stromal,
immune, and ESTIMATE scores of each tumor sample using
the ESTIMATE package and visualized the relationship
between these scores and MFAP2 expression using scatter
plots. In addition, we investigated the correlation of MFAP2
expression with monocyte and macrophage biomarkers
using the TIMER database. Furthermore, we performed
Spearman correlation analysis of MFAP2 and immune-re-
lated genes, including immunoinhibitors, immunostimula-
tors, major histocompatibility complex (MHC) genes,
chemokines, chemokine receptors, and immune checkpoints
molecules. All data obtained were finally visualized in heat
maps or scatter plots.

2.6. Tumor Tissue Collection. BLCA, BRCA, HNSC, and
KICH tissues and normal tissues were collected from 5
patients, respectively. +ey were stored immediately in
liquid nitrogen and kept at -80 °C. +e study was approved
by the Ethics Committee of the Qingdao Municipal
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Hospital of Shandong province and conducted following
the Declaration of Helsinki.

2.7. Quantitative Real-Time Polymerase Chain Reaction
(qPCR). Total RNA was extracted from tissues using TRIzol
reagent (Invitrogen, +ermo Fisher Scientific, Shanghai,
China) and reverse-transcribed into cDNA using cDNA
Reverse Transcription Kit (Applied Biosystems, Foster City,
CA, USA). qPCR was performed using SYBR Premix Ex Taq
II kit (RR820A, TaKaRa, Dalian, China), with GAPDH as an
internal reference. +e relative expression of MFAP2 was
calculated using the 2−ΔΔCt method. +e primers used are
listed in Table 1.

2.8. StatisticalAnalysis. +e data were analyzed using R 4.0.2
software and GraphPad 9.0.0 and expressed as mean± SD.
Differences were analyzed by t-test, with p values less than
0.05 considered statistically significant.

3. Results

3.1. MFAP2 Expression across Cancers. We first examined
the expression levels of MFAP2 in normal tissues via the
GTEx dataset. As shown in Figure 1(a), MFAP2 expression
levels were the highest in cervix uteri tissues and the lowest
in blood and bone marrow tissues. Also, the basal levels of
MFAP2 expression in various tumor cell lines were assessed.
As shown in Figure 1(b), MFAP2 was expressed at the
highest level in bone cell lines and the lowest level in
haematopoietic and lymphoid cell lines.

To determine the differential expression of MFAP2, the
Oncomine database was used to analyze MFAP2 mRNA
levels in different tumors and corresponding normal tissues.
+is analysis showed that, compared to normal tissues,
MFAP2 expression was higher in bladder cancer, brain and
central nervous system (CNS) cancer, breast cancer, colo-
rectal cancer, esophageal cancer, gastric cancer, head and
neck cancer, lymphoma, melanoma, myeloma, ovarian
cancer, pancreatic cancer, and sarcoma. In some datasets of
liver cancer and prostate cancer, no difference in expression
was observed. In addition, MFAP2 expression was ambig-
uous in kidney cancer, leukemia, and lung cancer datasets;
see Figure 2(a). Table 2 summarizes the details of MFAP2
expression in various cancers. To further assess the ex-
pression of MFAP2 in human cancers, we integrated
transcriptomic data from all tumors in TCGA and GTEx.
MFAP2 expression obtained from data in TCGA database
and integrated data in the GTEx plus TCGA databases are
shown in Figure 2(b) and Figure 2(c), respectively. Taking
into account individual differences, we further assessed
MFAP2 expression in paired samples Figure 2(d).+e results
showed that MFAP2 was significantly higher in BLCA,
BRCA, CHOL, COAD, ESCA, HNSC, LIHC, LUAD, LUSC,
READ, STAD, THCA, and UCEC than in adjacent normal
tissues and significantly lower in KICH, KIRC, KIRP, and
PRAD than in adjacent normal tissues.+ere was noMFAP2
expression difference in PAAD, which may be due to the
small sample size. Moreover, MFAP2 protein expression was

elevated in breast cancer, colon cancer, and lung adeno-
carcinoma and reduced in clear cell renal cell carcinoma; see
Figure 2(e).

Based on further analysis of the relationship between
MFAP2 mRNA expression levels and cancer stage or grade,
the results suggested that MFAP2 was positively correlated
with the advanced BLCA stage in both GEPIA2 and TISIDB
(see Figures 3(a) and 3(b)), and the TISIDB database of
MFAP2 was positively correlated with the advanced CESC,
KIRC, LGG, and LIHC grades (see Figure 3(c)).

3.2. MFAP2 Prognostic Value across Cancers. To investigate
the relationship between MFAP2 expression levels and
prognosis in terms of DFI, DSS, OS, and PFI, we depicted
forest plots for each cancer (Figure 4). COX proportional
risk model analysis showed that high expression of MFAP2
was associated with poor DFI for ACC, BRCA, CESC,
CHOL, OV, and PAAD (Figure 4(a)), with poor DSS for
ACC, BRCA, CESC, CHOL, KIRC, LGG, LIHC, and SARC
(Figure 4(b)), with poor OS for ACC, BRCA, CESC, KIRC,
LGG, LIHC, and SARC (Figure 4(c)), and poor PFI for ACC,
BLCA, BRCA, CESC, KICH, KIRC, LGG, and SARC
(Figure 4(d)). Interestingly, MFAP2 expression levels in
UVM correlated with better DSS, OS, and PFI.

3.3. MFAP2 Mutation Profile. Genomic mutations are
strongly associated with tumorigenesis. So, we used cBio-
Portal database to analyze the genomic alterations ofMFAP2
in the TCGA pan-cancer datasets, consisting of 10,967
samples from 32 studies. +e results showed that chol-
angiocarcinoma patients with deep deletion as the only
mutation type had the highest frequency of MFAP2 alter-
ations, exceeding 5%. In addition, amplification was the only
type of MFAP2 mutation in the uterine carcinosarcoma
samples, with a mutation frequency of over 3% (Figure 5(a)).
Figure 5(b) shows that between amino acids 0 and 183, a
total of 29MFAP2mutation sites, including 27 missense and
2 splices, were detected, with missense being the predom-
inant type of DNA alteration. Of these, F157 L in the ShKr
protein domain was the most frequent mutant site, detected
in 2 cases of endometrial carcinoma. Moreover, the MFAP2
mutant sites were further demonstrated in the 3D structure
as shown in Figure 5(c). Additionally, we found that MFAP2
expression was independent of mutations (Figure 5(d)) and
independent of DNA copy variation Figure (5(e)).

3.4. MFAP2 Aberrant DNA Methylation. +e genomic al-
teration analysis suggested that altered MFAP2 expression
might not be due to genetic variation. We then examined
epigenetic disorders of MFAP2 in cancers. As shown in
Figure 6(a), we found that 4 tumors with high MFAP2

Table 1: PCR primers.

MFAP2 Forward(5′-3′) CGCCGTGTGTACGTCATTAAC
Reverse(5′-3′) CCATCACGCCACATTTGGA

GAPDH Forward(5′-3′) TGCCATGTAGACCCCTTGAAG
Reverse(5′-3′) ATGGTACATGACAAGGTGCGG
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Figure 1: MFAP2 basal level. (a) MFAP2 expression in normal tissues obtained from GTEx database. (b) MFAP2 expression in tumor cell
lines obtained from CCLE database.
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Figure 2: Continued.
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expression, including BLCA, BRCA, COAD, and UCEC,
exhibited reduced DNA methylation levels of MFAP2.
Methylation level of MFAP2 was reduced in KIRP, which
could not explain the reducedMFAP2 mRNA expression. In
addition, two tumors with lowMFAP2 expression, including
KIRC and PRAD, exhibited elevated DNA methylation
levels of MFAP2. Methylation level of MFAP2 was elevated
in LIHC and LUAD, which could not explain the elevated
MFAP2 mRNA expression. +en, we assessed the rela-
tionship between MFAP2 expression and the four methyl-
transferases, including DNMT1, DNMT2, DNMT3A, and
DNMT3B. As shown in Figure 6(b), MFAP2 expression was
positively correlated with some of the four methyl-
transferases in the vast majority of the 33 tumors.

3.5. Tumor Neoantigen, TMB, MSI, and MMRs. Tumor
neoantigens are new abnormal proteins encoded by mutated
genes in tumor cells, acting as antigens to activate Tcells. Here
we counted the number of neoantigens for each tumor sample
separately and analyzed the relationship between MFAP2
expression and antigens number. +e results showed that
MFAP2 expression was negatively correlated with tumor
neoantigen in UCEC (Figure 7(a)). TMB, usually measured as
the number of somatic nonsynonymous mutations occurring
in an average of 1Mb bases in the coding region of the exonic
region, reflects the number of mutations contained in tumor
cells [18]. Spearman’s rank correlation analysis showed that
MFAP2 expression was positively correlated with TMB in
COAD, STAD, and UCEC, while it was negatively correlated
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Figure 2:MFAP2 expression landscape in various human cancers. (a)MFAP2mRNA expression change showed in Oncomine database. (b)
MFAP2 mRNA expression levels in tumor tissues and adjacent tissues from TCGA database. (c) MFAP2 mRNA expression levels de-
termined by TCGA database and GTEx database. (d) MFAP2 mRNA expression levels in matched tissues determined by TCGA database.
(e) MFAP2 protein expression levels showed in UALCAN database. ∗p< 0.05, ∗∗p< 0.01, and ∗∗∗p< 0.001.
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Table 2: MFAP2 expression in cancers versus normal tissue in Oncomine database.

Cancer Cancer type P-value Fold change Rank (%) Sample Reference
(PMID)

Bladder Infiltrating bladder urothelial carcinoma 1.51E–7 2.327 7% 157 16432078
Bladder Infiltrating bladder urothelial carcinoma 6.46E–5 3.192 10% 60 15173019
Breast cancer Invasive ductal breast carcinoma 6.80E–5 4.265 1% 30 17389037
Breast cancer Invasive ductal breast carcinoma 8.43E–13 3.700 1% 64 15034139
Breast cancer Lobular breast carcinoma 3.33E–7 3.496 2% 64 15034139
Breast cancer Ductal breast carcinoma in situ stroma 5.81E–5 2.882 2% 66 19187537
Breast cancer Tubular breast carcinoma 3.32E–27 2.390 2% 2,136 22522925
Breast cancer Invasive ductal and invasive lobular breast carcinoma 3.47E–23 2.001 5% 2,136 22522925
Breast cancer Medullary breast carcinoma 4.21E–8 2.057 8% 2,136 22522925
Breast cancer Ductal breast carcinoma 6.05E–6 4.753 5% 47 16473279
Colorectal cancer Colon mucinous adenocarcinoma 4.97E–8 4.413 1% 105 17615082
Colorectal cancer Cecum adenocarcinoma 3.86E–8 3.135 2% 105 17615082
Colorectal cancer Rectosigmoid adenocarcinoma 5.22E–6 3.630 2% 105 17615082
Colorectal cancer Colon adenocarcinoma 2.69E–8 3.485 4% 105 17615082
Colorectal cancer Colorectal carcinoma 4.42E–12 4.475 1% 105 20957034
Colorectal cancer Colon carcinoma 3.04E–10 3.539 2% 40 20957034
Colorectal cancer Colon carcinoma epithelia 5.76E–7 2.270 6% 40 20957034
Colorectal cancer Rectal adenocarcinoma 1.12E–28 4.306 2% 130 20725992
Esophageal cancer Esophageal squamous cell carcinoma 7.35E–25 3.246 1% 106 21385931
Esophageal cancer Esophageal squamous cell carcinoma 3.44E–8 5.112 2% 34 20955586
Gastric cancer Gastric cancer 5.99E–7 6.107 1% 27 21132402
Gastric cancer Gastric adenocarcinoma 6.48E–5 2.238 1% 90 21447720
Gastric cancer Diffuse gastric adenocarcinoma 7.33E–8 2.562 1% 90 21447720
Gastric cancer Gastric intestinal type adenocarcinoma 6.67E–6 2.656 1% 90 21447720
Gastric cancer Gastric cancer 1.29E–8 3.563 1% 160 20965966
Gastric cancer Diffuse gastric adenocarcinoma 1.12E–6 3.264 2% 132 12925757
Gastric cancer Gastric mixed adenocarcinoma 1.09E–5 4.778 2% 132 12925757
Gastric cancer Gastric intestinal type adenocarcinoma 4.03E–13 2.947 3% 132 12925757
Gastric cancer Gastric intestinal type adenocarcinoma 7.03E–12 6.968 2% 69 19081245
Gastric cancer Gastric mixed adenocarcinoma 1.69E–5 8.780 3% 69 19081245
Head and neck cancer Head and neck squamous cell carcinoma 1.82E–16 4.913 1% 38 14676830
Head and neck cancer Salivary gland adenoid cystic carcinoma 2.54E–8 3.510 1% 22 12368205
Head and neck cancer Head and neck squamous cell carcinoma 8.79E–14 6.381 1% 54 14729608
Head and neck cancer Oral cavity squamous cell carcinoma epithelia 7.56E–5 2.097 2% 20 15381369
Head and neck cancer Oral cavity squamous cell carcinoma 1.17E–15 2.621 2% 79 21853135
Head and neck cancer Tongue carcinoma 2.45E–5 2.754 6% 84 17510386
Lung cancer Lung adenocarcinoma 2.63E–9 2.443 5% 156 20421987
Lung cancer Squamous cell lung carcinoma 6.20E–8 2.845 9% 156 20421987
Other cancer Yolk sac tumor, NOS 3.64E–11 6.521 1% 107 16424014
Other cancer Mixed germ cell tumor, NOS 4.87E–16 4.189 1% 107 16424014
Other cancer Teratoma, NOS 5.23E–8 5.705 4% 107 16424014
Other cancer Uterine corpus leiomyoma 2.49E–10 3.321 1% 77 19622772
Other cancer Skin basal cell carcinoma 1.65E–7 8.119 1% 87 18442402
Other cancer Malignant fibrous histiocytoma 1.30E–6 10.342 2% 54 15994966
Other cancer Pleural malignant mesothelioma 1.63E–5 5.298 3% 54 15920167
Ovarian cancer Ovarian carcinoma 3.52E–8 3.330 9% 195 18593951
Pancreatic cancer Pancreatic ductal adenocarcinoma 5.17E–17 4.117 1% 78 19260470
Sarcoma Dedifferentiated liposarcoma 3.74E–16 6.514 1% 158 20601955
Sarcoma Myxofibrosarcoma 6.33E–11 4.627 3% 158 20601955
Sarcoma Pleomorphic liposarcoma 4.94E–8 3.568 3% 158 20601955
Sarcoma Myxoid/Round cell liposarcoma 4.77E–9 2.956 5% 158 20601955
Sarcoma Malignant fibrous histiocytoma 1.30E–6 10.342 2% 54 15994966
Sarcoma Fibrosarcoma 7.42E–6 13.669 2% 54 15994966
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with TMB in DLBC, LGG, PRAD, SARC, SKCM, and THCA
as shown in Figure 7(b). MSI refers to the length change of
microsatellites due to insertion or deletion of a repeat unit in a
tumor compared to normal tissue, producing a new micro-
satellite allele [19]. Using Spearman rank correlation analysis,

MFAP2 expression was positively correlated with TMB in
COAD, LGG, MESO, and STAD, while it was negatively
correlated with TMB in BLCA, BRCA, HNSC, LIHC, READ,
SARC, SKCM, THCA, and THYM (Figure 7(c)). MSI and
high TMB may result from MMR deficiency [20]. As shown
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Figure 3: Correlation analysis of MFAP2 expression and clinicopathologic features across various cancers. (a) MFAP2 expression in main
pathological stages based on GEPIA2 database. (b) MFAP2 expression in main pathological stages based on TISIDB database. (c) MFAP2
expression in main pathological grades based on TISIDB database.
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Figure 4: Continued.
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Figure 4: Forest plots and Kaplan–Meier analysis of the association between MFAP2 expression and (a) DFI, (b) DSS, (c) OS, and (d) PFI.
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Figure 5: Continued.
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in Figure 7(d), MFAP2 expression was positively correlated
with MLH1, MSH2, MSH6, PMS2, and EPCAM in a variety
of tumors, while it was negatively correlated with EPCAM in
GBM, LGG, and THYM.

3.6. Immune Infiltration Analysis. Tumor-infiltrating lym-
phocytes, an essential part of the tumor microenvironment,
play an essential role in carcinogenesis [21, 22]. +erefore,
we analyzed the interaction of MFAP2 with various immune
cell infiltration in multiple TCGA cancers by searching
TIMER and TISIDB databases or by MCP and XCELL al-
gorithms. In TIMER database, it turned out that, in BLCA,

BRCA, and LGG, MFAP2 expression correlated most
strongly with the immune infiltration level, with a significant
positive correlation with the infiltration levels of B cells,
CD4+ T cells, CD8+ T cells, dendritic cells, macrophages,
and neutrophils (Figure 8(a)). +e detailed correlation in
each type of cancer is shown in Supplementary Figure 1. In
addition, other algorithms were also performed to assess the
correlation. +e correlation of MFAP2 expression with
immune infiltration in cancers was also analyzed in TISIDB
database (Figure 8(b)). MCP analysis (Figure 8(c)) and xCell
analysis (Figure 8(d)) were also performed to analyze the
correlation, separately. Interestingly, we found that the
expression levels of most monocytes, TAMs, M1, and M2
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Figure 5: Mutation features of MFAP2 in TCGA pan-cancer panel according to cBioPortal tool. (a) +e mutation frequency distribution.
(b) +e mutation sites distribution across protein domains. (c) +e 3D structure of MFAP2. (d) +e relevance of mutations and MFAP2
expression. (e) +e relevance of DNA copy variation and MFAP2 expression.
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macrophage markers positively correlated with MFAP2
expression levels in BLCA, COAD, ESCA, HNSC-HPV-,
KICH, LGG, LIHC, PAAD, PRAD, READ, STAD, THCA,

and THYM (Figure 8(e)), suggesting that MFAP2 might
regulate macrophage polarization in the aforementioned
tumors.
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Figure 6: DNAmethylation aberration (a) and association with four methyltransferases (b) of MFAP2 in pan-cancer analysis, with DNMT1
in red, DNMT2 in blue, DNMT3A in green, and DNMT3B in purple. ∗∗p< 0.01, ∗∗∗p< 0.001, and ∗∗∗∗p< 0.001.
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Figure 7: Correlation between MFAP2 expression and the tumor neoantigens (a), TMB (b), MSI (c), and MMRs (d) across cancers.
∗p< 0.05, ∗∗p< 0.01, and ∗∗∗p< 0.001.
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Figure 8: Continued.
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Figure 8: Correlation of MFAP2 expression with immune infiltration in cancers shown in TIMER database (a), TISIDB database (b), MCP
analysis (c), and xCell analysis (d). TIMER database showed the correlation of MFAP2 expression with macrophage polarization in cancers,
manifested by monocyte markers (CD86 and CSF1R), TAMmarkers (CCL2, CD68, and IL10), M1 macrophage markers (NOS2, IRF5, and
PTGS2), and M2 macrophage markers (CD163, VSIG4, and MS4A4A) (e). ∗p< 0.05, ∗∗p< 0.01, and ∗∗∗p< 0.001.
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An increasing number of reports have indicated an
important role of the tumor immune microenvironment in
tumor development [23, 24]. We analyzed the immune and
stromal scores of each tumor sample using the R package
ESTIMATE to observe the relationship between MFAP2
expression in 33 tumors and the StromalScore, Immune-
Score, and ESTIMATEScore (Supplementary Figure 2).

MFAP2 expression in BLCA, BRCA, HNSC, and KICH
tissues was shown by qPCR.

+e expression of MFAP2 was finally examined by qPCR
in BLCA, BRCA, HNSC, and KICH tissue samples and the
corresponding normal tissue samples. As a result, qPCR
showed that MFAP2 expression was significantly lower in
KICH tissues than in normal tissues, while it was signifi-
cantly higher in the other three tumors (Figure 9).

4. Discussion

MFAP2 is an essential component of extracellular elastic
microfibers, which interacts with and affects fibrin. It is also
the constitutive protein of most vertebrate microfibrils [25].
A representative feature of MFAP2 is its capacity to work
with TGF-β family growth factors, Notch, and Notch li-
gands, as well as a variety of elastins [26]. Mutations of
MFAP2 gene may indicate thrombosis, thoracic aneurysms,
metabolic diseases, and osteopenia in humans [27]. Studies
have shown thatMFAP2 is highly expressed in gastric cancer
tissues, and its high expression is significantly related to the
overall and disease-free survival of patients with gastric
cancer [7]. Furthermore, MFAP2 is found to be a possible
player in TGF-β/SMAD2/3 signaling pathway activation to
advance proliferation, migration, invasion, and epithelial-
mesenchymal transition of gastric cancer cells [11]. A pre-
vious study pointed out that MFAP2 is a novel microRNA-
29 target, and miR-29/MFAP2/integrinα5β1/FAK/ERK1/2
might be an important carcinogenic pathway in gastric
cancer progression [10]. Another study has also indicated
the relevance of MFAP2 in hepatic carcinoma, whereby
MFAP2 overexpression in hepatic carcinoma is associated
with cancer staging, poor OS, and disease-specific survival
[9, 26]. An in vitro experiment showed that downregulation
of MFAP2 inhibited the proliferation and migration levels of
liver cancer cells. Moreover, the transcription factors, DNA
methyltransferases, and immune factors in liver cancer
might interact with MFAP2 and accelerate tumor pro-
gression [27].

In this study, we found that MFAP2 exhibited different
expression levels in different tissues and cells. +e analysis
based on Oncomine, TCGA, GTEx, and UALCAN databases
revealed that MFAP2 mRNA and protein were aberrantly
expressed in a variety of tumors. However, this aberrant
expression was not associated with gene mutations and was
influenced to some extent by its promoter methylation.
Moreover, the expression of MFAP2 was significantly cor-
related with the pathological stage, grade, and prognosis of
many cancers, suggesting that MFAP2 played an oncogene
role in many tumors. In addition, MFAP2 expression was
also correlated with DNA methyltransferases, TMB, MSI,
and MMR-related genes. Aberrant DNA methylation is

frequently seen during cancer progression [28]. MMR is an
intracellular MMRmechanism, where the loss of function of
key genes may lead to irreparable DNA replication errors
and ultimately higher somatic mutations [29]. +e corre-
lation between MFAP2 and gene mutations further sug-
gested its importance in tumorigenesis, although such
mutations did not produce tumor neoantigens in most
cancers.

Combining multiple algorithms, we found that
MFAP2 was closely related to the immune infiltration
profile in tumor tissue, affecting not only the proportion
of immune cells but also the expression levels of many
immune-related genes, including immune checkpoints.
Among these, a type I transmembrane protein CD276
[30], recently identified as a promising target for tumor
immunotherapy [31], is notable. Numerous studies have
revealed that CD276 is overexpressed in a variety of tu-
mors, including leukemia [32], breast cancer [33], prostate
cancer [34], and other tumors, with expression levels
strongly correlating with poor patient prognosis, and
presumably involved in tumor immune evasion. In ad-
dition, CD276 has been shown to promote lactate pro-
duction by promoting hexokinase 2 expression, thereby
promoting glycolysis and drug resistance [35]. CD276 also
could lead to increased NF-κB activity and elevated VEGF
expression, further promoting tumor-associated angio-
genesis and tumor invasion [36]. Despite unclear un-
derlying mechanisms, the correlation between MFAP2
and CD276 in a variety of tumors suggests that MFAP2 is a
promising target for tumor immunotherapy. In the next
study, we intend to further verify the effect of MFAP2 on
tumor cell proliferation, migration, and invasion and
explore the molecular regulation mechanism.

5. Conclusion

In summary, our first pan-cancer analysis of MFAP2 sug-
gested that MFAP2 could affect clinical prognosis in various
cancers and immune cell infiltration, which deepened the
understanding of the MFAP2 role in tumorigenesis.
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Intervertebral disc degeneration (IDD) is considered the basis of serious clinical symptoms, especially for low back pain (LBP).
4erefore, it is essential to explore the regulatory role and diagnostic performance of dysregulated genes and potential drugs in
IDD. 4rough WGCNA co-expression analysis, 36 co-expression modules were obtained. Among them, MidnightBlue and Red
modules were the most related to IDD. Functional enrichment analysis showed that the Red module was mainly related to
neutrophil activation and regulation of cytokine-mediated signaling pathway and apoptosis, whereas the MidnightBlue module
was mainly related to extracellular matrix organization, bone development, extracellular matrix, extracellular matrix component,
and other extracellular matrices. Furthermore, 356 genes highly related to the module were screened to construct a protein
interaction network. Network degree distribution analysis showed that the known IDD-related genes had a higher degree of
distribution. Enrichment analysis demonstrated that these genes were enriched in MAPK_SIGNALING_PATHWAY
(FDR� 0.012), CHEMOKINE_SIGNALING_PATHWAY, and some other pathways. By constructing a disease-gene interaction
network, three disease-specific genes were finally identified. 4rough combining with the drug-target gene interaction network,
two potential therapeutic drugs, entrectinib and larotrectinib, were determined. Finally, based on these genes, the diagnostic
model in the training dataset, test dataset, and verification dataset all showed a high diagnostic performance. 4e findings of this
study contributed to the diagnosis of IDD and personalized treatment of IDD.

1. Introduction

Low back pain (LBP) is a multifactor disease, with inter-
vertebral disc degeneration (IDD) as a main causal factor [1].
4e aging of process intervertebral disc [2] will lead to the
degeneration of vertebral disc (IVD), resulting in nerve
symptoms including LBP [3]; 80% of the world population
was reported to suffer from LBP, which could even cause the
loss of labor in severe cases [4, 5]. Due to the lack of a clear
understanding of the pathological mechanism of IDD,
treatment or delay of IDD seems to be ineffective. With the
aging of the population, the incidence of IDD-induced LBP

is further increasing, pointing to the need of exploring the
pathological mechanism of IDD.

Large-scale gene expression studies showed that many
coding genes are differentially expressed in IDD, and some
of them play an important role in IDD [6, 7]. For example,
the expression of the inflammation-associated autocrine
factor CHI3L1, a tissue specific in nucleus pulposus (NP), is
significantly upregulated during denaturation, and this
protects IDD by promoting the Akt3 signaling pathway [8].
With the development of genetic and proteomic tools, our
understanding of genetic disorders in IDD has greatly im-
proved. Targeted dissonant gene therapy strategies
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developed encouraging results from animal models of IDD
[9]. 4e novel lentiviral vector expressing CHOP shRNA
effectively inhibits the apoptosis of rat annulus fibrosus (AF)
cells by silencing the expression of CHOP [10].

In recent years, more and more bioinformatics research
has been carried out on disc repair, and some effective
analysis results have been obtained. For example, bio-
informatic analyses identified CCND1, GATA3, TNFSF11,
LEF1, and DKK1 were related to degenerative disc diseases
[11]. Based on bioinformatics analysis, LOC102555094
might be demethylated by ZFP217, activating FTO, and
LOC102555094/miR-431/GSK-3β/Wnt played a crucial role
in IDD [12]. Jinwen Zhu et al. identified several lncRNA/
circRNA-miRNA-mRNA interaction axes (MALAT1/hsa_-
circRNA_102348-hsa-miR-185-5p- TGFB1/FOS, MALAT1-
hsa-miR-155-5p-HIF1A, hsa_circRNA_102399-hsa-miR-
302a-3p-HIF1A, MALAT1-hsa-miR-519d-3p-MAPK1, and
hsa_circRNA_100086-hsa-miR-509-3p-MAPK1), which
may be crucial for the treatment of IDD [13].

4e purpose of this study was to investigate the potential
function of mRNA expression in IDD based on RNA ex-
pression profiles from IDD patients. We systematically an-
alyzed mRNA expression profiles between IDD and healthy
patients. In addition, we developed a novel algorithm for
identifying mRNAs during IDD progression to determine
mRNA biomarkers for IDD diagnosis and prognosis.

2. Results

2.1. Identification of IDD-Related Gene Modules.
Methodology consisted of data collection, batch effect re-
moval, co-expression module identification, and enrichment
analysis, followed by protein network construction, network
feature selection, and classifier construction and verification.
4e workflow is shown in Figure 1. 4e datasets GSE56081
and GSE124272 were obtained from GEO, and the data were
standardized and re-annotated on the chip. To include more
sample sizes, the GSE56081 and GSE124272 expression
profile datasets were merged, and finally, we obtained the
expression profiles of 12296 genes. 4e overall gene ex-
pression in the GSE56081 dataset was higher than that in the
GSE124272 dataset, and there is a batch effect (Figure 2(a)),
which was removed using the R software package SVA to
obtain a new expression profile. As the new profile showed
consistent distribution among the datasets (Figure 2(b)), this
suggested that the expression profile without batch effects was
qualified for further data analysis. 4e abnormal gene ex-
pression modules in IDD were analyzed by applying the R
software package WGCNA to analyze IDD-related co-ex-
pression modules based on gene expression profiles. In this
study, the power of β� 7 (R̂2> 0.85 without scale) was the soft
threshold to ensure the scale-free network (Figure 2(c) and
2(d)). A total of 36 modules were identified (Figure 2(e)). 4e
correlation between diseases and modules was determined.
Firstly, the Pearson correlation coefficient between the feature
vectors of each module and the occurrence of diseases was
calculated (Figure 2(f)). Further analysis on the distribution
difference of the feature vectors of the significantly related
modules in IDD and the control group showed that the

feature vector distribution of the disease group in LightPink4,
MidnightBlue, and Red modules was remarkably higher than
that of the healthy group, whereas the feature vector distri-
bution of the LightCyan1 module in the disease group was
significantly lower than that of the healthy group
(Figure 2(g)). Based on these two methods, LightPink4,
MidnightBlue, Red, and LightCyan1 modules, which were
found to be closely related to the occurrence of IDD, were
determined as the key modules of IDD in this study.

2.2. Functional Involvement of IDD-Related Modules. To
better understand the functional involvement of the four
disease-related modules, IDD-related genes were first ob-
tained from the DisGeNET [14]. 4e intersection of gene sets
and IDD-related regulatory genes in the four IDD-related
modules was analyzed (Figure 3(a)). We found that the genes
in Red and MidnightBlue modules showed significant in-
tersection with IDD-related regulatory genes (P< 0.05),
suggesting that the genes in Red and MidnightBlue modules
were biologically correlated with IDD. GO functional en-
richment analysis was performed on the Red and Mid-
nightBlue modules. 4e Red module was enriched to 20 GO
biological processes, which are mainly related to neutrophil
activation and regulation of cytokine-mediated signaling
pathway and apoptosis, and to another 23 cellular compo-
nents that mainly involved cellular outer membrane and cell
adhesion (Figure 3(b)). Similarly, the MidnightBlue module
was enriched to a large number of GO terms but most sig-
nificantly to 10 biological processes, which mainly included
extracellular matrix organization, bone development, and
other biological processes (Figure 3(c)). 4e top 10 cellular
components contained extracellular matrix, extracellular
matrix component, and other components related to extra-
cellular matrix (Figure 3(d)). In addition, the MidnightBlue
module was also enriched in many molecular functions, such
as receptor regulator activity and extracellular matrix struc-
tural constituent (Figure 3(e)). Previous reports indicated that
pro-inflammatory cytokines, immune cells secretion, and
cytokines regulate extracellular matrix in the intervertebral
disc-abnormal modification enzymes, causing an imbalance
betweenmetabolic enzymes and anabolic enzymes, which will
lead to widespread back, neck and back pain [15]. 4ese
results suggested genes in the Red andMidnightBlue modules
shared a strong biological correlation with IDD.

2.3. Construction of IDD-SpecificProtein InteractionNetwork.
To identify new IDD-related genes, the gene sets in the Red
and MidnightBlue modules were selected, and the Pearson
correlations between the genes in the modules and the
feature vectors of the modules were calculated, respectively.
A total of 855 genes with a correlation greater than 0.7 were
selected, and the expression table of these genes was further
calculated to determine the AUC of IDD. We obtained a
total of 356 genes with AUC higher than 0.8 and mapped
these 356 genes to the STRING database [16] (https://string-
db.org/). From here, 533 interaction data involving 252
genes were collected to construct an IDD-specific protein
interaction network. In the network, a few genes were linked
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Figure 1: Workflow chart.
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by a large number of other genes, and many genes only
interacted with a few genes (Figure 4(a)), and among these
genes, MAPK1 was relatively the genes with the largest
interaction with other genes in the network. 4e p38 MAPK
signaling pathway plays an important role in many in-
flammatory andmetabolic changes during disc degeneration
[17]. 4e degree distribution in the network was analyzed
(Figure 4(b)), and it has been found that the majority of
nodes had degrees around 1 and a few nodes were above 10,
showing a median law distribution, which is consistent with
the characteristics of biological networks. 4ere were 9
known IDD-regulated genes in the network, and most of
these genes had a large degree ranking, suggesting that a
larger node degree in the IDD-specific protein interaction
network is more closely related to IDD (Figure 4(c)). 4e
degree of nodes in the network was used as rank for GSEA
function enrichment analysis, and these genes were found to
be significantly enriched into 5 KEGG pathways
(Figure 4(d)–4(h)), which were MAPK_SIGNA-
LING_Pathway (FDR� 0.012) and CHEMO-
KINE_SIGNALING_Pathway (FDR� 0.024).

2.4. Key Genes of IDD Were Mined and Identified.
Considering the significance of IDD-specific protein net-
works, we introduced all IDDRGs into the network. 4e
interaction relationships between two IDDRGs and between
two IDDPPIG were obtained from the STRING database to
construct a new IDD regulation network, which contained
435 nodes and 4362 pieces of interaction information, and
there were 194 IDDRGs (Figure 5(a)). We found that the
degree of IDDRG in the network was significantly higher
than that of IDDPIG. 4e enrichment significance of each
IDDPPIG gene by IDDRG was calculated, and the results

demonstrated that a total of 168 IDDPPIG genes (69.7%)
were significantly enriched by IDDRG with a P< 0.05,
suggesting that a large number of IDDPPIG genes in the
network were indirectly or interrelated with IDDRG. 4e
network characteristics of IDDRG and IDDPPIG were
further systematically compared, and it was observed that
the average shortest path between each IDDPPIG and
IDDRG was significantly (p � 1E − 16) shorter than the
average shortest path between other IDDPPIGs
(Figure 5(b)), indicating that there was a closer interaction
relationship between IDDPPIG and IDDRG. 4e multiples
of the average shortest path from an IDDPPIG gene to an
IDDRG and the average shortest path from each IDDPPIG
gene to other IDDPPIG were calculated, and we found that
most of them were between 0.8 and 0.85, which was lower
than that of the random network (Figure 5(c)). After ana-
lyzing the degree distribution of each IDDPPIG in the
network, it is observed that the average degree was higher
than that of the random network (Figure 5(d)). In addition,
we also found a higher proportion of IDDRG interacting
with IDDPPIG gene than that in the random network
(Figure 5(e)).

Based on the above results, IDDRG with a significantly
high interaction ratio and IDDPPIG with both significantly
low multiple of shortest path and high degree of distribution
were selected as a new potential key gene of IDD. Here, we
obtained three genes (Table 1).

2.5. Potential Drugs and Drug Targets of Key IDD Genes.
To further determine the potential drug targets of key IDD
genes, following Wang et al. [18], we determined the
network distance between these 3 key genes and 5490 drugs
on DrugBank (Figure 6(a)), and found that the distance
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Figure 2: Identification of IDD-related modules. (a) Expression distribution in each sample in the combined dataset of GSE56081 and
GSE124272. Blue is the GSE56081 dataset sample, Red is the GSE124272 dataset sample. (b) Expression distribution in each sample in
GSE56081 and GSE124272 datasets after removing batch effect, Blue is the GSE56081 dataset sample, Red is the GSE124272 dataset sample.
(c) Analysis of the scale-free fit index for various soft-thresholding powers (β). (d) Analysis of the mean connectivity for various soft-
thresholding powers. (e) Dendrogram of all expressed genes clustered based on a dissimilarity measure (1-TOM). (f ) 4e correlation
between co-expression module and IDD, where the upper right corner represents significant P value, and the lower left corner represents
correlation coefficient, ∗p< 0.05, ∗∗p< 0.01, and ∗∗∗p< 0.001. 4e number in parentheses is the number of genes in the module. (g) 4e
difference distribution of the feature vectors of modules that are significantly related to IDD in IDD and the control group.
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between the three key genes and the drug was shorter than
that of the random background. A total of two drugs were
determined according to a global FDR < 0.05 (Table 2).
Subsequently, the relationship between these two drugs and
the three key IDD genes (SIRT7, NTRK2, CHI3L1) was
further analyzed by molecular docking methods
(Figure 6(b)). When drugs DB11986 and DB14723 were
combined with CHI3L1 protein, both drugs could well bind
to the active site of the protein and carried −9.7 kcal/mol
and 10.0 kcal/mol, respectively. Such a high docking score
indicated that these two molecules may have potential
biological activity against CHI3L1 protein. When the two
drugs bound to NTRK2 protein, the docking score was
significantly reduced to −8.6 kcal/mol and −7.9 kcal/mol,
respectively, though both of them bound to the active site.

4e drug DB11986 could be extended from the other side of
the active site due to the molecular structure of the additive
farm, but DB14723 was all embedded into NTRK2 protein
for its relatively small molecular structure. Interestingly,
when drugs DB11986 and DB14723 interacted with SIRT7
protein, the docking scores of the two drugs were signif-
icantly different. Among them, the docking score of
DB11986 for SIRT7 was −9.5 kcal/mol, whereas that of
DB14723 for SIRT7 was −7.9 kcal/mol. Such a significant
difference also indicated that there may also be potential
differences in the activity of these two drugs against SIRT7
protein. 4ese results suggest that the different binding
affinities of the two drugs to the three proteins could in-
dicate the potential differences in interaction and biological
activity.

163

69
1

110

3

1204

29
p=0.043482

14
p=0.045

red

midnightblue

lightpink4

lightcyan1
IDD Regulation of genes

(a)

geneontology_Biological_Process geneontology_Cellular_Component

0.025 0.050 0.075 0.025 0.050 0.075
neutrophil mediated immunity

neutrophil activation
neutrophil degranulation

neutrophil activation involved in immune response
cellular monovalent inorganic cation homeostasis

regulation of cellular pH
extrinsic apoptotic signaling pathway

monovalent inorganic cation homeostasis
regulation of pH

regulation of cytokine−mediated signaling pathway
regulation of extrinsic apoptotic signaling pathway

regulation of mitotic spindle assembly
regulation of intracellular pH

labyrinthine layer development
regulation of erythrocyte differentiation

regulation of response to cytokine stimulus
membrane ra� organization

cellular response to tumor necrosis factor
regulation of myeloid leukocyte mediated immunity

positive regulation of secretion
focal adhesion

cell−substrate adherens junction
cell−substrate junction

cytoplasmic vesicle lumen
vesicle lumen

primary lysosome
azurophil granule

secretory granule lumen
specific granule

adherens junction
ficolin−1−rich granule

uropod
cell trailing edge
vacuolar lumen

azurophil granule lumen
mitochondrial outer membrane

nuclear speck
secretory granule membrane

vacuolar membrane
organelle outer membrane

outer membrane
PML body

ficolin−1−rich granule lumen

Enrichment Ratio

FDR
0.01
0.02
0.03
0.04

(b)

extracellular matrix organization

skeletal system development

extracellular structure organization

skeletal muscle tissue development

regulation of morphogenesis of
a branching structure

skeletal muscle organ development

bone development

skeletal system morphogenesis

connective tissue development

muscle organ development

0.02 0.03 0.04 0.05 0.06
Enrichment Ratio

size
20
30
40
50
60

3

4

5

6

−log10(FDR)

(c)

extracellular matrix

collagen−containing extracellular matrix

complex of collagen trimers

extracellular matrix component

lysosomal lumen

vacuolar lumen

fibrillar collagen trimer

banded collagen fibril

adherens junction

0.02 0.04 0.06
Enrichment Ratio

2
3
4
5
6

−log10(FDR)

size
10
20
30
40
50

(d)

receptor ligand activity

receptor regulator activity

extracellular matrix
structural constituent

heparin binding

growth factor activity

DNA−binding transcription activator activity,
RNA polymerase II−specific

glycosaminoglycan binding

collagen binding

0.02 0.03 0.04 0.05
Enrichment Ratio

size
20
30
40

2.0

2.5

3.0
−log10(FDR)

(e)
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2.6. Identification and Validation of IDD Biomarker.
Markers related to IDD were further determined based on
three disease-specific genes, we used GSE124272 as the
training set, GSE56081 as the test set, and GSE23130 and
GSE150408 as the external validation set. SIRT7, NTRK2,
and CHI3L1 served as features in the training dataset to

obtain their corresponding expression profiles.4e heat map
of expression profiles in each dataset demonstrated that
SIRT7, NTRK2, and CHI3L1 were all highly expressed in the
IDD group in different datasets (Figure 7(a)). After ana-
lyzing the expressions of the three genes in different datasets,
we found that SIRT7 and NTRK2 genes were significantly
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Figure 6: Continued.

Table 1: Network characteristics of 3 key genes.

Symbol IDDRG
Count IDDRG Count p value IDDRG ratio IDDRG ratio p value Shortest ratio Shortest

Ratio_p value
IDDRG

enrichment p value
SIRT7 16 0.000609 0.94 0.024 0.76 0.01 4.93E-28
NTRK2 21 3.04E-06 0.87 0.041 0.77 0.015 5.33E-35
CHI3L1 18 8.84E-05 0.86 0.048 0.76 0.01 9.30E-30
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overexpressed in GSE124272 (Figure 7(b)), that NTRK2 and
CHI3L1 were significantly highly expressed in GSE56081
dataset (Figure 7(c)), that SIRT7 and CHI3L1 were signif-
icantly highly expressed in GSE23130 dataset (Figure 7(d)),
and that SIRT7 and NTRK2 were significantly highly
expressed in GSE150408 dataset (Figure 7(e)). Also, we

added experimental validation, specifically, we collected
tissues from five early IDD patients (III) and five advanced
IDD patients (V) from 4e 4ird People’s Hospital of
Nanning and evaluated the expression differences of SIRT7,
NTRK2, and CHI3L1 using RT-PCR, and as expected, they
had a trend of higher expression in advanced IDD patients,
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SI
TR

7

(b)

Figure 6: Potential drugs and drug-target analysis of key IDD genes. (a) 4e distribution of network-regulated distance between drug and
disease key genes. (b) Interaction results of drugs DB11986 and DB14723 with CHI3L1, NTRK2, and SIRT7 proteins. Among them, CHI3L1
protein was added sky blue surface, NTRK2 protein was added rosy brown surface, and SIRT7 protein was added sea green surface.4e drug
DB11986 was displayed as yellow, and DB14723 was displayed as orchid.

10 Journal of Oncology



SIRT7

CHI3L1

NTRK2

Group

Sc
al

e e
xp

−2
−1
0
1
2

G
ro

up Control
IDD

GSE124272 DatasetGSE150408 Dataset GSE56081 Dataset GSE23130 Dataset

(a)

Group

Control

IDD

* ** −

0

5

10

SIRT7 NTRK2 CHI3L1

Ex
pr
es
sio

n

(b)

SIRT7 NTRK2 CHI3L1

Group

Control

IDD

. ** ***

0

2

4

6

8

Ex
pr
es
sio

n

(c)

Group

Control

IDD

SIRT7 NTRK2 CHI3L1

* − **

0

2

4

6

Ex
pr
es
sio

n

(d)

Group

Control

IDD

SIRT7 NTRK2 CHI3L1

** * .

0.0

2.5

5.0

7.5

10.0

12.5

Ex
pr
es
sio

n

(e)

Figure 7: Continued.

Table 2: Potential drugs for key genes.

Drug_id Drug name Distances P value FDR
DB11986 Entrectinib 0.2238934 5.219693e-06 2.865090e-02
DB14723 Larotrectinib -0.9601777 2.416713e-12 1.326775e-08
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with CHI3L1 and NTRK2 having a significant expression
difference (Supplementary Figure S1). 4ese findings sug-
gested that the expression of a single gene in different
datasets was easily disturbed by other factors. 4erefore, we
used the three genes as a panel to construct a SVM classi-
fication model. Tenfold cross-validation was used to test the
model, and the classification accuracy was 100%, as all the 16
samples were correctly classified in the training dataset. 4e
sensitivity of the model to IDD was 100%, the specificity was
100%, and the area under ROC curve (AUC) was 1.0. When
using the GSE56081 dataset for verification, 9 out of 10
samples were correctly classified, with a classification ac-
curacy of 90%, a model sensitivity to IDD of 80%, a spec-
ificity of 100%, and an area under ROC curve of 0.96. 4e
GSE23130 dataset was further used for verification and
accurately classified 19 samples out of 23, with a classifi-
cation accuracy of 83.6%, a sensitivity of the model to IDD of
50%, a specificity of 94%, and area under ROC curve of 0.95.
4e GSE150408 dataset was further used for verification and
accurately classified 27 samples out of 34, with a classifi-
cation accuracy of 88.2%, a sensitivity of the model to IDD of
70.6%, a specificity of 79.4%, and an area under ROC curve
of 0.94 (Figure 7(f )). 4ese results indicated that the

diagnostic prediction model based on SIRT7, NTRK2, and
CHI3L1 could effectively distinguish IDD patients from
control population; therefore, these genes could serve as
reliable biomarkers for specific diagnosis of IDD.

3. Discussion

Low back pain (LBP) caused by intervertebral disc degen-
eration (IDD) is the most common musculoskeletal system
disease [19]. IDD is the result of the interaction of many
factors, including abnormal pressure load, inflammatory
factors, cell aging, and related signal pathways, but the final
result is the imbalance of extracellular matrix synthesis and
catabolism [20]. In this study, the gene expression patterns
between IDD and healthy samples were systematically an-
alyzed, and two disease-related gene modules were identified
by the weighted co-expression method. 4ese genes were
mainly enriched in neutrophil activation and regulation of
cytokine-mediated signaling pathways, and extracellular
matrix-related multiple biological pathways, suggesting that
these modular genes have a strong biological correlation
with IDD. Based on this, we constructed a protein inter-
action network and observed high-degree nodes with known
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Figure 7: Identification and validation of IDD biomarker. (a) Heatmaps of expression profiles of SIRT7, NTRK2, CHI3L1 genes in the
training set, test set, GSE150408 Dataset, and validation set. (b) Differential distribution of SIRT7, NTRK2, CHI3L1 genes in the GSE124272
dataset. (c) Differential distribution of SIRT7, NTRK2, CHI3L1 genes in the GSE56081 dataset. (d) Differential distribution of SIRT7,
NTRK2, CHI3L1 genes in the GSE23130 dataset. (e) Differential distribution of SIRT7, NTRK2, CHI3L1 genes in the GSE150408 dataset.
(f ) Classification of ROC curve of the lncRNA diagnostic model in four datasets.
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IDD, and found that a higher correlation of related genes.
Finally, IDD-related genes were introduced to establish a
disease-specific network. 4rough the analysis of network
topology, SIRT7, NTRK2, and CHI3L1 were finally identi-
fied as new IDD-specific genes, and these genes were sig-
nificantly highly expressed in IDD samples.

Sirtuin 7 (SIRT7), which is a nicotinamide adenine
dinucleotide (NAD+)-dependent histone deacetylase, is
mainly located in the nucleus. SIRT7 is involved in a variety
of cellular processes, including aging, DNA repair, tu-
morigenesis, and metabolism [21, 22]. SIRT7 is proven to
be an important regulator of cartilage homeostasis and is
involved in the development of OA [23]. SIRT7 expression
is significantly downregulated in OA articular cartilage,
which is consistent with autophagy gene expression;
moreover, loss of SIRT7 accelerates type II collagen ca-
tabolism [24]. Neurotrophic receptor tyrosine kinase 2
(NTRK2) is a member of the neurotrophic receptor kinase
(NTRK) family and a membrane-bound receptor. When
neurotrophic proteins bind, members of the NTRK family
and MAPK pathways are phosphorylated and give out
signal through NTRK2, leading to cell differentiation.
Jinhuai Hu et al. reported that NTRK2 is an oncogene, and
its overexpression partially reverses the inhibitory effect of
miR-22 on tumor proliferation and invasion [25]. In-
flammation-related autocrine factor CHI3L1, which is
tissue-specific and significantly upregulated during dena-
turation, protects IDD by promoting the Akt3 signaling
pathway [8]. CHI3L1 can be expressed by a variety of cells,
including chondrocytes, smooth muscle cells, and osteo-
sarcoma cells, but its function is usually related to in-
flammation and tissue remodeling [26–28]. According to
current studies, SIRT7 and NTRK2 have not been previ-
ously reported in IDD. 4e current study is the first to
reveal the involvement of these two genes may be involved
in the occurrence and development of IDD.

Entrectinib is an effective oral tyrosine kinase inhibitor
of TrkA, TrkB, and TrkC (encoded by the genes neurotrophic
tyrosine receptor kinase (NTRK) 1, 2, and 3, respectively). In
a clinical study of 25 patients who had various malignancies
containing NTRK, ROS1, or ALK gene fuses and received an
effective dose of entrectinib, an overall response rate of 79%
with significant tumor regression in all NTRK-altered tu-
mors (including ETv6: NTRK3 translocation) [29] was
observed. Larotrectinib is a selective inhibitor of neuro-
trophin receptor kinase (NTRK) and can be used to treat
solid tumors carrying NTRK gene fusion [30, 31]. David S
Hong et al. showed that among 159 patients with TRK
fusion-positive cancer who received larotrectinib, 121 out of
153 evaluable patients showed an objective response (79%,
95% CI 72–85), and 24 (16%) showed a complete response
(16%) [32]. As NTRK2 was confirmed as a prognostic gene
for IDD in this study, we speculated that entrectinib and
larotrectinib may relieve IDD through NTRK2.

Although we analyzed and verified the abnormal ex-
pression and functional role of genes in IDD from multiple
data coalitions using bioinformatics techniques, some lim-
itations of this study should be noted. Firstly, the sample
lacked some clinical follow-up information; thus, we failed

to consider factors such as the presence of other patient
health conditions. Secondly, the results obtained only by
bioinformatics analysis were insufficient, which required
further experimental validation. 4erefore, further genetic
and experimental studies with larger sample sizes and ex-
perimental validation are needed.

4. Conclusion

In conclusion, in this study, we systematically analyzed the
gene expression patterns in IDD and conducted a large-scale
genome-wide study on the RNA expression profile to
identify two gene modules closely related to IDD.4ree new
IDD-specific genes have been found for IDD through dis-
ease-association network mining, and the three genes were
involved in a variety of important biological pathways. At
the same time, we also discovered that entrectinib and
larotrectinib may be effective in the treatment of IDD, which
provides a target and reference for clinicians and biological
experimentalists.

5. Materials and Methods

5.1. RNA Expression Profile. All gene expression profiles of
human intervertebral disc degeneration were retrieved from
the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/), and 4 datasets with a sample
size of no less than 10, namely, GSE56081 [33], GSE124272
[34], GSE23130 [7], and GSE150408, were selected. Among
them, there were 10 samples in GSE56081, including 5
samples from patients with IDD and 5 samples from the
nucleus pulposus of normal control. 4e platform was
Arraystar Human lncRNA microarray V2.0 (Agi-
lent_033010 Probe Name version). 4e GSE124272 dataset
contained of 8 IDD samples and 8 control samples on the
Agilent-072363 SurePrint G3 Human GEV3 8× 60K
Microarray 039494. 4e GSE23130 dataset contained a total
of 23 samples on Affymetrix Human X3P Array.

4e GSE56081 dataset is a lncRNA chip platform. 4e
probe sequence of the GSE56081 dataset was aligned to the
genome (GRCh38.p13, https://ftp.ebi.ac.uk/pub/databases/
gencode/Gencode_human/release_39/gencode.v39.
primary_assembly.annotation.gff3.gz) through the method
of chip re-annotation to determine the transcript IDmapped
by the probe. Each transcript cluster was assigned to
Ensembl gene ID to obtain the matching relationship be-
tween probe and gene to acquire gene expression profile.

4e specific process is as follows:

(1) 4e matrix files expressing the sequence tags were
downloaded to obtain the nucleic acid sequences of
these probes.

(2) 4e nucleic acid sequences of these probes were
matched to the human genome library (ENCODE
database, version 38, https://www.gencodegenes.org/
human/) using SeqMap software [35]. 4e library
requires sequence matches and no mismatches, and
the corresponding chromosomal positions of the
probes were obtained.
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(3) A total of 19873 re-annotated mRNA probes were
obtained by simultaneously removing the presence
of multiple matching probes.

Finally, for all the expression profiles, the probe was
mapped to the gene, and whenmultiple probes were mapped
to the same gene, the median value was taken as the ex-
pression value of the gene. To enlarge the sample size of the
dataset, we combined the GSE56081 and GSE124272 data-
sets, combat function of R software package SVA [36] was
used to remove the batch effect to obtain a new expression
profile, and the GSE23130 dataset served as an external
independent verification queue.

5.2. Weighted Co-Expression Network Analysis. After
merging the datasets of GSE56081 and GSE124272 and
removing the batch effect, the weighted co-expression
module was constructed using the gene expression
profile. Specifically, the RNA expression data profile of
the genes was used to examine whether the samples and
genes were qualified. 4en, we used the WGCNA [37]
package in R to construct a scale-free co-expression
network for the genes. 4e Pearson’s correlation matrices
and average linkage method were performed for pair-
wise. 4en, a weighted adjacency matrix was constructed
using a power function Amn � |Cmn|β (Cmn �Pearson’s
correlation between gene m and gene n; Amn � adjacency
between gene m and gene n). β, which is a soft-thresh-
olding parameter, emphasizes strong correlations be-
tween gene and indicates weak correlations. After
determining the power of β, the adjacency was trans-
formed into a topological overlap matrix (TOM) for
measuring the network connectivity of a gene, which was
defined as the ratio of sum of its adjacency to all other
genes, and then, the corresponding dissimilarity
(1-TOM) was calculated. To classify genes with similar
expression profiles into gene modules, average linkage
hierarchical clustering was performed according to the
TOM-based dissimilarity measured with a minimum size
(gene group) of 30 for the gene dendrogram. To further
analyze the module, we calculated the dissimilarity of
module eigen gene, determined a cut line for module
dendrogram, and merged some modules.

5.3. Identification of Co-Expression Modules Associated with
IDD. We defined the module related to the occurrence of
IDD as the IDD Module. Specifically, the correlation be-
tween ME and IDD features was calculated to identify the
relevant modules with significance P< 0.05. Further analysis
on the distribution differences of each module’s feature
vectors in IDD and control group was performed to select
the modules with significant FDR< 0.05. Also, we obtained
known IDD-related gene (IDDRG) sets from the DisGeNET
[14] database, analyzed the intersection of genes and
IDDRGs in each Module, evaluated the enrichment sig-
nificance of IDDRG by hypergeometric test, and selected the
modules with significantly rich IDDRGs as the final IDD
Module.

5.4. Functional Enrichment Analyses. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis was performed using the R
package clusterProfiler [38] for screening genes associated
with the IDDModule, so as to identify over-represented GO
terms in three categories (biological processes, molecular
function, and cellular component) and KEGG pathway. For
both analyses, a FDR of <0.05 was considered to denote
statistical significance.

5.5.Constructionof IDD-RelatedProtein InteractionNetwork.
In the IDDModule, the correlation between the genes in the
Module and the feature vectors of the Module was calculated
to select gene set with the correlation coefficient greater than
0.7. 4e classification performance of each gene expression
in IDD and control group was further analyzed, and the gene
set with AUC greater than 0.8 was determined as the final
core gene set of IDD Module. 4ese gene sets were mapped
to the STRING v11.0 [16] database to obtain the interaction
data among these genes, and an IDD-related protein in-
teraction network (IDDPPI) was established. Visual analysis
was performed using cytoscope [39], and the degree of nodes
in the protein interaction network was used as the rank.
GSEA [40] enrichment analysis was employed to obtain
significantly enriched KEGG pathways to evaluate network
function.

5.6. Construction of IDDRG-IDDPPI-Related Network.
4e genes in IDDRG and IDDPPI (IDDPPIG) were mapped
to the STING V11.0 [16] database to construct a protein
interaction network. 4e degree distribution of each
IDDPPIG and IDDRG in the network was further analyzed.
4e significance of each IDDPPIG enriched by IDDRG and
the proportion of IDDPPIG gene interaction were calculated
using a hypergeometric test to analyze the network char-
acteristics of IDDPPIG and IDDRG, and the average
shortest path between two IDDPPIG or between IDDPPIG
and IDDRG was compared. 4e multiple relationship dis-
tribution of the average shortest path between two IDDPPIG
genes and between an IDDRG and an IDDPPIG gene was
calculated. Based on the above characteristics, the random
perturbation method was used to establish a random net-
work as the background, and the significant genes were
selected as the new key genes of IDD (IDDG).

5.7. IDDG and Drug-Target Network Construction. To ex-
amine the potential drug effects of IDDG, the relationship
between drugs and drug-target genes was obtained from
DrugBank v5.1.7 database [41], and a total of 16196 drug-
gene interaction data were identified. 4ese drug-target
genes and IDDG genes were mapped to the STRING V11.0
[16] database to obtain gene interaction information, and a
drug-gene-IDDG network was constructed. As previously
described by Wang et al. [18], the shortest path of drugs to
IDDG was calculated for identifying potentially related
drugs to IDDG.

14 Journal of Oncology



Specifically, we calculated the proximity of the drug to
IDDG. In this case, we can give S, the IDD-related gene set
IDDG; D, the degree of IDD-related gene set nodes in PPI;
and T, drug-target gene collection. Distance D (s, t) is the
shortest path between s node and Tnode (where S ∈ S is IDD-
related gene; T ∈T is drug-target gene), and the calculation
method is as follows:

d(S, T) �
1

|T|

t∈T

min
s∈S

(d(s, t) + ω), (1)

where ω is the weight of the target gene. If the target gene is a
gene in the IDD-related gene set, the calculation method is
ω� −ln (D+ 1); otherwise, ω� 0.

We generated the simulated reference distance distri-
bution corresponding to the drug. To put it simply, a group
of protein nodes were randomly selected in the network as
the simulated drug target, and the number of nodes was the
same as the target size (denoted as R). Next, the distances d
(S, R) between these simulated drug targets (representing the
simulated drug) and DMEGs were calculated. After 1000
random repeats, the simulated reference distributions were
generated. At the same time, the mean and standard devi-
ation of the μd (S, R) and σd (S, R) reference distributions
and the corresponding actual observed distances were
converted into standardized scores, that is, proximity Z:

z(S, T) �
d(S, T) − μd(S,R)

σd(S,R)

. (2)

Finally, the shortest path to IDDG was significantly
higher for the drug than for the background drug according
to the simulated reference distance distribution. 4e degree
of binding between IDDG and drugs was evaluated by
molecular docking.

5.8. Establishment of IDD Diagnostic Prediction Model and
Evaluation of Model Prediction Performance. IDDG was
used to construct a diagnostic prediction model based on
support vector machine (SVM) classification [42] to predict
the IDD and control samples. SVM, which is a supervised
machine learning algorithm model, analyzes data, and
identifies patterns. A SVM creates a hyperplane, in high or
infinite dimensions, and can be used for classification and
regression. Given a set of training samples in which each
marker belongs to two classes, an SVM training algorithm
builds a model that assigns new instances to one class or
another, making it an improbabilistic binary linear
classification.

In this study, GSE124272 was the training set, GSE56081
was the test set, and GSE23130 was the external verification
set. 4e model was constructed in the training dataset, and
the classification ability of the model was verified by the
tenfold cross-validation method. 4e established model was
then used to predict the samples in the test set and validation
dataset. 4e predictive ability of the model was evaluated
using area under the ROC curve (AUC), and the sensitivity
and specificity of the model for IDD prediction were
analyzed.

5.9. Statistical Analysis. Ggplot2 of R software was used for
visualization, and heatmap was used to draw heat maps.
Fisher’s exact test was used for multigroup comparison, and
significance was defined as P< 0.05. 4e Benjamini method
was used for multiple test correction to obtain FDR. All of
these analyses are performed in R 3.4.3.
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Objective. To identify new tumor marker genes available for early tumor screening, differentially expressed gene profiles of
multiple tumors were compared using Genotype-Tissue Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE), and -e
Cancer Genome Atlas (TCGA) databases. As AP1M2 was highly and differentially expressed in invasive breast carcinoma, the
purpose of this study was to explore the association of AP1M2 gene with the survival, immune invasion, and tumor neoantigens of
patients on a pan-cancer basis.Methods. -e expression and distribution of AP1M2 gene in tumor tissues and the corresponding
normal control tissues were analyzed using the pan-cancer databases GTEx, CCLE, and TCGA. Kaplan-Meyer survival plots and
proportional hazards model (COX) were employed to evaluate actions of AP1M2 on the clinical prognosis of tumor patients.
Subsequently, the association of AP1M2 expression with immune invasion in different tumor types was explored. Simultaneously,
the investigation of the interrelationship of AP1M2 and tumor neoantigens of the immune system, unstable microsatellite, DNA
repair genes, and DNA methyltransferases were explored, and the mutation frequency of AP1M2 gene in diverse tumors was
studied. Several tumor types were analyzed using gene-set enrichment analysis (GSEA). Results. AP1M2was abundantly expressed
in a wide range of cancers, and its expression level was positively correlated with the outcome of tumor victims. -rough a study
on AP1M2 action on clinical prognosis and immune infiltration in tumor patients, AP1M2 expression in breast-infiltrating
carcinoma was found to be highly associated with patients’ overall survival and infiltration levels of macrophages, dendritic cells,
T cells (CD4+ and CD8+), and B cells. Also, AP1M2 expression was positively correlated with tumor immune neoantigens and
microsatellite instability in breast invasive carcinoma. -e effect of AP1M2 on tumors was analyzed by GSEA, and findings
demonstrated that AP1M2 expression levels in most tumors influenced the activation of tumor-associated pathways and immune-
associated pathways. Conclusions. -ese findings suggest that AP1M2 expression levels are significantly correlated to patients’
outcomes and levels of immune infiltration in most cancer types, including Tcells (CD8+ and CD4+), macrophages, neutrophils,
and dendritic cells (DCs), particularly in breast cancer. -e results indicate that AP1M2 may influence the tumor environment of
invasive breast cancer patients and it may be a target contributing to early screening and treatment for breast cancer, helping
improve the efficiency of early screening and overall survival rate in invasive breast cancer patients.

1. Introduction

AP1M2 belongs to the adhesive protein-associated adaptor
protein complex 1 that functions in the anti-Golgi network
(TGN) and protein sorting in the endothelium.-e adaptor-
related protein complex has been characterized bymediating

the recruitment of adhesive proteins to membranes and the
recognition of sorting signals within the cytoplasmic tail of
transmembrane cargo molecules. AP1M2 is phylogenetically
conserved and expressed in all cell types detected, from yeast
to mammals. Meanwhile, it is homologous in a variety of
eukaryotes [1].
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As little research has been made on the correlation
between AP1M2 expression levels and tumorigenesis de-
velopment, this study initiated a pan-cancer analysis of
AP1M2 using databases TCGA, GTEx, and CCLE. Several
influencing factors such as gene expression, survival status,
genetic alterations, immune infiltration, and associated
cellular pathways were analyzed. Meanwhile, the role of
AP1M2, possible molecular mechanisms of AP1M2 in dif-
ferent tumor pathogeneses, and clinical outcomes were si-
multaneously investigated. We found that AP1M2
expression could affect survival prognosis, immune infil-
tration, and tumor load, as well as methylation in tumors,
especially BRCA.

-is research currently revealed that AP1M2 expression
level in BRCA was positively associated with genetic dif-
ferences, immune system, DNA methyltransferase, tumor
mutational load, and microsatellite instability. -is gene has
the potential to be a promising target for early screening and
even BRCA treatment, which can benefit patients with ef-
ficient early screening of invasive breast cancer with im-
proved overall survival.

2. Materials and Methods

2.1. Transcriptional Data Acquisition. First, we detected ex-
pression levels of genes in 31 tissues using the GTEx dataset
(https://commonfund.nih.gov/GTEx/), and further, we ana-
lyzed the gene expression levels in 31 tissues from the CCLE
database (https://portals.broad.institute.org/ccle/), which was
downloaded for each tumor cell line and the expression levels
of 21 tissues were determined following tissue origin. mRNA
data in 31 tumor samples were then obtained from the TCGA
database (https://www.cancer.gov/about-nci/organization/ccg/
research/structural-genomics/tcga) [2]. Data were ultimately
obtained, and differences were compared by Kruskal–Wallis
tests.

2.2. Differential Gene Expression Analysis. Subsequently,
differences of AP1M2 gene expression in the tumor samples
and the corresponding normal control tissues were to be
determined. We downloaded TCGA Pan-Cancer and GTEx
datasets from the UCSC Xena database (https://xena.ucsc.
edu/). We obtained the expression difference of AP1M2
from the TCGA database of both tumor tissues and cor-
responding normal control tissues in 20 tumor samples.
Considering limited normal tissue samples in TCGA, we
synthesized normal tissue data from GTEx database and
TCGA tumor tissues to determine expression differences of
27 tumors. -e significance of the difference at threshold
P< 0.05 was calculated using RStudio version 1.1.456
(RStudio Inc, USA).

2.3. Survival Analysis at a Pan-Cancer Level. -is work
assessed interrelationship between AP1M2 expression level
and 33 tumor prognoses in the TCGA cohort, and univariate
COX regression analyses for disease-free interval (DFI),
overall survival (OS), progression-free interval (PFI), and
disease-specific survival (DSS) were conducted taking into

account the possible presence of nontumor mortality factors
during follow-up. -e threshold of Cox was P< 0.05. A
summary forest plot was generated utilizing R package forest
plot [3]. Tumors with significant correlations in the re-
gression analysis were selected, and the samples were
grouped into two at high or low expressions, referring to a
median AP1M2 expression level. Hypothesis testing was
performed using a log-rank test, and P< 0.05 was used as a
threshold to calculate significant differences in survival. In
addition, a correlation assessment was carried out between
AP1M2 expression levels and TNM stages.

2.4. Relationship between AP1M2 Expression Levels and
Immunity. -e existence of tumor-infiltrating lymphocytes
in the tumor microenvironment correlates with the im-
provement of outcomes and therapeutic results for different
types of cancer [4]. Further investigation on whether AP1M2
expression in diverse tumors would interact with immune
infiltration. It was, therefore, that we employed CIBERSORT
of R package to calculate the relative proportional rela-
tionship of immunocytes in multiple tumors [5]. -eir levels
of immune infiltration were assessed using ESTIMATE of R
package, including the immune and stromal scores of 33
tumor cell samples in the tumor microenvironment in the
TCGA cohort [6]. -e association between AP1M2 and the
previously described indicators was analyzed using Spear-
man correlation analysis.

A total of 47 immune checkpoint genes were collected,
and their association of expression with AP1M2 gene ex-
pression was analyzed using Spearman correlation analysis.
-e correlation heatmap was then created employing the R
package heatmap.

2.5. Relationship between AP1M2 and Immune Neoantigens,
Tumor Mutational Burden (TMB), and Microsatellite Insta-
bility (MSI). Tumor neoantigens can be recognized by
specific cells and encoded by mutated genes.-ey are mostly
generated by new abnormal proteins, such as point muta-
tion, deletion mutation, and gene fusion, and vary from
those in normal cells. -ese proteins are enzymatically
cleaved into peptide fragments and presented via DC cells to
T cells as antigens. In this process, T cells can be induced to
mature and activate, and characterized by tumor neo-
antigen-specific, thereby enabling the activated T cells to
proliferate [7]. Herein, the number of neoantigens contained
in tumor samples was calculated, and the results were an-
alyzed to investigate whether there exists a correlation be-
tween AP1M2 expression levels and immune neoantigens
using a Spearman correlation method [8].

TMB refers to the total number of detected somatic
mutations (nonsynonymous mutations) occurring in an
average 1Mb base in the coding or exon region of malignant
cell genome. It is also briefly expressed as entire non-
synonymous mutations. Meanwhile, the types of TMB
mutations usually consist of single nucleotide variants
(SNVs) and small insertions or deletions (Indel) [9]. In this
research, the estimates of TMB in an individual tumor
sample were presented separately. Spearman’s rank
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correlation coefficient was ultimately adopted to analyze the
interrelationship of the AP1M2 expression level and TMB.

MSI represents Indel of a repeat unit in malignancies,
resulting in somatic alteration in the microsatellite length
when compared to normal tissues. Emerging microsatellite
alleles represent one phenomenon of heredity or biological
inheritance [10]. PreMSIm, an R package, was utilized to
predict MSI following gene expression profiles of 33 cancers,
and the interrelation analysis of both gene expressions and
MSI was analyzed utilizing Spearman rank correlation co-
efficient [11].

2.6. Mutation Patterns of AP1M2 in TCGA Database. -e
mutation details of the previously described 33 malignant
tumors were downloaded from TCGA. All changes that
AP1M2 developed in the tumor specimens were analyzed
subsequently. Maftools, an R package, was subsequently
utilized to visualize the tumors with the most AP1M2
mutations [12].

2.7. Correlation of AP1M2 Expression Levels with DNA
Methyltransferases (DNMT) and Mismatch Repair (MMR)
Genes. MMR is a mechanism of mismatch repair occurred
intracellularly; the function depletion of key genes leads to
irreparable DNA replication mistakes, which in turn results
in higher somatic mutations. -erefore, whether AP1M2
could influence five MMR genes (MLH1, MSH2, MSH6,
PMS2, and EPCAM mutations) was assessed using TCGA
expression profiles.

DNA methylation also represents a mechanism that
regulates relevant gene expression free from changing DNA
sequences. -is action mechanism enables to control of
expressions of genes, resulting in chromatin structure al-
ternation, changes in DNA conformation, and DNA sta-
bility, as well as interactions of DNA with proteins. DNA
methylation is catalyzed by the action of DNA methyl-
transferases, and methyl groups can be added at 5′ carbon
position of the cytosine ring. -us, this study elucidated the
correlation of expressions between genes and four meth-
yltransferases (DNMT1, DNMT2, DNMT3A, and
DNMT3B).

2.8. GSEA Analysis of Patients with Pancytopenia in TCGA.
To further clarify whether AP1M2 gene expression influ-
ences tumors and in light of gene expression levels, we
divided the samples into two experimental groups: a high
expression group and a low expression group. KEGG en-
richment analysis and signature pathways were performed in
both groups using GSEA [13].-e enrichment and signature
pathways of KEGG analysis were subsequently analyzed for
both of the experimental groups. -e c5 curated signatures
were collected from the MSigDB database (https://www.
gsea-msigdb.org/gsea/msigdb/collections.jsp) [9]. KEGG
and HALLMARK terms and conditions were concomitantly
defined in both high and low AP1M2 expression groups.
FDR <0.05 was utilized to determine the significance of
pathway enrichment results.

3. Results

3.1. Gene Expression Analysis Data. We analyzed differences
in gene expression between cancer and paracancer in each
cancer sample obtained from the TCGA database
(Figure 1(c)) in READ (P< 0.05), BLCA, COAD (P< 0.01),
BRCA, CHOL, LIHC, LUAD, LUSC, PRAD, STAD
(P< 0.001), THCA, and UCEC (P< 0.001), while AP1M2
expression levels in GBM, LGG (P< 0.05), KICH, KIRC, and
KIRP (P< 0.001) were elevated compared with those in the
normal control group (control tissues).-e levels were lower
than those of the relevant control normal tissues.

Evaluation of AP1M2 expression differences in LAML,
OV, ACC, CESC, TGCT, and UCS was conducted after
normal tissues from the GTEx dataset were set as control.
Figure 1(d) indicated highly expressed AP1M2 in CESC,
OV, TGCT, and UCS (P< 0.001) compared with the tissues
of the relevant control normal group, whereas AP1M2 was
poorly expressed in LAML (P< 0.001) compared with those
of the relevant control normal group. Unluckily, we failed to
discover any significant differences in AP1M2 expression
levels between ACC and its control normal.

Furthermore, the Kruskal–Wallis test showed significant
differences in AP1M2 expression levels between organs
(Figures 1(a) and 1(b)).

3.2. Survival Analysis Data. We investigated the interrela-
tionship of AP1M2 expression levels and the survival
prognosis in several types of tumor patients. -e association
of expression levels with prognostic OS (overall survival time
in days) in 33 tumors from TCGA was identified using gene
expression profile data, one-way survival analysis, and forest
plots in 33 tumors as shown in Figure 2(a). Meanwhile,
significant tumors BRCA (P � 0.015), SARC (P � 0.0064),
and SKCM (P � 0.0067) were selected for prognostic KM
curves. Following the expression levels of AP1M2, cancer
cases were categorized into high and low expression groups,
between which their correlation between AP1M2 expression
and patient prognosis of different cancer types was studied
using databases TCGA and GEO. As presented in
Figure 2(b), highly expressed AP1M2 linked to poorer
prognosis in BRCA (P � 0.039, HR� 1, 95% CI� 1) and
SKCM (P � 0.0015, HR� 1.02, 95% CI� 1.01–1.04).

Meanwhile, considering the presence of nontumor death
factor during the follow-up period, the correlation between
the gene expression of 33 tumors and the prognostic DSS in
TCGA was initially analyzed (Figure 3(a)). -e significant
tumor SARC (P � 0.0023) was selected according to the
expression level of AP1M2, and the cancer samples were
grouped into high and low expression experimental groups
for prognostic KM curves. -e results failed to reveal any
positive correlated features between AP1M2 expression and
DSS in SARC (Figure 3(b)) (P � 0.063, HR� 1, 95% CI� 1).

Next, the same procedures were carried out to explore
whether there existed correlations between gene expressions
and prognostic DFI (Figure 4(a)) and PFI (Figure 5(a)) in 33
tumors of TCGA. -ere were significant correlation in ACC
(P � 0.048), CESC (P � 0.01), TGCT (P � 0.013) and ACC
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(P � 0.046), HNSC (P � 0.015), MESO (P � 0.036), PCPG
(P � 0.00053), and SARC (P � 0.0023), and two high and
low expression groups were divided in light of the AP1M2
levels for prognostic KM curves. As shown in Figure 4(b),
the DFI survival analysis revealed that there was an asso-
ciation of higher AP1M2 expression with poorer prognosis
in CESC (P � 0.013, HR� 1.01, 95% CI� 1–1.01) and TGCT
(P � 0.004, HR� 0.01, 95% CI� 1–1.01). As shown in
Figure 5(b), the same propensity of PFI survival analysis was
revealed as that of the previously described conditions that
highly expressed AP1M2 corresponded to poorer prognosis
in ACC (P< 0.0001, HR� 1.88, 95% CI� 1.01–3.51), HNSC
(P � 0.0011, HR� 1, 95% CI� 1–1.01), and MESO
(P � 0.035, HR� 1.01, 95% CI� 1–1.02).

3.3.Association ofGeneExpressionwith Immunity Infiltration
Levels. Tumor-infiltrating lymphocytes consist of cells in-
vading cancer tissues, and they function as independent
biomarkers for the prediction of anterior lymph node status
and efficacy of cancer treatment [14]. We investigated
whether this gene expression linked to immune invasion in

different cancer types and figured out that AP1M2 expression
levels were positively correlated with the levels of B-cell in-
filtration in 14 cancers, CD4+ Tcell infiltration in 17 cancers,
CD8+ T cells in 16 cancers, macrophages in 19 cancers,
neutrophils in 19 cancers, and dendritic cells in 19 cancers.
-e three most significantly correlated tumors BLCA, BRCA,
and COADwere selected (Figure 6). AP1M2 expression levels
in BLCA, BRCA, and COAD (all P< 0.0001) were all sig-
nificantly and negatively related to B cells, T cells (CD4+ and
CD8+), macrophages, neutrophils, and DC.

Numerous researchers have demonstrated that the tu-
mor immune microenvironment determines the occurrence
and development of a wide variety of tumors [15]. Following
the visualization of the interrelationships between gene
expression and scores of the immune system, stromal, and
ESTIMATE in the 33 reported tumors, we selected three
tumors with the most significant relationship in each score
(Figure 7). AP1M2 levels were more significant in PAAD
(RS� −0.556, PS< 0.0001, RI� -0.517, PI< 0.001) and BRCA
(RS� −0.341, PS� 2.89e− 31, RI� −0.385, PI� 3.24e− 40).
PRAD (RS� −0.46, PS� 2.28e− 27, RI� −0.401,
PI� 1.24e− 20) was negatively correlated between the
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Figure 1: AP1M2 expression level in 31 normal tissues across (a) GTEx dataset and (b) CCLE database. -e differences in gene expression
between cancer and paracancerous in individual tumor samples obtained from the (c) TCGA database and (d) GTEx datasets.
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expression levels in PRAD (RS� −0.46, PS� 2.28e− 27,
RI� −0.401, PI� 1.24e− 20) and the stromal and immune
scores. However, as for LUAD (R� −0.374, P< 0.0001),
PAAD (R� −0.564, P< 0.0001), and BRCA (R� −0.409,
P � 1.41e − 45), AP1M2 gene expression level had a negative
correlation with composite scores.

Under normal conditions, immune cells can recognize
tumor cells and remove them from the tumor microenvi-
ronment [16]. Tumor immunotherapy has been recognized

in medicine by reactivating and maintaining the tumor
immune cycle to suppress and eliminate immune cells as a
way to repair the body’s normal antitumor immune re-
sponse. -e current widely applied immune checkpoints are
inhibitors of monoclonal antibody-based immune check-
points and small molecules, antibody therapeutics, and
cancer treatment vaccines, as well as cytotherapy [17]. As
shown in Figure 8, the horizontal coordinate indicates the 33
selected tumors and the vertical coordinate indicates the
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Figure 2: -e relationship between expression and OS (overall survival time in days) in 33 tumors of TCGA. (a) -e results of univariate
COX regression analysis was presented via forest plot. (b) Alog-rank test was used to calculate the significance of survival differences with a
threshold of P< 0.05, and the results were presented via Kaplan–Meier survival curves comparing survival rates of low and high expressions
of AP1M2 in tumors.
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relevant immune checkpoints, where ∗indicates correlation
(P< 0.05), ∗∗indicates high correlation (P< 0.01), and
∗∗∗indicates significant correlation (P< 0.001). Higher
AP1M2 expression indicated poorer prognosis of tumor
patients by the survival analysis of BRCA, while AP1M2
expression levels were negatively correlated with B cells,
T cells (CD4+ and CD8+), macrophages, neutrophils, DC
infiltration, and scores of the immune system, stromal, and

composites via immune analysis. -ese results suggested a
specific role of AP1M2 in the prognostic analysis and im-
mune infiltration in BRCA. According to Figure 6, the
immune checkpoint genes were positively associated with
BRCA immunity including BTLA, CD200, NRP1, LAIR1,
TNFSF4, CD244, LAG3, ICOS, CD40LG, CTLA4, CD48,
CD28, CD200R1, HAVCR2, CD80, LGALS9, CD160,
TNFSF14, TMIGD2, PDCD1LG2, HHLA2, TNFSF18,

ACC
BLCA
BRCA
CESC
CHOL
COAD
DLBC
ESCA
GBM
HNSC
KICH
KIRC
KIRP
LAML
LGG
LIHC
LUAD
LUSC
MESO
OV
PAAD
PCPG
PRAD
READ
SARC
SKCM
STAD
TGCT
THCA
THYM
UCEC
UCS
UVM

HR
2.05(0.91~4.64)

1(1~1)
1(1~1)

1(1~1.01)

1(1~1.01)

1(0.99~1.01)

1(1~1.01)

1(0.99~1.01)

1(1~1.01)
0(0~1554949.99)

1.02(1~1.03)
1.01(1~1.02)

1(1~1)
1.02(0.99~1.04)

1(0.99~1)
0.98(0.96~1.01)

0.99(0.98~1)

1(1~1)
1(0.98~1.03)

1(1~1.01)
0.15(0~17.12)

1(0.98~1.01)

1(0.99~1.01)
NA(NA~NA)
0.45(0.14~1.4)

0.99(0.98~1.01)

1.37(0.64~2.91)

1(1~1)
1( 0.99~1)
1(1~1.01)

1(1~1)

1(0.99~1.01)

0.73(0.17~3.06)

0.0850
P Value

0.5300
0.2800
0.4900
0.6800
0.3200
0.6600
0.9200
0.4200
0.4200
0.7600
0.2600
0.5300

0.1700
0.7700
0.5600
0.1300
0.6600
0.5100
0.4000
0.4300
0.0570
0.0660
0.0023
0.1900
0.0970
0.2100
0.1200
0.9700
0.1500
0.6600
0.4400

1.6e−02 2.5e−01 2e+00 2e+01 1e+02 1e+03 8e+03 7e+04 5e+05
HR (95%CI)

(a)

199 87 11 2 0

54

0 1000 2000 3000 4000

TimeSARC

Low
High

A
P1

M
2 

le
ve

ls 0.00

0.25

0.50

di
se

as
e-

sp
ec

ifi
c s

ur
vi

va
l 0.75

High
Low

1.00

5000 6000

33

30

15

5

15 0 0

p = 0.063
HR=1, 95%CI(1, 1)

(b)

Figure 3:-e relationship between expression and DFS (disease-specific survival) in 33 tumors of TCGA. (a)-e results of univariate COX
regression analysis were presented via forest plot. (b) A log-rank test was used to calculate the significance of survival differences with a
threshold of P< 0.05, and the results were presented via Kaplan–Meier survival curves comparing the survival rates of low and high
expression of AP1M2.
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CD70, TNFSF9, TNFRSF8, CD27, VSIR, TNFRSF4, CD40,
TNFRSF18, TIGIT, CD274, CD86, and TNFRSF9.

3.4. Relationship between Gene Expression and Immune
Neoantigens, TMB, and MSI. Neoantigen vaccines can be
designed and synthesized using strong immunogenicity and
heterogeneity of tumor neoantigens according to the tumor
cell mutations, which will benefit patients with a satisfactory
therapeutic effect after immunization [18]. By counting the
neoantigen quantity of every sample tumor, we subsequently

studied whether there was any association with AP1M2
expression. As shown in Figure 9, the expression levels of
AP1M2 in UCEC (R� 0.131, P< 0.0404), PRAD (R� 0.123,
P< 0.0476), HNSC (R� 0.17, P< 0.0045), and STAD
(R� 0.316, P � 6.08e − 07) showed a link to the number of
neoantigens.

As TMB predicts favorable responses to immune
checkpoint inhibitors, mutated cell count can be calculated
from the tumors applying Spearman rank correlation co-
efficient. Meanwhile, its association with gene expression
was also analyzed, as shown in Figure 10(a). -e results were

ACC
BLCA
BRCA
CESC
CHOL
COAD
DLBC
ESCA
GBM
HNSC
KICH
KIRC
KIRP
LAML
LGG
LIHC
LUAD
LUSC
MESO
OV
PAAD
PCPG
PRAD
READ
SARC
SKCM
STAD
TGCT
THCA
THYM
UCEC
UCS
UVM

0.048
P ValueHR

8.3(1.02~67.55)
1(0.99~1)

1(1~1)
1.01(1~1.01)

0.99(0.98~1)

1(0.99~1.01)

1.02(0.96~1.07)

1(1~1.01)
0(0~31052229.1)

1(1~1.01)
1(0.99~1.01)

0.88(0.65~1.19)
NA(NA~NA)

NA(NA~NA)

1(0.99~1)
1.01(1~1.01)

1(0.99~1)

1(1~1)
1.01(1~1.02)
NA(NA~NA)

1(0.96~1.03)

1.01(1~1.02)
NA(NA~NA)

0.55(0.04~8.04)

1(0.97~1.02)

NA(NA~NA)

1(0.99~1.01)

1(1~1.01)
1(1~1)

1(1~1.01)

1(1~1)

1(0.99~1.01)

0.59(0.1~3.51)

0.280
0.290
0.010
0.920
0.870
0.560
0.190

0.920
0.860
0.920
0.230

0.660
0.230
0.850
0.620
0.550
0.950
0.430
0.640
0.180
0.970
0.400

0.210
0.013
0.260

0.260
0.054

1.6e−02 2.5e−01 4e+00 3e+01 3e+02 2e+03 2e+04 1e+05 1e+06
HR (95%CI)

8e+06

(a)

20 10 1 1 0
25

0 20001000 3000
Time

(A) (B) (C)

ACC

Low
High

A
P1

M
2 

le
ve

ls

A
P1

M
2 

le
ve

ls0.00

0.25

0.50

di
se

as
e-

fre
e i

nt
er

va
l

0.75

1.00

4000 5000

16 5
6

10 1 0
121 4
53

0 2000 4000
TimeCESE

Low
High

0.00

0.25

0.50

di
se

as
e-

fre
e i

nt
er

va
l

0.75

1.00

6000

13
12 4

1
0

A
P1

M
2 

le
ve

ls

56 4 2
49

0 40002000 6000 8000
TimeTGCT

Low
High

0.00

0.25

0.50

di
se

as
e-

fre
e i

nt
er

va
l 0.75

1.00

7
11
12 3

0
0

p = 0.1

HR=8.3, 95%CI(1.02, 67.55)

p = 0.013

HR=1.01, 95%CI(1, 1.01)

p = 0.004

HR=1.01, 95%CI(1, 1.01)

(b)

Figure 4: -e relationship between expression and DFI (disease-free interval) in 33 tumors of TCGA. (a) -e results of univariate COX
regression analysis were presented via forest plot. (b) A log-rank test was used to calculate the significance of survival differences with a
threshold of P< 0.05, and the results were presented via Kaplan–Meier survival curves comparing the survival rates of low and high
expression of AP1M2 in tumors.
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Figure 5:-e relationship between expression and PFI (progression-free interval) in 33 tumors of TCGA. (a)-e results of univariate COX
regression analysis were presented via forest plot. (b) A log-rank test was used to calculate the significance of survival differences with a
threshold of P< 0.05, and the results were presented via Kaplan–Meier survival curves comparing the survival rates of low and high
expression of AP1M2 in tumors.
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as follows: the AP1M2 gene expression level in BRCA
(P � 9.5e − 05) was significantly and negatively correlated
with TMB, whereas those expression levels revealed in BLCA
(P � 0.015), ESCA (P � 1.4e − 06), HNSC (P � 3.2e − 05),
LIHC (P � 0.03), PAAD (P � 5.5e − 07), STAD
(P � 4.8e − 10), THYM (P � 0.0017), and UCEC (0.0022)
were positively correlated with TMB. Among them, AP1M2
levels in STAD, PAAD, and ESCA were most significantly
related to TMB.

Whether gene expression and MSI had a connection was
subsequently verified applying Spearman rank correlation
coefficient (Figure 10(b)). -e results indicated that the
AP1M2 gene expression levels in DLBC (P � 0.012), ESCA
(P � 0.0065), GBM (P � 0.012), HNSC (P � 0.00012),

STAD (P � 6.7e − 05), and TGCT (P � 0.0023) were posi-
tively correlated with MSI, whereas those in the UCS
(P � 0.0034) and READ (P � 0.00012) were negatively
correlated with MSI.

3.5. Mutation Patterns of Genes in TCGA Tumor Samples.
Mutated AP1M2 was further analyzed following data
collection of the 33 tumors through the TCGA database. As
shown in Figure 11, mutations of AP1M2 only occurred in
BLCA, BRCA, CESC, COAD, GBM, LUAD, LUSC, OV,
SARC, SKCM, and UCEC after observation. Among them,
the top three tumors with the highest AP1M2 mutation
rates were UCEC (3.77%), COAD (1.5%), and SKCM
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(1.07%), indicating that AP1M2 was rarely mutated in most
tumors.

3.6. Gene Expression TCGA Tumor Samples concerning DNA
MMR and Methyltransferases. In light of the TCGA ex-
pression profile data, we subsequently assessed the inter-
relationship between mutations of the five MMR genes

MLH1, MSH2, MSH6, PMS2, and EPCAM and gene ex-
pressions (Figure 12(a)). -e results revealed that AP1M2
expression levels were significantly correlated with the five
MMR genes in CESC, HNSC, LUAD, PRAD, SKCM, and
THCA.

We simultaneously analyzed the visualization of ex-
pression correlation between AP1M2 and the previously
described four methyltransferases (DNMT1: red, DNMT2:
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Figure 7: Correlation of AP1M2 expression with the immune score, ESTIMATE score, and stromal score in PAAD, BRCA, PRAD, and
LUAD.
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blue, DNMT3A: green, and DNMT3B: purple)
(Figure 12(b)). -e results indicated that expression levels of
UCEC, BRCA, CESC, COAD, KIRC, LGG, LUAD, PRAD,
TGCT, THCA, and PCPG, AP1M2 were substantially
correlated with the four genes, with AP1M2 expression levels
in TGCT (R� 0.38, P � 3.3e − 06) being the most signifi-
cantly correlated.

3.7. GSEA Analysis. We employed two groups of tumor
specimens to verify actions of gene expression on tumors: a
high and a low expression groups in accordance with gene
expression. GSEA was employed for KEGG enrichment and
HALLMARK pathway analysis in both expression groups.
Subsequently, three pathways were selected, which pre-
sented the most significant GSEA results (Figure 13). KEGG
pathway analysis in Figure 13 exhibited that high expression

of AP1M2 mainly activated PEROXISOME (ES� −0.58,
NES� −2, P � 0.0019, FDR� 0.072), ARGININE_AND_-
PROLINE_METABOLISM (ES� −0.56, NES� −2,
P< 0.001, FDR� 0.039), and PYR-
IMIDINE_METABOLISM (ES� −0.58, NES� −2, P< 0.001,
FDR� 0.036), while poorly expressed AP1M2 mainly acti-
vated AUTOIMMUNE_THYROID_DISEASE (ES� 0.68,
NES� 1.9, P � 0.0098, FDR� 0.031), HEMA-
TOPOIETIC_CELL_LINEAGE (ES� 0.61, NES� 1.9,
P � 0.0097, FDR� 0.029), INTESTINAL_IMMUNE_-
NETWORK_FOR_IGA_PRODUCTION (ES� 0.74,
NES� 2, P � 0.0019, FDR� 0.03), and CYTOKINE_CY-
TOKINE_RECEPTOR_INTERACTION (ES� 0.54,
NES� 2, P � 0.004, FDR� 0.026). In the HALLMARK
pathway, the highly expressed AP1M2 mainly activated
PEROXISOME (ES� −0.57, NES� −2.2, P � 0,
FDR� 9e− 04), CHOLESTEROL_HOMEOSTASIS
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Figure 8: -e relationship between AP1M2 and the expression of immune checkpoint genes is presented via heatmap. -e horizontal
coordinate indicates the 33 selected tumors, and the vertical coordinate indicates the relevant immune checkpoints, where ∗indicates
correlation (P< 0.05), ∗∗indicates high correlation (P< 0.01), and ∗∗∗indicates significant correlation (P< 0.001).
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(ES� −0.57, NES� −2, P � 0.002, FDR� 0.013), and FAT-
TY_ACID_METABOLISM (ES� −0.54, NES� −2,
P � 0.0021, FDR� 0.011), whereas poorly expressed AP1M2
mainly activated IL6_JAK_STAT3_SIGNALING (ES� 0.49,
NES� 1.6, P � 0.069, FDR� 0.12), KRAS_SIGNALING_UP
(ES� 0.43, NES� 1.7, P � 0.02, FDR� 0.066), INFLAM-
MATORY_RESPONS (ES� 0.5, NES� 1.8, P � 0.027,
FDR� 0.059), and ALLOGRAFT_REJECTION (ES� 0.62,
NES� 2, P � 0.015, FDR� 0.028).

4. Discussion

Being one of the most densely populated countries, China
has achieved remarkable progress in the improvement of
people’s health over the last several decades. As the pop-
ulation ages, China’s burden of cancer expenses keeps
growing [19]. Meanwhile, since the outbreak of the novel
coronavirus pandemic in 2019, several studies have dem-
onstrated that individuals under a high risk of COVID-19
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include cancer patients who are immunosuppressed
throughout the body [20].

-rough literature retrieval, little literature on AP1M2
pan-cancer analysis of the overall tumor has been found.
-erefore, based on data from TCGA, CCLE, UCSC Xena,
and GTEx databases, as well as gene expression, gene var-
iants, methylation, immune infiltration, and enrichment
analysis, a comprehensive exploration was conducted on
AP1M2 gene from the 33 different tumor types in the TCGA
cohort. -e findings indicated that the AP1M2 expression
level exhibited a positive link to the prognosis and immune
aspects of several different tumors, especially breast-infil-
trating carcinomas. Hence, AP1M2 may be applied as a
screening indicator and therapeutic target for multiple tu-
mors in the future.

AP1M2 expression differences were revealed simulta-
neously among various cancers and normal control, which
indicated that AP1M2 was highly expressed and significant

in breast cancer, liver cancer, lung cancer, bile duct cancer,
prostate cancer, gastric cancer, thyroid cancer, and com-
mon genital tumors compared to normal tissues. Con-
versely, some datasets also showed that AP1M2 was poorly
expressed in kidney cancer and acute myeloid leukemia
compared to normal tissues in the control group. AP1M2,
also known as Mu-2, has been shown that Mu-2-related
death-inducing gene (MuD) is a 490-amino-acid protein
belonging to the medium subunit family of adaptin protein
(AP), which can independently induce cancer cell death in
association with adhesive protein-mediated endocytosis
found in the Mu-2 subunit of the articulation protein [21].
-erefore, AP1M2 may also possess the function of in-
ducing cancer cell death. However, such speculation is
inconsistent with gene expression analysis and survival
analysis, and more investigations remain indispensable to
reveal actions andmechanisms of AP1M2 among a range of
cancer types.
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Following the analysis of AP1M2 expression levels and
immunity, we found that AP1M2 expression in BRCA was
negatively associated not only with B cells, CD4+ Tcells, CD8+
Tcells, macrophages, neutrophils, and DC (Figure 4), but also
with scores of the immune system, stromal, and composite in
ESTIMATE analysis (Figure 5).-e occurrence and progress of
a tumor are complicated, and the processes in which cancer
cells interact with microenvironment and immune system

influence tumorigenesis and progression [22]. Furthermore,
immunocytes have a pivotal secondary role in maintaining
tissue integrity and normal functions by eliminating pathogens
in different states of homeostasis, infection, and noninfectious
disturbances of the body and have an impact on the clinical
outcome of tumors [23]. In addition, it has been shown that
immune scores in RBCA at either a high or moderate level can
lead to improved disease-free survival or OS [24]. Hence, the
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Figure 13: -e result of GSEA.
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association of increased AP1M2 expression levels with poor
prognosis in BRCA patients may be related to the fact that
AP1M2 expression suppresses immunocyte infiltration into
tumor microenvironment and decreased immune score.

In BRCA, the AP1M2 expression level was significantly
and negatively related to most immune checkpoints except
TNFRSF18 (Figure 6). Immune checkpoints represent
multiple inhibitions and stimulation pathways for immu-
nocytes to maintain their immunologic tolerance and adjust
corresponding immune responses to dangerous physical
signals [25]. Immune checkpoint blockade can either retard
or suppress evasion of tumor cells and slow down tumor
growth. -rough inquiring literature, we found that high
expression levels of CTLA-4 and TIGITwere associated with
a good prognosis of BRCA [26]. Figure 6 presented that
AP1M2 levels were correlated with both CTLA-4 and TIGIT.

Several investigations have revealed that TMB is critical
for cancer development and progression, and cancer pa-
tients with high TMB levels responded more strongly to
immunotherapy than low TMB level patients, which is also
associated with cancer prognosis [27–29]. However, through
the analysis of AP1M2 expression levels and TMB (Figure 7),
AP1M2 expression levels in BRCA were significantly neg-
atively correlated with TMB. -us, increased AP1M2 ex-
pression levels may lead to lower TMB in patients, which
might be less sensitive to immunotherapy.

In addition, a positive correlation was revealed between
AP1M2 expression and MMR and DNA methyltransferases
in BRCA. Taken together, AP1M2 may be used as a prog-
nostic predictor or a therapeutic target of BRCA for im-
munotherapy in clinical settings for the improvement of
patients’ prognosis and survival rates. In future research, we
plan to use gene editing methods to overexpress or knock
out AP1M2 in tumor cells and animal models to verify the
function and molecular regulation mechanism of AP1M2.
-rough these studies, it is expected that the clinical ap-
plication potential of AP1M2 will be further explored.
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Background. Cervical cancer (CC) is a common gynecological malignant tumor. Ferroptosis is a new type of programmed cell
death, which plays a crucial part in cancer. However, current knowledge regarding ferroptosis-related long noncoding RNAs
(lncRNAs) in CC is still limited.*erefore, our aim is to identify ferroptosis-related lncRNAs, build a steady predictionmodel, and
improve the prediction value of CC. Methods. We obtained RNA expression and ferroptosis-related gene data of female CC
patients from TCGA and FerrDb databases, respectively. *en, the ferroptosis-related lncRNAs were obtained by the limma R
package and Cytoscape 3.7.1. We constructed the prediction model by Cox regression analysis. Finally, the prediction model was
verified by the median risk score, Kaplan–Meier analysis, the time-dependent receiver operating characteristic (ROC) curve,
clinical features, and immunoinfiltration analysis. Results. We acquired 1393 ferroptosis-related lncRNAs.*e ferroptosis-related
lncRNA signature was obtained bymultivariate Cox regression analysis, and the patients were divided into a high-risk group and a
low-risk group. *e prognosis of the high-risk group was worse than that of the low-risk group. We found that the risk score can
be used as an independent prognostic index by multivariate Cox regression analysis. *e area under the time-dependent ROC
curve reached 0.847 at 1 year, 0.906 at 2 years, 0.807 at 3 years, and 0.724 at 5 years in the training cohort. Principal component
analysis showed that the diffusion directions of the two groups were different. Gene set enrichment analysis indicated that
lncRNAs of two groups may be involved in tumorigenesis. Further analysis showed that high-risk groups were related to immune-
related pathways. Ferroptosis-related lncRNAs are related to the proportion of tumor-infiltrating immune cells in CC.Conclusion.
We have constructed a ferroptosis-related lncRNA prediction model. *e prognostic model had important clinical significance,
including improving the predictive value and guiding the individualized treatment of CC patients.

1. Introduction

Cervical cancer (CC) is a serious threat to women’s health
[1]. Many people around the world die of this cancer every
year [2]. Human papillomavirus (HPV) infection is an es-
sential factor for developing CC [3].*e incidence of CC has
dropped by 40% to 50% in recent years, due to the wide
application of early cervical cancer screening and advances
in surgical, radiotherapy, and chemotherapy treatments [4].
Although the popularity of the HPV vaccine has reduced the
number and mortality of CC patients, many women still
suffer from CC [5, 6]. *erefore, it is imperative to find an

ideal clinical model or accurate prognostic biomarkers that
instruct the treatment of CC.

In the past few decades, the research on ferroptosis of
tumors has increased rapidly. Different from apoptosis and
autophagy, this is a new mode of nonapoptotic cell death
that relies on the accumulation of reactive oxygen species
(ROS) in an iron-dependent manner [7]. At present, many
studies have shown that ferroptosis plays a vital role in
mediating tumor development and drug resistance [8].
Ubellacker et al. [9] reported that melanoma cells in lymph
have a higher ability to metastasize due to their resistance to
ferroptosis. In tumor treatment, chemotherapy can induce
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ferroptosis of cancer cells, resulting in increase in the sur-
vival time of cancer patients [10]. Different from normal
cells, cancer cells rely too much on iron for cell proliferation
[11]. *is evidence suggested that ferroptosis has a different
effect on cancer. In fact, targeting the tumor ferroptosis
pathway is a new antitumor mechanism, which opens up a
new therapeutic for the treatment of cancer [12].

Long-chain noncoding RNA (lncRNA) is an RNA with
no or limited protein coding ability, whose length is about
200 bp to more than 100 kb [13]. lncRNAs participate in
multiple biological regulatory processes, such as tumor
occurrence, development, and metastasis [14]. One recent
study revealed that lncRNA suppresses ferroptosis by acting
as a competitive endogenous RNA (ceRNA) [15]. In a related
study, lncRNA GABPB1 may be a key molecule for fer-
roptosis in hepatoma cells [16]. However, there are few
studies to systematically evaluate the characteristics of fer-
roptosis-related lncRNAs and their relationship with the
overall survival (OS) of CC patients.

In this research, we first established the prognostic
multi-lncRNA signature of ferroptosis-related lncRNA
based on Cancer Genome Atlas (TCGA) and FerrDb da-
tabases. Moreover, we discussed the effect of the novel
ferroptosis-related lncRNA signature in immune response
during CC prognosis. Our study provides a new gene sig-
nature for the prognosis prediction of CC patients and offers
an important basis for the future study of the relationship
between iron ferroptosis-related lncRNA and immunity in
CC.

2. Methods

2.1. Collection and Preprocessing of Raw Data. *e tran-
scriptome profiling data including the RNA sequencing data
of 309 samples (CC patients: 306; control groups: 3) and
corresponding clinical data were obtained from the TCGA
database (https://portal.gdc.cancer.gov/). *e expression
profiling matrix of both encoding gene and lncRNA was
extracted with Perl. Ferroptosis-related genes were identified
from the FerrDb database [17] (https://www.zhounan.org/
ferrdb/). *e clinicopathological data of CC patients were
collected, including survival status, stage, TMN, grade, and
survival time.

2.2. Data Processing of lncRNAs and Ferroptosis-Related
Genes. *e correlation test between ferroptosis-related
mRNAs and lncRNAs was performed with Cor.test in R
software (corFilter� 0.4; pvalueFilter� 0.01). Finally, the
coexpression network of prognostic ferroptosis-related
genes and lncRNAs was drawn by the Cytoscape software.

2.3. Construction of Prognostic Ferroptosis-Related lncRNAs
Signature. We first used the survival “R” package (version:
3.2.1) for Cox regression analysis to construct survival
prognostic characteristics. *en we selected lncRNA with
significant statistical significance in univariate Cox regres-
sion for multivariate Cox regression. Finally, the risk score of
patients was calculated according to the normalized

expression level of each gene and the corresponding re-
gression coefficient in the model. *e formula� esum (each

gene’s expression×corresponding coefficient). CC patients were divided
into the high-risk group and the low-risk group based on the
median value of the risk scores.

2.4. Prognostic and Independent Analysis. We used
Kaplan–Meier survival curves to distinguish the difference
in overall survival (OS) between the different risk groups. In
addition, we also used different R packages to construct K-M
survival curve and analyze the ROC curve. Finally, we used
the method of independent analysis to verify the indepen-
dence of the model, such as stage and TNM.

2.5. 0e Predictive Nomogram. *e gene set enrichment
analysis (GSEA) was performed with GSEA 4.0.1 for in-
vestigating the potential mechanisms involved in the high-
risk and low-risk groups. We considered p< 0.05 as sta-
tistically significant. We constructed a nomogram with
prognostic characteristics to predict OS in CC patients at 1,
2, 3 and 5 years. Finally, the “prcomp” function of “stats” R
package is used for principal component analysis (PCA).

2.6. Immunoinfiltration Analysis. We calculated the relative
proportion of tumor infiltrating immune cells using the
CIBERSORT algorithm to understand the infiltrating im-
mune cells in the CC microenvironment associated with
multi-lncRNA signature. *en we used the Wilcoxon test to
compare the composition fraction of infiltrating immune
cells between two different risk groups. Finally, we used
Pearson correlation analysis to find out the relationship
between lncRNA and significantly infiltrating immune cells.

2.7. Statistical Analysis. *e R software was used for sur-
vival, Cox regression, and PCA analyses. We used the
“survival R” and “surviviner R” packages for Kaplan–Meier
analysis. Moreover, we validate the prediction model by
using the “survival R,” “surviviner R,” “survival ROC R,”
“pheatmap R,” and “ggpubr” software packages. GSEA was
used to analyze the function of two risk groups of lncRNAs.
When the p value <0.05, the difference was statistically
significant.

3. Result

3.1. Identification of Ferroptosis-Related lncRNA in CC.
Our flow-process diagram is shown in Figure 1. We con-
structed a coexpression network of lncRNA and ferroptosis-
related genes through the “limma package” of R studio and
Cytoscape 3.7.1 to obtain ferroptosis-related lncRNA
(Figure 2(a)). *e lncRNA whose expression level was
significantly correlated with one or more of the 211 fer-
roptosis-related genes, with the correlation coefficient |R2|
> 0.4 at p< 0.01, was considered a ferroptosis-related
lncRNA. Finally, 1393 ferroptosis-related lncRNAs were
identified, with 1346 ferroptosis-related lncRNAs positively
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Figure 1: *e flow-process diagram of the study.
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Figure 2: *e coexpression network and Cox regression analysis result. (a) *e network of ferroptosis genes and lncRNAs. (b) *e forest
plot of univariate Cox regression confirmed 32 ferroptosis-related lncRNAs. (c) *e forest plot of multivariate Cox regression confirmed 7
ferroptosis-related lncRNAs.
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correlated and 47 ferroptosis-related lncRNAs negatively
correlated with CC.

3.2. Construction and Validation of the Ferroptosis-Related
lncRNA Feature of CC. We first determine the prediction
model based on univariate Cox regression analysis, and there
were 32 lncRNAs related to ferroptosis in the prediction
model (Figure 2(b)).*en these lncRNAs are included in the
multivariate COX analysis (Figure 2(c)). Finally, there were 7
ferroptosis-related lncRNAs (LINC02084, AC004540.2,
AC026979.2, AC099568.2, SOX21-AS1, ATP2A1-AS1, and
AC005332.4) that can be considered an alone prognostic
factor for CC. On the basis of the median risk score, all
samples were allocated to a high-risk group (n� 136) and a
low-risk group (n� 137). According to Kaplan–Meier
analysis, poorer overall survival was associated with high-
risk lncRNA expression (p � 6.706e − 07, Figure 3(a)). *e
mortality of CC patients in the low-risk group was lower
than that in the high-risk group (Figure 3(b)). *e heatmap
showed that the expression of lncRNAs (SOX21-AS1,
AC026979.2, ATP2A1-AS1, AC099568.2, and AC005332.4)
was significantly upregulated in the low-risk group, while the
lncRNAs (LINC02084 and AC004540.2) were down-
regulated in the low-risk group compared to the high-risk
group (Figure 3(c)). *e predictive performance of OS risk
score was evaluated by the time-dependent ROC curve, and
the area under the curve (AUC) was 0.769 in 1 year, 0.849 in
2 years, and 0.776 in 3 years (Figure 3(d)). *ese results
suggested that ferroptosis-related lncRNAs were a major risk
factor for CC patients.

3.3. Independent Analysis of Prognostic Model and Other
Clinical Variables. Based on the predictive model, we used
Cox regression to analyze the clinical feature of CC. *ere
were significant differences in risk score, pathological T
staging, and stage related to overall survival by univariate
independent prognostic analysis (p< 0.05, Figure 4(a)). *e
risk score can be used as an independent forecast of CC in
the multivariate Cox regression analysis (Figure 4(b)).
Overall, the independent prognostic analysis of single factor
and multiple factors showed that the predictive model is an
independent predictive element. Multi-index ROC curve
analysis compared the AUC values of the risk prognosis
model and the clinical indicator prognosis model, which
expressed that the AUC values of the risk score for 1-year, 2-
year, 3-year, and 5-year survival are 0.847, 0.906, 0.807, and
0.724, respectively, and the areas are all maximum
(Figure 4(c)). In addition, the hierarchical analysis was used
to determine the independence of the prediction model
(Figures 5(a) and 5(b)). For stage, AC099568.2 was signif-
icantly upregulated in the early stage of CC, whereas
gradually downregulated as cancer metastasized (p< 0.001).
For pathological Tphase, AC005332.4 and AC099568.2 were
statistically significant (p< 0.05), and the expression of
AC099568.2 decreased with the progression of the T phase.
*ese results revealed that the signature of ferroptosis-re-
lated lncRNAs can be used as a model for predicting CC.

3.4. Gene Set Enrichment Analyses. To determine the dif-
ference between the diverse groups in lncRNA based on the
model, we performed a PCA (Figure 6). Our results dem-
onstrated that the two groups of patients spread in different
directions. And themodel lncRNAs divided CC patients into
two specific parts, indicating that the prognostic status of CC
patients in the two groups is very different. Furthermore, we
performed GSEA on the two groups to find the possible
biological function of the model of CC (Figure 7). GSEA
revealed that ferroptosis-related lncRNA prognostic models
mainly regulated immune- and cancer-related pathways,
such as DNA replication, primary immunodeficiency, ERBB
signaling pathway, pathways in cancer, the intestinal im-
mune network for IGA production, and BETA signaling
pathway.*ese results suggested that these related biological
pathways play an important role in the carcinogenesis of CC.

3.5. 0e Immune Cell Infiltration Landscape in CC. We used
the CIBERSORT algorithm to analyze the connection be-
tween ferroptosis-related lncRNAs and antitumor immune.
*e results reasonably showed that there was a significant
difference in the proportion of tumor infiltrating immune
cells between the low- and high-risk groups (Figure 8(a)).
We constructed a violin chart to compare the difference in
immune cell infiltration between the low- and high-risk
groups. *e result displayed that there were significant
differences in B cells native (p � 0.003), T cells CD8
(p< 0.001), T cells CD4 memory activated (p � 0.018),
macrophage M0 (p � 0.024), and macrophage M2
(p � 0.025) between the two groups (Figure 8(b)). *e
correlation matrix of the proportion of all cancer infiltrating
immune cells is shown in Figure 8(c). *ese results dem-
onstrated that there were differences in immune-related
genes between the high-risk group and the low-risk group,
which may partly explain the significant difference in
prognosis between subgroups.

4. Discussion

In the world, two-thirds of CC patients are still diagnosed as
advanced. Although they have been treated with a variety of
methods, they have lost the chance of radical cure [18]. In
recent years, ferroptosis can help remove defective cells,
which has become a new treatment method for tumors [19].
Moreover, lncRNAs have a profound influence in the oc-
currence and change of cancer [20]. Meanwhile, the im-
portance of ferroptosis-related lncRNA in cancer
development and treatment is increasingly recognized [21].
Zhou et al. certified that a risk model of ferroptosis-related
lncRNA signature helped to predict immune infiltration,
immunotherapeutic outcomes, and chemotherapy sensi-
tivity in bladder cancer [22]. However, to our knowledge,
there are few studies on the prognosis of ferroptosis-asso-
ciated lncRNAs in CC. *erefore, in this study, we first
constructed a coexpression network of lncRNA and fer-
roptosis-related genes and identified 1393 ferroptosis-re-
lated lncRNA. *en, we created a new prediction model
integrating 7 ferroptosis-associated lncRNAs by univariate
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Cox regression and multivariate Cox analysis, which was
then validated to perform well in an external dataset. *e
PCA result divided patients with different risk scores into
two categories. *e GSEA indicated that ferroptosis-asso-
ciated lncRNAs regulated immune- and cancer-related
pathways. Finally, the immune cell infiltration of the low-
risk group and high-risk group was compared, high-risk
group decreased levels of T cell CD8 and macrophage M2
and increased levels of B cells native, T cells CD4 memory
activated, and macrophage M0 compared with the low-risk
group.

Ferroptosis has been shown to be involved in cancer
[23]. However, lncRNA may inhibit ferroptosis in cancer
through the function of ceRNA [15]. In our research, we

showed a coexpression network of ferroptosis-lncRNA,
which proved that there is a regulatory relationship between
lncRNA and ferroptosis-related genes. Combining this
feature, we have built a prognostic model for CC. In our
study, the K-M survival curve indicated that our prediction
model is closely related to CC patients. In our results, the
AUC values were 0.847 at 1 year, 0.906 at 2 years, 0.807 at 3
years, and 0.724 at 5 years. However, similar to this prog-
nostic model, other researchers’ AUC values were smaller
than ours [24], which proved that the predictive ability of
our model is relatively good. In addition, from the per-
spective of the cancer stage and pathological stage,
AC099568.2 always was the most obvious lncRNA, indi-
cating that the molecule is critical to the prognosis of CC.Ma
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Figure 4: *e clinicopathological characteristics. (a) *e forest plot of univariate Cox regression. (b) *e forest plot of multivariate Cox
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et al. [25] reported that immune-related lncRNA signature
was an independent prognostic factor for breast cancer and
was closely related to clinicopathological features, indicating
that this model is a very good prognostic tool for breast
cancer. Moreover, similar to our research method, by
constructing the prognostic 13-lncRNA signature of hepa-
tocellular carcinoma and verifying it externally, it is proved
that the model can be used to predict and diagnose the
prognosis of hepatocellular carcinoma [26]. Compared with
other studies [27], comprehensive analysis shows that our
prognostic model is very reliable. *ese results manifested
that the prognostic model can improve the prognostic ability
of CC.

We have demonstrated that our model of ferroptosis-related
lncRNAs can enhance the prognosis of CC. Next, we analyzed
the biological functions of this prediction model through GSEA.
GSEA revealed that ferroptosis-related lncRNAs were involved

in the pathways of “primary immunodeficiency,” “DNA repli-
cation,” “ERBB signaling pathway,” “pathways in cancer,” “in-
testinal immune network for IGA production,” and “BETA
signaling pathway.” DNA replication is crucial for tumorigen-
esis. Macheret and Halazonetis showed that DNA replication
can drive cancer progression [28]. Moreover, Wang illustrated
many cancers are related to overexpression or mutation of the
ERBB receptor [29]. Low expression of ferroptosis-related genes
is associated with poor prognosis of cancer and defective im-
mune cell infiltration [30]. However, other studies reported that
patients with high risk scores in model showed greater adaptive
immunity [25]. In our study, the model showed “primary im-
munodeficiency,” which makes patients prone to frequent in-
fection and malignant tumor [31]. Although the two models
involve different functions, they all implied that these prognostic
models had good predictive ability and played an important role
in cancer immunotherapy. *e above results proved that the
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Figure 5: Independent prognostic value of the ferroptosis-related lncRNAs feature. (a) Stratification analyses of stage. (b) Stratification
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Figure 7: GSEA for the high-risk and low-risk groups.

type 0.6
T cells CD8 high
Macrophages M0 0.5 low 
Plasma cells
Dendritic cells activated 0.4
Mast cells activated
T cells regulatory (Tregs) 0.3
NK cells resting
T cells gamma delta 0.2
Monocytes
T cells CD4 naive 0.1Eosinophils
T cells CD4 memory resting 0
Macrophages M1
Dendritic cells resting
T cells follicular helper
NK cells activated
Mast cells resting
T cells CD4 memory activated
Macrophages M2

type

(a)

B 
ce

lls
 n

ai
ve

0.0

0.1

0.2

0.3
p=0.003

p=0.281

p<0.001

p=0.072

p=0.263

p=0.953

p=0.079

p=0.018

p=0.208

p=0.846

p=0.828p=0.138

p=0.729

p=0.705
p=0.025

p=0.908

p=0.122

p=0.641

p=0.322

p=0.058

p=0.153

low
high

p=0.024

Fr
ac

tio
n

0.4

0.5

B 
ce

lls
 m

em
or

y
Pl

as
m

a c
el

ls
T 

ce
lls

 C
D

8
T 

ce
lls

 C
D

4 
na

iv
e

T 
ce

lls
 C

D
4 

m
em

or
y 

re
sti

ng
T 

ce
lls

 C
D

4 
m

em
or

y 
ac

tiv
at

ed
T 

ce
lls

 fo
lli

cu
la

r h
elp

er
T 

ce
lls

 re
gu

lat
or

y 
(T

re
gs

)
T 

ce
lls

 g
am

m
a d

elt
a

N
K 

ce
lls

 re
sti

ng
N

K 
ce

lls
 ac

tiv
at

ed
M

on
oc

yt
es

M
ac

ro
ph

ag
es

 M
0

M
ac

ro
ph

ag
es

 M
1

M
ac

ro
ph

ag
es

 M
2

D
en

dr
iti

c c
el

ls 
ac

tiv
at

ed
D

en
dr

iti
c c

el
ls 

re
sti

ng

M
as

t c
el

ls 
re

sti
ng

M
as

t c
el

ls 
ac

tiv
at

ed
Eo

sin
op

hi
ls

N
eu

tro
ph

ils

(b)

Figure 8: Continued.
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predictive signature is related to not only tumorigenesis, but also
correlative immune response.

Many studies have reported there is a relationship
between lymphocyte infiltration and prognosis [32]. For ex-
ample, the degree of lymphocytic infiltration in the primary
tumor is positively correlated with the presence or absence of
metastasis [33]. *erefore, we calculated the rate of immune
cell infiltration in both risk groups. Different from the low-risk
group, Tcells CD8 andmacrophage M2 cells were significantly
reduced in the high-risk group.*emain function of CD8 cells
is to induce tumor cell death [34]. Besides, B cells native, Tcells
CD4 memory activated, and macrophage M0 cells were sig-
nificantly increased in the high-risk group, which were gen-
erally used to defend against external aggressions [35].
*erefore, we considered that ferroptosis-related lncRNA is
closely correlated with the proportion of tumor-infiltrating
immunocytes in CC, and low-risk groups have more effective
immune status than high-risk groups.

5. Conclusion

In summary, we have discovered a novel 7 ferroptosis-re-
lated lncRNA signature as a potential prognostic tool for CC
patients. It is closely related to the tumor status, risk value,
and OS. *e signature offers a new insight into ferroptosis-

related lncRNAs in CC and recognizes possible biomarkers
for prognosis and immunological therapy.
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Aims. +e present study aimed to reveal the relationship between single nucleotide polymorphism (SNP) of PNPLA3, TM6SF2,
MBOAT7, GATAD2A, and STAT3 genes and metabolism-related fatty liver disease (MAFLD), so as to provide a research basis
for further exploring the diagnosis and treatment of diseases at the molecular level.Methods. A total of 564 patients were included
in the physical examination center of Xinjiang Karamay People’s Hospital. +ey were divided into an MAFLD case group and a
healthy control group.+e whole blood DNA of each sample was extracted by a whole blood genomic DNA extraction kit, and the
genotypes of PNPLA3 rs738409, MBOAT7 rs64173, STAT3 rs744166, TM6SF2 rs58542926, and GATAD2A rs4808199 were
performed; after adjusting for confounding factors, the additive model, dominant model, and recessive model of each gene were
analyzed by multivariate logistic regression. Results. +e CC genotype of the PNPLA3 gene rs738409 and the TT genotype of the
MBOAT7 gene rs64173 are risk factors in the occurrence of MAFLD.+e AA genotype of the STAT3 gene rs744166 is a protective
factor of MAFLD, while TM6SF2 rs58542926 and GATAD2A rs4808199 show no significant correlation with MAFLD.

1. Introduction

Metabolism-related fatty liver disease (MAFLD) is a clini-
copathological syndrome characterized by diffuse hepatocyte
steatosis and lipid storage without excessive drinking history.
It may lead to a series of diseases, including steatohepatitis,
liver fibrosis, and liver cirrhosis [1], which is a chronic
metabolic disease seriously endangering human health.
Clinically, the gold standard for the diagnosis of MAFLD is
liver biopsy, which has a certain risk. For example, liver
puncture may lead to bleeding at the puncture point, bleeding
in the abdominal cavity, damage to the surrounding tissues
and organs, causing liver injury, bile fistula, intrahepatic
arteriovenous fistula, intrahepatic infection, abdominal in-
fection, and puncture to the lungs causing pneumothorax.
+erefore, it is particularly important to deeply explore the
pathophysiological process of exploring and finding out
possible biomarkers for the diagnosis of MAFLD.

MAFLD is a metabolic liver injury closely related to
genetic susceptibility, which is related to single nucleotide
polymorphisms at multiple related gene loci. Single nucle-
otide polymorphism (SNP) refers to the DNA sequence
polymorphism caused by the change of a single nucleotide at
the genomic level, mostly the conversion or transversion of a
single base. MALFD is associated with multiple endogenous
gene polymorphisms. A current study involving a large
sample of European populations is based on genome-wide
association analysis (GWAS) and identified five MAFLD
susceptibility loci, which are located at or near GCKR, tr1b1,
mau2/TM6SF2, ApoE, and PNPLA3, respectively [2].
However, we found that the correlation between TM6SF2
and PNPLA3 gene polymorphisms and MAFLD in the
Chinese population is not consistent with that in the Eu-
ropean and American populations. In addition to the
abovementioned five loci, studies have found MBOAT7,
STAT3, and GATAD2A gene polymorphisms may be

Hindawi
Journal of Oncology
Volume 2022, Article ID 9282557, 6 pages
https://doi.org/10.1155/2022/9282557

mailto:doczhangyuwei@sina.com
https://orcid.org/0000-0002-8961-9293
https://orcid.org/0000-0001-7170-8653
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9282557


related to the liver lipid metabolism pathway [3–7]. How-
ever, there is no study on the correlation between these gene
polymorphisms and MALFD in the Chinese population.
+erefore, we selected the gene encoding patatin such as
phospholipase domain protein 3 (PNPLA3) rs738409,
transmembrane 6 superfamily 2 gene (TM6SF2) rs58542926,
membrane bound o-acyltransferase domain 7 gene
(MBOAT7) rs64173, signal transduction activating tran-
scription factor-3 gene (STAT3) rs744166, and nuclear small
body weight plastic deacetylase gene (GATAD2A)
rs4808199, to explore the relationship between these gene
loci and MAFLD.

+e incidence rate of MAFLD in China’s Xinjiang area is
much higher than that of Han nationality due to its unique
genetic background and special lifestyle [8]. +erefore, we
intend to take the Karamay minority population in Xinjiang,
China as the research object to explore the relationship
between single nucleotide polymorphisms of PNPLA3,
TM6SF2, MBOAT7, GATAD2A, and STAT3 genes and
metabolic fatty liver, and to explore the mechanism of the
abovementioned gene loci affecting the occurrence and
development of MAFLD, so as to provide a basis for early
diagnosis and individualized early prevention, and a re-
search basis for further exploring the diagnosis and treat-
ment of diseases at the molecular level in the modern
medical model.

2. Methods

2.1. Subjects and Clinical Criteria. 564 patients were divided
into two groups: the case group and the healthy control
group. +ey are all 28–67 years old and have lived in the
Karamay area for more than 10 years.+e case group was the
patients with MAFLD in Karamay City, Xinjiang, whose
weight was stable three months before the start of the study
and did not take liver protective drugs and were diagnosed as
MAFLD according to imaging examination or pathological
biopsy. On the other hand, the control group consisted of
normal people without abnormalities in imaging and he-
matology.+e age, sex, nationality, and region of the control
group were matched with those of the case group. +e
exclusion criteria were as follows: history of excessive
drinking (alcohol consumption equivalent to more than
30 g/D for men and more than 20 g/D for women), specific
liver diseases (such as genotype 3 HCV infection, autoim-
mune hepatitis, and hepatolenticular degeneration), drug
effects (such as tamoxifen, amiodarone, sodium valproate,
methotrexate, and glucocorticoid), total parenteral nutri-
tion, inflammatory bowel disease, celiac disease, hypothy-
roidism, Cushing’s syndrome, β-lipoprotein deficiency,
lipoatrophy, diabetes, and so on. Next, data were collected,
including general information (such as name, nationality,
age, gender, height, weight, BMI, smoking history, drinking
history, medication history, and past medical history),
biochemical indicators (such as fasting blood glucose, tri-
glyceride, cholesterol, high-density lipoprotein, low-density
lipoprotein, aspartate aminotransferase, alanine amino-
transferase, direct bilirubin, indirect bilirubin, albumin, and
uric acid), and liver B-ultrasound results.

+e severity of hepatotoxicity was classified according to
the WHO toxicity classification standards (Grade 1 (mild),
ALT< 2.5 ULN; Grade 2 (mild), ALT 2.5–5 ULN; Grade 3
(moderate), ALT 5–10 ULN; and Grade 4 (severe), ALT> 10
ULN) [9], and different clinical patterns were categorized
into hepatocellular, cholestatic, and mixed liver injury based
on the R value, where R� (ALT/ULN)/(ALP/ULN) (ALP,
alkaline phosphatase) [10].

2.1.1. Genomic DNA Extraction and Genotyping. A whole
blood genomic DNA extraction kit was used to extract whole
blood DNA. Primer3 online, Oligo, GeneMapper, SHEsis,
and other software were used to design PCR amplification
primers and the single-base extension primers for the
polymorphic sites to be tested. Multiplex PCR technology
and single-base extension technology were combined for
genotyping detection.

2.1.2. Statistical Analysis. Unless stated otherwise, all sta-
tistical analyses were performed with SPSS 20.0 (SPSS,
Munich, Germany) or GraphPad Prism 5.0 (GraphPad
Software Inc., CA, USA). Quantitative data were expressed
as medians and ranges. Exact tests were performed to check
the consistency of genotyping results with Hardy–Weinberg
equilibrium (HWE). Under the additive, dominant, and
recessive genetic models, linear regression was used to
analyze the correlation between each gene locus and
MAFLD. All models were adjusted for confounding factors.

3. Results

3.1. Demographical and Clinical Data. Among the 282 ATLI
cases, a total of 110 (39.0%) ATLI cases had Grade 1 (mild)
hepatotoxicity, 107 (37.9%) had Grade 2 (mild) hepato-
toxicity, 46 (16.3%) had Grade 3 (moderate) hepatotoxicity,
and 19 (6.8%) had Grade 4 (severe) hepatotoxicity. +ere
were no significant differences in the baseline characteristics
of the two groups except for weight, BMI, and triglycerides
(Table 1).

3.2. Genotype Analysis. Hardy–Weinberg equilibrium tests
demonstrated no significant deviation from the expected
values for the five tagSNPs among the controls (rs738409,
χ2 �1.137, P � 0.478; rs641738, χ2 � 0.340, P � 0.286;
rsrs744166, χ2 � 0.938, P � 0.130; rs58542926, χ2 � 0.503,
P � 0.560; and rsrs4808199, χ2 � 0.013, P � 0.338) (Table 2).

3.3. Gene Single Nucleotide Polymorphism and MAFLD.
After correcting for potential confounding factors, condi-
tional logistic regression analysis (Table 3) showed that
patients carrying the CC genotype at rs738409 in PNPLA3
were at a higher risk of MAFLD than those with the GG and
GC genotypes (adjusted OR� 1.402, 95% CI: 1.026–2.239,
P � 0.033), and significant differences were also found under
the recessive (P � 0.016) and additive models (P � 0.046).
+e TTgenotype ofMBOAT7 rs64173 was a risk factor in the
occurrence of MAFLD (P � 0.02), while the AA genotype of
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STAT3 rs744166 can serve as a protective factor in the
occurrence of MAFLD (P � 0.016). TM6SF2 and GATAD2
had no significant correlation with the occurrence of
MAFLD. However, no other significant differences in the
genotypes of the remaining genes were observed between
patients and healthy controls.

3.4. SubgroupAnalysis. According to the extended subgroup
analysis of liver injury severity, risk related tagSNP-PNPLA3
rs738409 was still a risk factor in Grade 1 and Grade 2 (mild)
cases under implicit and additive models (or� 1.614,
P � 0.009; or� 1.279, P � 0.038), but there was no

correlation in Grade 3 and Grade 4 (moderate and severe)
cases (P> 0.05) (Table 4).

4. Discussion

As a common chronic disease, the pathogenesis ofmetabolism-
related fatty liver disease has not been clearly determined.
Current studies mostly believe that it is the result of multiple
factors such as polygenic genetic variation and the environ-
ment. In a European population study of 423252 people, the
researchers constructed a polygenic risk score (GRS) related to
metabolism-related fatty liver disease. It was found that a
higher GRS can significantly amplify the risk of MAFLD for

Table 1: Characteristics of patients in MAFLD cases and controls.

Characteristic MAFLD cases (n� 282) Controls (n� 282) P value
Gender (male/female) 145/137 142/140 —
Age (y) 47.8± 19.1 47.7± 19.0 0.868
Weight (kg) 57.3± 10.6 55.8± 10.0 0.004
BMI (kg/m2) 24.83 (18.61–30.47) 20.12 (18.51–23.80) 0.018
Glycosylated hemoglobin (%) 5.6 (4.6–8.1) 5.3 (4.0–6.0) 0.067
ALT (U/L) 19.0 (7.0–79.0) 16.0 (5.0–31.0) 0.090
AST (U/L) 22.0 (10.0–82.0) 20.0 (17.0–27.0) 0.053
Triglycerides (mmol/L) 1.79 (0.66–5.38) 1.09 (0.38–1.60) 0.048
Cholesterol (mmol/L) 3.31 (1.69–8.33) 2.82 (0.87–4.78) 0.749
Low-density lipoprotein (mmol/L) 2.96 (0.99–7.17) 2.51 (0.19–3.19) 0.690

Table 2: Information on five tagSNPs.

Gene tagSNPs Chromosome position Base change HWE P value
PNPLA3 rs738409 35777618 G>C 0.478
MBOAT7 rs641738 45782513 C>T 0.286
STAT3 rs744166 11307603 G>A 0.130
TM6SF2 rs58542926 55786873 C>T 0.560
GATAD2A rs4808199 69743760 G>A 0.338

Table 3: Genotypes distribution in two groups and the risks of MAFLD.

Gene tagSNPs
Cases

(n� 282)
Controls
(n� 282) OR (95% CI) P value Model OR (95% CI) P value

n % n %

PNPLA3

rs738409 (G>C)
GG 56 19.9 68 24.1 1.000 Dom 1.160 (0.824–1.615) 0.424
GC 152 53.9 161 57.1 1.006 (0.713–1.447) 0.859 Rec 1.492 (1.080–2.066) 0.016
CC 74 26.2 53 18.8 1.402 (1.026–2.239) 0.033 Add 1.232 (1.003–1.504) 0.046

MBOAT7

rs64173 (C>T)
CC 53 18.8 64 22.7 1.000 Dom 1.018 (0.778–1.459) 0.848
CT 159 56.4 167 59.2 1.003 (0.742–1.359) 0.979 Rec 1.398 (1.053–1.692) 0.032
TT 70 24.8 51 18.1 1.299 (0.933–1.748) 0.040 Add 1.038 (0.856–1.259) 0.061

STAT3

rs744166 (G>A)
GG 55 19.5 69 24.5 1.000 Dom 1.193 (0.957–1.491) 0.398
GA 150 53.2 159 56.4 1.223 (0.842–1.573) 0.947 Rec 0.682 (0.372–1.195) 0.019
AA 77 27.3 54 19.1 0.738 (0.469–1.201) 0.026 Add 1.004 (0.894–1.356) 0.059

TM6SF2

rs58542926 (C>T)
CC 60 21.3 71 25.2 1.000 Dom 0.973 (0.765–1.320) 0.883
CT 155 54.9 146 51.8 1.005 (0.782–1.392) 0.969 Rec 0.915 (0.657–1.280) 0.615
TT 67 23.8 65 23.0 0.928 (0.631–1.336) 0.655 Add 0.952 (0.792–1.169) 0.699

GATAD2A

rs4808199 (G>A)
AA 54 19.1 42 14.9 1.000 Dom 1.042 (0.769–1.415) 0.789
AG 164 58.2 162 57.4 0.980 (0.719–1.364) 0.957 Rec 1.687 (0.734–3.897) 0.217
GG 64 22.7 78 27.7 1.678 (0.719–3.883) 0.218 Add 1.088 (0.836–1.416) 0.536
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liver-related diseases, and the risk is further amplified with age
[11]. +is suggests that there is a close correlation between
metabolism-related fatty liver disease and endogenous genes.

With the upgrading of gene screening methods and the
development of human genome projects, whole genome
scanning (GWAS) is widely used in the related gene
screening of MAFLD, promoting the diagnosis of diseases,
the development of new drugs, and the exploration of new
therapies. Among them, single nucleotide polymorphism,
that is, the study of single nucleotide substitution in the
genome, plays an increasingly important role in gene
mapping and association analysis of complex diseases. +e
latest genome-wide analysis results show that in 770180
case-control studies, researchers have identified fiveMAFLD
susceptibility loci through genome-wide meta-analysis,
which are located in GCKR, tr1b1, mau2/TM6SF2, and
ApoE, respectively, and PNPLA3 [2]. However, the corre-
lation between TM6SF2 and PNPLA3 gene polymorphisms
andMAFLD in the Chinese population is different from that
in the European population. According to a study of 1200
Chinese people, the CC genotype of PNPLA3 rs738409 is a
risk factor for MAFLD (P � 0.046) [12], while the GC ge-
notype is more prone to MAFLD than the CC genotype in
the European population [3, 13]. We know that most of the
more than 100 loci identified by GWAS are found in the
European population, while the weight of different loci is
different in various ethnic groups [14]. +erefore, the cor-
relation between TM6SF2 and PNPLA3 gene polymor-
phisms and MAFLD still needs to be improved in the
Chinese population with the help of a lot of evidence-based
medical evidence.

In our study, taking fatty liver as the dependent var-
iable and adjusting body weight, BMI, and other factors,
multivariate logistic analysis was carried out on the ad-
ditive model, dominant model, and recessive model of

each gene. +e CC gene of PNPLA3 is a risk factor in the
occurrence of MAFLD, and the TT gene of MBOAT7
carries out the same job. +e AA gene of STAT3 is a risk
factor in the occurrence of MAFLD, while TM6SF2 and
GATAD2A have no significant correlation with the oc-
currence of fatty liver.

Based on the abovementioned results, our study shows
that PNPLA3, MBOAT7, and STAT3 affect the occurrence
and development of MAFLD.+e PNPLA3 gene mutation is
associated with increased transaminase activity, which can
promote the progression of liver fibrosis and steatosis
[15–17]. MBOAT7 can catalyze the desaturation of the
second acyl chain of phospholipids and transfer polyun-
saturated fatty acids [18]. STAT3 plays a key role in the
process of leptin resistance, and high leptin levels may be
related to the increase of nonalcoholic fatty liver disease [19].
In addition, STAT3 is downregulated in atherosclerotic
lesions of ApoE -/- mice. Its forced overexpression can
reduce inflammation, lipid accumulation, and vascular
smooth muscle cell proliferation, indicating that it has
atherosclerotic protective function [20]. TM6SF2 and
GATAD2A are also related to MAFLD in foreign studies
[21, 22], but they are not related in our study of Xinjiang
ethnic minorities.

+e PNPLA3 gene is a member of the non-Ca2 +−

dependent patatin like phospholipase family on chromo-
some 22 [23]. +e protein encoded by the PNPLA3 gene is a
nonsecretory protein adiponutrin composed of 481 amino
acids. It is a four times transmembrane protein, which
mainly exists on the cell membrane and cytoplasmic lipid
droplets [24]. PNPLA3 is a genetic variation highly related to
the occurrence and development of MAFLD. Studies have
shown that GG homozygous variants in European pop-
ulations increase the risk of HCC associated withMAFLD by
10 times [25]. Interestingly, PNPLA3 carriers have a

Table 4: Subgroup analysis among different severity of hepatotoxicity with different genetic models.

Genes tagSNPs Model Grade 4 and 3 (n� 65)
P value Grade 2 and 1 (n� 217)

P valueOR (95% CI) OR (95% CI)

PNPLA3

rs738409 (G>C)
GG Dom 1.198 (0.482–2.479) 0.683 1.121 (0.685–1.633) 0.507
GC Rec 1.052 (0.581–1.876) 0.749 1.614 (1.156–2.506) 0.009
CC Add 1.079 (0.754–1.732) 0.738 1.279 (1.010–1.628) 0.038

MBOAT7

rs64173 (C>T)
CC Dom 0.796( 0.373–1.919) 0.683 0.787 (0.463–1.349) 0.298
CT Rec – – 2.013 (0.115–5.97) 0.654
TT Add 0.861 (0.392–1.896) 0.687 0.830 (0.519–1.316) 0.438

STAT3

rs744166 (G>A)
GG Dom 1.417 (0.812–2.389) 0.221 1.219 (0.891–1.672) 0.229
GA Rec 0.827 (0.355–1.863) 0.675 1.464 (0.862–2.483) 0.150
AA Add 1.152 (0.891–1.810) 0.488 1.217 (0.961–1.533) 0.135

TM6SF2

rs58542926 (C>T)
CC Dom 1.011 (0.524–1.838) 0.921 0.885 (0.629–1.252) 0.518
CT Rec 0.787 (0.376–1.632) 0.528 1.062 (0.729–1.537) 0.886
TT Add 0.954 (0.662–1.399) 0.792 0.973 (0.772–1.219) 0.769

GATAD2A

rs4808199 (G>A)
AA Dom 0.618 (0.345–1.096) 0.095 1.215 (0.885–1.669) 0.266
AG Rec 1.122 (0.519–2.481) 0.789 1.090 (0.712–1.683) 0.693
GG Add 0.816 (0.540–1.226) 0.316 1.125 (0.896–1.387) 0.392
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significantly increased risk of cirrhosis and hepatocellular
carcinoma, independent of the tendency to steatosis. +is
indicates that PNPLA3 is directly involved in the process of
fiber formation and carcinogenesis [26].

In 2015, MBOAT7rs641738 was first found to be closely
associated with metabolic cirrhosis in a European study
including 1148 patients with metabolic cirrhosis and 922
healthy controls. Researchers from the European Dallas
Research Center genotyped MBOAT7rs641738 in 1149
patients who underwent liver biopsy. +e results showed
that the MBOAT7rs641738 polymorphism was associated
with liver fat content, and patients with T allele were at
greater risk of serious liver injury and fibrosis. In individuals
with a site mutation, the expression of MBOAT7 was
downregulated at mRNA and protein levels, and the levels of
phosphatidylinositol in hepatocytes and circulating blood
were also changed [27]. Researchers from Italy found that
carrying the MBOAT7 T allele is an independent risk factor
for MAFLD related liver cancer [28]. Contrary to the
abovementioned population studies, the study from Taiwan
children in China detected the MBOAT7rs641738 gene
polymorphism in 831 obese MAFLD children aged 7∼15. +e
results showed that the MBOAT7rs641738 gene polymor-
phism was associated with steatohepatitis, insulin resistance,
and blood lipid levels. +ere was no significant correlation
between liver enzyme levels and serum CK18 levels [29]. +e
results of this study showed that TT genotype at the
MBOAT7rs641738 locus increased the risk of MAFLD, which
was consistent with the data of the European population.

In our study, STAT3 gene polymorphism was associated
with MAFLD. +e activation of STAT3 eventually leads to
cytokine signal inhibitor-3 (SOCS-3) playing a feedback
inhibitory role by weakening the OBRb signal and plays a
key role in leptin resistance in part by binding tyr985 [30].
Leptin is considered to be an antitear hormone, which can
protect nonadipose tissues including the liver, from fat
accumulation and fat toxicity. However, in the state of in-
sulin resistance, including obesity, it is not only high and
thin. +e protective effect of leptinemia seems to be limited,
and hyperleptinemia may have adverse effects, thus pro-
moting insulin resistance, hepatic steatosis, inflammation,
fibrosis, and carcinogenesis.

In summary, MAFLD is a complex disease related to
genetic, environmental, and metabolic stress. Its patho-
genesis is affected by many factors, such as genetics, envi-
ronment, immunity, nutrition, and so on [31, 32]. By
affecting lipid metabolism, inflammatory response, insulin
resistance, oxidative stress, liver fibrosis and other processes,
gene polymorphism, and epigenetics can regulate the sus-
ceptibility and progression of MAFLD [33]. Gene poly-
morphism provides ideas for the early diagnosis and targeted
therapy of MAFLD and provides a theoretical basis for the
creation and secondary development of new drugs.
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MBOAT7 variant rs641738 alters hepatic phosphatidylino-
sitols and increases severity of non-alcoholic fatty liver disease
in humans,” Journal of Hepatology, vol. 65, no. 6,
pp. 1263–1265, 2016.

[29] B. Donati, P. Dongiovanni, S. Romeo et al., “MBOAT7
rs641738 variant and hepatocellular carcinoma in non-cir-
rhotic individuals,” Scientific Reports, vol. 7, no. 1, p. 4492,
2017.

[30] B. Laura, C. S. Di, G. Francesca et al., “Targeting a phospho-
STAT3-miRNAs pathway improves vesicular hepatic steatosis

in an in vitro and in vivo model,” Scentific Reports, vol. 8,
no. 1, 2018.

[31] J. Voisey and C. P Morris, “SNP technologies for drug dis-
covery: a current review,” Current Drug Discovery Technol-
ogies, vol. 5, pp. 230–5, 2008.

[32] N. Chalasani, Z. Younossi, J. E. Lavine et al., “+e diagnosis
and management of non-alcoholic fatty liver disease: practice
guideline by the American association for the study of liver
diseases, American college of gastroenterology, and the
American gastroenterological association,” Hepatology,
vol. 55, no. 6, pp. 2005–2023, 2012.
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Background. /ere is much evidence that confirms the inextricable link between inflammation and malignancy. Inflammation-
related regulators were involved in the progression of kidney renal clear cell carcinoma (KIRC). However, the predictive role of single
gene biomarkers is inadequate, andmore accurate prognosticmodels are necessary.We undertook the current research to construct a
robust inflammation-related gene signature that could stratify patients with KIRC. Methods. /e transcriptome sequencing data
along with clinicopathologic information of KIRC were obtained from TCGA. A list of inflammation-related genes was acquired
from the Molecular Signatures Database. Using the RNA-seq and survival time data from the TCGA training cohort, an in-
flammation-related gene signature was built using bioinformatic methods, and its performance in predicting patient prognosis was
assessed by Kaplan–Meier and ROC curve analyses. Furthermore, we explored the association of risk score with immune score,
stromal score, tumor immune-infiltrating cells (TIICs), immunosuppressive molecules, m6A regulators, and autophagy-related
biomarkers. Results. Herein, nine inflammation-related hub genes (ROS1, PLAUR, ACVR2A, KLF6, GABBR1, APLNR, SPHK1,
PDPN, and ADORA2B) were determined and used to build a predictive model. All sets, including training set, four testing sets, and
the entire TCGA group, were divided into two groups (low and high risk), and Kaplan–Meier curves all showed an adverse prognosis
for patients in the high-risk group. ESTIMATE algorithm revealed a higher immune score in the high-risk subgroup. CIBERSORT
algorithm illustrated that the high-risk group showed higher-level immune infiltrates. Furthermore, LAG3, TIGIT, and CTLA4 were
overexpressed in the high-risk subgroup and positively associated with risk scores. Moreover, except for METTL3 and ALKBH5, the
other m6A regulators decreased in the high-risk subgroup. Conclusions. In conclusion, a novel inflammation-related gene signature
comprehensively constructed in the current study may help stratify patients with KIRC.

1. Introduction

Kidney renal clear cell carcinoma (KIRC) is the most lethal
urological tumor and its incidence and mortality are in-
creasing yearly [1]. Radical surgery is the preferred treatment
of limited renal clear cell carcinoma. /en, 20–40% of pa-
tients in the early stages eventually develop metastatic KIRC.
Moreover, approximately 30% of patients with renal clear
cell carcinoma have a metastasis initial diagnosis due to
insidious onset [2]. Unlike other advanced malignancies,
advanced renal clear cell carcinoma is resistant to

conventional radiotherapy, and although the advent of
targeted drugs such as tyrosine kinase and mTOR pathway
inhibitors has enhanced the long-term survivals for several
patients, the clinical outcome for most patients remains poor
due to the presence of toxic side effects and the emergence of
drug resistance [3, 4].

/e link between cancer and inflammation has been
explored extensively since it was discovered in the 19th
century. Several lines of evidence suggest that tumors usually
occur in the site of chronic inflammation and inflammatory
cells exist in the biopsy of tumor [5]. Researchers found that
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inflammation mediators and cellular effects are essential
components of the local tumor environment [6]. In several
types of cancer, inflammation exists prior to the develop-
ment of malignant changes. In contrast, carcinogenic
changes in other types of cancer can induce an inflammatory
microenvironment and promote tumor progress [7].
Whatever its origin, the inflammation in the tumor mi-
croenvironment has many tumorigenesis effects. It not only
accelerates tumor progression by promoting the prolifera-
tion, angiogenesis, and metastasis, but also disrupts adaptive
immune responses and makes tumor cells tolerant to hor-
mones and chemotherapy drugs. /is cancer-related in-
flammatory molecular pathway is now being uncovered [8].
Balkwill et al. [9] have revealed that the invasion ability of
neoplastic cells is increased in the presence of inflammatory
cytokines. Tan et al. [10] have shown that inflammation-
related genes might serve as important prognostic bio-
markers for assessing recurrence risk (GADD45G) and
death (CARD9, CIITA, and NCF2) in patients with KIRC.
At present, some therapeutic drugs for inflammatory cy-
tokines are being developed and tested in clinical practice
[11], suggesting that targeting inflammation-related genes is
a promising cancer therapy.

As mentioned above, targeting inflammation-related
biomarkers may be a promising novel choice for tumor
treatment. A large number of inflammation-related reg-
ulators are associated with the KIRC progression; how-
ever, cancer is a disease caused by the combined
involvement of multiple genes and pathways. Given the
limitations of a single biomarker, we screened multiple
inflammation-related genes for prognostic relevance and
constructed a gene signature for risk stratification and
prognostic assessment of patients. Herein, we aim to
develop an inflammation-related lncRNA model to pre-
dict the survival outcomes of patient with KIRC. We used
the TCGA database to develop and validated the indi-
vidualized prognostic signature for KIRC based on in-
flammation-related genes. Combined with the
inflammation-related genes with clinical variables, we
construct a comprehensive gene model that could assess
the prognosis of patients with KIRC.

2. Materials and Methods

2.1. Data Collection. RNA-Seq gene expression data for
KIRC was downloaded from the TCGA database (https://
portal.gdc.cancer.gov/), called TCGA-KIRC. /e reads per
map per million base pairs (FPKM) counts and fragment
counts per thousand transcripts were downloaded for fur-
ther analysis. We finally obtained RNA sequencing data
from 530 patients with complete clinical information and
their clinicopathological data.

2.2. Identification of Differentially Expressed Inflammation-
Related Genes (DE-IFRGs). A comprehensive list of in-
flammation-related genes (IFRGs) was retrieved from the
hallmark gene sets from the Molecular Signatures Database
v7.4 (http://www.gsea-msigdb.org/gsea/msigdb/index.jsp),

which consists of 200 IFRGs./e “limma” R package and the
Wilcoxon test method were used to identify the DE-IFRGs
with an adjusted P< 0.05 between KIRC and adjacent
normal renal tissues. /e “pheatmap” R package was
employed to visualize the degree range of differences in the
TCGA-KIRC datasets.

2.3. GeneOntology (GO) andKyoto Encyclopedia ofGenes and
Genomes (KEGG). To reveal the potential biological func-
tions and underlying action mechanisms of DE-IFRGs, we
conducted the GO and KEGG analyses applying the
“clusterProfiler” R package [12]. Functional enrichment
items were considered as “functional” when the false dis-
covery rate (FDR) <0.05.

2.4. Building and Verifying a Prognostic Inflammation-
Related Gene Signature. According to the ratio of 6 :1 :1 : 1 :
1, all patients were randomly randomized into five cohorts,
including training set (n� 320), testing-1 set (n� 53),
testing-2 set (n� 52), testing-3 (n� 52), and testing-4 set
(n� 53). Firstly, using the data from the training set,
prognosis-related DE-IFRGs were selected by the univariate
Cox analysis (P< 0.001). /en, we further reduce the
amount of genes using the LASSO regression analysis to
prevent overfitting. Finally, multivariate assays were con-
ducted to identify the hub IFRGs and build a prognostic
signature. We then calculate the risk score for each KIRC
patient using the following formula: exp gene 1 ∗ β gene
1 + exp gene 2 ∗ β gene 2 + exp gene 3 ∗ β gene 3 + . . . exp
gene n ∗ β gene n. Furthermore, patients in all sets as well as
the entire TCGA set were classified into low- and high-risk
subgroups according to the median risk score of the training
set. /en, survival assays were conducted. ROC assays were
utilized to measure the predictive capability of the prog-
nostic model.

2.5. Evaluation of the Risk Signature. Uni- and multivariate
Cox regression analyses were conducted to select the in-
dependent prognostic factors. Besides, the associations be-
tween risk scores and clinical features of patients were
studied. /en, we construct a nomogram consisting of in-
dependent prognostic factors to predict the OS of KIRC
patients. Calibration curve was employed to compare the
differences between predicted OS and actual OS. In addition,
we compared the differences in the ability of risk model as
well as clinicopathological variables to assess patient
prognosis.

2.6. Functional Enrichment Analysis. Differentially
expressed genes (DEGs) between the high- and low-risk
subgroups were identified using the “limma” R package.
Genes with |log2FC|≥ 1, FDR<0.05 were considered dif-
ferentially expressed. /en, GO and KEGG assays based on
these DEGs were carried out applying the “clusterProfiler” R
package [12].
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2.7. Evaluation of the Tumor Microenvironment (TME) and
Tumor Infiltrated Immune Cells (TIICs). /e ESTIMATE
algorithm was used to evaluate scores representative of the
relative proportion of immune and stromal cells. Further-
more, we further compared the difference of immune and
stromal scores between high- and low-risk subgroups by the
Wilcoxon test. Additionally, to analyze the relationships
between risk score and TIICs, the content of TIICs was
calculated using the CIBERSORT algorithm (http://
cibersort.stanford.edu/).

2.8. Association of Risk Score with Immunosuppressive Mol-
ecule, m6A Regulators, and Autophagy-Related Biomarkers.
Considering immune checkpoint inhibitors (ICIs) were
clinically employed to treat KIRC, we evaluated the asso-
ciation between risk score with ICI-related regulators. m6A
regulators and autophagy-related biomarkers were closely
related to cancer progression; we thus evaluated the cor-
relation between risk score and m6A regulators as well as
autophagy-related biomarkers.

2.9. Statistical Analysis. All statistical analyses were carried
out using R (version 3.6.1). Univariate, LASSO, and mul-
tivariate assays were used to select the prognostic genes and
develop a gene signature. /e Kaplan–Meier analysis was
applied to show the survival difference. ROC assays were
applied to estimate the predictive performance of the risk
model./e independent prognostic factors were determined
applying multivariate assays. Wilcoxon’s test and Pearson’s
correlation methods were utilized to evaluate the association
of risk score with TME, TIICs, ICI-related regulators, m6A
regulators, and autophagy-related biomarkers. P-value
<0.05 was considered statistically significant.

3. Results

3.1. Data Preparation. /e detailed workflow flowchart of
this study is listed in Figure 1./e transcriptome profiles and
clinical information of 530 patients with KIRC were publicly
downloaded from the TCGA database. We then randomly
divided all patients into the training set (n� 320), testing-1
set (n� 53), testing-2 set (n� 52), testing-3 (n� 52), and
testing-4 set (n� 53). Data from the training set was used to
choose prognosis-related hub IFRGs and construct a risk
signature. Simultaneously, data from testing-1, testing-2,
testing-3, and testing-4 sets as well as the entire group was
utilized to demonstrate the capability of the risk score.

3.2. Identification of DE-IFRGs. /e “limma” R package was
employed to screen the differentially expressed DE-IFRGs
between KIRC samples and normal renal specimens. Herein,
177 dysregulated genes were identified, of which 46 were
downregulated, and 131 were upregulated (Figure 2(a)).
Figure 2(b) shows the top ten up- and downregulated IFRGs
in KIRC. Additionally, we calculate the Pearson coefficients
DE-IFRGs, and Figure 2(c) showed a strongly correlated
DE-IFRGs associationmap (cor > 0.8 and P< 0.05), of which

the strongest correlations were found between CXCL11 and
CXCL10, LTA and LCK, and MSR1 and C3AR1
(Figures 2(d)–2(f)).

3.3. Functional Enrichment Analysis of DE-IFRGs.
Functional enrichment analysis of these DE-IFRGs was
conducted using the “clusterProfiler” R package. As revealed
in Figure 3(a), the significantly enriched BP terms were
response to molecule of bacterial origin, response to lipo-
polysaccharide, and positive regulation of cytokine pro-
duction; in terms of CC, DE-IFRGs were mainly involved in
positive regulation of cytokine production, secretory granule
membrane, and membrane raft; as for MF, DE-IFRGs were
mainly involved in receptor-ligand activity, cytokine re-
ceptor binding, and cytokine activity. Figure 3(b) showed the
three significantly enriched GO terms and relevant DE-
IFRGs involved in them. Additionally, the top 10 KEGG
pathways were TNF signaling, lipid and atherosclerosis,
JAK-STAT signaling, chemokine signaling pathway, Influ-
enza A, Toll-like receptor signaling pathway, and inflam-
matory bowel disease (Figure 3(c)). Figure 3(d) displays the
three significantly enriched signaling pathways and related
DE-IFRGs involved in these pathways.

3.4. Construction and Validation of a Risk Signature Based on
Prognosis-Related IFRGs. Using univariate Cox regression
analysis, 20 prognosis-related IFRGs were identified
(P< 0.001) (Table 1). Subsequently, the least absolute Lasso
regression analysis was employed to prevent the overfitting
and determine the most important prognosis-related IFRGs
in KIRC (Figures 4(a) and 4(b)). /en, stepwise multivariate
assays were applied to build a gene signature. Eventually,
nine hub IFRGs (ROS1, PLAUR, ACVR2A, KLF6, GABBR1,
APLNR, SPHK1, PDPN, and ADORA2B) were used to
construct the gene signature (Figure 4(c)). Based on re-
gression coefficients (Table 2), we calculated the risk score
for each patient using the following formula: risk score� (1.069
∗ ROS1)+ (0.339 ∗ PLAUR)+ (−0.720 ∗ ACVR2A)+ (−0.198 ∗
KLF6)+ (0.600 ∗ GABBR1)+ (−0.164 ∗ APLNR)+ (−0.386 ∗
SPHK1)+ (0.183 ∗ PDPN)+ (0.472 ∗ ADORA2B). As exhibited
in Figures 5(a) and 5(b), ROS1, PLAUR,GABBR1, SPHK1, and
PDPN were overexpressed in the high-risk subgroup, whereas
ACVR2A, KLF6, and APLNR were distinctly decreased in the
high-risk subgroup. However, no difference was found in
ADORA2B. Moreover, our group observed that over-
expression of ROS1 and PLAUR indicated worse overall
survival (Figures 5(c) and 5(d)). /e downregulation of
ACVR2A and KLF6 predicted a poor prognosis of patients
(Figures 5(e) and 5(f )). Increased expression of GABBR1
was associated with a shorter OS (Figure 5(g)). Low APLNR
expression predicted a shorter OS (Figure 5(h)). Increased
expression of SPHK1 and PDPN suggested worse prognosis
(Figures 5(i) and 5(j)). Also, no difference was found in
ADORA2B (Figure 5(k)). Furthermore, using the cBio-
Portal database, we explored the genetic mutations of 9 hub
IFRGs, and results were shown in Figure 5(l). Subsequently,
320 patients in the training set were stratified into the low-
and high-risk subgroups based on the median risk score
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value. Kaplan–Meier curves showed that high-risk patients
showed poorer OS by comparison with low-risk patients
(P< 0.001) (Figure 6(a)). ROC assays were utilized to
evaluate the prognostic performance of the gene signature,
and results showed that the area under the ROC curve for
1-year, 3-year, and 5-year OS was 0.766, 0.721, and 0.751
(Figure 6(b)). /e survival status and the expressions of
9-IFRGs in the training cohort were presented in −. To
verify the predictive performance of the gene model, pa-
tients in the testing-1 cohort, testing-2 cohort, testing-3
cohort, testing-4 cohort, and the entire group were clas-
sified as high- and low-risk subgroups. /e Kaplan–Meier
survival curve showed a significantly good OS in the low-
risk group (Figures 7(a)–7(e)). /e AUC of the gene sig-
nature in the testing-1 cohort for 1-year, 3-year, and 5-year
OS is also shown in Figures 7(f )–7(j).

3.5. IndependentPrognosticAnalysis, Correlation of Risk Score
with Clinical Features, and Construction of a Nomogram.
By coupling with the risk model and clinicopathological
features, we identified the risk score (HR� 1.023, P< 0.001)
as a factor of overall survival for KIRC using uni- and
multivariate Cox regression analyses (Figures 8(a) and 8(b)).
Besides, we showed that elevated risk score was notably
correlated with higher histological grade (P< 0.05,
Figure 8(c)), advanced clinical stage (P< 0.05, Figure 8(d)),
and T stage (P< 0.05, Figure 8(e)), suggesting that risk score
was positively correlated with tumor progression. Moreover,
we used the independent prognostic factors to establish a
prognostic nomogram (Figure 8(f )), and calibration curves
showed that the nomogram performed well at predicting 1-,
3-, and 5-year OS in KIRC patients (Figures 8(g)–8(i)),
indicating the robust predictive ability of the prognostic

TCGA-KIRC datasets
(72 normal renal samples and 530 ccRCC samples)

200 inflammation-related genes (IFRGs)

Differentially expressed analysis
(“Limma” R package)

177 differentially expressed IFRGs
(DE-IFRGs)

Univariate Cox regression analysis
(20 DE-IFRGs; P < 0.001)

TCGA training set (n = 320)

Multivariate Cox regression analysis

9-IFRG prognostic model

Evaluation and validation
of model

TCGA testing-1 set
(n = 53)

TCGA testing-2 set
(n = 52)

TCGA testing-3 set
(n = 52)

TCGA testing-4 set
(n=53)

Kaplan Meier
curve

Uni- and multivariate Cox
regression analyses

Comparison with other
clinical features

Predictive nomogram

Association with clinical
features

Functional enrichment analysis
Tumor immune

microenvironment analysis

Association with immunosuppressive
molecules, m6A regulators, and
autophagy-related biomarkers

GO and KEGG analyses

LASSO regression analysis 
(14 DE-IFRGs)

Entire TCGA group
(n=530)

ROC curve

Figure 1: /e flowchart describes the gene signature of KIRC established in this study and its comprehensive analysis.
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Figure 2: Identification of differentially expressed inflammation-related genes (DE-IFRGs) between normal tissues and KIRC tissues. (a)
/e heat map of DE-IFRGs. (b) /e top ten upregulated and downregulated PRGs. (c) Correlation network between DE-IFRGs (Pearson’s
coefficient >0.8). (d–f) /e strongest correlations were found between CXCL11 and CXCL10, LTA and LCK, and MSR1 and C3AR1.
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Figure 3: Functional enrichment analysis of DE-IFRGs. (a) GO enrichment analysis of DE-IFRGs. (b) Enriched GO enrichment terms and
corresponding DE-IFRGs. (c) KEGG signaling pathway analysis of DE-IFRGs. (d) Enriched cancer-related pathways and corresponding
DE-IFRGs.

Table 1: Univariate Cox regression analysis for identification of prognosis-related IFRGs in the training dataset.

IFRGs, inflammation-related genes
ID HR HR.95L HR.95H P-value
CD82 1.411 1.154 1.725 7.904E−04
SLC4A4 0.770 0.663 0.895 6.653E−04
F3 1.298 1.117 1.509 6.529E−04
SGMS2 0.627 0.482 0.817 5.291E−04
NOD2 1.844 1.316 2.585 3.817E−04
TIMP1 1.384 1.161 1.651 2.931E−04
RIPK2 1.883 1.340 2.645 2.632E−04
BEST1 2.144 1.430 3.216 2.252E−04
KLF6 0.683 0.558 0.836 2.213E−04
APLNR 0.741 0.634 0.867 1.817E−04
ACVR2A 0.405 0.253 0.649 1.742E−04
ADRM1 2.553 1.567 4.160 1.677E−04
SPHK1 1.639 1.296 2.072 3.751E−05
CX3CL1 0.671 0.556 0.811 3.541E−05
PDPN 1.545 1.259 1.897 3.089E−05
GABBR1 1.690 1.326 2.154 2.226E−05
ADORA2B 2.236 1.550 3.227 1.695E−05
CALCRL 0.681 0.572 0.810 1.506E−05
ROS1 3.007 1.877 4.817 4.677E−06
PLAUR 1.812 1.456 2.256 1.032E−07
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nomogram. Additionally, we found that risk score had the
largest AUC compared with other clinical variables in
predicting 5-year OS of KIRC (Figure 8(j)), suggesting that
risk score has advantages over other clinical traits in esti-
mating 5-year OS of KIRC.

3.6. Functional Enrichment Analyses. To illustrate the un-
derlying action mechanisms related with the 9-IFRG sig-
nature-derived risk model, a total of 1,771 DEGs were
identified between high- and low-risk subgroups.
Figures 9(a) and 9(b) shows the heat map and volcano map
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Figure 4: Identification of a 9-gene risk signature for overall survival by multivariate Cox regression analysis. (a) /e minimum number
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Table 2: 9 prognosis-associated hub PRGs identified by multivariate Cox regression analysis.

IFRGs, inflammation-related genes
ID coef HR HR.95L HR.95H P-value
ROS1 1.069 2.913 1.533 5.535 1.092E − 03
PLAUR 0.339 1.403 1.023 1.924 3.553E − 02
ACVR2A −0.720 0.487 0.272 0.872 1.546E − 02
KLF6 −0.198 0.820 0.641 1.050 1.156E − 01
GABBR1 0.600 1.822 1.395 2.380 1.073E − 05
APLNR −0.164 0.849 0.713 1.011 6.565E − 02
SPHK1 −0.386 0.679 0.467 0.989 4.367E − 02
PDPN 0.183 1.200 0.945 1.524 1.337E − 01
ADORA2B 0.472 1.603 1.072 2.399 2.165E − 02
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Figure 5: Continued.
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Figure 5: Comprehensive analysis of nine prognosis-associated hub IFRGs. (a) Heat map of expression of nine hub IFRGs between high and
low risk subgroups (∗∗∗P< 0.001). (b) Differential expression of nine hub IFRGs between high- and low-risk subgroups. (c–k) /e
Kaplan–Meier curves of ROS1, PLAUR, ACVR2A, KLF6, GABBR1, APLNR, SPHK1, PDPN, and ADORA2B, respectively. (l) Genetic
alteration of nine hub IFRGs in KIRC patients.
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Figure 6: Development of the prognostic signature based on nine hub IFRGs. (a) Survival curve for low- and high-risk subgroups in the
TCGA training cohort. (b) Time-dependent ROC curve of the 9-IFRG prognostic risk signature. (c) Relationships among the risk score
(upper), survival status of patients (middle), and the expressing pattern of the genes (bottom).
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of DEGs, respectively. As illustrated in Figure 9(c), con-
cerning biological processes, DEGs were significantly
enriched in the modulation of negative regulation of hy-
drolase activity; with regard to cellular components, DEGs

were significantly involved in the collagen-containing ex-
tracellular matrix, presynapse, and synaptic membrane; in
point of molecular functions, DEGs were noticeably in-
volved in receptor-ligand activity, passive transmembrane
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Figure 7: Validation of the prognostic signature based on nine inflammation-related genes in different cohorts. (a–e) Survival assays of the
9-IFRG prognostic signature in the testing-1 cohort, testing-2 cohort, testing-3 cohort, testing-4 cohort, and the entire group, respectively.
(f–j) Time-dependent ROC curves of the 9-IFRG prognostic risk signature in the four cohorts.
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transporter activity, and channel activity. DEGs were mainly
enriched in phototransduction, linoleic acid metabolism,
cholesterol metabolism, arachidonic acid metabolism, IL-17
signaling pathway, and protein digestion and absorption
(Figure 9(d)).

3.7. Association of Risk Score with TME. Immune and
stromal cells are crucial constituents of the immune mi-
croenvironment. In this current study, the contributions of
stromal and immune cells to KIRC were estimated by the
ESTIMATE algorithm. /e results signified that immune
score was crucially higher in the high-risk group
(Figure 10(a)); however, no difference was found for the
stromal score (Figure 10(b)). Additionally, we applied the
CIBERSORT algorithm to compare the differences in each
type of immune infiltrating cells. Figure 10(c) showed the
proportion of 21 immune cells in each sample. Figure 10(d)
illustrates the correlations between infiltrated immune cells
in the tumor. Figure 10(e) shows the heat map of the 21
immune cell proportions. Moreover, Figure 10(f ) shows the
relationship between risk score with different immune cells,
and we found that the high-risk group showed higher-level
immune infiltrates of M0 macrophages, regulatory T cells
(Tregs), follicular helper T cells, plasma cells, and memory
B cells.

3.8. Association of Risk Score with Immunosuppressive Mol-
ecules, m6A Regulators, and Autophagy-Related Biomarkers.
/en, we estimated the association between immunosup-
pressive molecules and risk score. Figure 11(a) shows the
heat map of common immunosuppressive molecules in
high- and low-risk subgroups. Furthermore, as illustrated in
Figure 11(b), patients with high-risk score expressed higher
levels of LAG-3, ICOS, CTLA4, PDCD1, CD27, and TIGIT,

whereas HAVCR2 was overexpressed in patients with the
low-risk score. Correlation analysis confirmed that LAG-3
(cor� 0.15, Figure 11(c)), TIGIT (cor� 0.11, Figure 11(d)),
and CTLA4 (cor� 0.21, Figure 11(e)) were positively associated
with the risk score, whereas no difference was found for ICOS,
PDCD1, CD27, and HAVCR2 (Figures 11(f )–11(i)). To-
gether, these results indicate that LAG-3, TIGIT, and
CTLA4 were positively associated with the risk score.
Recent evidence indicated the vital role of m6A mRNA
methylation in reducing the antitumor response of
CD8 + T cells and promoting anti-PD-1 drug resistance.
We thus assess the relationship between risk score and
m6A regulators. Figure 12(a) shows the heat map of
commonm6A regulators in high- and low-risk subgroups.
Additionally, we discovered that most of the m6A regu-
lators were significantly decreased in the high-risk sub-
group except for METTL3 (Figure 12(b)). /e results
indicate that high-risk subgroup patients may be more
suitable for immunotherapy with emerging checkpoint
inhibitors. Growing researches have revealed a key role for
autophagic pathways and proteins in immunity and in-
flammation. We thus explore the association of auto-
phagy-related genes with risk score, and we found that
several autophagy-related genes have a significant link
with risk score (Figure 13(a)), and the top three relevant
autophagy-related genes are DKK1 (Figure 13(b)), SNAI2
(Figure 13(c)), and AREG (Figure 13(d)).

4. Discussion

In this work, we constructed an inflammation-related gene
feature and evaluated its predictive capability in predicting
OS of KIRC patients. /en, we studied the potential func-
tions and signaling pathways closely related to risk score and
further explored the association between risk score with
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Figure 8: Independent prognostic analysis and construction of nomogram. (a) Univariate Cox regression assays were used to explore the
prognostic value of risk score and other clinical features in KIRC. (b) Multivariate Cox regression assays were applied to demonstrate
whether risk score and other clinical features could be an independent marker for KIRC patients. (c–e) An elevated risk score was
significantly correlated with higher histological grade, advanced clinical stage, and T stage. (f ) A nomogram consisting of independent
clinical features for predicting 1-, 3-, and 5-year OS of KIRC. (g–i) Calibration curves of 1-year, 3-year, and 5-year OS of KIRC. (j) ROC
curves for the superiority of the gene signature.
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immune microenvironment, immunosuppressive mole-
cules, m6A regulators, and autophagy-related biomarkers.
Here, nine hub IFRGs (ROS1, PLAUR, ACVR2A, KLF6,
GABBR1, APLNR, SPHK1, PDPN, and ADORA2B) were
selected by bioinformatics and used to construct 9-IFRG risk
signature successfully. Afterwards, we found that gene
signature performed well in the training set, testing-1 set,
testing-2 set, testing-3 set, testing-4, and the entire TCGA
group. Specifically, the higher the risk score of patients is, the
worse the overall survival rate is. ROC curve also confirms
the robust predictive performance of the risk model. Ad-
ditionally, by combining the risk model with the clinico-
pathological features of patients, we found that the 9-IFRG
gene model can independently predict the OS of patients
with KIRC. Further investigation indicated that the

nomogram performed well at predicting 1-, 3-, and 5-year
OS in KIRC patients. Furthermore, we found that the risk
score was significantly associated with cancer progression in
KIRC patients. Moreover, compared to other clinical vari-
ables, the risk score had the highest predictive performance
of prognosis. To sum up, we constructed a powerful 9-IFRG
risk signature and an effective nomogram for KIRC risk
stratification and overall survival prediction.

Of the nine hub IFRGs (ROS1, PLAUR, ACVR2A, KLF6,
GABBR1, APLNR, SPHK1, PDPN, and ADORA2B) we
identified, some are associated with cancer progression. /e
protooncogene ROS1 encodes a tyrosine kinase receptor that
has an essential physiological role in humans. Studies have
shown that somatic chromosomal fusions involving ROS1
generate chimerical tumor proteins that can cause various
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Figure 9: Functional assays of DEGs between high- and low-risk subgroups. (a) Heat map of DEGs between high- and low-risk subgroups.
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Figure 10: Association of risk score with tumor immune microenvironment in KIRC. (a) Differences in stromal score between high- and
low-risk subgroups. (b) Differences in immune score between high- and low-risk subgroups. (c) Relative proportion of immune infiltration
in KIRC. (d) Correlation between tumor-infiltrating immune cells. (e) /e heatmap exhibited the infiltrating difference of immune cells in
two groups. (f ) Barplot showed the ratio differentiation of 21 kinds of immune cells.
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Figure 11: Differences in immunosuppressive molecule expression between high- and low-risk subgroups. (a) /e heatmap exhibited the
immunosuppressive molecules in two groups. (b) Barplot showed the immunosuppressive molecules between KIRC specimens with low- or
high-risk subgroups relative to the median of risk score. (c–i) Association of LAG-3, TIGIT, CTLA4, ICOS, PDCD1, CD27, and HAVCR2
with the risk score.
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Figure 12: Association of risk score with m6A regulators in KIRC. (a) /e heatmap exhibited the immunosuppressive molecules in two
groups. (b) Barplot showed the m6A regulators between KIRC specimens with low- or high-risk subgroups.
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cancers [13]. In inflammatory myofibroblastic tumors, ROS1
expression predicts ROS1 gene rearrangement [14]. PLAUR,
also known as u-PAR, is an essential molecule in modulating
cell surface fibrinogen activation and plays a vital role in
many healthy and pathological processes [15]. Abnormal
PLAUR disorders played a key role in the progression and
metastasis of human colon cancer [16]. Moreover, PLAUR
impacted colorectal liver metastases by influencing the
protein hydrolytic activity and inflammation of the tumor
microenvironment in colorectal cancer. Consequently, the
colorectal liver metastases [17] ACVR2A is a ligand for
activin A protein and is closely associated with polyarthrosis

syndrome, protointestinal embryogenesis, and spermato-
genesis [18]. Emerging evidence indicated that ACVR2A is
involved in many cancer-related signaling pathways, such as
the PEDF-induced signaling, the TFG-β signaling, or sig-
naling pathways regulating stem cell pluripotency [19]. KLF6
is a transcription factor of the zinc finger family and
modulates lipid homeostasis in KIRC [20]. Additionally,
KLF6 had been found to promote the expression and
function of proinflammatory genes by inhibiting miR-223
expression in macrophages [21]. GABBR1, also known as
GABABR1, is a 7-transmembrane receptor. In colorectal
cancer, decreased GABBR1 fosters the proliferation and
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Figure 13: Association of risk score with autophagy-related genes in KIRC. (a) Autophagy-related genes significantly associated with risk
score. (b–d) /e top three autophagy-related genes associated with risk score are DKK1, SNAI2, and AREG.

Journal of Oncology 21



invasion; overexpression of GABBR1 has the opposite [22].
APLNR is also a seven-transmembrane G protein-coupled
receptor that is universally present in diverse tissues. In
osteosarcoma, elevated APLNR expression promotes pro-
liferation and invasion [23]. SPHK1 is a biologically active
metabolite of sphingosine that is involved in various tumor
progression by enhancing cell proliferation and motility.
Currently, drugs targeting SPHK1 are now being progres-
sively validated in clinical trials [24]. Type I integral
membrane glycoprotein encoded by PDPN is widely dis-
tributed in human tissues. In breast tumor-infiltrating im-
mune cells, PDPN was found highly expressed in tumor-
associated macrophages (TAMs), and the latter spurs local
stromal remodeling and promotes vascular growth and
lymphatic infiltration [25]. ADORA2B is a member of the G
protein-coupled receptor superfamily and encodes an
adenosine receptor. A recent report indicates that hypoxia-
inducible factor 1-dependent expression of ADORA2B fa-
cilitates breast cancer stem cell enrichment [26]. /e above
reports confirmed the role of 9 hub IFRGs in carcinogenesis.
However, whether ROS1, PLAUR, ACVR2A, KLF6,
GABBR1, APLNR, SPHK1, PDPN, and ADORA2B affect the
clinical outcome of KIRC patients via modulating the
process of inflammation requires to be further elaborated,
and there are few relevant studies.

To elucidate the functional roles associated with the risk
score, the DEGs between the high-risk and low-risk sub-
groups were identified and used to perform functional
enrichment analysis. Intriguingly, we noticed that DEGs are
involved in several tumor-related signaling pathways. /ese
signaling pathways are all in connection with the regulation
of tumor immunity. /rough the interaction between
chemokines or cytokines and their receptors, different
subsets of immune cells are recruited into the tumor mi-
croenvironment, causing these populations having a dif-
ferential impact on tumor progression and treatment
outcome [27]. In gastric cancer, elevated intratumoral mast
cells resulted in immune suppression via modulating TNF-
α-PD-L1 pathway [28]. /e JAK-STAT signaling pathway is
involved in tumor cell recognition and tumor-driven im-
mune escape and plays a role in almost all immune regu-
latory processes [29]. Toll-like receptor signaling pathway is
a classical immune signaling pathway that plays an irre-
placeable role in modulating tumor immunity and cancer
progression [30]. In addition, we found that the high-risk
group had a higher immune score. With regard to immune
infiltrating cells, we found that high-risk group showed
higher level immune infiltrates. Among them, regulatory
Tcells (Tregs) play crucial roles in keeping self-tolerance and
immune homeostasis. However, in some cases, they promote
tumor progression by inhibiting the effective antitumor
response [31]. /e low-risk group showed higher level
immune infiltrates. Among them, M1 macrophage types are
thought to be key factors in antitumorigenesis, production of
proinflammatory cytokines, and promotion of T-cell im-
munity. Furthermore, the study suggested that LAG-3,
CTLA4, and TIGIT were highly expressed in the high-risk
subgroup and also positively associated with risk score,
indicating that the high-risk group is in a more

immunosuppressed state by comparison with the low-risk
group, but also means that patients of high-risk subgroup
may benefit more from immune checkpoint inhibitors. N6-
methyladenosine (m6A) RNA methylation plays a crucial
role in the tumor immune microenvironment cancer de-
velopment. A recent study indicates that downregulated
m6A-related genes predict unfavorable outcomes in gastric
cancer [32]. We assess the association of m6A regulators
with risk score, and we found that most of the m6A reg-
ulators were significantly decreased in the high-risk sub-
group. Autophagy is an essential homeostatic process by
which cells decompose their components. Recent studies
have uncovered a key role for autophagic pathways and
proteins in immunity and inflammation. We thus evaluate
the association of autophagy-related genes and the risk
score, and results indicate that many autophagy-related
genes were significantly correlated with risk scores, partic-
ularly the DKK1, SNAI2, and AREG.

5. Conclusion

Collectively, our study constructs and validates a robust 9-
IFRG risk signature, which may be to the advantage of risk
classification and prognosis prediction in KIRC patients.
However, there are still some restrictions that should not be
overlooked. Our results are mainly derived from bio-
informatic analysis; clinical samples and cellular experi-
ments are required to prove our findings; in addition, our
analysis discovered that inflammation-related genes might
influence renal clear cell carcinoma progression through
several mechanisms; nevertheless, further in vivo and in
vitro experiments are needed to explore the exact biological
roles.
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2e serine protease inhibitor clade E member 1 (SERPINE1) is a major inhibitor of tissue plasminogen activator and urokinase,
and has been implicated in the development and progression of a variety of tumors. In this study, mRNA microarray and TCGA
database were used to comprehensively analyze the upregulation of SERPINE1 in gastric cancer (GC) tissues compared with the
normal stomach tissues. Kaplan-Meier results confirmed that patients with high SERPINE1 expression exhibited worse overall
survival and disease-free survival. In addition, cell proliferation, cell scratches, transwell migration and invasion assay showed that
SERPINE1 knockdown inhibited the proliferation, migration and invasion of GC ells. Western blot showed that the expression of
VEGF and IL-6 was significantly upregulated after overexpression of SERPINE1. Meanwhile, SERPINE1 was positively correlated
with the level of immune infiltration using the online analysis tools TISIDB and TIMER. And SERPINE1 expression increased
with the increase of malignancy of GC which were detected by Immunohistochemistry. Finally, tumorigenesis experiments in
nude mice further demonstrated that SERPINE1 could promote the occurrence and development of GC, while deletion of
SERPINE1 inhibited the progression of GC. In summary, SERPINE1 was highly expressed in GC tissues, and SERPINE1 was
helpful for differential diagnosis of pathological grade of gastric mucosal lesions. SERPINE1 might regulate the expression of
VEGF and IL-6 through the VEGF signaling pathway and JAK-STAT3 inflammatory signaling pathway, thus ultimately affecting
the invasion and migration of GC cells.

1. Introduction

As one of the most common cancers in the world, gastric
cancer (GC) is the first malignant tumor of digestive tract,
which seriously threatens human life and health. It was
reported that GC ranked fifth in the number of new cases
among all cancers in 2020, and was also the fourth most
common cause of cancer-related death [1]. In general, GC
can be diagnosed by endoscopic pathological tissue biopsy
[2]. Currently, the main treatment methods for GC include
surgery, radiotherapy, chemotherapy and targeted therapy,
etc., but the above treatment effects are not ideal, the re-
currence rate of GC is still high and the prognosis is very
poor [3]. 2is is mainly due to the uncertainty of histo-
pathological behavior and metastasis characteristics of early

GC, so the early diagnosis rate of GC is low (about 10%).
Most GC is already in the middle and late stages when
diagnosed, while the 5-year survival rate of late GC is about
20% [4]. 2erefore, it is very important to explore new
biomarkers and therapeutic targets for GC.

Serine protease inhibitor clade E member 1 (SERPINE1)
is a member of the Serine protease inhibitor family and a key
modulator of the plasminogen/plasminase system [5].
SERPINE1 is a single-chain, non-glycosylated polypeptide
chain containing 400 amino acids with a molecular weight of
50 kDa [6]. 2is gene encodes a member of the serine
protease inhibitor (Serpin) superfamily, which is a major
inhibitor of tissue plasminogen activator (TPA) and uro-
kinase (UPA) [7]. SERPINE1 protein is composed of 379
amino acids and is mainly synthesized and secreted by
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platelets, megakaryocytes, hepatocytes, adipocytes, smooth
muscle cells and vascular endothelial cells [8]. In addition,
SERPINE1 is associated with a variety of diseases and ac-
tivities in vivo, including cardiovascular diseases, inflam-
mation, cancer, metabolic disorders, aging, tissue fibrosis,
etc [9].

Previous studies showed that SERPINE1 had focused on
its effect on thrombosis in humans [10]. Using high-
throughput sequencing technology, SERPINE1 was found to
be significantly overexpressed in a variety of tumor tissues
[11]. It has been reported that SERPINE1 can be used as a
proliferation regulator of glioblastoma, and its high ex-
pression can promote the proliferation and invasion of
glioma cells [12]. Enhanced SERPINE1 activity promotes
metastasis of melanoma [13], and high SERPINE1 expres-
sion is a potential marker of poor prognosis of breast cancer
[14]. Other SERPINE1-related tumors include ovarian
cancer, renal clear cell carcinoma, etc. [15, 16].

In recent years, SERPINE1 has been found to be involved
in immune cell infiltration, which plays a role in the
remodeling of colon cancer microenvironment and immune
cell infiltration [17]. SERPINE1 can affect immune cell in-
filtration in the microenvironment of diffuse low-grade
glioma and has independent prognostic value [12]. Cur-
rently, SERPINE1’s abnormal tumor-promoting function in
cancer progression and metastasis has become a consensus.
Previous literature have indicated that SERPINE1 had pro-
angiogenic, growth and migration stimulation and anti-
apoptotic activity, all of which were targeted at promoting
tumor growth, cancer cell survival and metastasis [18].
SERPINE1 has been proven to be the most reliable biological
and prognostic marker for a variety of cancers, including
breast cancer [19–21], ovarian cancer [22], bladder cancer
[23, 24], colon cancer [25], kidney cancer [26] and non-small
cell lung cancer [27].

In this study, we used data from 2e Cancer Genome
Atlas (TCGA) database to evaluate SERPINE1 expression and
verified it in the Gene Expression Omnibus (GEO) database
(GSE118916, GSE66229 and GSE13911). Gene Set Enrich-
ment Analysis (GSEA) signaling pathway was used to analyze
the biological pathways involved in the pathogenesis of GC
regulated by SERPINE1. In addition, we also observed the
effects of SERPINE1 on GCcell proliferation, invasion and
migration, and subcutaneous tumorigenesis in nude mice.
We may discover a novel prognostic biomarker and a po-
tential molecular mechanism affecting the prognosis of GC.

2. Materials and Methods

2.1. Sample Sources and Clinical Data. From 2018 to 2020, a
total of 8GC tissues were collected from the First Affiliated
Hospital of Jinzhou Medical University for paraffin em-
bedding. Written informed consent was obtained from all
participants. 2is study was approved by the Ethics Com-
mittee of the First Affiliated Hospital of Jinzhou Medical
University (KYLL 202119). None of the patients received
radiation and chemotherapy before surgery. All sections
were evaluated by the pathologist and a definitive diagnosis
was made.

2.2. Data Collection. 2ree datasets (GSE118916, GSE66229
and GSE13911) were obtained from the GEO database
(https://www.ncbi.cn) of the National Center for Biotech-
nology Information.2e two sets of raw data were integrated
using multi-array averaging and SVA software package
preprocessing and removal of batch effect. Using p< 0.05
and |logFC|≥ 1 or as a critical value and crossed the genetic
variations of intersection, the R programming language
limma package was applied to compare GC tissue with
normal tissue samples from TCGA database to identified the
differentially expressed genes (DEGs).

2.3. UALCAN Database. Possible subgroup analysis UAL-
CAN (http://ualcan.path.uab.edu/cgi-bin/ualcan-res.pl) is
an effective cancer data on-line analysis and mining site,
mainly based on the TCGA related cancer database,
UALCAN database allowed relevant biomarker identifica-
tion, gene expression profile analysis, survival analysis, etc.
[28]. We used it to analyze the relationship between SER-
PINE1 expression and clinicopathological variables.

2.4. Gene Set Enrichment Analysis (GSEA). Molecular sig-
natures database (http://software.broadinstitute org/gsea/
msigdb) available to be gene sets for this [29]. GSEA was
used to evaluate the relationship between SERPINE1 ex-
pression and signaling pathways.

2.5. SERPINE1 Positioning Tool. SERPINE1 mRNA ex-
pression in human body and its positioning in the cells could
be obtained by human proteins chart spectrum (https://
www.proteinatlas.org/).

2.6. Immunocorrelation Analysis Tool. TISIDB (http://cis.
hku.hk/TISIDB/index.php), a portal for tumor-immune
system interaction, integrates series of heterogeneous data
for further study of the correlation between SERPINE1 and
the expression of immune regulator of Spearman [30].
TIMER2.0 (http://timer.cistrome.org/) as the network server
update, analyze and visualize tumor immune with its con-
nected other tumor molecular and clinical features. TIMER
provides a reliable assessment of immune invasion levels and
helps to discover associations among immune invasion, gene
expression, mutation, and survival characteristics in the
TCGA cohort. It can be said that the TIMER2.0 web server
provides comprehensive analysis and visualization of tumor-
infiltrating immune cells [31].

2.7. Cell Culture and Transfection. BGC-823 and MKN-28
cell lines were cultured in complete medium supplemented
with 10% fetal bovine serum (FBS; Gibco, USA) and 1%
penicillin and streptomycin. 2e cells were cultured in an
incubator at 37°C and 5% CO2.

Small interfering RNA for SERPINE1 (si-SERPINE1)
and Control siRNA (si-NC), SERPINE1 overexpression
plasmid (oe-SERPINE1) and Control plasmid (vector) were
synthesized by Hongxin Company. All cell transfection was
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performed using Lipofectamine 2000 (Sigma, USA). 2e
obtained cells were used for data study 48 h after
transfection.

2.8. RT-qPCR. Total RNA was extracted from the trans-
fected cells with TRIzol reagent (Invitrogen, USA) and was
then transcribed into cDNA according to the reverse
transcription kit instructions (Promega, USA). Subse-
quently, the quantitative PCR was performed with SYBR
Green RT-PCR kit (Takara, Japan) according to the man-
ufacturer’s protocol. 2e relative expression of SERPINE1
was performed using the 2-ΔΔCTmethod. And GAPDHwas
used as an internal reference. 2e primer sequences were
shown in Table 1.

2.9. Cell Proliferation Assay. BGC-823 and MKN-28 cells
were transfected, and cells were added into a 6-well plate
containing 10% CCK-8 complete medium at 37°C for
30–60min. And liquid discoloration was observed by naked
eyes. 2e absorbance value at OD450 nm was measured at 0,
24, 48 and 72 h after all the holes in the test plate have no
color change or no orange yellow substance is formed. All
the above experiments need to be carried out three times.

2.10. Cell Scratch Test. 2e cells were transfected in 6-well
plates. After the cells were observed to be full of holes, a
straight line was drawn in the center of the holes with
appropriate strength with 20 μL pipette tip. After the line was
drawn, the cells were left standing for 30min, and the time
was recorded. 2e scratch distance was observed and
photographed at 24 h and 48 h. Finally, the scratch distance
was analyzed. 2e above experiments were in triplicate.

2.11. Transwell Migration and Invasion Experiment. In
transwell migration assay, the transfection cells were
centrifuged and suspended, and then added into the upper
layer of transwell cell. Meanwhile, 600 μL complete medium
containing 20% FBS was added into the lower chamber. 2e
cells were placed in the cell culture box for incubation for
24 h. 2e cells were then fixed, washed and stained. Finally,
the stained cells were counted under the microscope, and the
average value was taken and photographed.

In transwell invasion assay, based on the migration
experiment, the matrigel was extracted and precoated with
the upper chamber.2e other steps referred to the migration
assay.

2.12.WesternBlot. Cells were lysed with cell lysis buffer And
the total protein was extracted. Next, 20 μg total protein was
separated by 10% SDS-PAGE gel and then transferred to the
polyvinylidene fluoride (PVDF) membranes.2emembrane
was sealed with 5% skimmed milk at room temperature for
1 h. According to the instructions of primary antibody (all
purchased from Bode biological company), the membrane
was incubated with Anti-IL-6 antibody (product No.
pb0061, 1 : 500 dilution), anti Serpine1 antibody (product

No. a00637-1, 1 :1000 dilution), anti VEGF antibody
(product No. a00623, 1 : 500 dilution) and β-Actin (product
No. ba0426, diluted 1 :1000) overnight at 4°C. 2en, the
horseradish peroxidase (HRP) labeled secondary antibody
(product No. ab7090, diluted 1 :1000, purchased from
Abcam company) was diluted with secondary antibody
diluent according to the instructions, and incubated at room
temperature for 1 h. After incubation, the filmwas developed
using a chemiluminescence substrate. Grayscale analysis was
performed using ImageJ software (version 1.50b; National
Institutes of Health).

2.13. Immunohistochemical Analysis. Paraffin blocks of GC
tissue were processed into 5 μm thick sections. SERPINE1
expression was detected by streptavidin-peroxidase (SP)
assay. Gastric tissue sections expressing SERPINE1 were
used as positive control and phosphate buffer was used
instead of antibody as negative control. Each section was
analyzed in parallel with the positive and negative control
sections. Polyclonal antibodies against SERPINE1 (Abcam,
Cambridge, UK; 1 : 75) to evaluate the expression and
clinical significance of SERPINE1 in GC. 2e staining
procedure was performed using the SP kit. 2e presence of
strong particle staining in the cell membrane and cytoplasm
is considered SERPINE1 positive. Staining cells were clas-
sified according to color intensity using the following
scoring system: no pigment (0 points), light yellow (1
points), brown-yellow (2 points), and dark brown (3 points).
2e percentage of stained cells in the microscopic field was
classified as <5% (0 points), 5%–25% (1 point), 26%–50% (2
points), 51%–75% (3 points), and >75% (4 points). Multiply
the number of stained cells by the percentage of stained cells
to obtain the following final scores: 0–2 points (−), 3–4
points (+), 5–8 points (++), and 9–12 points (+++). A score
of 3–12 is considered positive, and a score of 5–12 is con-
sidered highly positive. Each tissue section was indepen-
dently evaluated by two observers to minimize errors.

2.14. Subcutaneous Tumorigenesis in Nude Mice. Twelve
male nude mice (6 weeks old, 19.8± 1.7 g) were fed at 23°C,
55% humidity, 12 hours of time/dark cycle and sufficient
food and water. Add the previously obtained 15×106 cells
were resuspended and injected subcutaneously into 12 nude
mice (4 in each group).2e tumor size was checked regularly
to monitor the tumor growth. After the study, the cervical
spine was severed, the mice were killed, and the tumor was
separated subcutaneously for follow-up evaluation. 2e
animal experiment was approved by the animal ethics
committee of the First Affiliated Hospital of JinzhouMedical
University.

Table 1: RT-qPCR primer sequence.

Primer name Primer sequence
GAPDH-F TCAAGATCATCAGCAATGCC
GAPDH-R CGATACCAAAGTTATCATGGA
SERPINE1-F TTCAAGATTGATGACAAGGGC
SERPINE1-R CTCATCCTTGTTCCATGGC
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2.15. Statistical Analysis. R (v.3.5.1) and GraphPad Prism 7
software were used for statistical analysis. Continuous data
comparison between the two groups was performed by
independent t test, and classified data was performed by chi-
square test. 2e prognostic value of SERPINE1 expression in
GC was evaluated according to overall survival (OS) and
disease-free survival (DFS) by Kaplan-Meier analysis.
p< 0.05 was considered statistically significant.

3. Result

3.1. Screening of DEGs. After pretreatment and removal of
batch effect, DEG (GSE13911, GSE118916 and GSE66229)
was analyzed by limma software package. According to |
logFC|≥ 1, the volcano map showed the up-regulated genes
marked in red and the down-regulated genes marked in
green (Figures 1(a)–1(c)). Taking the intersection with DEGs
in the three datasets and TCGA database, total of 44 DEGs
were finally identified (Figure 1(d)). After screening, it was
found that SERPINE1 gene was differentially expressed in
GC and normal tissues.

3.2. Relationship of SERPINE1 Expression with Prognostic
Clinicopathological Variables in GC. In order to clarify the
role of SERPINE1 expression in predicting the prognosis of
GC, Kaplan Meier was used for survival analysis. Figure 2(a)
showed that patients with high expression of SERPINE1 had
shorter DFS than those with low expression (p � 0.005). At
the same time, GC patients with high expression of SER-
PINE1 exhibit worse OS than those with low expression
(p< 0.05) (Figure 2(b)).

2e relationship between SERPINE1 expression and
clinicopathological variables was analyzed through the
UALCAN database. 2e subgroup analysis results showed
that SERPINE1 expression in patients with GCwas related to
race, age, tumor grade and individual cancer stage
(Figures 2(c)–2(f)).

3.3. GSEA Identified SERPINE1 Related Signal Pathways.
Based on MSigDB enrichment analysis, GSEA results
showed that there were significant differences between
SERPINE1 high expression group and low expression group.
In the SERPINE1 high expression group, the eight most
significantly enriched signal pathways were cytokine cyto-
kine receptor interaction, extracellular matrix receptor in-
teraction, focal adhesion, hypertrophic obstructive
cardiomyopathy, JAK-STAT3 signal pathway, MAPK signal
pathway, and cancer pathway (Figures 3(a)–3(i)).

3.4. SERPINE1 Promoted the Growth of GC Cells in Vitro.
In order to locate SERPINE1 in cells, we used human protein
Atlas database to locate SERPINE1 in cells. 2e results
showed that SERPINE1 was localized in the cytoplasm in
U2-OS and U-251 cell lines (Supplementary Figure 1).

We knocked down and overexpressed SERPINE1 in GC
cells for subsequent experiments to clarify the role of
SERPINE1 in the occurrence and development of GC.

Human GC cell lines BGC-823 and MKN-28 were trans-
fected with si-SERPINE1 or oe-SERPINE1. 2e results in
Figures 4(a)–4(d) confirmed that oe-SERPINE1 significantly
upregulated the expression of SERPINE1 in GC cells. And si-
SERPINE1 could significantly inhibit SERPINE1 expression.
CCK-8 assay results showed that Serpine1 knockdown
suppressed the proliferation of BGC-823 and MKN-28 cells
(Figure 5(a)). Moreover, the results of scratch test and
Transwell assay showed that downregulation of SERPINE1
(si-SERPINE1 group) could significantly inhibit the mi-
gration and invasion ability of BGC-823 and MKN-28 cells
(Figures 5(b)–5(d)). However, the results of Serpine1
overexpression group were just opposite to those of Serpine1
knockdown group (Figures 6(a)–6(d)).

3.5. SERPINE1 Promoted the Expression of VEGF and JAK-
STAT3 Pathway Related Proteins. Previous studies have
shown that VEGF and IL-6 were highly expressed in GC and
promoted the occurrence and development of GC by pro-
moting angiogenesis and maintaining continuous uncon-
trollable inflammatory response [31]. Here, we analyzed the
relationship between SERPINE1 expression and VEGF and
IL-6 to explore the possible mechanism in GC. When
SERPINE1 was knocked down in MKN-28 cells, the results
showed that the expression of SERPINE1 decreased. At the
same time, the expression of VEGF and IL-6 in si-SERPINE1
group was significantly lower (p< 0.05) (Figures 7(a) and
7(b)). However, when SERPINE1 expression was upregu-
lated (oe-SERPINE1 group), the expression of VEGF and IL-
6 was significantly increased (Figures 7(a) and 7(b)).

3.6. SERPINE1ExpressionWasRelated to the ImmuneSystem.
Previous studies have shown that the immune system was
significantly related to the development of tumor.2erefore,
we further explored whether SERPINE1 has an effect on
immune factors. We found that SERPINE1 was significantly
correlated with ENTPD1, CXCL12, IL10, KDR, TGFB1,
PDCD1LG2, CCL2, CCL3 and CXCL5 (p< 0.001)
(Figure 8).

Using the TIMER database to evaluate the relationship
between the expression of SERPINE1 and the level of im-
mune infiltration, we found that after purity adjustment,
SERPINE1 was highly expressed in cells, macrophages,
dendritic cells and neutrophils in the high immune infil-
tration group (supplementary Figures 2(a), 2(c), 2(e), 2(g)).
Copy number variation of SERPINE1 was significantly
correlated with CD8 + T cells, dendritic cells, and neutro-
phils (p< 0.05), but not macrophages (p> 0.05) (supple-
mentary Figures 1(b), 1(d), 1(f ), 1(h)). 2e above results
suggest that SERPINE1 was related to the infiltration of
immune cells, and SERPINE1 might be involved in the
recruitment of immune cells.

3.7. Immunohistochemical Verification of the Expression of
SERPINE1 and Ki67 in GC Lesions. Because the expression
of SERPINE1 and Ki-67 was directly proportional to the
staining, through the comparative analysis of
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Figure 1: Differentially expressed genes between gastric cancer and normal tissues. (a-c): volcanic map of differentially expressed genes in
GSE13911 (a), GSE66229 (b), GSE118916 (c) and TCGA (d) database. (e) Venn diagram distribution of differentially expressed genes.
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immunohistochemical results, we found that the expression
of SERPINE1 and Ki-67 in poorly differentiated GC group
was significantly higher than that in highly differentiated
group. With the progress of pathological severity, the
staining degree gradually deepened, and the staining degree
of low differentiation group was significantly higher than
that of medium and high differentiation group (Figures 9(a)
and 9(b)).

3.8. SERPINE1 Promoted the Growth of GC in Vivo.
Further, we analyzed the effect of SERPINE1 expression on
GC growth in vivo. Compared with NC group, the tumor
volume of SERPINE1 knockout group (114.9± 14.04mm3)
was significantly smaller. However, the tumor volume in the
overexpression group (531.6± 64.55mm3) was the largest
among the three groups, (p< 0.001) (Figures 9(c) and 9(d)).

4. Discussion

GC has a high mortality rate, which is nowthought to be
associated with extensive invasion and metastasis [32].
Tumor metastasis is the result of many factors, and the
process is more complex, including cancer cells entering the
blood, invading lymph nodes, transiting through the tumor
microenvironment, aggregating and secondary tissues, etc.

Cancer cell migration plays an important role in the process
of tumor metastasis, but the specific mechanism has not
been determined and needs further studied [31], p. 2.

SERPINE1 protein can quickly inhibit the formation of
plasmin. Based on its effect on fibrinolytic function, SER-
PINE1 is involved in chronic inflammation, tumor metas-
tasis, tissue fibrosis and other pathological processes
involving heart and lung, kidney, breast and other organs,
and has a wide range of biological activities. According to
previous studies, SERPINE1 is related to immune cell in-
filtration, which plays a role in the remodeling of colon
cancer microenvironment and immune cell infiltration;
SERPINE1 can affect the immune cell infiltration in diffuse
low-grade glioma microenvironment and has independent
prognostic value.

In this study, we comprehensively analyzed GC and
normal tissues through mRNA microarray and TCGA da-
tabase, and obtained the DEGs. For the relationship between
SERPINE1 expression and clinicopathological variables,
subgroup analysis showed that SERPINE1 expression in GC
patients was related to race, age, tumor grade and individual
cancer stage. Kaplan-Meier method was used to evaluates
the prognosis by analyzing OS, and it is clear that SERPINE1
can be used as an independent prognostic factor of GC.
SERPINE1 is located by HPA database; the effects of
SERPINE1 on the proliferation, invasion and migration of
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Figure 5: Knockdown of SERPINE1 inhibited the proliferation, migration and invasion of gastric cancer cells. (a)2e proliferation of BGC-
823 and MKN-28 cells was detected by CCK8 assay. (b) BGC-823 and MKN-28 cells migration and invasion were measured by Transwell
assay. (c-d) Scratch test was performed to detect the cell mobility. ∗∗∗p< 0.001.
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Figure 6: SERPINE1 overexpression promoted the proliferation, migration and invasion of gastric cancer cells. (a) 2e proliferation of
BGC-823 and MKN-28 cells was detected by CCK8 assay. (b) BGC-823 and MKN-28 cells migration and invasion were measured by
Transwell assay. (c-d) Scratch test was performed to detect the cell mobility. ∗ ∗p< 0.05; ∗ ∗ ∗p< 0.001.
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GC cells were studied by cell proliferation experiment, cell
scratch experiment, Transwell migration and invasion ex-
periment and protein imprinting method. 2e results of
TISIDB website analysis showed that SERPINE1 could affect
immune regulation, and the results of TIMER analysis
showed that the expression of SERPINE1 was positively
correlated with immune infiltration; through immunohis-
tochemical detection of the expression of SERPINE1 in
different pathological stages and grades of mucoid lesions,
we found that the expression of SERPINE1 was positively
correlated with the occurrence of GC, indicating that
SERPINE1 may promote GC. Finally, the above results were
verified by nude mouse tumorigenesis experiment to further
illustrate the effect of SERPINE1 on the progression of GC.

Previous studies showed that the high expression of
SERPINE1 was significantly associated with the poor
prognosis of various cancers including colon cancer, non-
small cell lung cancer, ovarian cancer and breast cancer
[33–35]. We believe that this situation may be closely related
to SERPINE1’s ability to maintain proliferation signal,
promote tumor cell migration and anti-tumor cell apoptosis.
Studies have shown that SERPINE1 can stimulate growth
activity, up regulate cyclin D3/CDK4/6 and advance the cell
cycle from G1 phase to S phase. SERPINE1 has the functions
of anti-fibrinolysis, regulating cell adhesion and uPA/uPAR,
and can indirectly regulate the growth of tumor cells [36].
Anti-fibrinolysis enables SERPINE1 to maintain thrombin
activity and activate receptor (PAR) through thrombin and
protease of tumor cells. SERPINE1 can inhibit the adhesion
between tumor cells and vitronectin, and then stimulate the
migration of tumor cells to other extracellular matrix sub-
strates, such as fibronectin [37]. SERPINE1 can inhibit the
binding of urokinase to urokinase type plasminogen acti-
vator receptor and further inhibit the excessive degradation
of extracellular matrix proteins necessary for cell adhesion
and migration [38]. At the same time, inhibiting the

adhesion of tumor cells to vitronectin also makes SERPINE1
have pro-apoptotic and anti-apoptotic effects [18]. SER-
PINE1 can stimulate apoptosis by promoting cell separation.
However, when cells separate and migrate to other extra-
cellular matrix proteins, SERPINE1 can play a role in
resisting apoptosis. SERPINE1 can inhibit caspase 3 in cells
and resist tumor cell apoptosis induced by chemotherapy
[39]. SERPINE1 can inhibit the cleavage of FasL and its
abscission by plasmin on the cell surface outside the cell, and
avoid FasL mediated and chemotherapy-induced apoptosis
[40, 41]. In addition, SERPINE1 can induce c-Jun/ERK
signal to up regulate anti apoptotic protein through inter-
action with LRP-1 [18].

Targeting SERPINE1 may have significant beneficial
effects in combination with various biological effects of
SERPINE1 and its effects on various pathological processes.
At present, some selective PAI-1 inhibitors have been listed,
including insulin sensitizers and angiotensin-converting
enzyme inhibitors, and antisense oligonucleotides have been
proved to reduce the synthesis or secretion of SERPINE1.
Although some of these molecules are in vitro. It has been
proved to be an effective SERPINE1 inhibitor in vivo and
in vivo, but no SERPINE1 inhibitor has been approved for
human treatment [9]. 2erefore, it is necessary to further
study the mechanism of action of SERPINE1 and its targeted
drugs.

SERPINE1 is involved in the occurrence and develop-
ment of a variety of cancers. High expression of SERPINE1
can promote the proliferation, invasion and migration of
tumor cells. Our study found that high expression of
SERPINE1 in GC can promote the proliferation, invasion
and metastasis of GC cells, and is related to the epithelial
mesenchymal transformation of GC cells. 2erefore, SER-
PINE1 can be used as a new biomarker and therapeutic
target of GC, provide new candidate drugs for the treatment
of GC.
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Figure 7: SERPINE1 promoted the expression of VEGF and JAK-STAT3 pathway related proteins. (a) 2e expression bands of SERPINE1,
VEGF, and IL-6 in MKN-28 cells were detected by Western blot. (b) Gray scale analysis of SERPINE1, VEGF and IL-6 protein expression
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At present, our research still has some limitations,
such as some data are from public databases, unable to
evaluate the quality and accuracy of data, small clinical

sample size, certain errors in the process of data col-
lection, and the evaluation of the direct action mecha-
nism of SERPINE1 in GC may not be detailed enough,

CC
L2

_e
xp

Ch
em

ok
in

es
Im

m
un

oi
nh

ib
ito

r
Im

m
un

os
tim

ul
at

or

STAD (415 samples)
10.0

10.0

7.5

7.5

5.0

5.0
SERPINE1_exp

Spearman Correlation Test: rho = 0.378, p = 1.29e − 15

2.5

2.5

0.0

−2.5

IL
10

_e
xp

STAD (415 samples)

8

10.07.55.0
SERPINE1_exp

Spearman Correlation Test: rho = 0.297, p = 8.51e − 10

4

2.5

0

−4

CD
27

6_
ex

p

STAD (415 samples)

10.0

8

7.5

7

5.0
SERPINE1_exp

Spearman Correlation Test: rho = 0.348, p = 4.13e − 13

6

2.5

5

M
as

t_
ab

un
da

nc
e

TI
L

STAD (415 samples)

10.0

0.8

7.5

0.4

5.0
SERPINE1_exp

Spearman Correlation Test: rho = 0.428, p < 2.2e − 16

0.0

2.5

–0.4

−0.8

CC
L3

_e
xp

STAD (415 samples)

10.07.5

5.0

5.0
SERPINE1_exp

Spearman Correlation Test: rho = 0.295, p = 1.04e − 09

2.5

2.5

0.0

−2.5

KD
R_

ex
p

STAD (415 samples)

10.07.55.0
SERPINE1_exp

Spearman Correlation Test: rho = 0.268, p = 3.15e − 08

2.5

CX
CL

12
_e

xp

STAD (415 samples)

10.07.55.0
SERPINE1_exp

Spearman Correlation Test: rho = 0.312, p = 9.86e − 11

2.5

7

6

5

4

3

N
K_

ab
un

da
nc

e

STAD (415 samples)

10.07.5

0.6

5.0
SERPINE1_exp

Spearman Correlation Test: rho = 0.377, p = 1.72e − 15

0.3

2.5

0.0

−0.3

CX
CL

8_
ex

p

STAD (415 samples)

10.0

9

7.5

6

5.0
SERPINE1_exp

Spearman Correlation Test: rho = 0.323, p = 2.01e − 11

3

2.5

0

PD
CD

1L
G

2_
ex

p

STAD (415 samples)

10.07.5

4

5.0
SERPINE1_exp

Spearman Correlation Test: rho = 0.294, p = 1.27e − 09

2

2.5

0

−2

EN
TP

D
1_

ex
p

STAD (415 samples)

10.07.5

8

5.0
SERPINE1_exp

Spearman Correlation Test: rho = 0.321, p = 2.61e − 11

7

2.5

6

5

N
KT

_a
bu

nd
an

ce

STAD (415 samples)
0.6

10.0

0.3

7.5

0.0

5.0
SERPINE1_exp

Spearman Correlation Test: rho = 0.428, p < 2.2e − 16

2.5

−0.3

CX
CL

12
_e

xp

STAD (415 samples)

10.0

10.0

7.5

7.5

5.0

5.0
SERPINE1_exp

Spearman Correlation Test: rho = 0.312, p = 9.86e − 11

2.5

2.5

0.0

TG
FB

1_
ex

p

STAD (415 samples)

10.07.55.0
SERPINE1_exp

Spearman Correlation Test: rho = 0.426, p < 2.2e − 16

2.5

IL
6_

ex
p

STAD (415 samples)

8

10.0

4

7.5

0

5.0
SERPINE1_exp

Spearman Correlation Test: rho = 0.564, p < 2.2e − 16

2.5

−4

9

8

7

6

5

4

Tr
eg

_a
bu

nd
an

ce

STAD (415 samples)
0.8

10.0

0.4

7.5

0.0

5.0
SERPINE1_exp

Spearman Correlation Test: rho = 0.38, p = 8.05e − 16

2.5
−0.8

−0.4

10.0

7.5

5.0

2.5

0.0

Figure 8: 2e expression of SERPINE1 is related to the immune system. SERPINE1 was significantly correlated with ENTPD1, CXCL12,
IL10, KDR, TGFB1, PDCD1LG2, CCL2, CCL3 and CXCL5 (p< 0.001).

14 Journal of Oncology



which need to be discussed in the follow-up study
improvement.

5. Conclusion

SERPINE1 was highly expressed in GC and closely related to
the low overall survival rate. Silencing SERPINE1 signifi-
cantly inhibited the proliferation, invasion and metastasis of
GC cells. SERPINE1 expression was related to GC angio-
genesis and tumor inflammatory microenvironment.
Moreover, SERPINE1 might regulate the expression of
VEGF and IL-6 through VEGF signal pathway and JAK-
STAT3 inflammatory signal pathway. Finally, it affects the
invasion and migration ability of GC cells.
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Due to limitations of sensitive biomarkers, the clinical prognosis of patients with head and neck squamous cell carcinoma
(HNSCC) remains poor. Alternative splicing (AS) is the basis of both transcriptome and proteome richness, so more and more
evidence indicates an important relationship between AS and tumor progression. *e aim of this study was to offer a com-
prehensive analysis on AS events and then investigate its potentials as a new biomarker for patients with squamous cell carcinoma
of the head and neck. In this study, univariate assays were conducted to examine the prognosis-associated AS events, and we
screened 4068 survival-related AS events in 2573 genes. *en, the AS events related to survival were further determined and
analyzed using LASSO regression and multivariate assays, and an eleven-AS signature was developed. Kaplan–Meier assays
indicated patients with high-risk scores exhibited a shorter OS than those with low-risk scores. Multivariate assays further
demonstrated that the signature’s risk score was independent of HNSCC survivals. Meanwhile, we analyzed the clinical as-
sociation of AS-based prognostic signature in HNSCC patients and observed that tumor specimens with advanced stages and
grades exhibited a high risk score. In addition, the results of survival nomogram revealed that predicted outcomes and actual
outcomes were highly consistent. Overall, our group showed an eleven-AS signature of HNSCC, which could be regarded as a
separate prognostic factor.

1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is the
most commonmalignant tumor of the epidermis of the head
and neck, involvingmultiple anatomical sites, such as the lip,
oral cavity, pharynx (nasopharynx, oropharynx, and hy-
popharynx), and larynx, and more than 600,000 new cases
are reported every year [1, 2]. Despite the distinct devel-
opments in molecular mechanisms and biological studies,
the long-term survivals of patients with HNSCC remain
poor [3]. *us, a suitable choice for different patients using
radical treatments or conservative treatments is necessary. In
the last twenty years, the prediction of clinical outcome of
HNSCC patients was mainly based on the TNM staging
system [4]. In addition, differentiation grade is also applied

as a critical predictor. However, these systems cannot satisfy
clinical requirements.

Alternative splicing (AS) is considered to be a critical
impetus for the production of different types of proteins [5].
In eukaryotic cells, it is the basis for the other regulatory
mechanisms involved in gene functions. A wealth of sup-
porting evidence has indicated that transcripts >95% of
human multiexon-containing genes experience AS [6].
Importantly, based on the different types of specimen, a
variable expression was observed in most genes [7]. It has
been confirmed that there are seven major patterns of AS
events, including mutually exclusive exons (MEs), alternate
terminator (AT), alternate promoter (AP), alternate ac-
ceptor site (AA), alternate donor site (AD), and retained
intron (RI), as well as exon skip (ES) [8, 9].*e dysregulation

Hindawi
Journal of Oncology
Volume 2022, Article ID 4552445, 9 pages
https://doi.org/10.1155/2022/4552445

mailto:sungp@ahmu.edu.cn
https://orcid.org/0000-0002-4325-900X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4552445


of AS events could result in multiple pathological processes,
especially tumor progression and chemotherapy resistance.
Splicing factors (SFs) exhibited a critical role in the pro-
gression of various tumors induced by AS [10, 11]. More
importantly, the potential of AS events used as novel bio-
markers for diagnosis and prognosis attracts more and more
attention [12, 13]. On the other hand, targeting AS events
may be developed as novel therapeutic targets for tumor
patients.

*e clinical data from TCGA datasets made the
analysis of AS in cancers possible. Recently, a large
number of studies have performed comprehensive anal-
ysis based on TCGA splicing data in several types of
tumors [14, 15]. However, there are very few reports on
the correlation between AS events and the clinical out-
comes of HNSCC patients. In this study, a comprehensive
analysis was performed by using TCGA datasets to discuss
the prognostic value of AS events in patients with HNSCC.
Our findings may contribute to the developments of novel
biomarkers for tumor patients.

2. Materials and Methods

2.1.DataAcquisitionandProcessing. *ere were 546 samples
in FPKM data of TCGA RNA-Seq that were downloaded
from the UCSC Cancer Browser (https://xenabrowser.net/
datapages/), and a total of 528 patients were followed up.*e
alternative splicing data of the TCGA HNSCC cohort were
downloaded from the TCGASpliceSeq database (https://
bioinformatics.mdanderson.org/TCGASpliceSeq/). *e
same TCGA IDwas applied to confirm the data of AS events.

2.2. Quantification of Splicing Events. Percent Spliced In
(PSI) values were calculated in all samples. *e PSI values
(>0 and <100%) represented the percentage of gene mRNA
transcripts that contain a specific exon or splice. Here, an AS
event whose PSI value was larger than 75% was included for
further assays. *e AS events were exhibited by the use of
three elements.

2.3. Identification of AS Events Related to Survival. For the
survival assays, our group just finally enrolled these patients
who had AS event data and clinical follow-up. In addition,
HNSCC patients whose survival time <1 month were ex-
cluded. After excluding AS events with SD <0.01, univariate
assays were conducted to examine the associations between
each AS event and overall survival in HNSCC patients.*en,
the correlation between AS events and genes was visualized
by the use of UpSet [16].

2.4. Prognostic Model Construction. To screen the final AS
events for prognostic model, the OS-related AS events were
analyzed by using lasso analysis. *en, multivariate assays
were applied to analyze the results of lasso analysis via the

forward stepwise methods. Subsequently, by the use of each
prognostic model, we calculated risk scores, and the median
risk score was applied to divide all patients into two groups.
*e predictive accuracy of the prognostic models was
demonstrated using dynamic time-dependent ROC curves
and K–M survival assays. To realize the abovementioned
assays, we used timeROC package, survivalROC package,
and the survminer package.

2.5. AS-Clinicopathological Nomogram. To further explore
the prognostic value of the prognostic model, univariate
assays were applied to analyze the clinicopathological var-
iables described above with the prognostic models. *en, a
nomogram was developed by the use of the abovementioned
results with a distinct p value to examine the patients’ in-
dividual survival possibilities. Finally, corresponding cali-
bration curves were plotted, which were further used to
calculate the C-index and validate and quantify the scoring
system’s discrimination capability.

2.6. Statistical Analysis. We used R (v.3.6.1, R Core Team,
Boston, MA, USA) for the abovementioned data analysis.

3. Results

3.1. Details of AS Events. By analyzing TCGA datasets, we
showed 42849 AS events of 10123 genes in all samples.
Figure 1 exhibited the detailed information of the seven
categories of AS events.We observed that a single gene could
possess some different AS patterns.

3.2. Identification of the OS-Associated AS Events.
Univariate assays were performed, and 4068 OS-related AS
events were screened in 2573 genes. Of the OS-related AS
events, 276 OS-related RIs were found in 235 genes, 14 OS-
related MEs in 9 genes, 608 OS-related ESs in 519 genes, 522
OS-related ATs in 292 genes, 588 OS-related APs in 358
genes, 140 OS-related ADs in 133 genes, and 169 OS-related
AAs in 166 genes (Figure 2). *e distribution of the OS-
related AS events was shown by the use of a volcano plot
(Figure 3(a)). *e 20 most distinct OS-related AAs
(Figure 3(b)), ADs (Figure 3(c)), APs (Figure 3(d)), ATs
(Figure 3(e)), ESs (Figure 3(f )), MEs (Figure 3(g)), and RIs
(Figure 3(h)) were shown using a bubble chart.

3.3. Distinction and Evaluation of AS-Based Prognostic Sig-
nature for HNSCC. *en, a prognostic model for HNSCC
patients was developed based on the abovementioned re-
sults. For avoiding overfitting, the Lasso plot and the
Lambda plot were conducted (Figures 4(a) and 4(b)). Fi-
nally, 11 OS-SEs were screened for further multivariate
assays. *e heat map revealed that SH3KBP1|88643|AP and
ZFYVE20|63554|ES might have positive effects on HNSCC,
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Figure 1: *e upset plot of gene interactions among the seven types of AS events in HNSCC samples.
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Figure 3: *e survival-associated AS events. (a) Survival-related AS events were displayed by the use of a volcano plot. (b–h) *e most
distinct prognosis-related AA, AD, AP, AT, ES, ME, and RI in TCGA HNSCC datasets.

4 Journal of Oncology



while AGTRAP|670|AA, SH3KBP1|88642|AP, RHOT1|
40176|ES, PTGR1|87219|AA, MOBP|64191|AT, ABCC5|
67820|RI, C5orf30|72920|AP, FKTN|87134|ES, and RBPMS|
83290|AT exhibited a contrary effect (Figure 4(c)). *e
specimens with lower risk scores exhibited a lower risk of
mortality, which were shown using the risk curve and
scatterplot (Figures 4(d) and 4(e)). *en, survival assays
revealed that high-risk patients showed a shorter OS than
low-risk ones (Figure 4(f)). To further demonstrate the
independent roles of the risk score, we performed univariate
and multivariate assays and demonstrated that the system
was a well-predicting model (Figures 5(a) and 5(b)).

Moreover, combined with clinical variables, AUC curve
analysis was performed on 1-, 2-, and 3-year OS, and the
AUC value obtained by risk characteristics was the highest
(Figures 5(c) and 5(d)). On the other hand, we also analyzed
the clinical association of the prognostic signature based on
AS in HNSCC patients, and the clinical information is
shown in Figures 6(a)–6(g). Importantly, we observed that
tumor specimens with advanced stages and grades exhibited
a high risk score (Figures 6(c)–6(e) and 6(g)). Finally, our
group constructed a prognostic nomogram using clinico-
pathological stage and risk score for the prediction of the
clinical outcome of HNSCC patients (Figure 7(a)). *e

20 20 19 17 17 4

−7 −6 −5 −4 −3 −2

−3

−2

−1

0

1

2

3

Log Lambda

Co
ef

fic
ie

nt
s

1

2
34

5

67

8

9
10

11
12

13

14

15

16

17

18

19

20

(a)

20 20 20 20 19 19 19 17 17 17 17 16 13 4

−7 −6 −5 −4 −3 −2

11.8

11.9

12.0

12.1

12.2

12.3

12.4

12.5

Log (λ)

Pa
rt

ia
l L

ik
el

ih
oo

d 
D

ev
ia

nc
e

(b)

RHOT1|40176|ES

SH3KBP1|88642|AP

AGTRAP|670|AA

SH3KBP1|88643|AP

PTGR1|87219|AA

MOBP|64191|AT

ZFYVE20|63554|ES

ABCC5|67820|RI

C5orf30|72920|AP

FKTN|87134|ES

RBPMS|83290|AT

type type
low
high

−6

−4

−2

0

2

4

6

(c)

0 100 200 300 400 500
Patients (increasing risk socre)

0

1

2

3

4

5

6

Ri
sk

 sc
or

e
High risk
Low Risk

(d)

Dead
Alive

0 100 200 300 400 500

0

5

10

15

Patients (increasing risk socre)

Su
rv

iv
al

 ti
m

e (
ye

ar
s)

(e)

p<0.001

0 2 4 6 8 10 12 14 16 18 20
Time (years)

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Risk
High risk
Low risk

243 82 35 11 4 3 3 1 0 0 0
243 131 57 22 11 7 3 2 1 0 0Low risk

High risk

0 2 4 6 8 10 12 14 16 18 20
Time (years)

Ri
sk

(f )

Figure 4: Evaluation of the performance of AS-based prognostic signature in TCGA datasets. (a) LASSO coefficient profiles. (b) LASSO
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results of calibration curves exhibited an approximate di-
agonal, suggesting strong abilities in predicting the clinical
outcome for 1-year OS using our system (Figure 7(b)).

4. Discussion

HNSCC remains a healthy challenge for many countries
[17]. In recent years, multimodal treatments, including
surgery, chemotherapy, and radiation, have improved
substantially [18]. However, there was no significant increase
in 5-year overall survival (OS) and no significant reduction
in mortality. Identification of novel sensitive biomarkers is
very important for the improvements of clinical outcome of
HNSCC patients [19]. In recent years, more and more ev-
idence indicated that misregulation of AS may result in
splicing defects that are related to multiple pathological

conditions including different categories of cancers, and AS
events may work as potential molecular markers during the
cancer diagnosis and treatment process [20, 21]. However,
there are few effective prognostic biomarkers based on AS
events, which may provide crucial insights into the patho-
biology of HNSCC based on AS events.

In this study, many OS-related AS events were screened
by using TCGA datasets. Moreover, based on the above-
mentioned AS events, we developed a prognostic signature
that can be used to divide HNSCC patients into groups with
high and low risks. Importantly, we observed that high-risk
patients were correlated with a short OS. Moreover, mul-
tivariate analyses indicated that our model could be a
separate prognostic factor for overall survival of HNSCC. To
further explore its clinical value, we developed a nomogram
model using our system and several clinical features.

Age

Gender

Grade

Stage

riskScore

<0.001

0.129

0.214

<0.001

<0.001

pvalue

1.024 (1.010−1.038)

0.784 (0.572−1.074)

1.157 (0.919−1.457)

1.455 (1.209−1.752)

1.522 (1.414−1.639)

Hazard ratio

Hazard ratio
0.0 0.5 1.0 1.5

(a)

Age

Gender

Grade

Stage

riskScore

<0.001

0.534

0.486

<0.001

<0.001

pvalue

1.035 (1.019−1.051)

1.116 (0.789−1.579)

1.090 (0.855−1.390)

1.482 (1.220−1.800)

1.550 (1.431−1.680)

Hazard ratio

Hazard ratio
0.0 0.5 1.0 1.5

(b)

Risk, AUC=0.727
Age, AUC=0.580
Gender, AUC=0.503

0.0 0.2 0.4 0.6 0.8 1.0
1−specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

Grade, AUC=0.547
Stage, AUC=0.563

(c)

AUC at 1 years: 0.727
AUC at 2 years: 0.773
AUC at 3 years: 0.785

0.0 0.2 0.4 0.6 0.8 1.0
1−specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

(d)

Figure 5: *e prognostic values of AS-based prognostic signature in TCGA datasets. (a) Univariate and (b) multivariate assays in AS-based
prognostic signature. (c) AUC for predicting one-year survival with different clinical features. (d) *e diagnostic value of AS-based
prognostic signature in predicting 1-, 2-, and 3-year survival.
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Importantly, the results were significant, and a strong
agreement was observed. Previously, several studies have
reported the prognostic value of novel models based on
alternative splicing events in several types of tumors. For
instance, Xie et al. developed a splicing prognostic model
using AS events, which showed satisfactory predictive effi-
cacy for the GBM patients’ survival, indicating the important
clinical value of AS events for the developments of novel
biomarkers [22]. In uveal melanoma, 1014 AS events were
recognized as prognostic AS ones in total, and a robust
prognostic prediction model containing seven AS events
revealed a great promise for the prediction of overall survival
of patients with uveal melanoma [23]. However, the related

studies in HNSCC patients were rarely reported. Our
findings provided HNSCC patients with a robust prognostic
signature based on AS.

However, this study has the following limitations. Firstly,
we just used TCGA datasets to confirm our findings. No
cross validation was applied to demonstrate our findings.
Other cohorts and in vitro and in vivo assays are needed to
further demonstrate this signature in the future. Secondly, it
was hard to develop a suitable system by the clinical ap-
plication of the AS-based prognostic signature.*e high cost
of sequencing chip made it hard to detect the expressions of
AS events for most HNSCC patients. *irdly, we got many
AS event-related genes, but the regulation relationships
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Figure 6: Relationship between risk score and clinical features. Distribution of risk score in (a) age, (b) gender, (c) stage, (d) grade, (e) T
classification, (f ) M classification, and (g) N classification.
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among themselves and other genes were not clear. Advanced
bioinformatics is needed to reveal the regulation
relationship.

5. Conclusions

A comprehensive analysis was conducted to AS events re-
lated to overall prognostic in HNSCC, and a prognostic
model was built to convincingly forecast HNSCC patients’
long-term survival outcomes. *ese findings may contribute
to ongoing efforts to develop therapeutic targets for patients
with HNSCC.
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Background. Esophagus cancer (ESCA) is the sixth most frequent cancer in males, with 5-year overall survival of 15%–25%. RNA
modifcations function critically in cancer progression, andm6A regulators are associated with ESCA prognosis.Tis study further
revealed correlations between m6A and ESCA development. Methods. Univariate Cox regression analysis and consensus
clustering were applied to determine molecular subtypes. Functional pathways and gene ontology terms were enriched by gene set
enrichment analysis. Protein-protein interaction (PPI) analysis on diferentially expressed genes (DEGs) was conducted for hub
gene screening. Public drug databases were employed to study the interactions between hub genes and small molecules. Results.
Tree molecular subtypes related to ESCA prognosis were determined. Based onmultiple analyses amongmolecular subtypes, 146
DEGs were screened, and a PPTnetwork of 15 hub genes was visualized. Finally, 8 potential small-molecule drugs (BMS-754807,
geftinib, neratinib, zuclopenthixol, puromycin, sulfasalazine, and imatinib) were identifed for treating ESCA. Conclusions. Tis
study applied a new approach to analyzing the relation between m6A and ESCA prognosis, providing a reference for exploring
potential targets and drugs for ESCA treatment.

1. Introduction

Esophagus cancer (ESCA) is the sixth leading cancer with
3.1% incidence and 5.5% mortality worldwide [1]. Males
tend to have a higher incidence (4.2%) and mortality (6.8%)
than females, mainly due to diferences in the smoking and
drinking habits between two genders. Te major risk factors
of ESCA include race, gender, alcohol, tobacco, obesity,
gastroesophageal refux disease (GRED), diet of low fruits
and vegetables, and so on [2]. Te 5-year overall survival
(OS) of the cancer is about 15% to 25%, and poor treatment

outcomes are closely associated with late diagnosis and
metastasis [3].

In the recent decades, the development of molecular and
sequencing technology has deepened the understanding of
the genetic causes of ESCA. For example, CCND1, CDK4/
CDK6, and MDM2 genes involved in cell cycle are over-
expressed in ESCA patients [4]. High expression of epi-
dermal growth factor receptor (EGFR) is associated with
worse prognosis and late clinical stage; therefore EGFR
expression could serve as a prognostic biomarker [5, 6].
More importantly, epigenetic factors such as DNA or RNA
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methylation, histone modifcations, and loss of genome
imprinting show strong correlation with tumor progression
[7–9]. Tese epigenetic alternations can regulate down-
stream or upstream gene expression through silencing or
activating regulatory factors, resulting in aberrant gene
expressions associated with tumor development.

RNA modifcations in transcripts are the most com-
monly detected epigenetic alternation. N6-methyladenosine
(m6A) accounts for a majority of RNA modifcations under
the control of methyltransferases (writers), binding proteins
(readers), and demethylases (erasers) [10]. Evidence dem-
onstrated that m6A modifcation is involved in tumori-
genesis, tumor proliferation, and migration of various types
of cancers such as acute myeloid leukemia [11–14], glio-
blastoma [15, 16], lung cancer [17, 18], hepatocellular car-
cinoma [19–21], breast cancer [22], and colorectal cancer
[23].

Previous studies also discovered a correlation between
m6A and ESCA. Nagaki et al. proved that knockdown of
ALKBH5 can increase m6A modifcation and delay cell cycle
progression of esophageal squamous cell carcinoma (ESCC)
cells [24]. ALKBH5 has been identifed as m6A demethylase
that facilitates tumor cell proliferation, and a correlation
between ALKBH5 and poor prognosis of ESCC patients has
been illustrated [24]. Guo et al. observed that high ex-
pression of m6A reader HNRNPA2B1 was positively asso-
ciated with ESCA tumor size and lymphatic metastasis [25].
Knockdown of HNRNPA2B1 inhibits tumor cell progres-
sion of ESCA cells, indicating HNRNPA2B1 as an oncogenic
protein in ESCA development [25]. In addition, HNRNPC
and ALKBH5 have been screened and combined as a
prognostic signature for predicting ESCA outcomes [26].
Tese fndings provide potential application of m6A regu-
lators in clinical treatment.

As m6A modifcation is strongly correlated with tumor
proliferation, invasion, and migration, the present study
aimed to exploit novel molecular subtypes of ESCA based on
m6A regulators (writers, readers, and erasers). Furthermore,
hub genes associated with ESCA prognosis and potential
small-molecule drugs were screened according to molecular
subtypes. Tis study introduced a new strategy of bio-
informatics analysis to explore potential drugs for ESCA
treatment.

2. Materials and Methods

2.1.Data Information. TCGA-ESCA dataset with the data of
gene expression, copy number variation (CNV), single
nucleotide variant, methylation, and clinical information
was downloaded from Te Cancer Genome Atlas (TCGA,
https://portal.gdc.cancer.gov/) database. Te workfow of
defning molecular subtypes of ESCA was shown in Figure 1.

2.2. Genes of m6AWriters, Erasers, and Readers. Tree types
of enzymes (writers, erasers, and readers) related to m6A
were included. Specifcally, m6A writers were METTL3,
METTL14, WTAP, and KIAA1429. m6A erasers were FTO
and ALKBH5. m6A readers were YTHDC1, YTHDC2,

YTHDF1, YTHDF2, YTHDF3, HNRNPA2B1, IGF2BP1,
IGF2BP2, and IGF2BP3.

2.3. Data Preprocessing. RNA-seq and methylation data
were further processed. For RNA-seq data, samples without
clinical follow-up information, overall survival (OS), and
survival status were excluded. Genes with transcripts per
million (TPM)< 1 in over half of the samples were excluded.
Primary solid tumor samples were included. For methyla-
tion data, NA value was completed by the KNN function in
impute R package, and beta value was converted toM value.
According to cross-reactive probes and polymorphic CpGs
in the Illumina Infnium HumanMethylation450 micro-
array, CpGs present in the normal samples were excluded.
Unstable methylation sites including CpGs in X and Y
chromosomes as well as CpGs in single nucleotide were
excluded. Finally, 161 ESCA samples were included (Sup-
plementary Table S1).

2.4. Consensus Clustering. R package of Consensu-
sClusterPlus (v1.48.0) was used to cluster methylation sites
related to ESCA prognosis [27] under the parameters of
reps� 100, pItem� 0.8, pFeature� 1, distance� “spearman”.
D2 algorithm and Euclidean distance were employed for
consensus clustering. Cluster numbers k from 2 to 10 were
chosen, and the optimal clusters were screened by cumu-
lative distribution function (CDF) curve and consensus
CDF.

2.5. Gene Enrichment Analysis and Function Analysis.
Single sample gene set enrichment analysis (ssGSEA) in
GSVA R package was conducted to calculate the enrichment
score of each sample to diferent functional pathways [28].
WebGestalt (v0.4.3) R package was performed to analyze
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways and gene ontology (GO) enrichment for difer-
entially expressed genes (DEGs).

2.6. Immune Correlation Analysis. We obtained immune
checkpoint genes (BTLA, CD200, CD244, LAG3, IDO1,
IDO2, PDCD1, CTLA4, PDCD1LG2, TNFRSF8, CD40,
TNFSF18, CD86, and CD44) from previous studies to an-
alyze the expression diferences of these genes in various
molecular subtypes. In addition, we evaluated 28 immune
infltrating cell components by ssGSEA method [29]. To
analyze the diferences of immune infltrating cell compo-
nents in diferent subtypes, we further evaluated the immune
infltrating score in the sample by using R software package
estimate [30], analyzed the diferences of immune infl-
trating in diferent subtypes, and evaluated the potential
benefts of immunotherapy of diferent subtypes in imvi-
gor210 [31] by using R software package submap [32].

2.7. Protein-Protein Interaction (PPI) Analysis. STRING
(https://string-db.org/) is a database to explore the inter-
action among known and unknown proteins, including
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abundant data from current researches, other databases, and
data by predicted bioinformatics [33, 34]. Te protein in-
teractions of DEGs were analyzed by STRING. PPI result
was visualized by Cytoscape (v3.7.2) and further analyzed by
cytoHubba to screen hub genes [35–37].

2.8. Databases of Small-Molecule Drugs. Databases of L1000
freworks display (L1000FWD, https://maayanlab.cloud/
L1000FWD/) [38], Drug-Gene Interaction database
(DGIdb, https://dgidb.org/) [39, 40], and Te Connectivity
Map (CMap, https://clue.io/) [41, 42] were included for
screening small molecules interacting with hub genes.
L1000FWD includes over 16000 small molecules and gene
expression data from tumor cell lines of 1000 drugs. DGIdb
stores over 10000 drugs and 15000 interactions between
drugs and genes. CMap contains over 19000 small molecules
corresponding to 25200 biological entities. Te function of
small molecules associated with hub genes came from the
National Library of Medicine (PubChem, https://pubchem.
ncbi.nlm.nih.gov/#query�).

3. Results

3.1. Consensus Clustering of Methylation Sites on 15 m6A-
Related Genes. To develop a molecular subtyping system
based on m6A methylation sites, association between m6A
methylation sites and ESCA prognosis was analyzed. Coxph
function in R package survival was used to perform

univariate Cox regression analysis between 221 methylation
sites and OS, survival status. 9 methylation sites associated
with prognosis were screened (p< 0.05, Supplementary
Table S2). Ten 161 ESCA samples were clustered based on
the 9 methylation sites with consensus clustering in Con-
sensusClusterPlus R package. As shown in Figure 2, when
cluster number k� 3, CDF did not show great change;
meanwhile, the relative change in area under CDF curve was
the maximum, suggesting that k� 3 was the optimal.
Terefore, under k� 3, 161 ESCA samples were clustered
into three subtypes of C1, C2, and C3.

Survival analysis manifested signifcant OS diference in
the three subtypes, with the most favorable prognosis de-
tected in C3 subtype (p � 0.018, Figure 3). However, no
diference of OS was observed between C1 and C2 subtypes.
Gene mutation analysis showed that the top mutated gene
was TP53 and that C3 subtype had the least mutations of the
top 20 mutated genes among three subtypes (Supplementary
Figure S1). Such results suggested a relation between gene
mutations and prognosis.

3.2. Te Relation between the Tree Subtypes and Clinical
Features. We next assessed the relation between subtypes
and clinical features, including T stage, N stage, M stage,
stages I to IV, grade, and risk factors of gender and smoking
history. Although only the distribution of G stage (G1, G2,
and G3) showed a close relation with the three subtypes
(p< 0.05), there was a modest tendency indicating that C3

TCGA-ESCA methy datas m6A genes

Univariate survival analysis

C1, C2, C3

Limma analysis

Common differential gene

STRING

Consistent consensus clustering

Hub genes

m6A methylation sites

KM analysis Comparison of clinical features

L1000FWD, DGIdb, CMap

Figure 1: Te workfow of developing m6A-related molecular subtypes and screening potential small-molecular drugs for treating ESCA.
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subtype had the lower proportion of stages with more in-
vasive features than C1 and C2 subtypes (Figures 4(a)–4(e)).
For risk factors, males accounted for a signifcantly higher
proportion than female due to a higher smoking in males,
and the female proportion was the highest in C3 subtype
(Figure 4(f )). In addition, the number of nonsmokers was
more in C3 subtype (tobacco� 1) than C1 and C2 subtypes;
however, no signifcant diference was detected among to-
bacco groups (Figure 4(g)). We compared the three mo-
lecular subtypes with the previously reported three
molecular subtypes (CIN, GS, and MSI) [43]. We observed

that MSI subtypes are mainly related to C2 (Figure 4(h)). For
example, the distribution of C1, C2, and C3 in CIN and GS
subtypes is similar, suggesting that the new three molecular
subtypes can be used as a supplement to the previously
reported molecular subtypes.

3.3. Te Enrichment of Metabolism Pathways in the Tree
Subtypes. Compared with normal cells, tumor cells are
more active in acquiring energy through metabolism
pathways to promote cell proliferation and migration.
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Figure 2: Consensus clustering of 161 ESCA samples based on m6Amethylation sites. (a) A consensus matrix when k� 3 where k represents
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Figure 3: Kaplan-Meier survival curve of C1, C2, and C3 subtypes. (a) Survival analysis among three subtypes (p � 0.018). (b) Survival
analysis between C1 and C2 subtypes (p � 0.72). (c) Survival analysis between C1 and C3 subtypes (p � 0.027). (d) Survival analysis between
C1 and C3 subtypes (p � 0.0057). Log-rank test was performed.
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Terefore, we speculated that the activity of tumor cells in
metabolism pathways could indicate the condition of
cancer patients’ prognosis. To examine whether there was
an association between subtypes and metabolism path-
ways, ssGSEA was conducted to calculate the enrichment
score of each sample. Eight major metabolism pathways,
including nitrogen metabolism, nicotinate and nicotin-
amide metabolism, histidine metabolism, glyoxylate and
dicarboxylate metabolism, glycerophospholipid meta-
bolism, glycerolipid metabolism, drug metabolism cyto-
chrome p450, and glutathione metabolism, were analyzed.
Te result exhibited that C3 subtype had the lowest en-
richment score in these pathways, suggesting that C3
subtype with favorable prognosis was relatively inactive in
metabolism pathways (Figure 5).

3.4. Immune Correlation of Diferent Molecular Subtypes.
Immunotherapy is a promising clinical treatment method.
In order to characterize the potential benefts of immuno-
therapy of diferent molecular subtypes, we frst compared

the diferences of immune infltration in the immune mi-
croenvironment of the three molecular subtypes. It can be
observed that C1 subtype has higher matrix components
and higher tumor purity (Figure 6(a)). We also observed
the diferences of multiple immune cell infltration in
patients with three molecular subtypes (Figure 6(b)). For
example, C3 subtype has higher efector memory CD8
T cell and activated B cell, and C1 subtype has the highest
regulatory T cell. Tese results show that the three mo-
lecular subtypes have diferent immune microenviron-
ment characteristics. Further, we analyzed the expression
diferences of immune checkpoint genes in the three
molecular subtypes and observed that 10 (71%) immune
checkpoint genes had signifcant expression diferences
(Figure 6(c)), of which CD40 had the most signifcant
expression diference. In addition, we also observed that
C1 subtype was signifcantly correlated with CR/PR
(Figure 6(d)). Tis suggests that C1 subtype may beneft
from immunotherapy of PD-L1.

Identifcation of diferentially expressed genes among
the three subtypes and functional analysis were done.
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Figure 4:Te relation between three subtypes and clinical features, including Tstage (a), N stage (b), M stage (c), stages I to IV (d), grade (e),
gender (f ), tobacco (g), and TCGA molecular subtypes (h). ANOVA was performed. ∗p< 0.05.
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As no diference of OS was found between C1 and C2
subtypes, and C3 subtype had the optimal prognosis, we also
analyzed the DEGs between C1 and C3 and between C2 and
C3 subtypes. Between C1 and C3 subtypes, 193 DEGs (132
upregulated genes and 61 downregulated genes) were
identifed under conditions of p< 0.05 and |fold change
(FC)|> 1.5 using Limma R package (Figure 7(a)). Ten 193
DEGs were further assessed with GO function analysis and
KEGG pathways using WebGestalt R package. GO analysis
showed that 432 terms of biological process, 27 terms of
cellular component, and 41 terms of molecular function
were annotated with signifcant diferences between C1 and
C3 subtypes (p< 0.05). Te top 10 enriched terms of bio-
logical process, cellular component, and molecular function
were displayed (Figures 7(b)–7(d)). However, no KEGG
pathways with signifcant diference between C1 and C3
subtypes were found. Moreover, between C2 and C3 sub-
types, we identifed 1673 DEGs incorporating 685 upregu-
lated and 988 downregulated genes (Supplementary
Figure S2) and annotated 35 KEGG pathways, 1181 terms of
biological process, 132 terms of cellular component, and 153
terms of molecular function.Te top 10 enriched terms were
shown in Supplementary Figure S3. Among these terms,
epidermal cell diferentiation, striated muscle cell

diferentiation, skin development, epidermis development,
and epithelial cell diferentiation were all annotated in the
top 10 biological processes between C1 and C3 and between
C2 and C3 (Figure 7 and Supplementary Figure S3).

3.5. Construction of PPI Networks and Hub Gene
Identifcation. Next, mutually upregulated and down-
regulated DEGs between C1 and C3 and between C2 and C3
subtypes were examined. 146 mutual DEGs including 97
upregulated and 49 downregulated ones were identifed for
constructing PPI networks (Figure 8(a)). Te bioinformatics
tools in STRING database were applied to assess the in-
teractions among 146 proteins of DEGs. Subsequently,
Cytoscape was applied to visualize the PPI network and
cytoHubba was performed to screen hub genes from the
network (Figure 8(b)). Finally, the following top 15 hub
genes were identifed: OCLN, TFF1, BMP4, KRT18, CLDN3,
CLDN4, KRT8, TFAP2A, PPARG, AGR2, GATA4, EPCAM,
SNAI2, EGFR, and TMPRSS2. We further evaluated the
expression diferences of these 15 genes in cancer and ad-
jacent tumors. We observed that GATA4, AGR2, and
PPARG were signifcantly underexpressed in tumor samples
(Supplementary Figure S4A). We further evaluated the
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methylation level of CpG sites in the promoter region of
these 15 genes in each sample. It can be observed that there is
a higher methylation level in cancer samples as a whole, in
particular, GATA4 and TFAP2A (Supplementary
Figure S4B). We used ssGSEA to evaluate the enrichment
scores of six important immune pathways and further an-
alyzed the correlation between these 15 genes and these
immune pathways. It was observed that there was a higher
correlation between these genes and weak correlation with
immune pathways, among which EPCAM was the most
correlated with immune pathways (Supplementary
Figure S4(c)).

3.6. Screening of Small Molecules Related to Hub Genes.
Te 15 hub genes were screened from DEGs between C1 and
C3, C2 and C3 were considered to be closely related to ESCA
prognosis, and this also suggested that these genes could be
the targets for ESCA treatment. Terefore, we introduced
three databases of L1000FWD, DGIdb, and CMap with
abundant data of the interactions between small-molecule
drugs and genes. If one drug is negatively associated with
expression of one gene related to ESCA, the drug could be
considered as a potential drug for ESCA treatment. Within
three databases, we screened a total of 598 small molecules
having interactions with hub genes, including 96 from
L1000FWD, 439 from DGIdb, and 63 from CMap. By
overlapping these small molecules in three databases, we
observed 3 small molecules (BMS-754807, geftinib, and
neratinib) were overlapped between L1000FWD andDGIdb,
3 small molecules (zuclopenthixol, puromycin, and nar-
ingenin) were overlapped between L1000FWD and CMap, 2
small molecules (sulfasalazine and imatinib) were over-
lapped between DGIdb and CMap (Figure 9). Among these 8
small molecules, BMS-754807, geftinib, neratinib, and
imatinib have antitumor activity. Zuclopenthixol, as a
Dopamine receptor antagonist, is a drug for treating

schizophrenia. Puromycin is an aminoglycoside antibiotic,
and sulfasalazine is a nonsteroid anti-infammatory drug.
Tese drugs may specifcally target hub genes and take
function in suppressing tumor cell proliferation and inva-
sion, although further experiment and analysis are needed
for illustrating their function and mechanism in antitumor
activity.

4. Discussion

A number of epigenetic studies on ESCA have revealed the
signifcance of epigenetic regulation on ESCA development;
however, the role of m6A modifcation on ESCA has not
been systematically studied. Only several studies have found
that some m6A regulators, such as ALKBH5, HNRNPA2B1,
and HNRNPC, have strong relation with ESCA prognosis
[24–26]. Inspired from the previous researches, we focused
on analyzing a total of 15m6A regulators and identifed three
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Figure 8: PPI analysis of 146 upregulated and downregulated genes. (a) A PPI network of 146 DEGs constructed by STRING. (b) A PPI
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new molecular subtypes associated with clinical features and
ESCA prognosis. Furthermore, we constructed a PPI net-
work based on DEGs screened from the three subtypes and
determined 15 prognosis-related hub genes from the PPI
network.

Some of the 15 hub genes have been reported to be
associated with tumor progression of ESCA. For example,
TFF1 encodes a mucosa protector factor, and it is silenced in
the early stage of ESCA development resulting from high
methylation of TFF1 promoter [44]. BMP4 and EPCAM are
involved in inducing epithelial-mesenchymal transition
(EMT) and promoting tumor cell migration of ESCA
[45–47]. Low expression of CLDN4 is indicative of a poor
prognosis of ESCC [48]. High expression of TFAP2A is
correlated with favorable OS of ESCC patients [49]. EGFR is
highly expressed in ESCA and some other cancer types;
moreover, it is seen as a promising target for inhibiting
tumor aggression [50]. Although some hub genes have not
been found to be correlated with ESCA development, their
relations with other cancer types have been previously
demonstrated.

Using small-molecule databases, 8 potential drugs
closely interacting with the 15 hub genes were identifed.
Tese drugs negatively associated with expression of the hub
genes can be considered as potential drugs for treating
ESCA. Among the 8 drugs, geftinib, neratinib, and imatinib
have been commercialized for clinical treatment of specifc
cancers. Geftinib is an EGFR tyrosine kinase inhibitor that
can hinder tumor cell proliferation and angiogenesis and has
been commercially applied in treating non-small-cell lung
cancer [51]. Clinical trials of geftinib in advanced ESCA
patients demonstrated a partial response and stable disease
rate of between 24% and 39%, showing a relatively positive
efect [52–54]. Neratinib is a tyrosine kinase inhibitor tar-
geting HER1, HER2, and HER4 and can efectively improve
disease-free survival of HER2-positive breast cancer patients
given with chemotherapy and trastuzumab [55, 56]. Ima-
tinib, a tyrosine kinase inhibitor targeting Bcr-Abl tyrosine
kinase, could suppress disease progression and extend
overall survival of chronic myeloid leukemia and gastro-
intestinal stromal tumors [57, 58].

BMS-754807 has not been used to treat cancers;
however, evidence suggested a promising application of it
in clinical practice. BMS-754807 is an inhibitor of tar-
geting insulin-like growth factor-1 receptor/insulin re-
ceptor (IGF-1R/IR) signaling pathway, which has been
proven to be efective in suppressing tumor cell prolif-
eration of xenograft tumor models of several cancer types
[59–61]. Study found that sulfasalazine could enhance
cisplatin-induced cytotoxic efects on advanced gastric
cancer and bladder cancer [62, 63]. Te remaining two
drugs zuclopenthixol and puromycin have not been re-
ported to be related to cancer therapy, but they still may
have the potential to target hub genes related to ESCA
prognosis, according to our analysis.

Tis study did not diferentiate two molecular types of
esophagus cancer (squamous cell carcinoma and adeno-
carcinoma), which may afect the results of molecular
subtypes to some extent. In addition, further study on

these hub genes and small molecules are needed to
demonstrate their functions in clinical practice. Impor-
tantly, this study applied a new approach to analyzing the
relation between m6A and ESCA prognosis and provided a
valuable reference to explore potential targets and drugs
for ESCA treatment.

5. Conclusions

In conclusion, this study determined three molecular sub-
types of ESCA based on m6A regulators and identifed 8
potential small-molecule drugs closely interacting with hub
genes through integrative analysis. Te new molecular
subtypes were efective in classifying ESCA patients into
low-risk and high-risk groups. Te 15 hub genes screened
from DEGs among three subtypes can be potential targets
for treating ESCA. Te 8 small-molecule drugs closely
interacting with the hub genes may be promising drugs for
ESCA patients.
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Objective. To explore the application value of circulating tumor cells (CTCs) and circulating free DNA (cfDNA) from peripheral
blood in the prognosis of advanced gastric cancer (AGC). Here, we measured CTCs and cfDNA quantity for predicting the
outcome of patients. Patients and Methods. Forty-five patients with advanced gastric cancer who underwent neoadjuvant
chemotherapy and surgical treatment were enrolled in this study. All patients received neoadjuvant chemotherapy with
paclitaxel + S-1 + oxaliplatin (PSOX) regimen, and CTCs and cfDNA of the peripheral blood were detected before and after
neoadjuvant therapy. Relationships between the number/type of CTC or cfDNA and the efficacy of neoadjuvant chemotherapy
were analyzed. Results. Among 45 patients, 43 (95.6%) were positive, and the positive rate of mesenchymal CTC was increased
with the increase in the Tstage.-e proportion of mesenchymal CTC was positively correlated with the N stage (P< 0.05), and the
larger N stage will have the higher proportion of mesenchymal CTC. Patients with a small number of mesenchymal CTC before
neoadjuvant chemotherapy were more likely to achieve partial response (PR) with neoadjuvant therapy. Patients with positive
CA-199 were more likely to achieve PR with neoadjuvant therapy (P< 0.05). Patients in the PR group were more likely to have
decreased/unchanged cfDNA concentration after neoadjuvant therapy (P � 0.119). After neoadjuvant therapy (before surgery),
the cfDNA concentration was higher and the efficacy of neoadjuvant therapy (SD or PD) was lower (P � 0.045). Conclusions.
Peripheral blood CTC, especially interstitial CTC and cfDNA, has a certain value in predicting the efficacy and prognosis of
neoadjuvant chemotherapy in advanced gastric cancer.

1. Introduction

Gastric cancer (GC) is one of the most common malignant
tumors of the digestive tract according to World Health
Organization (WHO) data [1]. Worldwide, the incidence of
gastric cancer is 13.86 per 100,000 people [2]. Gastric cancer
in China has a high mortality rate and is up to 20/100,000
[3]. Most case belong to advanced gastric cancer (AGC)
based on standard tumor-node-metastasis (TNM) staging
[4] when they were diagnosed in China. Surgery of no doubt

is the best treatment tool for those who were classified as
highly differentiated GC. However, the number of AGC
patients for surgery was limited because of their staging.
Recently, many studies suggested that patients with cancer
can perform preoperative or perioperative neoadjuvant
chemotherapy for shrinking tumor size or killing micro-
metastases [5–7]. -is definitely increased successful
chances for surgery. -erefore, the key for the treatment of
the patients with GC is to identify sensitivity and specificity
markers at their early stage. With the application of liquid
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biopsy technology, circulating tumor cell (CTC) and cir-
culating free DNA (cfDNA) have been used in effect eval-
uation of clinical tumor treatment and recurrence risk
detection [8–10]. CTCs are cells that release into the blood
stream from the primary tumor site. CTCs can become seeds
of metastasis in distant organs and drive cancer to relapse
[7]. CTCs are divided into epithelial, mesenchymal, and
mixed CTCs based on their cell surface markers, in which
epithelial CTCs are characterized with EpCAMplus CK8/18/
19 and mesenchymal CTCs mark vimentin and twist, re-
spectively [11, 12]. -e measurement of CTCs from pe-
ripheral blood in cancer patients is used in the detection of
breast cancer, bladder cancer, nonsmall cell lung cancer, and
other solid tumors [13–16]. Circulating free DNA (cfDNA)
is about 50–200 base pair (bp) length DNA fragment and can
freely circulate in the bloodstream [17]. CfDNAmay be from
the cellular nucleus or mitochondria and has a specific
genetic mutation or epigenetic abnormal information.-ese
aberrant genetic materials can be used for diagnosis and
predicting the prognosis of the disease [18]. Many studies
revealed that cfDNA levels of patients with advanced-stage
cancer were elevated [19–21]. However, CTCs and cfDNA
levels of patients with advanced gastric cancer are limited.
-is study aimed to analyze the levels and types of peripheral
blood CTC and cfDNA in patients with advanced gastric
cancer during perioperative treatment. We also evaluated
the application value of peripheral blood CTC and cfDNA in
the outcomes of advanced gastric cancer.

2. Materials and Methods

2.1. Subjects. -e patients with advanced gastric cancer
(AGC) who had undergone neoadjuvant chemotherapy and
surgery in the Department of Gastrointestinal Surgery of the
Affiliated Hospital of Qinghai University between Septem-
ber 2019 and October 2020 were enrolled in this study.
Enrollment criteria were as follows: (1) a total of 45 cases
were diagnosed with gastric cancer by endoscopy and tumor
tissues by biopsy; (2) TNM staging of all patients was T3-
4N×M0 (according to the TNM staging standard of gastric
cancer AJCC/UICC 8th edition, staging is mainly based on
abdominal CT, combined with gastroscopy, B ultrasound,
etc., if necessary, ultrasound endoscopy, MRI, etc.); (3)
physical status score of eastern cooperative oncology group
(ECOG) ≤2 points and could tolerate chemotherapy; (4)
newly diagnosed patients with no previous radical or pal-
liative surgery, radiotherapy, and chemotherapy history; (5)
the functions of liver and kidney were in the normal range;
and (6) age was between 18 and 80 years old. Exclusion
criteria were as follows: (1) patients with pyloric obstruction,
upper gastrointestinal hemorrhage, gastrointestinal perfo-
ration, severe infection, and other complications; (2) existed
history of radical or palliative surgery, radiotherapy, and
chemotherapy or biological therapy; (3) history of allergy to
chemotherapy drugs; (4) pregnant or breastfeeding; (5)
patients with distant metastases; and (6) other malignant
tumors. In this study, 45 patients with advanced gastric
cancer were enrolled, including 40men, 5 women, and age of
29–69 years old with an average of 54.90 (±10.89) years old.

2.2. Study Method. All enrolled patients received 3 cycles of
PSOX neoadjuvant chemotherapy. -e peripheral blood for
number and subtypes of CTC and cfDNA measurement
were collected before (baseline) and after neoadjuvant
therapy (postoperative) on the 10th day after surgery.

2.3. Chemotherapy Regimen. PSOX regimen was as follows:
paclitaxel of 135mg/m2 and oxaliplatin of 85mg/m2 were
injected in the vein on day 1. Tiggio was orally taken based
on the patient’s body surface area (BSA) from day 1 to day
14, twice a day (2 tablets in the morning and 3 tablets in the
evening). 21 days was defined as a chemotherapy cycle. -e
clinical efficacy and toxicity of neoadjuvant chemotherapy
were judged after at least 2 cycles. If the disease progresses
during chemotherapy, it will be evaluated after 1 cycle. All
cases were confirmed efficacy after 4 weeks.

2.4. Circulating Tumor Cell CTC Detection Method (Nano-
membraneFiltrationandRNAInSituHybridizationMethod).
A total of 10milliliters (mL) of venous blood from patients
before and after chemotherapy and surgery was collected
and placed in an ethylenediaminetetraacetic acid (EDTA)
anticoagulant tube as a test sample. -e samples were
centrifugated at 1,500 r/m for 5 minutes within 4 hours, and
the plasma phase was removed. CanPatrol® CTC enrich-
ment counting was used to further separate CTC. Fur-
thermore, multiple RNA in situ hybridization technology
was used to performCTC typing detection, and the epithelial
type-specific genes (EpCAM, CK8, CK18, and CK19) and
the mesenchymal-specific genes (vimentin and twist) were
detected, respectively. -e amplification probe was hy-
bridized with the above-mentioned type-labeled probe la-
beled with a fluorescent group to generate a fluorescent
signal, the fluorescent signal was read by an automatic
identification system, and the CTC typing detection result
was automatically judged through the fluorescent signal of
different colors.

-e CTC results were analyzed. -e epithelial CTC was
displayed as red fluorescent signal points, and the mesen-
chymal type was displayed as green fluorescent signal points.
-e red and green signal points in one cell were displayed as
a mixed type.

2.5. CfDNA Isolation and Characterization. A total of 10mL
of peripheral venous blood was collected with an EDTA
anticoagulation tube. KminTrak plasma extractor was used
to extract plasma DNA. Qbit was used to determine the
calculated concentration of cfDNA samples. Briefly, the Qbit
quantifier reagent and the corresponding amount of DNA
quantitative working solution were prepared according to
the manufacturer’s introduction. Qbit quantitative working
solution was divided into QB tubes, and each tube contained
198microliters (μL). About 2 μL of the extracted nucleic acid
was taken and added into the aliquoted working solution,
shaken, and mixed well. -e standard nucleic acid working
solution was used to formulate the standard curve of the
Qbit quantifier, and the fluorescence value of the standard
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curve was about 15,000, and then, the concentration of each
nucleic acid was detected. -e concentration of each sample
was recorded.

2.6. Observation Indicators. Chemotherapy efficacy was
identified according to the response evaluation criteria in
solid tumor 1.1 (RECIST1.1): (1) complete response (CR): all
lesions disappeared and were maintained for 4 weeks; (2)
partial response: reduced by 30% in tumor size and were
maintained for 4 weeks; (3) progressive disease (PD): 20%
increase in tumor size; (4) non-CR/PR/stable disease (SD)
before lesions increase; new lesions appear; and (5) SD:
based on the minimum sum of the longest diameters after
the start of treatment, the reduction was less than the
standard for PR, and the increase was not to the standard of
PD.

2.7. Statistical Analysis. All data were input into spss 20.0
software for statistical analysis. Continuous data were
expressed as mean± standard deviation (Mean± SD), and an
independent sample t-test was used for comparison. Cate-
gorical data were expressed as examples (%), and the chi-
square test was used for comparison. Spearman’s correlation
coefficient was used to analyze the correlation between CTC
number change, cfDNA number change, and chemotherapy
effect, and the Kaplan–Meier method was used for survival
analysis. P< 0.05 indicated that the difference was statisti-
cally significant.

3. Results

3.1.Basic InformationofEnrolledPatients. Basic information
of 45 patients with AGC is shown in Table 1. Among 45
cases, there were 40 men (88.99%) and 5 women (11.11%).
-e patients aged more than 55 years old were 17 cases
(37.78%), and the patients aged less than 55 years old were 28
cases (62.22%). -e pathological typing of all patients was
adenocarcinoma. Low, moderate, and high differentiation
degrees accounted for 35.55% (16/45), 35.55(16/45), and
28.99 (13/45), respectively. -e patients with T I-IV staging

were 2 cases (4.44%, stage I-II), 26 cases (57.78%), and 17
cases (37.78%), respectively. All patients with TNM are
N+M0.

3.2. Baseline Test Results of CTC. To investigate the CTC
number and subtypes of 45 patients, we identified different
CTC characteristics. -e result is shown in Figure 1. A total
of 87 tests were performed for 45 patients with gastric
cancer, and all patients were in the advanced stage. Among
them, 14, 14, and 17 patients were tested 3 times, 2 times, and
only once, respectively. Neoadjuvant therapy efficacy was as
follows: there were 27 patients with neoadjuvant efficacy
evaluation results, with 10 PR, 16 stable diseases (SDs), and 1
progressive disease (PD); CTC statistical definition was as
follows: when counting the positive rate of mesenchymal
CTCs, if we set up mesenchymal CTC� 0, then it was
negative and if the mesenchymal CTC≥ 1, it was positive.
Among the 45 patients, 39 were in cTNM stage III and 2
were in cTNM stage IIA. -e Tstaging was used to show the
baseline CTC. It can be seen from the above table that
according to the tumor T stage stratification, comparing the
number of CTC and the positive rate of mesenchymal CTC,
it could be seen that the positive rate of mesenchymal CTC
in stage 4 patients was higher than that in stage 2-3 patients.
-e results are shown in Table 2. -e above table showed the
relationship between the number of peripheral blood CTC
and each type and the efficacy of chemotherapy. It could be
seen that patients with a small number of mesenchymal CTC
were more likely to achieve PR with neoadjuvant treatment.

3.3. Correlation between Baseline CTC and Relevant Clinical
Indicators of Patients. -e clinical information of the en-
rolled patients with gastric cancer mainly included the fol-
lowing parameters: age, gender, pathological type, tumor
location, tumor diameter, degree of differentiation, cTNM
staging, T staging, N staging, Lauren type, Borrmann type,
whether CA19-9 was normal or not, and so on. -e CTC
value before neoadjuvant chemotherapy was the baseline
CTC. -e relationship between CTC and various clinical
indicators of gastric cancer was mainly to analyze the total

Table 1: Basic information of enrolled patients.

Items Number (n) Percentage (%)

Gender M 40 88.89
F 5 11.11

Age >55 17 37.78
≤55 28 62.22

Pathological typing Adenocarcinoma 45 100

Degree of differentiattion
Low 16 35.55

Moderate 16 35.55
High 13 28.89

T staging
1–2 2 4.44
3 26 57.78
4 17 37.78

N staging N0 0 0
N+ 45 100

M, male; F, female; T, tumor; and N, node.
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number of CTCs, whether the total number of CTCs >7, the
number of each type, and the relationship between the
positive/proportion of mesenchymal CTCs and the above
parameters. -e results of baseline CTC testing are sum-
marized in Table 3 and Figure 2. -e results showed that the
ratio of mesenchymal CTCs was positively correlated with the
N stage, indicating that the N stage was larger; the ratio of
mesenchymal CTCs was higher. It was consistent with the
positive correlation between mesenchymal CTCs and disease
stage and prognosis proposed in the current related literature.
However, there was no significant correlation between other
clinicopathological indicators and the number/type of CTCs.

3.4. Correlation between CTCs before Neoadjuvant Treatment
(Baseline) and Neoadjuvant Efficacy. CTCs before neo-
adjuvant chemotherapy were used as the baseline. We

compared CTC number and subtype changes after three
cycles of neoadjuvant chemotherapy. -e efficacy of neo-
adjuvant treatment was performed according to the
RECIST1.1 evaluation standard.-ere were 27 patients (27/
45, 60%) with neoadjuvant efficacy evaluation results, in-
cluding 10 cases of PR, 16 cases of SD, and 1 case of PD.-e
results are indicated in Table 4. -e above table showed the
relationship between the number of peripheral blood CTCs
and each type and the efficacy of chemotherapy. It could be
seen that patients with a small number of mesenchymal
CTC were more likely to achieve PR with neoadjuvant
treatment.

3.5. Correlation between Clinical Pathology and Neoadjuvant
Efficacy. As shown in Table 5, the age, maximum tumor
diameter, pathological stage, and carcinoembryonic antigen

(a) (b) (c)

Figure 1: Images of CTCs. (a) Epithelial CTCs; (b) mesenchymal CTCs; and (c) mixed CTCs; CTC, circulating tumor cell.

Table 2: CTC test data before neoadjuvant therapy (baseline).

T Stage CTC> 0 Median of CTC Mean of CTC Positive rate of mesenchymal CTC
2–3(30) 96.7%(29/30) 111 13.2 46.7%(14/30)
4(15) 93.3%(14/15) 88 10.9 60.0%(9/15)
Total (n� 45) 95.6% 110 12.4 51.5%

Table 3: Correlation between CTC and patients’ clinical indicators before neoadjuvant therapy (baseline).

Spearman’s rho Total
CTC

Total
CTC(≤7/
>7)

Epithelial
CTC

Mixed
CTC

Mesenchymal
CTC

Mesenchymal CTC
(≤0/>0)

Mesenchymal
CTC proportion

Age (≤60/>60) N� 41

0.2;
31 0.1; 81 0.1; 83 −0.214 0.23; 7 0.171 0.159 −0.231

0.1;
27 0.2; 34 0.2; 30 0.158 0.11; 8 0.26 0.297 0.127

T stage (≤3/>3) N� 45 r 0.0; 82 0.0; 12 0 0.22; 9 −0.138 0.155 0.126
P 0.5; 93 0.9; 36 1 0.13; 0 0.365 0.308 0.41

N stage N� 40 r 0.2; 32 0.4; 17 0.279 0.02; 5 0.244 0.092 0.134
P 0.2; 17 0.0; 22 0.136 0.89; 7 0.193 0.63 0.481

CA-199
(normal/
abnormal)

N� 39
r 0.1; 41 0.0; 36 −0.159 0.08; 4 −0.15 0.133 0.156

P 0.3; 54 0.8; 13 0.298 0.58; 3 0.325 0.385 0.307

∗When P< 0.05 (two-tailed) or P< 0.01 (two-tailed), it indicated a significant correlation; CTC, circulating tumor cells.
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(CEA) of the enrolled patients have no correlation with
chemotherapy efficacy, but patients with abnormal CA19-9
achieved PR/SD� 0.015 after chemotherapy and PR/SD/
PD� 0.018 after chemotherapy (P< 0.05). -e level of
CA19-9 was related to the efficacy of chemotherapy, and
patients with positive CA19-9 were more likely to achieve PR
with neoadjuvant therapy. Correlation between the end of
neoadjuvant therapy (preoperative) CTC and neoadjuvant
efficacy was seen that the number/type of mesenchymal CTC
after neoadjuvant treatment was significantly related to the
efficacy (Figure 3).

3.6. Correlation between cfDNA and Clinicopathological In-
dicators of Gastric Cancer and Neoadjuvant Efficacy. A total
of 25 patients in this study were tested for CTCs before
neoadjuvant and preoperative chemotherapy, and some
patients were tested for cfDNA. Correlation between
changes in the number/type of CTCs and changes in cfDNA
concentration and neoadjuvant efficacy were analyzed, in-
dicating that the changes in the total number of total CTCs
and mesenchymal CTCs were similar in the PR and SD/PD
groups, and there was no significant difference (Table 6). As
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Figure 2: Relationship between mesenchymal CTC percentage and
N stage. Y-axis, mesenchymal CTC percentage; X-axis, N stage. N1,
tumor cells penetrated the second or the third layers of stomach.
N2, tumor cells penetrated the second layer of stomach and more
distant lymph nodes. N3, tumor cells penetrated the third layer of
stomach and more distant lymph nodes.

Table 4: Correlation between CTC before neoadjuvant therapy
(baseline) and neoadjuvant efficacy.

Spearman’s rho PR/SD PR/SD+PD

Total of CTC N� 27 r 0.127 0.069
p 0.537 0.732

Total of CTC (≤0/>0) N� 27 r −0.158 −0.217
p 0.44 0.277

Total of CTC (≤7/>7) N� 27 r 0.22 0.182
p 0.281 0.364

Epithelial CTC N� 27 r 0.122 0.089
p 0.553 0.661

Mixed CTC N� 27 r −0.09 −0.129
p 0.662 0.522

Interstitial CTC N� 27 r 0.435 0.394
p 0.026 0.042

Interstitial CTC (≤0/>0) N� 27 r 0.378 0.335
p 0.057 0.087

Interstitial CTC proportion N� 27 r 0.327 0.292
p 0.103 0.139

∗When P< 0.05 (two-tailed) or P< 0.01 (two-tailed), it indicated a sig-
nificant correlation. CTC, circulating tumor cell; PR, partial response; SD,
stable disease; PD, progressive disease; and N, case number.

Table 5: Correlation between clinical pathology and neoadjuvant
efficacy before neoadjuvant therapy (baseline).

Spearman’s rho PR/SD PR/SD+PD

Age (≤60/>60) N� 27 r 0.069 0.098
p 0.734 0.635

T Stage (≤3/>3) N� 27 r 0.217 0.184
p 0.277 0.367

N stage N� 23 r 0.174 0.157
p 0.428 0.486

CA19-9 (normal/abnormal) N� 27 r 0.174 0.157
p 0.428 0.486

∗When P< 0.05 (two-tailed) or P< 0.01 (two-tailed), it indicated a sig-
nificant correlation. CTC, circulating tumor cell; PR, partial response; SD,
stable disease; PD, progressive disease; and N, case number.
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Figure 3: Relationship between mesenchymal CTC number and
clinical pathology. Y-axis, mesenchymal CTC number; X-axis,
clinical status. CTCs, circulating tumor cells; PR, partial response;
and SD, stable disease.

Table 6: Correlation between the cfDNA concentration and the
efficacy of neoadjuvant at the end of the neoadjuvant therapy
(before surgery).

Spearman’s rho PR/SD PR/SD+PD

cfDNA concentration N� 22 r 0.432 0.405
p 0.045 0.068

∗When P< 0.05 (two-tailed) or P< 0.01 (two-tailed), it indicated a sig-
nificant correlation. cfDNA, cell-free DNA; CTC, circulating tumor cell; PR,
partial response; SD, stable disease; PD, progressive disease; and N, case
number.
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for cfDNA indicators (15 patients had matching cfDNA
results before and after neoadjuvant therapy), the trend was
that patients in the PR group were more likely to have a
decrease/unchanged cfDNA concentration after neo-
adjuvant therapy (P � 0.119). -e cfDNA concentration at
baseline (before neoadjuvant therapy) was not significantly
correlated with CTCs and neoadjuvant efficacy; however, the
relationship could be seen that the number/type of CTCs
after neoadjuvant treatment was not significantly related to
the efficacy.

4. Discussion

Worldwide, cancer is the second cause of death affecting
global residents after cardiovascular disease [22]. Of no
doubt, early diagnosis and treatments of cancer are major
methods for reducing the death rate in the future. Patients
with advanced gastric cancer are still the main group of
patients with gastric cancer in China [23] and are the focus
of our work. Perioperative chemotherapy is an effective
treatment for advanced gastric cancer [24, 25]. However,
there is no uniform standard for the evaluation of the ef-
ficacy of preoperative chemotherapy [26, 27]. Traditional
methods for evaluating the efficacy of gastric cancer treat-
ment or chemotherapy include the following: tumor marker
levels, imaging examinations, endoscopic ultrasound before
and after treatment, or pathological regression after surgery.
Spiral CT is a common method to evaluate the efficacy of
chemotherapy for gastric cancer [28], and some studies
suggested endoscopy, especially endoscopic ultrasound. A
study by Wang et al. [29] pointed out that there was no
significant difference in the accuracy of abdominal CT-
enhanced scanning and ultrasound gastroscopy in the
staging of gastric cancer after neoadjuvant chemotherapy.
Considering the intolerance of ultrasound gastroscopy,
routine ultrasound gastroscopy is not recommended. Cur-
rently, the main biomarkers for gastric cancer diagnosis
include CA19-9, CA72-4, and CEA. However, these bio-
markers are low specificity. -erefore, many studies ex-
plored more reliable and sensitive biomarkers for the early
diagnosis of gastric cancer [30, 31].

With the continuous development of molecular tech-
nology, liquid biopsy is widely used in the field of tumors. In
2013, it was used as an early cancer detection method [32],
which has the advantage of detecting cancer before symp-
toms appear. -e commonly used biomarkers for liquid
biopsy include circulating tumor DNA (ctDNA), CTCs,
exosomes, and circulating tumor RNA (ctRNA). Currently,
only ctDNA and CTC have been approved for clinical use by
the FDA [33, 34]. Zhang et al. tested CTC in patients with
bladder cancer planned for surgery and found that 44 cases
(86.3%) were positive [35]. Many studies revealed that the
detection of CTC in patients with colorectal cancer (CRC)
[36], nonsmall cell lung cancer (NSCLC) [37], prostate
cancer [38], and so on could predict the outcomes of the
patients. -e clinical findings of the perioperative CTC
count and epithelial-mesenchymal transition classification
of rectal cancer patients showed that the number of CTC in
the peripheral circulation of colorectal cancer patients was

reduced, especially for rectal cancer patients who underwent
laparoscopic surgery [39]. However, the application of liquid
biopsy technology in advanced gastric cancer is limited.

In this study, the total positive rate of CTCs (43/45) in
this study was 95.6%, of which the positive rate of mesen-
chymal type (23/45) was 51.1%. In the study of patients with
advanced gastric cancer, the CanPatrol® system monitored
the detection rate of CTC capture in the peripheral blood of
advanced gastric cancer >80%. -e N staging in TNM
staging indicates regional lymph node metastasis, but it is
difficult to accurately evaluate the N stage before surgery.
Generally, high-quality enhanced CT combined with inva-
sive ultrasound gastroscopy is required for assessment,
which increases the patient’s radiation risk, economic
burden, and physical pain. It has been reported that the
number of mesenchymal CTC is closely related to the TNM
staging and N staging of gastric cancer [40]. -is study used
CTC before neoadjuvant as the baseline, showing that
baseline interstitial CTC and N staging were significantly
correlated (P � 0.034) and positively correlated. -e larger
the N staging, the proportion of interstitial CTC was the
higher. -e higher N stage indicates that there is cancer cell
infiltration in the lymph nodes or lymph vessels around the
tumor, and these cancer cells are more likely to enter the
peripheral blood system through the lymphatic circulation,
which may be the reason why the higher the N stage, the
easier it is to detect interstitial CTC in the peripheral blood.
-erefore, the detection of interstitial CTC at the first di-
agnosis (before neoadjuvant therapy) may be another in-
dicator for predicting N staging. In TNM staging, the Tstage
indicates the depth of primary tumor invasion. In the tra-
ditional TNM staging method, T staging is of great signif-
icance, but Tstaging reflects the local condition of the tumor,
and CTC reflects the peripheral circulation. -is may be the
reason why T staging is not related to the number of CTCs,
and it may also be related to the proportion of T stage in the
enrolled patients.

-is study found that patients with a small number of
intermediate CTC types before neoadjuvant therapy were
more likely to achieve PR with neoadjuvant therapy. After
analyzing the relationship between the number and classi-
fication of CTC before and after neoadjuvant chemotherapy
and the efficacy of chemotherapy, the total number of CTCs
before and after neoadjuvant therapy was changed, and there
was no significant difference in CTC before and after
neoadjuvant therapy in patients in the PR, SD/PD, PR, or
SD/PD groups. Comparison of changes in the total number
of interstitial CTC before and after neoadjuvant therapy is as
follows: patients with high interstitial CTC were more likely
to have SD/PD (P � 0.086), but after grouping according to
PR and SD/PD, the total number of interstitial CTC before
and after neoadjuvant therapy in each group showed no
significant difference. It can be seen that the total number of
interstitial CTCs was related to the efficacy of neoadjuvant
therapy, which was consistent with the conclusions of re-
lated studies. -e less CTC before neoadjuvant therapy
indicated the better effect of neoadjuvant chemotherapy.
-erefore, interstitial CTC can be used as an index to predict
the efficacy of chemotherapy. -is result is consistent with
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the other reports [41–43] and confirmed that CTC detection
is a sensitive and reliable method for the prognosis of pa-
tients with AGC.

Normal cell apoptosis will produce cfDNA [44]. -e
acceleration of cell apoptosis in tumor patients leads to an
increase in the number of cfDNA in the peripheral circu-
lation. -e tumor burden was greater, and the corre-
sponding cfDNA level was higher.-e cfDNA concentration
before and after neoadjuvant treatment and the efficacy of
chemotherapy were analyzed, and patients with higher
cfDNA concentration after neoadjuvant treatment (before
surgery) had the lower efficacy of neoadjuvant therapy (SD
or PD) (P � 0.045). Patients in the PR group were more
likely to have a decreased/unchanged cfDNA concentration
after neoadjuvant therapy (P � 0.119). Chemotherapy acts
on tumors with different cell cycles to prevent tumor cell
replication and reduce tumor burden. PR after chemo-
therapy suggests a reduction in tumor burden in this group
of patients through chemotherapy. So the cfDNA concen-
tration of patients was decreased, cfDNA reflected the
condition of circulating free DNA, and the concentration
did not change, indicating that chemotherapy was effective.
On the other hand, the cfDNA before neoadjuvant in the PR
group was higher (P � 0.073), and the cfDNA after neo-
adjuvant in the SD/PD group was higher. -is conclusion
was similar to CA-199 and interstitial CTC, and it also
reflected from the side that cfDNA concentration before
neoadjuvant therapy can predict sensitivity and efficacy of
chemotherapy. Comparing the cfDNA concentration before
and after neoadjuvant, cfDNA before and after neoadjuvant
treatment in the PR group showed a downward trend, but
there was no significant difference. -e concentration of
cfDNA after neoadjuvant in the SD/PD group was signifi-
cantly increased (P � 0.008), suggesting that the increase in
cfDNA after chemotherapy reflected the poor efficacy of
chemotherapy. In summary, the cfDNA concentration be-
fore neoadjuvant therapy can predict the efficacy of che-
motherapy, and the higher cfDNA concentration before
neoadjuvant therapy was relatively sensitive to chemo-
therapy and easy to achieve PR. If the cfDNA concentration
remained elevated after neoadjuvant therapy, it indicated
poor chemotherapy efficacy. It was worth noting that the
total number of CTC in most patients showed a downward
trend 10 days after surgery, but there were also some patients
with PR who had an increase in the number of cfDNA after
surgery. Follow-up of these patients should be strengthened
because their risk of metastasis and recurrence may be
higher.

5. Conclusions

CTC and cfDNA are safe and minimally invasive detection
techniques compared to surgery and endoscopic biopsy.-is
study suggested that the level of mesenchymal CTC was
positively correlated with tumor T staging and N staging,
and patients with higher cfDNA concentration before
neoadjuvant chemotherapy were easier to achieve PR, in-
dicating that CTC and cfDNA had a certain value in eval-
uating the efficacy of neoadjuvant therapy for advanced

gastric cancer. However, due to the small number of cases
currently enrolled in this study, the follow-up has not yet
been completed. After a large sample and follow-up study, it
may better reflect the role of CTC and cfDNA in the
perioperative treatment, recurrence risk assessment, and
prediction of the recovery of advanced gastric cancer.
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4e genomic variant features (mutations, deletions, structural variants, etc.) within gastric cancer impact its evolution and
immunogenicity. 4e tumor has developed several coping strategies to respond to these changes by DNA repair and replication
(DRR). However, the intrinsic relationship between the associated DRR-related genes and gastric cancer progression remained
unknown. 4is study selected DRR-related genes with tumor mutation burden based on the TCGA (4e Cancer Genome Atlas)
database of gastric cancer transcriptome and mutation data. 4e prognosis model of seven genes (LAMA2, CREB3L3, SELP,
ABCC9, CYP1B1, CDH2, and GAMT) was constructed by a univariate and LASSO regression analysis and divided into high-risk
and low-risk groups with the median risk score. Survival analysis showed that overall survival (OS) was lower in the high-risk
group than that in the low-risk group. Moreover, patients with gastric cancer in the high-risk group have worse survival in
different subgroups, including age, gender, histological grade, and TNM stage. 4e nomogram that included risk scores for DRR-
related genes could accurately foresee OS of patients with gastric cancer. Interestingly, the tumor mutation burden score was
higher in the low-risk group than that in the high-risk group, and the risk score for DRR-related genes was negatively correlated
with tumor mutation burden in gastric cancer. Next, we further combined the risk score and tumor mutation burden to evaluate
the prognosis of gastric cancer patients. 4e low-risk cohort had a better prognosis than the high-risk cohort in the high tumor
mutation burden subgroup.4e number of mutation types in the high-risk group was lower than that in the low-risk group. In the
immune microenvironment of gastric cancer, more näıve B cells, memory resting CD4+ T cells, Treg cells, monocytes cells, and
resting mast cells were infiltrated in the high-risk group. At last, PD-L1 and IAP expressions were negatively correlated with the
risk scores; patients with gastric cancer in the low-risk group showed better immunotherapy outcomes than those in the high-risk
group. Overall, the DRR-related gene signature based on tumor mutation burden is a novel biomarker for prognostic and
immunotherapy response in patients with gastric cancer.

1. Introduction

Gastric cancer (GC) is one of the most common malignant
tumors worldwide and the second leading cause of cancer-
related death [1, 2]. Its high incidence, high mortality, and

poor prognosis pose a severe threat to human health and life.
At present, surgical resection is the leading choice for the
treatment of patients with early GC, and chemotherapy is
the essential treatment for patients who cannot be resected
or have advanced metastasis [3, 4]. However, GC is highly
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heterogeneous in biology and genes, resulting in less optimal
surgical resection and chemotherapy results [5]. 4erefore,
there is an urgent need to explore more effective treatment
strategies.

Tumor mutational burden (TMB) is defined as the total
number of somatic gene coding errors, base substitutions,
insertions, or deletions detected per million bases [6, 7].
TMB is a quantitative biomarker that reflects the total
number of mutations carried by tumor cells, and tumor cells
with high TMB will have higher levels of neoantigens [8]. It
is thought to assist the immune system in recognizing tu-
mors and stimulating the proliferation of antitumor T cells
[9]. Both studies reported that TMB in GC was associated
with OS and clinical benefit rate, and high TMB can be used
as a biomarker for the clinical efficacy of immune checkpoint
blocker (ICB) in GC patients [6, 10].

Defects in replication repair-associated DNA polymerases
often manifest an ultrahigh TMB. DNA repair and replication
(DRR) is an essential pathway for cells to cope with DNA
damage [11, 12]. Recent studies have shown that increasing
DNA damage and decreasing the DNA repair capacity of
cancer cells lead to genomic distortion [13, 14]. Ying J et al.
found that BRCA2, ATM, MSH6, and ATR exhibited high-
frequency mutations in the DRR pathway, and TMB-high
polymerase unknown significance variants were closely asso-
ciated with DRR pathway genes and polymerase mutation
features and prolonged OS, suggesting an essential role of
DRR-related gene detection in cancer prognosis [15]. In ad-
dition, DRR-related genes are highly correlated with tumor
chemotherapy resistance [16]. A recent clinical trial showed
that cancer patients with BRCA1/2 mutations had higher re-
sponse rates when treated with poly-ADP-ribose polymerase
(PARP) inhibitors [17]. Moreover, numerous studies have
shown that tumors with DRR mutations are more sensitive to
platinum-based therapies. DRR-related genes may provide
potential biomarkers for clinical prognosis and immuno-
therapy in GC. Combining the PARP inhibitor olaparib with
the dual WEE1/PLK1 inhibitor AZD1775 to increases the
effects of olaparib on GC cell growth inhibition and induction
of apoptosis by blocking the DNA damage repair pathway [18].
Taken together, DRR-related genes may provide potential
biomarkers for clinical prognosis and immunotherapy in GC.

To identify a novel biomarker for prognosis and ther-
apeutic response in GC based on DRR-related genes, we first
screened DRR-related genes in GC based on tumormutation
burden and constructed prognostic models. 4en, we
comprehensively evaluated the DRR-related gene signature
that could predict the prognosis of GC patients and analyzed
in detail the relationship between the DRR-related gene
signature and the immune microenvironment in GC. Our
study identified seven DRR-related genes as tumor signa-
tures, with high sensitivity for GC’s prognostic and im-
munotherapeutic response.

2. Materials and Methods

2.1. Patients and Clinical Specimens. RNA sequencing
(RNA-seq) and matching complete clinical information
(age, gender, histological grade, survival status, and stage) of

GC (n� 407) were retrieved from the Cancer Genome Atlas
(TCGA, https://portal.gdc.cancer.gov) on July 5, 2021.
Fragments with a million per thousand base (FPKM) value
are normalized to transcripts per thousand base million
(TPM).

2.2. Identification of DRR-Related DEGs and Venn Graph.
4e limma package in R V4.0.5 (https://www.r-project.org; |
log2 fold change |>1, FDR <0.05) analyzes DEGs, the vol-
cano maps for differential genes are utilized the ggpolt2
package in R software. 4e Venn diagram of the intersecting
genes of DEGs and TMBs uses the Venn package.

2.3. Univariate Cox Analysis and Construction of the Prog-
nostic Model. Using DRR differential genes data, the sur-
vival package is used for univariate Cox regression analysis.
4e least absolute shrinkage and selection operator (LASSO)
regression algorithm for feature selection, using 10-fold
cross-validation, the above analysis uses the R software
package glmnet. For Kaplan–Meier curves, p-value and
hazard ratio (HR) with 95% confidence interval (CI) were
generated by log-rank tests and univariate Cox proportional-
hazards regression. All analytical methods above and R
packages were performed using R software version 4.0.5
(4e R Foundation for Statistical Computing, 2021). p< 0.05
was considered statistically significant.

2.4. Construction of the Nomogram Graph Based on the
Prognostic Model. 4e “rms” package in R builds a nomo-
gram based on OS with independent prognostic factors. Use
the AUC value to test the ability of the nomogram to dis-
tinguish survival. Construct a calibration curve of the no-
mogram to test the 1-, 3-, and 5-year survival probabilities
based on the nomogram and actual observations.

2.5. Estimation of Stromal and Immune Cells in Malignant
Tumor Tissues Using Expression Data. 4e ESTIMATE al-
gorithm-generated matrix and immune scores are used to
estimate the level of infiltrating matrix and immune cells in
GC tissue and tumor purity through expression profiles.
4en, we used the Wilcoxon rank-sum test to compare the
differences in tumor purity, stroma, and immune scores
between the high- and low-risk groups. Deconvolution re-
sults for the tumor-infiltrating immune component were
yielded with data gleaned from the TCGA database, which is
analyzed by the CIBERSORT algorithm.

2.6. Calculation of TMB Scores and Somatic Mutation
Analysis. TMB is defined as the total number of somatic
gene coding errors, base substitution, insertion, or deletion
detected per million bases. Perl script was used to calculate
the mutation frequency of the number of variations/exon
length of each sample.4e “Maftools” package calculated the
somatic mutations in different GCs and the mutation dis-
tribution was mapped using the ggplot2 package.

2 Journal of Oncology

https://portal.gdc.cancer.gov


2.7. StatisticalAnalysis. Statistical analysis is performed by R
(version 4.0.5). 4e Wilcoxon rank-sum test presents
comparisons between the two groups, while the Krus-
kal–Wallis test assesses multiple comparisons. 4e surv-
miner package determines the demarcation point of each
subgroup in R. 4e Kaplan–Meier curve of OS analysis was
presented between different subgroups, and then the log-
rank test was performed. Multivariate Cox regression
analysis is used to evaluate the association between OS and
clinicopathological characteristics and risk scores. 4e for-
estplot package visualizes these in R. AUC depicts the 1-, 3-,
and 5-year survival rates and is used to assess the predictive
power of risk score. Bonferroni’s test corrects the p-value.
p< 0.05 on both sides was considered statistically significant.

3. Results

3.1. Identification of DNA Repair and Replication-Related
Prognostic Genes in High and Low TMB GC Groups.
Firstly, GC mutation data were downloaded from TCGA,
and 816 differential genes were identified according to the
high and low TMB GC groups (Figure 1(a), |log2FC|> 1,
p< 0.05)). Moreover, the high TMB group in GC has better
survival (Figure 1(b), p< 0.05). A total of 10,315 genes were
identified by entering the search term “DNA repair and
replication” from GeneCards (https://www.genecards.org),
and the top 5000 genes were selected. 4e two groups of
genes were intersected, and 148 genes were overlapped
(Figure 1(c)). Univariate Cox regression analysis screened 14
genes (MAPK10, MEOX2, LAMA2, CREB3L3, RBMS3,
GHR, SELP, EFEMP1, ABCC9, APOH, INHA, CYP1B1,
CDH2, and GAMT) that were associated with GC prognosis
(Figure 1(d), p< 0.05).

3.2. Risk Score for DRR-Related Gene Correlated with Prog-
nosis of GC Patients. Next, we constructed a risk score of
DRR-related genes in GC. LASSO regression prognostic
model was constructed from 14 genes screened by univariate
Cox regression, and finally, a total of seven genes (LAMA2,
CREB3L3, SELP, ABCC9, CYP1B1, CDH2, and GAMT) were
constructed in this risk score (Figure 2(a)). 4e best per-
formance of the risk score was achieved using these seven
genes. 4e model function was as follows: risk
score� (0.013918321× LAMA2 expression level) +
(0.008279412×CREB3L3 expression level) + (0.71002582
×RMI2 expression level) + (0.00495859× SELP expression
level) + (0.022154282×ABCC9 expression level) + (0.01034
6169×CYP1B1 expression level) + (0.01145852×GAMT
expression level). In total, 186 of the 371GC samples were
classified as a high-risk group, and the remaining 185 were
classified as a low-risk group according to the median risk
score. Survival analysis showed that overall survival (OS) was
lower in the high-risk group than that in the low-risk group
(Figure 2(b), p< 0.05). Receiver operating characteristic
(ROC) curves verified AUC of 0.626, 0.638, and 0.623 at 1, 3,
and 5 years, respectively (Figure 2(c)). 4e risk curves
showed a positive correlation between prognostic model
scores and patient risk values, and those low-risk patients

had a higher survival rate than high-risk patients
(Figure 2(d)). Heatmap visualizing the gene expression
patterns used in the risk model showed that all seven genes
in the prognostic model were highly expressed in the high-
risk group (Figure 2(e)).

3.3. Construction and Verification of a DRR-Related Prog-
nostic Model in GC. Moreover, we evaluated the prognostic
value of risk score for DRR-related genes in different sub-
groups of GC patients. 4e risk score was higher in patients
older than or equal to 65 years than those under 65 in GC
patients (Figure 3(a)). 4ere was no difference between GC
gender subgroups (Figure 3(b)). 4e risk score was higher in
the G3 group than that in the G1-2 group for the histological
grade (Figure 3(c)). Regarding clinical TNM staging, there
was no statistical difference between the risk score of patients
with stages I-II and those with stages III-IV (Figure 3(d)).
Next, we further analyzed the predictive value of the risk
score in different clinical characteristics. In the age group
less than or equal to 65 years, the prognosis was worse in the
high-risk group, whereas in patients older than 65 years,
there was no statistical difference in survival between the
high- and low-risk groups (Figure 3(e)). 4e prognosis was
worse in both male and female groups in the high-risk group
(Figure 3(f )). 4ere were differences in the prognosis of the
high-risk and low-risk groups in the G1-2 group, whereas
there was no difference in the prognosis of the G3 group
(Figure 3(g)). In terms of clinical staging, survival was worse
in the stage I-II and stage III-IV groups in the high-risk
group (Figure 3(h)). Furthermore, multivariate analysis
showed that the risk score was an independent prognostic
factor for GC in the TCGA cohort (Figures 4(a) and 4(b)). To
further apply the risk score in clinical prognosis prediction,
we constructed the nomogram of GC that included risk
score for DRR-related gene, TNM stage, gender, grade, and
age. Attractively, the nomogram has accurate predictability
in GC patients’ 1-, 3-, and 5-year overall survival
(Figure 4(c)). At the same time, the calibration diagram is
listed in the following: decision curve analysis (DCA)
demonstrated that the prognostic nomogram was clinically
valuable (Figures 4(d) and 4(e)). In summary, the risk score
for DRR-related genes can be used as an effective model for
predicting survival outcomes of GC patients.

3.4. Relationship between Risk Score for DRR-Related Genes
and TMB. To further elucidate the relationship between
TMB and risk score and the effect of both on the prognosis of
GC, we first observed that the TMB score was higher in the
low-risk group than that in the high-risk group (Figure 5(a),
p< 0.01) and that the risk score for DRR-related gene was
negatively correlated with TMB in GC (Figure 5(b) R� −0.5,
p< 0.01). Next, we further combined the risk score for DRR-
related genes and TMB for evaluating the prognosis of GC
patients. Interestingly, GC patients with low or high TMB
can be further divided into two subgroups based on the risk
score for DRR-related genes. Moreover, GC patients with the
low-risk score have a superior prognosis than the high-risk
score in both low and high TMB subgroups (Figure 5(c),
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p< 0.001). Subsequently, we compared the variation context
of the high-risk group and low-risk group, which came from
the combination of six variation types (T>G, T>A, T>C,
C>T, C>G, and C>A) (Figure 5(d)). 4e number of each
mutation type in the high-risk group was smaller than that in
the low-risk group. 4ere was a significant difference in
somatic mutation rate among samples. 4e sweeping
landscape of somatic variation shows the various patterns of
the top 20 driving genes with the most frequent variation.
4e significant mutation gene (SMG) landscape showed that
the mutation rate of the low-risk group was higher than that
of the high-risk group among the top 20 mutation genes
(Figures 5(e) and 5(f)). 4ese findings may contribute to a
new insight into the relationship between risk scores for
DRR-related genes and somatic mutation in GC patients.

3.5. Relationship between Risk Score for DRR-Related Gene
andTIME inGC. 4eESTIMATE algorithmwas used to score
the immune microenvironment of the GC using an “estima-
tion” package to calculate the ImmuneScore, StromalScore, and
ESTIMATEScore for each GC patient resulting in four scores:
Immunoscore, StromalScore, ESTIMATEScore, and Tumor-
Purity. 4ese four scores were correlated with the risk score for
DRR-related genes. 4e results showed that ImmuneScore,
StromalScore, and ESTIMATEScores were higher in high-risk
patients and TumorPurity was higher in low-risk patients
(Figures 6(a)–6(d), p< 0.05). In addition, to determine the
relative abundance of tumor-infiltrating immune cells (TIICs)
in GC samples, the degree of infiltration of TIICs was estimated
using the CIBERSORTalgorithm. 4e immune cell infiltration
in the statistically different samples was significantly different in
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Figure 1: Identification of DRR-related prognostic genes in gastric cancer. (a) Volcano map of TMB differential genes. (b) Survival analysis
of high and low TMB. (c) Venn diagram of DRR-related genes and TMB differential genes. (d) Univariate Cox regression analysis of
intersecting genes.
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Figure 2: Risk score for DRR-related gene correlated with prognosis of GC patients. (a) LASSO analysis revealing the minimal lambda. (b)
Survival status and risk score. (c) Time-dependent ROC curve. (d) Survival curve illustrating the overall survival of the GC patients. (e)
Heatmap visualizing the expression pattern of the seven-candidate DRR-related genes.
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the two groups with higher initial B näıve cells, CD4+ memory
resting T cells, Treg cells, monocytes, and mast resting cells in
the high-risk patients and more elevated CD4+ memory acti-
vated Tcells in the low-risk patients (Figure 6(e), p< 0.01).4e
distribution of immune cells in the high- and low-risk groups
was also visualized and analyzed (Figures 6(f) and 6(g)).

3.6. Prognostic Models with the Correlation between Immune
Checkpoints and Immunotherapy of GC. Intending to as-
certain the efficacy of the risk group for immunotherapy, we

initially correlated six common immune checkpoints with the
risk score.4e results showed that PD-L1 and IAP expressions
were negatively correlated with the risk score (Figures 7(a) and
7(b)), R ＜0, p< 0.01); however, PD1, CTLA4, TIGIT, and
TIM-3 were positively correlated with the risk score
(Figures 7(c)–7(f)), R ＞0, p< 0.01). Subsequently, the chi-
square plot showed that 42% of the responders in the low-risk
group were effective, and 58% were ineffective in the TIDE
(Tumor Immune Dysfunction and Exclusion); 70% of the
responders in the high-risk group were effective, and 30%were
ineffective (Figure 7(g), χ2� 5.24, p � 0.022). Ultimately, we
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Figure 4: Construction and verification of a DRR-related prognostic model in gastric cancer. (a) Univariate analysis on the risk score. (b)
Multivariate Cox analysis on the risk score. (c) Nomogram based on the prognosis associated DRR-related genes. (d)4e calibration curves
comparing the estimated 1-, 3-, and 5-year survival probability with the actual survival probability of GC patients. (e) DCA of clinical
features and risk model.
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Figure 5: Characteristics of DRR-based risk score in tumor somatic mutation. (a) Difference of TMB between patients from the low-/high-
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evaluated the relationship between risk score and immuno-
therapy in GC at the TIDE and TCIA (4eCancer Immunome
Atlas) (Figures 7(h) and 7(i), p< 0.05). 4erefore, GC patients
with the low-risk score for DRR-related genes showed better
immunotherapy outcomes thanin the high-risk group.

4. Discussion

DNA is the place where cells store genetic information. 4e
integrity of its structure and function is essential to main-
taining life. 4erefore, cells evolved specialized DNA repair
mechanisms to maintain genome integrity [19, 20]. 4e
significant feature of cancer cells is genomic instability,
conducive to the accumulation of mutations and the ex-
pansion of tumor heterogeneity [21–23]. DRR mechanism
can repair mutant genes in the early stage of the tumor and
hinder cancer development. However, DRR-related genes
may cause drug resistance of tumor cells to cytotoxic drugs
with cancer progression [24]. 4e occurrence and devel-
opment of cancer are often accompanied by the inactivation
of one or more DRR pathways [25, 26]. Current studies of
DNA repair gene prognostic models focused on immediate
attachment to DNA repair genes, ignoring the impingement
from the TMB [27–29]. 4erefore, our research constructed
a prognostic model based on a TMB filter of seven DRR-
related genes that could better predict the clinicopatho-
logical characteristics, survival prognosis, role in the im-
mune microenvironment, and efficacy of immunotherapy in
GC patients.

In this study, we have developed a comprehensive de-
scription of DRR-related genes based on TMB. 4is prog-
nostic model may better predict the prognosis and immune
microenvironment of individuals with GC, providing a
tangible contribution to immunotherapy. In this seven-gene
prognostic model, GC patients are divided into a high-risk

group and a low-risk group. 4e prognosis of the high-risk
group was worse than that of the low-risk group. 4e ROC
showed that survival at 1, 3, and 5 years had a high prog-
nostic value. Risk curves were assessed and patients’ risk
increased with increasing scores in the model. Multivariate
analysis showed that the prognostic score was an inde-
pendent prognostic factor. Nomogram showed good
prognostic value at 1, 3, and 5 years; calibration chart
analysis showed accuracy. 4ere were statistically significant
differences between the high-risk and low-risk groups in
terms of age and histological grading. At the same time,
there were no significant differences in terms of gender and
TNM staging. We observed no differences in survival curves
in the subgroup survival analysis only for patients with G3
grading. In contrast, the high-risk group had worse prog-
nostic survival than all other subgroups. We further ob-
served habitual differences between prognostic models and
tumor mutation profiles. Interestingly, the distribution of
TMB was higher in the low-risk group, and the number and
frequency of mutations were higher in the low-risk group
than those in the high-risk group. 4e above results suggest
that specific mutations in GC may be beneficial for tissue
progression. DRR-related genes promote GC progression
due to the repair of these mutations.

4e high-risk groupwill havemore Treg cell infiltration. It
has been reported in the literature that Treg cells allow tumors
to produce immune escape by suppressing CD8+ T cells and
promoting tumors to express more immunosuppressive
molecules [30]. 4is is consistent with our analysis of im-
munotherapy. 4e low-risk group had a lower TIDE and
higher TCIA score due to a greater tendency to express PD-L1
and IAP immunosuppressive molecules, suggesting greater
effectiveness of immunotherapy in the low-risk group. 4e
findings further elucidate the function of these seven DRR-
related genes in GC andmay contribute to our understanding
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of the biology of GC and provide new therapeutic targets.4e
poor prognosis of GC appears to depend on the multilayered
relationship between DNA repair gene mutations, cell pro-
liferation, and immune responses interactions.

LAMA2 is an extracellular protein and is the main
component of the basement membrane [31]. It is believed to
mediate cell attachment, migration, and tissue during em-
bryonic development through interaction with other ex-
tracellular matrix components [32]. Li et al. identified
LAMA2 as mediating the activation of the Src family of
tyrosine kinase LCK-nondependent Tcells by staphylococcal
enterotoxin E [33]. Zhang et al. firmly established LAMA2 as
an immune-related gene associated with poor prognosis in
pancreatic adenocarcinoma [34].

CREB3L3 encodes members of the alkaline leucine
zipper family and the AMP-dependent transcription factor
family. 4e encoded protein is located in the endoplasmic
reticulum and acts as a transcription factor activated by
cyclic AMP stimulation [35]. Resende et al. found that IL1β
promoted the transition from chronic gastritis to GC
through a CREB-C/EBPβ-related mechanism [36]. In the
meantime, Luan B et al. reported that targeted disruption of
CREB or cAMP-regulated transcriptional coactivators 2 and
3 (CRTC2/3) in macrophages downregulated M2 marker
gene expression and promoted insulin resistance and fa-
cilitated insulin resistance, demonstrating that CREB-re-
lated molecules could initiate the human innate immune
system [37].

SELP is stored in the alpha granules of platelets and
Weibel–Palade vesicles of endothelial cells [38]. 4is protein
redistributes to the plasma membrane during platelet acti-
vation and degranulation and mediates the interaction of
activated endothelial cells or platelets with leukocytes [39].
Dai et al. screened the TCGA database and found that SELP
was highly expressed in GC and significantly correlated with
prognosis [40]. Singel et al. analyzed ascites from patients
with advanced epithelial ovarian cancer (EOC) and iden-
tified that SELP activated neutrophil and platelet responses,
promoted metastasis, and hindered antitumor immunity
[41].

ABCC9 is a member of the ATP-binding cassette (ABC)
transport protein superfamily, transporting various mole-
cules through the outer and inner cell membranes. 4is
protein is thought to form ATP-sensitive potassium chan-
nels in cardiac, skeletal, vascular, and nonvascular smooth
muscle [42]. Mao et al. reported that ABCC9 was highly
expressed in GC and negatively correlated with prognosis,
which could be a potential biomarker for GC [43].

CYP1B1 encodes a member of the cytochrome P450
enzyme superfamily. Cytochrome P450 proteins are
monooxygenases that catalyze many reactions involving
drug metabolism and the synthesis of cholesterol, steroids,
and other lipids [44]. Kwon et al. demonstrated that the
oncogenic molecular mechanism of CYP1B1 action is as-
sociated with specificity protein one-mediated gene regu-
lation, which induces cancer cell proliferation and
migration [45]. D’Uva et al. concluded that CYP1B1 is
considered a promising target for tumor chemoprevention
in the tumor microenvironment due to the involvement of

this oncogene in a positive loop with inflammatory cyto-
kines [46]. 4us, evidence suggests that CYP1B1 may be
involved in oncogenic events associated with the immune
system.

CDH2 belongs to the calmodulin family and is involved
in CNS cell adhesion, asymmetric cell division, and pre-
synaptic/postsynaptic processes. For several cancer cells,
including lung cancer, the role of CDH2 in cell migration
and invasion has been reported. During epithelial-mesen-
chymal transition (EMT), tumor cells can transform to a
CSC-like phenotype with an increase in CDH2 [47]. Hu et al.
found that CDH2 promotes EMT in GC cells through
LOXL1 overexpression, leading to peritoneal metastasis
[48].

4e protein encoded by GAMT is a methyltransferase
that uses S-adenosylmethionine as a methyl donor to
convert guanidinoacetate to creatine. Defects in this gene
have been associated with neurological syndromes and
hypotonia, possibly due to creatine deficiency and guani-
dinoacetate accumulation in affected individuals’ brains
[49]. Liu et al. have identified GAMT as a biomarker of
prognosis in patients with advanced GC treated with
docetaxel, cisplatin, and S-1 (DCS) [50]. Chen et al. also have
demonstrated that high expression of GAMT, a gene driven
by DNA methylation, was remarkably associated with poor
prognosis [51].

4e criteria explored in this study were based on ob-
jective indicators that may be more advantageous for
detecting immune checkpoint inhibitors that were com-
monly used in clinical practice. 4erefore, the prognostic
model we developed was worthy of further study for its
predictive efficacy. However, there were inevitable limita-
tions in this study. Although high immune predictive effi-
cacy was observed in the TCGA’s STAD datasets, we could
not obtain a GC cohort associated with immunotherapy to
validate the utility of this study. Furthermore, the translation
of these targets into clinical decision-making remains
challenging. 4e mechanisms involved still need further
validation in in vivo and in vitro experiments.

5. Conclusions

In conclusion, the signature of DRR-related genes are closely
interrelated with the prognosis of GC patients. 4e model
based on these seven genes can predict GC patients’ response
to immunotherapy in GC. 4erefore, DRR-related gene
signature based on tumor mutation burden is a novel
biomarker for prognostic and immunotherapy response in
GC patients.
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Recent studies have demonstrated the utility and superiority of DNA repair-related genes as novel biomarkers for cancer
diagnosis, prognosis, and therapy. Here, we aimed to screen the potential survival-related DNA repair-related genes in
thyroid cancer (TC). TCGA datasets were utilized to analyze the differentially expressed DNA repair-related genes between
TC and nontumor tissues. +e K–M approach and univariate analysis were employed to screen survival-related genes. RT-
PCR was employed to examine the expression of DNA repair-related genes in TC samples and matched noncancer samples.
CCK-8 analyses were used to determine cellular proliferation. Herein, our team discovered that the expression of four DNA
repair-related genes was remarkably upregulated in TC samples in contrast to noncancer samples. Survival assays identified
14 DNA repair-related genes. In our cohort, we observed that the expression of TAF13 and DCTN4 was distinctly elevated in
TC specimens in contrast to nontumor specimens. Moreover, knockdown of TAF13 and DCTN4 was observed to inhibit the
TC cellular proliferation. Overall, the upregulation of TAF13 and DCTN4 is related to decreased overall survival in TC
patients. +erefore, the assessment of TAF13 and DCTN4 expression may be useful for predicting prognosis in
these patients.

1. Introduction

+yroid cancer (TC) represents the most common endo-
crine malignancy, taking up 3.4% of the entire tumor di-
agnosis every year [1]. +e transformation of thyroid follicle
cells might cause the differentiation or undifferentiation of
TC, viamultiple steps which are themost adopted theories of
follicle cell tumorigenesis [2]. Although some proofs have
revealed that corpulency, smoking, hormone exposure, and
some environmental pollution might be associated with TC,
the only risk factor verified in TC is ionization radiation
[3, 4]. +e majority of TC sufferers at the early stage display
beneficial prognoses posterior to thyroid resection and
radioiodine. Nevertheless, the relapse is remarkably elevated

when there is metastasis [5]. +erefore, finding new prog-
nostic markers is critical for further treatment for TC.

Genome unsteadiness and the cumulation of variants are
signatures of tumor development [6]. +e anticipated cell
reaction to DNA damages which cannot be restored is
cellular death through aging or programmed cell death [7].
Various proteins at present are known to exert a pivotal
impact on sustaining DNA integrity, especially with the
identification and repairment of DNA damages via several
signal paths which appear greatly conserved in terms of
biology [8, 9]. In recent years, more and more DNA repair
gene alterations have exhibited a vital modulatory function
in the developmental process of various tumors [10, 11]. In
recent years, researchers have determined genome flaws in
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DNA repairment in the late period and primary TC, which
has given rise to researchers clinically providing a potent
reason to develop PARP suppressors and DNA-damage
agents within such molecule-level TC subtype [12–14]. In
addition, several DNA repair and replication-related gene
signatures that could predict the prognosis and progression
of tumors have been developed [15, 16]. However, the ex-
pression and function of DNA repair-related genes in TC
were rarely reported.

In this study, we analyzed TCGA datasets and identified
four dysregulated DNA repair-related genes in TC. In addition,
we also identified 14 survival-related DNA repair-related genes
in TC.+en, we chose six genes for further confirmation using
10 pairs of TC specimens and nontumor specimens from our
cohort. Our findings focused on the possibility of DCTN4 and
TAF13 utilized as new markers for TC.

2. Materials and Methods

2.1. Patients and Clinical Samples. TC samples and neigh-
boring noncancer samples from sufferers who had under-
gone curative resection were collected between July 2020 and
June 2021 from +e Second People’s Hospital of Weifang.
All tissues were histopathologically confirmed by two ex-
perienced pathologists. No sufferers underwent chemo-
therapy, radiotherapy, or immunotherapy prior to surgeries.
Cancer samples and neighboring healthy samples were
harvested and reserved under −80°C for later assays. Written
informed consent for the analysis of tissue specimens was
obtained from all patients.

2.2.DataCollection. Genetic expression quantitation data and
relevant clinic features of TC sufferers were acquired from the
TCGA datasets (http://portal.gdc.cancer.gov/). +e DNA
damages and DNA repairment-associated genetic lists were
acquired fromGSEA genetic sets via the key word “DNAAND
damage” or “DNA AND repair.” Eventually, 150 genes asso-
ciated with DNA damages and repairment were involved in the
analyses. By comparing thyroid carcinoma tissues to normal
tissues and using R package edgeR in R software (version 3.4.1),
differentially expressed genes were identified with thresholds |
log2FoldChange|> 2 as well as adjusted P< 0.05.

2.3. Cox Regression and Survival Analyses. +e TCGA
specimens (n� 510) were separated into a high-expression
group and low-expression group via the medium expressing
level of every single candidate dysregulated DNA repair-
related genes as the threshold. Univariate prognostic ana-
lyses and K–M analyses were afterwards finished for these
two groups via the “survival” package of R program. To
illustrate the intersection between dysregulated DNA repair-
related genes and prognostic DNA repair-related genes, a
Venn diagram program was employed.

2.4. Cell Lines and Transfection. Four mankind TC lineage
cells (TPC, BHP5-16, K1, and BHP2-7) and mankind thy-
roid follicle epithelia (Nthy-ori 3-1) were acquired from the

Type Culture Collection of the Chinese Academy of Sci-
ences. +e entire cells were maintained in DMEM (Gibco,
America) in moist atmosphere with 5% carbon dioxide
under 37°C. Such intermediary involved 10% FBS (Hyclone,
America) and 1% penicillin/streptomycin.

DCTN4 and TAF13 expressions were knocked down by
transiently transfecting TC cells with DCTN4-specific
siRNA (si-DCTN4) or TAF13-specific siRNA (si-TAF13). In
short, siRNAs were introduced into the cells via transfection
by virtue of liposome transfection 2000 for 48 h; they were
afterwards cultivated for later assays.

2.5. Quantitative Reverse-Transcription PCR (qRT-PCR).
+e overall RNA from TC samples and cells was abstracted
via TRIzol® reagent (Invitrogen, America), and 200 ng
abstracted RNA was converted to cDNA via reverse tran-
scription through the ReverTra Ace qPCR RT Kit (Toyobo,
Japan) prior to qRT-PCR. +e qRT-PCR was employed to
identify comparative RNA level, which was determined via a
7900 RealTime PCR System through the SDS 2.3 program
sequence identification system (Applied Biosystem, Amer-
ica) by virtue of the SYBR Green (Takara) approach. +e
comparative expressing levels of mRNAs were evaluated via
the 2−ΔΔCq approach, with GAPDH as the internal reference.
+e primers are presented in Table 1.

2.6. Cell Proliferation Assay. TPC and BHP2-7 cells were
inoculated into 96-well dishes (1× 103 cells/well) and cul-
tivated with 100 μl intermediary involving 10% FBS. Pos-
terior to cellular transfection, they were cultivated for 0, 24,
48, and 72 h, before cultivation in 10 μl CCK-8 liquor (CK04,
Dojindo, Yanhui Technology, Jiading, Shanghai, China)
under 37°C or 60min. +e optical density was identified at
450 nm via a microplate reading device.

2.7. Statistical Analysis. +e entire calculation was finished
via the SPSS 17.0 (IBM, America) or R software, version
3.6.3. +e diversity between these groups was studied via
Student’s t-test. +e K–M approach was employed to draw
the survival curves for prognosis analysis, and the log-rank
test was leveraged to speculate the significance on statistics.
+e Cox proportion risk model was employed to identify the
prognostic value of genes in TC. A P< 0.05 was deemed to be
statistically significant.

3. Results

3.1. Determination of the Dysregulated DNARepair-Associated
Genes in TC. To identify the dysregulated DNA repair-
associated genes in TC, we downloaded the list of DNA
repair-associated genes from GSEA, and 135 genes were
screened. +en, we analyzed TCGA datasets and identified
4 dysregulated DNA repair-related genes in TC including
AK1, PNP, DDB2, and CD1 (Figure 1(a)). +e expressing
pattern of the abovementioned four genes was shown in
heatmap (Figure 1(b)). In addition, we found the expres-
sion of AK1 (Figure 1(c)), PNP (Figure 1(d)), DDB2
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Table 1: +e primers used in this study for RT-PCR.

Names Sequences (5′−3′)
AK1: F GAAGAGTTTGAGCGACGGATT
AK1: R CAGCCGCTTTTTGATGGTCTC
GTF2H5: F AAGACATTGATGACACTCACGTC
GTF2H5: R GGGAAAAAGCATTTTGGTCCATT
POM121: F GCCTTTGTCCAGTCGGTTTG
POM121: R TTGATGAGCGGAATAGCTTGC
TAF13: F AGAAGACCCCACGTTTGAGGA
TAF13: R TTGCCTTGTGAGTCATTTCAGT
DCTN4: F CACACCCTCTCTACTCGGG
DCTN4: R ACATGCCAGGTAATAGGCTTTC
DDB2: F ACCTCCGAGATTGTATTACGCC
DDB2: R TCACATCTTCTGCTAGGACCG
GAPDH: F GGAGCGAGATCCCTCCAAAAT
GAPDH: R GGCTGTTGTCATACTTCTCATGG
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(Figure 1(e)), and CDA (Figure 1(f )) was remarkably el-
evated in TC samples in contrast to healthy specimens. Our
findings suggested them as functional regulators in TC
progression.

3.2. Determination of the DNA Repair-Associated Genes with
Potential PrognosticValue inTC. To screen prognostic DNA
repair-related genes, we performed the Kaplan–Meier
method based on TCGA datasets and identified 13 genes,
including ARL6IP1, DCTN4, GPX4, GTF2H5, LIG1, MPG,
NT5C3A, POLR2E, POLR3C, RPA2, STX3, TYMS, and
VPS37D (Figure 2). In addition, we also performed uni-
variate analysis which revealed that high expression of
DCTN4, PDE4B, PDE6G, POM121, TAF13, and VPS37D
and low expression of DDB2, GPX4, GTF2H5, NT5C3A,
PCNA, RPA2, STX3, and TSG101 were associated with
survivals of TC patients (Figure 3).+ese findings provided a
new clue for the identification of novel prognostic bio-
markers in the section of DNA repair-associated genes.

3.3. /e Distinct Upregulation of TAF13 and NCTN4 in TC
and /eir Oncogenic Roles. +en, we used Venn Diagram
which confirmed DDB2 as a dysregulated DNA repair-re-
lated gene which had potentially prognostic value in TC
(Figure 4(a)). +en, we performed RT-PCR to explore its
expression, finding that DDB2 was not differentially
expressed between TC specimens and nontumor specimens
(Figure 4(b)). In addition, we chose AK1, GTF2H5,
POM121, TAF13, and DCTN4 for further study. As shown
in Figures 4(c)–4(e), the expression of AK1, GTF2H5, and
POM121 between TC specimens and nontumor specimens
remained unchanged. However, we discovered that the
expressions of TAF13 and DCTN4 were distinctly elevated
in TC specimens in contrast to matched nontumor speci-
mens (Figures 4(f ) and 4(g)). Moreover, high expression of
TAF13 andDCTN4was also observed in BHP5-16, TPC, K1,
and BHP2-7 in contrast to nthy-ori 3-1 (Figure 5(a)). To
investigate the potential role of TAF13 and DCTN4 in TC
cells, our team used siRNA to decrease their levels in TPC
and BHP2-7, which was confirmed by RT-PCR (Figures 5(b)

and 5(c)). Finally, CCK-8 assays revealed that knockdown of
TAF13 and DCTN4 distinctly suppressed the proliferation
of TC cells (Figures 5(d) and 5(e)).

4. Discussion

+ere have been some developments in the therapies of TC
over the past few decades [17]. Such development is facil-
itated by the progression in diagnosis and treatment mo-
dalities and new molecule-level target treatment [18].
Further endeavors are required to realize satisfactory
prognostic results in this regard, which remains daunting.
Clinical management highlights the significance of timely
and valid identification and forecast of prognostic results, so
as to achieve personalized therapies [19, 20]. +e usage of
prognosis models is helpful to guide decision making
clinically and is pivotal for precise medical treatment
[21, 22]. Given the important roles of DNA repair-related
genes in tumor development, it is necessary to screen sur-
vival-related DNA repair-related genes.

Recently, epidemiology researchers have revealed that 2/
3 tumors are induced by DNA replicational errors [23].
Particularly, errors in mRNA replications, such as the
variant in the inhibitor gene P53, are especially vital for the
tumor progression [24, 25]. In this study, we identified four
dysregulated DNA repair-related genes, including AK1,
PNP, DDB2, and CDA. Previously, several studies have
reported the tumor-related function of the abovementioned
four genes in different cancer types; e.g., DDB2 was reported
to be greatly expressed in ovarian cancer and suppressed
ovarian tumor cell dedifferentiation by suppressing
ALDH1A1 [26]. CDA polymorphisms are found to be as-
sociated with clinical outcomes in gastroenteric cancer
patients treated with capecitabine-based chemotherapy [27].
+en, we identified 14 prognostic DNA repair-related genes.
However, we just found one gene DDB2 which exhibited a
high level in TC and predicted a poor prognosis. DDB2 may
be a novel biomarker for TC.

+en, we chose six genes for further confirmation, in-
cluding DDB2, AK1, GTF2H5, POM121, TAF13, and
DCTN4. RT-PCR assay revealed that DDB2 expression
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remained unchanged between TC specimens and nontumor
specimens, which was not consistent with the above-
mentioned results. Importantly, we observed that TAF13
and DCTN4 expression was distinctly elevated in TC

samples in contrast to paired noncancer samples. TAF13
produces a histone-fold-like heterodimer with TAF11, and
such heterodimer is pivotal for the recruiting into the RNA
polymerase II general TFIID protein complex [28]. To date,
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Figure 2: +e K–M approach was employed to screen the survival-related DNA repair-related genes in TC.
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Figure 3: Univariate analysis of the 135 repair-related genes in TC.
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the expression and function of TAF13 were rarely reported.
We observed that knockdown of TAF13 remarkably
inhibited the TC cellular proliferation. Previous studies
discovered that the DCTN family was related to several
neurodegeneration illnesses [29]. DCTN4 belonged to the
DCTN family. Previously, DCTN4 was reported to be as-
sociated with poor prognosis of colon adenocarcinoma and
low-grade glioma [30, 31]. In addition, our team discovered
the knockdown of DCTN4 in the TC cellular proliferation.
Our findings provided a new clue for the determination of
prognostic biomarkers for TC.

5. Conclusions

We identified 14 prognostic DNA repair-related genes and
provided evidence that DCTN4 and TAF13 may serve as a
tumor promotor in TC. +e results herein elucidated an
underlying causal link beneath the oncogenesis effect of
DCTN4 and TAF13 in TC and revealed that DCTN4 and
TAF13 could be a prospective biomarker and underlying
treatment target for TC.
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Objective. N6-Methyladenosine (m6A) is the most prevalent RNA epigenetic modulation in eukaryotic cells, which serves a critical
role in diverse physiological processes. Emerging evidences indicate the prognostic significance of m6A regulator ZC3H13 in
hepatocellular carcinoma (HCC). Herein, this study was conducted for revealing biological functions andmechanisms of ZC3H13
in HCC.Methods. Expression of ZC3H13 was examined in collected HCC and normal tissues, and its prognostic significance was
investigated in a public database. Gain/loss of functional assays were presented for defining the roles of ZC3H13 in HCC
progression. -e specific interactions of ZC3H13 with PKM2 were validated in HCC cells via mRNA stability, RNA immu-
noprecipitation, and luciferase reporter and MeRIP-qPCR assays. Moreover, rescue experiments were carried out for uncovering
the mechanisms. Results. ZC3H13 expression was downregulated in HCC, and its loss was in relation to dismal survival outcomes.
Functionally, overexpressed ZC3H13 suppressed proliferation, migration, and invasion and elevated apoptotic levels of HCC cells.
Moreover, ZC3H13 overexpression sensitized to cisplatin and weakened metabolism reprogramming of HCC cells. Mechanically,
ZC3H13-induced m6A modified patterns substantially abolished PKM2mRNA stability. ZC3H13 facilitated malignant behaviors
of HCC cells through PKM2-dependent glycolytic signaling. Conclusion. Collectively, ZC3H13 suppressed the progression of
HCC through m6A-PKM2-mediated glycolysis and sensitized HCC cells to cisplatin, which offered a fresh insight into
HCC therapy.

1. Introduction

Liver carcinoma represents the most frequent fatal malig-
nant disease across the globe [1]. Among all liver carcinoma
patients, hepatocellular carcinoma (HCC) occupies over
90% [2]. Patients’ survival outcomes are dismal. Merely 5%–
15% of patients benefit from radical resection, only for those
in the earlier stages [3]. -erapeutic strategies for advanced-
stage patients contain transarterial chemoembolization
(TACE) as well as oral sorafenib [4]. Nevertheless, <33% of
patients do not respond to this therapy as well as develop
marked chemotherapy resistance within 6 months from
starting therapeutic intervention [5]. Moreover, long-term

usage of chemotherapeutic agents causes toxic response as
well as chemotherapeutic inefficiency [6]. -erefore, neither
TACE nor chemotherapeutic agents can remarkedly im-
prove the outcome of liver cancer. In-depth exploration is
required for finding a better way to treat liver cancer.

N6-methyladenosine (m6A) is the most prevalent form
of internal mRNA modification [7]. m6A modification has
been proposed as the most frequent chemical modified form
in eukaryotic mRNAs [8], which is of importance for
controlling diverse cellular and biological events like RNA
stability, translation, and splicing [6]. As estimated, about
0.1%–0.4% of adenosine in mRNAs may be modified via
m6A, with a mean of 2-3 m6A modified sites per transcript
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[9]. m6A modification patterns are dominated through
methyltransferase complex (“writer”), demethylase
(“eraser”), and RNA-binding protein (“reader”) [10].
Emerging evidences highlight the significance of deregula-
tion of m6A modification in liver carcinogenesis [9].
-rough comprehensive analyses of m6A regulators in
TCGA-HCC project, Liu et al. proposed that METTL3,
YTHDF2, and ZC3H13 acted as independent prognostic
indicators of HCC outcomes [11]. METTL3 expression
exhibited a frequent upregulation in HCC and promoted
HCC development via YTHDF2-dependent posttranscrip-
tional silence of SOCS2 [12]. Another study proposed the
mechanisms of SUMOylated METTL3-mediated Snail
mRNA homeostasis during HCC progression [13]. HBXIP
triggered metabolism reprogramming of HCC cells through
METTL3-dependent m6A modified HIF-1α [14]. -e he-
patic microenvironment facilitated HCC proliferation and
metastases throughMETTL3-mediatedm6Amodification of
YAP1 [15]. YTHDF2 triggered HCC stem cell phenotype as
well as metastases through modulating OCT4 expression via
an m6A modification manner [16]. YTHDF2 deletion fueled
inflammation as well as vascular abnormalization in HCC
[17]. YTHDF2 weakened cellular proliferation and growth
through destabilization of EGFR mRNA in HCC [18].
Nevertheless, to date, no experimental evidences have
confirmed the biological significance of ZC3H13 in HCC
pathogenesis.

Herein, we observed the biological roles of m6A regu-
lator ZC3H13 in HCC as well as addressed the underlying
mechanisms. Our data suggested that ZC3H13 suppressed
the progression of HCC with m6A-PKM2-mediated gly-
colysis and sensitized HCC cells to cisplatin. -us, our
findings highlighted the critical functions of ZC3H13-me-
diated m6A modification in HCC and provided a promising
therapeutic regimen against HCC.

2. Materials and Methods

2.1. Patients and Specimens. Primary HCC as well as adja-
cent control tissue specimens from 30 patients in the
People’s Hospital of Changshou Chongqing were harvested
for this study. -e inclusion criteria were as follows: (i)
patients with pathologic diagnosis of HCC and (ii) patients
who received curative removal. Meanwhile, patients with
distant metastases at diagnosis were excluded. Informed
consent was acquired from each patient. -is research was
carried out in line with the guidelines of the Ethics Com-
mittee of the People’s Hospital of Changshou Chongqing
and approved following the ethical standards of World
Medical Association Declaration of Helsinki.

2.2. Bioinformatics Analysis. -e Gene Expression Profiling
Interactive Analysis (GEPIA) web server [19] was adopted
for determining the mRNA expression of ZC3H13 in HCC
and normal tissues retrieved from-eCancer Genome Atlas
(TCGA) and the Genotype-Tissue Expression (GTEx)
projects. Survival analysis of HCC patients with high and low
expression of ZC3H13 was presented via the Kaplan–Meier

plotter (https://kmplot.com/analysis/). Difference of overall
survival between groups was estimated with log-rank test.

2.3. Real-Time Quantitative Polymerase-Chain Reaction (RT-
qPCR). Total RNA was extracted utilizing TRIzol reagent
(Beyotime, China). In total, 500 ng RNA was reversed
transcribed through HiScript II 1st-Strand cDNA Synthesis
kits (Takara, Beijing, China). RT-qPCR was carried out via
ChamQ Universal SYBR qPCR Master Mix (Takara, Beijing,
China) as well as LightCycler 480 instrument. -e sequences
of primers included the following: ZC3H13: 5′-TCTGA-
TAGCACATCCCGAAGA-3′ (forward) and 5′-CAGC-
CAGTTACGGCACTGT-3′ (reverse); PKM2: 5′-
ATGTCGAAGCCCCATAGTGAA-3′ (forward) and 5′-
TGGGTGGTGAATCAATGTCCA-3′ (reverse); and
GAPDH: 5′- CTGGGCTACACTGAGCACC-3′ (forward)
and 5′-AAGTGGTCGTTGAGGGCAATG-3′ (reverse).
Data were quantified with a comparative Ct method
(2−ΔΔCt).

2.4. Western Blotting. Tissue and cell specimens were lysed
with RIPA buffer (Beyotime, China) plus protease inhibitor
cocktail. Lysed protein was extracted, and protein concen-
trations were evaluated with BCA kits (Sigma, USA). Af-
terwards, the equal amount of protein was separated with
12% SDS-PAGE as well as transferred to polyvinylidene
difluoride membrane (Millipore, USA). After being blocked,
the membrane was incubated by primary antibodies tar-
geting ZC3H13 (1/2000; ab70802; Abcam, USA), GLUT (1/
1000; ab156876; Abcam, USA), LDHA (1/5000; ab52488;
Abcam, USA), LDHB (1/2000; ab264358; Abcam, USA),
PKM2 (1/1000; ab85555; Abcam, USA), and β-actin (1/5000;
ab179467; Abcam, USA). -en, protein bands were incu-
bated by secondary anti-mouse or anti-rabbit secondary
antibody (1/5000; ab7063/ab7090; Abcam, USA). Protein
band was visualized with ECL assay kits.

2.5. Cell Culture. Human normal liver cells L-O2 as well as
human liver cancer cell lines HUH-7, Hep3B, HepG2, and
SMMC-7721 were retrieved from ATCC (USA). All cells
were grown in Dulbecco’s Modified Eagle’s Medium
(DMEM) supplemented with 10% fetal bovine serum (FBS)
as well as 1% streptomycin/penicillin. Cells were grown in a
humidified environment of 5% CO2 at 37°C.

2.6. Transfection. Short interfering RNA (siRNA) against
ZC3H13 as well as PKM2 was synthesized for specifically
silencing ZC3H13 as well as PKM2 expressions in Hep3B
and HUH-7 cells. HCC cells transfected with scrambled
siRNAs acted as si-NC. -e full-length ZC3H13 cDNA was
synthesized and then subcloned into the pcDNA3.1 vector to
establish pcDNA-ZC3H13 overexpression (OE-ZC3H13)
plasmid. All plasmids were retrieved from GenePharma
(Shanghai, China). Transient transfection was carried out
lasting two days via Lipofectamine 3000.
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2.7. Cell Counting Kit-8 (CCK-8) Assay. Hep3B as well as
HUH-7 cells were planted onto 96-well plates (3,000
cells/well). In line with the protocols of CCK-8 kits
(Dojindo, Japan), 10 μL CCK-8 solution that was diluted
by 100 μL DMEM replaced the previous DMEM at diverse
hours (24, 48, 72, and 96 h). After being cultured pro-
tecting from light at 37°C lasting an extra two hours,
viable cells were determined through absorbance at 490
nm wavelength.

2.8. Clone Formation Assays. Hep3B as well as HUH-7 cells
were seeded onto 6-well plates (1× 103 cells/well). Following
incubation in a 5% humidified CO2 environment at 37°C
lasting 2 weeks, HCC cells were gently washed by PBS twice
as well as fixed by 4% paraformaldehyde lasting half an hour.
Afterwards, the cells were stained by crystal violet lasting
30min. -e colonies formed (>50 cells/colony) were treated
by crystal violet.

2.9. TdT-Mediated dUTP Nick-End Labeling (TUNEL)
Staining. Hep3B and HUH-7 cells were planted onto 12-
well plates. HCC cells were fixed with 4% paraformaldehyde
lasting 15min at room temperature, rinsed by PBS, and
incubated by 3% H2O2 in methanol lasting 10min. After-
wards, HCC cells were treated by 0.1% Triton X-100 lasting
2min on ice as well as incubated by 50 μL TUNEL reaction
mixture lasting 60min at 37°C in the dark. Following being
rinsed by PBS, nuclei were labeled with DAPI. Finally,
images were captured with a fluorescence microscope
(Olympus, Japan).

2.10. Transwell Assays. For migration assays, Hep3B and
HUH-7 cells were seeded onto the upper chamber as well as
DMEM plus 20% FBS was added to the lower chamber. For
invasion assays, Hep3B and HUH-7 cells were planted onto
the upper chamber containing a Matrigel-coated membrane
(BD, USA). Following 48 h incubation, nonmigrative or
noninvasive cells were moved away through wiping the
upper side of the membrane utilizing sterile cotton bud;
meanwhile, the migrative or invasive cells on the lower level
of the membrane were stained by 0.5% crystal violet. Finally,
HCC cells were counted for 6 randomly selected fields of
view utilizing an IX71 inverted microscope (×200).

2.11.CellViabilityAssay. Hep3B as well as HUH-7 cells were
planted onto 96-well plates (3,000 cells/well). Following
being incubated overnight, DMEM plus distinct doses of
cisplatin (0, 1, 2, 4, 8, 16, 60, and 32 μM) replaced the original
medium lasting three days. Afterwards, viable cells were
investigated through CCK-8 assays. -e drug half-maxi-
mum inhibitory concentration (IC50) values were finally
determined.

2.12.Measurement of GlucoseUptake and Lactate Production.
Glucose uptake as well as lactate production was separately
tested through Glucose Uptake Colorimetric Assay Kits

(BioVision, USA) and Lactate Colorimetric Assay Kits
(BioVision, USA) in Hep3B as well as HUH-7 cells following
the manufacturer’s protocols.

2.13. mRNA Stability Assay. Stability of mRNA assays in
Hep3B as well as HUH-7 cells was evaluated through in-
cubating cells with 5 μg/mL actinomycin D (Act-D, Sigma,
USA). Afterwards, cells were harvested at the indicated time
points, and mRNAs were drawn for RT-qPCR with GAPDH
as the reference control.

2.14. RNA Immunoprecipitation (RIP) Assay. RIPA assay
was conducted with Magna RIP RNA-Binding Protein
Immunoprecipitation kits (Millipore, USA) in line with
the manufacturer’s instructions. Hep3B as well as HUH-7
cells were lysed utilizing RIPA lysis buffer. Cell lysate was
immunoprecipitated through anti-ZC3H13 antibodies or
nonimmunized IgG at 4°C overnight. Afterwards, RNA
was purified and RT-qPCR was utilized for measuring the
level of PKM2 transcript in ZC3H13 or IgG
immunocomplex.

2.15.LuciferaseReporterAssay. Promoter sequence of PKM2
was cloned into pEZX-PL01 control vector containing firefly
luciferase as well as Renilla luciferase. Luciferase assay was
carried out utilizing Luc-Pair™ Duo-Luciferase HS Assay
kits. In brief, pretreated Hep3B as well as HUH-7 cells were
cotransfected by ZC3H13-wild-type (ZC3H13-WT) or
ZC3H13-mutation-type (ZC3H13-MUT) as well as 250 ng
pEZX-PL01 reporter plasmid (Promega, Shanghai, China) in
12-well plates. Following transfection lasting 6 h, HCC cells
were seeded into 96-well plates. Following 36 h, cells were
collected and analyzed utilizing Dual-Glo Luciferase Assay
system. Activity of firefly luciferase was normalized to that of
Renilla luciferase for evaluating the luciferase and tran-
scriptional activity.

2.16. Methylated RNA Immunoprecipitation qPCR
(MeRIP-qPCR). 1 μg·m6A and IgG antibodies were treated
by Protein G Magnetic Beads in 1x reaction buffer at 4°C
lasting 3 h as well as treated by 200 μg isolated RNA at 4°C
lasting 3 h. Bound RNAs were eluted via incubating by RNA-
antibodies-conjugated bead plus 100 μL Elution Buffer
lasting 30min at room temperature. Eluted RNAs were
extracted through phenol: chloroform method in line with
ethanol precipitation. Extracted m6A-RIP RNAs were re-
verse-transcribed as well as quantified via RT-qPCR. IPs
enriched rates of transcripts were determined as the ratios of
their amounts in IPs to those in the input generated from the
same number of cells.

2.17. StatisticalAnalyses. Statistical analyses were conducted
with GraphPad Prism 8 software (GraphPad Software, Inc.,
San Diego, CA, USA). Student’s t-test and one- or two-way
analysis of variance were utilized for comparisons between
groups as appropriate. Kaplan–Meier method was
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conducted for measuring the survival curves, and differences
were assessed with log-rank test. P values less than 0.05 were
indicative of statistical significance.

3. Results

3.1. ZC3H13 Displays Low Expression in HCC and Correlates
with Survival Outcomes. For investigating the underlying
function of ZC3H13 in liver carcinogenesis, this study firstly
tested the mRNA expressions of m6A methyltransferase
ZC3H13 in 369 HCC tissues and 160 normal tissues from
TCGA and GTEx projects. In Figure 1(a), ZC3H13 ex-
pressions were markedly downregulated in HCC relative to
control tissues. Furthermore, similar mRNA expression
patterns of ZC3H13 were verified in our cohort comprising
of 30 paired cancerous and normal specimens (Figure 1(b)).
Analysis of western blotting showed the decreased expres-
sion of ZC3H13 protein in HCC relative to normal tissues
(Figures 1(c) and 1(d)). Moreover, our in vitro experiments
confirmed the decreased mRNA expression of ZC3H13 in
human liver cancer cell lines HUH-7, Hep3B, HepG2, and
SMMC-7721 relative to human normal liver cells L-O2
(Figure 1(e)). Kaplan–Meier analysis uncovered that HCC
patients with high ZC3H13 expression displayed a remarked
survival advantage utilizing the online bioinformatics tool
Kaplan–Meier plotter (Figure 1(f )). With the above evi-
dences, ZC3H13 expression was remarkedly downregulated
in HCC, which could be implicated in the pathogenesis and
progression of HCC.

3.2. ZC3H13 Inhibits Cell Proliferation of HCC Cells. For
addressing the effects of ZC3H13 on HCC progression, this
study silenced ZC3H13 expression in Hep3B and HUH-7
cells (Figures 2(a)–2(c)), and its expression was upregulated
in the two HCC cells (Figures 2(d)–2(f)) due to their rel-
atively lower expression among all HCC cells, as determined
with RT-qPCR and western blotting. CCK-8 results dem-
onstrated that ZC3H13 deficiency enhanced cell growth in
Hep3B as well as HUH-7 cells (Figures 2(g) and 2(h)). In
contrast, cell growth of HCC cells was alleviated through
overexpressed ZC3H13 (Figures 2(i) and 2(j)). As depicted
in clonogenicity assay, clone formation of Hep3B and HUH-
7 cells was remarkedly enhanced through ZC3H13 defi-
ciency (Figures 2(k) and 2(l)). -e opposite results were
investigated when ZC3H13 was overexpressed (Figures 2(k)
and 2(m)). Collectively, ZC3H13 might inhibit cell prolif-
eration of HCC cells.

3.3. ZC3H13 Promotes Apoptosis and Suppresses Migration
and Invasion in HCC Cells. TUNEL assays were utilized for
evaluating the effects of ZC3H13 on apoptosis of HCC cells.
Our data showed that ZC3H13 deficiency reduced cell ap-
optosis, whereas ZC3H13 overexpression enhanced cellular
apoptotic levels of Hep3B as well as HUH-7 cells
(Figures 3(a)–3(c)). Transwell assays revealed that migrative
capacities of Hep3B as well as HUH-7 cells were enhanced
through ZC3H13 deficiency; meanwhile, overexpressed
ZC3H13 alleviated the migrative capacities of HCC cells

(Figures 3(d)–3(f)). We also noticed the increase in the
invasive abilities of Hep3B and HUH-7 cells induced by
ZC3H13 knockdown (Figures 3(g) and 3(h)). However,
invasive abilities were reduced by ZC3H13 overexpression
(Figures 3(g) and 3(i)). Taken together, ZC3H13 promoted
apoptosis as well as suppressed migrative and invasive ca-
pacities of HCC cells.

3.4. ZC3H13 Increases Sensitivity to Cisplatin in HCC Cells.
We assessed the effects of ZC3H13 on sensitivity to cisplatin
in HCC cells. Our CCK-8 data suggested that viable Hep3B
as well as HUH-7 cells were suppressed as cisplatin was
gradually increased (Figures 4(a) and 4(b)). ZC3H13
knockdown prominently reduced the inhibition rates of
cisplatin in HCC cells relative to controls. Quantification
analysis of IC50 values of cisplatin showed that ZC3H13
knockdown contributed to increased IC50 of cisplatin in
Hep3B andHUH-7 cells, indicative of the reduced sensitivity
to cisplatin (Figure 4(c)). Meanwhile, overexpressed
ZC3H13 elicited the opposite effects (Figures 4(d)–4(f )).
Moreover, our results uncovered that apoptotic levels of
Hep3B as well as HUH-7 cells were markedly enhanced
following treatment with cisplatin lasting 48 h (Figures 4(g)–
4(j)). However, ZC3H13 knockdown weakened the inhibi-
tory effects of cisplatin on apoptosis of HCC cells; mean-
while, overexpressed ZC3H13 enhanced the cisplatin-
induced apoptotic levels. Above data demonstrated that
ZC3H13 was capable of enhancing the cisplatin chemo-
sensitivity of HCC cells.

3.5. ZC3H13 Reduces Metabolism Reprogramming of HCC
Cells. -e Warburg effect represents a sign of metabolism
reprogramming of cancer, in which most cancer cells exhibit
enhanced glucose uptake as well as lactic acid production
when there is sufficient oxygen supply [20]. Herein, we
measured the effects of ZC3H13 on bioenergy metabolism
levels of HCC cells. Our data demonstrated that ZC3H13
deficiency increased glucose uptake of Hep3B and HUH-7
cells, whereas ZC3H13 overexpression reduced glucose
uptake (Figures 5(a) and 5(b)). Moreover, we noticed that
lactate production was enhanced by ZC3H13 knockdown,
and the opposite results were investigated when ZC3H13
was overexpressed (Figures 5(c) and 5(d)). -rough western
blotting, the expressions of glycolysis-related proteins
GLUT, LDHA, LDHB, and PKM2 were measured in Hep3B
and HUH-7 cells (Figure 5(e)). As a result, ZC3H13 over-
expression remarkedly decreased the expressions of GLUT,
LDHA, LDHB, and PKM2 proteins in HCC cells
(Figures 5(f)–5(i)). In conclusion, ZC3H13 modulated
metabolism reprogramming of HCC cells.

3.6. ZC3H13-Mediated m6A Modification Reduces PKM2
mRNA Stability. ZC3H13-silencing and overexpressing HCC
cells were treated by Act D. Our results showed that ZC3H13
knockdown remarkedly increased the remaining PKM2
transcripts for Hep3B as well as HUH-7 cells (Figures 6(a) and
6(b)). Rather, ZC3H13 overexpression reduced the remaining
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PKM2 transcripts in twoHCC cells (Figures 6(c) and 6(d)).-e
data indicated that ZC3H13 could decrease the stability of
PKM2 mRNA. Moreover, RIP results showed that anti-
ZC3H13 antibody prominently enriched the levels of PKM2
mRNA relative to anti-IgG antibody in Hep3B and HUH-7
cells (Figure 6(e)). However, GAPDH transcript was not de-
tected in ZC3H13 or IgG immunocomplex. -us, ZC3H13
possessed the capacity of binding to PKM2 transcript physi-
cally. Moreover, we further investigated whether PKM2 3′-
untranslated region (3′-UTR) was required for ZC3H13 for

reducing PKM2 expression. -erefore, dual-luciferase assay
was carried out. Our data demonstrated that ZC3H13 over-
expression remarkedly lowered the luciferase activities of
PKM2 3′-UTR reporter vector for Hep3B as well as HUH-7
cells (Figures 6(f) and 6(g)). However, no effect was investi-
gated for the empty vector. -us, above data were indicated
that ZC3H13 bound to PKM2 3′-UTR. In line with MeRIP-
qPCR results, ZC3H13 overexpression reduced the m6A levels
of PKM2 mRNA for Hep3B as well as HUH-7 cells
(Figure 6(h)). -us, the findings indicated that ZC3H13
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Figure 1: ZC3H13 displays low expression in HCC and correlates with survival outcomes. (a) Expression of ZC3H13 in 369 HCC and 160
control tissue specimens from TCGA and GTEx projects. (b) RT-qPCR examining the mRNA expression of ZC3H13 in 30 paired HCC as
well as adjacent control tissue specimens in our cohort. (c, d) Western blotting detecting the protein expression of ZC3H13 in three HCC as
well as adjacent control tissue specimens. (e) RT-qPCR testing the mRNA expressions of ZC3H13 in human normal liver cells L-O2 as well
as human liver cancer cell lines HUH-7, Hep3B, HepG2, and SMMC-7721. (f ) Kaplan–Meier survival analyses of HCC patients who
possessed high and low expressions of ZC3H13 via the Kaplan–Meier plotter. ∗P< 0.05; ∗ ∗ ∗P< 0.001; and ∗ ∗ ∗ ∗P< 0.0001.
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Figure 2: Continued.
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decreased the stability of PKM2 mRNA with an m6A-de-
pendent manner.

3.7. PKM2 Knockdown Weakens Cell Proliferation and
Metabolic Reprogramming Mediated by ZC3H13 in HCC
Cells. We further investigated the effects of interactions of
ZC3H13 with PKM2 on HCC progression. We firstly
confirmed the successful knockdown of PKM2 for Hep3B as

well as HUH-7 cells with si-PKM2 transfections
(Figure 7(a)). Afterwards, we assessed the cellular prolif-
eration of PKM2 interacted with ZC3H13 in HCC through
CCK-8. Our data demonstrated that PKM2 knockdown
induced a prominent reduction in cell viability. Neverthe-
less, PKM2 knockdown reversed the cell growthmediated by
ZC3H13 deficiency in Hep3B and HUH-7 cells (Figures 7(b)
and 7(c)). Clone formation of HCC cells was weakened by
PKM2 knockdown (Figures 7(d) and 7(e)). However,
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Figure 2: ZC3H13 alleviates cellular proliferative abilities of HCC cells. (a) RT-qPCR as well as (b, c) western blotting for detection of
ZC3H13 expression in Hep3B and HUH-7 cells with siRNAs targeting ZC3H13. (d) RT-qPCR as well as (e, f ) western blotting examining
ZC3H13 expression for Hep3B as well as HUH-7 cells with ZC3H13 overexpression vectors. (g, h) CCK-8 examining the cellular growth for
Hep3B as well as HUH-7 cells with ZC3H13 deficiency. (i, j) CCK-8 for evaluation for Hep3B as well as HUH-7 cells with ZC3H13
overexpression. (k–m) Clonogenicity assay for investigation of the colony formation for Hep3B as well as HUH-7 cells with ZC3H13
deficiency or overexpression. ∗ ∗ ∗P< 0.001; ∗ ∗ ∗ ∗P< 0.0001.
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silencing ZC3H13 remarkedly ameliorated the clone for-
mation induced by ZC3H13 knockdown in HCC cells. By
quantitative analyses of glycolysis, we noticed that PKM2
deficiency prominently reduced glucose uptake and lactic
acid production for Hep3B as well as HUH-7 cells
(Figures 7(f) and 7(g)). But silencing PKM2 alleviated
glucose uptake and lactic acid production induced by
ZC3H13 deficiency. Taken together, ZC3H13 alleviated
HCC cell proliferation by PKM2-dependent glycolytic
signaling.

3.8. PKM2DeficiencyAlleviatesMigration and Invasion Induced
by ZC3H13 in HCC Cells. -e effects of interactions of
ZC3H13 with PKM2 on HCC metastasis were investigated
through quantification of migration and invasion via
transwell assays. Our results demonstrated that PKM2 de-
ficiency remarkedly alleviated the migrative capacities of
Hep3B and HUH-7 cells (Figures 8(a) and 8(b)). Addi-
tionally, its deficiency reversed the migrative abilities in-
duced by ZC3H13 knockdown in HCC cells. As depicted in
Figures 8(c) and 8(d), silencing PKM2 led to a remarked
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Figure 3: ZC3H13 promotes apoptosis and suppresses migration and invasion in HCC cells. (a–c) TUNEL for detecting the apoptotic levels
for Hep3B as well as HUH-7 cells with ZC3H13 deficiency or overexpression. Magnification, 200×. (d–f) Evaluation of migration levels for
Hep3B as well as HUH-7 cells with ZC3H13 deficiency or overexpression utilizing Transwell assays. Magnification, 200×. (g–i) Quan-
tification of invasion levels for Hep3B as well as HUH-7 cells with ZC3H13 deficiency or overexpression utilizing Transwell assays.
Magnification, 200×. ∗P< 0.05; ∗ ∗ ∗P< 0.001; and ∗ ∗ ∗ ∗P< 0.0001.
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Figure 4: ZC3H13 increases sensitivity to cisplatin in HCC cells. (a, b) Inhibition rates of cisplatin for Hep3B as well as HUH-7 cells with
ZC3H13 deficiency through CCK-8 assays. (c) Evaluation of IC50 values of cisplatin for Hep3B as well as HUH-7 cells with ZC3H13
deficiency. (d, e) Inhibition rates of cisplatin in Hep3B as well as HUH-7 cells with ZC3H13 overexpression by CCK-8 assays. (f ) Assessment
of IC50 values of cisplatin in Hep3B as well as HUH-7 cells with overexpressed ZC3H13. (g–j) TUNEL assays examining the apoptotic levels
of Hep3B as well as HUH-7 cells with ZC3H13 deficiency or overexpression following exposure to cisplatin. Magnification, 200×. ∗P< 0.05;
∗ ∗ ∗P< 0.001; and ∗ ∗ ∗ ∗P< 0.0001.
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decrease in the invasive abilities of Hep3B and HUH-7 cells.
Also, PKM2 deficiency reversed the invasion of HCC cells
mediated by ZC3H13 knockdown. Collectively, PKM2 de-
ficiency alleviated migration and invasion induced by
ZC3H13 in HCC cells.

4. Discussion

m6Amodification of RNAs acts as a novel layer of epigenetic
modulation [8].-e biochemical event exerts critical roles in
modulating growth, differentiation, resistance, and meta-
bolic reprogramming of cancer cells via modulation of RNA
splicing, translation, and stability [14, 21, 22]. Several

evidences have proposed m6A as a major modified type of
mRNAs [23–25]. In our study, our evidences confirmed the
important roles of m6A regulator ZC3H13 in HCC pro-
gression and uncovered the underlying mechanisms. Our
results demonstrated that overexpressed ZC3H13 weakened
malignant behaviors of HCC cells through m6A-PKM2-
mediated glycolysis and enhanced chemosensitivity.

Consistent with bioinformatics analysis, ZC3H13 ex-
pression was downregulated in HCC as well as its loss
correlated to dismal survival outcomes [26–28]. ZC3H13
weakens proliferative and invasive capacities of colorectal
carcinoma cells through inactivating Ras-ERK pathway [29].
ZC3H13 is predictive of immune phenotype and therapeutic
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Figure 5: ZC3H13 weakens metabolism reprogramming of HCC cells. (a, b) Quantification of glucose uptake of Hep3B as well as HUH-7
cells with ZC3H13 deficiency and overexpression. (c, d) Quantification of lactate production of Hep3B as well as HUH-7 cells with ZC3H13
deficiency and overexpression. (e–i) Western blotting detecting the expression of metabolism reprogramming-related proteins including
GLUT, LDHA, LDHB, and PKM2 in Hep3B as well as HUH-7 cells with overexpressed ZC3H13. ∗ ∗P< 0.01; ∗ ∗ ∗P< 0.001; and
∗ ∗ ∗ ∗P< 0.0001.
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responses in renal carcinoma [30]. Our data demonstrated
that overexpressed ZC3H13 alleviated proliferation, mi-
gration, and invasion as well as aggravated apoptosis in HCC
cells, confirming that ZC3H13 exacerbated malignant be-
haviors of HCC cells. Tumor metastases and chemo-
resistance act as the major causes of therapeutic failure and
increased mortality for HCC [31]. In line with the

perspective of precisionmedicine, it is an urgency for finding
novel molecular targets upon developing more effective
therapeutic regimen. Herein, ZC3H13 overexpression could
sensitize HCC cells to cisplatin, providing novel evidences
for HCC chemotherapy.

HCC represents a heterogeneous malignancy, charac-
terized by diverse etiological factors, that is implicated in
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Figure 6: ZC3H13-mediated m6A modification reduces PKM2 mRNA stability in HCC cells. (a, b) Detection of the remaining PKM2
transcript in Hep3B as well as HUH-7 cells with ZC3H13 knockdown following exposure to Act D for the indicated time points. (c, d)
Detection of the remaining PKM2 transcript for Hep3B as well as HUH-7 cells with ZC3H13 overexpression under exposure to Act D for the
indicated time points. (e) RIP assay examining the enrichment levels of PKM2mRNA in Hep3B as well as HUH-7 cells under incubation by
anti-ZC3H13 or anti-IgG antibody. GAPDH transcript was utilized as a control. (f, g) Luciferase reporter assay examining the effects of
ZC3H13 on wild-type PKM2 (PKM2-WT) or mutant PKM2 (PKM2-MUT) vector for Hep3B as well as HUH-7 cells. (h) MeRIP-qPCR
detecting m6A modification levels of PKM2 through immunoprecipitation of m6A-modified mRNA for Hep3B as well as HUH-7 cells with
empty vector or ZC3H13 overexpression. Ns: not significant; ∗P< 0.05; ∗ ∗P< 0.01; ∗ ∗ ∗P< 0.001; and ∗ ∗ ∗ ∗P< 0.0001.
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metabolic alterations [32]. Previous evidences have demon-
strated the significance of metabolic normalization to HCC
inhibition [33–35]. -e Warburg effect is fundamental to
metabolic reprogramming in HCC progression [36]. En-
hanced glucose uptake and lactate production maintain long-
term growth of cancer cells. Hopefully, reprogramming of
HCC cells maymanifest itself as a new insight into developing
therapeutic regimen against HCC. Our data demonstrated
that ZC3H13 had much potential of inhibiting glycolysis in
HCC through modulating metabolism reprogramming. Our
further analyses uncovered that ZC3H13-mediated m6A
modification substantially alleviated PKM2mRNA stability as

well as overexpressed ZC3H13 facilitatedmalignant behaviors
of HCC cells through PKM2-dependent glycolytic signaling.
Even so, more selective and efficacious agents activating
ZC3H13 will be developed upon HCC therapy in our future
studies. -ere are several limitations in our study. Firstly, we
collected 30 pairs of HCC specimens and matched nontumor
specimens, and our results revealed that ZC3H13 expression
was downregulated in HCC specimens. However, the sample
size is small. -e expression of ZC3H13 will be verified in
larger HCC cohorts. Secondly, the biological function of
ZC3H13 in HCC progression will be investigated through in
vivo experiments.
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Figure 7: PKM2 knockdown weakens cell proliferation and metabolic reprogramming mediated by ZC3H13 in HCC cells. (a) RT-qPCR
detecting the mRNA expression of PKM2 for Hep3B as well as HUH-7 cells transfected by siRNAs against PKM2. (b, c) CCK-8 examining
the effects of PKM2 knockdown on cell growth for Hep3B as well as HUH-7 cells with ZC3H13 loss. (d, e) -e effects of silencing or
overexpressing PKM2 on clone formation of Hep3B as well as HUH-7 cells with ZC3H13 knockdown. (f, g)-e effects of PKM2 knockdown
on glucose uptake and lactate production in Hep3B and HUH-7 cells with ZC3H13 deficiency.∗P< 0.05; ∗∗∗∗p< 0.0001.
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5. Conclusion

In all, our evidences demonstrated that overexpressed
ZC3H13 alleviated malignant behaviors and metabolism
reprogramming of HCC cells through mediating the m6A-
modified PKM2 mRNA. -erefore, ZC3H13 possessed the
potential as a therapeutic target against HCC. Effective
treatments for HCC might be conducted on the basis of the
new molecular mechanisms proposed in these observations.
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Introduction. Dermatomyositis (DM) is a chronic autoimmune disease of predominantly lymphocytic infiltration mainly in-
volving the transverse muscle. Its pathogenesis is remaining unknown. *is research is designed to probe the latent pathogenesis
of dermatomyositis, identify potential biomarkers, and reveal the pathogenesis of dermatomyositis through information biology
analysis of gene chips. Methods. In this study, we utilised the GSE14287 and GSE11971 datasets rooted in the Gene Expression
Omnibus (GEO) databank, which included a total of 62 DM samples and 9 normal samples. *e datasets were combined, and the
differentially expressed gene sets were subjected to weighted gene coexpression network analysis, and the hub gene was screened
using a protein interaction network from genes in modules highly correlated with dermatomyositis progression. Results. A total of
3 key genes—myxovirus resistance-2 (MX2), oligoadenylate synthetase 1 (OAS1), and oligoadenylate synthetase 2 (OAS2)—were
identified in combination with cell line samples, and the expressions of the 3 genes were verified separately. *e results showed
that MX2, OAS1, and OAS2 were highly expressed in LPS-treated cell lines compared to normal cell lines. *e results of pathway
enrichment analysis of the genes indicated that all 3 genes were enriched in the cytosolic DNA signalling and cytokine and
cytokine receptor interaction signalling pathways; the results of functional enrichment analysis showed that all 3 were enriched in
interferon-α response and interferon-c response functions. Conclusions. *is is important for the study of the pathogenesis and
objective treatment of dermatomyositis and provides important reference information for the targeted therapy
of dermatomyositis.

1. Introduction

Dermatomyositis (DM) is a relatively rare idiopathic mul-
tisystem inflammatory disease with a small incidence of just
1 in 100,000 and a significantly higher incidence in women
than in men among adult patients [1–3]. Dermatomyositis is
difficult to diagnose accurately without the presence of a
characteristic dermatologic or myopathic condition [4].
Patients with typical dermatomyositis usually have a very
abnormal skin surface, accompanied by progressive, sym-
metrical proximal muscle weakness. 30–50% of patients
develop cutaneous disease 3–6 months before the

appearance of myositis, while approximately 10% develop
muscle symptoms before the appearance of cutaneous dis-
ease [5, 6]. About 20% of DM cases are classified as clinically
amyopathic dermatomyositis (CADM), which is strongly
associated with acute interstitial lung lesions, interstitial
fibrosis, and has a very high mortality rate. In a study of 291
patients with CADM [7], 70% were diagnosed with non-
amyopathic dermatomyositis and 13% with amyopathic
dermatomyositis. Clinically, complete remission of cuta-
neous lesions is very difficult to achieve, which reflects the
lack of understanding of the pathogenesis of dermato-
myositis cutaneous lesions [8]. As the traditional view is that
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the pathogenesis of autoimmune diseases is mainly due to
excessive activation of effector T cells, glucocorticoids and
immunosuppressive drugs are currently the main treatments
for dermatomyositis [9]. *e use of these drugs weakens the
immunity of humoral and cellular immunity and also de-
creases the immune function of intrinsic immunity such as
macrophages and NK cells, decreasing the body’s resistance
to pathogens and increasing the incidence of opportunistic
infections, such as the Epstein-Barr Virus (EBV) and cy-
tomegalovirus (CMV) blood disorders [10].

In addition, common histopathologic factors of DM skin
lesions, often including vacuolar perivascular inflammation,
interface dermatitis, increased skin mucin, and keratinised
abnormal keratin-forming cells [11, 12], are also seen in
cutaneous lupus erythematosus (CLE) lesions. *is can
make it more difficult to differentiate a rash associated with
DM from one involving CLE, which makes the diagnosis of
DM more difficult. In addition, dermatomyositis is closely
associated with several types of cancer. Most patients have
cancer within 1 year after the diagnosis of dermatomyositis,
and thus, dermatomyositis is considered to be a paraneo-
plastic condition [13]. *erefore, it is urgent to find new
diagnostic concepts and therapeutic approaches for der-
matomyositis, and studies related to the identification of
mRNA biomarkers for dermatomyositis are needed.

*is manuscript is designed to probe the possible mo-
lecular mechanisms of DM. By identifying effective biomarkers
through microarray analysis and then validating them through
in vitro experiments, the pathogenesis of DM can be elucidated
as well as the search for targeted therapies for DM.

2. Methods

2.1. Data Sources. *e dermatomyositis gene datasets
GSE142807 [8] (43 DM samples and 5 normal samples) and
GSE11971 [14] (19 DM samples and 4 normal samples) were
rooted in the Gene Expression Omnibus (GEO) databank,
and the original document were processed and explained
with the R package “affy” in a bioconductor for processing
and annotation (http://www.bioconductor.org).

2.2. Cell Nurturing and Stimulation of Cells. Human skeletal
muscle myoblasts (HSkM) were purchased from ScienCell
Research Laboratories, located in USA. *e myoblasts
were cultured in Dulbecco’s modified Eagle medium
containing 4.5 mg/mL glucose +MEM 199 (ratio 4 : 1)
with 20% fetal bovine serum, 100 IU penicillin, and 100 μg
streptomycin. Myogenic cells were cultured in 6-well
plates at a concentration of 5 ×104/mL at 37°C in a 5%
CO2 incubator, and the medium was renewed when the
cells were fused to 60%. Lipopolysaccharides (LPS) [15]
were used to stimulate myogenic cells to prepare a der-
matomyositis cell model, after which the cells were col-
lected for RNA-seq.

2.3. Methods for RNA Extraction and Transcript Library
Formation. We first extracted total RNA from the cells
using TRIzol reagent and then constructed RNA samples by

RNA mass spectrometry using a Nanodrop microspectro-
photometer. After enrichment of eukaryotic mRNA with
polyA tails by magnetic beads with oligo (dT), mRNA was
interrupted with buffer. We first synthesized cDNA first
strand in the M-MuLV reverse transcriptase system using
fragmented mRNA as template and random oligonucleo-
tides as primers and then degraded RNA strand with
RNaseH and synthesized cDNA second strand with dNTPs
in the DNA polymerase I system. *e purified double-
stranded cDNA was end-repaired, A-tailed, and sequenced,
and the cDNA of about 200 bp was screened with AMPure
XP beads, then PCR amplified, and the PCR product was
purified again with AMPure XP beads, and finally, the final
result was achieved.

2.4. Differentially Expressed Gene Screening. Differential
analysis of normal and dermatomyositis samples in the GEO
dataset was performed using the “limma” package in R v4.0.4;
differential analysis of normal and dermatomyositis model cell
samples was performed using the DEseq2 package in R v4.0.4.
*e screening criteria were FDR< 0.05 and log2|FC|≥1.

2.5. Weighted Gene Coexpression Network Analysis
(WGCNA). WGCNA was executed using the WGCNA
database in R v4.0.4 as follows. *e correlation coefficients
between pairs of all genes were calculated to construct the
gene expression correlation matrix. After this, the correla-
tion coefficients are weighted with power exponents, so that
the correlation matrix of the expression is transformed into
an adjacency matrix. *e topological matrix (TOM) is used
to calculate the association between genes, and the adjacency
matrix is converted into a topological matrix based on the
TOM values. *e topological matrix has a prescribed al-
gorithm for node dissimilarity, and the different gene
modules are clustered using node dissimilarity. *e ex-
pression of module eigengene (ME) and gene significance
(GS) were calculated to associate different modules with
phenotypes.

2.6. Protein-Protein Interaction Network (PPI). *e mech-
anism of protein-protein interactions was established at the
online analysis website, Metascape (https://metascape.org/
gp/index.html#/main/step1). *e MCODE algorithm in
Cytoscape was used to extract hub genes and visualise the
protein-protein interaction network.

2.7. KEGG and GO Enrichment Analyses. We established
gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis of genes in the DAVID
6.8 database (https://david.ncifcrf.gov/). Enrichment results
with p< 0.05 or FDR< 0.05 would indicate that it is sta-
tistically significant.

2.8. Gene Set Enrichment Analysis (GSEA). We wanted to
know how gene expression affects the disease and divided
the samples into high and low expression series on the
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basis of the median expression values of the genes. *e
GSEA tool rooted in the Broad Institute (http://software.
broadinstitute.org/gsea/downloads.jsp) was used to ana-
lyse the enrichment of KEGG and Hallmark pathways in
the high and low expression series. Molecular charac-
terisation was done making the use of the Hallmark gene
set database (MsigDB, http://software.broadinstitute.
org/gsea/msigdb). *ese pathways were considered
meaningful gene sets when they satisfied |NES|≥1,
FDR < 0.25, p value < 0.05.

2.9. Statistical Analysis. Statistical analyses were performed
using R software v4.0.3 (R Foundation for Statistical
Computing, Vienna, Austria). One-way ANOVA is taken
for the samples with uniform variance, and the nonpara-
metric test is taken for the samples with uneven variance. P

value of <0.05 was considered statistically significant.

3. Results

3.1. Differentially Expressed Genes in Dermatomyositis.
*e GEO database was used to obtain the DM-related ex-
pression datasets GSE142807 (43 DM samples and 5 normal
samples) and GSE11971 (19 DM samples and 4 normal
samples). After differentially expressed gene screening, all
2746 upregulated genes and 382 downregulated genes were
obtained from GSE142807 (Figure 1(a)); all 236 upregulated
genes and 663 downregulated genes were obtained in
GSE11971. Subsequently, the two differential gene datasets
were combined using the ComBat function of the R package
“sva” to remove the batch effect, and a total of 925 gene
expression matrices were obtained. Functional and pathway
enrichment analysis was established, and the results showed
that the gene sets were significantly enriched in KEGG
pathways, including shigellosis, endocytosis, and Alz-
heimer’s disease (Figure 1(c)). GO functional enrichment
analysis significantly enriched the gene set, mainly in protein
binding, metabolic processes of organic nitrogen com-
pounds, and intracellular fractions (Figures 1(d)–1(f)).

3.2. Analysis of the Weighted Gene Coexpression Network.
*e expression information of the combined GSE142807
and GSE11971 differential gene sets were used as input files,
and the samples were first hierarchically clustered to
eliminate outlier samples. To determine the scale-free net-
work, we set power� 14 as a soft threshold parameter and
then constructed a coexpression matrix (Figure 2(a)). *e
network graph was constructed using dynamic tree cuts and
merging similarity modules, so we could obtain 3 groups of
925 genes, and these different sections have been marked
with different color notations (Figure 2(b)). Next, the
Pearson correlation between different modules and different
clinical characteristics was calculated.

*e Pearson correlation coefficients of different modules
with different clinical features were calculated, and the most
relevant module for dermatomyositis was obtained: the
turquoise module (Figure 2(c)). *e association between the
genes in the turquoise module and the clinical phenotypes of

dermatomyositis was analysed separately, and the correla-
tion was good, with a significant linear correlation
(Figure 2(d)).

3.3. Protein-Protein Interaction Network Analysis (PPI).
*rough the online analysis website Metascape, the genes in
the turquoise module were analysed to obtain PPI protein
network interactions, and the gene information was further
visualized and the network was constructed (Figure 3). We
use the MCODE plugin in Cytoscape to count the features of
each node in the network graph, and the MCODE with the
largest score value 4 was selected; genes in MCODE 4 were
MX2, GBP2, OAS2, IFI6, IFIT2, BST2, OAS3, OAS1, IRF1,
SAMHD1, RSAD2, EGR1, XAF1, and IRF2, which were
mainly enriched in the interferon signalling pathway and
immune system in the cytokine signalling pathway, as given
in Table 1.

3.4. Cell Line RNA-Seq Analysis. Based on the FPKM values
of each gene in the cell lines, we show the expression dis-
tribution of different sample genes or transcripts by an
expression distribution map (Figure 4(a)). In general, the
gene expression distribution map can be used to assess the
differences between samples in the library in terms of
building, sequencing, comparison, or quantification. In
addition, based on the expression results of each sample, we
used PCA analysis and calculated Pearson correlation co-
efficients between samples to determine the reproducibility
between samples and to assist in excluding outliers
(Figure 4(b)). *e differentially expressed genes in the cell
line samples are shown in a volcano plot (Figure 4(c)), and
all 29 differentially expressed genes were obtained, including
27 differentially upregulated genes and 2 differentially
downregulated genes. By overlaying the differentially
expressed genes in the cell line samples with the previous
genes in MCODE4, 3 key genes are obtained with the names
MX2, OAS1, and OAS2.

3.5. Expression Validation of MX2, OAS1, and OAS2. *e
expressions of MX2, OAS1, and OAS2 in the 3 different
datasets were compared. *e results showed that MX2,
OAS1, and OAS2 were significantly upregulated in the
GSE11971 and GSE142807 datasets compared to normal
samples in dermatomyositis samples (Figures 5(a) and 5(b)).
In cell line samples, MX2, OAS1, and OAS2 were highly
expressed in LPS-treated cell lines compared to normal cell
lines (Figure 5(c)).

3.6. Genomic Enrichment Analysis. KEGG signalling path-
way and Hallmark functional enrichment analyses were
performed for each of MX2, OAS1, and OAS2. KEGG
signalling pathway analysis showed that all 3 were enriched
in the cytosolic DNA signalling and cytokine and cytokine
receptor interaction signalling pathways; the results of
Hallmark functional enrichment analysis showed that all 3
were enriched in interferon-α response and interferon-c
response functions (Figure 6).
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4. Discussion

Dermatomyositis is due to autoimmune connective tissue
lesions, which usually include diseases such as autoantibody
positivity and immune abnormalities. It has a complex
clinical presentation, so there is little hope of a cure [16, 17].
Skin invasion is usually visible in all dermatomyositis
subtypes, and skin problems often persist after successful
treatment of muscle disease, greatly affecting patients’
quality of life [18]. In a prospective cohort study of 74
patients with DM who received systemic therapy, only 38%
of patients had remission of skin disease during the 3-year
follow-up period [19]. Because many physicians have dif-
ficulty recognising dermatomyositis in the absence of muscle
invasion, this often leads to misdiagnosis, as well as delays in
treatment and initial investigations, and delays or misdi-
agnosis can increase the risk of cancer in patients [20, 21].
*ere is therefore a pressing need for appropriate bio-
markers to identify dermatomyositis in clinical practice.

In this study, we used a multistep approach to identify
differentially expressed genes in DM from microarray data
and performed weighted gene coexpression network and
protein interaction network analyses. Combined with in
vitro experiments, we finally identified three key genes:
MX2, OAS1, and OAS2. *e results demonstrated that
these 3 genes are highly expressed in dermatomyositis and

are enriched in KEGG pathways, including the cytosolic
DNA signalling pathway and cytokine-cytokine receptor
interaction signalling pathway. Hallmark function was
enriched in interferon-α response and interferon-c re-
sponse function.

Although the exact pathogenesis of dermatomyositis has
not been fully elucidated, studies have suggested that the
mechanism may cause upregulation or abnormalities in
transduction signalling through the interferon pathway
[22, 23].*ere is substantial evidence that interferons (IFNs)
are considered critical in skin disease and muscle disease in
patients with dermatomyositis. Increased type I IFN sig-
nalling found in skin biopsies of lesions from 16 patients
with dermatomyositis [24] and skin activity in adult der-
matomyositis has been shown to correlate with type I IFN
gene signatures [25, 26]. IFN signalling can be used to
measure disease activity in adult and adolescent subjects
with dermatomyositis markers, and identification of the
signal in peripheral blood samples could be an alternative to
the more invasive muscle biopsy technique [27]. Epstein-
Barr virus (EBV) and cytomegalovirus (CMV) belong to the
human herpes virus (HHV) family, and most adults
worldwide are susceptible to these viruses [28, 29]. EBV
infection leads to excessive production of interferons (IFNs)
by Tcells, which are proinflammatory cytokines essential for
systemic autoimmunity. CMV can infect several cell types,
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including epithelial cells, hematopoietic cells, and connec-
tive tissue [30]. EBV and CMVhave been found to play a role
in autoimmunity and may trigger a range of inflammatory
factors that can exacerbate immune system disorders [31].
Although the pathogenesis of dermatomyositis is currently

unclear, an immune imbalance is thought to be central to
disease progression.

As an inhibitor of interferon (IFN) induction, myxovirus
resistance-2 (MX2) has potent inhibitory activity against
HIV-1 as well as herpes and hepatitis B viruses [32, 33].
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Figure 3: Map of gene interaction network in turquoise module.

Table 1: Top 5 MCODE pathway and process enrichment analysis for each group.

MCODE GO Description Log10 (p)
MCODE 1 R-HSA-195258 RHO GTPase effectors −12.0
MCODE 1 R-HSA-9664422 FCGR3A-mediated phagocytosis −10.4
MCODE 1 R-HSA-9664417 Leishmania phagocytosis −10.4
MCODE 2 R-HSA-72163 mRNA splicing—major pathway −11.4
MCODE 2 R-HSA-72172 mRNA splicing −11.3
MCODE 2 R-HSA-72203 Processing of capped intron-containing pre-mRNA −10.4
MCODE 3 GO:0040029 Regulation of gene expression, epigenetic −6.1
MCODE 3 GO:0051052 Regulation of the DNA metabolic process −6.0
MCODE 3 GO:0034728 Nucleosome organization −5.8
MCODE 4 R-HSA-909733 Interferon alpha/beta-signalling −37.1
MCODE 4 R-HSA-913531 Interferon signalling −30.3
MCODE 4 R-HSA-1280215 Cytokine signalling in the immune system −22.4
MCODE 5 R-HSA-5696395 Formation of incision complex in GG-NER −10.9
MCODE 5 R-HSA-5696399 Global genome nucleotide excision repair (GG-NER) −9.4
MCODE 5 R-HSA-5696398 Nucleotide excision repair −8.8
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Expression of MX2 reduces permissibility to various lenti-
viruses, and knockdown of MX2 expression using RNA
interference has been shown to reduce IFN-α anti-HIV-1
potency [34]. It has been shown that MX2 is a cell auton-
omous anti-HIV-1 resistance factor whose purposeful
mobilization may serve as a novel approach for the treat-
ment of HIV/AIDS [35]. In the present study, MX2 is also
expected to be a potential target for dermatomyositis
treatment.

Interferon- (IFN-) induced double-stranded RNA acti-
vating enzymes are the so-called OAS proteins. *e OAS
patients includes 4 members: OAS1, OAS2, OAS3, and
OASL [36]. Expression of the OAS gene family is highly
regulated in patients with juvenile dermatomyositis,
similar to the immune response to dsRNA virus infec-
tion [37]. Several studies have suggested that excessively

keratinised cells may be responsible for the development
of skin lesions in patients with dermatomyositis, in which
OAS genes may activate one of the apoptotic cell death
mechanisms [38] and resulted that the OAS/RNaseL
pathway is a new effector of BRCA1 and IFN-c-mediated
apoptosis [39].

*e present study has some drawbacks, as there is a
lack of follow-up wet experiments to verify the mecha-
nisms of the 3 genes identified to strengthen the results, in
addition to the fact that the impact of the 3 genes on
clinical prognosis has not yet been studied. *is should
be analysed in future studies in the context of clinical
samples and survival.

In conclusion, a total of 3 genes associated with the
development of dermatomyositis—MX2, OAS1, and
OAS2—were identified in this study through a series of

0.0

0.2

0.4

-2 2
log10 (FPKM) of Gene

D
en

sit
y

id
Control_1
Control_2
Control_3
LPS_1
LPS_2
LPS_3

FPKM distribution of all samples

40

(a)

Control_11.000 1.000 0.998 0.998 0.997

0.9970.9970.997

0.997

0.997

0.9970.997 0.992

0.994

0.991 0.999 0.999

0.9920.9940.991

0.999

0.999

0.998

0.998

0.996

0.996

0.996

0.996

1.0001.000

1.000

1.000

1.000 1.000

1.000 1.000

Control_2

Control_3

LPS_1

LPS_2

LPS_3

Co
nt

ro
l_

1

1.0000

0.9975

0.9950

0.9925

value
Sample Correlation

Co
nt

ro
l_

2

Co
nt

ro
l_

3

LP
S_

1

LP
S_

2

LP
S_

3

(b)

160

-lo
g1

0 
(p

-v
al

ue
)

−8 −6 −4 −2 0 2 4 6 8 10
log2 (FoldChange)

Regulated
Up-regulated
Down-regulated

140

120

100

80

60

40

20

0

(c)

25 3 11

Cell sample MCODE

(d)

Figure 4: Cell line RNA-seq analysis. (a) Gene expression abundance map. (b) Sample correlation heat map. (c) Volcano map showing
differentially expressed genes. (d) Overlap of differentially expressed genes in cell lines with genes in MCODE4.

Journal of Oncology 9



***

10

9

8

7

11

13

12

Dermatomyositi (n=19) Normal (n=4) Dermatomyositi (n=19) Normal (n=4) Dermatomyositi (n=19) Normal (n=4)

GSE11971

***

6

8

10

12

GSE11971
***

5

7

9

11

GSE11971

O
A

S2
 ex

pr
es

sio
n 

le
ve

l

M
X2

 ex
pr

es
sio

n 
le

ve
l

O
A

S1
 ex

pr
es

sio
n 

le
ve

l

(a)

**

4

5

6

7

8

Dermatomyositi (n=43) Normal (n=5) Dermatomyositi (n=43) Normal (n=5) Dermatomyositi (n=43) Normal (n=5)

GSE142807

O
A

S2
 ex

pr
es

sio
n 

le
ve

l

M
X2

 ex
pr

es
sio

n 
le

ve
l

O
A

S1
 ex

pr
es

sio
n 

le
ve

l
* **

4

6

8

GSE142807
***

3

4

5

6

7

8

GSE142807

(b)

***

3

4

5

6

LPS-induced (n=3) LPS-induced (n=3) Normal (n=3)

Cell samples

5

6

7

Normal (n=3)

O
A

S2
 ex

pr
es

sio
n 

le
ve

l

M
X2

 ex
pr

es
sio

n 
le

ve
l

O
A

S1
 ex

pr
es

sio
n 

le
ve

l

Cell samples

**

4

5

6

7

LPS-induced (n=3) Normal (n=3)

Cell samples

***

(c)

Figure 5: Expression validation of MX2, OAS1, and OAS2. (a) Expression of MX2, OAS1, and OAS2 in the GSE11971 dataset.
(b) Expression of MX2, OAS1, and OAS2 in the GSE142807 dataset. (c) Expression of MX2, OAS1, and OAS2 in cell line samples.

KEGG HALLMARK

M
X2

(a)

Figure 6: Continued.

10 Journal of Oncology



information biology analyses, which are expected to be
biomarkers or drug targets to some extent for the di-
agnosis of dermatomyositis. Further studies are needed
to elucidate the related mechanisms.
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Objective. Esophageal cancer (ESCA) is one of the most aggressive malignancies globally with an undesirable five-year survival
rate. Here, this study was conducted for determining specific functional genes linked with ESCA initiation and progression.
Methods. Gene expression profiling of ESCA was curated from TCGA (containing 160 ESCA and 11 nontumor specimens) and
GSE38129 (30 paired ESCA and nontumor tissues) datasets. Differential expression analysis was conducted between ESCA and
nontumor tissues with adjusted p value <0.05 and |log2fold-change|>1. Weighted gene coexpression network analysis (WGCNA)
was conducted for determining the ESCA-specific coexpression modules and genes. -ereafter, ESCA-specific differentially
expressed genes (DEGs) were intersected. Functional enrichment analysis was then presented with clusterProfiler package.
Protein-protein interaction was conducted, and hub genes were determined. Association of hub genes with pathological staging
was evaluated, and survival analysis was presented among ESCA patients. Results. -is study determined 91 ESCA-specific DEGs
following intersection of DEGs and ESCA-specific genes in TCGA and GSE38129 datasets. -ey were remarkably linked to cell
cycle progression and carcinogenic pathways like the p53 signaling pathway, cellular senescence, and apoptosis. Ten ESCA-
specific hub genes were determined, containing ASPM, BUB1B, CCNA2, CDC20, CDK1, DLGAP5, KIF11, KIF20A, TOP2A, and
TPX2. -ey were prominently associated with pathological staging. Among them, KIF11 upregulation was in relation to un-
desirable prognosis of ESCA patients. Conclusion. Collectively, we determined ESCA-specific coexpression modules and hub
genes, which offered the foundation for future research concerning the mechanistic basis of ESCA.

1. Introduction

Esophageal cancer (ESCA) ranks the eighth major cancer
type as well as the sixth major cause of cancer-relevant
deaths across the globe [1]. Tobacco and alcohol con-
sumption are the main environmental risk factors of ESCA.
-e five-year survival rate is nearly 15% [2]. It mainly
contains two histological subtypes: esophageal squamous
cell carcinoma (approximately 90%) and esophageal ade-
nocarcinoma (around 10%) [3]. Patients’ advanced clinical
presentation is linked to locally late and distant metastasis,
which contributes to undesirable survival outcome. Addi-
tionally, because of tumor heterogeneity and acquired drug
resistance, inherent resistance to radiotherapy and chemo-
therapy triggers therapeutic failure and unfavorable survival
rate [2]. ESCA therapy depends upon patients’ and tumors’

features, especially the tumor, node, metastasis (TNM)
staging system [4]. In the early stage, patients are suitable for
endoscopic resection, while those in the advanced stage
receive surgical resection, chemotherapy, chemo-
radiotherapy, or their combination [4]. For patients with
unresectable ESCA, systemic chemotherapy is applied.
Additionally, immunotherapy has emerged as a therapeutic
option for advanced or metastatic patients [5]. Although the
therapeutic options have been steadily increasing, the mo-
lecular mechanisms underlying ESCA remain indistinct.

-e pathogenesis of ESCA is a multistep process, in-
volving distinct stages until eventually cancers [6]. Hence, to
focus on the molecular mechanisms underlying the initia-
tion and progression of ESCAmay assist uncover underlying
diagnostic markers or treatment targets. Weighted gene
coexpression network analysis (WGCNA) is a reliable
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systematic biological algorithm, which may emphasize
coexpression genomic modules and effectively evaluate the
interactions between coexpression modules and clinical
phenotypes [7]. -is algorithm has been widely utilized for
discovering cancer-specific modules and hub genes like
bladder cancer [7], hepatocellular carcinoma [8], and lung
cancer [9]. Limited studies have applied the WGCNA
method to uncover the pathogenesis of ESCA. For instance,
Nangraj et al. identified hub genes shared between Barrett’s
esophagus and esophageal adenocarcinoma through inte-
grated analysis of protein-protein interaction (PPI) and
WGCNA [10]. -rough WGCNA, miR-92b-3p was deter-
mined as a pathogenic gene in ESCA [11]. Integrated
analysis of WGCNA and network pharmacology deciphered
the molecular mechanisms of compound Kushen injection
in ESCA treatment [12]. Here, this study adopted the
WGCNA algorithm for determining specific functional
modules and genes in ESCA, offering the foundation for
future research concerning the mechanistic basis of ESCA.

2. Materials and Methods

2.1. Data Collection and Preprocessing. -e RNA-seq data of
ESCA were retrieved from the Cancer Genome Atlas
(TCGA) GDC Application Programming Interface. Gene
expression profiling data (read counts) were processed and
transformed into gene ID Ensembl (version 90). In total, 160
ESCA and 11 normal tissues were included. Microarray
expression profiling of 30 ESCC tumors and adjacent normal
tissues was curated from the GSE38129 dataset [13] in the
Gene Expression Omnibus (GEO; https://www.ncbi.nlm.
nih.gov/gds/) repository. -is dataset was in accordance
with the GPL571 platform ((HG-U133A_2) Affymetrix
Human Genome U133A 2.0 Array). -e raw expression
profiling was background-corrected and normalized by
quantile utilizing the robust multiarray average (RMA)
method.

2.2.Differential ExpressionAnalysis. Differentially expressed
genes (DEGs) were selected utilizing the linear models for
microarray data (limma; version 3.50.0) package through
comparison of the expression profiling between ESCA and
normal tissues [14]. -e matched p values of gene symbols
following the t-test were calculated, and adjusted p value
<0.05 and |log2fold-change|>1 were set as the selection
criteria. -e volcano and heatmap of the DEGs were drawn.

2.3. WGCNA. Coexpression networks were separately
established in TCGA and GSE38129 datasets utilizing
WGCNA package (version 1.69) [15]. -e genes with the
first 25% standard deviation were chosen as the input genes.
For constructing a scale-free network, the optimal soft
threshold power value (β; ranging from 1 to 20) was de-
termined with the “pickSoft-reshold” function through
calculation of the scale-free fit index. Pearson’s correlation
matrix was conducted for evaluating the similarity among
the pairwise genes utilizing the “cor” function. -ereafter,
the adjacency was determined in accordance with β and

Pearson’s correlation matrix utilizing the “TOMsimilarity”
function. Meanwhile, the corresponding dissimilarity
(dissTOM) was determined. -e modules were segmented
with a dynamic cut tree algorithm, and similar modules were
merged into one. Module eigengenes (MEs) that were the
first principal component of gene expression patterns within
a specific module were identified for each module.

2.4. Identification of ESCA-Relevant Coexpression Models.
In this study, the most crucial critical feature was tissue type
that was designated as ESCA tumor and normal specimens.
Pearson correlation between MEs and clinical feature was
analyzed. Modules that possessed the strongest correlation
coefficient were determined as the ESCA-relevant coex-
pression models. Module membership indicates the intra-
module connectivity of any gene within a given module. -e
higher the absolute value of module membership, the higher
the negative or positive correlation between the gene with
the module eigengenes. Gene significance was utilized for
incorporating external information to the coexpression
network. -e higher the absolute value of gene significance,
the higher the biological significance of a gene for tissue type.
ESCA-relevant genes within the ESCA-relevant coex-
pression models were determined in accordance with
module membership >0.8 and gene significance >0.5.

2.5. Identification of ESCA-Specific DEGs. For achieving the
intersection of DEGs and coexpressed genes, an online web
tool (http://bioinfogp.cnb.csic.es/tools/venny/index.html)
was adopted for plotting Venn diagram.

2.6. FunctionEnrichmentAnalysis. Functional annotation of
ESCA-specific DEGs was presented with the clusterProfiler
package (version 4.2.0), containing Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis [16]. GO terms comprised of the biological
process (BP), cellular component (CC), and molecular
function (MF).

2.7. Protein-Protein Interaction (PPI) Analysis. -e PPI
network of ESCA-specific DEGs was conducted on the basis
of the Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING; version 11.0; https://string-db.org)
online tool [17]. -e CytoHubba plugin [18] of Cytoscape
software (version 3.7.2) [19] was adopted for selecting the
hub genes within the PPI network [18]. Herein, the first 10
genes were determined as hub genes.

2.8. Survival Analysis. In accordance with the optimal cutoff
value determined by survival package, ESCA patients were
stratified into high and low expression groups of the 10
ESCA-specific hub genes. Kaplan–Meier curves of overall
survival were conducted between groups, and log-rank tests
were utilized for comparing the survival differences.
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2.9. Statistical Analysis. All the analyses in this study were
implemented utilizing R software (version 3.5.1). Student’s t
test or Wilcoxon test was adopted for comparisons between
groups. Spearman correlation analysis was carried out to
evaluate the interactions of the 10 ESCA-specific hub genes
with pathological staging of ESCA patients. P value<0.05
indicated the statistical significance.

3. Results

3.1. Exploration of DEGs in ESCA. For investigating the
genetic alterations during the progression from normal to
ESCA, we conducted differential expression analysis be-
tween ESCA tumors and normal tissues both in TCGA and
GSE38129 datasets. In TCGA cohort, compared with 11
normal tissues, 1221 genes presented remarkable down-
regulation while 1169 genes displayed prominent upregu-
lation in 160 ESCA tumors in accordance with adjusted p

value <0.05 and |log2fold-change|>1 (Figures 1(a) and 1(b);
Supplementary Table 1). With the same selection criteria, in
the GSE38129 dataset, we determined 360 upregulated and
376 downregulated genes in 30 ESCA tumors in comparison
to 30 nontumor tissues (Figures 1(c) and 1(d); Supple-
mentary Table 2).

3.2. Establishment of aCoexpressionNetwork andDiscovery of
ESCA-Specific Coexpression Module in the TCGA Dataset.
We first curated gene expression matrix of ESCA patients
from TCGA cohort and chose the genes with the top 25%
variances for subsequent analysis. No outlier sample was
found, and we conducted a sample clustering tree, as shown
in Figure 2(a).-ereafter, the soft threshold power value was
set as 10 (scale-free topology R2 � 0.90) for constructing a
scale-free network (Figure 2(b)). -e adjacency matrix and
the topological overlap matrix were separately developed. In
total, 9 coexpression modules were clustered in accordance
with the average hierarchical clustering and dynamic cutting
tree (Figure 2(c)). -e association of coexpression modules
with clinical trait was analyzed. In Figure 2(d), the yellow
module displayed the strongest correlation to tissue type,
indicating that this module was strongly linked to ESCA
progression. In line with module membership >0.8 and gene
significance >0.5, we determined ESCA-specific genes
(Figures 2(e) and 2(f )).

3.3. Development of a Coexpression Network and Discovery of
ESCA-Specific Coexpression Module in the GSE38129 Cohort.
-e coexpression network was also developed in the
GSE38129 dataset. In accordance with the mRNA ex-
pression matrix, we selected the genes with the top 25%
variances. As shown in Figure 3(a), there was no outlier
sample among 30 paired ESCA tumors and nontumors.
Afterwards, we established a scale-free network in line with
the soft threshold power value� 20 (scale-free topology
R2 � 0.90; Figure 3(b)). Following construction of the ad-
jacency matrix and the topological overlap matrix, we
determined 7 coexpression modules on the basis of the
average hierarchical clustering and dynamic cutting tree

(Figure 3(c)). In Figure 3(d), the turquoise module pre-
sented the strongest association with tissue type, demon-
strating that this module was strongly linked to ESCA
progression. Following module membership >0.8 and gene
significance >0.5, ESCA-specific genes were determined
(Figures 3(e) and 3(f )).

3.4. Identification of ESCA-Specific DEGs andBeir Biological
Significance. For determining ESCA-specific DEGs, we
intersected the DEGs and the ESCA-specific genes in TCGA
and GSE38129 cohorts. As a result, 91 ESCA-specific DEGs
were finally identified (Figure 4(a) and Table 1). -eir bi-
ological significance was further evaluated through GO and
KEGG enrichment analysis. In Figure 4(b) and Table 2, we
noted that the ESCA-specific DEGs were remarkably linked
to cell cycle progression like chromosome segregation,
nuclear division, mitotic nuclear division, and sister chro-
matid segregation. Additionally, the ESCA-specific DEGs
were in relation to ESCA progression-relevant KEGG
pathways like cell cycle, DNA replication, cellular senes-
cence, base excision repair, mismatch repair, p53 signaling
pathway, homologous recombination, nucleotide excision
repair, and apoptosis (Figure 4(c) and Table 3).

3.5. Establishment of a PPI Network and Discovery of ESCA-
Specific Hub Genes. For uncovering the interactions of the
ESCA-specific DEGs, we conducted a PPI network in ac-
cordance with the STRING online tool. As shown in
Figure 5(a), there were close interactions of proteins derived
from the ESCA-specific DEGs. Utilizing CytoHubba plugin,
we further determined the 10 ESCA-specific hub genes
among them, containing TOP2A (score� 4.45 E + 23),
ASPM (score� 4.45 E + 23), CDK1 (score� 4.45 E + 23),
CDC20 (score� 4.45 E + 23), CCNA2 (score� 4.45 E + 23),
KIF20A (score� 4.45 E + 23), KIF11 (score� 4.45 E + 23),
DLGAP5 (score� 4.45 E + 23), TPX2 (score� 4.45 E + 23),
and BUB1B (score� 4.45 E + 23; Figure 5(b)). -ese ESCA-
specific hub genes might exert crucial roles in ESCA
progression.

3.6. Association of the ESCA-Specific Hub Genes with Path-
ological StagingofESCA. Further analysis was carried out for
evaluating the associations of the ten ESCA-specific hub
genes with diverse pathological staging of ESCA patients in
TCGA cohort. Our results demonstrated that ASPM,
BUB1B, CCNA2, CDC20, CDK1, DLGAP5, KIF11, KIF20A,
TOP2A, and TPX2 presented the different expression in
diverse pathological stages across ESCA patients
(Figures 6(a)–6(j)). -is indicated that the 10 ESCA-specific
hub genes were remarkably linked to pathological staging of
ESCA.

3.7. Association of the ESCA-Specific Hub Genes with ESCA
Patients’ Prognosis. In accordance with the optimal cutoff
value of the expression of the ESCA-specific hub genes, we
stratified ESCA patients in TCGA cohort into high and
expression groups of ASPM, BUB1B, CCNA2, CDC20,
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CDK1, DLGAP5, KIF11, KIF20A, TOP2A, and TPX2
(Figures 7(a)–7(j)). Among them, we noted that ESCA
patients in the high expression of the KIF11 group presented
more undesirable overall survival outcome in comparison to
those in the low expression of the KIF11 group.

4. Discussion

High-throughput sequencing technologies have improved
our understanding about the heterogeneity and molecular
basis underlying ESCA. At present, available biomarkers for
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Figure 1: Analysis of DEGs of ESCA both in TCGA and GSE38129 datasets. (a) Volcano plots depict the results of differential expression
analysis between 160 ESCA tumors and 11 normal tissues in TCGA cohort. Red bubble indicates upregulated gene in ESCA; green bubble
represents downregulated gene in ESCA; black bubble is indicative of nonsignificant gene. (b) Heatmap visualizes the expression patterns of
DEGs with adjusted p value <0.05 and |log2fold-change|>1 in 160 ESCA tumors (T) and 11 normal tissues (N) in TCGA cohort. Red
represents upregulation, while green indicates downregulation. (c) Volcano plots present the results of differential expression analysis
between 30 paired ESCA tumors and nontumor tissues in the GSE38129 dataset. Red bubble expresses upregulated gene in ESCA; green
bubble is indicative of downregulated gene in ESCA; black bubble represents nonsignificant gene. (d) Heatmap displays the expression
patterns of DEGs with adjusted p value <0.05 and |log2fold-change|>1 in 30 paired ESCA tumors (T) and nontumor tissues (N) in the
GSE38129 dataset. Red is indicative of upregulation while green is indicative of downregulation.
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Figure 2: Establishment of a coexpression network and discovery of ESCA-specific coexpression module in the TCGA dataset. (a) Sample
cluster analysis. (b)-e scale-free network topology (left) as well as mean connectivity (right) under distinct soft threshold power values. (c)
Gene dendrogram clustered in accordance with a dissimilarity measure. -e upper panel indicates gene tree, and the bottom panel
represents gene modules identified by diverse colors. (d) Heatmap visualizes the interaction between coexpression modules and clinical
trait-tissue type. -e upper number in each cell presents Pearson correlation coefficient between each module and tissue type. Meanwhile,
the lower number indicates the p value. (e) Scatter plots depict the interaction between module membership and gene significance for
normal tissue type for the yellow module. (f ) Scatter plots present the interaction between module membership and gene significance for
ESCA tumor tissue type for the yellow module.
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Figure 3: Development of a coexpression network and discovery of ESCA-specific coexpressionmodule in the GSE38129 cohort. (a) Sample
cluster analysis of 30 paired ESCA tumors and nontumors. (b) -e scale-free network topology (left) and mean connectivity (right)
following diverse soft threshold power values. (c) Gene dendrogram clustered in line with a dissimilarity measure. -e upper panel presents
gene tree and the bottom panel is indicative of gene modules signed by diverse colors. (d) Heatmap displays the relationship between
coexpression modules and clinical trait-tissue type. -e upper number in each cell presents Pearson correlation coefficient between each
module and tissue type. Additionally, the lower number represents the p value. (e) Scatter plots showing the association between module
membership and gene significance for normal tissue type for the turquoise module. (f ) Scatter plots present the correlation between module
membership and gene significance for ESCA tumor tissue type for the turquoise module.
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prediction of ESCA patients’ survival outcome remain
nonsufficiently sensitive and specific. Hence, this study was
conducted for discovering novel biomarkers for efficiently
predicting ESCA patients’ prognosis through the WGCNA
algorithm, eventually lowering patients’ morbidity and
mortality.

Combining the DEGs and ESCA-specific genes in TCGA
and GSE38129 cohorts, we determined 91 ESCA-specific
DEGs. Our functional enrichment analyses uncovered that
the ESCA-specific DEGs were remarkably linked to cell cycle
progression and carcinogenic pathways like the p53 sig-
naling pathway, cellular senescence, and apoptosis. -is
indicated that the ESCA-specific DEGs exerted crucial roles
in ESCA progression. Additionally, there were prominent
interactions between proteins derived from the ESCA-
specific DEGs in accordance with the PPI network. Among
them, the 10 ESCA-specific hub genes were finally

determined, containing ASPM, BUB1B, CCNA2, CDC20,
CDK1, DLGAP5, KIF11, KIF20A, TOP2A, and TPX2.

-e tumorigenic roles of ASPM have been proposed in
diverse cancer types. For instance, ASPM triggers prostate
carcinoma stemness and progression through enhancing the
Wnt-Dvl-3-beta-catenin pathway [20]. It is predictive of
undesirable prognosis and modulates cellular proliferation
in bladder carcinoma [21]. Its upregulation accelerates
glioblastoma growth through modulating G1 restriction
point progression as well as the Wnt-beta-catenin pathway
[22]. Aberrantly expressed ASPM regulated by transcrip-
tional factor FoxM1 triggers the malignant progression of
gliomas [23]. Additionally, it is linked to poor survival
outcome as well as induces carcinogenesis in diffuse large
B cell lymphoma [24]. Abnormally expressed ASPM induces
the progression of lung squamous cell carcinoma through
modulating CDK4 [25]. Increasing evidences demonstrate
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Figure 4: Identification of ESCA-specific DEGs and their biological significance. (a) Venn diagram depicts the intersection of the DEGs and
the ESCA-specific genes in TCGA and GSE38129 cohorts. (b) GO enrichment results of the ESCA-specific DEGs. -e first 10 enrichment
results of BP, CC, and MF categories are separately displayed. (c) KEGG pathway enrichment results of the ESCA-specific DEGs.
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Table 1: -e list of ESCA-specific DEGs.

ESCA-specific DEGs
CBX3 FOXM1 DBF4 LMNB2 BLM
KAT2B DLGAP5 MCM10 ASPM C1orf112
KIF4A PCNA NUSAP1 UBE2S AURKB
AURKA KIF18B CDT1 POLE2 FBXO5
CKS1B CENPE BUB1B OIP5 MYBL2
ECT2 CDC6 BIRC5 CCNA2 CHEK1
HOXB7 CEP55 NCAPH CCNB1 TFRC
KIF14 MCM6 DTL MKI67 UBE2C
TRIP13 PRC1 NCAPG DEPDC1 CDKN3
CITED2 CDCA3 FAM189A2 LMNB1 KIF20A
MCM2 FEN1 HJURP NDC1 GINS2
WDHD1 NUDT1 ORC6 KIF11 CENPF
RAD51AP1 RNASEH2A HMMR GINS1 STMN1
MAD2L1 PBK ECHDC2 RUVBL1 EXO1
NDC80 CKS2 FYCO1 CENPM DNMT1
NEK2 KIF18A DDX39A KNTC1 CDK1
KIF2C SECISBP2L MELK CDC20 TPX2
KIF23 RAD54L SHCBP1 TK1 TOP2A
SPC25

Table 2: -e detailed information of GO enrichment results of ESCA-specific genes.

ID Description Gene
ratio BgRatio P value Adjusted p Q value Count

GO:
0000280 Nuclear division 39/90 436/

18862 4.56E− 40 6.17E− 37 4.56E− 37 39

GO:
0140014 Mitotic nuclear division 34/90 296/

18862 2.13E− 38 1.44 E− 35 1.07E− 35 34

GO:
0048285 Organelle fission 39/90 486/

18862 3.31E− 38 1.49 E− 35 1.10E− 35 39

GO:
0007059 Chromosome segregation 35/90 337/

18862 5.24E− 38 1.77 E− 35 1.31E− 35 35

GO:
0000819 Sister chromatid segregation 28/90 199/

18862 5.58E− 34 1.51 E− 31 1.12E− 31 28

GO:
0098813 Nuclear chromosome segregation 30/90 273/

18862 4.07E− 33 9.16 E− 31 6.77E− 31 30

GO:
0000070 Mitotic sister chromatid segregation 26/90 164/

18862 6.09E− 33 1.18E− 30 8.70E− 31 26

GO:
0051983 Regulation of chromosome segregation 17/90 89/18862 4.02E− 23 6.80E− 21 5.02E− 21 17

GO:
0030071 Regulation of mitotic metaphase/anaphase transition 15/90 59/18862 1.50E− 22 2.25 E− 20 1.66E− 20 15

GO:
0007091 Metaphase/anaphase transition of mitotic cell cycle 15/90 61/18862 2.63E− 22 3.55 E− 20 2.63E− 20 15

GO:
0005819 Spindle 30/90 381/

19520 3.83E− 29 4.34 E− 27 2.77E− 27 30

GO:
0098687 Chromosomal region 29/90 345/

19520 5.72E− 29 4.34 E− 27 2.77E− 27 29

GO:
0000775 Chromosome, centromeric region 21/90 196/

19520 3.40E− 23 1.72E− 21 1.10E− 21 21

GO:
0000793 Condensed chromosome 21/90 217/

19520 3.00E− 22 1.14E− 20 7.26E− 21 21

GO:
0000779 Condensed chromosome, centromeric region 17/90 117/

19520 3.24E− 21 9.84 E− 20 6.27E− 20 17

GO:
0000776 Kinetochore 17/90 137/

19520 5.31E− 20 1.35 E− 18 8.57E− 19 17

GO:
0000777 Condensed chromosome kinetochore 14/90 106/

19520 5.13E− 17 1.11E− 15 7.10E− 16 14

GO:
0000228 Nuclear chromosome 18/90 250/

19520 7.75E− 17 1.47 E− 15 9.38E− 16 18
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the crucial role of ASPM in cancer progression. For example,
BUB1B accelerates prostate carcinoma proliferation through
transcriptionally modulating MELK [26]. It triggers hepa-
tocellular carcinoma development through activating
mTORC1 signaling [27]. It can facilitate extrahepatic
cholangiocarcinoma development through JNK/c-Jun sig-
naling [28]. Moreover, it participates in the tumorigenicity
and radioresistance of glioblastoma [29]. For CCNA2, it can
be suppressed by miR-219-5p, thereby affecting cellular
proliferation and cell cycle progression in ESCA [30]. A
previous study has proposed that CDC20 modulates E2F1
degradation and thymidylate synthase expression, thereby
triggering ESCA chemoresistance [31]. Furthermore, CDK1
has been considered as an underlying diagnostic and cancer

progression biomarker as well as a drug target for ESCA [32].
Previous bioinformatics and experimental evidences have
demonstrated the tumorigenic role of DLGAP5 in ESCA
[33]. KIF11 is essential for spheroid formation of ESCA cells
[34]. ScRNA-seq and qPCR analysis uncovered that KIF20A
possesses the potential to diagnose and predict ESCA pa-
tients’ prognosis [35]. For TOP2A, experimental data
demonstrate that it can affect the resistance of ESCA cells to
paclitaxel [36]. Targeting TPX2 relieves ESCA progression
through weakening tumor growth and invasion [37, 38].
Additionally, its upregulation is mediated by LINC00337
and triggers autophagy and resistance to cisplatin in ESCA
cells [39]. On the basis of previously published literature and
our findings, ASPM, BUB1B, CCNA2, CDC20, CDK1,

Table 2: Continued.

ID Description Gene
ratio BgRatio P value Adjusted p Q value Count

GO:
0072686 Mitotic spindle 15/90 157/

19520 5.26E− 16 8.89 E− 15 5.67E− 15 15

GO:
0030496 Midbody 15/90 193/

19520 1.17E− 14 1.77 E− 13 1.13E− 13 15

GO:
0008017 Microtubule binding 15/89 269/

18337 3.07E− 12 5.56 E− 10 3.91E− 10 15

GO:
0015631 Tubulin binding 16/89 368/

18337 2.33E− 11 2.11E− 09 1.49E− 09 16

GO:
0003777 Microtubule motor activity 9/89 69/18337 4.41E− 11 2.66 E− 09 1.87E− 09 9

GO:
0016887 ATPase activity 16/89 478/

18337 1.09E− 09 4.92 E− 08 3.46E− 08 16

GO:
0140097 Catalytic activity, acting on DNA 11/89 204/

18337 4.22E− 09 1.53 E− 07 1.08E− 07 11

GO:
0003774 Motor activity 9/89 129/

18337 1.26E− 08 3.67 E− 07 2.59E− 07 9

GO:
0008574

ATP-dependent microtubule motor activity, plus-end-
directed 5/89 17/18337 1.42E− 08 3.67 E− 07 2.59E− 07 5

GO:
1990939 ATP-dependent microtubule motor activity 5/89 35/18337 6.96E− 07 1.57 E− 05 1.11E− 05 5

GO:
0035173 Histone kinase activity 4/89 16/18337 9.02E− 07 1.81E− 05 1.28E− 05 4

GO:
0003688 DNA replication origin binding 4/89 23/18337 4.28E− 06 7.06 E− 05 4.97E− 05 4

Table 3: -e detailed information of KEGG pathways enriched by ESCA-specific genes.

ID Description Gene ratio BgRatio P value Adjusted p Q value Count
hsa04110 Cell cycle 13/43 126/8104 4.08E− 14 2.08E− 12 1.59 E− 12 13
hsa03030 DNA replication 6/43 36/8104 2.69E− 08 6.85E− 07 5.23 E− 07 6
hsa04114 Oocyte meiosis 6/43 131/8104 5.94E− 05 0.001009 0.000771 6
hsa04218 Cellular senescence 6/43 156/8104 0.000156 0.001923 0.001468 6
hsa04914 Progesterone-mediated oocyte maturation 5/43 102/8104 0.000189 0.001923 0.001468 5
hsa03410 Base excision repair 3/43 33/8104 0.00068 0.005776 0.004411 3
hsa05166 Human T cell leukemia virus 1 infection 6/43 222/8104 0.001031 0.007513 0.005737 6
hsa05203 Viral carcinogenesis 5/43 204/8104 0.004257 0.02714 0.020726 5
hsa03430 Mismatch repair 2/43 23/8104 0.006483 0.034097 0.026039 2
hsa04115 p53 signaling pathway 3/43 73/8104 0.006686 0.034097 0.026039 3
hsa03440 Homologous recombination 2/43 41/8104 0.019784 0.091726 0.070049 2
hsa03420 Nucleotide excision repair 2/43 47/8104 0.025565 0.108651 0.082974 2
hsa04210 Apoptosis 3/43 136/8104 0.035027 0.137412 0.104938 3
hsa04120 Ubiquitin mediated proteolysis 3/43 142/8104 0.039049 0.14225 0.108633 3
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(a) (b)

Figure 5: Establishment of a PPI network and discovery of ESCA-specific hub genes. (a) -e PPI network of ESCA-specific DEGs through
the STRING online tool. (b) Discovery of the ESCA-specific hub genes utilizing CytoHubba plugin.-e ten hub genes are marked in orange.
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Figure 6: Association of the ESCA-specific hub genes with pathological staging of ESCA patients. (a–j) Box plots depict the difference in (a)
ASPM, (b) BUB1B, (c) CCNA2, (d) CDC20, (e) CDK1, (f ) DLGAP5, (g) KIF11, (h) KIF20A, (i) TOP2A, and (j) TPX2 among diverse
pathological staging of ESCA patients in TCGA cohort.
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DLGAP5, KIF11, KIF20A, TOP2A, and TPX2 play crucial
roles in ESCA progression.

Currently, approach of predicting ESCA patients’
prognosis primarily depends on the conventional TNM
staging system. Although conventional TNM staging is
crucial for diagnosis and treatment interventions, it cannot
roundly uncover the intrinsic biological processes and
pathological development due to the high heterogeneity in
tumor microenvironment and individual discrepancy. Our
results demonstrated that the 10 ESCA-specific hub genes
(ASPM, BUB1B, CCNA2, CDC20, CDK1, DLGAP5, KIF11,
KIF20A, TOP2A, and TPX2) presented the remarkable as-
sociations with pathological staging, indicating that their
roles in ESCA progression. Among them, KIF11 upregu-
lation was indicative of an unfavorable survival outcome of
ESCA patients, indicative of the potential of KIF11 as a
prognostic indicator of ESCA.

However, there are certain drawbacks in our study. First,
the influence of expression alteration of the ESCA-specific

hub genes upon patients’ prognosis remains to be explored.
Hence, in our future, the interactions of the ESCA-specific
hub genes with patients’ prognosis will be monitored and
verified in the large-scale clinical data. Additionally, it is of
importance to consider statistical bias because the sample
size is relatively small. Moreover, in-depth investigation will
be presented for validating the biological significance of the
ESCA-specific hub genes through in vitro and in vivo
experiments.

5. Conclusion

Overall, this study determined the 10 ESCA-specific hub
genes as novel markers for ESCA with the WGCNA
algorithm based on distinct datasets, which offered
promising targets for ESCA precision medicine.
Nevertheless, in-depth exploration is required for vali-
dating the biological function of the specific hub genes in
large-scale clinical cohorts.
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Figure 7: Association of the ESCA-specific hub genes with ESCA patients’ prognosis in TCGA cohort. (a–j) Kaplan–Meier curves display
the difference in overall survival between high and low expression of (a) ASPM, (b) BUB1B, (c) CCNA2, (d) CDC20, (e) CDK1, (f )DLGAP5,
(g) KIF11, (h) KIF20A, (i) TOP2A, and (j) TPX2 groups. Survival difference between groups is determined with the log-rank test.
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Glioma is the most common malignant primary brain tumor with an inferior survival period and unsatisfactory prognoses.
Identification of novel biomarkers is important for the improvements of clinical outcomes of glioma patients. In recent years,
more and more biomarkers were identified in many types of tumors. However, the sensitive markers for diagnoses and prognoses
of patients with glioma remained unknown. In the present research, our team intended to explore the expression and clinical
significance of ABCC3 in glioma patients. Sequential data filtration (survival analyses, independent prognosis analyses, ROC curve
analyses, and clinical association analyses) was completed, which gave rise to the determination of the relationship between glioma
and the ABCC3 gene. Clinical assays on the foundation of CGGA and TCGA datasets unveiled that ABCC3 expression was
distinctly upregulated in glioma and predicted a shorter overall survival. In the multivariable Cox analysis, our team discovered
that the expression of ABCC3 was an independent prognosis marker for both 5-year OS (HR� 1.118, 95% CI: 1.052–1.188;
P< 0.001). Moreover, our team also studied the association between ABCC3 expression and clinical features of glioma patients,
finding that differential expression of ABCC3 was remarkably related to age, 1p19q codeletion, PRS type, chemo status, grade,
IDH mutation state, and histology. Overall, our findings suggested ABCC3 might be a novel prognosis marker in glioma.

1. Introduction

Glioma is the most commonly seen malignancy primary
cerebroma and themost fatal type of cerebroma in adults [1].
Of the 4 categories of glioma categorized by the WHO, the
most severe gradation (gradation IV) is GBM [2]. -e
morbidity and mortality of GBM cases have also increased
year by year. GBM displays elevated aggressive proliferation
and a tendency to invade and metastasize [3, 4]. Despite the
fact that remarkable progresses have been made in the di-
agnoses and target treatment of this disease, the prognostic
results of sufferers remain unsatisfactory [5, 6]. For that
reason, more and more studies are conducted to find
promising markers for tumor identification or forecast re-
sults, particularly in the early phases.

-e progress in biological information and high-flux
sequencing has realized the determination of various cancer
markers which might assist the prognostic accurateness of
GBM, which might give rise to more valid interventions in
this regard [7, 8]. Tan et al. reported that serum long
noncoding RNA HOTAIR was highly expressed in glio-
blastoma, and its positive association with long-term sur-
vival in tumors patients was also confirmed, indicating sera
HOTAIR could be utilized as a novel prognosis and diag-
nostic marker for GBM [9]. Stanniocalcin 1 was reported to
be overexpressed in glioma, and its upregulation in glioma
patients predicted a poor prognosis [10]. Moreover, LAMC1
was also reported to be vital for the development of this
disease and might be utilized in the diagnoses, prognoses,
and target treatment of sufferers [11]. On the other hand,
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more and more prognostic models based on multiple genes
were also developed [12, 13]. -ose biomarkers might be
utilized for future sophisticated diagnosis and decision-
making processes [14]. Despite these advances, more reliable
prognostic indicators are needed for glioma.

Herein, we searched CGGA datasets and identifiedmany
survival-related genes based on several conditions. Finally,
we identified 132 genes which may be the most important
survival-related genes in glioma. Among those genes, our
attention focused on ABCC3. Recently, some studies have
discovered the dysregulation of ABCC3 in many cancers,
including glioma [15–18]. However, its clinical significance
in glioma patients was rarely reported.

2. Materials and Methods

2.1. Data Collection. We collected 1018 glioma sufferers for
the following investigation. Clinic feature data and tran-
scriptomic sequencing results of CGGA microarray and
RNA-sequencing cohorts were acquired from the CGGA
dataset [19]. Our team utilized FPKM to speculate the ex-
pression of RNA. Each sufferer without prognosis data was
excluded at first. As the data were acquired from TCGA and
the CGGA, the acceptance from the ethical board was not
needed.

2.2. Survival Analysis Filtration. Survival and survminer
packages were used in R program [20], and K–M and
univariable Cox analysis were utilized for filtering genetic
expression and survival data, with P< 0.001 being significant
on statistics.

2.3. Analyses of the Expression of the Survival-Associated
Genes in GBM. -e information of differentially expressed
survival-associated genes between tumor and matched
normal tissues was from TCGA and GTEx databases. GEPIA
was applied to analyze the expressions of the survival-as-
sociated genes in GBM [21].

2.4. IndependentPrognosisRole ofABCC3 inGliomaSufferers.
To determine the impact of ABCC3 expression on prog-
noses, our team has to evaluate if the ABCC3 expression was
related to the rest of the factors clinically, such as sex, age,
IDH1 variant phase, and cancer WHO gradation. For that
reason, univariable and multivariable Cox proportion assays
were finished to identify the independent prognosis effects of
ABCC3 with the forward stepwise procedure. -e ABCC3
expression and clinical factors were considered to be in-
dependence factors when the modified P result was <0.05.
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Figure 1: Kaplan–Meier curve of correlation between the top 6 genes including (a) MED8, (b) HIST1H2BK8, (c) ANXA1, (d) AK2,
(e) ABCC3, and (f) ABRACL of glioma samples and overall survival of patients based on CGGA datasets.
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2.5. Clinic Relevance Filtration. -e data of gene expressions
acquired from ROC curve filtration and the relevant clinic
data were studied via R program and subjected to filtration
via P< 0.05.

2.6. Analyses of the Association between the Expression of
ABCC3 and Clinical Features. Genetic expression and
relevant clinic data acquired from ROC curve filtration
were studied in R to abstract the clinic data related to the
ABCC3 gene. -e association between the expression of
ABCC3 and a variety of clinic features was identified via
beeswarm.

2.7. Statistical Analysis. All the statistical analyses were
performed using R version 3.4.2 software. A two-tailed
P< 0.05 was considered statistically significant.

3. Results

3.1. Identification of Survival-Related Genes in Glioma.
We performed the K–M, univariable Cox method, and
multivariable Cox analyses to screen the survival-related
genes. -en, AUC >0.7 was taken as the liminal value for
ROC curve analyses (Supplementary Table S1). Eventually,
the association between genes and clinic features was
studied, with P< 0.05 being the threshold. As shown in
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Figure 2: -e expressing pattern of the top 6 genes in GBM based on TCGA datasets. -e expression of (a) ABCC3, (b) HIST1H2BK8,
(c) AK2, and (d) ANXA1 was distinctly increased in GBM samples. (e, f ) -e expression of ABRACL and MED8 remained unchanged
between GBM samples and nontumor samples.
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Figures 1(a)–1(f), we showed the top 6 survival-related genes
including MED8 (Figure 1(a), P< 0.001), HIST1H2BK8
(Figure 1(b), P< 0.001), ANXA1 (Figure 1(c), P< 0.001),
AK2 (Figure 1(d), P< 0.001), ABCC3 (Figure 1(e),
P< 0.001), and ABRACL (Figure 1(f), P< 0.001).

3.2. �e Distinct Upregulation of ABCC3 in GBM Specimens.
-en, we used GEPIA to study the expressions of the
abovementioned 6 genes and found that ABCC3
(Figure 2(a)), HIST1H2BK83 (Figure 2(b)), AK2
(Figure 2(c)), and ANXA1 (Figure 2(d)) exhibited an in-
creased level in GBM specimens in contrast to healthy ce-
rebrum specimens. However, the expressions of ABRACL
and MED8 remained unchanged between GBM specimens

and nontumor specimens (Figures 2(e) and 2(f)). Our at-
tention focused on ABCC3.

3.3. �e Prognostic Significance of ABCC3 in Glioma Patients
from theCGGADatabase. To investigate the prognostic value
of the expression of ABCC3 in glioma patients, our team
performed univariable Cox analyses and observed that
ABCC3 (HR� 1.369; 95% CI� 1.306–1.435; P< 0.001), PRS
types, histological status, gradation, ages, and chemotherapy
were factors related to higher risks and IDH variant and
1p19q codeletion were related to lower risks (Figure 3(a)).
Multivariable Cox analyses revealed that ABCC3 (HR� 1.118;
95% CI� 1.052–1.188; P< 0.001) was related to OS in an
independent way, which unveiled that ABCC3 could serve as
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Figure 3: (a) Univariate and (b) multivariate analysis of ABCC3 expression and its correlation in patients with glioma based on
CGGA data.
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an independence marker for the clinical outcome of this
disease. Moreover, PRS types, gradation, ages, chemotherapy,
IDH variant, and 1p19q codeletion might be independent
prognosis factors as well (Figure 3(b)). ROC curve analyses
revealed that ABCC3 was a predicting factor of 1-year
(AUC� 0.717), 3-year (AUC� 0.757), and 5-year survival
(AUC� 0.755) (Figure 4). Finally, we analyzed the relation-
ship between ABCC3 expressions and clinic characteristics of
glioma patients, finding that differentially expressing ABCC3
was remarkably related to age (Figure 5(a)), 1p19q codeletion
(Figure 5(b)), PRS type (Figure 5(c)), chemo status
(Figure 5(d)), grade (Figure 5(e)), IDH mutation status
(Figure 5(f)), and histology (Figure 5(g)). Our findings
suggested ABCC3 might participate in the clinical develop-
ment of glioma and may be a novel biomarker.

4. Discussion

Amongst inhomogeneous primary cancers of the CNS,
gliomas are the most common type, with GBM featured by
the most unsatisfactory prognoses [22, 23]. In the past
10 years, the variant in epigenesis modulator genes has been
discovered to be crucial driving factor of the glioma sub-
groups with different clinic characteristics [24, 25]. More
and more potential regulators display the potential to be
used as novel diagnostic and prognostic biomarkers for
glioma [26–28]. Among them, the dysregulated genes with
positive regulatory functions in the tumor growth and
metastasis were the most hopeful biomarkers [29, 30].
However, the expression and function of most genes
remained largely unclear.

In this study, we analyzed CGGA datasets and identified
132 possible survival-related genes with a high score of ROC.

Among the 132 genes, we showed the top 6 genes, including
MED8, ABCC3, ABRACL, AK2, ANXA1, and HIST1H2BK.
However, only ABCC3, HIST1H2BK, AK2, and ANXA1
exhibited a high level in GBM. Previously, several studies
have reported the expressing pattern and function of
HIST1H2BK and ANXA1 in glioma [31, 32]. For instance,
knockdown of ANXA1 was reported to suppress the pro-
liferation and metastasis of glioma cells via regulating the
PI3K/Akt signaling pathway [33]. High HIST1H2BK ex-
pression predicted a shorter OS of glioma sufferers [34].
Nevertheless, the clinical significance of ABCC3 in glioma
has not been investigated. Herein, our team offered proofs
that the expression of ABCC3 was an independent prog-
nostic marker for overall survival of glioma sufferers.

Previously, some studies have reported the effects of
ABCC3 in many types of tumors. For instance, ABCC3
was found to be involved in the regulation of the sensi-
tivity of doxorubicin in triple-negative breast cancer [17].
ABCC3 was highly expressed in urinary bladder cancer,
and its knockdown inhibited cell growth, drug-resistant
ability, and aerobic glycolysis of bladder oncocytes [35].
In glioma, ABCC3 was shown to predict reactions in GBM
sufferers receiving combined chemo and DC immune
therapy [36]. -ose discoveries revealed the vital role of
ABCC3 in cancer development. Herein, our team ana-
lyzed the clinical feature of glioma patients with ABCC3
expression, finding that differentially expressed ABCC3
was remarkably related to PRS types, histological status,
gradations, ages, chemotherapy states, IDH variant, and
1p19q codeletion. Our findings suggested ABCC3
exhibited a prognostic value in glioma and may be in-
volved in clinical progression of glioma via complex
mechanisms.
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Figure 4: Time-dependent ROC curve for the patients in the CGGA dataset.
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5. Conclusions

ABCC3 is upregulated in patients with glioma. Its abnormal
expression can be utilized as an independent diagnostic and
prognostic biomarker for this tumor. Nevertheless, its mecha-
nisms and other effects remain unknown.Moreover, this study is
limited by its small sample. Hence, further studies are needed.
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[32] C. Berenguer-Daizé, L. Astorgues-Xerri, E. Odore et al.,
“OTX015 (MK-8628), a novel BET inhibitor, displays in vitro
and in vivo antitumor effects alone and in combination with
conventional therapies in glioblastoma models,” International
Journal of Cancer, vol. 139, pp. 2047–2055, 2016.

[33] J. F. Zhu, W. Huang, H. M. Yi et al., “Annexin A1-suppressed
autophagy promotes nasopharyngeal carcinoma cell invasion
and metastasis by PI3K/AKTsignaling activation,” Cell Death
& Disease, vol. 9, Article ID 1154, 2018.

[34] W. Liu, Z. Xu, J. Zhou et al., “High levels of HIST1H2BK in
low-grade glioma predicts poor prognosis: a study using
CGGA and TCGA data,” Frontiers in Oncology, vol. 10, Article
ID 627, 2020.

[35] X. Liu, D. Yao, C. Liu et al., “Overexpression of ABCC3
promotes cell proliferation, drug resistance, and aerobic
glycolysis and is associated with poor prognosis in urinary
bladder cancer patients,” Tumor Biology, vol. 37, no. 6,
pp. 8367–8374, 2016.

[36] S. Pellegatta, N. Di Ianni, S. Pessina et al., “ABCC3 expressed
by CD56(dim) CD16(+) NK cells predicts response in glio-
blastoma patients treated with combined chemotherapy and
dendritic cell immunotherapy,” International Journal of
Molecular Sciences, vol. 20, 2019.

8 Journal of Oncology


