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Pablo González-Vera, Spain

Laurent Gosse, Italy

K. S. Govinder, South Africa

Jose Luis Gracia, Spain

Yuantong Gu, Australia

Zhihong Guan, China

Nicola Guglielmi, Italy

F. G. Guimarães, Brazil
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Biomedical sciences and engineering are representative multidisciplinary research areas that

have fulfilled the critical needs of modern medicine and biology. There is no doubt that

applied mathematics has played a key role in developing new technologies in these emerging

disciplines. For example, modern medical imaging systems such as magnetic resonance

imaging (MRI) and computed tomography (CT) could not be materialized without the aid

of advanced optimization theories and reconstruction algorithms. Progresses in numerical

analysis and biostatistics have also contributed to the rapid advancement of physiological

signal processing and computer-aided diagnosis of intractable diseases. Indeed, biomedical

sciences and engineering have already become one of the most promising application areas

of applied mathematics.

Considering the above-mentioned trends, it seems natural that this journal selected

biomedical sciences and engineering as the theme of its Special Issue. This special issue

includes fourteen high-quality peer-reviewed articles that might provide researchers in the

field of applied mathematics with the current state-of-the-art knowledge of this emerging

interdisciplinary research field.

In the paper “Qualitative and computational analysis of a mathematical model for tumor-
immune interactions” by F. Rihan et al., a model of differential equations is provided for

elucidating the dynamics of tumor growth and immunotherapy interactions, which can

predict tumor dormancy and estimate the critical tumor-growth rate.
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The paper “Monitoring personalized trait using oscillometric arterial blood pressure
measurements” by Y. Shin suggests a new approach for monitoring personalized trait in

oscillometric arterial blood pressure measurements. The proposed approach could offer more

reliable blood pressure patterns than the broadly used principal component analysis.

The paper “A linear transformation approach to estimate pulse arrival time” by D. Kim et al.

addresses a new mathematical framework for pulse arrival time estimation, combining local

characteristics point methods with global parametric methods. The proposed linear method

proved to be robust to noise as compared with standard approaches.

In the paper “Modeling of brain shift phenomenon for different craniotomies and solid
models” by A. Valencia et al., the authors investigate mathematical models to compute brain

displacement caused by craniotomy. The authors predict the displacements and stress levels

for three models—elastic model, hyperelastic Ogden model, and hyperelastic Mooney-Rivlin

model.

In the paper, “Dynamical models for infectious diseases with varying population size and
vaccinations”, the authors, P. Shi and L. Dong, propose models for the spread of infectious

diseases and vaccinations. They establish results for the existence and global stability of

disease-free and endemic equilibria for two cases: susceptible populations are (a) vaccinated

continuously and (b) vaccinated once per time period.

In the paper, “Scanning reduction strategy in MEG/EEG beamformer source imaging” by J.

Hong and S. Jun, an efficient source scanning strategy in magnetoencephalography (MEG)
and electroencephalography (EEG) beamformer imaging is proposed, leading to reduction

in the number of scanning points while maintaining good spatial resolution. The efficacy of

the new method is demonstrated through numerical and empirical experiments.

In the paper, “Selecting negative samples for PPI prediction using hierarchical clustering
methodology” by J. Urquiza et al., a new protein-protein interaction (PPI) support vector

machine (SVM) predictor model is proposed. The model is based on using a clustering

approach to select a suitable negative data set. The new model is able to classify PPIs under

various cases containing positive and negative datasets.

In the paper, “A new weighted correlation coefficient method to evaluate reconstructed
brain electrical sources” by J. Choi et al., a novel evaluation metric to evaluate the accuracy

of reconstructed MEG and EEG cortical sources is proposed. The new metric reflects the

geometry of the cortical surface more accurately.

The paper “Phase- and GVF-based level set segmentation of ultrasonic breast tumors” by

L. Gao et al. deals with the segmentation of ultrasonic breast tumors by combining a phase

asymmetry approach and a new edge stopping function. They developed a method that can

robustly cope with noise and extract the low contrast and/or concave boundaries with high

accuracy.

The paper “Mathematical Issues in the Inference of Causal Interactions among Multichannel
Neural Signals” by Y. Jung et al. is a well-organized review paper in which the authors

described the current state-of-the-art technologies used for the causality inference in the

field of neuroscience. It is expected that readers of this journal would be interested in the

review paper, since the paper introduces a new interdisciplinary research topic to which their

mathematical theories can be applied.

The paper “The second-order born approximation in diffuse optical tomography” by K.

Kwon proposes a new numerical method based on the second-order Born approximation for

better finding the solutions of diffuse optical tomography (DOT) reconstruction problems.

Numerical implementation of the suggested method verifies that the new method has better

convergence order than the conventional linearized method.
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In the paper “General computational model for human musculoskeletal system of spine”
by K. Kim et al., a general computational model of the human lumbar spine and trunk

muscles including optimization formulations is provided. It is expected that the presented

computational model and optimization technology can be fundamental tools to understand

the control principle of human trunk muscles.

The paper “Personal identification based on vectorcardiogram derived from limb leads
electrocardiogram” by J. Lee et al. propose a new method for personal identification using

the derived vectorcardiogram (dVCG) from the limb leads electrocardiogram (ECG). The

presented experimental results show that it is possible to identify a person by features

extracted from a dVCG derived from limb leads only.

In the paper “Coupling of point collocation meshfree method and FEM for EEG forward
solver” by C. Lee et al., MEG and EEG forward problems are solved using a new coupling

method combining finite element method (FEM) and a point collocation meshfree method.

Simulation results show that the hybrid method can be used for efficient computation of EEG

and MEG forward problems.
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We propose a new mathematical framework for estimating pulse arrival time (PAT). Existing
methods of estimating PAT rely on local characteristic points or global parametric models: local
characteristic point methods detect points such as foot points, max points, or max slope points,
while global parametric methods fit a parametric form to the anacrotic phase of pulse signals.
Each approach has its strengths and weaknesses; we take advantage of the favorable properties
of both approaches in our method. To be more precise, we transform continuous pulse signals
into scalar timing codes through three consecutive transformations, the last of which is a linear
transformation. By training the linear transformation method on a subset of data, the proposed
method yields results that are robust to noise. We apply this method to real photoplethysmography
(PPG) signals and analyze the agreement between our results and those obtained using a
conventional approach.

1. Introduction

The importance of arterial stiffness as a cardiovascular disease index has been emphasized

in recent years [1–6], because arterial stiffness can be acquired using inexpensive and

noninvasive methods such as pulse wave velocity (PWV) [7, 8]. PWV is considered to

be a good indicator for assessing arterial stiffness because it shows a strong correlation

with cardiovascular events and mortality [1, 9–15]. Furthermore, PWV can be used for the

continuous assessment of cardiovascular homeostasis and regulation [16].
One approach to assess PWV in vivo relies on tracking pressure pulses that arise from

the onset of left ventricular ejection. This is the common method for acquiring PWV in
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the arterial trees which uses ECG and two pressure pulses that are measured simultaneously.

In general, pressure pulses are measured at the carotid and femoral arteries, respectively,

and PWV is calculated as the distance between the two sites divided by the time for the pulse

wave to travel that distance. The time that it takes the pulse pressure to travel from the carotid

artery to the femoral artery is called pulse arrival time (PAT) [17].
To measure pressure pulses at the carotid and femoral arteries, a catheter is

generally used. However, it is difficult to measure pressure pulses without clinical assistance

because this is an invasive method. For this reason, intensive efforts have been made to

improve the performance of external skin transducers that can measure PWV in recent

years. Several techniques have been developed to record pressure pulses. Among these,

photoplethysmography (PPG) is particularly popular as a noninvasive, nonobstructive

technique that is based on the temporal patterns of light absorption in living tissues because

morphological characteristics of PPG are similar to pressure pulse, especially in the arteries

[18].
Pulse arrival time of PPG pulse is typically measured by detecting local characteristic

points: the foot determined by the start point of the anacrotic phase (FOOT), the maximum-

slope of the anacrotic phase (MS), and the maximum amplitude of the pulse (MAX)
[15, 19, 20]. Unfortunately, however, these characteristic points often yield unstable and

unreliable results when used to analyze PPG pulses with morphological variation due to

underlying conditions [15]. Thus, the design of robust extraction techniques that are capable

of estimating PAT from PPG pulses remains an unsolved problem. Solà and colleagues

suggested that PAT could be estimated by parametric modeling of the anacrotic phase of

pressure pulses in PPG. However, although their method produces robust and reliable results

under noisy conditions, it is relatively computationally complex because of the need to fit a

parametric function to every single pulse [21].
Therefore, our aim was to develop a method to measure PAT with accuracy and

reliability using simple operations. In the next section, we outline the mathematical

framework that we developed to estimate PAT.

2. Methods

2.1. Representation of PPG Signals in Vector Space

Let Ω be the set of all continuous PPG signals measured from human arteries. We can define

a sampling process ξM as follows:

ξM : Ω −→ R
M, (2.1)

where R
M is an M-dimensional Euclidean space. The mapping ξM reduces a continuous

signal to an M-dimensional vector point. The vector point forms a lower-dimensional cluster

in an M-dimensional space. Let us consider the cluster as being embedded by the manifold

Υ. Our goal in this paper is to find a mapping τ between this manifold and PAT:

τ : Υ −→ R
1. (2.2)

Then, the parametric estimation of PAT is given by the composition of two mappings: PAT =
τ ◦ ξM.
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PAT
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Figure 1: The estimation of PAT using a linear transformation approach.

However, manifolds constructed through normal sampling at a constant frequency

are highly curved. Training this type of manifold and mapping PAT using this manifold are

challenging [22]. Let us consider simple translations of Gaussian peaks, as shown in Figure 1.

The manifold constructed using simple translations is spirally curved. If slight variation is

added to Gaussian peaks, it is not feasible to parameterize the manifold with well-defined

functions.

Now, suppose that we find the sampling process ξM such that the manifold Υ can be

flat and isometric along PAT. For instance, if three vectors f, g, h ∈ Υ are collinear and have

isometric timing codes tf , tg , th, that is, (th−tg)f +(tf −th)g+(tg−tf)h = 0, then we can always

find the linear transformation ω such that tf = ωTf , tg = ωTg, and th = ωTh. This means that

the special sampling process allows the mapping τ to be the simplest form by ω. However,

we failed to find such a sampling process, regardless of the sampling frequencies applied to

the continuous signals; convex combination of two different vectors f, g ∈ Υ cannot be used

to represent the human artery PPG signal.

In this context, we propose adding another transformation between ξM and τ . By

considering the new mapping, we intend to keep the mapping, τ , the linear transformation.

If we denote the novel mapping as ζ, we can estimate the PAT of the PPG signals as

PAT = τ ◦ ζ ◦ ξM. (2.3)

We refer to this as a linear transformation approach for estimating PAT. In following

subsections, we describe the new transformation ζ in more detail.

2.2. Conjugate Transformations

In the previous subsection, we framed a set of three transformations to change continuous

pulse functions into scalar timing codes. The first transformation, ξM, is needed to reduce
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continuous pulse functions into M-dimensional vector points, while the third transformation

τ is the linear transformation. The function of the second transformation, ζ, will be fully

discussed in this subsection, in which we consider a well-known transformation called the

convex conjugate or Legendre transformation.

2.2.1. Convex Conjugate

The convex conjugate is a transformation that maps a convex function onto another convex

function [23, 24]. A convex function always has its conjugate function: the conjugate function

is also a convex function. First, we outline why we need convex functions. A Gaussian

function, which was exemplified as a pulse in the previous subsection, is the starting point

for developing our idea. Gaussian functions have a single peak and are nonnegative over

the entire region. Such a Gaussian function can be derived from a convex function by

differentiating the convex function twice. We can therefore consider convex functions instead

of Gaussian functions. A general type of pulse function that has mixed-signed values, unlike

Gaussian functions, will be discussed later.

Let us consider two arbitrary convex functions. When their first derivatives become

inverses of each other, two functions are referred to as “convex conjugate”. If two functions

f(t) and f̃(t̃) have such a relation, then

df

dt
◦ df̃
dt̃

= I =
df̃

dt̃
◦ df
dt
, (2.4)

where I is an identity function, that is, I ◦ t = t and I ◦ t̃ = t̃. To find an explicit expression for

f̃ , we assume

t̃ =
df

dt
◦ t. (2.5)

From (2.4) and (2.5), we obtain

I ◦ t = df̃

dt̃
◦ df
dt
◦ t =⇒ t =

df̃

dt̃
◦ t̃. (2.6)

Conversely, when we assume t = (df̃/dt̃) ◦ t̃, we also obtain t̃ = (df/dt) ◦ t. Thus, (2.4) gives

the reciprocal expressions (2.5) and (2.6), which are referred to as variable change.

When we assume a finite domain Ω on which a convex function is defined, the

independent variable t on the domain can be changed into its conjugate variable t̃ through

convex conjugate. Then, the function form f can be changed into the form f̃ by replacing t

with t̃. To be precise, the explicit form of the convex conjugate from above relations is

f̃
(
t̃
)
= sup

{
tt̃ − f(t) | t ∈ Ω

}
, (2.7)

where the conjugate variable t̃ is expressed as the gradient of f at t. By differentiating tt̃ −
f(t) with regard to t and equating this result to zero, we can confirm that t̃ is expressed as
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the gradient of f . Conversely, the new convex function can be converted back to the original

function in the same manner:

f(t) = sup
{
t̃t − f(t) | t̃ ∈ Ω̃

}
. (2.8)

In this case, the original variable t is expressed as the gradient of f̃ at t̃. Variables t and t̃ are

basically conservative fields with regard to each other. Convex conjugation was originally

derived from duality relationship between points and lines. The functional relationship

specified by f(t) can be represented equally as well as a set of points t, or as a set of tangent

lines specified by their gradients and intercept values.

2.2.2. Nonnegative Conjugate

Now, we introduce a new conjugate transformation termed nonnegative conjugate. This

transformation is closely related to the former convex conjugate. If f is twice continuously

differentiable and the domain is Ω, then we can characterize a convex function as follows:

f is convex iff f ′′(t) ≥ 0 for Ω. (2.9)

This is a link between convex conjugate and nonnegative conjugate based on the following

definition.

Definition 2.1. Suppose that two convex functions f(t) and f̃(t̃) are in convex conjugate for

t ∈ Ω and t̃ ∈ Ω̃ and their second derivatives f ′′(t) and f̃ ′′(t̃) are denoted as I(t) and Ĩ(t̃),
respectively. Then I(t) and Ĩ(t̃) are said to be nonnegative conjugate of each other on domains

Ω and Ω̃.

The two-dimensional conjugate transform that is analogous to this nonnegative

conjugate has been applied to image morphing [25].
Let us calculate the second derivatives directly. As mentioned in (2.5) and (2.6), the

first derivatives represent variable change between t and t̃. The second derivative of f(t) is

given as

f ′′(t) =
d2f(t)
dt2

=
dt̃

dt
. (2.10)

Similarly, the second derivative of f̃ ′′(t̃) is given as

f̃ ′′
(
t̃
)
=
d2f̃
(
t̃
)

dt̃2
=
dt

dt̃
. (2.11)

From (2.10) and (2.11), we obtain the following reciprocal relation between two second

derivatives:

f ′′(t)f̃ ′′
(
t̃
)
= 1. (2.12)
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If we denote f ′′(t) and f̃ ′′(t̃) as I(t) and Ĩ(t̃), the expression can be rewritten as I(t)Ĩ(t̃) = 1.

Then, the nonnegative conjugate of I(t) can be expressed as

Ĩ
(
t̃
)
=

1

I(t)
=

1

I
(
df̃
(
t̃
)
/dt̃
) =

1

I
((
d/dt̃

)
sup
{
tt̃ − f(t) | t ∈ Ω

})
=

1

I
((
d/dt̃

)
sup
{
tt̃ − ∫ ∫ I(t)dt | t ∈ Ω

}) . (2.13)

Like variable change in the convex conjugate transformation, the variable t of the nonnegative

function I(t) on the domain Ω can be formally changed by using the nonnegative conjugate.

This yields another nonnegative function Ĩ(t̃) on the domain Ω̃ when the variable t is replaced

with its conjugate variable t̃. Equation (2.13) has a very complex form, but the variable change

between t and t̃ has the following concise forms:

t̃ =
∫
I(t)dt, t =

∫
Ĩ
(
t̃
)
dt̃. (2.14)

Alternatively, the nonnegative conjugate can also be derived from the equidistribution

principle. First, the conjugate variable t̃ is introduced such that a nonnegative distribution I(t)
becomes constant with 1 in the conjugate coordinate t̃: I(t)dt = dt̃. The conjugate function Ĩ(t̃)
also becomes constant with 1 in the original coordinate t by the same form: Ĩ(t̃)dt̃ = dt. As

a result, we can obtain the reciprocal relation between I(t) and Ĩ(t̃) and biconjugacy from

the equidistribution principle, that is, I(t)Ĩ(t̃) = 1 and
˜̃
I = I. This approach is equivalent to

solving the Jacobian equation:

I(t) =
dt̃

dt
, Ĩ

(
t̃
)
=
dt

dt̃
. (2.15)

Note that equations in (2.15) are the same as (2.10) and (2.11), respectively.

2.2.3. Nonnegative Conjugate of a Nonnegative Vector

In the previous section, we described a method of transformation based on the convex

conjugate. However, although the nonnegative conjugate transforms a continuous function

into another continuous function, the transformation ζ should map an M-dimensional vector

onto another M-dimensional vector. Thus, we require a discrete version of the nonnegative

conjugate.

Let us denote an M-dimensional column vector with nonnegative components as I,

that is, I = (I1 · · · IM)T and Ii ≥ 0. Then its nonnegative conjugate is denoted as Ĩ. To

transform I into Ĩ, we have to link I with a continuous function I(t) by

I(t) ≡ I[t], (2.16)
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where the function [t] is a ceiling function that gives the smallest integer not less than t. Then

I(t) is a continuous and nonnegative function defined from t = 0 to t = M. If we denote a

cumulative distribution
∫ t

0
I(t)dt as s(t), we obtain t̃ = s(t) from (2.14), and t is given by its

inverse:

t = s−1
(
t̃
)
. (2.17)

Then, from (2.13), we obtain

Ĩ
(
t̃
)
=

1

I(t)
=

1

I[t]
=

1

I[s−1(t̃)]
. (2.18)

Finally, we can change it into the M-dimensional vector Ĩ by

Ĩi =
∫ i
i−1

Ĩ
(
t̃
)
dt̃. (2.19)

Applying the same procedure to Ĩ, we can transform it back to the original vector I. However,

this vector is not exactly same as the original vector. As the dimensionality of M increases,

the error, I − ˜̃I, converges to a zero vector.

2.3. Application to PPG Signals

All experiments and analyses were performed using ECG and PPG signals extracted from

the publically available MIMIC database that contains data from intensive care unit patients

admitted to Boston Beth Israel Hospital. ECG and PPG signals were measured to 500 and

125 samples per second, respectively. First, R peaks were detected from ECG based on the

assumption that the R peak represents the onset time of left ventricular ejection. Therefore,

the position of R peaks was used to segment single PPG pulses from the full PPG signals.

Raw PPG signals were low-pass filtered at 15 Hz, then single PPG pulses were separated

by synchronized R peaks. The extracted single PPG pulses were resampled to 500 Hz to

improve accuracy, and then FOOT and MAX points of single PPG pulses were detected by

the traditional method that detects characteristic points [26].
Each single PPG pulse was divided into two parts by the FOOT point: the front part

from the R peak to the FOOT point, and the rear part from the FOOT point to the next R peak.

The time difference at each part was calculated in different ways than that used to estimate

PAT. The time difference ta at the front part was derived by a simple translation to change

the number of samples into time (seconds), and the time difference tb at the rear part was

calculated by the nonnegative conjugate transformation and linear projection, as shown in

Figure 2.

Various single PPG pulses with different amplitudes, shapes, or pulse widths were

represented as single points in an M-dimensional vector space after the nonnegative

conjugate transformation. The points that corresponded to nonnegative conjugate vectors, Ĩ,

were located on a same line in an M-dimensional vector space. This characteristic is referred

to as collinearity.
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Figure 2: Single PPG pulse processing to estimate PAT.

2.3.1. Training a Projection MatrixW

To derive the matrix W that projects collinear points in an M-dimensional vector space into

a one-dimensional time space, 10,000 different PPG pulses were extracted as the training set,

and the linear projection matrix was trained according to the MAX point of the PPG pulse,

because this is the most obvious characteristic point. Only rear parts of PPG pulses were used

to train the linear projection matrix, which we derived by pseudoinverse operation between

nonnegative conjugate transformed pulses and the known time information of MAX points

as follows:

tb =WĨ

or
(
t1
b
· · · tN

b

)
=W

(
Ĩ1 · · · ĨN

)
.

(2.20)

The matrix W was calculated from the training samples by using the pseudo-inverse

relationship

W = tbĨT
(
Ĩ ĨT
)−1

, (2.21)

where W = (w1 · · · wM) ∈ R
1×M, tb is the known time set from the R peaks to the MAX

points, Ĩ is nonnegative conjugate transformed PPG pulse, and W is the derived linear

projecting matrix.



Journal of Applied Mathematics 9

2.3.2. PAT Estimation

Single PPG pulses extracted according to R peaks of ECG were divided into front and rear

sections using the FOOT point, and time values were calculated for each section separately.

First, the time of the front part, ta, was calculated using the number of samples between the R
peak and FOOT point divided by the sampling rate. Second, the time of the rear part, tb, was

acquired by linear operation between the linear projecting matrix (W) and the nonnegative

conjugate transformed pulse (Ĩ). Finally, the PAT was obtained by simple summation of ta
and tb:

ta =
Number of samples

Sampling rate
(seconds),

tb =WĨ,

tb =
(
w1 · · · wM

)⎛⎜⎜⎝
Ĩ1

...

ĨM

⎞⎟⎟⎠ (seconds),

PAT = ta + tb.

(2.22)

3. Results and Discussion

To assess the agreement between the traditional method and our novel PAT estimation

method, we evaluated a subset of data from the MIMIC database. This database is part of

the Physionet platform and contains data from over 72 intensive care unit patients at the

Boston Beth Israel Hospital, but we selected only those records for which nonsaturated and

nonmissing ECG and PPG signals were simultaneously measured and available [27, 28].
We adopted the agreement analysis proposed by Bland and Altman: given two

different estimating methods, their agreement can be assessed by computing the standard

deviation of two sets of estimates. The proposed strategy computes the differences between

measurements provided by two methods and then computes their dispersion. Two methods

have good agreement if dispersion is minimal [29].
To acquire PAT estimates using our method, a linear projecting matrix was derived

using a training process, and the derived linear projection matrix was applied to two test

sets consisting of 2947 and 2890 PPG pulses, respectively. The mean difference and standard

deviations of two sets of PAT estimates were calculated. Results of the agreement analysis are

shown in Figure 3. The 95% limits of agreement were calculated as mean difference ± 1.96 ∗
standard deviation at each set.

For the first test set, 98.9% of pulses were located between −34.3 ms and 28.3 ms as the

limits of agreement, while in the second test set, 96.2% of the pulses were located between

−33.4 ms and 25.3 ms.

The typical PAT estimation method, which detects characteristic points, is not accurate

when applied to PPG pulse types with different morphologies. We therefore proposed a

novel PAT estimation method that provides robust results by considering the morphological

characteristics of PPG pulses according to the properties of blood vessels. We initially

attempted to find a relation between a projecting factor and original PPG pulses, f , but

were unsuccessful because of the broad dispersion of pulses in an M-dimensional vector

space. We therefore decided to transform original PPG pulses into another form. We used
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Figure 3: Agreement analysis between the two different PAT estimations.

the nonnegative conjugate transformation, because the nonnegative conjugate transformed

signal, Ĩ, had the property of collinearity in an M-dimensional vector space and could be

used to estimate the PAT by projection onto a one-dimensional time space. We derived a

linear projection matrix through the training process for linear projection and applied this

matrix to two different morphological PPG pulse sets. PAT values estimated from annotated

MAX points and the proposed linear projecting method were in good agreement; over 95%

of the data were included within the 95% limits of agreement.

Although our method provides results that appear to be highly accurate, it can

show different results according to the linear projection matrix that is derived by different

numbers of pulses and dimensionality. Therefore, an optimal combination that is applicable

to a variety of morphological PPG pulse types should be determined. For instance, the

size of the projecting matrix needs to be adjusted and the time delay caused by the

nonnegative conjugate transformation needs to be addressed. Our novel approach still has

some limitations in terms of its clinical application for real-time continuous monitoring of

PAT as well as stiffness and blood pressure assessment using PPG; the linear projecting

matrix needs to be optimized and the time delay caused by the nonnegative conjugate

transformation needs to be addressed. Once these issues are addressed, however, our method

has great potential in clinical practice to precisely assess cardiovascular risk associated with

blood vessels.

4. Conclusions

Various PAT estimation methods exist, most of which are based on unsupervised extraction of

characteristic points in PPG signals. Despite the good performance of these PAT estimation

techniques when applied to clean PPG signals, they are less reliable when used to analyze

morphologically variable PPG signals. Thus, we designed a novel, simple linear model
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based on the nonnegative conjugate transformation. This easy, stable PAT estimation method

relies on training of the linear model using various samples. Because our method extracts

information from various pressure pulse, it can be applied to different morphological

signals without special conditions. In conclusion, we developed a novel method that can

be used to estimate PAT robustly for a variety of PPG signals with different morphological

characteristics.
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Various inverse algorithms have been proposed to estimate brain electrical activities with magne-
toencephalography (MEG) and electroencephalography (EEG). To validate and compare the per-
formances of inverse algorithms, many researchers have used artificially constructed EEG and
MEG datasets. When the artificial sources are reconstructed on the cortical surface, accuracy of the
source estimates has been difficult to evaluate. In this paper, we suggest a new measure to eva-
luate the reconstructed EEG/MEG cortical sources more accurately. To validate the usefulness of
the proposed method, comparison between conventional and proposed evaluation metrics was
conducted using artificial cortical sources simulated under different noise conditions. The simu-
lation results demonstrated that only the proposed method could reflect the source space geometry
regardless of the number of source peaks.

1. Introduction

Noninvasive measurements of brain electrical activities with electroencephalography (EEG)
and magnetoencephalography (MEG) enabled us to estimate the underlying cortical activ-

ities, thereby contributing to the rapid development of clinical and cognitive neuroscience.

To estimate the cortical electrical activities from EEG and MEG, of which the process is

often called EEG/MEG source imaging, highly underdetermined inverse problems have to

be solved using linear or nonlinear inverse algorithms since the source estimation from EEG

and MEG signals is an ill-posed problem, which generally produces blurry or inaccurately

positioned source estimates [1]. Many mathematical approaches and techniques have been

proposed to estimate accurate source locations and strengths. Among them, minimum-norm

estimate (MNE) has been the most widely studied inverse algorithm as MNE is simple

and has linearity [2]. MNE chooses a source distribution where the l2 norm of the current
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distribution is minimized. On the contrary, minimum current estimate (MCE) selects a source

where the l1 norm of the current is minimized [3]. Other than those two representative

algorithms, there have been several modifications of norm minimization, for example, low-

resolution electrical tomography (LORETA) algorithm [4] and the focal underdetermined

system solution (FOCUSS) algorithm [5].
When a new source imaging algorithm is proposed, the performance of the inverse

algorithm needs to be verified and compared with those of the existing ones. Since the recon-

structed source distributions are hard to be verified using in vivo experiments, many re-

searchers have used artificial EEG/MEG human skull phantoms [6] or realistically simulated

EEG/MEG datasets. Since the use of simulated EEG/MEG data allows us to readily adjust

and control noise levels and source configurations, that is, the number and size of source

patches, most inverse algorithms are generally verified using simulated EEG/MEG data [2–

5]. In recent simulation studies, the source spaces are generally constrained only on the in-

terface between white and gray matter of the cerebral cortex, generally called cortical surface,

considering neurophysiology. The orientations of the cortical sources are also assumed to be

perpendicular to the cortical surface [7]. In such simulations, both the original source patches

and the reconstructed sources are commonly distributed on the cortical surface generally

tessellated with surface triangular elements.

For the evaluation of the reconstructed sources, evaluation metrics or error metrics

need to be introduced to probe the similarity between the simulated and reconstructed

sources. The well-known evaluation metrics are root mean square error (RMSE), shift of the

maximum (Smax), shift of the center of mass (Scm), and the correlation coefficient (CC) [6].
Each metric has its own pros and cons. In contrast to the conventional geometric error metrics

such as Smax and Scm, RMSE and CC do not reflect the geometry of the cortical surface. How-

ever, compared to Smax and Scm, RMSE and CC are reliable specifically when the source distri-

butions are not concentrated to a single peak. For more accurate and robust estimation of the

accuracy of reconstructed EEG/MEG sources, we modified CC by giving the geodesic dis-

tance weights to the reconstructed sources to reflect the geometric information of cortical sur-

face. To validate the new evaluation metric, named weighted correlation coefficient (WCC),
some representative examples were used.

2. Methods

2.1. EEG/MEG Inverse Problem

When a set of n possible source locations and m sensor positions is given, thanks to the

linearity of Maxwell’s equations, an EEG/MEG forward model can be described as b = Kj+s,

where K is an m by n EEG/MEG lead field matrix, j is an n by 1 unknown source vector, b
is an m by 1 recorded EEG/MEG data, and s is the additional sensor noises. The inverse

problem for estimating j from b has no unique solution. To estimate the possible solutions,

MNE adopts the following minimization problem:

min
j
‖j‖2 subject to b = Kj + s. (2.1)

Then, the estimated solution j̃ can be written as

j̃ = KT
[
KKT + λI

]−1
b, (2.2)
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where λ is a regularization parameter, which was determined using the generalized cross-

validation method [8].

2.2. Conventional Evaluation Metrics

We assume that both the simulated true sources j and the estimated sources j̃ are distributed

on the 3D cortical surface. The dimension of both vectors is n by 1, where n is the number of

nodes on the source space. We firstly summarize four conventional evaluation metrics, hav-

ing been frequently used for assessing the accuracy of the source estimates.

2.2.1. Root Mean Square Error

The root mean square error (RMSE) is the most well-known and convenient way to measure

the error between the actual source and the estimated source. RMSE is formulated as

RMSE =

√√√√ 1

n

n∑
i=1

(
ji − j̃i

)2
, (2.3)

where ji and j̃i are the ith elements of j and j̃ respectively.

This metric is easy to implement and can be used regardless of the shapes of the

source distributions. However, RMSE does not reflect the geometry of the cortical surface

since RMSE is computed with just vectored values.

2.2.2. Shift of the Maximum of the Estimate

The shift of the maximum of the estimate (Smax) is the simplest measure which reflects the

geometry of the source space. Smax indicates the distance between the locations where the

maximum intensities of sources are generated. The maximum intensities of the actual and

reconstructed source are assumed to be located at rmax and r̃max; respectively,

rmax = max
ri

ji, r̃max = max
ri

j̃i, (2.4)

where ri is the coordinate of ith node, then Smax is defined as

Smax =
√
(rmax − r̃max)

2 (2.5)

and ranged from 0 to dmax, the maximum distance within the brain.

This measure is reliable only when the actual source is concentrated around the loca-

tion of the maximum source intensity because it does not consider the distributions of the cor-

tical sources. When Smax is adopted as a measure, the merit of distributed source modeling

disappears. For example, even when the extents of the true source and the reconstructed

sources are largely different, identical maximum location makes the Smax value be 0.
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2.2.3. Shift of the Center of Mass

The center of mass has been widely used for evaluating various algorithms adopted not only

in EEG and MEG but also in other functional brain imaging techniques such as functional

magnetic resonance imaging (fMRI) and positron emission tomography (PET). The center of

mass of the actual source rcm and the center of mass of the reconstructed source r̃cm are com-

puted as

rcm =
∑n

i=1 jiri∑n
i=1 ji

, r̃cm =
∑n

i=1 j̃iri∑n
i=1 j̃i

. (2.6)

As assuming the distributed source to be a dipole source placed on the center of mass

of the source, the shift of center of mass (Scm) is defined as the distance between rcm and r̃cm:

Scm =
√
(rcm − r̃cm)2. (2.7)

Scm is similar to Smax in that the distributed source is considered as a point source

placed at a single location. Therefore, Scm is also reliable only when the simulated source is

concentrated around rcm. If the distribution of the source has a radial symmetry, Scm becomes

equivalent to Smax.

2.2.4. Correlation Coefficient

The correlation coefficient (CC), a concept adopted from statistics, is a measure of linear de-

pendency between two variables, and the value ranges between −1 and 1. It has been wide-

ly employed as a standard measure in various fields of engineering and sciences. The con-

ventional CC is defined as the covariance of j and j̃ divided by the product of their standard

deviations:

CC =
cov
(
j, j̃
)

√
cov(j, j) cov

(
j̃, j̃
) , (2.8)

where the covariance is defined as

cov
(
j, j̃
)
=

1

n

n∑
i=1

(
ji − j∗

)(
j̃i − j̃∗

)
, (2.9)

and j∗ represents the mean value of the source j:

j∗ =
1

n

n∑
i=1

ji, j̃∗ =
1

n

n∑
i=1

j̃i. (2.10)

If the distribution of the reconstructed sources is similar to that of the actual sources,

the value of CC is close to 1; if the distribution of the reconstructed sources is different from
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that of the actual sources, CC is close to −1. CC is reliable even when the source distribution

is not concentrated to a single location or when the true source has many distinct peaks.

However, similar to RMSE, CC cannot reflect the real geometry of the cortical surface.

2.3. New Algorithm: Weighted Correlation Coefficient

When we categorize four conventional measures mentioned in Section 2.2 in terms of geo-

metric consideration, contrast to Smax and Scm, RMSE and CC do not reflect the geometry of

the cortical surface. However, RMSE and CC are reliable compared to Smax and Scm when the

source distribution is not concentrated to a single peak. To combine the advantages of both

types of conventional measures, we modified CC by giving the source vector a weight re-

flecting geometrical information of cortical surface. The new evaluation measure, named

weighted correlation coefficient (WCC), is defined as

WCC =
cov
(
Wj,Wj̃

)
√

cov(Wj,Wj) cov
(
Wj̃,Wj̃

) , (2.11)

and W is an n by n weighting matrix that can be computed as

W =
dmaxIn −D

dmax
, (2.12)

where In is an n by n identity matrix. D is an n by n distance matrix whose element is given

as

Dij =
∥∥ri − rj∥∥k (2.13)

and dmax is the maximum value in D. If k = 2, the Euclidean distance is employed, and if k =
geo, then the geodesic distance is employed to obtain the distance matrix. The geodesic dis-

tance was computed by solving the Eikonal equation on the tessellated cortical surface [9].
The main diagonal of the weight matrix W was filled with 1, and the off-diagonal elements

were filled with values between 0 and 1. By multiplying weight matrix W to the source vector

j, the geometric information of cortical surface is considered.

Additionally, Euclidean or geodesic distance can be employed in the definition of the

distance matrix D. Since the cortical surface of a human brain is folded, the geodesic distance

is more suitable to reflect the geometric information of the cortical surface than the Euclidean

distance. The Euclidian distance is computed by the Cartesian coordinates regardless of the

geometrical feature of the cortical surface. However, as the geodesic distance implies the

minimum distance along the surface, the geodesic distance between the two adjacent gyri

should be greater than the Euclidian distance. Figure 1 is an example of the Euclidean and

geodesic distance between each cortical surface vertex and a reference point located at right

dorsolateral prefrontal cortex, corresponding to a column of the distance matrix.

Once the distance matrix is computed, the weighting matrix is determined from (2.13).
Figure 2 shows the Euclidean and geodesic weights corresponding to the Euclidean and
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Table 1: The merits and demerits of measures.

Measures Reflection of geometry Multi-peaks Bound Unit

RMSE no Yes 0 ∼ ∞ no unit

Smax yes No 0 ∼ dmax mm

Scm yes No 0 ∼ dmax mm

CC no Yes −1 ∼ 1 no unit

WCC yes Yes −1 ∼ 1 no unit
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Figure 1: One column of (a) Euclidean and (b) geodesic distance matrix visualized on the cortical surface.

geodesic distance matrices exampled in Figure 1. In contrast to Figure 1, as getting farther

from the reference point, the weight is getting smaller.

The characteristics of the conventional and proposed measures are summarized in

Table 1. Low values of RMSE, Smax, or Scm and high values of CC and WCC indicate the ac-

curate reconstruction. Only WCC is applicable to the case of multipeak and can consider the

geometry of source space.

3. Results

To compare and verify the conventional and proposed measures, a simple two-dimensional

example was simulated as shown in Figure 3. The source space was defined as a two-dimen-

sional rectangle. The actual source distribution x is given in Figure 3(a), and five recon-

structed sources are given in Figures 3(b)–3(f), each of which was denoted as y1, y2, y3, y4,

and y5. The source current intensities are indicated with different colors. If we evaluate the

reconstructed sources based on visual inspection, anyone would agree that y1 is the most

accurate reconstruction and y2 is the second best one. y5 seem to be the worst reconstruction

as the peak location is farthest from the actual one and no reconstructed source is overlapped

with the actual one. y3 and y4 seems to be better matched than y5, but it is difficult to

judge which result is better. The result y3 has no commonly activated region with the actual
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Figure 2: One column of (a) Euclidean and (b) geodesic weighted matrix visualized on the cortical surface.
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Figure 3: Example of a simulated two-dimensional source space: actual source distribution (a) and recon-
structed sources (b)–(f).
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Table 2: Evaluation of reconstructions depicted in Figure 1.

y1 y2 y3 y4 y5
RMSE 2.12 2.53 2.98 2.73 2.98

Smax 1.00 1.41 2.00 1.41 4.24

Scm 1.00 1.41 2.00 2.87 4.24

CC 0.40 0.13 −0.19 0.25 −0.19

WCC 0.89 0.80 0.48 −0.31 −0.79

Table 3: Evaluation of reconstructions depicted in Figure 4.

y1 y2 y3 y4 y5
RMSE 9.76 9.95 10.05 10.06 43.58

Smax,E 10.07 21.94 31.39 59.54 20.07

Smax,G 9.13 28.12 71.10 122.11 51.71

Scm,E 4.16 18.04 31.60 54.95 13.35

Scm,G 8.21 21.67 54.32 75.15 24.11

CC 0.32 0.09 0.00 0.00 0.00

WCCE 0.92 0.89 0.82 0.60 0.58

WCCG 0.95 0.86 0.43 0.36 0.35

source, but the distribution is close to the actual source distribution, whereas y4 has slightly

overlapped region, but other regions are located far from the actual source location. If we

assume visual inspection (VI) as a qualitative measure, the rank of the reconstructed sources

can be expressed as VI(x,y1) > VI(x,y2) > VI(x,y3) ≥ VI(x,y4) > VI(x,y5).
We then employed the conventional and proposed quantitative measures for the eva-

luation of the reconstructions depicted in Figure 1 and summarized the result in Table 2. All

measures commonly indicated that y1 is the best reconstruction and y5 is the worst recon-

struction. However, the different metrics showed different evaluation results for y2, y3, and

y4. In the case of RMSE, y3 was evaluated as the worst reconstruction, and y4 and y2 had an

identical RMSE value, which was because RMSE was affected by the commonly activated

regions regardless of the source geometry. In the case of Smax, which considers only the maxi-

mum location of the source, the results of y2 and y4 were equivalent. Similar to RMSE, CC

classified y3 as the worst reconstruction and y4 and y2 had an identical CC value. Both Scm

and WCC evaluated the reconstruction results identically to the visual inspection results.

However, if the actual source has multiple peaks, Scm cannot be accurately evaluated.

We then applied the conventional and proposed evaluation metrics to the evaluation of

distributed sources on the cortical surface. The cortical surface was extracted from a structural

MRI of a standard brain atlas provided by the Montreal Neurological Institute (MNI). To

extract and tessellate the cortical surface, we used CURRY6 for Windows (Compumedics,

Inc., El Paso, TX). The actual source x defined on the cortical surface is given in Figure 4(a),
and the reconstructed sources are given in Figures 4(b)–4(f), each of which was denoted as y1,

y2, y3, y4 and y5. If we verify the reconstructed sources by visual inspection, y1 seems to be the

most accurate reconstruction and y2 seems to be the second best one. The two distributions

y4 and y5 are very different from the actual source distribution. We can roughly estimate the

rank of the reconstructed sources as VI(x,y1) > VI(x,y2) > VI(x,y3) > VI(x,y4) ≥ VI(x,y5).
The quantitative evaluation results with conventional and proposed metrics are shown

in Table 3. In the case of RMSE, the RMSE values corresponding to y1∼y4 were increasing,
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Figure 4: Simulation of three-dimensional cortical sources: actual source (a) and reconstructed sources
(b)–(f).

which coincided with the visual inspection results, but the increment was very small

compared to the absolute values of RMSE. The results of Smax, E and Smax, G showed that y5
is the better reconstruction than y3. Moreover, since the center of mass of y5 was located

near the actual source, Scm, E and Scm, G of y5 were less than those of y2. Subscripted E and

G indicate that the Euclidean and geodesic distance matrices were adopted, respectively.

CC also could not distinguish the difference between y3 and y4. WCCE and WCCG are the

WCC results when the Euclidean and geodesic distance matrices were adopted, respectively,

to construct the weighting matrix. Both WCCE and WCCG were proved to be reliable since

both results coincided well with the visual inspection results. However, compared to WCCG,

WCCE could not reflect the large difference between y2 and y3, which are located even in

different hemispheres.

We performed extensive computer simulations to quantitatively compare the perfor-

mance of the proposed measure with that of conventional measures. 2,000 locations on the

cortical surface are selected randomly, and on each location a single constant source patch is

generated. Consequently, our computer simulations used 2,000 cortical patches whose aver-

aged radius is 6 mm (±1.2 mm). After solving the MEG forward problem with each cortical

patch, different-level white Gaussian noise are added to the simulated MEG signal data. We

set the signal-to-noise ratio (SNR) values from −10 dB to 30 dB. The reconstructed source
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Table 4: Evaluation of reconstructions with 2,000 randomly selected source patches.

dB 30 20 10 0 −10

RMSE 11.21 11.37 11.33 32.22 53.81

Smax,E 12.71 12.54 21.17 19.29 20.63

Smax,G 14.32 18.90 30.82 29.68 23.53

Scm,E 8.52 11.41 11.21 15.26 13.17

Scm,G 15.11 21.67 32.43 31.52 34.21

CC 0.54 0.12 0.01 0.01 0.01

WCCE 0.93 0.85 0.74 0.63 0.52

WCCG 0.94 0.86 0.65 0.56 0.42

is computed by the minimum norm method with each MEG signal then evaluated with

different measures. Table 4 shows the averaged accuracies with conventional and propos-

ed measures with respect to SNR. We expect that results of reconstruction to become more

accurate as SNR is getting higher. In the case of RMSE, though the RMSE is increasing as SNR

becomes lower, the difference between 10, 20, and 30 dB cases is not clear as much the cases

of 0 and −10 dB. In the cases of geodesic measures (Smax, E, Scm, E, Smax, G, Scm, G), the relation

of accuracy and SNR is not consistent with the expected tendency. Moreover, the accuracy of

low SNR is occasionally greater than that of high SNR in geodesic measures. In the case of

CC with high SNR (10, 0, and −10 dB), there is only a marginal difference compared to that

of low SNR. Only the accuracy measured by WCC is consistently decreasing as the SNR be-

comes lower.

4. Conclusion

The geometric measures (Smax, Scm) could reflect the geometry of the source space, while

the statistical measures (RMSE, CC) could be applied regardless of the distribution charac-

teristics of the sources. In this paper, a new evaluation metric named WCC was proposed to

combine the advantages of both types of evaluation metrics and showed enhanced perfor-

mances compared to the conventional metrics. From the extensive simulation, we could con-

clude that the proposed measure is very promising to evaluate accuracy of reconstructed

sources or EEG/MEG inverse algorithms.
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For solving electroencephalographic forward problem, coupled method of finite element method
(FEM) and fast moving least square reproducing kernel method (FMLSRKM) which is a kind of
meshfree method is proposed. Current source modeling for FEM is complicated, so source region
is analyzed using meshfree method. First order of shape function is used for FEM and second order
for FMLSRKM because FMLSRKM adopts point collocation scheme. Suggested method is tested
using simple equation using 1-, 2-, and 3-dimensional models, and error tendency according to
node distance is studied. In addition, electroencephalographic forward problem is solved using
spherical head model. Proposed hybrid method can produce well-approximated solution.

1. Introduction

Electroencephalography (EEG) is a technique to measure and analyze the scalp potential

[1] and widely used for clinical applications and scientific researches because EEG has

noninvasiveness and high temporal resolution [2, 3]. As electric potential on scalp is a

reflection of neuronal activation in a brain [4], solving inverse problem of EEG, or reconstruct-

ing distribution of current source, is an important mathematical tool to investigate brain

functions and diseases [5]. Because precise solution of forward problem is essential for

accurate inverse solution, we proposed a new forward solver with high accuracy in this paper.

Solving forward problem of EEG is to obtain potential distribution of head due to

neuronal electric current [1, 6, 7]. Although there are many methods to solve forward

problem, finite element method (FEM) is frequently used because it can consider realistic

head shape, inhomogeneity, and anisotropy [7–9]. However, according to Awada’s research,
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variation of dipole location in a first-order element cannot affect forward solution, which

causes poor spatial resolution of FEM [9]. Furthermore, location of dipole is also a problem in

node-based distributed source model. To overcome these limitations, we adopted a meshfree

method for region near dipole.

Because meshfree methods do not need finite elements, mesh generation process is

not required. So, difficult situation to generate finite elements such as small objects inside a

large analysis domain [10], crack propagation [11], and moving objects [12] can be analyzed

by meshfree methods. However, meshfree methods consume longer time to solve a system

matrix than FEM does, because the number of nodes related with a certain node of meshfree

method is more than that of FEM.

In this paper, a new hybrid method of meshfree method and FEM for forward solver

is proposed. There were some tries to surmount disadvantages of FEM and meshfree method

by combining two methods in previous studies [13–16]. While most meshfree methods with

weak formulation and integration cells are studied for coupling with FEM [13–16], point

collocation scheme is applied for this study because of its efficiency [17, 18]. Among many

sorts of meshfree methods [19–23], fast moving least square reproducing kernel method

(FMLSRKM) is adopted because FMLSRKM can evaluate all approximated derivatives of

shape functions up to the order of the basis polynomials simultaneously, without additional

computations [16, 17]. We explain FMLSRKM and its coupling with FEM in the next section.

Then, using simple models, the suggested method is tested and error is evaluated. Moreover,

EEG problem with 2D model is treated to show that the suggested method can be a forward

solver with small error.

2. Combination of FEM and FMLSRKM

2.1. FMLSRKM

In FMLSRKM [10, 16, 17], an approximated solution uh at x near x can be determined using

polynomial bases Pm and their coefficient vector a(x), like

uh(x, x) = Pm
(
x − x
ρ

)
· a(x), (2.1)

where m is the highest order of polynomial and ρ is the dilation parameter which represents

region of influence of uh(x, x). In order to obtain coefficient vector, localized error residual

functional

J(a(x)) =
NP∑
I=1

∣∣∣∣u(xI) − Pm(x − x
ρ

)
· a(x)

∣∣∣∣2( 1

ρn

)
Φ
(
xI − x
ρ

)
, (2.2)

should be minimized. Hence,

a(x) =M−1(x)
NP∑
I=1

Pm
(
x − x
ρ

)
u(xI)Φρ(xI − x), (2.3)

M(x) =
NP∑
I=1

Pm
(
x − x
ρ

)
PTm

(
x − x
ρ

)
Φρ(xI − x), (2.4)
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where NP is the number of nodes in the local area. So, (2.1) can be rewritten as

uh(x, x) = PTm

(
x − x
ρ

)
M−1(x)

NP∑
I=1

Pm
(
x − x
ρ

)
Φρ(xI − x)u(xI), (2.5)

where

Φρ(xI − x) =
(

1

ρn

)
Φ
(
xI − x
ρ

)
(2.6)

is called window function, where

Φ(x) =

⎧⎨⎩(1 − ‖x‖)t, when ‖x‖ < 1, t > 0,

0, otherwise.
(2.7)

After moving least square scheme is applied, approximated solution (2.1) can be re-

written as

u(x) =
NP∑
I=1

Ψ[α]
I u(xI), (2.8)

where

Ψ[α]
I =

α!

ρ|α|
eTαM

−1(x)Pm
(
x − x
ρ

)
Φρ(xI − x), (2.9)

is the shape function of FMLSRKM.

2.2. Coupling of Shape Functions

For the sake of an explanation, in this section, 1-dimensional shape functions are considered.

Because point collocation method is adopted for FMLSRKM, quadratic shape function is

used. In FEM, influence of a shape function is confined in an element (see Figure 1(a)). In

addition, the value of shape function is 1 at the node and 0 at the other node, and the sum of

shape functions at any point is 1, which makes shape function the partition of unity. However,

in the case of FMLSRKM, an area covered by a shape function of a node is usually larger than

that of FEM (see Figure 1(b)). Furthermore, the value of shape function at the node is not 1

and shape function is not the partition of unity, so the approximated value inside two nodes

is interpolated by more than two shape functions in many cases.

So, an interfacial area between FEM domain and FMLSRKM domain has one finite

element shape function and many FMLSRKM shape functions. Hence, adequate weighting

functions should be considered for shape functions of the hybrid method. While linear

weighting functions are applied on both FEM and meshfree in the previous study

[15], step functions are used for weight functions as shown in Figures 2(a) and 2(b).
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1

(a) (b)

Figure 1: Shape functions of (a) FEM and (b) FMLSRKM. A shape function of FEM is a partition of unity,
but that of FMLSRKM is not.

1

(a)

1

(b) (c)

Figure 2: Combination of shape functions in an interfacial area of FEM and FMLSRKM. (a) Shape functions
of FEM, (b) shape functions of FMLSRKM, and (c) shape functions of hybrid method. Shape function of
FMLSRKM is fully adopted as shape function of the interfacial area (inside two vertical dotted lines).

Consequently, Figure 2(c) is shape functions for coupling method, because FMLSRKM with

point collocation scheme uses quadratic polynomials as bases.

The suggested hybrid method has some advantages. First, the system matrix of the

hybrid method is sparse almost same as that of FEM, if most of analysis domain can remaine

as finite element and meshfree region is well defined and specific. Second, adaptive approach

is easy for meshfree region. In many cases, meshfree region may be a high-error area, because

a region which is difficult to analyze is selected as meshfree region. Third, point collocation

scheme is used for FMLSRKM, which makes applying boundary condition easy. Forth, the

region of FMLSRKM has less error, since FMLSRKM of this paper has quadratic shape

function.

3. Test and Result

Tests are performed using 1-, 2-, and 3-dimensional models with

∇2φ = −1. (3.1)

1D test model is shown in Figure 3(a). In this figure, a domain for FMLSRKM ΩFM is inside

FEM domain ΩFEM, and their interfacial area ΩIN is surrounded by ΓFEM and ΓFM. At the

ends, Dirichlet boundary conditions are applied as φ = 0. In this test problem all boundaries

are in FEM region. It is also possible that FMLSRKM region has boundaries, and applying

boundary condition into FMLSRKM is even easier because FMLSRKM of this paper uses

collocation scheme.
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Figure 3: Test problems. In these problems, numbers, variables, and solutions are unitless. (a) 1D, (b) 2D.
The solid line along y = 5 is the cross-sectional line for error evaluation, and (c) 3D.
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Figure 4: The results of the hybrid method. (a), (b), and (c) are the results of Figures 3(a), 3(b), and 3(c),
respectively.

In Figures 3(b) and 3(c), test problems in 2D and 3D are shown, respectively. In

these problems, domains for FMLSRKM are in the middle of the whole domains, and their

boundary conditions are applied as shown in Figures 3(b) and 3(c), respectively. Hence, it is

expected that the solutions of Figures 3(a), 3(b), and 3(c) are the same. Furthermore, these

problems have analytic solution as

φ = −1

2
x2 + 10x, (3.2)

which can be compared to approximated solutions. The results of the hybrid method for

Figures 3(a), 3(b), and 3(c) are shown in Figures 4(a), 4(b), and 4(c), respectively. All sol-

utions are well approximated.

4. Error Study

In this paper, error was evaluated using various intervals of nodes, or h. For evaluation

of errors, the solid line along y = 5 of Figure 3(b) is used. An error is defined as a

difference between the exact solution and an approximated solution by the hybrid method.

In Figure 4(a), it seems that the hybrid method generates the same result as the exact solution

(3.2). However, actual error is not zero as shown in Figure 5. FEM region has higher error

than FMLSRKM region because FEM uses 1st-order polynomials as shape functions while

FMLSRKM uses 2nd-order ones. In FMLSRKM region, the error is nearly zero because 2nd-

order FMLSRKM can describe (2.2) which is 2nd-order polynomials.
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Figure 5: The error of approximation by the hybrid method. The error of FEM is higher than that of
FMLSRKM because of the orders of bases for two methods.
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Figure 6: Errors of the hybrid method along y = 5 of Figure 3(b). (a) h = 1, (b) h = 0.5, and (c) h = 0.25.
The values of y-axis are absolute errors which decrease according to the size of h.

To investigate the error of FMLSRKM region, inhomogeneous forcing term should be

applied. So,

∇2φ = −0.6x, (4.1)

is considered and the boundary conditions are the same as the previous example. In this case,

φ = −0.1x3 + 40x, (4.2)

is the exact solution of (2.3). For this study, defining h as the interval of nodes, h = 1, h = 0.5,

and h = 0.25 are used. The case of h = 1 is as in Figure 3(b), and Figure 6(a) represents

its absolute error which is evaluated along y = 5. In FMLSRKM region, the error at the

middle of each interval is zero, while the error is not zero but the maximum in FEM region.

Figure 7 explains the reason, and this phenomenon is caused by quadratic approximation of

FMLSRKM. As shown in Figure 7(a), linear approximation of FEM is not capable of following

the cubic solution and produces maximum error at the middle. On the other hand, because

the quadratic approximation of FMLSRKM and the exact solution are the same at the two

nodes (x = 7 and 8 for Figure 7(b)), the quadratic approximation crosses the exact solution,

which makes the error zero at the middle. For the cases of h = 0.5 and 0.25, the absolute errors

are shown in Figures 6(b) and 6(c). The errors become smaller as the nodes become closer to

next nodes. From Figure 6, tendency of relative errors is shown in Figure 8. Axes are drawn

in logarithmic scale, and Figure 8 shows that the hybrid method has good characteristic of

convergence.
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Figure 7: Examples of FEM and FMLSRKM. (a) Linear approximation of FEM shows maximum difference
at the middle of the interval, and (b) Quadratic approximation of FMLSRKM crosses the exact solution.
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Figure 8: Relative error of FEM and FMLSRKM according to the interval of nodes.

5. EEG Forward Problem

Governing equation and boundary condition of EEG forward problem are

∇ · (σ∇V ) = ∇ · Jp in Ω,

n · σ∇V = 0 on ∂Ω,
(5.1)

where σ, V , Jp, and n are electric conductivity, potential, and primary current dipole, and unit

vector normal to boundary, respectively. Test model and result are shown in Figure 9. Simple

spherical head model as shown in Figure 9(a) is used, and a current dipole is in FMLSRKM
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Figure 9: Test for EEG forward problem. (a) A dipole shown as an arrow is in the middle of FMLSRKM
region, (b) result using FEM, and (c) result using the suggested hybrid method.

region. Because divergence of primary current of (5.1) can be represented as combination of

one source and one sink [9], a node at dipole location should be divided into 2 nodes. In

Figures 9(b) and 9(c), brighter region has larger error. Those figures show that the hybrid

method can approximate the forward solution better than FEM.

6. Conclusion

A hybrid method of FMLSRKM and FEM is suggested in this paper, and it shows good

result of 1-, 2-, and 3-dimensional boundary value problems. In addition, error of the hybrid

method is studied, and proposed method shows good convergence in 2-dimensional model.

In Figure 8, relative errors in amplitude are compared between FEM and FMLSRKM. From

this figure, we want to say not that FMLSRKM is better method than FEM but that the hybrid

method does not lose own error characteristic of each method.

We also tested the hybrid method for EEG forward problem and verified that the

method can produce small-error solution. Actually, it is possible to reduce error of solution by

hp-FEM [24]. However, adaptive strategy can be more adequate for meshfree methods than

FEM, because new nodes are just placed on regions which have high error without generating

new mesh structures [10, 19]. Hence, error estimation and adaptive scheme will be applied

onto the proposed method.

This research shows that Poisson and Laplace equations were successfully handled by

the suggested hybrid method. Therefore, realistic problems can be treated such as moving

objects and singular points, and it is expected that the hybrid method will take its own role

for problems with special conditions as well as EEG forward problem.
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Automatically extracting breast tumor boundaries in ultrasound images is a difficult task due to
the speckle noise, the low image contrast, the variance in shapes, and the local changes of image
intensity. In this paper, an improved edge-based active contour model in a variational level set
formulation is proposed for semi-automatically capturing ultrasonic breast tumor boundaries.
First, we apply the phase asymmetry approach to enhance the edges, and then we define a new
edge stopping function, which can increase the robustness to the intensity inhomogeneities. To
extend the capture range of the method and provide good convergence to boundary concavities,
we use the phase information to obtain an improved edge map, which can be used to calculate
the gradient vector flow (GVF). Combining the edge stopping term and the improved GVF in the
level set framework, the proposed method can robustly cope with noise, and it can extract the low
contrast and/or concave boundaries well. Experiments on breast ultrasound images show that the
proposed method outperforms the state-of-art methods.

1. Introduction

Breast cancer is one of the major causes of death among women [1]. The early detection

is necessary and helpful to the diagnosis and treatment of breast cancer [2]. Both X-ray

mammography and ultrasonic examination can be used for this purpose. The advantages

of ultrasonic examination over mammography are its inexpensive, noninvasive, and cost-

effect nature. Segmentation of breast ultrasound (US) images is essential for quantitative

measurement of tumor characteristics. Manual segmentation is time consuming and it

increases inter- and intraobserver variability. Fully automatic segmentation of US image is

still a challenging task for two main reasons [3, 4]. First, US images have speckle noise, low

contrast, and local changes of intensity [3]. Second, breast tumors have a great variation

of their shapes, sizes and locations [4]. Particularly, when the tumors are malignant, they
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generally have acute concave shapes. Therefore, developing a semiautomatic algorithm for

segmentation of breast tumor in US images becomes urgent in clinical application.

Active contour models (also called snakes) have been proved to be very useful

for image segmentation [5–19]. The desirable advantage of this semiautomatic method

lies in its ability to facilitate the segmentation process with a priori knowledge and user

interaction. Active contour models can be divided into two major classes: parametric [5–10]
and geometric [11–19].

Parametric active contour models use parametric equation to explicitly represent

the evolving curve. The problems of the traditional parametric active contour model are

its limited capture range and its inability to handle concave boundaries. Xu and Prince

[6, 7] proposed a gradient vector flow (GVF) field model to increase capture range and

encourage convergence to boundary concavities. GVF snake has received a lot of attention

in US image segmentation [8–10]. For example, Rodtook and Makhanov [8] developed an

improved GVF approach based on the continuous force field analysis. They used the resulting

vector field to generate a modified edge map and then used it to calculate a novel gradient-

based source term. A comparison is made between their method and the conventional GVF

type methods by using the reference segmentation results outlined by expert physicians. In

their experiments, they claimed that their method can successfully solve the active contour

convergence problem. They also obtained more accurate tumor segmentation result.

Geometric active contour models implicitly represent evolving curve as the zero-level

set of a higher dimensional function, called level set function. Commonly, this function is

defined by computing the closest distances between pixels and a given closed curve in

an image domain. The points that have positive distances are inside the curve, and ones

that have negative distances are outside the curve [11]. The curve is evolved using the

partial differential equation [14] derived from the energy function. When the evolving curve

maintains a steady status, that is, the curve stops evolving, the segmentation result is obtained

as the zero-level set of the function. The partial differential equation [14], which sometimes

can be derived from the energy function [13], describes a curve smoothing process. When the

curve evolution stops, the zero-level set of the energy function refers to the segmentation

result. Compared to the parametric models, level set methods can represent contour of

complex topology and it can also deal naturally with topological changes by using the

evolution of the level set function rather than the parametric curves. These properties lend

themselves well in medical image segmentation where the anatomic structures split and

merge through the pixels. One can see that this is especially useful when segmenting the

breast tumors, which generally have complex and varying shapes. The level set method was

first introduced by Osher and Sethian [11] and successfully applied to image segmentation by

Malladi et al. [12] and Caselles et al. [13]. Caselles et al. developed the well-known geodesic

active contour (GAC) model in [13]. However, in these methods, reinitialization of the level

set function to a signed distance function is often required. Re-initialization is performed

by periodically solving a partial differential equation, which is a computationally expensive

operation. To address this problem, Li et al. [15] presented a variational level set method

to eliminate the need for reinitialization by incorporating a penalty term into the energy

functional. Unfortunately, this penalty term may cause an undesirable side effect on the level

set function in some circumstances, which may affect the numerical accuracy. Recently, Li et

al. [16] developed a more general variational level set formulation by incorporating a distance

regularization term into the energy functional. Particularly, they investigated a double-well

potential related to the distance regularization term to maintain a desired shape of the level

set function. Accordingly, the undesirable side effect produced by the penalty term can be
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completely avoided. They have demonstrated the capability of segmentation on artificial,

natural and real medical images.

Using an additional edge stopping function (ESF) allows the active contour to stop

at the edges [11–16]. In these models, ESF is related to a convolution of the intensity image

with a Gaussian filter. However, the traditional ESF has at least two disadvantages. The first

one is that the ESF is never equal to zero, and boundary leakage may occur, that is, the

active contour may cross the object’s boundaries. The second one is that the edge detection

based on gradient is not appropriate for speckle noise, although it is generally effective

for additive noise. In breast US images corrupted by multiplicative noise, using only the

gradient information may detect false contours caused by noise, and consequently too many

trivial contours may be obtained. An alternative approach to circumvent these problems

is to use a stopping term based on the coefficient of variation [17]. This stopping term

equals to zero at the edges and accommodates the speckle noise. An important advantage of

using this stopping term is the capability of preventing the active contour from crossing the

object’s boundaries. Alternatively, Chan and Vese [18] proposed a method called C-V model,

where their stopping term is based on a particular image segmentation result obtained by

Mumford–Shah technique [19] rather than the image gradients. This segmentation model

uses the intensity information of different region to minimize the energy function rather

than using the edge information. Liu et al. [4] also proposed a model that considers the

differences between the actual probability densities of the intensities in different regions and

the corresponding estimated probability densities. Their model shows advantages over the

C-V model [18] on breast US images with weak boundaries and low contrast.

In this paper, a novel segmentation method of ultrasonic breast tumor is proposed

within the level set framework. First, we present a novel ESF, which is independent of the

intensity gradient of image, as most of the active contour models do, but instead is related

to local phase information obtained by using the phase asymmetry approach. The use of

this ESF is more robust than the traditional gradient magnitude-based ESF because local

phase is theoretically invariant to intensity magnitude. Subsequently, in order to increase

the capture range of the method and its ability to move into acute concave boundaries, the

improved gradient vector flow (GVF) field is adopted as external force and it is added to the

proposed model. The results show that the proposed method can obtain better segmentation

performance in comparison with some state-of-art methods [11, 16].
The rest of this paper is organized as follows. In Section 2, we first describe the

traditional level set methods and the distance regularized level set method. Section 3 details

the proposed method. Section 4 shows qualitative and quantitative experimental results on

clinical breast US images. Section 5 summarizes our work.

2. Background

2.1. Traditional Level Set Methods

The basic idea of the level set methods is to implicitly represent a closed curve C(t) at time t

by the zero-level set of function φ, that is,

C(t) =
{(
x, y
) | φ(x, y, t) = 0

}
, with φ

(
x, y, 0

)
= C0, (2.1)

where C0 is the initial curve.
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In the level set framework, the general evolution equation of the level set function φ is

∂φ

∂t
+ F
∣∣∇φ∣∣ = 0, (2.2)

where F is the speed function. For image segmentation, F is the external force which is

dependent on some image information, such as image gradient and image intensity. This

external force F attracts the curves toward the edges. F is commonly defined as follows:

F = Fimage + Fgeometry. (2.3)

The first term Fimage is the image force generated from image information. The second term

Fgeometry is the geometry force to smooth the curve.

2.2. Distance Regularized Level Set Method

In most of the traditional level set methods, reinitialization is used as a numerical remedy

for keeping sound curve evolution and guaranteeing reliable results. The main problem with

this procedure is its high computational cost. To avoid this problem, Li et al. [15] proposed

a level set method without reinitialization by integrating a penalty term into the energy

functional. However, this penalty term leads to undesirable side effect. More recently, by

adding a distance regularization term into energy functional, Li et al. [16] presented a novel

distance regularized level set evolution method, that is, DRLSE model. This model can not

only completely eliminate the need for reinitialization but also avoid the undesirable side

effect.

Let Ω ⊂ R2 be a bounded Lipschitz image domain. The energy functionalE(·) is written

as

E
(
φ
)
= μRp

(
φ
)
+ Eext

(
φ
)
, (2.4)

where φ is a level set function, μ > 0 is a constant, and Rp(φ) is the distance regularization

term defined by

Rp

(
φ
)
=
∫
Ω
p
(∣∣∇φ∣∣)dx, (2.5)

where p is the potential function for Rp(φ) [16], that is,

p(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

(2π)2
(1 − cos(2πs)) if s ≤ 1,

1

2
(s − 1)2 if s ≥ 1.

(2.6)
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In (2.4), Eext(φ) is the external energy, which is borrowed from the GAC model [13], that is,

Eext

(
φ
)
= λLg

(
φ
)
+ αAg

(
φ
)
= λ
∫
Ω
gδ
(
φ
)∣∣∇φ∣∣dx + α

∫
Ω
gH
(−φ)dx, (2.7)

where λ and α are constants, Lg(φ) is the length of the interface,Ag(φ) is the area of the region

that the zero-level curve encloses, δ(·) is the Dirac delta function, and H(·) is the Heaviside

function. g is an ESF such that limt→∞ g(t) = 0,

g =
1

1 + |∇Gσ ∗ I|2
, (2.8)

where Gσ is a Gaussian function with the standard deviation σ, I is a given 2D image, symbol

∗ represents convolution, ∇ is the gradient operator, and | · | is the modulus of the smoothed

image gradients.

As can be seen, the level set function φ will stop moving when g approaches zero. In

other words, the resulting final contour will halt at where the image gray gradient is large

enough to make g → 0. A small value of σ may make the proposed method sensitive to

noise, and the evolution will not be stable. On the other hand, a large value of σ may lead

to boundary leakage, and the extracted boundary may not be accurate. The choice of σ is a

dilemma, especially when the images have speckle noise and weak boundaries. This property

makes the traditional ESF in (2.8) inappropriate for US images.

The associated Euler-Lagrange equations, obtained by minimizing function equation

(2.4) with respect to φ, is

∂φ

∂t
= μdiv

(
dp
(∣∣∇φ∣∣)∇φ) + λδ(φ)div

(
g
∇φ∣∣∇φ∣∣
)

+ agδε
(
φ
)
,

φ
(
x, y, 0

)
= φ0

(
x, y
)
,

(2.9)

where div(·) is the divergence operator and dp is a function given by

dp(s) =
p′(s)
s

, (2.10)

that satisfies |dp(s)| < 1, for all s ∈ (o,∞) and lims→ 0 dp(s) = lims→∞ dp(s) = 1.

In (2.9), the initial level set function φ0 being a binary step function is given by

φ0

(
x, y
)
=

{
−d if

(
x, y
) ∈ Ω0,

d, otherwise,
(2.11)

where d > 0 is a constant and Ω0 is a subset in the image domain Ω.
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Figure 1: The Dirac function with different epsilon values.

In practice, the Dirac delta function δ(·) in (2.9) is replaced by the following function

δε(·):

δε(x) =

⎧⎨⎩
1

2ε

(
1 + cos

πx

ε

)
, |x| ≤ ε,

0, |x| > ε,
(2.12)

where ε is a positive constant. As shown in Figure 1, if ε is too small, the values of δε(·) are

prone to approximately zero to make its effective range small, hence the energy functional can

be easily trapped into a local minimum. On the contrary, if ε is large, the final contour location

may be inaccurate, even if δε(·) tends to achieve a global minimum. For all experiments in

this paper, the parameter ε is set to 1.5.

3. Proposed Method

The goal of our method is to extract a breast tumor from a given US image. This method

consists of three stages: ESF definition, improved GVF construction, and model generation.

Figure 2 shows the block diagram of the proposed method. In the first stage, we first apply

phase asymmetry approach to enhance the image edges and then define a novel phase-based

ESF. At the second stage, we generate an edge map and use it to compute the GVF. At the last

stage, we construct the model first by using a phase-based ESF and then by incorporating the

improved GVF.
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Figure 2: Block diagram of the proposed method for breast tumor segmentation.

3.1. Design of the ESF

The sine and cosine functions with specific amplitudes (energies) can represent any discrete

signal. In the time domain, these functions cause a set of scaled waves, synthesizing the

original signal. Morrone and Owens [20] gave a general definition of how to describe and

detect signal features using the phase of the Fourier components.

Kovesi [21] proposed a low-level feature detector, named phase congruency model

[20], in terms of the Fourier analysis. The phase congruency model is based on the

assumption that features are perceived at points in an image where the Fourier components

are maximally in phase, rather than assume a feature is a point of maximal intensity gradient.

In other words, the phase of the sinusoidal components varies and a low phase congruency

is achieved at all other nonfeature points. In practical applications, the local frequency,

particularly, the phase information, is estimated via a bank of Cauchy filter tuned to various

spatial frequencies (scales) rather than Log-Gabor filter. The main reason for this is that Log-

Gabor filters are likely not a good choice in the event of feature detection [22, 23].
The measure of phase congruency provides inaccurate localization, noise sensitivity,

and high computational cost. Motivated by the properties of the phase congruency, Kovesi

considered that symmetries and asymmetries cause special phase patterns in the values of the

image intensity [21]. At symmetric points, all Fourier series should have either maximum or

minimum value. Kovesi proposed a modified measure to detect symmetry and asymmetry.

The symmetric measure is

PS[n] =
∑

s

⌊
As[n]

[∣∣cos
(
φs[n]

)∣∣ − ∣∣sin
(
φs[n]

)∣∣] − Ts⌋∑
s As[n] + ε

=
∑

s�[|evens[n]| − |odds[n]|] − Ts�∑
s As[n] + ε

,

(3.1)

and the asymmetric one is

PA[n] =
∑

s�[|odds[n]| − |evens[n]|] − Ts�∑
s As[n] + ε

, (3.2)

where evens and odds are the responses of the even-symmetric (cosine) and odd-symmetric

(sine) filters at scale s. At a point of symmetry, the absolute value of evens is large while that

of odds is small. At a point of asymmetry, the opposite is true.As[n] represents the magnitude

of the responses of each quadrature pair of filters at a given scale s and point n in the image,

that is, As[n] =
√
(odds[n])

2 + (evens[n])
2. Symbol �·� denotes zeroing of negative values, ε

is a positive constant to avoid division by zero, and Ts is the scale specific noise threshold.

Extension to two-dimensional (2D) images uses the 1D analysis over several

orientations and then combines the results to offer a single measure of the feature significance

[24]. For a given breast US image, we first convolve a breast US image with a bank of

Cauchy kernel filter in order to calculate the 2D phase asymmetry. In this paper, we yield
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Figure 3: Comparison between gradient-based ESF and phase-based ESF of the US image. (a) Speckled
homogeneous image; (b) and (c) are the gradient-based ESF and phase-based ESF of (a); (d) Speckled
image with contour; (e) and (f) are the gradient-based ESF and phase-based ESF of (d).

the asymmetric measures over six orientations and four/five scales at each pixel. The values

of PA range from 0 to 1, close to one in homogeneous region and close to zero in the vicinity

of boundaries. Clearly, PA is a dimensionless quantity.

Based on the analysis mentioned above, one can see that PA ∈ [0, 1] is the feature

asymmetry measure defined by (3.2) and can offer a better control on the edge detection

quality. The main difference between this edge detection and the traditional edge detections is

that it is invariant to the changes in image intensity or contrast. According to our knowledge

of the breast US images, they are often intensity inhomogeneous and have high amounts of

speckle noise. Thus, we apply PA to define ESF with sufficient robustness and accuracy in

this paper. Since ESF is also an inverse edge indicator function, an appropriate definition of

ESF is given by

g =
1

1 + (PA)α
, (3.3)

where α ∈ [0, 1] is a hyperparameter. The g takes values in [0, 1], close to zero in the vicinity

of boundaries and close to one in homogeneous regions. Particular advantage of this ESF over

the gradient-based ESF (e.g., (2.8)) is its insensitivity to intensity inhomogeneity and speckle

noise. Figure 3 illustrates this statement.

As can be seen from Figure 3, two situations are described. The first case, where there

exits a single homogeneous region, is shown in Figure 3(a), and the second case, where

two distinct homogeneous regions are separated by a sharp edge, is shown in Figure 3(d).
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The gradient-based ESF and phase-based ESF are calculated on these two speckled images.

Figures 3(b) and 3(e) show that the variance of the gradient-based ESF increases with the

intensity in homogeneous regions. The multiplicative nature of speckle noise leads to this

expected behavior. In contrast, the phase-based ESF has more homogeneous values, as shown

in Figures 3(c) and 3(f). Consequently, the detected edges obtained using the phase-based

ESF are better than those obtained using the gradient-based one. The very low values of ESF

easily make curve stop at spurious edges which are caused by the speckle noise. Aiming at

precise segmentation of US images, our proposed model prefers to use the phase-based ESF

than the conventional gradient-based one.

3.2. Improved GVF Construction

Xu and Prince [6, 7] introduced the GVF as a bidirectional external force to capture the

object’s boundary from either sides and to deal with concave boundary. The construction

of the GVF can be divided into two stages: the generation of edge map f from the image and

the computation of the GVF from the edge map f . Clearly, the quality of edge map f is a

crucial factor in the construction of GVF field. A classical choice is defined as

f = |∇Gσ ∗ I|2. (3.4)

An obvious problem with this edge map is that the traditional GVF could be attracted

to strong edges which are caused by noises in an inhomogeneous region with high gray

values.

In order to eliminate this shortcoming, we define an edge map as

f
(
x, y
)
= g
(
x, y
)
, (3.5)

where g is given in (3.3).
The GVF field is defined by the vector field

VGGVF

(
x, y
)
=
(
u
(
x, y
)
, v
(
x, y
))
, (3.6)

that minimizes the following objective function [6, 7]:

EGGVF(u, v) =
1

2

∫∫
h1

(∣∣∇f∣∣)(u2
x + u

2
y + v

2
x + v

2
y

)
+ h2

(∣∣∇f∣∣)∣∣(u, v) − ∇f∣∣2dx dy, (3.7)

where ux, uy, vx, vy are the first derivatives of the vector field, h1(·) and h2(·) are the weight

functions depending on the gradient of the edge map ∇f , and they are defined as

h1

(∣∣∇f∣∣) = exp

(
−
(∣∣∇f∣∣

K

))
h2

(∣∣∇f∣∣) = 1 − h1

(∣∣∇f∣∣), , (3.8)
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(a) (b) (c)

Figure 4: Comparison between original GVF field (Niter = 10) and improved GVF (Niter = 10) of the breast
US image. (b) and (c) are zoomed-in views of the original GVF and improved GVF in square window
marked in (a). As shown by the arrows, more gradient vectors in the improved GVF field point to the true
boundaries.

where K is a nonnegative parameter which is used to control the smoothness of the resulting

vector field VGGVF. h1(·) and h2(·) should be monotonically decreasing and increasing

functions of |∇f |, respectively.

The force vector field VGGVF(x, y) can be solved from the following Euler equations:

h1∇2u − h2

(
u − fx

)
= 0,

h1∇2v − h2

(
v − fy

)
= 0,

(3.9)

where fx and fy are the derivatives of f with respect to x and y.

For an example of breast US image, Figures 4(b) and 4(c) show the detailed original

GVF field and improved GVF field of the window marked in Figure 4(a). It can be seen that

more gradient vectors point to the true boundary obviously in the improved GVF field, with

compared to the original GVF field.

The major difference between the traditional GVF and the improved GVF is that the

former edge map is dependent on gradient magnitude while the latter is dependent on phase

congruency. The advantage of the latter over the former is that it makes use of the phase

information in the cure convolution and, thus, achieves better edge detection results for

objects with intensity inhomogeneities or speckle noise.

3.3. Model Generation

Although most of the traditional level set methods require reinitialization, Li’s method [16]
does not require reinitialization and provides stable level set evolution. Therefore, based on

the model in (2.9) presented by Li et al. [16], we propose an improved edge-based level

set model in this paper. The main difference of the proposed model from the DRLSE model

in (2.9) is that it uses the phased-based ESF previously constructed and simultaneously

integrates the improved GVF.
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The proposed model yields a level set evolution, called phase- and GVF-based level

set evolution (PGBLSE). The PGBLSE model can be described by the following differential

equations:

∂φ

∂t
= μdiv

(
dp
(∣∣∇φ∣∣)∇φ) + agδε(φ) + λδε(φ)div

(
g
∇φ∣∣∇φ∣∣ · [û, v̂]

)
, (3.10)

where μ > 0, a ∈ R, λ ∈ R are the constants as the weights of the distance regularization

term, the area term, and the length term, dp(·) is a function defined in (2.10), δε(·) is the Dirac

delta function in (2.12), g is the ESF defined in (3.3), φ is the level set function, t represents

time variable, div(·) is the divergence operator, and ∇ is the gradient operator. [û, v̂] is the

normalized GVF field where û = u/
√
u2 + v2 and v̂ = v/

√
u2 + v2. The field normalization

is responsible for obviating the dependency on the absolute value of the image intensity and

providing sufficient information to guide the curve evolution.

Now assuming that ∇φ is negative inside the zero-level set and positive outside,

the inward normal vector to the curve can be expressed as N = −∇φ/|∇φ|. The curve

motion (shrinkage/expansion) is governed by the two vectors. This curve is expanded if

the curve’s normal aligns with the normalized GVF, or it is shrunk if the curve’s normal

and the normalized GVF are in the opposite directions and is not deformed if the curve’s

normal is orthogonal to the normalized GVF. Obviously, this flow increases the shrinking

and expanding capability of curve evolution. This property is useful in concave boundaries.

4. Results and Discussions

4.1. Data Acquisition

This work was approved by Shanghai Sixth People’s Hospital in China. Our method was

developed using MATLAB and evaluated using 20 US images of breast tumors. Among these

images, 10 were malignant tumors and 10 were benign tumors. The patients’ ages are in the

range from 18 and 75 years old. The images were collected by using three kinds of scanners

with the linear transducers (7–14 MHz). The ultrasonic subimage of region of interest (ROI)
was chosen by an expert radiologist. This area only was then used for image segmentation.

An example of an extracted ROI subimage is illustrated in Figure 5.

4.2. Quantitative Measure

To evaluate the accuracy of the segmentation algorithms, we compared them with the

gold standard, which was manually produced by an experienced radiologist. In addition

to the golden standard segmentation, an error measure is required for evaluating object

segmentation algorithms. Measures can be divided into region-based measures and

boundary-based ones.

Region-based error measures are made by comparing the regions inside the contours.

The overlapping area error [4] is represented by the three parameters including true positive
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Figure 5: On the left is an US image captured from the sonographic scanner having a malignant tumor. On
the right is the ROI subimage.

(TP), false positive (FP), and Jaccard similarity (JS). For a given image, let Sa and Sm be the

obtained segmentation and golden standard, respectively. These three metrics are defined as

TP =
|Sm ∩ Sa|
|Sm| ,

FP =
|Sm ∪ Sa − Sm|

|Sm| ,

JS =
|Sm ∩ Sa|
|Sm ∪ Sa| ,

(4.1)

where ∪ is the set union operator, ∩ is the set intersection operator, and | · | represents the

number of pixels in the corresponding pixel set. The higher the TP value is, the more actual

tumor regions the segmented tumor regions cover. The lower the FP value is, the fewer

normal tissue regions the segmented tumor regions cover. The JS value ranges from 0 to 1.

The closer the JS value is to 1, the better the segmentation is.

The Dice similarity coefficient [25] has also been widely used for comparing existing

methods:

DSC =
2JS

1 + JS
=

2|Sm ∩ Sa|
|Sm| + |Sa| . (4.2)

The closer the value of DSC is to 1, the better the segmentation is.

Boundary-based error measures evaluate segmentations based on the distance

between two contours. The boundary error is defined as the average or max distance between

two contours. We denote the golden standard boundary byA = {a1, . . . , am} and the obtained

boundary as B = {b1, . . . , bn}, where each element of A or B is a point on the corresponding



Journal of Applied Mathematics 13

contour. For every point ai on boundary A, a distance to boundary B, denoted as MD (ai, B),
can be defined as the minimum distance of point ai to all points in B:

MD(ai, B) = min
j∈{1,...,n}

∥∥ai − bj∥∥, (4.3)

where || · || denotes the Euclidean distance.

The average minimum Euclidean distance (AMED) [26] is the average distance

between two contours:

AMED(A,B) =
∑m

i=1 MD(ai, B)
2m

+

∑n
j=1 MD

(
bj ,A

)
2n

. (4.4)

The Hausdorff distance (HD) [26], on the other hand, measures the max distance

between two contours:

HD(A,B) = max

{
max

i∈{1,...,m}
MD(ai, B), max

j∈{1,...,n}
MD
(
bj ,A

)}
. (4.5)

For a perfect segmentation, the distances HD and AMED are equal to zero.

4.3. Comparison with Previous Methods

We compare our method, PGBLSE model (3.10), with two edge-based active contour models:

GAC model [11] and DRLSE model [16]. The level set evolution in GAC model is

∂φ

∂t
= g
∣∣∇φ∣∣div

(
∇φ∣∣∇φ∣∣
)

+ ag
∣∣∇φ∣∣ +∇g · ∇φ, (4.6)

where a is a constant, which plays the similar role as in the PGBLSE model (3.10) and g is the

ESF defined by (2.8).
The same initial contours are used in these methods. We use the following default

setting of the parameters in our method: μ = 0.2, a = −1.1, λ = 0.2. The parameters α and s are

not set to the same values in all experiments. If we have to detect tumors of weak boundaries

or concave shapes, then parameters α and s should be small. Conversely, if we have to detect

tumors of strong boundaries and regular shapes, then parameters α and s should be large.

For the GAC and DRLSE models, we tuned the parameters for the best segmentation results

for all images. Experiments 1–5 illustrate the comparison results on five US images of breast

tumors.

Experiment 1 applies these three models to an US image which contains a malignant

breast tumor with obvious intensity inhomogeneity and highly concave boundary as shown

in Figure 6(a). The golden standard image was shown in Figure 6(b). The results obtained

with the GAC [11], DRLSE [16], and the proposed PGBLSE models are illustrated in Figures

6(c), 6(d) and 6(e), respectively. The GAC model fails in concave region since there is no

force that can pull the contour towards the concave portion of the tumor boundary. Although

the DRLSE model produces a smoother contour, it also fails in a similar fashion. Obviously,
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(a) (b) (c)

(d) (e)

Figure 6: Segmentation of a malignant breast tumor with intensity inhomogeneity and highly concave
boundary. (a) Original image. (b) Golden standard. Segmentation results of (c) GAC [11], (d) DRLSE [16],
and (e) the proposed PGBLSE models.

(a) (b) (c)

(d) (e)

Figure 7: Segmentation of a malignant breast tumor having intensity inhomogeneity and weak boundaries.
(a) Original image. (b) Golden standard. Segmentation results of (c) GAC [11], (d) DRLSE [16], and (e)
the proposed PGBLSE models.

without gradient diffusion, the ability to capture concave boundary is limited. With the help

of diffusion process, the proposed PGBLS method (α = 0.1, s = 4) successfully extracts

the concave part of the tumor. In addition, gradient diffusion is capable of removing the

boundary effect of weak edges. This is the reason why some parts of the contours from the

GAC and DRLSE models leak past weak boundary gradients while the PGBLSE model does

not. This also supports the efficiency of the improved GVF.

In experiment 2, these three models are applied to an US image of the malignant tumor

in Figure 7(a). This image is extremely challenging for edge-based active contour methods
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(a) (b) (c)

(d) (e)

Figure 8: Segmentation of a malignant breast tumor intensity inhomogeneity and low contrast. (a) Original
image. (b) Golden standard. Segmentation results of (c) GAC [11], (d) DRLSE [16], and (e) the proposed
PGBLSE models.

since it contains a complex-shaped tumor. Besides, the boundaries between the tumor region

and the surrounding normal tissue region are very weak, and the contrast is also low. The

results of the GAC model [11], DRLSE model [16], and the proposed method are illustrated

in Figures 7(c), 7(d), and 7(e), respectively. The GAC and DRLSE models capture the entire

tumor when parts of the normal tissues are also identified as tumor. Since tumor region

is surrounded by normal tissue regions with similar intensities and has local changes of

intensity, the gradient-based stopping terms of GAC and DRLSE models are heavily affected

and can be easily trapped into unsuitable local minima. In contrast, the proposed PGBLSE

model (α = 0.1, s = 4) uses a novel phase-based edge term; therefore, it can handle intensity

inhomogeneity well. In addition, due to the efficiency of the improved GVF mentioned

before (the ability to converge the concave boundaries is increased with sufficient gradient

diffusion), the PGBLSE model can prevent the leakage through weak edges and extract the

concave boundaries of tumor.

In experiment 3, Figure 8 illustrates the results using the GAC [11], DRLSE [16], and

PGBLSE models in the segmentation of malignant breast tumor in an US image. The GAC

model fails to segment the tumor in that the surrounding normal tissues of the tumor are

included as shown in Figure 8(c). It is also difficult to use the DRLSE model to successfully

extract the tumor; Figure 8(d) illustrates that some parts of the contour leak past weak

boundary gradients while other parts are confined inside the tumor. The PGBLSE model

(α = 0.5, s = 5) separates the real tumor from normal tissue regions, as illustrated in

Figure 8(e). That is, a successful segmentation is obtained.

Experiment 4 applies these three methods on an US image of a benign breast tumor,

as shown in Figure 9(a). It can be seen that the tumor image has gradually changing intensity

and the boundaries between the tumor region and its surrounding normal tissue are very

weak. The GAC model cannot deal with weak boundary, and the resulting contour leaks at

where there are relatively weak boundary gradients, as depicted in Figure 9(c). The DRLSE

model also cannot handle weak boundaries well, and the contour leaks into the surrounding
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(a) (b) (c)

(d) (e)

Figure 9: Segmentation of a benign breast tumor having low contrast and weak boundaries. (a) Original
image. (b) Golden standard. Segmentation results of (c) GAC [11], (d) DRLSE [16], and (e) the proposed
PGBLSE models.

(a) (b) (c)

(d) (e)

Figure 10: Segmentation of a benign breast tumor with low contrast and high speckle noise. (a) Original
image. (b) Golden standard. Segmentation results of (c) GAC [11], (d) DRLSE [16], and (e) the proposed
PGBLSE models.

normal tissues, as shown in Figure 9(d). In contrast, the proposed model (α = 0.1, s = 4) uses

the edge map based on phase information to calculate the gradients, which helps to prevent

the contour from leaking into normal tissues. Therefore, the proposed model is more immune

to leaking effect and the generated tumor contour is very close to the golden standard, as

shown in Figure 9(e).
Experiment 5 illustrates the application of the proposed method to a relatively smooth

benign breast tumor as shown in Figure 10(a). We analyze the GAC and DRLSE models. The
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US image suffers from speckle noise. The classical GAC model cannot yield smooth contour

even for the round shape, as shown in Figure 10(c). In addition, the GAC contour is confined

inside by small clusters of noise with large intensity magnitudes. Even though the DRLSE

model generates smoother contour, the resulting contour is still confined inside the tumor

region as illustrated in Figure 10(d). On the contrary, Figure 10(e) shows that the proposed

PGBLSE model (α = 0.5, s = 5) is the most accurate among these three methods.

Clearly, the GAC and DRLSE models are sensitive to the noise which seriously affects

the gradient-based stopping terms. Therefore, these two models yield many comparatively

strong gradients throughout the whole image including the homogeneous regions, which

distracts the evolution contours from the real boundaries. This problem can be solved by

using the phase-based stopping term because this term is theoretically intensity invariant.

Experiments 1–5 illustrate the comparison results on five US images of breast tumors

in comparison with the GAC model [11], the DRLSE model [16], and the golden standard.

The results suggest that the tumor contours extracted from our proposed PGBLSE model are

better than those from the other two models [11, 16], and they are very close to the golden

standard. This conclusion is also supported by the details shown in Figure 11.

Figure 11 shows that the proposed PGBLSE model obtains better accuracy than the

GAC and DRLSE models in terms of the JS and DSC measures. Moreover, the PGBLSE

model is superior to the GAC and DRLSE models in terms of the AMED and HD measures.

Particularly, the PGBLSE model is almost 2 times better than the GAC model in terms of the

HD measure.

Figures 6–10 demonstrate that the proposed model is the most accurate comparing

with the other models in the study. Finally, we evaluated our approach on the dataset of 20

US images of breast tumors. For these studied images, Figure 12 shows six box plot graphics

using the TP, FP, JS, DSC, AMED, and HD measures for the three segmentation models.

From Figure 12(a), a phenomenon is observed that the GAC model and the DRLSE

model performed slightly better than the proposed PGBLSE model in terms of the TP

measure. This advantage has been visualized in the box plot showing the large median values

of the TP. However, their segmentation results are not accurate, and the higher values of FP

also imply this. As shown in Figure 12(b), the median FP values of the GAC and DRLSE

models are very high (17.74% and 19.74%, resp.). On the contrary, the proposed PGBLSE

model obtains a much lower median value of FP (4.19%), which demonstrates that there are

fewer normal tissue regions mistakenly included in tumor regions and thus the segmentation

is more reliable. Like the cases in Figures 7 and 9, although the GAC and DRLSE models

approximately include the entire real tumor regions, they simultaneously cover a lot of

unsatisfied normal tissue regions. Figure 12(c) illustrates that the median values of JS for

these models are, respectively, 79.73%, 80.08%, and 86.30%. It is observed that the proposed

PGBLSE model presents the best median value, while the GAC and DRLSE models have

lower median values, which suggests worst segmentation performance. The GAC model

(from 81.63% to 85.1%) and the DRLSE model (from 81.51% to 85.95%) have the upper

quartile in a lower position when compared to the position of the same quartile of the

proposed PGBLSE model (from 87.74% to 90.04%), which suggests a lower performance of

the GAC and DRLSE models. This is also verified by the DSC measure (Figure 12(d)).
As can be seen from Figure 12(f), the median value of HD for our PGBLSE model is

around 7 pixels, whereas the median values for the GAC and DRLSE models are all above

16 pixels. High HD value means high disagreement between the segmented contour and

the golden standard. Besides, it is observed that our model offers a smaller dispersion range

while the GAC and DRLSE models provide large dispersion ranges. Although the median
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Figure 11: Bar plots of segmentation errors among the GAC, DRLSE, and PGBLSE models. (a) JS error. (b)
DSC error. (c) AMES error. (d) HD error. The x-axis represents five images in Figures 6(a)–10(a) in the
same order.

values of AD for the three models are not very different from each other, the GAC and

DRLSE models have more outliers and larger dispersion range of values as illustrated in

Figure 12(e).
As can be seen from Figure 13, the results are then assessed on 20 clinical US images

of breast tumors using the tumor areas that tumor contour enclosed. They are displayed in

Bland-Altman [27] plots. The x-axis is golden standard area and the y-axis represents the

tumor area difference between the three segmentation models and golden standard. For the

20 breast US images, using the GAC and DRLSE models, 95% of the point pairs (19 images)
are with ±2SD (95% confidence intervals). Using the proposed PGBLSE model, 100% of the

point pairs (20 images) are with ±2SD (100% confidence intervals). The mean differences are

568, 369, and −202.4 pixels for the GAC, DRLSE, and proposed PGBLSE models, respectively.
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Figure 12: Box plots of segmentation errors among the GAC, DRLSE, and PGBLSE models on 20 clinical
US images of breast tumors. (a)TP, (b) FP, (c) JS, (d) DSC, (e) AMED, and (f) HD.

The goal of this particular experiment is twofold. On the one hand, we demonstrate

that tumor areas of the GAC and DRLSE models are larger than those of the proposed

PGBLSE model, and, therefore, large values of TP are obtained. On the other hand, some

nontumor regions are also incorrectly covered by the GAC and DRLSE models, and,

therefore, large values of FP are achieved.

In our experiments, all figures (i.e., Figures 6–13) show, among the three models, that

the best agreement is between the proposed PGBLSE model and the golden standard.
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Figure 13: Bland-Altman plots for the comparison of the tumor areas on clinical US images of breast
tumors, assessed by three segmentation models and by the golden standard: (a) GAC [11], (b) DRLSE
[16], and (c) the proposed PGBLSE models.

5. Conclusions

We have presented in this paper a new approach for the segmentation of the ultrasonic breast

tumors. For the first time, phase asymmetry approach, which can enhance the boundaries, is

used to segment the ultrasonic breast tumors. In a level set framework, we integrate the use of

a novel ESF and the improved GVF, both constructed using the output of phase asymmetry.

This model shows significant improvements, particularly, in robustness against the speckle

noise, as well as in handling intensity inhomogeneities and capturing concave boundaries.

The performance of the proposed PGBLSE model is demonstrated on clinical US

images of breast tumors. Qualitative and quantitative results show that the PGBLSE model

outperforms the classical intensity-based GAC and DRLSE models. The further work will

focus on developing a hybrid level set active contour model by investigating the addition of

a region-based term, in order to improve the performance of the method.
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Diffuse optical tomography is used to find the optical parameters of a turbid medium with infrared
red light. The problem is mathematically formulated as a nonlinear problem to find the solution
for the diffusion operator mapping the optical coefficients to the photon density distribution on
the boundary of the region of interest, which is also represented by the Born expansion with
respect to the unperturbed photon densities and perturbed optical coefficients. We suggest a new
method of finding the solution by using the second-order Born approximation of the operator.
The error analysis for the suggested method based on the second-order Born approximation is
presented and compared with the conventional linearized method based on the first-order Born
approximation. The suggested method has better convergence order than the linearized method,
and this is verified in the numerical implementation.

1. Introduction

Diffuse optical tomography involves the reconstruction of the spatially varying optical pro-

perties of a turbid medium. It is usually formulated as inverse problem with respect to the for-

ward problem describing photon propagation in the tissue for given optical coefficients [1].
The forward model is described by the photon diffusion equation with the Robin

boundary condition. In the frequency domain, it is given by

−∇ · (κ∇Φ) +
(
μa +

iω

c

)
Φ = q in Ω,

Φ + 2aν · (κ∇Φ) = 0 on ∂Ω,

(1.1)

where Ω is a Lipschitz domain in R
n, n = 2, 3, . . ., ∂Ω is its boundary, ν is the unit outward

normal vector on the boundary, Φ is the photon density, q is a source term, a is a refraction
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parameter, and μa, μ′s, and κ = 1/3(μa + μ′s) are the absorption, reduced scattering, and

diffusion coefficients, respectively. Assume that a is a constant and κ, μa, μ′s are scalar func-

tions satisfying

0 < L ≤ κ, μa, μ′s, a ≤ U (1.2)

for positive constants L and U. The unique determination of the optical coefficients is studied

in electrical impedance tomography problem [2–5] and some elliptic problem [6], which is

applicable to diffuse optical tomography problem also. Let us denote x = (μa, κ) and Φ =
Φ(x) to emphasize the dependence of Φ on the optical coefficient x.

Assuming we know some a priori information x0 about the structural optical co-

efficients x and the perturbation of the optical coefficients δx = x − x0, the diffuse optical

tomography problem is to find the perturbation of the optical coefficients δx from the differ-

ence Φ(x + δx) − Φ(x) between the perturbed and unperturbed photon density distribution

on the boundary ∂Ω. The relation between δx and Φ(x+ δx)−Φ(x) is given by the following

Born expansion [7, 8]:

Φ(x + δx) −Φ(x) = R1(x, δx) + R2
(
x, (δx)2

)
+ · · · , (1.3)

where

R0(x) = Φ(x),

Ri
(
(δx)i

)
= R
(
δx,Ri−1

(
(δx)i−1, f

))
, i = 1, 2, . . . ,

R(δx, f) = Rμa(δx, f) + Rκ(δx, f),
Rμa
(
δx, f

)
=
∫
Ω
δμa
(
η
)
R
(·, η)f(η)dη,

Rκ
(
δx, f

)
=
∫
Ω
δκ
(
η
)∇R(·, η) · ∇f(η)dη,

(1.4)

and R(·, η) is the Robin function for a source at η, which is the solution of (1.1) for the optical

coefficient x when q is the Dirac delta function. By definition of (1.4), the operator R and R1

are different in the following sense:

R1(δx) = R
(
δx,R0

)
= R(δx,Φ). (1.5)

Let the perturbation of the coefficients be δx† when we neglect second-order terms and higher

in the Born expansion (1.3). We can then formulate the linearized diffuse optical tomography

problem to find δx† from the following equation, which is the first-order Born approximation:

R1
(
δx†
)
= Φ(x + δx) −Φ(x). (1.6)
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This linearized diffuse optical tomography problem is simple to implement and widely used

[9, 10].
In this paper, a new method, which is more accurate than the linearized method, will

be suggested (1.6), which is based on the second-order Born approximation. And the method

is faster than the full nonlinear method [11]. Let the solution of the proposed method in this

paper be δxB, and let δx be sufficiently small. Then, the error for the linearized solution δx†

and the proposed solution δxB is given by∥∥∥δx† − δx∥∥∥
A
≤ C†‖δx‖2

A , (1.7a)∥∥∥δxB − δx∥∥∥
A
≤ CB‖δx‖3

A , (1.7b)

whereA = L∞(Ω)×L∞(Ω) and C† and CB are constants which are independent of δx. Hence,

the error of the proposed solution xB in (1.7b) is of the order O(‖δx‖3
A), which is higher than

the order of the error of the linearized solution x†, O(‖δx‖2
A).

The detailed statement with proof will be proved in Section 2. Numerical algorithm

involving the detailed computation of the second-order term is given in Section 3. Numerical

implementation of the proposed method and the linearized method is given in Section 4, and

the conclusion of the paper is given in Section 5.

2. Error Analysis

Instead of solving linearized solution δx† in (1.6), we suggest the second order solution δxB

satisfying

R1
(
δxB
)
= (Φ(x + δx) −Φ(x)) − R2

(
δx†
)2
, (2.1)

or equivalently,

R1
(
δxB − δx†

)
= −R2

(
δx†
)2
. (2.2)

In this section, we analyze the error for the linearized solution δx† and the suggested solution

δxB.

Let B = H1(Ω); then, the operator R and Ri, i = 1, 2, . . ., are considered to be the

operators from A × B → B andAi(=

i times︷ ︸︸ ︷
A × · · · × A) → B, respectively, by the definition given

in (1.4). For the detailed explanation about the definitions of higher-order Fréchet derivative

in diffuse optical tomography and its relation to the Born expansion, see [7].

Proposition 2.1. Let Φ be the solution of (1.1) for the given optical coefficients μa, κ, source q, and
modulating frequency ω. Then one gets the following relation between the operators between R and
Ri, i = 1, 2, . . .: ∥∥∥Ri∥∥∥

Ai→B
≤ ‖R‖iA×B→B‖Φ‖B (2.3)

for i = 1, 2, . . ..
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Proof. By the induction argument on i = 1, 2, . . . and using (1.5), we get the following ine-

quality:

∥∥∥R1
∥∥∥
A→B

≤ ‖R‖A×B→B‖Φ‖B , (2.4)

which is (2.3) for i = 1. Suppose that (2.3) holds for i = 1, 2, . . . , I − 1. Then we obtain

∥∥∥RI(δx)I∥∥∥
B
≤ ‖R‖A×B→B‖δx‖A

∥∥∥RI−1(δx)I−1
∥∥∥
B

≤ ‖R‖A×B→B‖δx‖A
∥∥∥RI−1

∥∥∥
AI−1
‖δx‖I−1

A

≤ ‖R‖IA×B→B‖δx‖IA‖Φ‖B.

(2.5)

Using (2.5) and the definition of the operator norm ‖ · ‖AI →B, we obtain (2.3) for i = I.

Therefore, by the induction argument, we have proved (2.3) for i = 1, 2, . . ..

By [7], ‖R‖A×B→B is bounded, and thus ‖Ri‖Ai→B, i = 1, 2, . . ., are also bounded by

Proposition 2.1. Let us assume that there exists a bounded operator (R1)† from B to A such

that (R1)†(R1) = idA. (R1)† is usually called the left inverse of R1. Let us denote

‖δx‖ := ‖δx‖A ,
‖Φ(x)‖ := ‖Φ(x)‖B ,
‖R‖ := ‖R‖A×B→B ,∥∥∥Ri∥∥∥ :=
∥∥∥Ri∥∥∥

Ai→B
, i = 1, 2, . . . ,∥∥∥∥(R1

)†∥∥∥∥ :=
∥∥∥∥(R1

)†∥∥∥∥
B→A

,

(2.6)

for brevity.

Using Proposition 2.1 and the assumption on the left inverse, the main theorem of this

paper is given as follows.

Theorem 2.2. Assume that there exists (R1)† such that (R1)†R1 = id and ‖(R1)†‖ is bounded, and
let

‖δx‖ ≤ 1

2‖R‖ . (2.7a)

Then, ∥∥∥δx† − δx∥∥∥ ≤ C†‖δx‖2, (2.7b)∥∥∥δxB − δx∥∥∥ ≤ CB‖δx‖3, (2.7c)
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where

C† := 2

∥∥∥∥(R1
)†∥∥∥∥‖R‖2‖Φ‖,

CB :=

(
C†
)3

4‖R‖ +
(
C†
)2

+ ‖R‖C† = C†‖R‖
(

C†

2‖R‖ + 1

)2

.

(2.8)

Proof. By (1.3) and (1.6), we obtain

R1
(
δx† − δx

)
= R2(δx)2 +R3(δx)3 + · · · . (2.9)

Therefore we arrive at (2.7b) by the following inequality:

∥∥∥δx† − δx∥∥∥ ≤ ∥∥∥∥(R1
)†∥∥∥∥(‖R‖‖δx‖)2‖Φ‖

1 − (‖R‖‖δx‖) ≤ C
†‖δx‖2. (2.10)

From (2.7a) and (2.7b), we obtain the following upper bound of ‖δx†‖:

∥∥∥δx†∥∥∥ ≤ (1 + C†‖δx‖
)
‖δx‖ ≤

(
1 +
∥∥∥(R1

)+∥∥∥‖R‖‖Φ‖)‖δx‖. (2.11)

Using (2.2) and (2.9), we obtain

R1
(
δx − δxB

)
= R2(δx)2 − R2

(
δx†
)2

+R3(δx)3 + R4(δx)4 + · · · . (2.12)

The second-order term on the righthand side of (2.12) is analyzed as follows:

R2(δx)2 − R2
(
δx†
)2

= R(δx,R(δx,Φ)) − R
(
δx†,R

(
δx†,Φ

))
= R
(
δx,R

(
δx − δx†,Φ

))
+ R
(
δx − δx†,R

(
δx†,Φ

))
.

(2.13)

From (2.12), we obtain

∥∥∥δx − δxB∥∥∥ ≤ ∥∥∥∥(R1
)†∥∥∥∥[∥∥∥∥R2(δx)2 − R2

(
δx†
)2
∥∥∥∥ + ∥∥∥R3(δx)3 +R4(δx)4 + · · ·

∥∥∥]. (2.14)
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(I) Compute the solution Φ(x) and the Robin function R(x) and its first
and second derivatives.

(II) Find δx† by solving R1(δx†) = Φ(x + δx) −Φ(x) as in (1.6).
(III) Find δxΔ = δxB − δx† by solving R1(δxΔ) = −R2(δx†) as in (2.2).
(IV) Compute δxB by adding δx† and δxΔ.

Algorithm 1: Numerical algorithm (continuous version).

By using (2.3), (2.10), (2.11), (2.13), and the definition of C†, (2.7c) is achieved from (2.14) as

follows:

∥∥∥δx − δxB∥∥∥ ≤ ∥∥∥∥(R1
)†∥∥∥∥‖Φ‖

[
‖R‖2

∥∥∥δx − δx†∥∥∥(‖δx‖ + ∥∥∥δx†∥∥∥) + (‖R‖‖δx‖)3

1 − ‖R‖‖δx‖

]

≤
∥∥∥∥(R1

)†∥∥∥∥‖Φ‖‖R‖2‖δx‖3

[
C†
(

2 +
∥∥∥∥(R1

)†∥∥∥∥‖R‖‖Φ‖) + 2‖R‖
]

≤ C†‖δx‖3

[
C†
(

1 +
C†

4‖R‖

)
+ ‖R‖

]

≤ CB‖δx‖3.

(2.15)

3. Numerical Algorithm

Assume that we can measure the photon density distribution Φ(x+δx) and Φ(x) on the entire

boundary ∂Ω. That is to say, we have infinite detectors and one source. Then, the numerical

algorithm is given as follows.

The detailed computation of the integral operators R1 and R2, which is introduced in

(1.5), is as follows:

R1(δx) = Rμa
(
δμa,Φ

)
+Rκ(δκ,Φ), (3.1a)

R2(δx) = Rμa
(
δμa,Rμa

(
δμa,Φ

))
+Rμa

(
δμa,Rκ(δκ,Φ)

)
,

+ Rκ
(
δκ,Rμa

(
δμa,Φ

))
+ Rκ(δκ,Rκ(δκ,Φ)).

(3.1b)

3.1. Discretization

Algorithm 1 is based on one source and infinite detectors. However, for practical reasons, we

need to discretize Algorithm 1 to obtain the numerical algorithm for finite sources and finite

detectors for finite frequencies. The following notations will be used for the discretization:

(i) Nd detector positions: rid for id = 1, 2, . . . ,Nd,

(ii) Ns source functions: qis = δis(Dirac delta function) for is = 1, 2, · · · ,Ns,

(iii) Nω frequencies: ωiω for iω = 1, 2, . . . ,Nω,
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(iv) Ne elements: Tie for ie = 1, 2, . . . ,Ne,

(v) Nn nodes: tin for in = 1, 2, . . . ,Nn,

(vi) the measurement index: j = (iω − 1)NsNd + (is − 1)Nd + id,

(vii) the optical coefficient index: k = (iμκ − 1)Ne + ie, where iμκ is 1 (the absorption

coefficient) or 2 (the diffusion coefficient).

If we use piecewise linear or bilinear finite element method, the finite element solution

is represented by

uh(x) =
Nn∑
in=1

uh(in)φin(x), (3.2)

where φin is the piecewise linear or the bilinear function which is 1 on the inth node and 0 on

all the other nodes. Assume μa and κ are piecewise constant function, which is constant for

each Ne finite elements. Therefore, in diffuse optical tomography inverse problem, we have

NωNsNd measurement information contents and 2Ne variables to find.

We should discretize R1 and R2 to obtain a discretized version of Algorithm 1. Let the

Jacobian and Hessian matrices, which is the discretization of integral operators R1 and R2, be

J and H. The relation between higher order derivatives for the diffusion operator and higher

order terms of Born expansions including R1 and R2 is analyzed in [7].
Firstly, let us discretize δx, Φ, and the Robin function R as follows:

δx ≈
(

Ne∑
ie=1

δμieχTie ,
Ne∑
ie=1

δκieχTie

)
, (3.3a)

Φiω,is ≈
Nn∑
in=1

Φiω,is
in

φin , (3.3b)

Riω(·, ris) ≈
Nn∑
in=1

R
iω,is
in

φin . (3.3c)

Since we chose the source function qs as the Dirac delta function at the isth source point,

Φiω,is = Riω(·, ris). However, we will discriminate these two functions in this paper, since they

are different for general source function q which is different from the Dirac delta function. We

will use δμ instead of δμa for notational convenience.

Let the vector γ0 which corresponds to the discretization of δx in (3.3a) be defined as

γ0 =
(
δμ1, δμ2, . . . , δμNe

, δκ1, δκ2, . . . , δκNe

)
. (3.4)

By the adjoint method [12], Riω(rid , ·) = (Riω(·, rid))∗, where ∗ denotes complex conjugate.

Likewise for (3.3a), let γ , γ†, γΔ, and γB be the discretization of δx, δx†, δxΔ, and δxB,

respectively.
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For a function f and a measurable set T , let us denote f ∈ T if the intersection of the

support of f and T is not empty. The discretization of the linearized solution γ† is attained by

solving the following equation:

Jγ† = b, (3.5)

where

J
(
j, k
)
=
∑

φin1
∈Tie

∑
φin2
∈Tie

(
Riω,id
in1

)∗
Eie(in1, in2)Φ

iω,is
in2

when iμκ = 1,

J
(
j, k
)
=
∑

φin1
∈Tie

∑
φin2
∈Tie
− 3
(
Riω,id
in1

)∗
κ2
ie
Fie(in1, in2)Φ

iω,is
in2

when iμκ = 2,

b
(
j
)
= Φiω,is(x + δx)(rid) −Φiω,is(x)(rid),

Eie(in1, in2) =
∫
Tie

φin1
(ξ)φin2

(ξ)dξ,

Fie(in1, in2) =
∫
Tie

∇φin1
(ξ) · ∇φin2

(ξ)dξ.

(3.6)

The discretized solution γΔ is obtained by solving the following equation:

JγΔ =
(
γ†
)t
Hγ†, (3.7)

where

H
(
j, ie1, ie2

)
=
∑

φin1
∈Tie1

∑
φin2
∈Tie2

(
Riω,id
in1

)∗(
Hμμ +Hμκ +Hκμ +Hκκ

)
(ie1, ie2

; in1, in2)Φ
iω,is
in2

, (3.8)

where Hμμ, Hμκ, Hκμ, and Hκκ are the discretization of corresponding terms in (3.1b) such

that

Hμμ(ie1, ie2; in1, in2) =
∫
Tie1

∫
Tie2

φin1
(ξ)Riω

(
ξ, η
)
φin2

(
η
)
dξdη,

Hμκ(ie1, ie2; in1, in2) =
∫
Tie1

∫
Tie2

φin1
(ξ)∇ηRiω

(
ξ, η
) · ∇ηφin2

(
η
)
dξdη,

Hκμ(ie1, ie2; in1, in2) =
∫
Tie1

∫
Tie2

∇ξφin1
(ξ) · ∇ξ

(
Riω
(
ξ, η
))
φin2

(
η
)
dξdη,

Hκκ(ie1, ie2; in1, in2) =
∫
Tie1

∫
Tie2

∇ξφin1
(ξ) ·
[
∇ξ∇ηRiω

(
ξ, η
)]∇ηφin2

(
η
)
dξdη.

(3.9)
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(I) Compute the solution Φ(γ0)
iω,is
in

and the Robin function R(γ0)
iω
id,in

for

iω = 1, · · · ,Nω, is = 1, . . . ,Ns, in = 1, . . . ,Nn as in (3.3b) and (3.3c),
respectively.

(II) Find γ† by solving the equation (3.5).
(III) Find γΔ by solving the equation (3.7).
(IV) Compute γB by adding γ† and γΔ.

Algorithm 2: Numerical algorithm (discretized version).

Even though the Hessian is not discretized, we obtain the following discretized numerical

algorithm (Algorithm 2), expecting the Hessian is simply discretized and approximated in

the next subsection:

3.2. Approximation of Hessian

In this subsection we approximate Hμμ, by assuming κ and μ′s are constant in Ω. The appro-

ximation is progressed in three ways.

First, we approximate the Robin function R(ξ, η) when (ξ, η) ∈ Ω \ ∂Ω by its leading

term R0(ξ, η) defined by

R0

(
ξ, η
)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1(

p − 2
)
gpκ
(
η
)∣∣ξ − η∣∣2−p p ≥ 3,

1

ω2κ
(
η
) log

(
2S∣∣ξ − η∣∣

)
p = 2,

(3.10)

where gp is the hypersurface area of the unit sphere in R
p, p = 2, 3, . . . and S = supξ,η∈Ω|ξ − η|.

Some important relations between R and R0 are found in [13].
Second, when ie1 /= ie2

, the Robin function R and φin are approximated by constant

values R0(c(ie1
), c(ie2

)) and φin(c(ie)) in Tie , respectively, where c(ie) of the center of the ele-

ment Tie . That is to say, when ie1 /= ie2, (3.9) is approximated as follows:

Hμμ(ie1, ie2; in1, in2) = R0(c(ie1), c(ie2))
∫
Tie1

φin1
(ξ)dξ

∫
Tie2

φin2

(
η
)
dη. (3.11)

Third, when ie1 = ie2, we use the following lemma.

Lemma 3.1. Let the measurable set T be contained in R
p, p = 2, 3, . . ., and 0 < m < p; then, the fol-

lowing inequality holds for T :∫∫
T

∣∣ξ − η∣∣−mdξ dη ≤ p1−m/p

p −m g
m/p
p |T |2−m/p, p ≥ 2, (3.12a)∫∫

T

log

(
2S∣∣ξ − η∣∣

)
dξ dη ≤ 1

4π

(
1 + log

(
4S2π

|T |

))
|T |2, p = 2, (3.12b)

where |T | is the volume of T .
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Figure 1: Jindex =Nx ∗Ny ∗ 0.4, Jalpha = 6.4920e − 009, 10% noise, sources (∗), and detectors (o).

Proof. If a ball with a radius r has the same volume as T , we have

r =

(
|T | p

gp

)1/p

(3.13)

for the space dimensions p = 2, 3, . . .. Let the ball of radius r with center ξ ∈ T be Bξ. Let

T0 = T ∩ Bξ, T+ = T \ Bξ, and T− = Bξ \ T . Noting that |T+| = |T−|, we obtain

∫
T

∣∣ξ − η∣∣−mdη =
∫
T0

∣∣ξ − η∣∣−mdη +
∫
T+

∣∣ξ − η∣∣−mdη
≤
∫
T0

∣∣ξ − η∣∣−mdη +
∫
T−

∣∣ξ − η∣∣−mdη =
∫
Bξ

∣∣ξ − η∣∣−mdη
≤
∫ r

0

ρp−m−1gpdρ =
gp

p −mrp−m

≤ gp

p −m

(
|T | p

gp

)1−m/p

(3.14)
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Figure 2: Jindex =Nx ∗Ny ∗ 0.4, Jalpha = 6.5711e − 009, 10% noise, sources (∗), and detectors (o).

for all ξ ∈ T . Therefore,

∫∫
T

∣∣ξ − η∣∣−mdηdξ ≤ gp|T |
p −m

(
|T | p

gp

)1−m/p
=
p1−m/p

p −m g
m/p
p |T |2−m/p. (3.15)

Equation (3.12b) is derived in the same manner.

Therefore, when ie1 = ie2, (3.9) is approximated using the inequality in Lemma 3.1 as

follows:

Hμμ(ie1, ie1; in1, in2) ≈ φin1
(cie1

)φin2
(cie1

) ·

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p2/p|Tie1
|1+2/p

2
(
p − 2

)
g

2/p
p κ(c(ie1))

p ≥ 3,

1

8π2κ(c(ie1))

(
1 + log

(
4S2π

|Tie1
|

))
|Tie1
|2 p = 2.

(3.16)

4. Numerical Implementation

In the numerical implementation, the following parameters are used:
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Figure 3: Jindex =Nx ∗Ny ∗ 0.3, Jalpha = 1.8227e − 7, 10% noise, sources (∗) and detectors (o).

(i) Ω = [0, 6] × [0, 6] (cm2),

(ii) Nd = 16,

(iii) Ns = 16,

(iv) Nω = 1,

(v) Nx =Ny = 16,

(vi) Ne =Nx ∗Ny,

(vii) Nn = (Nx + 1) ∗ (Ny + 1),

(viii) μa = 0.05 + (0.2 − 0.05)χD (cm−1),

(ix) μ′s = 8 (cm−1),

(x) κ = 1/3 ∗ (μa + μ′s) = 1/3 ∗ (0.05 + 8),

(xi) ω = 2π ∗ 300 MHz,

(xii) a = 1,

(xiii) Jindex =Nx ∗Ny ∗ 0.4.

Since the diffusion coefficient κ is constant, the right-hand side b is a Ns ∗Nd column

vector, Jacobian J is a (Ns∗Nd)×Ne matrix, the HessianH is aNe×(Ns∗Nd)×Ne third-order

tensor, and (γ†)tHγ† is Ns ∗Nd column vector in (3.5) and (3.7). H = Hμμ is approximated

by (3.11) and (3.16).
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Figure 4: Jindex =Nx ∗Ny ∗ 0.4, Jalpha = 6.5029e − 009, 10% noise, sources (∗), and detectors (o).

In the above setting, we reconstruct the obstacle D which has different absorption

coefficient (0.2 cm−1) compared to the background absorption coefficient (0.05 cm−1). Four

cases of the obstacle D are considered in Figures 1, 2, 3, and 4. The reconstruction of the

absorption coefficient μa = 0.05+ (0.2− 0.05)χD (cm−1) is implemented using two algorithms.

One is the suggested Algorithm 2 based on the second-order Born approximation. The other

is linearized method based on the first-order Born approximation, which is equivalent to

the step I and II in Algorithm 2. We denoted these two methods in the figures: the 2nd

order approximation and the 1st-order approximation, respectively. On the upper-left part

of the figures, original μa and source/detector locations are plotted. The initial guess (μa0

or γ0) for the absorption coefficient is plotted on the upper-right part of the figures. In the

lowerleft and lowerright part of each figure, reconstructed absorption coefficients by the first

approximation (μ†a or γ†) and the second approximation (μBa or γB) are plotted, respectively.

In all four cases, 10% noise is added. Truncated singular value decomposition(SVD)
is used. Jindex is the number of largest singular values used in the truncated SVD method.

We used the Tikhonov regularization parameter Jalpha as the value of the Jindexth largest

singular values.

As is shown in the figure, the discrimination between background and the obstacle

is clearer in the second-order approximation than the first-order approximation. The recon-

structed image resolution depends on the distance from the boundary of the tissue, which

is verified by comparing Figures 1 and 2 with Figures 3 and 4. And the resolution also de-

pends on the size of obstacle, which is verified by comparing Figures 1 and 3 with Figures 2
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and 4. Due to the diffusion property of near infrared light, the reconstructed image is much

blurred especially in Figure 3. The sensitivity to the noise made some kind of irregular check-

erboard pattern near the boundary (Figures 1, 3, and 4).

5. Conclusions

We derived a new numerical method based on the second-order Born approximation. The

method is a method of order 3, which is more accurate than the well-known linearized meth-

od based on the first-order Born approximation. The error analysis for the method is proved,

and the computation of the second-order term is explained using some approximation and

integral inequalities. The comparison between the suggested and the linearized method is

implemented for four different kinds of absorption coefficients. In the implementation, the

suggested method shows more discrimination between the optical obstacle and the back-

ground than the linearized method. If more accurate numerical quadrature with more

efficient approximation of the Robin function is used, the efficiency of the present method will

be elaborated. The simultaneous reconstruction of the absorption and the reduced scattering

coefficients based on the proper approximation on the second derivatives of the Robin

function would be an interesting topic.
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Protein-protein interactions (PPIs) play a crucial role in cellular processes. In the present work, a
new approach is proposed to construct a PPI predictor training a support vector machine model
through a mutual information filter-wrapper parallel feature selection algorithm and an iterative
and hierarchical clustering to select a relevance negative training set. By means of a selected
suboptimum set of features, the constructed support vector machine model is able to classify PPIs
with high accuracy in any positive and negative datasets.

1. Introduction

Protein-protein interactions (PPIs) play a greatly important role in almost any biological

function carried out within the cell [1, 2]. In fact, an enormous effort has already been made to

study biological protein networks in order to understand the main cell mechanisms [3–5]. The

development of new technologies has improved the experimental techniques for detecting

PPIs, such as coimmunoprecipitation (CoIP), yeast two-hybrid (Y2H), or mass spectrometry

studies [6–9]. However, computational approaches have been implemented for predicting

PPIs because of cost and time requirements associated with the experimental techniques [5].
Therefore, different computational methods have been applied in PPI prediction, some

methods are Bayesian approaches [10–12], maximum likelihood estimation (MLE) [13, 14],
maximum specificity set cover (MSSC) [4], decision trees [15, 16], and support vector ma-

chines (SVM) [15–18]. Many computational approaches use information from diverse sources

at different levels [5]. In this way, predicting PPI models [4, 13, 15, 16, 19] have been built
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using domain information. Since interacting proteins are usually coexpressed and colocated

in the same subcellular compartment [10], cell location patterns are also considered to be a

valid criterion in prediction works. In other works, authors use functional similarity to predict

interacting proteins [20]. Likewise, the concept of homology has been already used to gen-

erate prediction models [19, 21], homologs interactions databases [11], and negative datasets

[22].
In the past years, these experimental methods [23] and computational approaches [22]

have provided interactions for several organisms such as Saccharomyces cerevisiae (S. cerevisiae
or Baker’s yeast or simply yeast) [24–27], Caenorhabditis elegans (C. elegans) [28, 29], Drosophila
melanogaster (D. melanogaster or fruit fly) [30, 31], including Homo Sapiens (H. sapiens) [3, 6,

32].
In spite of obtaining a huge amount of interaction data through high-throughput tech-

nologies, it is still difficult to compare them as they contain a large number of false positives

[11, 22]. Some authors provide several reliable interaction sets, including diverse confidence

levels. With this context, supervised learning methods used in PPI prediction require com-

plete and reliable datasets formed by positive and negative samples. However, noninteract-

ing pairs are rarely reported by experimentalists motivated by the difficulties associated in

demonstrating noninteraction under all possible conditions. In fact, negative datasets have

traditionally been created by randomly paired proteins [15, 33, 34] or by selecting pairs of

proteins that are not sharing the same subcellular compartment [10]. Nonetheless, other

works suggest that negative sets created on the basis of cell location alone lead to biased

estimations in the predictive interacting models [17]. To solve this problem, Wu et al. [35]
proposed a predictive interacting method by means of similarity semantic measures [36],
based on gene ontology (GO) annotations [37], although they did not specify which ontology

contributed most to the process of obtaining negative interactions. For this reason, Saeed and

Deane [22] introduced a novel method to generate negative datasets, based on functional

data, location, expression, and homology. These authors considered noninteracting pairs to

be two proteins showing no overlapping between any of the features under consideration.

In another work, Yu et al. [38] demonstrated that the accuracy of the PPI prediction works is

significantly overestimated. The accuracy reported by the prediction model strongly depends

on the structure of the selected training and testing datasets. The chosen negative pairs in the

training data have a variable impact on the accuracy, and it can be artificially inflated by

a bias towards dominant samples in the positive data [38]. In this way, Yu et al. [38] also

presented a method for the selection of unbiased negative examples based on the frequency

of the proteins involved in positive interactions in the dataset.

In this work, a novel method is presented for constructing an SVM classifier for

PPI prediction, selecting negative dataset through clustering approach applied to 4 million

negative pairs from Saeed and Deane [22]. This clustering approach is applied in an effort to

avoid the impact of negative dataset on the accuracy of the classifier model. This new method

is based on a new feature extraction and selection using well-known databases, applied

specifically to a yeast organism model, since yeast is the most widely analysed organism and

the one in which it is easiest to find data. New similarity semantic measures calculated from

the features are proposed, and they demonstrate that their use improves the predictive power

of trained classifiers. In addition, this classifier may return a confidence score for each PPI

prediction through a modification of the SVM implementation. Firstly, features are extracted

for positive and negative samples; then, a clustering approach is performed in order to obtain

high-reliable noninteracting representative samples. Subsequently a parallel filter-wrapper

feature technique selects the most relevance extracted features in order to obtain a reliable
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model. The algorithm called mRMR (minimal-redundancy-maximal-relevance criterion) [39]
is used as filter and is based on the statistical concept of mutual information. This reduction

in the number of features allows for a better training efficiency as the search space for most

of the parameters of the model is also reduced [40, 41].
In a second part, with the purpose of validating the generalisation capability of our

model, a group of highly reliable external datasets from [9] were classified using our method.

These datasets to be validated were extracted using computational and experimental

approaches together with information from the literature. The used models are SVM clas-

sifiers built using the most relevance selected features that characterise the protein-protein

interaction as explained. They were trained using three training sets, the positive examples

were kept, but the negative set was changed, each negative set was obtained by a specific

method: (1) hierarchical clustering method presented in this paper, (2) randomly selection,

and (3) using the approach proposed by Yu et al. [38].
The testing datasets were filtered for assessment to prevent biased results, that is, with-

out any overlapping between the datasets used during the training stage. High sensitivity

and specificity are obtained in both parts using this proposed approach, that is, the model

trained using the negative set by the proposed hierarchical clustering method. The presented

approach leads to the possibility of becoming a guide for experimentation, being a useful tool

to save money and time.

2. Material and Methods

2.1. Material

Two types of datasets were used: training datasets to construct the models and testing

datasets to assess the goodness of predictions. A supervised learning classifier as SVM

requires positive and negative samples for training data. The positive and negative examples

were extracted from Saeed and Deane [22], where authors provide a positive dataset com-

posed of 4809 high-reliability interacting pairs of proteins and a high-quality negative set

formed by more than 4 million noninteracting pairs. Two negative subsets of the size similar

to that of the positive dataset were extracted from this negative set: one dataset is composed

of randomly selected noninteraction pairs (4894) and the other one is created by means of the

proposed hierarchical clustering approach presented in this paper in order to select the most

representative negative samples (4988). The main goal of this negative dataset of clustered

samples is to represent the whole negative space of more than 4 million examples avoiding

biased results in PPI prediction. The third negative set used in this paper is created using the

method proposed by Yu el at. [38], which is “balanced” to the taken positive set. A com-

parison of the PPI classification results training three models using these negative datasets

is shown Section 3. During the training phase, the positive dataset is called gold standard

positive (GSP) set and the used negative dataset is called gold standard negative (GSN) set.

In the case of testing datasets, these were selected for the sake of validating the gen-

eralisation capability of the proposed approach in PPI prediction. A group of reliable binary

interaction datasets (LC-multiple, binary-GS, Uetz-screen, and Ito-core) were taken from Yu

et al. [34]. These datasets have been obtained using several approaches from experimentally,

computationally, and grouping datasets well known in the literature. These datasets can be

freely downloaded from the website http://interactome.dfci.harvard.edu/. Besides, another

group of used negative testing datasets is also described here. So all proposed testing datasets

are the follwing.
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(i) The LC-Multiple Dataset. It is composed of literature-curated interactions sup-

ported by two or more publications. There are 2855 positive interactions.

(ii) Binary-GS dataset. It is a binary gold standard set that was assembled through a

computational quality reexamination that includes well-established complexes, as

well as conditional interactions and well-documented direct physical interactions

in the yeast proteome. There are 1253 positive interactions.

(iii) Uetz-screen. It is the union of sets found by Uetz et al. in a proteome-scale all-by-all

screen [24]. There are 671 positive interactions.

(iv) Ito-core. It is Interactions found by Ito et al. that appear three times or more [25].
There are 829 positive interactions.

(v) Random Negative Dataset 1, 2. Due to the low number of noninteracting protein data

within the RRS set, three negative subsets of similar size of the proposed GSP have

been utilised. These set are denoted, random dataset negative 1 (4896 pairs) and

random dataset negative 2 (4898 pairs), and were also randomly selected from the

Saeed and Deane negative set [22].

(vi) Negative Datasets Obtained Using the Proposed Hierarchical Clustering Approach. The

negative datasets obtained in the last step of the hierarchical clustering process were

used as testing negative datasets. In total there are 9 datasets of 5000 examples (see

Section 3).

For all the datasets, a feature extraction process was applied and the data obtained

through this process were normalised in the range [0, 1] to apply the proposed method.

Furthermore, in a previous step to the evaluation of our model, those interactions from every

testing dataset were filtered out to remove overlapping with the training set. In this way,

the possible overestimated classification accuracy is prevented through a clustering process

selecting a representative negative dataset and a filtering step.

2.2. Feature Extraction

Feature extraction process for the proposed datasets was applied using well-known data-

bases in proteomics, especially for yeast model organism. The calculated features cover

different proteomic information integrating diverse databases: Gene Ontology Annotation

(GOA) Database [42], MIPS Comprehensive Yeast Genome Database (MIPS CYGD) [43],
Homologous Interactions database (HINTdb) [11], 3D Interacting Domains database (3did)
[44], and SwissPfam (SwissPfam is an annotated description of how Pfam domains map to

possibly multidomain SwissProt entries) [45].
Essentially, the presented approach in this paper integrates distinct protein features to

design a reliable classifier of PPIs. The importance of protein domains in predicting PPIs has

been already proved [4, 13, 19], so the use of SwissPfam and 3did databases was included in

this process. The MIPS CYGD catalogues that cover functional, complexes, phenotype, pro-

teins, and subcellular compartments information about yeast make it a very useful tool in

PPI analysis [10, 11]. Likewise, GO data has been successfully applied in classification models

[46] and so has the usage of similarity measures supporting PPI prediction [35]. Furthermore,

the “interlogs” concept helps to design new approaches in proteomics such as PPI prediction,

classification, and creation of reliable PPI databases [11, 22, 28]. Therefore, the HINTdb

database was included in our study.
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The main step in this process is the extraction of a set of features that can be associated

with all possible combinations of pairs of proteins. The fundamental idea about feature

extraction here consists of computing how many common terms are shared between two pro-

teins (a given pair) in any given database. Those features would be our “basic” features, with

every feature being calculated as the number of common terms that are shared by a pair of

proteins in a specific database.

Although the extraction process integrates several information sources, these features

in themselves do not provide enough information to estimate whether any given pair of pro-

teins are very likely to interact [10]. Thus, reinforcing the predictive power of classification

models through a specific combination of features, two new similarity measures called local

and global were incorporated in this process as “extended” features. The definition of these

two similarity measures would be the following.

Given a pair of proteins (protA, protB) and leting A be the set of all terms linked for

protein protA and B the set of terms linked for protein protB in a specific database, the local

similarity measure for (protA, protB) is defined as

simlocal =
#(A ∩ B)
#(A ∪ B) , (2.1)

where #(A ∩ B) represents the number of common terms in a specific database for (protA,

protB) and #(A ∪ B) is the total number of all terms in the union of sets A and B.

In a similar way, the global similarity measure is calculated as the ratio of common

terms shared by a given pair (protA, protB) with respect to the sum of all terms in a specific

database. This measure is calculated as

simglobal =
#(A ∩ B)

#C
, (2.2)

where C is the total number of terms in the complete database.

Hence, a further description of each considered database detailing the feature calcula-

tion and extraction for a given pair of proteins is summarised in Table 4. For the sake of clarity,

in the following enumeration, the same information indicating between parenthesis the type

of data (integer or real) and the order in the feature list is also explained.

(i) Gene Ontology Annotation (GOA) Database [42] that provides high-quality anno-

tation of gene ontology (GO) [37]. The GO project was developed to give a con-

trolled vocabulary for the annotations of molecular attributes in different model

organisms. These annotations are classified in GOA into three structured ontologies

that describe molecular function (F), biological process (P), and cellular component

(C). Each ontology is organised as a directed acyclic graph (DAG). We extract the

IDs (identifiers) of the GO terms associated with each protein calculating the com-

mon GO annotation terms between both proteins in the three ontologies (P, C, and

F) (1st integer) and their local and global similarity measures (12th real, 13th real).
Moreover, we considered each ontology separately (4th P integer, 5th C integer,

and 6th F integer) and their respective local (15th real, 16th real, and 17th real) and

global similarity measures (18th real, 19th real, and 20th real).

(ii) Homologous Interactions database (HINTdb) [11] is a collection of protein-protein

interactions and their homologs in one or more model organisms. Homology refers
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to any similarity between characteristics that is because of their shared ancestry.

The number of homologs between both proteins obtained from HintDB is the 2nd

feature (integer).

(iii) MIPS Comprehensive Yeast Genome Database (MIPS CYGD) [43] gathers infor-

mation on molecular structure and functional network in yeast. All catalogues are

considered: functional, complexes, phenotype, proteins, and subcellular compart-

ments. Considering each MIPS catalogue separately, the number of common terms

(using the catalogue identifier) is calculated between both proteins (functional 7th

integer, complexes 8th integer, proteins 9th integer, phenotypes 10th integer, and

subcellular compartments 11th integer). Moreover, their local similarity measures

are considered (21st real, 22nd real, 23rd real, 24th real, 25th real).

(iv) 3D Interacting Domains database (3did) [44] is a collection of domain-domain

interactions in proteins for which high-resolution three-dimensional structures are

known in the Protein Data Bank (PDB) [47]. 3did exploits structural information

to support critical molecular details necessary for better understanding how inter-

actions occur. This database also provides an overview of how similar in structure

are interactions between different members of the same protein family. The data-

base also stores gene ontology-based functional annotations and interactions be-

tween yeast proteins from large-scale interaction discovery analysis. The 3rd feature

(integer) is calculated as the common Pfam domains between both proteins,

extracted from SwissPfam, which are found in the 3did database. The 3rd feature

divided by the total Pfam domains that are associated with both proteins is the 14th

feature (real).

(v) SwissPfam [45] from UniProt database [48] is a compilation of domain structures

from SWISSPROT and TrEMBL [45] according to Pfam [49]. Pfam is a database

of protein families that stores their annotations and multiple sequence alignments

created using hidden Markov models (HMM). No feature is directly associated

with this database, but it is used in combination with the 3did database to calculate

the 3rd and 14th features.

2.3. Feature Selection: Mutual Information and mRMR Criterion

In pattern recognition theory, patterns are represented by a set of variables (features) or meas-

ures. Such pattern is a point in an n-dimensional features space. The main goal is to select

features that distinguish uniquely between patterns of different classes. Normally, the opti-

mal set of features is unknown and commonly has an irrelevant number or redundant

features. In this way, through a pattern recognition process, these irrelevant or redundant

features are filtered out greatly improving the learning performance of classifiers [40, 41].
This reduction in the number of features, also known as feature selection, allows to simplify

the model complexity, as it gives a better visualisation and understanding of used data [50].
In this work, we consider the PPI prediction as a classification problem, so each sample point

represents a pair of proteins that must be classified into one out of two possible classes:

noninteracting or interacting pair.

The feature selection algorithm can be classified in two groups: filter and wrapper

[50, 51]. The filter methods choose a subset of features by means of a preprocessed step

independently of used machine learning algorithm. The wrapper methods use the classifier

performance to assess the goodness of the features subset. Other authors have utilised
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a combination of filter and wrapper algorithms [39]; in fact, in this work, a combination be-

tween filter and wrapper is used. First, a filter method is applied in order to obtain the rel-

evance of features and subsequently a wrapper method is performed using support vector

machine models from the obtained relevance order.

Different criteria have been applied to evaluate the goodness of a feature [50, 52].
In this case, the proposed filter features selection method is based on mutual information as

relevance measure and redundancy between the features through minimal-redundancy-max-

imal-relevance criterion (mRMR) proposed by Peng et al. [39].
Let X and Y be two random continuous variables with marginal pdfs p(x) and p(y),

respectively, and joint probability density function (pdf) p(x, y). The mutual information

between X and Y can be represented as [50, 53].

I(X,Y ) =
∫∫

p
(
x, y
)

log
p
(
x, y
)

p(x)p
(
y
)dxdy. (2.3)

In the case of discrete variables, the integral operation is reduced to a summation

operation. Let X and Y be two discrete variables with mathematical alphabets X and Y,

marginal probabilities p(x) and p(y), respectively, and a joint probability mass function

p(x, y). The MI between X and Y is expressed as [50]

I(X,Y ) =
∑
x∈X

∑
y∈Y

p
(
x, y
)

log
p
(
x, y
)

p(x)p
(
y
) . (2.4)

The mutual information (MI) has two principal properties that make it different from

other dependency measures: (1) the capacity of measuring any relationship between var-

iables and (2) its invariance under space transformations [50, 54].
For mRMR, authors considered mutual-information-based feature selection for both

discrete and continuous data [39]. The MI for continuous variables was estimated using the

Panzer Gaussian windows [39]. Peng et al. show that using a first-order incremental search

(as a feature is selected in a time), the mRMR criterion is equal to maximum dependence,

or, in other words, estimating the mutual information I(C, S) between class variable C and

subset of selected features S. In Peng el al. [39], for minimizing the classification error in the

incremental search algorithm, mRMR method is combined with two wrapper schemes. In

a first stage, the method is used with the purpose of finding the candidate feature set. In a

second stage, backward and forward selections were applied in order to find the compact

feature set through the candidate feature set that minimises the classification error.

Given class variable C, the initial set of features F, an individual feature fi ∈ F, and a

subset of selected features S ⊂ F, the mRMR criterion for the first-order incremental search

can be expressed as the optimisation of the following condition [39, 50]:

I
(
C; fi
)
=

1

|S|
∑
fs∈S

I
(
fs; fi

)
, (2.5)

where |S| is the cardinality of the selected feature set S, fs ∈ S.
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This filter mRMR method is a fast and efficient method because of its incremental na-

ture, showing better feature selection and accuracy in classifier including wrapper approach

[39, 50].
In this work, mRMR criterion method was used as filter algorithm with the purpose of

obtaining the relevance of proposed features. Subsequently, an SVM model is trained for each

incremental combination of features in ascending order of relevance. Such combination of fea-

tures is applied adding a feature in a time according to the relevance, starting from the most

relevant one, and adding the next most relevant one until feature 25. In total, 25 SVM models

are trained using grid search to estimate the hyperparameters. A parallel approach was

implemented for this filter-wrapper proposal because of memory and computational re-

quirements, reducing the time to obtain the best combination of features that minimises the

error classification.

2.4. Support Vector Machine

In machine learning theory, support vector machine (SVM) is related to supervised learning

methods that analyse data and recognise patterns in regression analysis and classification

problems. In fact, a support vector machine (SVM) is a classification and regression paradigm

originally invented by Vladimir Vapnik [55, 56]. In the literature, the SVM is quite popular

above all in classification and regression problems mainly due to its good generalisation

capability and its good performance [57]. Although SVM method was originally designed

for binary-class classification, a multiclass classification methodology was presented in Wu

et al. [58]. In the case of this PPI classification, it is straightforward to apply the binary-class

classification between interacting and noninteracting pairs of proteins.

For a given training set of instance-label pairs {xi, yi}, i = 1, . . . ,N, with input data

xi ∈ R
n and labelled output data yi ∈ {−1,+1}, a support vector machine resolves the next

optimisation problem:

minw,b,∈
1

2
wTw + C

N∑
i=1

ξi,

subject to yi
(
wTφ(xi) + b

)
≥ 1 − ξi, ξi ≥ 0.

(2.6)

So the training data vectors xi are mapped into a higher-dimensional space through

the φ function. C is the hyperparameter called penalty parameter of the error term, that is, it

is a real positive constant that controls the amount of misclassification allowed in the model.

Taking the problem given in (2.6) into account, the dual form of an SVM can be

obtained

minα
1

2
αTQα − eTα,

subject to yTα = 0,

0 ≤ αi ≤ C, i = 1, . . . ,N,

(2.7)
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where e is a vector composed of all ones (all-ones vector). Q is an N by N positive semi-

definite matrix given by Qij ≡ yiyjK(xi, xj). K(xi, xj) ≡ φ(xi)Tφ(xj) is called the kernel function
and allows the SVM algorithm to fit a maximum-margin hyperplane in a transformed feature

space.

The classifier is a hyperplane in the high-dimensional feature space that may be non-

linear in the original input space. In this case, for the general nonlinear SVM classifier, the

decision function can be expressed as

y(x) = sign

[
N∑
i=1

αiyiK(x, xi) + b

]
, (2.8)

where parameters αi correspond to the solution of the quadratic programming problem that

solves the maximum-margin optimisation problem. The training data points corresponding

to nonzero αi values are called support vectors [59] because they are the ones that are really

required to define the separating hyperplane.

The most common kernel utilised in the literature is the radial basis function (RBF) or

the Gaussian kernel [60]. It can be defined as

K(x, xi) = exp
(
−γ‖x − xi‖2

)
, γ > 0, (2.9)

where parameter γ controls the region of influence of every support vector.

Training an SVM implies the optimization of the αi and of the so-called hyperparame-

ters of the model. These hyperparameters are usually calculated using gridsearch and cross-

validation [59]. In the case of the RBF kernel, the hyperparameters C and γ are required to be

optimised.

Furthermore, a score is proposed in the presented work for PPI prediction. This score

is estimated using the difference of probabilities in absolute value returned by SVM model

for each pair of proteins.

This score would be used as a measure of confidence in PPI classification. SVM classi-

fies the pairs reporting two probability values that express the chance to belong to an inter-

acting pair class or noninteracting pair class. These probabilities are obtained by the par-

ticularisation of the multiclass classification methodology introduced by Wu et al. [58] in the

problem of PPI prediction (binary classification). In a general problem, given the observation

x and the class label y, it is assumed that the estimated pairwise class probabilities μij = P(y =
i|y = i or j, x) are available. Following the setting of the one-against-one approach for the

general problem of multiclass problem with k classes, firstly, the pairwise class probabilities

are estimated by rij with

rij ≈ P
(
y = i

∣∣ y = i or j, x
) ≈ 1

1 + eAf̂+B
, (2.10)

where A and B are estimated by minimizing the negative log-likelihood function using

known training data and f̂ are their decision values for these training data. In Zhang et al.

[61], it is recalled that SVM decision can be easily clustered at ±1, making the estimate

probability in (2.10) inaccurate. Therefore, ten-fold cross-validation was applied to obtain
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decision values in the experimental results. The next step is obtaining pi from these rij , solving

the following optimisation problem presented in Wu et al. [58].
The implementation for SVM was taken from the library LIBSVM [62] for Matlab (in

this case R2010a). Specifically, C-SVM and RBF kernel was used in the development of the

presented work.

2.5. Clustering Methodology

A clustering approach was applied to the negative dataset proposed by Saeed and Deane [22]
in order to obtain a relevant, representative, and significant negative subset for training reli-

able SVM models. Saeed and Deane provide more than 4 million high-quality negative pairs.

Therefore, after the feature extraction process applied to this large set of pairs, the set of data

to consider would be represented as a matrix whose size is more than 4 million pairs (rows)
and 25 features (columns). However, such amount of data is not feasible to train a model, and

there is also an overrepresentation of negative data that hides the positive samples effect.

In order to reduce this amount of negative samples to select the most relevant noninter-

acting pairs, a “hierarchical” clustering approach is proposed in this section which is a iter-

ative k-means process. Due to memory and computational requirements, the clustering data

of 4 million noninteracting pairs were divided into subsets which are suitable to be computed

by k-means. The k-means algorithm is applied to every subset. For each k-means, the k near-

est samples to centroid are taken as the most representative pairs of that specific subset. Then,

these representatives are joined again creating a number of new subsets. Thus, the same

process of k-means for each subset is applied in an iterative procedure as explained below.

Therefore, in the following lines, a definition of classic k-means is given. In data min-

ing, k-means clustering [63] is a method of cluster analysis that assigns n observations into

k clusters where each observation belongs to the cluster with the nearest mean. Given a set of

observations (x1, x2, . . . , xn), where each observation or point is a d-dimensional real vector,

n observations are then assigned into k sets (k ≤ n) S = S1, S2, . . . , Sk minimising the within-

cluster sum of squares (WCSS) [63]:

arg min
S

k∑
i=1

∑
xj∈Si

∥∥xj − μi∥∥2
, (2.11)

where μi is the mean of points in Si.

Here, in the application of k-means, the used distance measure is the classical squared

Euclidean distance and the clustering data is actually a matrix whose rows represent a pair of

noninteracting proteins and columns represent the 25 considered features. The initial cluster

centroid positions are randomly chosen from samples. Likewise, k is set to 5000 because it is a

value similar to the size of the considered positive set (GSP) and also for computational per-

formance of this “hierarchical” clustering approach.

In practice, the 4 million set was divided in subsets of 50000 pairs approximately

(49665 samples) creating 84 subsets of negative samples. This division was carried out due

to memory requirements of the available computing system, using the maximum allowed

limit. A classical k-means clustering algorithm [63] was applied to each subset obtaining

the 5000 most representative samples, that is, reducing 10% of data. Then, new subsets of

50000 negative samples were created adding the 5000 respective samples in order. And again
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the k-means algorithm is applied to the new subsets obtaining the 5000 most representative

samples. This process is repeated until the last 5000 most representative samples that have a

similar size to the proposed positive set (see Figure 1) are obtained. This approach is a “hier-

archical” and iterative k-means-based clustering algorithm that can be run in a parallel com-

puting platform (see Section 2.6) considering the k-means clustering independently in every

iteration.

More formally, if we pay attention to Figure 1, we can see that in Iteration 1, given

an initial group of subsets of 50000 pairs approximately C = C1
1, C

1
2, . . . , C

84
1 . As commented,

the proposed “hierarchical” clustering approach is an iterative k-means process applied for

each C
j

i where i is the iteration and j is the subset order. The resulting set for the k-means

method is called R
j

i using the same indices i and j from the input subset C
j

i . Thus, R
j

i is

formed by the set of the 5000 most representative negative samples from C
j

i selected by

k-means. In the next iterations,C
j

i+1 is the subset formed by the summation of the 10 sets of the

5000 most representative negative samplesR
j

i . When it is not possible to apply the summation

of every 10 subsets R
j

i because there is an inferior number of subsets, the summation is

composed by the maximum number of subsets until completing all considered data. In

general, C
j

i =
∑j∗10

m=(j−1)∗10+1
Rm
i−1 given the iteration i and the subset j. In this paper, 3 iterations

were executed until obtaining the set of the 5000 most representative negative samples from

the whole set of more than 4 million negative samples. Iteration 2 shows that there were

9 subsets C1
2, C

2
2, . . . , C

9
2 where C9

2 contains 20000 pairs. The resulting subsets by k-means

R1
2, R

2
2, . . . , R

9
2 create a new C1

3 of 45000 elements. In the final step, R1
3 is obtained in Iteration

3, which will be used as part of a training set as a representation of the negative space from

the whole negative set. The R1
2, R

2
2, . . . , R

9
2 will be used as testing set in Section 3, and after a

filtering process from the training set, they are called Rtest 1
3 , Rtest 2

3 , Rtest 3
2 , Rtest 4

3 , Rtest 5
3 , Rtest 6

3 ,

Rtest 7
3 , Rtest 8

3 , and Rtest 9
3 .

With this process, the main goal of obtaining a representative negative dataset and not

biased from a high-quality negative set is fulfilled.

2.6. Parallelism Approach

The filter/wrapper feature selection proposed in this work demands high computational

resources. The classical and simple master-slave approach was adopted [64], a master process

sends tasks and data to the slave process, and the master process receives results from slaves

and controls the finalisation of the tasks. In our case, the tasks are to train SVM model in-

cluding grid search for hyperparameters. Therefore, the master process sends the next data

for slave processes: the selected features and the training and testing datasets. In addition, the

“hierarchical” k-means clustering algorithm from the previous section could be implemented

in a parallel computing platform using this approach.

The implementation of this approach was carried out using MPIMEX [65], a new inter-

face that allows MATLAB standalone applications to call MPI (message passing interface)
standard routines (it was developed in our research group). MPI is a library specification for

message passing, proposed as a standard by a broadly based committee of vendors, imple-

menters, and users as defined in http://www.mcs.anl.gov/research/projects/mpi/.

This parallel approach was running in a cluster of computers. This cluster was formed

by 13 nodes with dual processors Intel Xeon E5320 2.86 GHz, 4 GB RAM memory, and 250 GB

HDD. All nodes are connected using Gigabit Ethernet. The installed operating system is
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Figure 1: Diagram for the proposed “hierarchical” k-means-based clustering algorithm applied. It is an
iterative k-means process. The application in this problem would be the selection of the 5000 most repre-
sentative negative samples of the whole set.

Linux CentOS 4.6 (rocks). This cluster was purchased using public funds from the Spanish

Ministry of Education Project TIN 2007-60587. The time of execution was reduced from 16

days in a single computer to 32 hours to train all the SVM models.

3. Results and Discussion

The results consist of two parts. In the first part, a “suboptimal” set of features is selected

through the filter/wrapper feature selection process using the parallel approach. The training

data for RBF-SVM model is composed by a GSP set and for a GSN set which is the set which

resulted from applying iterative clustering approach as explained in section Material and

Methods. In the second part, taking this suboptimal set of features, three RBF-SVM classifiers

are constructed using three training sets, respectively. All training sets have the same GSP

set for positive examples. In one case, the GSN set is the negative set obtained using the

hierarchical clustering method from the first part and, in a second case, the GSN set is a

randomly selected negative set as commented. In the third case, the GSN set was created

using the approach proposed by Yu el al. [38], it is a “balanced” set to GSP. Subsequently, a

comparison of the results obtained of three RBF-SVM classifiers trained with all the proposed

negative datasets is discussed.

Previously the filter/wrapper feature selection process, the feature extraction process

is applied to all available datasets. The 25 features were also extracted for the 4 million
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negative set from Saeed and Deane [22], but, due to computational requirements, the whole

set was divided into 84 subsets of 50000 samples approximately. In order to obtain a represen-

tative negative dataset of the whole negative space, the iterative k-means clustering approach

was applied to these 84 subsets as explained in the Section 2.5. In total, three iterations select-

ing 5000 negative representative samples were realized using the clustering approach. In the

first iteration, the Euclidean k-means method was applied to the 84 subsets creating 5000

centroids, and 9 new subsets (8 subsets of 50000 and the last one of 20000 negative examples)
were obtained adding the selected 5000 negative representative samples of each previous sub-

set. In the second iteration, the k-means was applied again to the 9 new subsets taking 5000

new negative representative samples of each subset and creating another new subset of 45000

samples (the representatives of 9-subset summation). In the third and last iteration, the last

5000 most representative negative samples taken as GSN set for training data were obtained

from clustering the previous subset. The taken negative pairs were selected using the mini-

mum Euclidean distance to the centroid of each cluster. A diagram of this process is repre-

sented in Figure 1.

In this way, the considered data (GSP and clustered GSN sets) was used to apply the

presented paralleled filter/wrapper feature selection process. Because of memory require-

ments in the construction of the 25 SVM models, this data was randomly divided into 70% for

training SVM and 30% for testing the performance of obtained models. Hence, four randomly

divisions of data as 4 training/test datasets were used in this feature selection approach in a

cluster of computers as commented in Section 2.6. In order to obtain the best hyperparameters

for SVM models, gridsearch and 10-fold cross-validation were implemented. In Figure 2, the

accuracy, sensitivity, and specificity obtained using the order of feature relevance reported

by mRMR filter method are shown for all 25 SVM models. It can be observed that an excess

of information may lead to overfitting, that is, the interaction information decreases when

adding more features to the models, specially for testing case. The last added features were

considered for mRMR method as more irrelevant or redundant than the features in the first

positions. In Figure 2, it can be observed that the performance does not significantly improve

after reaching 6 features, it even gets worse due to an excess of information, so the subop-

timum selected set is composed of those 6 features: 13th referring to global similarity measure
for 1st feature, common GO terms using all ontologies, 3rd referring to number of SwissPfam
domains for a pair in 3did, 10th referring to common terms for the two proteins in MIPS phenotype
catalogue, 8th referring to common terms for the two proteins in MIPS functional catalogue, 7th

referring to common terms for the two proteins in MIPS complexes catalogue, and 2nd referring to

number of shared homologous proteins between a pair of proteins.
In the selected suboptimum set, the features concerning protein complex, phenotypes,

and functional data from MIPS CYGD catalogues have already been used successfully and

proved themselves to be reliable in interacting prediction analysis [10, 35, 66–69]. Note that

global similarity measures were also included in this suboptimum set of features with the

purpose of improving the performance of the classifier in PPI prediction. At the same time,

domain information (3rd feature) has provided a suitable framework in PPI prediction works

[4, 13]. Moreover, the second feature refers to homology whose relevance has been shown in

previous publications [11, 19, 21, 22].
In order to check if the SVM models trained with 6 features are significant, a ROC (re-

ceiver operating characteristic) was plotted using the confidence score presented in this work,

previously explained in Section 2. The ROC curve shows the sensitivity values with respect to

1-specificity values. The used statistics to measure the goodness of the classification was the

widely extended AUC (area under curve) [70, 71]. This statistics represents the probability
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Figure 2: Sensitivity, specificity, and test accuracy for the four randomly partitioned datasets and their
average values.

Table 1: Results for ROC: Area Under Curve (AUC).

Training and test group 6-feature SVM 25-feature SVM

1st 0.808 0.672

2nd 0.812 0.725

3rd 0.836 0.698

4th 0.846 0.619

Mean 0.826 0.678

Std. deviation 0.016 0.039

The ROC curve was constructed using our proposed confidence score for the four randomised sets (70% training, 30% test).
The RBF kernel SVMs were trained using 6 features and 25 features. Std. standard.

that a classifier will rank a randomly chosen positive instance higher than a randomly chosen

negative one. In Figure 3 and Table 1, the results for 6-feature SVM model and 25-feature SVM

model showing better performance of the SVM trained with a suboptimum set are shown.

As we mentioned, this reduction in the number of features implies a significant saving in

memory, calculation, and other computational requirements, obtaining an overfitting utilis-

ing the whole set.

In the second part, the behaviour of our approach is tested using the selected subset of

the six most relevant characteristics. Three RBF-SVM models are built with three training sets,

sharing the same GSP but with a different GSN. In one case, the GSN is the negative set from
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Figure 3: ROC curve for the four randomly partitioned groups (6 and 26 features).

the first part created using the proposed hierarchical clustering approach presented in this

paper (it is also called clustered training dataset). In the second case, the GSN is a randomly

selected negative set (called random training dataset), and, in the last case, the GSN is a neg-

ative set “balanced” to GSP set obtained using the approach by Yu et al. [38]. This third GSN

is created using a selection of unbiased negative examples based on the frequency of the

proteins in the positive set. The testing datasets, detailed in Section 2, cover both positive and

negative sets and they were obtained in different ways: experimentally, from the literature,

and computationally. Additionally, in order to make a reliable comparison, previous to the

evaluation of our models, the interactions for each testing dataset were filtered out to avoid

overlapping with the respective training set. The new sizes of the testing datasets are shown

in Table 2.

Therefore, the results of these models are shown in Table 3 and Figure 4 for positive

datasets and Figure 5 for negative datasets. In general, the SVM model trained using the

negative set generated by the proposed hierarchical clustering approach presented in this

paper has a better performance in comparison with the rest of models, that is, the models that

used the randomly selected negative set and the balanced negative set. Globally, the obtained

results were slightly worse in the experimental datasets than in the computational and litera-

ture datasets. The models classify the literature-extracted dataset “LC-multiple” with a range

between 93 and 95% of accuracy. For the computationally obtained “binary-GS” dataset, the

classifiers obtain a range of accuracy between 92 and 95%. Between the experimental datasets

“Uetz-screen” [24] and “Ito-core” [25], the reported accuracies are sightly lower than for the

previous datasets with ranges of 72–81% and 76–80%, respectively, for the case of the models

trained with the negative set from the clustering approach and the negative set from the

random selection. Nevertheless, in the case of the model trained using the “balanced” nega-

tive set, the accuracies for both datasets are about 50%. However, if we can consider the nature
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Table 2: New sizes of datasets after filtering process.

Datasets

Size of filtering training
set with GSN set obtained

using the presented
hierarchical clustering

Size of filtering training
set with randomly
selected GSN set

Size of filtering training
set with “balanced”

GSN set obtained from
the approach by Yu

et al. [38]
Binary-GS 933 937 987

Ito-core 680 686 700

LC-multiple 2362 2380 2468

Uetz-screen 574 584 594

Random negative dataset 1 4893 4894 4894

Random negative dataset 2 4895 4894 4898

Rtest 1
3 4735 4995 4992

Rtest 2
3 4788 4995 4994

Rtest 3
3 4814 4991 4991

Rtest 4
3 4844 4987 4992

Rtest 5
3 4854 4983 4986

Rtest 6
3 4816 4991 4994

Rtest 7
3 4837 4985 4990

Rtest 8
3 4797 4994 4994

Rtest 9
3 4873 4994 4996
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Table 3: Accuracy using the 6 most relevant features for three RBF-SVM models.

Datasets
Acc. Our
proposal
RBF-SVM

Acc. Rand.
RBF-SVM

Acc. “balanced”
RBF-SVM

% relative difference
for our proposal
versus “Rand”

model

% relative difference
for our proposal

versus “balanced”
model

Binary-GS 94,111 95,411 92,401 −1,381 1,817

Ito-core 72,059 81,195 52,571 −12,678 27,045

LC-multiple 93,750 95,924 93,517 −2,319 0,249

Uetz-screen 76,857 80,822 54,882 −5,159 28,592

Random
negative
dataset 1

72,211 38,353 6,537 46,888 90,947

Random
negative
dataset 2

71,951 37,937 37,444 47,274 47,959

Rtest 1
3 58,184 29,349 1,883 49,558 96,764

Rtest 2
3 63,596 30,150 1,882 52,591 97,041

Rtest 3
3 96,469 69,365 1,683 28,096 98,255

Rtest 4
3 62,221 31,061 1,522 50,080 97,554

Rtest 5
3 61,248 29,862 1,364 51,244 97,773

Rtest 6
3 64,992 33,120 1,702 49,040 97,381

Rtest 7
3 64,441 31,454 1,824 51,189 97,170

Rtest 8
3 94,705 67,821 1,702 28,387 98,203

Rtest 9
3 64,334 31,237 1,061 51,446 98,351

Acc. is the accuracy of the RBF SVM model. Our proposal RBF-SVM is the SVM model trained using the training set formed by
the GSP set and the GSN set obtained using the proposed hierarchical clustering method. Rand. RBF-SVM is the SVM model
trained using the training set where the GSN set was randomly selected. “balanced” RBF-SVM is the SVM model trained
using the training set formed by the GSP set and the GSN set obtained using the approach to create a “balanced” negative
set by Yu et al. [38]. % relative difference is the percentage of relative difference using “our proposal RBF-SVM” as basis.

and complexity of the filtering in experimental data, the obtained accuracy is still satisfactory

at least in the case of the model trained using the negative set from the clustering approach.

Referring to the different negative datasets in the training data, the model trained using the

negative set extracted by clustering method attained better results than the model trained

using a randomly selected negative set. The obtained minimum relative difference is about

28% compared to the randomly selected negative set, and the maximum difference is about

90% in the case of the model trained using the “balanced” negative set. The negative set ob-

tained by the “hierarchical” approach has a relevant representation of the negative search

space from a large high-reliability negative set from Saeed and Deane [22]. But in the case of

the “balanced” negative set, this is not happening, the negative set is “balanced” to the posi-

tive side in the training data but it is not enough to recognise any negative case. Hence, the

obtained results of the model predicting negative datasets are worse than the results in the

classification of positive datasets. Nonetheless, the difficulty and complexity to predict nega-

tives make the results still acceptable. It can be observed that the relative difference in positive

datasets is better for the model trained with the randomly selected negative set but that

difference is not so strong, it can even be a slightly overestimation. The accuracy could be arti-

ficially inflated by a bias towards dominant samples in the positive data as Yu et al. showed

[38]. With such a suboptimum set of features, an SVM model is able to classify PPIs with

relative notorious accuracy in any positive and negative datasets.
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Figure 5: Comparison of accuracy obtained in negative datasets for the two trained models: the SVM model
trained using the training set formed by the GSP set and the GSN set obtained using the proposed hier-
archical clustering method (clustered) and the SVM model trained using the training set where the GSN
set was randomly selected (Rand. RBF-SVM) and the balanced RBF-SVM is the SVM model trained using
the training set formed by the GSP set and the GSN set obtained using the approach to create a “balanced”
negative. Please note that Rtest 1, Rtest 2, Rtest 3, Rtest 4, Rtest 5, Rtest 6, Rtest 7, Rtest 8, and Rtest 9 correspond
to: Rtest 1

3 , Rtest 2
3 , Rtest 3

2 , Rtest 4
3 , Rtest 5

3 , Rtest 6
3 , Rtest 7

3 , Rtest 8
3 , and Rtest 9

3 . And the “balanced” negative set is
created using the approach by Yu et al. [38].

First, in Patil and Nakamura [19], the authors used a Bayesian approach, previously

proposed by Jansen et al. [10] with only three features for the filtering out of high-throughput

datasets of the organisms Saccharomyces cerevisiae (Yeast), Caenorhabditis elegans, Drosophila
melanogaster, and Homo sapiens. Their model was able to obtain a sensibility of 89.7% and a

specificity of 62.9%, being only capable of attaining a prediction accuracy of 56.3% for true

interactions for the datasets Y2H, external to the model. For two datasets called “Ito” and

“Uetz” (see Table 3), the presented model trained with the negative set from clustering meth-

od reported classification rates between 76 and 93%. In Jiang and Keating [72], a mixed frame-

work is proposed combining high-quality data filtering with decision trees in PPI prediction,
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Table 4: Description of the 25 extracted features.

Number Description Type

1st #(AGOA ∩ BGOA) from GOA DB taking 3 ontologies together (P,F,C) Integer

2nd Number of homologs for (protA, ProtB) from HINTdb integer

3rd
#[(ASPFAM ∩ 3DID) + (BSPFAM ∩ 3DID)], A and B are domains extracted

form SwissPfam, 3DID is 3did database
Integer

4th #(AGOA−P ∩ BGOA−P ) from GOA DB taking Biological Process ontology Integer

5th #(AGOA−C ∩BGOA−C) from GOA DB taking Cellular Compartment ontology integer

6th #(AGOA−F ∩ BGOA−F) from GOA DB taking Molecular Function ontology integer

7th #(AMIPS−F ∩ BMIPS−F) from functional MIPS catalogue identifiers integer

8th #(AMIPS−C ∩ BMPIS−C) from complexes MIPS catalogue identifiers integer

9th #(AMIPS−P ∩ BMIPS−P ) from proteins MIPS catalogue identifiers integer

10th #(AMPIS−FE ∩ BMPIS−FE) from phenotypes MIPS catalogue identifiers integer

11th
#(AMPIS−FCC ∩ BMIPS−FCC) from subcellular compartments MIPS catalogue

identifiers
integer

12th Local similarity of 1st feature real

13th Global similarity of 1st feature real

14th #[((ASPFAM ∩ 3DID) + (BSPFAM ∩ 3DID))]/#(ASPFAM ∪ BSPFAM) Real

15th Local similarity of 4th feature real

16th Local similarity of 5th feature real

17th Local similarity of 6th feature real

18th Global similarity of 4th feature real

19th Global similarity of 5th feature Real

20th Global similarity of 6th feature Real

21th Local similarity of 7th feature Real

22th Local similarity of 8th feature Real

23th Local similarity of 9th feature Real

24th Local similarity of 10th feature Real

25th Local similarity of 11th feature Real

Symbol # indicates the number of elements in a set. See (2.1) and (2.2).

taking as the base the notation of all GO ontologies, aiming an accuracy in a range of 65–78%.

From there, we incorporated that information in combination with other features to improve

the generalisation of our approach. Other similarity measures have been proposed, mainly

based on the GO annotations, for example, the works by Wu et al. [35] that were able to detect

the 35% of the cellular complexes from the MIPS CYGD catalogues or the work by Wang

et al. [36] for the validation of gene expression analysis. Nevertheless, the authors did not take

into account the cellular component ontology because it was considered that this ontology

includes ambiguous annotations that may lead to error. In this paper, we opted for proposing

a set of similarity measures that permit their generalisation to a wide range of databases in

the obtaining of our prediction model.

4. Conclusion

In this work, a new approach to build an SVM classifier in PPI prediction is presented. The

approach has several notorious processes: a feature extraction using well-known databases,
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a new filter-wrapper feature selection implemented in a master-slave parallel approach, and

a reliable and representative negative dataset for training by the means of “hierarchical”

k-means clustering. The filter method is based on the statistical concept of mutual information

using mRMR criterion, which is a reliable and quick method. In addition, a confidence score

is presented through a modification of SVM model implementation. A comparison between

a randomly selected negative dataset, a “balanced” negative set obtained using Yu et al.

approach [38], and a negative dataset obtained using the “hierarchical” k-means clustering

method presented in this paper is done where the model training using the set resulted by

the clustering approach has better performance. This comparison also allowed us to check the

generalisation capacity of the presented approach for the sake of the evaluation of previously

filtered external datasets. Hence, a fair negative selection method is presented avoiding the

overestimation in the classification of PPIs.

For further work, a hierarchical parallel clustering could improve the performance of

a classifier with the purpose of obtaining a balanced negative dataset using a more complex

clustering algorithm. We consider applying this approach to other model organisms as Homo
sapiens. A parallel approach was applied, which, by making a better load balancing, would

be suitable to reduce time computation in the filter/wrapper feature selection approach.

In summary, we conclude that by combining data from several databases, using relia-

ble positive and clustered negative samples for training, supporting a set of widely applicable

similarity measures to the feature extraction process, and using mutual information methods

for feature selection and RBF-SVM models capable of returning a confidence score, we have

presented a reliable approach to the validation of protein-protein interaction datasets.
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A general computational model of the human lumbar spine and trunk muscles including optimiza-
tion formulations was provided. For a given condition, the trunk muscle forces could be predicted
considering the human physiology including the follower load concept. The feasibility of the solu-
tion could be indirectly validated by comparing the compressive force, the shear force, and the joint
moment. The presented general computational model and optimization technology can be funda-
mental tools to understand the control principle of human trunk muscles.

1. Introduction

The human lumbar spine can support large loads during daily activities such as standing,

walking, running, and lifting, where the loads are up to several thousand Newtons [1, 2].
However, it has been reported in experimental studies [3, 4] that an intact ligamentous

lumbar spine buckled at the load less than 100 N when a load was applied at the superior end

in the vertical direction. Although the trunk muscles have been known to play an important

role to withstand external loads [5–7], the principle of trunk muscle activation to obtain such

load-carrying capacity of the spine has not been elucidated. Recent experimental studies [4, 8]
have demonstrated that the load-carrying capacity of the human spine significantly increased

as the load applied to the spine was transferred along a path that approximates its curvature,

which is called a follower load path originated from the field of mechanical engineering to

solve the problems associated with the stability of columns [9, 10] since the 1950s. In the

follower load case, a nearly compressive force was produced in the spine with a small shear

force. The follower load concept is a possible principle of muscle activation pattern.
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It is not easy to directly investigate trunk muscle activations because there have been

difficulties in the in vivo measurements of the activated muscle forces, and the responses

of the lumbar spine, such as the intradiscal pressure, resultant joint forces and moments at

each vertebral joint. Thus, the computational modeling of the human musculoskeletal system

is indispensable to predict the forces of the muscles and the responses of the lumbar spine.

Several computational models of the lumbar spine and trunk muscles have been developed

to estimate the trunk muscle forces [5, 11–21]. Although the follower load concept was con-

sidered in [14, 16–21], it is necessary to improve the generality of model to reflect the phys-

iological conditions of the human spine. In this study, a general computational model of the

human lumbar spine and trunk muscles including optimization formulations was provided

to predict muscle forces based on the follower load. A three-dimensional numerical example

was tested to validate the given model.

2. Preliminaries

2.1. Finite Element Model of the Spine and Trunk Muscles

In this paper, the fundamental definitions and notations were based on [17]. A part of the

human spine consisting of N vertebrae and M trunk muscles is considered. Each spinal

motion segment consisting of vertebra-intervertebral disc vertebra is modeled as a linear

elastic beam element located at the vertebral body centers. Position vector of the ith vertebral

body center is given as a node by pi, i = 1, 2, . . . ,N. Let Fm
k

and PCSAk be the kth muscle force

and the physiological cross-sectional area of the kth muscle for k = 1, 2, . . . ,M. Assume that

there are Mi muscles acting on ith vertebra among M trunk muscles and Fmi,j , j = 1, 2, . . . ,Mi,

denotes the jth muscle force vector starting from the attachment point in ith vertebra. Let pi,j
be the position vector of the attachment point of jth muscle acting on ith vertebra. Geometric

data such as vertebral positions and locations of muscle attachment points can be obtained

from published anatomical data of the human spine and muscles [11, 22].

2.2. Static Equilibrium Equations

Let us assume that the spinal system is in static equilibrium. The displacements including

translations and rotations of each beam element are related with the forces and the moments

acting on the vertebral body centers. Let us call these forces and moments motion segment

forces and motion segment moments, respectively. The relation between the motion segment

forces and the motion segment moments, and the displacements at vertebral nodes, could be

defined as ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fms1

...

FmsN

Mms
1

...

Mms
N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= K ·

⎡⎢⎢⎢⎢⎢⎢⎣

d1

d2

...

dN

⎤⎥⎥⎥⎥⎥⎥⎦, (2.1)
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where Fmsi , Mms
i , and di, denote the motion segment force, the motion segment moment, and

the displacement vectors at ith vertebral body center, respectively. K represents the stiffness

matrix describing linear elasticity of the spine model. The stiffness matrix K of the motion

segment can be obtained from experimental studies such as [23, 24]. The displacement vector

di at ith node consists of the translation components, dt
i,k

, k = 1, 2, . . . , K, and the rotation

components, dr
i,l

, l = 1, 2, . . . , L, where K and L are the number of translational and rotational

degrees of freedom at each node, respectively.

Then, for given external forces Fei and moments Me
i applied at ith vertebral body

center, the static equilibrium equations at the vertebral nodes can be formulated by

Mi∑
j=1

Fmi,j − Fmsi + Fei = 0, i = 1, 2, . . . ,N, (2.2)

Mi∑
j=1

ri,j × Fmi,j −Mms
i +Me

i = 0, i = 1, 2, . . . ,N, (2.3)

where ri,j = pi − pi,j for all i and j, represents the moment arm of the muscle force.

2.3. Resultant Joint Force and Resultant Joint Moment

The resultant joint force at each vertebra is the sum of all the muscle forces, the applied exter-

nal forces, and the force transmitted from the upper vertebra. Hence, the resultant joint force,

Fjti , at ith vertebra is calculated iteratively: for i = 1, 2, . . . ,N,

Fjti =
Mi∑
j=1

Fmi,j + Fei + Fjti−1 = Fmsi + Fjti−1 (2.4)

with Fjt0 = 0.

The follower load path direction at each node was defined in order to decompose the

resultant joint force into the compressive force and the shear force. Let the compressive force

direction vector ci at ith node be

ci =
pi − pi−1

‖pi − pi−1‖ , i = 1, 2, . . . ,N, (2.5)

under the assumption that p0 = 0, which indicates the direction of ith beam element.

Then, Fjti can be decomposed into two perpendicular compressive forces Fci = (Fjti ·ci)ci
and shear force Fsi = Fjti − (F

jt

i · ci)ci at ith node for i = 1, 2, . . . ,N (Figure 1) as

Fjti =
(
Fjti · ci

)
ci +
(
Fjti −

(
Fjti · ci

)
ci
)
= Fci + Fsi . (2.6)

The resultant joint moment Mjt

i at ith node for i = 1, 2, . . . ,N is the same to the motion seg-

ment moment Mms
i .
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Figure 1: Decomposition of joint force Fjti into the compressive force Fci and the shear force Fsi .

3. Formulation of Optimization Scheme

3.1. Assumptions for Physiology

In this study, the displacement vector di at ith vertebral body center for i = 1, 2, . . . ,N and the

kth muscle force Fm
k

for k = 1, 2, . . . ,M were unknowns. Since the number of unknowns is

substantially larger than that of equilibrium equations (2.2) and (2.3), an optimization scheme

is necessary to predict nodal displacements and muscle forces. To formulate the optimization

scheme, requirements from human physiology for the spine must be considered. First, the

compressive forces, the shear forces, and the joint moments at vertebral body centers should

be minimized in order to avoid injuries or damages to soft tissues such as intervertebral discs
or ligaments in the spine region [25]. The square sum of muscle forces and the cubic sum of

muscle stresses should be minimized in order to increase the efficiency of muscle activation

and to decrease the fatigue of muscles, respectively [11, 12], where the muscle stress is defined

by the ratio of the muscle force to the physiological cross-sectional area of muscle. Finally, the

follower load concept to minimize the shear force in comparison to the compressive force

at each vertebra should be considered [25]. These multiple issues can be formulated in a

multiobjective cost function as

f
(
d1, . . . ,dN, Fm1 , . . . , F

m
M

)
= w1

N∑
i=1

∥∥Fci∥∥2 +w2

N∑
i=1

∥∥Fsi∥∥2 +w3

N∑
i=1

∥∥∥Mjt

i

∥∥∥2
+w4

M∑
k=1

∣∣Fmk ∣∣2

+w5

M∑
k=1

∣∣∣∣∣ Fm
k

PCSAk

∣∣∣∣∣
3

,

(3.1)

where w1, w2, w3, w4, and w5 are weight factors.
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To find the relevant solution of the given optimization problem, the weight factors

must be selected based on the quantitative relationships between physiological characteris-

tics. However, there is little information regarding the quantitative relationships due to dif-

ficulties in experimental measurement of such in vivo characteristics. Thus, it is necessary to

reduce the number of terms in the objective function under feasible assumptions. Since (2.2),
(2.3), and (2.4) indicate that the resultant joint forces and moments are dependent on the

muscle forces, and the square sum of muscle forces and the cubic sum of muscle stresses are

calculated from the muscle forces, the objective function can be modified as

f
(
d1, . . . ,dN, Fm1 , . . . , F

m
M

)
= w1

N∑
i=1

∥∥Fc
i

∥∥2 +w2

N∑
i=1

∥∥Fsi∥∥2 +w3

N∑
i=1

∥∥∥Mjt

i

∥∥∥2
,

(3.2)

f
(
d1, . . . ,dN, Fm1 , . . . , F

m
M

)
=

M∑
k=1

∣∣Fmk ∣∣2, (3.3)

or

f
(
d1, . . . ,dN, Fm1 , . . . , F

m
M

)
=

M∑
k=1

∣∣∣∣∣ Fm
k

PCSAk

∣∣∣∣∣
3

. (3.4)

In addition, the follower load concept can be formulated by a constraint as

∥∥Fci∥∥ ≤ α∥∥Fsi∥∥, (3.5)

where α is a restriction coefficient for the follower load concept. The physiologically feasible

upperbounds for the displacements of vertebrae and the muscle forces must also be pre-

sented.

The optimization scheme can then be formulated as follows.

Minimize

f
(
d1, . . . ,dN, Fm1 , . . . , F

m
M

)
(3.6)

s. t.
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(1) Fm −K · d + Fe = 0, where

Fm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑M1

j=1
Fm1,j

...∑MN

j=1
FmN,j∑M1

j=1
r1,j × Fm1,j

...∑MN

j=1
rN,j × FmN,j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, d =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1

...

...

...

dN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Fe =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fe1
...

FeN

Me
1

...

Me
N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.7)

and K is the stiffness matrix defined in (2.1);

(2) ‖Fci ‖ ≤ α ‖Fsi ‖, i = 1, 2, . . . ,N;

(3) |Fm
k
/PCSAk| ≤ σ, k = 1, 2, . . . ,M where σ is the maximum muscle stress;

(4) 0 ≤ |dt
i,k
| ≤ dt

i,k,max
and 0 ≤ |dr

i,l
| ≤ dr

i,l,max
, i = 1, 2, . . . ,N where dt

i,k,max
and

dr
i,l,max

denote the upper bounds of kth translation component and of lth rotation

component of di.

4. Numerical Tests

A three-dimensional problem of the spine from T12 to S1 is tested to confirm the developed

computational model and the formulation of the optimization scheme predicting the muscle

forces (N = 7). Here, 117 pairs of trunk muscles were considered (M = 234): 5 longissimus

pars lumborum, 4 iliocostalis pars lumborum, 12 longissimus pars thoracis, 8 iliocostalis pars

thoracis, 11 psoas, 5 quadratus lumborum, 6 external oblique, 6 internal oblique, 1 rectus ab-

dominus, 12 thoracic multifidus, 20 lumbar multifidus, 6 interspinales, 10 intertransversarii,

and 11 rotatores. The anatomical data at the initial position of the vertebrae, muscle attach-

ments, and physiological cross-sectional areas were obtained from the literature and medical

images [11, 19–22]. The stiffness matrix K was obtained from previous experimental studies

[23, 24].
In this test, (3.2) was used for the objective function. The weight factors w1,w2, and w3

are supposed to be 3, 3, and 1, respectively, since 3 N of force and 1 Nmm of moment are con-

sidered equally based on the presumed safe limits of intervertebral loads being approx-

imately 3000 N for forces and 9000 Nmm for moments as shown in [12]. The restriction

coefficient α was selected to be 0.25 based on [20] and the maximum muscle stress σ was

assumed to be 0.46 MPa based on [26]. The upperbounds of all translation component and

rotation component were 20.0 mm and 10.0◦, respectively. An upright standing posture was

considered for the external loading as 300 N of the upper body weight, 3 Nm of the resulting

flexion moment applied to T12, and a vertebral weight of 10 N was added to each lumbar

vertebra from L1–L5.

The muscle force distribution satisfying the formulated optimization problem was ob-

tained using MATLAB (MathWorks Inc., USA). The number of activated muscles according

to the ratio of muscle force to maximum muscle force was summarized in Table 1. The

maximum compressive force and the maximum shear force were 691.1 N and 172.8 N while
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Table 1: The number of activated muscles according to the ratio of muscle force to maximum muscle force.

Ratio of muscle force to maximum muscle force Number of activated muscles

0%–20% 7

20%–40% 7

40%–60% 6

60%–80% 2

80%–100% 20

Total 42

the maximum joint moment was 2271 Nmm. The previous in vivo studies reported that the

maximum compressive force, shear force, and joint moment were about 650 N, 190 N, and

8400 Nmm, respectively, in the upright standing posture [1, 14, 15, 27]. The validity of our

results seems to be indirectly achieved since the models in [1, 14, 15, 27] were not exactly

same to our model.

5. Conclusion

In this study, a general computational model of the human lumbar spine and trunk muscles

including optimization formulations was provided. For a given condition, the trunk muscle

forces could be predicted. The feasibility of the solution could be indirectly validated by com-

paring the compressive force, the shear force, and the joint moment. The presented general

computational model and optimization technology can be fundamental tools to understand

the control principle of human trunk muscles.
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We propose a new method for personal identification using the derived vectorcardiogram (dVCG),
which is derived from the limb leads electrocardiogram (ECG). The dVCG was calculated from the
standard limb leads ECG using the precalculated inverse transform matrix. Twenty-one features
were extracted from the dVCG, and some or all of these 21 features were used in support vector
machine (SVM) learning and in tests. The classification accuracy was 99.53%, which is similar to
the previous dVCG analysis using the standard 12-lead ECG. Our experimental results show that
it is possible to identify a person by features extracted from a dVCG derived from limb leads only.
Hence, only three electrodes have to be attached to the person to be identified, which can reduce
the effort required to connect electrodes and calculate the dVCG.

1. Introduction

Human identification has potential applications in many different areas where the identity of

a person needs to be determined, and to obtain even higher security levels, more complex

system are required. Specific features of human beings need to be selected to recognize

a person. Much work has been carried out on human face identification [1, 2]. These

methods require a high-resolution computer vision system to collect facial features, which

are generally anthropometric face structures. Other methods used in this area include:

voice recognition [3] and palm recognition [4], with the most common being finger print

identification. The human eye also contains specific features in both the retina and the iris

that may be used for recognition [5].
Although most of these identification methods have gained wide acceptance, one of

the problems with them is the fact that a specific biometric belonging to a certain person can
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still be used, even if the owner of the biometric is not present or has died. Therefore, many

biometric hardware systems include a liveness testing measure. This can be obtained by mea-

suring the body temperature, moisture, oxygen level, reflection or absorbance of light or other

radiation, or the presence of a natural spontaneous signal such as a pulse, the contraction of

a pupil in response to light, and muscular contraction in response to an electrical stimulus. In

most cases, such liveness testing is difficult to measure [6], and still it is needed to develop

the reliable and efficient method to test the “liveness” of an applicant’s biometric.

The electrocardiogram (ECG) signal is an alternative inherent liveness biometric

because of the significant fact that an ECG signal does not exist if the subject is not alive.

Recently, the feasibility of using ECG as a new biometric measure for personal identification

has been explored. Biel et al. [7] explained that automatic human identification can be

achieved by analyzing the 30 features extracted from a standard 12-lead ECG. Shen et al.

[8] investigated the feasibility of ECG as a biometric by applying template matching and

a decision-based neural network to the seven features extracted from a single-lead ECG.

Kyoso and Uchiyama [9] developed a human identification engine based on the four feature

parameters of a sampled ECG data sequence on a beat-to-beat basis. Israel et al. [10] proposed

a set of ECG descriptors that characterize the trace of a heartbeat to identify a person. 15

features have been selected from each heartbeat.

All of these researchers used time intervals (e.g., P wave duration, PQ interval, QRS

interval, QT interval, and so on) or amplitude as important features in their studies. These

features from the time domain have some limitations as the temporal features of interval and

amplitude can vary depending on variables such as the time of day of the measurement or

the physical condition of the subject. Noise and positioning of the electrode can also decrease

the accuracy. In contrast, the spatial features of the cardiac electric vector, represented by

the vectorcardiogram (VCG), are not affected by the variables mentioned above. It is also

expected that the vectorcardiographic loops will differ in shape and orientation from person

to person. It is possible to identify a person by features extracted from a VCG. We have

investigated the feasibility of the VCG, which is derived from a standard 12-lead ECG, as

a new biometric for personal identification in our previous study [11], and the experimental

results have shown that it is applicable to identify a person. The drawback of this approach is

the considerable effort required to connect many electrodes to the person, including six leads

to the chest, which is inconvenient in a real environment.

In this work, we investigated a novel approach for identifying a person using the

dVCG that was derived from limb leads only. For limb-lead recording, only three electrodes

are attached to the wrist and ankle, which is much easier than 12-lead recording. By

comparing the performances from limb-lead recordings and from 12-lead recordings, we

analyzed the feasibility of using VCG from limb-lead recording for personal identification.

First, we derived a VCG from a limb-lead ECG and extracted features from the derived VCG.

To remove some redundant features and to analyze the effect of each feature, we performed

feature selection using the Relief-F algorithm. Finally, we performed personal identification

using a support vector machine (SVM).

2. Materials and Methods

2.1. Vectorcardiogram

VCG have been widely investigated in the diagnosis of heart diseases, such as atrial fibrilla-

tion [12], premature ventricular contraction [13], and early ventricular repolarization [14].
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QRS vector loop 

P vector loop
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Figure 1: Vectorcardiogram.

VCG is a graphic representation of the magnitude and orientation of the heart’s

electrical activity during a cardiac cycle in the form of a vector loop. In contrast to ECG,

which represents the electrical potential in any one single axis, VCG displays the same

heart’s electrical events along two or three perpendicular axes. VCG provides a vectorial

representation of the distribution of electrical potentials generated by the heart and produces

loop-type patterns (Figure 1). The magnitude and orientation of the P, QRS, and T vector

loops are determined according to an individual heart’s characteristics. Because of the high

amplitude associated with QRS, loops from the QRS complex predominate.

The electrode positions of leads for the traditional VCG are different from those of a

12-lead ECG and must first be deduced by the recording technicians. Therefore, the method

for calculating VCG from a conventional 12-lead ECG is more appealing [12, 15].

2.2. Derived VCG

From a standard 12-lead ECG, the derived VCG can be easily calculated using a method

based on inverse Dower matrix [16] as shown in (2.1). Each of the orthogonal leads, X, Y ,

and Z used to plot the VCG are linear combinations of the eight independent leads (I, II, and

V 1 − −V 6) of a standard 12-lead ECG

⎡⎢⎢⎣
X

Y

Z

⎤⎥⎥⎦ = D0
−1[I II V 1 V 2 V 3 V 4 V 5 V 6

]T
,

D0
−1 =

⎡⎢⎢⎣
−0.172 −0.074 0.122 0.231 0.239 0.194 0.156 −0.010

0.057 −0.019 −0.106 −0.022 0.041 0.048 −0.227 0.887

−0.229 −0.310 −0.246 −0.063 0.055 0.108 0.022 0.102

⎤⎥⎥⎦.
(2.1)
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To derive the limb ECG from vectorcardiographic leads, Dower et al. described a

method using a transform matrix where each lead (I, II, and III) in the ECG was expressed

as a linear function of the leads X, Y , and Z [17, 18]. The transformation matrix for the limb

leads (I, II and III) is shown in (2.2).

⎡⎢⎢⎣
I

II

III

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0.632 −0.235 0.059

0.235 1.066 −0.132

−0.397 1.301 −0.191

⎤⎥⎥⎦
⎡⎢⎢⎣
X

Y

Z

⎤⎥⎥⎦. (2.2)

The transformation between the vectorcardiographic and limb-lead systems is a

simple matrix operation:

SECG = DSVCG, (2.3)

where SECG is the ECG signal, SVCG is the VCG signal, and D is the transformation matrix.

To calculate a VCG signal from a limb-lead system, we need the inverse of D, but

there is no inverse matrix because D is singular (II = I + III). Therefore, we use the pseudo

inverse (or Moore-Penrose inverse) [19]. The pseudoinverse of D can be determined by

the singular value decomposition (D = UΣV T ). Because matrix D has rank 2, Σ has two

positive singular values (σ1, σ2) along the main diagonal extending from the upper left-

hand corner, and the remaining components of Σ are zero. Then, D†(the pseudo inverse

matrix of D)=(UΣV T )†=(V T )†Σ†U†= VΣ†UT since (V T )† = V and U† = UT because of their

orthogonality. The matrix Σ† takes the following form:

Σ† =

⎡⎢⎢⎢⎢⎣
1

σ1
0 0

0
1

σ2
0

0 0 0

⎤⎥⎥⎥⎥⎦. (2.4)

Therefore, the pseudo inverse matrix of D is shown as follows:

D† =

⎡⎢⎢⎣
1.0808 0.7038 −0.3770

0.0790 0.4663 0.3874

0.0367 −0.0315 −0.0682

⎤⎥⎥⎦. (2.5)

Finally, we calculated the dVCG from the limb-lead ECG using

⎡⎢⎢⎣
X

Y

Z

⎤⎥⎥⎦ = D†

⎡⎢⎢⎣
I

II

III

⎤⎥⎥⎦. (2.6)
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Figure 2: Feature extraction (a) from the dVCG in 3D space, and (b) from the QRS and T vector loops in
the frontal plane.

The pseudoinverse of D(D†) is an approximation matrix because D has deficient rank.

Therefore, the dVCG derived from the limb leads has different patterns than the dVCG from

the standard 12-lead ECG.

Because the three-dimensional space (3D) and the frontal (XY) plane of the dVCG

provide useful information, such as shape and direction [11], as shown in Figure 2, we used

the dVCG in 3D space and the frontal plane. In the frontal plane, the large vector loop (QRS

vector loop) represents the QRS complex and the small vector loop (T vector loop) represents

the T wave of the ECG. The P vector loop has such a small shape that we did not consider it.

2.3. Feature Extraction

Since the dVCG data taken from all of the recorded heartbeats produced similar patterns for

each subject, the average values were taken from each beat’s dVCG trace. Twenty-one features
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Figure 3: Detection of the QRS complex (depicted by the dashed line) and T wave (depicted by the dashed
dotted line). (a) the detected QRS complex region on the magnitude of the dVCG signal, (b) the detected
T wave region, (c) the detected QRS complex and T wave region on the signal of lead II.

were extracted from the dVCG data. Three features arose from the 3D space (depicted in

Figure 2(a)), seven came from each QRS vector loop (depicted in Figure 2(b)) and T vector

loop, and the others were the differential or proportional values obtained from the QRS and

T vector loops.

To separate the QRS and T vector loops, we needed to detect the QRS complex

and T wave. To detect the QRS complex, we used the QRS detection algorithm developed

by Hamilton and Tompkins [20]. To detect the T wave, we used the QRS complex and

the magnitude of the dVCG. As shown in Figure 3(a), the shape of the magnitude of the

dVCG was segmented into the QRS complex and T wave regions. Therefore, we could easily

separate the T wave interval by excluding the QRS region in the magnitude of the dVCG. The

data shown in Figure 3(b) were achieved by calculating the region over a specific threshold

after detecting the QRS complex region. Figure 3(c) shows the QRS complex and the T wave

region of the signal from lead II.

2.3.1. Feature Extraction from the dVCG in 3D Space

Equation (2.6) shows the dVCG represented as vector

−−−−−−→
dVCGi = Xi

−−→aX + Yi
−→aY + Zi

−−→aZ, (2.7)
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where −−→aX, �aY , and −−→aZ are unit vectors with directions along the X, Y , and Z axes, respec-

tively. The magnitude of
−−−−−−→
dVCGi is |−−−−−−→dVCGi| =

√
Xi

2 + Yi2 + Zi
2. If this value becomes the larg-

est value when i = p, then the maximum value (VCGpeak), its azimuth (VCGazimuth), and its

elevation (VCGelevation) angle are as shown in the following equation and Figure 2(a):

VCGpeak =
√
Xp

2 + Yp2 + Zp
2,

VCGazimuth = tan−1

(
Yp

Xp

)
,

VCGelevation = tan−1

(
Zp

Yp

)
.

(2.8)

2.3.2. Feature Extraction from the QRS Vector Loop

When points on the QRS vector loop are represented as vectors on the XY plane, the

relationship is as shown in the following equation:

−−−−→
QRSi = Xi

−−→aX + Yi
−→aY . (2.9)

The magnitude of
−−−−→
QRSi is |−−−−→QRSi| =

√
X2
i + Y

2
i . If this value becomes the largest when i = p,

then the maximum (QRSpeak) and the azimuth (QRSangel) angle are as follows:

QRSpeak =
√
Xp

2 + Yp2,

QRSangel = tan−1

(
Yp

Xp

)
.

(2.10)

The area of a polygon whose vertices, QRSi, have the coordinates (Xi, Yi) for 1 ≤ i ≤ k can be

calculated using (2.11) [19]

QRSarea =
1

2
(X1Y2 −X2Y1) + · · · + 1

2
(Xk−1Yk −XkYk−1) +

1

2
(XkY1 −X1Yk)

=
1

2

k∑
i=1

(XiYi+1 −Xi+1Yi).
(2.11)

In the summation, we assume that Xk+1 = X1 and Yk+1 = Y1. The term QRSmaxdist represents

the maximum distance between each pair of points on the QRS vector loop. If two points on

the QRS vector loop are (Xi, Yi) and (Xj, Yj), then the distance between them is given in

d
(
i, j
)
=
√(

Xi −Xj

)2 +
(
Yi − Yj

)2
. (2.12)
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If this distance is at its maximum when i = p, j = q, then the maximum distance (QRSmaxdist)
and its angle (QRSmaxang) are shown as follows:

QRSmaxdist = d
(
i, j
)∣∣
i=p,j=q = d

(
p, q
)
=
√(

Xp −Xq

)2 +
(
Yp − Yq

)2
,

QRSmaxang = tan−1

(
Yp − Yq
Xp −Xq

)
.

(2.13)

Additionally, QRSmindist is the length of the minor axis in the QRS vector loop. Namely,

QRSmindist is the maximum distance between the two points, where the line perpendicular

to the line connecting the two points (Xp, Yp) and (Xq, Yq) from the previous equation meets

the QRS vector loop. The six features mentioned above are depicted in Figure 2(b).
The term QRSlwratio is the ratio of the major and minor axis on the QRS vector loop.

This is represented by

QRSlwratio =
QRSmaxdist

QRSmindist
. (2.14)

2.3.3. Feature Extraction from the T Vector Loop

Similar to the cases of the QRS vector loop, the features related to the T vector loop are Tpeak,

Tangle, Tarea, Tmaxdist, Tmaxang, Tmindist, and Tlwratio.

From these two sets of features, four additional features are acquired using the

following equations:

QRSTdiffang = QRSangle − Tangle,

QRSTdiffarea = QRSarea − Tarea,

QRSTratioarea =
QRSarea

Tarea
,

QRSTratiopeark =
QRSpeak

Tpeak
.

(2.15)

2.4. Personal Identification Using SVM and Relief-F

Support vector machines are learning machines based on recent advances in statistical

learning theory [21, 22]. Geometrically speaking, SVMs try to maximize the margin, which

is the distance between the separating hyperplane and the closest data samples (the support

vectors) belonging to the different classes. For multiple class problems, pairwise classification

is commonly employed, which builds c(c− 1)/2 binary classifiers (one versus one) and takes

a majority-voted class as a winner, where c is the number of target classes [23].
To overcome the “curse of dimensionality” or to analyze the effect of each feature

on classification, various feature selection methods have been introduced in the machine-

learning field. Among these, the Relief-F algorithm has been successfully used in many

feature selection tasks [24]. A key idea in Relief-F is estimating the power of each feature
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by increasing the interclass difference and the intraclass similarity. The algorithm initially

looks for the k nearest hits (samples with the same class label) and misses (samples with a

different class label) for a randomly selected sample. Then, it updates the following weight

for each feature, f , with respect to the difference between the feature values of the selected

data and nearest ones

w
(
f
)
= P
(
different value of f |different class

) − P(different value of f |same class
)
.

(2.16)

In this study, the feature selection method by the Relief-F algorithm was adopted

to improve the computational efficacy and remove possible redundant features that do

not contribute to the classification performance. In addition, we used a linear SVM with

a pairwise coupling method as a classifier in our experiments and compared the 10-fold

cross validation accuracy by eliminating the lowest-ranked features one-by-one based on the

Relief-F algorithm. We took advantage of the work of Witten and Frank [25] and Chang and

Lin [26] for the Relief-F method and SVM learning.

3. Experimental Results

We used a dataset of Lee et al. [11] to evaluate our method and compared our proposed

method with that of Lee et al. These standard 12-lead ECG data were acquired for ten healthy

volunteers using a CardioTouch (Bionet Co., Korea) with a sampling speed of 500 samples

per second. Each recording was 10 s long and was performed when the subject was at rest.

The data collection was done for three months, and almost one hundred of recordings were

done per subject.

To compare our proposed method and the previous dVCG method, we extracted 21

features from dVCG12−lead (dVCG derived from a standard 12-lead system) and dVCGlimb−lead

(dVCG derived from limb-lead system), respectively. These two sets of 21 features extracted

from dVCG12−lead and dVCGlimb−lead were ranked using the Relief-F algorithm, and the results

are shown in Table 1. Note that the notation w(f) is the output from the Relief-F algorithm,

which means the relative importance of the features in terms of the ability for increasing the

interclass difference and the intraclass similarity.

For the 12-lead system, the foremost values were the angle of the maximum peak value

in the T vector loop and the angle of the major axis in the T vector loop. Next were the values

of the length and the angle of the major axis in the QRS vector loop, followed by the length

of the minor axis in the QRS vector loop and the size of the QRS vector loop. The difference

between the size of the QRS and T vector loops came next.

In the case of the limb-lead system, the highest values were the maximum peak value

in 3D space of the dVCG and the area of the QRS vector loop, along with the difference

between the area of the QRS and T vector loops. The length of the minor axis in the QRS

vector loop and the maximum peak value in the T vector loop came next.

For two sets of 21 features, we performed a classification using a linear SVM with

pairwise coupling method and compared the 10-fold cross validation accuracy by eliminating

the lowest ranked features one-by-one. The results of the classification performance using the

extracted features from a standard 12-lead and limb-lead system are denoted by the dashed

and solid lines, respectively, in Figure 4.
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Table 1: Rank for each set of 21 features extracted from dVCGs based on a standard 12-lead and limb-lead
ECG, respectively.

Rank
12-Lead System Limb-Lead System

w(f) Feature w(f) Feature

1 0.26028 Tangle 0.29471 VCGpeak

2 0.25459 Tmaxang 0.22822 QRSarea

3 0.24278 QRSmaxdist 0.22220 QRSTdiffarea

4 0.17459 QRSmaxang 0.20969 QRSmindist

5 0.16736 QRSmindist 0.20752 Tpeak

6 0.16552 QRSarea 0.18580 Tmaxang

7 0.16499 QRSTdiffarea 0.18002 Tangle

8 0.16268 VCGpeak 0.17490 QRSmaxdist

9 0.14688 QRSpeak 0.16626 Tmaxdist

10 0.14518 VCGelevation 0.14507 QRSTratiopeak

11 0.11549 QRSlwratio 0.12638 QRSTdiffang

12 0.11397 QRSTdiffang 0.11331 QRSlwratio

13 0.10033 Tarea 0.10956 QRSmaxang

14 0.09135 Tmaxdist 0.10570 QRSpeak

15 0.08369 VCGazimuth 0.07650 VCGazimuth

16 0.07818 Tpeak 0.07066 QRSangle

17 0.06905 Tmindist 0.06596 VCGelevation

18 0.05022 QRSangle 0.05100 Tlwratio

19 0.03320 QRSTratiopeak 0.03715 Tarea

20 0.02709 Tlwratio 0.02179 Tmindist

21 0.00263 QRSTratioarea 0.00091 QRSTratioarea

The recognition rate using 21 features extracted from the standard 12-lead system was

99.52%, and the rate decreased as the number of features decreased. When we used only eight

features, the recognition rate was 99.19%. In the case of features extracted from limb-lead

system, the recognition rate of 99.53% was achieved using all 21 features and a recognition

rate of 99.37% was achieved using only the top eight ranked features. These results show

that when using the dVCG derived from limb leads only, we can produce an acceptable

recognition rate.

4. Discussion and Conclusions

The recording of the standard 12-lead ECG to identify a person is not readily applicable

in a real environment due to the inconvenience of connecting many electrodes. To solve

this problem, we have studied the feasibility of personal identification based on the dVCG

derived from limb leads only.

We extracted 21 features from dVCG and performed feature selection using the Relief-

F algorithm to analyze the effect of each feature. Although there were differences in rank

order, seven out of the eight top-ranked features in a standard 12-lead system were also top-

ranked in the limb-lead system with the exception being the angle of the major axis in the

QRS vector loop. The results also show that the Relief-F algorithm is a suitable algorithm
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Figure 4: Comparison of classification performances between the method using a standard 12-lead system
and our proposed method using the limb-lead system.

for sorting the ranks among the features since the recognition rates do not fluctuate and

gradually decrease as the number of features decreases.

To identify a person, we used a linear SVM as a classifier and calculated the 10-fold

cross validation accuracy. The results of the comparison between the dVCG from the limb-

lead ECG and 12-lead ECG indicate that it is possible to identify a person using only a limb-

lead system with three electrodes instead of the standard 12 leads.

Further studies should investigate the stability of the dVCG with a subject’s various

physical condition changes such as exercising, drinking, and smoking. Additionally, a large

dataset including these various conditions should be used for its validation.
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The blood pressure patterns obtained from a linearly or stepwise deflating cuff exhibit personal-
ized traits, such as fairly uniform peak patterns and regular beat geometry; it can support the diag-
nosis and monitoring of hypertensive patients with reduced sensitivity to fluctuations in Blood
Pressure (BP) over time. Monitoring of personalized trait in Oscillometric Arterial Blood Pressure
Measurements (OABPM) uses the Linear Discriminant Analysis (LDA) algorithm. The represen-
tation of personalized traits with features from the oscillometric waveforms using LDA algorithm
includes four phases. Data collection consists of blood pressure data using auscultatory measure-
ments and pressure oscillations data obtained from the oscillometric method. Preprocessing in-
volves the normalization of various sized oscillometric waveforms to a uniform size. Feature ex-
traction involves the use of features from oscillometric amplitudes, and trait identification involves
the use of the LDA algorithm. In this paper, it presents a novel OABPM-based blood pressure
monitoring system that can monitor personalized blood pressure pattern. Our approach can
reduce sensitivity to fluctuations in blood pressure with the features extracted from the whole
area in oscillometric arterial blood pressure measurement. Therefore this technique offers reliable
blood pressure patterns. This study provides a cornerstone for the diagnosis and management of
hypertension in the foreseeable future.

1. Introduction

Blood pressure (BP) is a vital sign, which along with body temperature, heart rate, and res-

piratory rate provides various physiological statistics about the body. Small changes in the BP

over a period of time can provide clues about cardiovascular and respiratory abnormalities in

a patient. Oscillometry is one of the widely used methods to determine the blood pressure [1–

7]. The oscillometric method of measuring blood pressure uses the amplitude of cuff pressure

oscillations from a linearly or stepwise deflating cuff and is given as two values, the systol-

ic and diastolic pressures. The cuff pressure oscillations consist of waveforms. The systolic
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pressure is the pressure associated with contraction of the heart, and indicates the maximum

amount of work per stroke needed for the heart to pump blood through the arteries [8]. In

contrast, diastolic pressure is the pressure in the large arteries during relaxation of the heart

left ventricle [9]. The diastolic pressure indicates the amount of pressure that the heart must

overcome in order to generate the next beat [8].
There have been ongoing studies to develop reliable measurements of blood pressure

[3–7]. These researches have focused on improving the accuracy of blood pressure measure-

ments. However, a large number of cardiovascular diseases such as arrhythmia can make it

difficult to obtain accurate blood pressure measurements [3]. To determine the true BP level,

many BP measurements need to be taken over a long period of time and problems affected by

the white-coat effect have to be solved. The white-coat effect is usually defined as the differ-

ence between the BP measured at home and at the office. White-coat effect can be influenced

by anxiety, a hyperactive alerting response, or a conditioned response. The white-coat effect

typically causes the office BP to be higher than the home BP and is present in a high per-

centage of hypertensive patients [10]. If there are personalized traits in blood pressure mea-

surements, problems such as noises caused by cardiovascular diseases like arrhythmia or

problems of the white-coat effect may be overcome. Therefore, this study proposes the oscillo-

metric measurement-based automatic blood pressure pattern identification system to explore

personalized traits prior to obtaining reliable blood pressure measurements. The proposed

approach demonstrates the feasibility of personalized trait identification with 85 people.

This paper aims to explore blood pressure pattern identification to find personalized

traits in oscillometric arterial blood pressure measurements using the linear discriminant

Analysis (LDA) algorithm. Section 2 introduces a review of related work. Section 3 develops

a representation of personalized traits with features from the oscillometric waveforms. It

consists of four steps. The first step introduces the database used for this research. The second

step presents a preprocessing technique for obtaining uniform sized oscillation waves, and

the third step develops a personalized traits representation via oscillations of amplitude

features from uniform sized oscillation waves. The fourth step describes data reduction and

feature extraction using LDA in the appearance-based approach. Section 4 presents the per-

formance of the blood pressure patterns identification model via the LDA algorithm. Finally,

this study discusses the advantages and applications of personalized trait monitoring.

2. Related Work

Blood pressure best predicts cardiovascular risk. Therefore, a variety of studies have been

proposed to improve the accuracy of blood pressure measurements [3–7, 11–14]. Many

studies use the oscillometric method to measure the blood pressure [1–7, 11, 12]. The oscil-

lometric method is used to find the peak values of the oscillation waveform, which are

determined as the oscillation amplitudes obtained from the pressure of the linearly deflating

cuff. This method has virtually no complications and needs less expertise; it is less un-

pleasant and painful for the patient. In [1–7, 11, 12], blood pressure measurements based

on the oscillometric method typically only use single-point estimates for both systolic blood

pressure and diastolic blood pressure. Recently, BP measurements in [13, 14] were introd-

uced: the confidence interval estimate of the systolic blood pressure and diastolic blood pres-

sure. In [13], the confidence interval estimate performed well only when sample size is large.

The confidence interval estimate used in [14] requires independent and identically distribu-

tion of data. But these methods also have to measure single-point estimates for systolic and

diastolic blood pressure and can reflect on sensitivity to fluctuations in BP measurements.



Journal of Applied Mathematics 3

In this paper, we have attempted to extract personalized blood pressure patterns of os-

cillation amplitudes rather than measure single-point estimates for systolic and diastolic

blood pressure. During feature extraction, we focus on the more uniform features of the oscil-

lation amplitudes in each person.

3. Methodology

This section describes a new blood pressure patterns identification technique to find person-

alized traits in oscillometric arterial blood pressure measurements using the LDA algorithm.

This work consists of four steps. First, data collection is described. Second, oscillometric

waveforms of various sizes are normalized to a uniform size. Third, features based on the

oscillation amplitudes are developed. Finally, the LDA algorithm is applied to identify blood

pressure patterns.

3.1. Data Collection

Experimental data has been provided by the blood pressure research team of the University

of Ottawa in Canada. The database consists of blood pressure data using auscultatory mea-

surements and pressure oscillations data obtained from the oscillometric method. The blood

pressure data measured using the auscultatory method was obtained by two trained nurses.

The oscillometric method is similar to the auscultatory technique, but it uses a pressure

sensor instead of a stethoscope to record the pressure oscillations within the cuff. This method

requires an external inflatable cuff, which can be placed around the left wrist at heart level.

The cuff is inflated starting from below the diastolic pressure until the cuff pressure exceeds

the systolic pressure. The cuff pressure is first increased until it exceeds the systolic pressure

and then deflated until it reaches certain pressures at fixed or variable intervals [7].
The database consists of a total of 425 (85 × 5) records with five recordings per subject

from 85 male and female subjects. Subjects met various blood pressure criteria: 10% of

participants had BP below 100 mmHg systolic, 10% had BP above 140 mmHg systolic, 10%

had BP below 60 mmHg diastolic, 10% had BP above 100 mmHg diastolic, and the remainder

had BP distributed between these outer limits. The subjects’ ages ranged from 10 to 80 years.

Subjects were allowed to relax in a waiting room area for 15 minutes and the measurement

room was organized to be conducive to accurate blood pressure measurements. The subjects

were told not to talk or move during the readings. Five records per subject were acquired,

and measurements were repeated for one minute with a one-minute rest period. Figure 1

shows one example of an oscillation pattern extracted from the cuff pressure acquired from

the oscillometric method.

3.2. Preprocessing

The number of oscillation waveforms extracted from the cuff pressure varies according to

physiology, geometry of the heart, hypertension, gender, and age (see Table 1). Table 1 shows

a partial example of varying number of oscillation waveforms extracted from the cuff
pressure. The systolic and diastolic pressures are the average values acquired by two nurses

with auscultatory measurements. We can find a similar number of oscillation waveforms in

5 measurements of the same subject. That is, the same person can have similar number of os-

cillation waveforms. We attempt to use normalization to reduce variations of corresponding
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Figure 1: Oscillation pattern extracted from the cuff pressure with the oscillometric method.

oscillation waveforms for different oscillation waveforms of the same person. A blood pres-

sure pattern means a varying number of oscillation waveforms in one record for one-minute.

Training set is defined as X. Given the training set X = {Wi}Ni=1, containing N blood pressure

patterns where each blood pressure pattern Wi = {Wij}Ni

j=1
consists of a number of oscillation

waveforms Wij , the normalization is applied as follows:

ϕ = sqrt

⎛⎝ Ni∑
j=1

(
Wij

)2

⎞⎠,

W∗
i =

Wi

ϕ
.

(3.1)

3.3. Feature Extraction

The proposed feature extraction technique extracts features of mean amplitude (MA), max-

imum positive amplitude (MPA), and maximum negative amplitude (MNA) based on data-

base with the number of oscillation waveforms.

To implement the proposed approach, we segment a normalized oscillation pattern

into 29-sample windows (at least including a single beat in the minimum oscillation wave-

forms) to obtain the feature windows. That is, a blood pressure pattern is divided into 29

sections and each divided section has to include at least a single heartbeat. In this study, 29

sections are defined for including at least a single heart beat on the training set, X. Blood

pressure patterns larger than the minimum number of oscillation waveforms in a blood pres-

sure pattern represent multiple heart beats within a given window. One-feature window

means one section in 29 sections. Figure 2 shows four heart beats detected within a given
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Figure 2: Four heartbeats detected in the segmented one-feature window from one subject.

window. We extract three features from the oscillation amplitudes in the segmented feature

window: mean amplitude, maximum positive amplitude, and maximum negative amplitude.

The circle marks of Figure 2 display the maximum positive and negative amplitudes extract-

ed in the segmented feature window. We define the following for three features; MA means

the averaged oscillation amplitudes in the segmented one-feature window; MPA means the

amplitude of the maximum upper pulse from the oscillations in the segmented one-feature

window; MNA describes the amplitude of the maximum lower pulse from the oscillations in

the segmented one-feature window.

Figure 3 shows the feature extraction results of one subject with the mean amplitude

and maximum positive and negative amplitudes in each feature window. The mean ampli-

tude can reduce noise signals within the feature window, and the maximum positive and

negative amplitudes exhibit personalized traits in the period of high or low cuff pressure.

Figures 4 and 5 show the feature extraction results of six subjects in Table 1 with maximum

positive and negative amplitudes in 29 feature windows, respectively. Figures 4 and 5

show the averaged results of five readings obtained from the oscillometric blood pressure

measurements of each subject. Subjects S2, S5, and S6 of Figures 4 and 5 are normal (BP:

<120/80 mmHg), whereas blood pressure subjects S1 and S4 are prehypertensive (BP: 120/80

to 139/89 mmHg) and S3 is stage 1 hypertensive (BP: 140/90 to 160/100 mmHg) blood pres-

sure subject. In Figures 4 and 5, stage 1 hypertensive or prehypertensive subjects display a

steep-slope pattern in front of the feature windows compared to normal subjects. Especially,

older subjects show higher amplitudes based on the MPA features. In the MNA features,

stage 1 hypertensive or prehypertensive subjects show lower amplitudes compared to normal

subjects.

3.4. Identification

Linear discriminant analysis is used for data reduction and feature extraction in the appear-

ance-based approach. LDA searches for feature vectors in the fundamental space that best

discriminates among classes [15]. LDA describes a linear combination of feature vectors that

produces the largest mean differences between the target classes. Features of the heartbeat

applied for human identification from electrocardiogram (ECG) [16–18] are similar to feat-

ures extracted from oscillometric arterial blood pressure measurements. Features extracted

from oscillometric measurements are classified with an appearance-based approach based

on LDA. Appearance-based approach is usually taken by different two-dimensional views
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Figure 4: Features extracted with maximum positive amplitude averaged from five readings in the feature
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of the object of interest. These methods based on the applied features can be subdivided into

two approaches: local and global approaches. This study applies global appearance-based

method. The main idea is to project the original input data onto a suitable lower-dimensional

subspace that represents the data best for a specific work. Selecting optimization criteria for

the projected data is the goal to best identify personalized trait.

Given a training set X = {W∗
i }Ci=1

, containing C classes with each class W∗
i = {w∗ij}Ci

j=1
,

consisting of a number of features, w∗ij , there are a total of N =
∑c

i=1 Ci oscillation patterns.

We define two measures for all samples of all classes. SWT is defined as within-class scatter

matrices of the training feature set. SBT is defined as between-class scatter matrices of the

training feature set. SWT and SBT are given as

SWT =
1

N

c∑
i=1

Ci∑
j=1

(
w∗ij − μi

)
(w∗ij − μi)T ,

SBT =
1

N

c∑
i=1

(
μi − μ

)
(μi − μ)T .

(3.2)

In (3.2), w∗ij denotes the jth sample of class i, c is the number of classes, μi is the mean of class

i, and ci denotes the number of samples in class i and μ is the mean of all classes. The LDA

approach [19] finds a set of basis vectors described by ϕ that maximizes the ratio between

SBT and SWT:

ϕ = arg max

∣∣ϕTSBTϕ
∣∣∣∣ϕTSWTϕ
∣∣ . (3.3)

One method is to assume that SWT is nonsingular and the basis vectors ϕ correspond

to the first N eigenvectors with the largest eigenvalues of SWT
−1SBT. LDA-based feature

representation, y = ϕTw∗, is produced by projecting the normalized input features (w∗) from

the oscillation amplitudes onto the subspace spanned by the N eigenvectors.

4. Experimental Results

To evaluate the performance of our approach, we conducted our experiments with the pres-

sure oscillations data (measured using oscillometric method) provided by the blood pressure

research team of the University of Ottawa in Canada. For the experiment, we used 425 records

with five readings per subject obtained from 85 subjects; the training set consisted of 255

records with three readings per subject obtained from 85 subjects; the testing set consisted

of the remaining 170 data readings excluded from the training set, two readings per subject

obtained from 85 subjects. The blood pressure data measured using the auscultatory method

provided indirect information for analyzing the subjects recognized by the oscillometric

method in our experiment.

The experimental results were evaluated with the performance of LDA by using the

nearest neighbor algorithm. The Euclidean distance was used for the similarity measure.

To find the optimal LDA-based features, our implementation used the five sets of features

from Figure 3 to test their discrimination power. One set included all of the features, whereas
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Table 2: Subsets of features extracted using the oscillometric method.

Subset Feature

I Mean amplitude (MA)
II Maximum positive amplitude (MPA)
III Maximum negative amplitude (MNA)
IV MPA + MNA

V MA + MPA + MNA

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0.045

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85

O
sc

il
la

ti
o

n
 a

m
p

li
tu

d
e 

Feature window

Feature representation of subjects on MA, MPA, and
MNA

87

S2 (normal: 22 years)
S1 (prehypertension: 50 years)

S5 (normal: 36 years)
S3 (hypertension: 54 years) S6 (normal: 43 years)

S4 (prehypertension: 34 years)

Figure 6: Features extracted with mean amplitude and maximum positive and negative amplitudes in the
feature windows from normal and hypertension (prehypertension) subjects.

the other four sets included a subset of these, as shown in Table 2. Subset IV concatenates the

features of the maximum positive and negative amplitudes, and subset V concatenates the

features of the mean amplitudes and maximum positive and negative amplitudes into one

vector.

Figure 6 shows the feature extraction results obtained from six subjects in Table 1 and

the mean amplitudes and maximum positive and negative amplitudes are concatenated into

one vector. S2, S5, and S6 are normal blood pressure subjects, and S1, S3, and S4 are pre-

hypertension or hypertensive blood pressure subjects. This shows the averaged results of the

five readings for the oscillometric blood pressure measurements obtained from each subject.

The feature windows describe feature windows 1 to 29 extracted from the maximum positive

amplitudes, feature sections 30 to 57 extracted from the maximum negative amplitudes,

and feature sections 58 to 87 extracted from the mean amplitude. The stage 1 hypertensive

subject (S3) displays steeper maximum positive amplitude than that of the normal subjects.

Prehypertensive or stage 1 hypertensive subjects generally display lower maximum negative

amplitude than that of normal subjects. This shows that the averaged features of the five

readings taken from each subject are plotted in a personalized uniform pattern. The results

of the final LDA-based experiments are listed in Table 3. We can see that using all of the feat-

ures provides the best blood pressure pattern identification rate, and subset IV shows good

performance, while subset I shows the worst performance. LDA does not go beyond 85 for

the dimensionality of the LDA space. Since we use 85 classes, this gives us an upper bound

of 85-dimensional LDA space.
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Table 3: Experimental results of LDA.

Subset Recognition rate (%)
I 34.30

II 67.44

III 72.09

IV 93.02

V 94.70
(%
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Figure 7: LDA recognition performance according to dimensionality via LDA algorithm with nearest
neighbor classifier.

Figure 7 shows the recognition results based on the dimensionality that yields the best

identification rate. We achieved the best blood pressure pattern identification rate of 94.7% for

the first 18 eigenvectors. Thus, the first 18 eigenvectors are estimated to the optimal decision

boundary to best identify personalized trait using LDA in this study.

5. Discussion

This study aimed to explore a new blood pressure patterns identification model for per-

sonalized traits monitoring of oscillometric arterial blood pressure measurements using the

linear discriminant analysis algorithm. A blood pressure patterns identification model was

used for the oscillometric arterial blood pressure measurements, which successfully dis-

criminated personalized traits for the LDA algorithm. Our best recognition result showed

a recognition rate of 94.7% for the first 18 eigenvectors. This means that the optimal LDA-

based 18 eigenvectors in oscillometric arterial blood pressure measurements can effectively

represent personalized traits.

The personalized traits of the oscillometric arterial blood pressure measurements can

be represented for the features extracted from the whole domain of one oscillation pattern.

Especially, the integration of the three feature streams extracted from each segmented feature

window for the whole domain of one oscillation pattern enhances the recognition per-

formance. In our experiment, the integration of the feature streams extracted with the maxi-

mum positive and negative amplitudes largely improved the recognition rate. In the three

feature streams, while the maximum positive and negative amplitude feature streams show-

ed strong effects on the recognition performance, the mean amplitude showed a weak effect.

We propose that the maximum positive and negative amplitude features can effectively re-

present personalized traits of oscillometric arterial blood pressure measurement.
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Features extracted from each segmented feature window in the oscillometric method

may support the monitoring and diagnosis of hypertensive patients because stage 1 hyper-

tensive or prehypertensive subjects display a steep-slope pattern in front of the feature win-

dows compared to normal subjects.

Our approach offers a simple and inexpensive means of monitoring personalized trait

with blood pressure patterns in oscillometric arterial blood pressure measurement. Based on

these results, this study has established a new blood pressure monitoring system for health

care monitoring in oscillometric arterial blood pressure measurements. Our research has the

potentiality for the diagnosis and management of hypertension and provides a foundation of

a new biometric modality using blood pressure patterns.
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We provide a family of ordinary and delay differential equations to model the dynamics of tumor-
growth and immunotherapy interactions. We explore the effects of adoptive cellular immuno-
therapy on the model and describe under what circumstances the tumor can be eliminated. The
possibility of clearing the tumor, with a strategy, is based on two parameters in the model: the rate
of influx of the effector cells and the rate of influx of IL-2. The critical tumor-growth rate, below
which endemic tumor does not exist, has been found. One can use the model to make predictions
about tumor dormancy.

1. Introduction

Cancer is one of the most difficult diseases to be treated clinically, and one of the main causes

of death. It is the second fatal disease after the cardiovascular diseases. The World Health

Organization estimates that the annual cancer-induced mortality number exceeds six million

people. Accordingly, the fight against cancer is of major public health interest. For this and

other economy-related reasons, a great research effort is being devoted to understand the

dynamics of cancer and to predict the impact of any changes on the system reactors. Hence,

mathematical models are required to help design therapeutic strategies.

In cancer modeling, we have to care about the scaling problem, where the class of

equations, used to describe the model, are to be determined. Indeed, there are three natural

scales, which are connected to the different stages of the disease and have to be identified.

The first is the subcellular (or molecular) scale, where we focus on studying the alterations

in the genetic expressions of the genes contained in the nucleus of a cell, as a result of some
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special signals, which are received by the receptors on the cell surface and transmitted to

the cell nucleus. The second is the cellular scale, which is an intermediate level between

the molecular and the macroscopic scale. The third is the macroscopic scale, where we deal

with heterogeneous tissues. In the heterogeneous tissues, some of the layers (the external

proliferating layer, the intermediate layer, and the inner zone with necrotic cells) constituting

the tumor may occur as islands, leading to a tumor comprised of multiple regions of necrosis,

engulfed by tumor cells in a quiescent or proliferative state [1]. In case of macroscopic scale,

we focus on the interaction between the tumor and normal cells (e.g., immune cells and blood

vessels) in each of the three layers. For more details about description of the scaling problem

and the passage from each scale to another, we refer to Bellomo et al. [1, 2].
A great research effort is being devoted to understand the interaction between the

tumor cells and the immune system. Mathematical models, using ordinary, partial, and delay

differential equations [3], play an important role in understanding the dynamics and tracking

tumor and immune populations over time. Although the theoretical study of tumor immune

dynamics has a long history [4, 5], the multifaceted nature of cancer requires sophisticated,

nonlinear mathematical models to capture more realistic growth dynamics.

Many mathematical models have been proposed to model the interactions of cytotoxic

T lymphocyte (CTL) response and the growth of an immunogenic tumor (see, e.g., [6–11]).
The model by Kuznetsov et al. [7] takes into account the penetration of the tumor cells by

the effector cells, which simultaneously causes the inactivation of effector cells. However,

the model of Matzavinos et al. [9] describes the growth of a solid tumor in the presence of

an immune system response, with special focus on the attack of tumor cells by the tumor-

infiltrating cytotoxic lymphocytes (TICLs) in a small, multicellular tumor, without necrosis

and at some stages prior to angiogenesis. The analysis shows that the TICLs can play an

important role in the control of cancer dormancy.

The treatment of cancer is then one of the most challenging problems of modern

medicine. The treatment should satisfy two basic conditions: first, it should destroy cancer

cells in the entire body. Second, it should distinguish between cancerous and healthy cells.

Other treatments such as surgery and/or chemoand radiotherapies have played key roles in

treatment [12], but in many cases they do not represent a cure. Immunotherapy seems to be

the method that best fulfils both of these requirements [7, 13, 14].
Numerous research papers have been made to explore the effects of the immune

system in eliminating the tumor cells in the host, by stimulating the host’s own immune

response to kill cancer cells [15]. When tumor cells appear in a body, the immune system tries

to identify and then eliminate them. Immunotherapy refers to the use of cytokines usually

together with Adoptive Cellular Immunotherapy (ACI). Cytokines are protein hormones that

mediate both natural and specific immunity. They are produced mainly by activated T cells

(lymphocytes) during cellular-mediated immunity. Interleukin-2 (IL-2) is the main cytokine

responsible for lymphocyte activation, growth, and differentiation. IL-2 has been shown to

enhance Cytotoxic T Cells (CTL) activity at different disease stages. However, ACI refers

to the injection of cultured immune cells that have antitumor reactivity into tumor bearing

host. This interaction is analyzed and studied in various levels of biomathematical researches.

They commonly focused on the models on ODEs over time. For example, in 1985, DeBoer et

al. [4] suggested a mathematical model which contains eleven ordinary differential equations

with five algebraic equations to describe antitumor response with IL-2 taken into account. A

simple version of this model is proposed by Kirschner and Panetta [14]. The model is only

based on three differential equations. Further analysis by several authors has also been done;

see [5, 6, 16–18].
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Immunotherapy models and their predictions have been extensively studied in [9, 14,

19]. In [14], Kirschner et al. explored the role of cytokine in the disease dynamics and stud-

ied the long-term tumor recurrence and short-term tumor oscillations. However, in [19]
Kuznetsov and Knott presented a mathematical model for the growth and suppression of

the tumor. They showed that the model can describe the regrowth of a dormant tumor by

two distinct mechanisms. One explanation for the tumor regrowth is based on a single clone

model, while the other is based on a two-clone model. They fitted their ODE models to the

data and obtained several curves for the tumor regrowth. They compared their predicted

results with clinical and experimental observations, where both results confirm that intensive

limited-term immunotherapy does not provide complete tumor elimination. The simulations

show that medium-term control of cancer is exhibited when long-life immune memory cells

are activated, but long-term control results from reducing the cancer growth rate.

In this paper, we investigate mathematical models for the dynamics between tumor

cells, immune-effector cells, and the cytokine interleukin-2 (IL-2). It is worth stressing that we

operate at a supermacroscopic scale, namely, by ordinary differential equations. However, the

link to lower cellular scale is represented by the delay. The delay differential equations have

long been used in modeling cancer phenomena [20–26]. It should be noted that the hetero-

geneity, mutations, and link with the lower molecular scale are neglected. These topics are

documented in [17, 27, 28].
The organization of this paper is as follows: in Section 2, we provide different models,

using ODEs and DDEs, with interaction functions in the Lotka-Volterra form to describe the

response of the effector cells to the growth of tumor cells. In Section 3, we study the local

stability of the steady states for tumor-free and endemic persistence. Bifurcation analysis for

a three-equations model and finding regions of existence of the equilibria are discussed in

Section 4. In Section 5, we discuss the conditions that ensure tumor-clearance possibilities

and conclude in Section 6.

2. The Model

The model of Kuznetsov et al. [7] describes the response of the effector cells (ECs) to the

growth of tumor cells (TCs). In this model, it has been taken into account the penetration

of TCs by ECs, which simultaneously causes the inactivation of ECs. It is assumed that

interactions between ECs and TCs are in vitro such that E, T , C, E∗, and T ∗ denote the local

concentrations of ECs, TCs, EC-TC conjugates, inactivated effector cells, and “lethally hit”

TCs, respectively. The rate of binding of ECs to TCs and the rate of separation of ECs from

TCs without damaging them are denoted by k1 and k−1, respectively. The rate at which EC-

TC integrations program for lysis is denoted by k2, while the rate at which EC-TC interaction

inactivate ECs is denoted by k3. The model takes the form

dE

dt
= s + F(C, T) − d1E − k1ET + (k−1 + k2)C,

dT

dt
= aT(1 − bT) − k1ET + (k−1 + k3)C,

dC

dt
= k1ET − (k−1 + k2 + k3)C,
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dE∗

dt
= ak3C − d3E

∗,

dT ∗

dt
= k2C − d3T

∗.

(2.1)

Here, the parameter s represents the normal rate (not increased by the presence of the tumor)
of the flow of adult ECs into the tumor site and F(C, T) describes the accumulation of ECs

in the tumor site, while d1, d2, and d3 are the coefficients of the processes of destruction and

migration of E, E∗, and T ∗, respectively. The maximal growth of tumor is represented by the

coefficient a, and b is the environment capacity. It was suggested in [7] that the function F

takes the form

F(C, T) = F(E, T) =
pET

r + T
, (2.2)

where p and r are positive constants. This term is the Michaelis-Menten form to indicate the

saturated effects of the immune response.

The idea in this paper is to simplify the above model and reduce it into a two- or three-

equation model to describe the interactions of three types of cell populations: the activated

immune-system cells, E(t) (or effector cells such as cytotoxic T-cells, macrophages, and

natural killer cells that are cytotoxic to the tumor cells); the tumor cells, T(t); the concentration

of IL-2 in the single tumor-site compartment, IL(t). The above model can then be governed

by the following three equations (see [14]):

dE

dt
= cT − μ1E + θ1EIL + s1,

dT

dt
= r2T

(
1 − bT

)
− αET,

dIL
dt

= θ2ET − μ2IL + s2,

(2.3)

with initial conditions E(0) = E0, T(0) = T0, IL(0) = IL0
, where c is the antigenicity rate

of the tumor, s1 is the external source of the effector cells, with rate of death μ1, whereas

the parameter r2 incorporates both multiplication and death of tumor cells. The maximal

carrying capacity of the biological environment for tumor cell is b
−1

, θ1 is considered as the

cooperation rate of effector cells with Interleukin-2 parameter, α is the rate of tumor cells, and

θ2 is the competition rate between the effector cells and the tumor cells. External input of IL-2

into the system is s2, and the rate loss parameter of effector cells is μ2.

2.1. Nondimensionalization

System (2.3) is an example of stiff (One definition of the stiffness is that the global accuracy

of the numerical solution is determined by stability rather than local error and implicit

methods are more appropriate for it.) model, in the sense that it has properties that make

it slow and expensive to solve using explicit numerical methods. Stiffness often appear due
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to the differences in speed between the fastest and slowest components of the solutions, and

stability constraints. The efficient use of reliable numerical methods, that is based in general

on implicit formulae, for dealing with stiff problems involves a degree of sophistication not

necessarily available to nonspecialists [29]. In addition, the state variables of these types of

models are very sensitive to small perturbations (or changes) in the parameters occuring

in the model. Consequently, the parameter estimates are also sensitive to the noisy data

and observations. To ease the analysis and stability of the steady states with meaningful

parameters and less sensitive (or rubus) model, we nondimensionalize the bilinear model

(2.3), by taking the following rescaling:

x =
E

E0
, y =

T

T0
, z =

IL
IL0

, θ1 =
θ1IL0

ts
, θ2 =

θ2E0T0

tsIL0

,

μ1 =
μ1

ts
, μ2 =

μ2

ts
, b = bT0, c =

cT0

tsE0
, α =

αE0

ts
,

τ = tst, r2 =
r2

ts
, s1 =

s1

tsE0
, s2 =

s2

tsIL0

.

(2.4)

Therefore, after the above substitution into (2.3) and replacing τ by t, the model becomes

dx

dt
= cy − μ1x + θ1xz + s1,

dy

dt
= r2y

(
1 − by) − αxy,

dz

dt
= θ1xy − μ2z + s2,

(2.5)

with initial conditions x(0) = x0, y(0) = y0, and z(0) = z0. Here x(t), y(t), and z(t) denote

the dimensionless density of ECs, TCs, and LI-2, respectively. In model (2.5), there are four

possible cases of treatments, according the values of s1 and s2: (i) notreatment case (s1 = s2 =
0), (ii) adoptive cellular immunotherapy case (s1 > 0, s2 = 0), (iii) interleukin-2 case (s1 = 0,

s2 > 0), (iv) and immunotherapy with both adoptive cellular immunotherapy (ACI) and IL-2

(s1 > 0, s2 > 0).
Yafia [10] considered system (2.5) in the absence of immunotherapy with IL-2,

dx

dt
= ωxy − μx + s,

dy

dt
= ry

(
1 − by) − xy, (2.6)

where ω is immune response to the appearance of the TCs, s has the same meaning of s1, r

has the meaning of r2, and μ has the meaning of μ1 in the above model. If we consider a time
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Table 1: The nondimensionalization parameters of bilinear model (2.5).

c = 5/18 μ1 = 1/6 θ1 = 1/18000000

r2 = 1 b = 1/1000

μ2 = 500/9 θ2 = 250/9
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Figure 1: Solution of the DDEs (2.7) when ω = 0.01184, μ = 0.3747, s = 0.1181, r = 1.636, b = 0.002, and
τ = 0.8. This shows an unstable endemic equilibrium.

delay τ > 0 in (2.6) due to the time-lag in the interaction between ECs and TCs, the model

takes the form

dx

dt
= ωx(t)y(t − τ) − μx(t) + s,

dy

dt
= ry(t − τ)(1 − by(t)) − x(t)y(t). (2.7)

In this model, we only consider the time delay in the dependent variable y (representing

tumor) of the nonlinear term. Of course other models assume time delays in both variables

x and y [6]. Further models that consider time delays when modeling tumor growth are

discussed in [30–32]. To solve model (2.7), we should provide an initial function with initial

function y(t) = ψ(t), t ∈ [−τ, 0] instead of the initial value y(0) at t = 0 (see [3]). It has been

shown that model (2.7) has visible and bounded solution (see [6, 11]). When the time delay

is included in the simplified model (2.6), the state of returning tumor cells can be observed,

as DDE models have richer dynamics than do ODE models; see the graphs displayed in

Figures 1, 2, and 3. We next study the stability of the steady states of the above models,

according the values of the parameters given in Table 1.
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Figure 2: Solution of the DDEs (2.7) when ω = 0.01184, μ = 0.3747, s = 0.2181, r = 1.636, b = 0.002 and
τ = 0.8. This shows a stable endemic equilibrium.
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Figure 3: Solution of the DDEs (2.7) when ω = 0.04184, μ = 0.03747 (a), and μ = 0.3747 (b), s = 0.2181,
r = 1.636, b = 0.002, and τ = 0.8. The tumor-free equilibrium is asymptotically stable in the left banner and
unstable in the right banner.

3. Steady States and Stability

The solutions of practical interest should have nonnegative population x, y, and z. However,

it is hard to find a closed analytical solution for the above nonlinear models, instated we can

study their qualitative behavior by studying the stability of the steady states. We then assume

that the parameters occuring in the models are also nonnegative.
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3.1. Tumor-Free Equilibrium and Its Stability

To ease the analysis, we start with the 2-population model (2.6). The steady states of the

reduced model (2.6) are the intersection of the null-clines dx/dt = 0 and dy/dt = 0. If y = 0,

the free tumor equilibrium is at (x, y) = (s/μ, 0). This steady state always exists, since s/μ >

0. It is clear that the tumor-free equilibrium E0 = (x∗, y∗) = (s/μ, 0) of the model (2.6) is

asymptotically stable if rμ < s and unstable if rμ > s. Whoever, when we consider the DDEs

model, the characteristic equation of the linearized model of (2.7) at E0 = (s/μ, 0) takes the

form

(λ + r)
(
λ − e−λτ + s

μ

)
= 0. (3.1)

When τ = 0, it is clear that E0 is asymptotically stable when rμ < s and unstable otherwise.

However, if τ > 0, (3.1) has a negative real root λ = −r and roots of

λ − e−λτ + s

μ
= 0. (3.2)

Puting λ = ξi in (3.2) and separating real and imaginary parts yields

ξ2 =

[
r2 −
(
s

μ

)2
]
. (3.3)

Therefore, when |rμ| < |s| there are no positive real root ξ. This shows that all the roots of

(3.1) have negative real parts and E0 is asymptotically stable.

In case of the three-equation model (2.5), and at the equilibrium points, we have

0 = cy − μ1x + θ1xz + s1, 0 = r2y
(
1 − by) − αxy,

0 = θ2xy − μ2z + s2.
(3.4)

Putting y = 0 yields the tumor-free equilibrium, namely,

E0 =
[

s1μ2

μ1μ2 − θ1s2
, 0,

s2

μ2

]
. (3.5)

It is clear that the infection-free equilibrium E0 exists if and only if s2 < μ1μ2/θ1. Therefore,

we restrict our analysis to the case where s2 < μ1μ2/θ1. To study its stability, we consider the

corresponding Jacobian matrix

JE0
=

⎡⎣−μ1 + θ1s2/μ2 c θ1s1μ2/
(
μ1μ2 − θ1s2

)
0 r2 − αs1μ2/

(
μ1μ2 − θ1s2

)
0

0 θ2s1μ2/
(
μ1μ2 − θ1s2

) −μ2

⎤⎦. (3.6)
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It has the eigenvalues −μ1 +θ1s2/μ2, r2 −αs1μ2/(μ1μ2 −θ1s2), and −μ2. Therefore, E0 is locally

asymptotically stable if and only if r2 < αs1μ2/(μ1μ2 − θ1s2), while otherwise it is an unstable

saddlepoint.

3.2. Endemic Equilibrium and Its Stability

Consider again the two-equation model (2.6). If y /= 0, the steady states are obtained by

solvingωrby2−r(ω+μb)y+μr−s = 0. In this case, we have two endemic equilibria P1 = (x1, y1)
and P2 = (x2, y2), where

x1 =
−r(bμ −ω) − √Δ

2ω
, y1 =

r
(
bμ +ω

)
+
√
Δ

2rbω
,

x2 =
−r(bμ −ω) +√Δ

2ω
, y2 =

r
(
bμ +ω

) − √Δ
2rbω

,

(3.7)

with Δ = r2(bμ −ω)2 + 4ωrbμ > 0. The Jacobian matrix of the system (2.6) at the endemic

equilibrium P1 is

Jendemic =
[
ωy1 − μ ωx1

−y1 r − 2bry1 − x1

]
. (3.8)

Proposition 3.1. If the endemic equilibrium P1 exists and has nonnegative coordinates, then
tr(Jendemic) > 0 and P1 is unstable.

Proof. Since

tr(Jendemic) =
ω2 −ω(rb + bμ) − rb2μ

2bω
+
ω − rb
2rbω

√
r2
(
bμ +ω

)2 − 4rbω
(
rμ − s), (3.9)

then inequality tr(Jendemic) > 0 is true if

r
[
ω2 −ω(rb + bμ) − rb2μ

]
> (rb −ω)

√
r2
(
bμ +ω

)2 − 4rbω
(
rμ − s). (3.10)

Therefore, when rμ < s andω < −bμ, we haveω2−ωb(r+μ)−rμb2 > 0 and hence both sides of

the inequality are positive. Therefore, if the point P1 exists and has nonnegative coordinates,

then tr(Jendemic) > 0 and the point P1 is unstable whenever ω < −bμ and rμ < s.

Similarly, it is easy to prove the following proportion.

Proposition 3.2. If the point P2 exists and has nonnegative coordinates, then it is asymptotically
stable.
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We extend the above analysis to the case of the three-equation model (2.5). The tumor-

persistent solutions are obtained by putting y /= 0 and omitting x and z in (3.4) to get a scalar

equation in the variable y which reads

F
(
r2, y
)
= C3y

3 + C2y
2 + C1y + C0 = 0, (3.11)

where

C3 = θ1θ2r
2
2b

2 > 0,

C2 = −2θ1θ2br
2
2 < 0,

C1 = r2
2θ1θ2 + r2b

(
μ1μ2 − s2θ1

)
α + cμ2α

2,

C0 = α
[
r2

(
θ1s2 − μ1μ2

)
+ μ2s1α

]
.

(3.12)

Since s2 < μ1μ2/θ1, then the coefficient C1 is always positive, while the coefficient C0 can take

positive and negative values depending on the values of the model parameters. Also, (3.11) is

welldefined for all y ∈ [0, 1/b]. Its left-hand side is a polynomial of degree three, and its zeros

are not easy to be obtained in a closed-form. However, some conditions in the parameters

occur in the model to ensure the existence of its solutions could be deduced. Equation (3.11)
can also be seen as a bifurcation equation in r2 and y, where we keep all other parameters

fixed. Once a solution y > 0 of this equation has been obtained, we could find positive x and

z from the other equations in (3.4). Therefore, there is a one-to-one correspondence between

the solutions of (3.11) and the endemic stationary solutions. For more insights, we next study

the bifurcation analysis.

4. Bifurcation Analysis of Model (2.5)

The bifurcation analysis gives a deeper analysis about the model. It answers the query that

“how does the behavior of the solutions change as parameters change.” We restrict ourselves

to only study the bifurcation analysis of ODEs models rather than DDEs models.

4.1. Bifurcation Points for the Parameter r2

In this subsection, we then analyze the bifurcation so that the tumor growth rate r2 acts as a

bifurcation parameter. Therefore, to find the bifurcation point(s), we put y = 0 in (3.11) to get

r2 = αμ2s1/(μ1μ2 − θ1s2) := r2. Hence, there is only one transcritical bifurcation point at

(
r2, y
)
=
(

αμ2s1

μ1μ2 − θ1s2
, 0

)
. (4.1)

Now, we compute the direction of bifurcation at (r2, 0) so that

dy

dr2

∣∣∣∣
(r2,0)

= −Fr2

Fy

∣∣∣∣∣
(r2,0)

, (4.2)
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where

Fr2
|(r2,0) = −α

(
μ1μ2 − θ1s2

)
< 0, Fy

∣∣
(r2,0)

=

(
c + bs1 +

θ1θ2μ2s
2
1(

μ1μ2 − θ1s2

)2

)
μ2α

2 > 0. (4.3)

Hence, the bifurcation at the point (r2, 0) is forward, irrespective of the values of the model-

parameters. We notice that the model we consider here has only one bifurcation point (r2, 0)
at which the bifurcation is forward.

4.2. Bifurcation Diagrams for the Parameter ∝
The parameter α is very important in the model that plays an effective role to define cancer

behavior. We investigate numerically, in this subsection, the bifurcation of the model for the

parameter α. We consider the four cases: no treatment case (s1 = s2 = 0), adoptive cellular

immunotherapy case (s1 > 0, s2 = 0), interleukin-2 case (s1 = 0, s2 > 0), and immunotherapy

with both ACI and IL-2 case (s1 > 0, s2 > 0).
If we solve F(y, α) = F(α, y) = 0 in α, we have

α+ =
r2b
(
y − 1/b

)
2μ2

(
cy + s1

) [(θ1s2 − μ1μ2

)
+
√(

μ1μ2 − s2θ1

)2 − 4θ1θ2μ2y
(
cy + s1

)]
,

α− =
r2b
(
y − 1/b

)
2μ2

(
cy + s1

) [(θ1s2 − μ1μ2

) −√(μ1μ2 − s2θ1

)2 − 4θ1θ2μ2y
(
cy + s1

)]
.

(4.4)

To plot (α, y) in the interval 0 < y < 1/b, under the conditions that

(
μ1μ2 − s2θ1

)2 − 4θ1θ2μ2y
(
cy + s1

)
> 0,

− 4θ1θ2cμ2y
2 − 4θ1θ2μ2s1y +

(
μ1μ2 − s2θ1

)2
> 0,

(4.5)

we have

y2 +
s1

c
y −
(
μ1μ2 − s2θ1

)2

4θ1θ2cμ2
< 0. (4.6)

Then

1

2

⎡⎢⎣ −s1

c
−

√√√√(s1

c

)2

+

(
μ1μ2 − s2θ1

)2

θ1θ2cμ2

⎤⎥⎦ < y < 1

2

⎡⎢⎣ −s1

c
+

√√√√(s1

c

)2

+

(
μ1μ2 − s2θ1

)2

θ1θ2cμ2

⎤⎥⎦. (4.7)

For 0 < y < y+, where

y+ =
1

2

⎡⎢⎣−s1

c
+

√√√√(s1

c

)2

+

(
μ1μ2 − s2θ1

)2

θ1θ2cμ2

⎤⎥⎦, (4.8)



12 Journal of Applied Mathematics

we have two cases y+ < 1/b or y+ > 1/b. The graphs in Figure 4, which are obtained

numerically, display the bifurcation diagrams for different cases, where (i) s1 = s2 = 0, (ii)
s1 = 10, s2 = 0, (iii) s1 = 0, s2 = 40, and (vi) s1 = 10, s2 = 40.

Given the threshold point (α, y) = (α∗, 0), the tumor clearance condition is α > α∗,
where

α∗ =

(
μ1μ2 − θ1s2

)
r2

μ2s1
. (4.9)

Therefore, when s1 > 0, then α∗ > 0 and α ∝ 1/s1. Thus, we can arrive to tumor clearance

quickly when the value of s1 increases. We notice from Figure 4 that the locations of saddle

node bifurcation points A and B bridge the one-positive equilibrium to the three-positive

equilibria. The supercritical Hopf bifurcation point C joints between existence of stable limit

cycles and nonexistence of limit cycles. The transcritical bifurcation point D at (α, y) = (α∗, 0)
bridges the one-positive equilibrium and no positive equilibria.

4.3. Regions of Existence of the Equilibria

In addition to the tumor-free equilibrium, (3.11) may have one to three persistent-tumor

equilibria, depending on the values of the model-parameters. However, before we proceed

we provide the following proposition, which is helpful in the analysis.

Proposition 4.1. Equation (3.11) does not have two persistent-tumor equilibria if r2 < r2, where r2

is given in (4.1).

Proof. Since the bifurcation direction at the point (r2, 0) is always forward, then (3.11) has two

positive roots, for r2 < r2, if and only if F(r2, y) = y(c3y
2 + C2y + C1) = 0 has two positive

zeros, where

C2 =
−2

b
C3 = −2bθ1θ2

(
μ2s1α

μ1μ2 − θ1s2

)2

,

C1 = θ1θ2

(
μ2s1α

μ1μ2 − θ1s2

)2

+ μ2α
2
(
bs1 + cμ2

)
.

(4.10)

However, C2

2 − 4C1C3 = −4C3μ2α
2(bs1 + cμ2) < 0. Therefore, the proof is complete.

Now, to find the conditions, on the model parameters, being required for the existence

of the persistent equilibria, we make the use of both Descant’s rule of signs and the

Sturm sequence [33]. In (3.11), it is clear that the coefficients C3, C2, and C1 have fixed

signs, while the coefficient C0 can take positive or negative values. Hence, the number of

feasible tumor-persistent equilibria (on the interval y ∈ [0, 1/b]) depends on the difference
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(f) Small interval of α for immunotherapy with both
ACI and IL-2 case, s1 = 40, s2 = 10

Figure 4: shows the bifurcation diagrams for the bilinear model (2.5) for the parameter α: [—] represents
the stable equilibrium, [- - -] represents the unstable equilibrium, [· · · ] is the stable limit cycles, while [◦] is
the saddle node bifurcation. [•] is the transcritical bifurcation and [�] the supercritical Hopf bifurcation.
The values of parameters are given in Table 1.
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Table 2: The number of positive steady states (SS) is determined by the signs of the coefficients (3.11) and
the signs of the quantities R, S, and T from the Sturm sequence. Blank entries correspond to coefficients
which may take positive, negative, or zero values.

SS C0 R S T

0 + − −
1 − −
3 − + − +

between the number of sign changes at y = 0 and at y = 1/b in the Sturm sequence

{P0(y), P1(y), P2(y), P3(y)}, such that

P0

(
y
)
= F
(
y
)
= C3y

3 + C2y
2 + C1y + C0,

P1

(
y
)
= F ′
(
y
)
= 3C3y

2 + 2C2y + C1,

P2

(
y
)
=

2

9
Ry +

1

9
S, P3

(
y
)
= T, where R =

(
C2

2 − 3C1C3

)
/C3,

S = (C2C1 − 9C0C3)/C3, T =
R

3
− 3C3

(
S

2R
− C2

3C3

)2

.

(4.11)

Hence the number of sign changes depends on the sign of the coefficient C0 and the remain-

ders R, S, and T . Table 2 shows the conditions required for the existence of persistent-tumor

equilibria as well as their numbers, where we take into account that C0 > 0 implies S < 0.

We may note that the tumor-persistent equilibria do not exist for C0 > 0, while one

or three equilibria exist depending on the other relevant quantities. The interest is to find

the area where the tumor-free equilibrium is a global attractor. Based on Proposition 4.1 and

Table 2, this area is determined by C0 > 0 that is equivalent to

r2 <
μ2s1α

μ1μ2 − θ1s2
:= r�2 , (4.12)

where r�2 is the critical growth rate of the tumor cell population, separating between nonexistence

and existence of positive endemic equilibria.

If we consider the general case of immunotherapy with both ACI and IL-2 treatments,

then according to the conditions given in Table 2 and data displayed in Figure 4, then Figure 5

displays six stability regions in terms of the two parameters α, r2 (according to the number of

positive equilibria and the limit cycles). However, Figure 6 shows phase spaces for different

equilibria where there are stable steady states, unstable steady states, stable manifold,

unstable manifold and initial conditions. For example, Figure 6(f) shows the trajectories

where there are three tumor-persistent equilibria for which two of them are locally stable and

one, lying in between, for tumor-free equilibrium, is unstable (that correspond to region 3.b in

Figure 5). Figure 6(e) shows the trajectories where there are three tumor-persistent equilibria

for which one of them is locally stable, one is stable limit cycles, and one, lying in between,

for tumor-free equilibrium is unstable (that correspond to region 3.a in Figure 5).

5. Tumor-Clearance Possibilities

Let us introduce the following definition to facilitate the analysis.
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Figure 5: The two-dimensional transition structure as a function of α (the tumor cell is predated by effector
cells rate) and r2 (the maximal growth rate of the tumor cells population): sd is the saddle node bifurcation,
ts is the transcritical bifurcation, and hf is the supercritical Hopf bifurcation. (Immunotherapy with both
ACI and IL-2 Case; see Table 1 and s1 = 40, s2 = 10.).

Definition 5.1. The threshold parameter R0 (the minimum tumor-clearance parameter) is the

parameter that has the property that if R0 < 1, then the endemic tumor does not exist, while

if R0 > 1 the tumor persists (see [34]).

The parameter R0 can then be expressed in terms of the ratio between the tumor-

growth rate and the critical tumor-growth rate separating between nonexistence and exis-

tence of endemic tumor. Now, for the three-equations model, the tumor-free equilibrium is the

unique equilibrium if and only if r2 < r
�
2 , where it is also locally asymptotically stable. There-

fore, the minimum tumor-clearance parameter is R0 = r2/r
�
2 and clearing the tumor requires

the achievement of the inequality R0 < 1. It is equivalent to the following set of inequalities:

s1 >
μ1μ2 − θ1s2

μ2α
r2 := s�1, s2 <

μ1μ2

θ1
:= s�2. (5.1)

Hence clearing the tumor depends mainly on the concentration of treatments: the external

source of effector cells s1 and the treatment s2, which represents the external input of IL-2.

If s2 = 0, then the tumor can be cleared by treatment with adoptive cellular immunotherapy

alone, s1 > (μ1/α)r2. However, for s1 = 0, then the inequality r2 < r�2 cannot be held and

therefore, it is impossible to treat cancer by IL-2 alone. However, a strategy based on using

both adoptive immunotherapy and IL-2 with concentrations s2 < s�2 and s1 > s�1 could be

used to clear the tumor; see Figure 7. We arrive to the following corollary.

Corollary 5.2. In the tumor-clearance problem, we have the following three cases:

(i) if s1 = 0, the tumor could never be cleared,
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(f) Three persistent-tumor equilibria (r2 = 1 and α = 4 ∗
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Figure 6: The phase spaces at different equilibria where stable steady states [•], unstable steady states [©],
stable manifold [- - -], unstable manifold [· · · ], and initial conditions [+], exist. (with immunotherapy with
both ACI and IL-2, see Table 1 and s1 = 40, s2 = 10.).
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(ii) if s2 = 0, the tumor could be cleared by adding an external source of effector cells with con-
centration slightly above s�1 = (μ1/α)r2,

(iii) if s1 /= 0 and s2 /= 0, then the tumor could be cleared with concentrations s2 < μ1μ2/θ1 and
s1 > ((μ1μ2 − θ1s2)/μ2α)r2.

6. Summary and Conclusion

In this paper, we introduced a family of differential models (ODEs and DDEs) to describe

the dynamics of cancer. The ODEs models model cancer at supermacroscopic, in the sense

that they describe the interaction between the tumor cells and the normal (immune) cells

[1]. However, the DDEs models link it with the lower cellular scale. The qualitative and

evolution of the models have been displayed with different values of the parameters α (the

rate of tumor cells predated by the effector cells) and r2 (the maximal growth rate of the

tumor cells population). Although the underlying models are simple, they display very rich

dynamics and give a good picture for the phenomena of real interaction of tumor growth and

immunotherapy. The minimum tumor-clearance parameter R0 has been expressed in terms

of the ratio between the tumor-growth rate and the critical tumor-growth rate. The cases

at which the tumor can be cleared are summarized in Corollary 5.2. The obtained results

can help to gain a better understanding of interaction mechanisms and make predictions,

determine and evaluate control strategies, and convey more general insight to biologists.

The numerical simulations (have been obtained by semi-implicit RK methods [29])
demonstrate that the system with time delay exhibits richer complex dynamics, such as

quasiperiodic and chaotic patterns, compared with models without memory or after-effect.

The steady states of DDEs models are similar to the steady states of ODEs models. We shall

extend this work to investigate the qualitative behavior and bifurcation analysis of more

sophisticated models of DDEs in modeling tumor-immune interactions with immunotherapy
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and control functionals to maximize the effector cells and interleukin-2 concentration and to

minimize the tumor cells.
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This study investigates the effects of different solid models on predictions of brain shift for three
craniotomies. We created a generic 3D brain model based on healthy human brain and modeled
the brain parenchyma as single continuum and constrained by a practically rigid skull. We have
used elastic model, hyperelastic 1st, 2nd, and 3rd Ogden models, and hyperelastic Mooney-Rivlin
with 2- and 5-parameter models. A pressure on the brain surface at craniotomy region was
applied to load the model. The models were solved with the finite elements package ANSYS.
The predictions on stress and displacements were compared for three different craniotomies. The
difference between the predictions of elastic solid model and a hyperelastic Ogden solid model of
maximum brain displacement and maximum effective stress is relevant.

1. Introduction

Neurosurgery requires high levels of accuracy due to the complexity of the brain. To do

this, surgeons have preoperative images that identify the exact area of operation. However,

during craniotomy, a change on loading condition occurs, that causes brain deformation.

The deformations carry a margin of error in the surgery area. The phenomenon known

as brain shift deformations will be studied in this work. We note that the brain shift is a

negative effect that occurs in the surgical opening of the skull (craniotomy). Brain shift is

produced by a pressure difference on the brain induced in the region of the craniotomy. This

changes the position of the pathology and healthy tissues from the calculated with high-

quality preoperative radiographic images.

The most surgical navigation systems use 3D preoperatively acquired data and register

it to the patient coordinate system. This assumes that the brain is rigid and is a source of error

in the exact determination of tumor position.
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There are several factors that determinate the magnitude of brain shift produced by

a craniotomy: gravity, mechanical tissue properties, loss of brain-spinal fluid, anatomical

constrains, intracranial pressure, and patient variability.

A current challenge is the determination of stress and displacements in a solid model

of the brain subject to a craniotomy. The geometry of the brain is very complex, and the

characteristics of the tissue are not easy to measure and model. The results of the solid model

will help to correct the position of the brain for the surgical navigator system.

Most solid brain models use elastic model [1] in order to model the deformations and

stress of the brain tissue. Using an elastic solid model, the Young modulus does not affect the

displacement field if the gravity is not considered [2].
The effects of considering hyperelastic model of brain have been considered in few

works in the literature. The use of nonlinear solid model made it possible to obtain very good

predictions of deformation of ventricles and tumor [3]. The same authors have supposed

that the brain deformations depend very weakly on the constitutive model and mechanical

properties of the brain tissues, and therefore simple hyperelastic model can be used [4].
Several authors propose the use of the linear elasticity to model the stress and

deformations of the brain tissue [5–7]. The linear elasticity considers the determination

of some parameters as the elasticity modulus (E), the shear modulus, or second Lamé’s

parameter (μ, λ) among others. The models consider just one brain tissue, isotropic and

incompressible, which is a simplification. Then, they assume that the brain is immersed

into the cerebrospinal liquid which is contained by the rigid skull. It is clear that this liquid

produces a pressure on the brain tissue. The skull is considered as an extremely rigid structure

which is nondeformable. The elasticity modulus is similar to the human bones, that is the

elasticity modulus of the skull is 6.5 GN/m2 and the Poisson constant of the skull is 0.22.

The skull is a rigid structure, which contains three elements, the brain tissue (86%),
blood (4%), and cerebrospinal liquid (CRL, 10%). The interaction among these elements

produces a pressure called intracranial pressure. Normally, this pressure in a health adult is

around 10 mmHg (1332.8 Pa) and must not be higher than 15 mmHg. The density of the CRL

is 1007 kg/m3. Furthermore, the brain tissue corresponds only to the 2% of the total weight

but is the element with highest intracranial volume. The weight of the brain is between 1300

and 1600 gr, and its volume is around 1000 to 1500 cc. Its density is closer to the water density,

that is 1040 kg/m3.

We can see that, about the properties of the brain tissue, in particular, the values of the

elasticity constants, there are several differences among the authors [8, 9].
It is important to remark that the linear elasticity has a suitable behavior for small

deformations, and it is clear from several authors that the relationship between stress and

deformation for soft tissue is not linear [10, 11].
In the present investigation, we report the effects of hyperelastic solid models on

maximal displacement and effective stress of the brain. We have calculated the brain shift

for three craniotomies.

2. Mathematical Models

The linear elasticity theory is the study of linear elastic solids undergoing small deformations.

The linearity means that the components of the stress tensor are a linear combination of the

deformations.
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The relationship that defines each element of the strain tensor is shown in (2.1). This

tensor is known as infinitesimal tensor of Green-Cauchy:

εij =
1

2

(
∂ui
∂xj

+
∂uj

∂xi

)
, (2.1)

with i, j = 1, 2, 3.

The constitutive equations of linear elasticity for an elastic solid are represented by

generalized Hooke’s law:

σij = Cijkmεkm, (2.2)

where i, j = 1, 2, 3.

However, if the material is assumed homogeneous and isotropic, we obtain the consti-

tutive equation of Lamé-Hooke.

2.1. Constitutive Equation of Lamé-Hooke

It is well known that, considering a homogeneous and isotropic material, we obtain the Lamé-

Hooke constitutive equations. That means that the components of the elastic tensor depend

on two particular constants of each material, these constants are the so-called Lamé modulus

(λ, μ). The relation between the elastic coefficients and the Lamé modulus is the following:

Cijkm = λδijδkm + μ
(
δikδjm + δim + δjk

)
. (2.3)

Finally, after some simplifications, we have

σij = λδijεkk + 2μεij , (2.4)

where εkk is the trace of the deformation tensor.

2.2. Nonlinear Elasticity

The nonlinear elasticity is an observed phenomenon in elastomeric material (rubber) and

porous media. The origin of both materials is different, for instance, the elastomeric materials,

which are polymers, can be synthetic or natural rubber, and, on the other hand, porous

media exist in the nature in form of organic materials, vegetal and animal tissue. The main

characteristic of this material is their deformation capacity, which can arrive from 200% to

300%. Nevertheless, these large deformations can be recovered, and the material comes back

to its natural state. It is important to note that the human tissues behave as a nonlinear elastic

material.
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In what follows, we will present some ideas on the nonlinear elastic models. Firstly, we

will define the relationship between the strains and the displacement vector, which is defined

in (2.5), which is a nonlinear relationship:

εij =
1

2

(
∂ui
∂xj

+
∂uj

∂xi
+
∂uk
∂xi

∂uk
∂xj

)
, (2.5)

with i, j = 1, 2, 3.

From the above equation, we can obtain the strain tensor or Green-Lagrange strain

tensor. This tensor helps to quantify the length changes of the material and the variation of

the angle between the material fibers.

The deformation energy is a useful function in order to define a hyperelastic material.

This function gives a relation between the stored energy with the strain and deformations

generated in the solid. Moreover, its derivatives with respect to stretch give us the stress

produced for the applied force (Cauchy stress). In order to compute the deformation energies,

it is necessary to introduce the deformation gradient

[F] =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂x

∂X

∂x

∂Y

∂x

∂Z

∂y

∂X

∂y

∂Y

∂y

∂Z

∂z

∂X

∂z

∂Y

∂z

∂Z

⎞⎟⎟⎟⎟⎟⎟⎟⎠. (2.6)

This tensor represents the variation of a deformed material point with respect to its

initial state. To simplify the computations, it is interesting to obtain the Green-Cauchy

left deformation tensor ([B]) and the Green-Cauchy right deformation tensor ([C]), both

can be recovered from the deformation gradient tensor, and the Green-Cauchy invariant

deformation tensor can be easily obtained:

[B] = [F][F]T ,

[C] = [F]T [F].
(2.7)

The deformation energy of the material is a function of the invariants of the left Green-Cauchy

deformation tensor ([B]). If we assume isotropy of the material, the energy depends on the

first three invariants of the tensor

W =W(I1, I2, I3). (2.8)

The invariants for an isotropic material are as follows.

First Invariant:

I1 = tr(B). (2.9)
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Second Invariant:

I2 =
1

2

(
tr (B)2 − tr

(
B2
))
. (2.10)

Third Invariant:

I3 = det(B). (2.11)

If the normal forces are parallel to the principal direction of the material, we have that

the invariants only depend on the principal elongations of the solid. It is important to remark

that this condition can occur in every isotropic material, and this is due to that in all directions

the measurements are equal.

The principal stretches are defined as the quotient between the final length and the

initial length in the direction of the deformation. The invariants are functions of the principal

stretches:

I1 = λ2
1 + λ

2
2 + λ

2
3,

I2 = λ2
1λ

2
2 + λ

2
2λ

2
3 + λ

2
1λ

2
3

I3 = λ2
1λ

2
2λ

2
3,

, (2.12)

where λ1, λ2, and λ3 are the stretch in the principal directions.

If we suppose that the solid is almost incompressible or with a high compression

modulus, the deformation energy depends only on the first and second invariant, since the

third invariant verifies I3 = 1. The Cauchy strains are calculated from the derivative with

respect to the deformations of the deformation energy, that is,

σij = −pδij + ∂W

∂I1
Bij +

∂W

∂I2
B−1
ij , (2.13)

where p represents the pressure produced in the principal directions.

In what follows, we will present several solid models, such as, their deformation

energies and principal stress obtained under different assumptions as hyperelasticity,

isotropy, incompressibility and, under uniaxial tension. For the uniaxial tension, we have

that

λ1 = λ,

λ2 = λ3 =
1√
λ
.

(2.14)

Thus, we obtain that

I1 = λ2 + 2λ−1,

I2 = 2λ + λ−2.
(2.15)

In what follows, we will describe some different hyperelastic models used for brain tissue

modeling.
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2.2.1. Neo-Hooke Material Model

In this case, the deformation energy model is given by

W = C1(I3 − 3), (2.16)

where C1 is a given constant. The stress in the direction of the principal stretch is

σ = C1

(
2λ − 2

λ2

)
. (2.17)

2.2.2. Mooney-Rivlin Material Model

In this case, the deformation energy model, with 5 parameters, is the following:

w = C1(I1 − 3) + C2(I2 − 3) + C3(I1 − 3)2 + C4(I1 − 3)(I2 − 3) + C5(I2 − 3)2, (2.18)

where C1 to C5 are material constants. In this case, the stress direction for the principal stretch

corresponds to

σ = C1

(
2λ − 2

λ2

)
+ C2

(
2 − 2

λ3

)
+ 2C3

(
λ2 +

2

λ
− 3

)(
2λ − 2

λ2

)
+ C4

((
2λ − 2

λ2

)(
2λ +

1

λ2
− 3

)
+
(
λ2 +

2

λ
− 3

)(
2 − 2

λ3

))
+ 2C5

(
2λ +

1

λ2
− 3

)(
2 − 2

λ3

)
.

(2.19)

2.2.3. Odgen Material Model

In this case, the deformation energy is given by

W =
n∑
k=1

μk

αk

(
λαk +

(
1√
λ

)αk
− 2

)
, (2.20)

where αk and μk are constants of the material. The stress direction of the principal stretch is

σ =
n∑
k=1

μk
(
λαk−1 + (λ)−0.5αk−1

)
. (2.21)

From the Cauchy tensor, it is possible to compute the equivalent stresses. The

equivalent stress. is computed using the Von Misses formula:

σvm =

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2

2
, (2.22)

where σ1, σ2, and σ3 are the principal stresses.
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The equivalent strain is defined as

εeq =
1√

2
(
1 + υeq

)[(εx − εy)2 +
(
εy − εz

)2 + (εz − εx)2 +
3

2

(
γ2
xy + γ

2
yz+ γ2

xz

)]1/2

, (2.23)

where ε and γ are the components of the deformation tensor of Hencky.

3. Numerical Methods

3.1. Modeling of the Brain Shift

In order to make the numerical simulations of the brain shift, we will consider the experi-

mental data of Mehdizadeh et al. [8]. In the experiments, the gray matter is obtained from

the parietal lobe and the white matter is obtained from the corpus callosum from a one-year-

old bovine. The tissue obtained corresponds to discs of 15 mm diameter and 5 mm of height.

The tests were realized with a uniform rate of deformation of 1 mm/min in order to avoid

inertial forces. The used machine was a dynamic testing machine, Hct/25–400 with servo

hydraulic valve PID controller. The elastic modulus obtained was E = 24.6 kPa and ν = 0.49.

For the Neo-Hooke model, the constant is C1 = 7903 Pa.

To study the hyperelastic solids, we use the data obtained for the gray matter. The

curve for the uniaxial traction for the gray matter is showed in Figure 1.

The cerebral cortex consists of gray matter, and this region is the most affected by brain

shift. Also, the ratio of the volume of grey matter to white matter in the cerebral hemisphere

for a 20-year-old man is 1.3 [12]. The mechanical properties of gray and white matters

measured by Mehdizadeh et al. [8] show differences for gray matter, true Young modulus

of 24.6 kPa and, for the white matter, true Young modulus of 19 kPa have been derived. On

the other hand, it is practically impossible to build a simple solid model considering the real

white and gray matter distribution in a human brain. Considering these reasons, we have

used the mechanical properties of gray matter for the complete brain model. Due to the facts

that the larger brain displacements are near brain surface and the brain cortex is composed

only principally of gray matter, the model predicts brain shift with acceptable precision.

The Odgen material model was studied considering the first, second, and third order.

The Mooney-Rivlin model was studied considering two of its forms, with two and five

parameters (see Tables 1 and 2).

3.2. CAD Geometry

To quantify accurately the deformations and stresses produced in the phenomenon of brain

shift during a brain craniotomy, the CAD model of brain is relevant. The CAD geometry

used in the present work is an approximation with characteristics similar to a real brain. We

modeled the characteristics of a healthy male brain of 35 years. The brain is approximately

a ball whose surface geometry is characterized by irregular folds, see Figure 2. In this area

circulate most of the blood vessels, veins, and arteries. The width of the brain is variable;

however, the average value is 140 mm. The average length is 170 mm. The height of the

brain varies with respect to the observed cross-section up to 120 mm. Considering the

above measures as a reference and using MRI images of the brain, a CAD 3D is generated.
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Figure 1: Stress-strain curves for gray matter.

Table 1: Odgen constants.

First order Second order Third order

μ1 [Pa] 8743 629,5 423.62

α1 1.8127 10.499 9.8787

μ2 [Pa] — 657.22 445.45

α2 — 10.188 10.213

μ3 [Pa] — — 459.1

α3 — — 10.156

Table 2: Mooney-Rivlin constants.

MR 2 parameters [Pa] MR 5 parameters [Pa]
C1 3922.2 −620.52

C2 30.838 4466.1

C3 — 3.85E + 06

C4 — −8.71E + 06

C5 — 4.93E + 06

The CAD software used is solid edge, as it provides the necessary tools to model complex

nonparameterized curves. The methodology is to build a hemisphere from the outer contours

of the brain. To obtain these, contours are sectioned in coronal three-dimensional models,

then the contours are drawn to generate the solid model. Once the model is built in, with the

option Mirror, the second hemisphere is created ensuring the model symmetry. The last step

is to use the option Swept Protrusion to create the final CAD model of the brain. The model

obtained is showed in Figure 3.

The cerebral cortex is characterized as a cortical layer with a convoluted topology,

Figure 2. This complex geometry is modeled as simple hemisphere as in all previously

reported investigations about brain shift, see Wittek et al. [3, 4]. The model must be relatively
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c

Figure 2: Coronal view of the brain.

(a)

(b)

Figure 3: Principal and Isometric views of the brain model.

simple to be used as predictive tool for the clinicians with a minimum error. The comparison

of model predictions with clinical results of brain shift ensures that the approximation of the

complex brain structure is correct for the goal of the present model. We will try to use this

model in brain surgery to predict brain shift after clinical validation in the future; for this

reason, the model must produce computational results in short time. Models that consider

the topology of cerebral cortex as highly convoluted sheet for investigation of the gray matter

deformation have been reported by Chung et al. [13]. However, the model is too complex to

be applied during a surgery.

The skull is made similarly to the brain. To do this, we use the option Offset tool in the

CAD software. The goal is to keep the skull around the brain model but with a separation

between these elements. According to what was observed in the MRI images of the middle-

aged male patient, the gap between the elements was determined. Figure 4 shows the process

of generating the skull geometry.
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Figure 4: Design for the skull model.

Figure 5: Views of the brain and skull model.

Figure 5 shows a view of the brain and the skull used in the present investigation.

Although the models are a simplification of the real, it is important to note that they retain

morphological similarity.

In the present investigation, we do not consider the cerebrospinal fluid CSF and the

brain can be deformed in this space. in a brain craniotomy, CSF is extracted during surgery,

and, therefore, this model restriction has low effect on brain displacement. The subarachnoid

space between brain and skull is small compared with nominal brain diameter, also variation

of model distance between brain and skull was considered as second-order effect. The present

brain model intends to describe a methodology to predict brain shift.

3.3. Boundary Conditions

For the simulation of the brain shift effects, we consider two boundary conditions.

Fix of spinal cord: in order to limit movement of the brain and allow greater defor-

mations only in the area affected by the change in pressure.

Pressure variation in area of operation: intracranial pressure caused by brain, blood,

and CSF is approximately 770 mmHg. The atmospheric pressure is 760 mmHg. Upon opening

the skull, there is trickle of CSF and blood, mainly affecting the operation area and leaving it

exposed to atmospheric pressure. This condition results in a negative pressure in the opening

area equivalent to 10 mmHg or 1333 Pa.

Figure 6 shows the application of the pressure boundary conditions for the different

craniotomies. Figure 6 shows the skull with the brain inside, and indicated with red color the

region where the pressure boundary condition is applied in each case.
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Figure 6: Boundary condition for parietal, frontal, and posterior craniotomy.

The region size to apply the pressure boundary condition in the three brain crani-

otomies was very difficult to choose. The first idea was to apply the pressure on the same

area for the three cases; however, personal communications with neuroradiologists from the

Instituto de Neurocirugia Asenjo, that help us in this project, indicated that the affected area

is different for the three investigated craniotomies. The red areas showed in Figure 6 show

the chosen areas to apply the pressure boundary condition. The areas were not the same for

the tree cases, because the goal was to try to reproduce clinical results.

For the brain shift, the small distance between skull and the brain is the most relevant

parameter that induces pressure differences on brain surface. During a craniotomy, CSF

moves outside the skull and CSF flow does not produces pressure difference on brain surface.

3.4. Computational Method

The model was solved by a commercial finite element package ANSYS v12.1. The finite

element method (FEM) is used to solve the governing equations. The FEM discretizes the

computational domain into finite elements that are interconnected by element nodal points.

We have used the static structural formulation with a maximum time of 6 s. Incompressible

material behavior may lead to some difficulties in numerical simulation, such as volumetric

locking, inaccuracy of solution, checkerboard pattern of stress distributions, or divergence.

We used the mixed u-P elements available in ANSYS to overcome these problems.

The unstructured grids were composed of tetrahedral SOLID187 with 10 nodes

available in ANSYS. Figure 7 shows the details of the three different grids used for the

parietal, posterior, and frontal craniotomies. For the parietal craniotomy, the grid was more

refined in the middle brain region. For the frontal craniotomy, the grid was refined nearer

than the frontal region of the brain.
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Figure 7: Isometric and superior views of the different computational grids of the brain model used for (a)
parietal, (b) posterior, and (c) frontal craniotomy.

Table 3: Comparison of maximum displacement, strain, and stress for three different grid sizes.

Grid Elements
Maximum displacement

[mm]
Maximum equivalent

strain %
Maximum equivalent

stress [Pa]

1 49453 3.845 59.14 14527

2 34356 3.83 59.31 14591

3 11730 3.806 59.85 14724

The three grids used are similar, and the variations of element size in the brain depend

also on model construction, see Figure 5.

Grid independence study was performed for three grid sizes; maximum displacement,

equivalent strain, and equivalent stress were compared in Table 3. For the comparison, we

have used the frontal craniotomy with the elastic brain. The differences between the results

are very small. Therefore, the middle grid size was used to perform all the computational

simulations. This test ensures that the grid density does not affect the expected results about

brain shift.
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Table 4: Comparison of maximum displacement and effective stress using seven brain models for a frontal
pressure boundary condition without skull.

Elastic Neo-Hookean Ogden 1 Ogden 2 Ogden 3 M-R 2 M-R 5

Maximum displacement [mm] 8.923 8.631 8.625 9.0894 9.0667 8.630 7.935

Maximum effective stress [Pa] 37045 16920 16401 47729 46639 16880 56375

4. Results and Discussion

The predictions of maximum displacement and effective stress of brain under a pressure

boundary condition similar to frontal craniotomy but without skull were compared for

elastic, neo-Hookean, Ogden first-order, Ogden second-order, Ogden third-order, Mooney-

Rivlin with two-parameter, and Mooney Rivlin with five-parameter models. The results are

showed in Table 4. The low-order neo-Hookean model, the first-order Ogden model, and the

Mooney-Rivlin model with two parameters predict similar displacement and effective stress.

The elastic model predicts similar displacement as the high-order hyperelastic Ogden models;

however, the prediction of maximum effective stress is 66% lower than the prediction of the

second-order Ogden model.

The predictions of hyperelastic second-order Ogden and third-order Ogden models

are similar. The Mooney-Rivlin model with five parameters predicts lower brain displace-

ment compared with all models included in the elastic model and therefore is discarded. With

these considerations, the hyperelastic second-order Ogden model is selected as adequate

solid model for comparison with an elastic model for prediction of brain shift phenomena.

In this work, we have considered three brain craniotomies, a parietal, a posterior, and

a frontal case as showed in Figure 6, and the maximum displacement and effective stress

were investigated. The solid models of brain are the elastic and the hyperelastic second-order

Ogden models.

Figure 8 shows in logarithmic scale the distribution of the effective stress for the

parietal craniotomy, and an isometric and an inferior views of the brain are showed. The

effective stress on brain surface shows large areas with values around 1000 Pa. The maximum

effective stress is 53286 Pa. The maximum is on the brain base near the spinal cord, where the

model is fixed.

Figure 9 shows in logarithmic scale the distribution of the effective stress for the

posterior craniotomy, and an isometric and an inferior views of the brain are showed. The

effective stress on brain surface shows large areas with values around 500 Pa. The maximum

effective stress is now 38073 Pa. The maximum is on the brain base near the spinal cord, where

the model is fixed. Areas on the brain base are under relatively high stress compared with the

rest of brain.

Figure 10 shows in logarithmic scale the distribution of the effective stress for the

frontal craniotomy, and an isometric and a inferior views of the brain are showed. The

effective stress on brain surface shows large areas with values around 200 Pa. The maximum

effective stress is now only 10049 Pa. The maximum is on the brain base near the spinal cord,

where the model is fixed. Areas on the brain base are under relatively high stress compared

with the rest of brain.

A comparison between the three craniotomies shows that the parietal produces higher

effective stress on brain than the posterior and frontal interventions. High stress values are

distributed principally on brain base.
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Figure 8: Effective stress for parietal craniotomy, hyperelastic second-order Ogden model.

Comparing the maximum effective stress for the frontal craniotomy with the data of

Table 4 can be concluded that the effect of the skull is very important, and the stress for

the craniotomy is considerably lower as the value obtained only with a pressure boundary

condition. This indicates that modeling of brain shift must consider the skull to obtain more

realistic values. Ji et al. [5] reported the relevance of brain-skull contact in the determination

of brain shift compensation.

The maximum effective stress is high compared with the values of the stress strain

curve showed in Figure 1; therefore, the use of hyperelastic model for the brain is relevant for

better prediction of brain shift.

The distribution of brain displacement for parietal craniotomy calculated with the

hyperelastic second-order Ogden model is showed in Figure 11. Figure 11 shows the

displacement of brain surface and the displacement in a plane through the craniotomy. The

upper surface shows displacements around 7 mm. The brain area with large displacement is

important. Also, in the brain center, the displacements are around 3 mm. Figure 11 shows the

relevance of brain shift for parietal craniotomy.

Figure 11 shows that a part of the brain is displaced out of the skull in the craniotomy

area. The zones with low displacement are near the spinal cord, due to the fix condition in

this area. From a neurological point of view, this result is realistic. For the brain, the zone

with maximum stress does not coincide with the location of maximum brain shift or brain

displacement.



Journal of Applied Mathematics 15

Equivalent stress

Type: equivalent (von-Mises) stress
Unit: Pa
Time: 6
Custom

11-11-2010 15 : 01

38073
3807.3
380.73
38.073
3.8073
0.38073
0.038073
0.0038073
0.00038073

0

K: craneotomia trasera

0 0.05 0.1

0.025 0.075
(m)

Max
3.8073e−5
3.8073e−6
3.8073e−7
3.8073e−8
3.8073e−9

Min
X

Z

(a)

Equivalent stress

Type: equivalent (von-Mises) stress
Unit: Pa
Time: 6
Custom

11-11-2010 15 : 01

38073
3807.3
380.73
38.073
3.8073
0.38073
0.038073
0.0038073
0.00038073

0

K: craneotomia trasera

0 0.05 0.1

0.025 0.075
(m)

Max

3.8073e−5
3.8073e−6
3.8073e−7
3.8073e−8
3.8073e−9

Min

X

Y

(b)

Figure 9: Effective stress for posterior craniotomy, hyperelastic second-order Ogden model.

The distribution of brain displacement for the posterior craniotomy calculated with

the hyperelastic second-order Ogden model is showed in Figure 12. The figure shows the

displacement of brain surface and the displacement in a middle brain plane. The frontal

region shows displacements around 12 mm. The brain area with large displacement is

important. Also, in the brain center, the displacements are around 5 mm. Figure 12 shows

the relevance of brain shift for posterior craniotomy. The zones with low displacement are

near the spinal cord, due to the fix condition in this area.

Finally, the distribution of brain displacement for the frontal craniotomy calculated

with the hyperelastic second-order Ogden model is showed in Figure 13. The figure shows

the displacement of brain surface and the displacement in a middle brain plane. The

superior region shows displacements around 4 mm. The brain area with large displacement

is important. Also, in the brain center, the displacements are around 2 mm. Figure 13 shows

the relevance of brain shift for frontal craniotomy. The zones with low displacement are near

the spinal cord, due the fix condition in this area. For the brain, the zone with maximum

stress does not coincide with the location of maximum brain shift or brain displacement and

a craniotomy.
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Figure 10: Effective stress for frontal craniotomy, hyperelastic second-order Ogden model.

Table 5 shows a comparison of maximum displacement and effective stress on brain

modeled with the elastic model and the hyperelastic second-order Ogden model. For the

displacement, the elastic model predicts values 10%, 13%, and 8% lower for the parietal,

posterior, and frontal craniotomies, compared with the prediction of Ogden model. These

differences are relevant in neurosurgery.

The prediction of maximum effective stress with the elastic model is 53%, 62%

lower for the parietal and posterior craniotomies, compared with the predictions with the

hyperelastic Ogden model. For the frontal craniotomy, the elastic model predicts a maximum

effective stress 45% higher than the Ogden model.

The predictions on maximum equivalent strain show also important differences

between the elastic and hyperelastic models in the three craniotomies. The elastic model

is valid only for small deformations, and therefore it cannot be applied to this problem

that produces large deformations. The formulation of the hyperelastic model is for

large deformations, and therefore this model produces more realistic results. The small
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Total deformation

Type: total deformation

Unit: m

Time: 6

11-11-2010 13 : 40

0.0072715
0.0067521
0.0062327
0.0057134
0.005194
0.0046746
0.0041552
0.0036358
0.0031164
0.002597
0.0020776
0.0015582
0.0010388
0.0005194
0

J: craneotomia lateral

0 0.05 0.1

0.025 0.075
(m)

Max

Min

Max

Y

Z

(a)

Total deformation

Type: total deformation

Unit: m

Time: 6

07-12-2010 19 : 53

0.0072715
0.0067521
0.0062327
0.0057134
0.005194
0.0046746
0.0041552
0.0036358
0.0031164
0.002597
0.0020776
0.0015582
0.0010388
0.0005194
0

J: craneotomia lateral

0 0.05 0.1

0.025 0.075
(m)

Min

Max

X

Z

(b)

Figure 11: Brain displacement for parietal craniotomy, hyperelastic second-order Ogden model.

Table 5: Comparison of maximum displacement, equivalent strain, effective stress, and principal stress for
parietal, posterior, and frontal craniotomies.

Craniotomy Model
Maximum

displacement [mm]
Maximum equivalent

strain (%)

Maximum
effective stress

[Pa]

Maximum
principal

stress [Pa]

Parietal

Elastic 6.546 102 25145 40670
hyperelastic

Ogden
7.271 38 53286 57168

Posterior

Elastic 10.766 59 14388 32029
hyperelastic

Ogden
12.341 32 38073 41139

Frontal

Elastic 3.830 59 14591 14651
hyperelastic

Ogden
4.177 23 10049 10880

displacements formulation is exact for deformations lower than 2%, because this value

is lower than the deformations present in the present investigation; all the simulations

presented in Table 5 were made using the large deformation formulation.
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Total deformation
Type: total deformation
Unit: m
Time: 6
12-11-2010 16 : 13

0.012341
0.011459
0.010578
0.0096962
0.0088147
0.0079333
0.0070518
0.0061703
0.0052888
0.0044074
0.0035259
0.0026444
0.0017629
0.00088147
0

K: craneotomia trasera

0 0.05 0.1

0.025 0.075
(m)

Max

Min

Max

X
Y

Z

(a)

Total deformation

Type: total deformation

Unit: m

Time: 6

07-12-2010 19 : 37

0.012341
0.011459
0.010578
0.0096962
0.0088147
0.0079333
0.0070518
0.0061703
0.0052888
0.0044074
0.0035259
0.0026444
0.0017629
0.00088147
0

K: craneotomia trasera

0 0.05 0.1

0.025 0.075
(m)

Min

Max

X

Z

(b)

Figure 12: Brain displacement for posterior craniotomy, hyperelastic second-order Ogden model.

The differences between the maximum effective stress and the maximum principal

stress with the hyperelastic model in the three craniotomies are small indicating good con-

vergence for this model. On the contrary, the elastic model shows large differences between

both stresses indicating convergence problems for this problem with large deformations.

Soza at al. [14] have reported for a parietal craniotomy an average brain shift of

8.9 mm, that is similar to the maximum deformation obtained in the present investigation

of 7 mm, considering that the solid models and the brain geometry were different. For a

posterior craniotomy, Clatz et al. [15] reported brain shift up to 14 mm for several patients,

and the present hyperelastic second-order Ogden model predicts for this case a brain shift of

12 mm. Both comparisons show that the present methodology has a potential to be applied

in neurosurgery to correct the position of a brain tumor after the craniotomy and make the

intervention more precise.

5. Conclusions

A solid model to study the brain shift phenomena was applied to parietal, frontal, and

posterior craniotomies. Maximum displacements from 4 mm to 12 mm were found for the

different craniotomies. The hyperelastic second-order Ogden solid model was found that
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Total deformation
Type: total deformation
Unit: m
Time: 6
11-11-2010 13 : 27

0.0041772
0.0038788
0.0035804
0.0032821
0.0029837
0.0026853
0.002387
0.0020886
0.0017902
0.0014918
0.0011935
0.00089511
0.00059674
0.00029837
0

I: craneotomia delantera

0 0.05 0.1

0.025 0.075
(m)

Max

Min

Max

X

Z

(a)

Total deformation
Type: total deformation
Unit: m
Time: 6
07-12-2010 19 : 10

0.0041772
0.0038788
0.0035804
0.0032821
0.0029837
0.0026853
0.002387
0.0020886
0.0017902
0.0014918
0.0011935
0.00089511
0.00059674
0.00029837
0

I: craneotomia delantera

0 0.05 0.1

0.025 0.075
(m)Min

Max

X

Z

(b)

Figure 13: Brain displacement for frontal craniotomy, hyperelastic second-order Ogden model.

predicts the best results. Elastic solid model should not be used with large strains as in this

problem. A correct model must include the skull. The methodology developed in the present

investigation can help to more precise clinical interventions.
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We formulate and discuss models for the spread of infectious diseases with variable population
sizes and vaccinations on the susceptible individuals. First, we assume that the susceptible indi-
viduals are vaccinated continuously. We establish the threshold-like results for the existence and
global stability of the disease-free and the endemic equilibriums for these systems. Especially, we
prove the global stability of the endemic equilibriums by converting the systems into integrodif-
ferential equations. Second, we suppose that vaccinations occur once per time period. We obtain
the existence and global stability of the disease-free periodic solutions for such systems with im-
pulsive effects. By a useful bifurcation theorem, we acquire the existence of the endemic periodic
solutions when the disease-related deaths do not occur. At last, we compare the results with vacci-
nations and without vaccinations and illustrate our results by numerical simulations.

1. Introduction

Confidence that the infectious diseases would soon be eliminated was created by the impro-

ved sanitation, effective antibiotics and vaccination programs in the 1960s, but it collapsed

now. Human and animal invasions of new ecosystems, global warming, environmental deg-

radation, and increased international travels provide many opportunities for the spread and

the eruption of infectious diseases. It is clear that new infectious diseases are emerging, and

some eliminated diseases are reemerging since the infectious agents’ evolvement and adap-

tation to the environment. Moreover, these infectious diseases lead to terrible suffering and

mortality. Consequently, infectious diseases are receiving more and more attention in devel-

oping countries, even in the developed countries.

The emerging and reemerging of infectious diseases have been studied by many sci-

entists in different fields. Mathematical models are important tools to analyze and control

the spread of infectious diseases. Hethcote [1] gives a review on the mathematics of infec-

tious diseases. Most models for the transmission of infectious diseases descend from the
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pioneering work of Kermark-Mckerdrick on SIR (susceptible-infectious-removal), in which

vital dynamics (birth and death) is negligible for the short incubation of infectious diseases.

The possible and realistic situations would be to discuss epidemic models with varying popu-

lation size, which may refer to Mena-Lorca and Hethcote [2], Anderson and May [3], Gao and

Hethcote [4], Li and Graef [5], and Brauer and Driessche [6]. Thresholds are obtained which

determine whether the diseases die out or break out. The existence and stability of equili-

brium points are investigated for each model, but there is still some work to do. Such as in

[4], the global stability of the endemic equilibrium points was not obtained. We complete this

in the present paper.

Vaccination programs have been applied to prevent and control the yield and spread

of infectious diseases, which achieved a lot. Models with vaccination are constructed and

analyzed by Shulgin et al. [7], Stone et al. [8], Li and Ma [9], Greenhalgh and Das [10] and

Greenhalgh [11]. Some useful results are obtained, and results with vaccination and without

vaccination are compared. But they assumed that the susceptible is vaccinated continuously.

In fact, it would be more realistic and reasonable that the susceptible is assumed to be vac-

cinated in a single pulse or at fixed moments. In this paper, we consider not only a constant

flow of new members into the susceptible but also vaccinating continuously and impulsively

on the susceptible. We will investigate the dynamical behaviors of these epidemic models,

which are described by continuous or impulsive differential equations. The models of infec-

tious diseases with impulsive effects had been discussed in [12], where the birth, rather than

the vaccination, is assumed to be impulsive.

We denote by S(t) the number of members of a population who are susceptible to an

infection at time t, I(t) the number of members who are infective at time t, and R(t) the num-

ber of members at time t who have been removed as the result of recovery from the infec-

tion with temporary immunity against reinfection. The total population size at time t is rep-

resented by N(t) with N(t) = S(t) + I(t) + R(t). In addition, basic hypotheses are needed to

formulate our models:

(1) there is a constant flow of A new members into the susceptible in unit time;

(2) a fraction p ≥ 0 of the susceptible is vaccinated in unit time or in a single pulse once

per time period, which will enter directly into the removal owing to obtaining the

immunity;

(3) there is a constant per capita natural death rate d > 0 in each group;

(4) a fraction α ≥ 0 of the infective dies from the infection, and a fraction γ ≥ 0 of the

infective recovers in unit time;

(5) a fraction δ ≥ 0 of the removal loses their immunity and becomes the susceptible in

unit time;

(6) the force of the infection is βI, where β is the effective per capita contact rate of the

infective individuals and the incidence rate is βSI.

In the next section, an SIR model with variable population size and continuous vaccination is

analyzed. The existence and stability of the equilibrium points for this model are discussed.

The global stability of the disease-free equilibrium is proved by differential comparison theo-

rem, and the global stability of the endemic equilibrium is obtained by converting the system

into an integrodifferential equation. In Section 3, we consider an impulsive differential epi-

demic model, of which the stability and the existence of disease-free periodic solution are

discussed. Further, the existence of endemic periodic solution is also studied for such a system
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with α = 0, which implies that the disease-related deaths are not considered. At last, we give

some examples to illustrate our results by numerical simulation.

2. An SIR Model with Continuous Vaccination

In this section, we discuss the disease transmission model, which is described by

Ṡ(t) = A − dS − βSI + δR − pS,
İ(t) = βSI − (γ + α + d

)
I,

Ṙ(t) = γI − (δ + d)R + pS.

(2.1)

Denoting N = S + I + R, and adding these three equations, we have

Ṅ = A − dN − αI. (2.2)

Therefore, we may obtain system (2.3), which is equivalent to system (2.1), and consider the

following system:

Ṅ(t) = A − dN − αI,
İ(t) = β(N − I − R)I − (γ + α + d

)
I,

Ṙ(t) = pN +
(
γ − p)I − (d + δ + p

)
R.

(2.3)

For nonnegative initial conditions (N(0), I(0), R(0)), it is easily known that N(t), I(t), and

R(t) remain nonnegative, and the total population size N(t) is ultimately upper bounded by

A/d. Moreover, we have

N(t) =N(0)e−dt +
A

d

(
1 − e−dt

)
− α
∫ t

0

e−d(t−s)I(s)ds,

R(t) = R(0)e−(d+δ+p)t +
(
γ − p) ∫ t

0

e−(d+δ+p)(t−s)I(s)ds + p
∫ t

0

e−(d+δ+p)(t−s)N(s)ds

=
Ap

d
(
d + δ + p

)+ [pN(0)
p + δ

− Ap

d
(
p + δ

)]e−dt+ [R(0) − pN(0)
p + δ

− Ap

d
(
d + δ + p

) + Ap

d
(
p + δ

)]

× e−(d+δ+p)t − αp

p + δ

∫ t
0

e−d(t−s)I(s)ds +
(
γ − p + αp

p + δ

)∫ t
0

e−(d+δ+p)(t−s)I(s)ds.

(2.4)
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Substituting them into the second equation of (2.3), then

İ(t) = βI

{
A(d + δ)

d
(
d + δ + p

) + [δN(0)
p + δ

− Aδ

d
(
p + δ

)]e−dt −(γ − p + αp

p + δ

)∫ t
0

e−(d+δ+p)(t−s)I(s)ds

−I(t)− αδ

p + δ

∫ t
0

e−d(t−s)I(s)ds−
[
R(0)− pN(0)

p + δ
− Ap

d
(
d + δ + p

)+ Ap

d
(
p + δ

)]e−(d+δ+p)t}

− (γ + α + d
)
I.

(2.5)

With respect to equilibriums of (2.3), we have the following.

Theorem 2.1. There only exists the disease-free equilibrium E0(N0, 0, R0), which is globally asymp-
totically stable ifAβ(δ+d) < d(γ +α+d)(d+δ+p). Here,N0 = A/d and R0 = Ap/(d(d+δ+p)).

Proof. The existence and uniqueness of the disease-free equilibrium E0 for system (2.3) are

easily obtained if inequality Aβ(δ + d) < d(γ + α + d)(d + δ + p) holds. Next, we first discuss

the local stability of E0. The Jacobian matrix of system (2.3) at a point E(N, I, R) is

J(E) =

⎡⎣−d −α 0

βI β(N − R − 2I) − (γ + α + d
) −βI

p γ − p −(d + δ + p
)
⎤⎦. (2.6)

Thus,

J
(
E0
)
=

⎡⎢⎢⎣
−d −α 0

0
Aβ(d + δ)
d
(
d + δ + p

) − (γ + α + d
)

0

p γ − p −(d + δ + p
)
⎤⎥⎥⎦, (2.7)

and J(E0) has three eigenvalues with negative real part if inequality Aβ(δ + d) < d(γ + α +
d)(d + δ + p) is true, which shows that the disease-free equilibrium E0 is locally stable.

Further, we assume γ ≤ p. It is easily known that for any ε1 > 0, that there exists T1 > 0

such that

N(t) ≤ A
d

+ ε1, t > T1. (2.8)

Hence, we obtain from the third equation of (2.3) that

Ṙ(t) < p
[
A

d
+ ε1

]
− (d + δ + p

)
R, t > T1. (2.9)



Journal of Applied Mathematics 5

Then, for any ε2 > 0, there exists T2 > T1 such that

R(t) ≤ Ap

d
(
δ + d + p

) + ε1 + ε2, t > T2. (2.10)

Therefore, we have

Ṡ(t) <
A(d + δ)

(
d + p

)
d
(
d + δ + p

) + δ(ε1 + ε2) −
(
d + p

)
S, t > T2. (2.11)

This shows that for any ε3 > 0, there exists T3 > T2 such that

S(t) <
A(d + δ)

d
(
d + δ + p

) + δ(ε1 + ε2)
d + p

+ ε3, t > T3. (2.12)

Moreover, we have

İ(t) ≤ I
[
Aβ(d + δ)
d
(
d + δ + p

) + δ(ε1 + ε2) +
(
d + p

)
ε3

d + p
− (γ + α + d

)]
, t > T3. (2.13)

By the assumption of Aβ(δ + d) < d(γ + α + d)(d + δ + p), we may choose ε1, ε2, and ε3, are

small enough such that

βA(d + δ)
d
(
d + δ + p

) + δ(ε1 + ε2) +
(
d + p

)
ε3

d + p
− (γ + α + d

)
< 0, t > T3. (2.14)

Therefore, we obtain

lim
t→+∞

I(t) = 0. (2.15)

This leads to

lim
t→+∞

N(t) =
A

d
=N0, lim

t→+∞
R(t) =

Ap

d
(
d + δ + p

) = R0. (2.16)

If γ ≥ p, we obtain from (2.5)

İ(t) ≤ βI
{

A(d + δ)
d
(
d + δ + p

) + [δN(0)
p + δ

− Aδ

d
(
p + δ

)]e−dt
−
[
R(0) − pN(0)

p + δ
− Ap

d
(
d + δ + p

) + Ap

d
(
p + δ

)]e−(d+δ+p)t − (γ + α + d
)

β

}
.

(2.17)
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Since limt→+∞e−dt = 0, limt→+∞e−(d+δ+p)t = 0, and Aβ(δ + d) < d(γ + α + d)(d + δ + p), then

there exists � > 0 and T > 0 such that

İ(t) ≤ −�βI, t > T. (2.18)

Thus, we prove that (2.15) is held. Further, (2.16) is obtained.

Theorem 2.2. The unstable disease-free equilibrium E0 and the local stable endemic equilibrium
E∗(N∗, I∗, R∗) of system (2.3) coexist if Aβ(δ + d) > d(γ + α + d)(d + δ + p) holds. Here,

N∗ =
A − αI∗

d
, I∗ =

A(δ + d) − d(d + δ + p
)
S∗(

γ + α + d
)
(d + δ) − γδ , R∗ =

pS∗ + γI∗

d + δ
, S∗ =

γ + α + d
β

.

(2.19)

Proof. It is easily known that system (2.3) has unique positive equilibrium E∗(N∗, I∗, R∗)
except the disease-free equilibrium E0(N0, 0, R0) if inequalityAβ(δ+d) > d(γ+α+d)(d+δ+p)
holds.

Moreover, we may obtain the Jacobian matrix of (2.3) at equilibrium E∗ as

J(E∗) =

⎡⎣−d −α 0

βI∗ −βI∗ −βI∗
p γ − p −(d + δ + p

)
⎤⎦. (2.20)

The characteristic equation of J(E∗) is given by

λ3 +Q1λ
2 +Q2λ +Q3 = 0, (2.21)

and the coefficients Qi (i = 1, 2, 3) are

Q1 = βI∗ + 2d + δ + p,

Q2 = βI∗
(
2d + γ + α + δ

)
+ d
(
d + δ + p

)
,

Q3 = βI∗
[
d
(
γ + d + δ

)
+ α(d + δ)

]
.

(2.22)

Clearly, Qi > 0 (i = 1, 2, 3) and Q1Q2 > Q3. By Routh-Hurwitz criterion, there exist three

eigenvalues with negative real part for Jacobian matrix J(E∗), which shows that equilibrium

E∗ is locally stable.

Further, we study the global stability of E∗.

Theorem 2.3. If (γ − p)(p + δ) + αp > 0 is held besides Aβ(δ + d) > d(γ + α + d)(d + δ + p), then
the positive equilibrium E∗ of (2.3) is globally asymptotically stable.

Proof. Since I∗ > 0, we may make the change of variable I(t) = I∗ey(t), thus

ẏ(t) =
İ(t)
I(t)

, y(t) = ln
I(t)
I∗

, (2.23)
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and (2.5) is equivalent to

ẏ(t) = β

{
A(d + δ)

d
(
d + δ + p

) + [δN(0)
p + δ

− Aδ

d
(
p + δ

)]e−dt −(γ − p + αp

p + δ

)
I∗
∫ t

0

e−(d+δ+p)(t−s)ey(s)ds

− I∗ey(t) − αδ

p + δ
I∗
∫ t

0

e−d(t−s)ey(s)ds −
[
R(0) − pN(0)

p + δ
− Ap

d
(
d + δ + p

) + Ap

d
(
p + δ

)]

×e−(d+δ+p)t
}
− (γ + α + d

)
.

(2.24)

Further, we define g(y) = ey − 1 and

a(s) =

⎧⎪⎨⎪⎩
0, s ≤ 0,

βI∗
[

1 +
αδ

p + δ

∫ s
0

e−dudu +
(
γ − p + αp

p + δ

)∫ s
0

e−(d+δ+p)udu
]
, s > 0,

(2.25)

so that a(s) has a jump βI∗ at s = 0 and ȧ(s) = βI∗[αδ/(p + δ)e−ds + (γ − p + αp/(p + δ))
e−(d+δ+p)s] > 0 for s > 0 if (γ − p)(p + δ) + αp > 0, then

∫ t
0

g
(
y(t − s))da(s)=βI∗[ αδ

p + δ

∫ t
0

e−d(t−u)ey(u)du +

(
γ − p)(p + δ) + αp

p + δ

∫ t
0

e−(d+δ+p)(t−u)ey(u)du

]

− βI∗
[
αδ

p + δ
1 − e−dt

d
+

(
γ − p)(p + δ) + αp

p + δ
1 − e−(d+δ+p)t
d + δ + p

]
.

(2.26)

Hence, system (2.3) is reduced to a single integrodifferential equation

ẏ(t) = −
∫ t

0

g
(
y(t − s))da(s) − h(y(t)) + f(t). (2.27)

Here, h(y) = βI∗(ey − 1) and

f(t) = β

{[
δN(0)
p + δ

− Aδ

d
(
p + δ

) + αδI∗

d
(
p + δ

)]e−dt
−
[
R(0) − pN(0)

p + δ
− Ap

d
(
d + δ + p

) + Ap

d
(
p + δ

) + ((γ − p)(p + δ) + αp)I∗(
d + δ + p

)(
p + δ

) ]
e−(d+δ+p)t

}

+

{
Aβ(d + δ)
d
(
d + δ + p

) − αδβI∗

d
(
p + δ

) − ((γ − p)(p + δ) + αp)βI∗(
d + δ + p

)(
p + δ

) − βI∗ − (γ + α + d
)}

.

(2.28)
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With the equilibrium condition of (2.3), f(t) can be simplified as

f(t) = β

{[
δN(0)
p + δ

− Aδ

d
(
p + δ

) + αδI∗

d
(
p + δ

)]e−dt
−
[
R(0) − pN(0)

p + δ
− Ap

d
(
d + δ + p

) + Ap

d
(
p + δ

) + ((γ − p)(p + δ) + αp)I∗(
d + δ + p

)(
p + δ

) ]
e−(d+δ+p)t

}
,

(2.29)

which is negative exponential.

Obviously, the equilibrium I∗ of (2.5) corresponds to the equilibrium y(t) ≡ 0 of (2.27).
According to Theorem 18.2.3 of Gripenberg et al. [13], since a(s) is of strong positive type

([14, 15]), g(y) is continuous and
∫y

0
g(y)dy → ∞ as |y| → ∞, ḣ(y) is also continuous and

g(y)h(y) ≥ 0 for −∞ < y < +∞, f(t), and ḟ(t) are in L2(0,∞), it follows that every bounded

solution of (2.27) satisfies limt→∞g(y(t)) = 0. Owing to g(y) = 0 only for y = 0, this implies

that every solution of (2.27) tends to zero as t → ∞ and therefore the equilibrium I∗ of (2.5)
is globally asymptotically stable. As (2.5) is equivalent to system (2.3), the unique positive

equilibrium (N∗, I∗, R∗) of (2.3) is globally asymptotically stable.

It is similar to the classical SIR models that there exists the threshold quantity and it is

given by R1 = A/d ·β/(γ +α+d) · (δ+d)/(δ+d+p) for the model (2.1). If R1 < 1, then system

(2.1) has only the globally asymptotically stable disease-free equilibrium. This shows that the

epidemic disease will die out. Otherwise, if R1 > 1, system (2.1) has a locally stable positive

equilibrium except disease-free equilibrium. Moreover, the global asymptotical stability of

positive equilibrium is obtained under the assumption of (γ −p)(p+δ)+αp > 0. This reveals a

fact that the disease may be “invaded” or always exists in the population forever. According

to the expression of R1, it is the convenient and important policy to control the occurrence of

the disease that the flow of the members decreases, the vaccinated members increase, and the

infectious period shortens.

3. An SIR Model with Impulsive Vaccinations

In this section, the assumption that the susceptible is vaccinated continuously is replaced by

the assumption that the susceptible is vaccinated impulsively, that is, the susceptible is vac-

cinated at the fixed moments. At the moment nτ , the vaccinated susceptible will enter directly

to the removal owing to acquiring the temporary immunity, which leads to the following

system:

Ṡ(t) = A − dS − βSI + δR, İ(t) = βSI − (γ + α + d
)
I, Ṙ(t) = γI − (δ + d)R, t /=nτ,

S(nτ+) =
(
1 − p)S(nτ), I(nτ+) = I(nτ), R(nτ+) = R(nτ) + pS(nτ),

(3.1)
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where τ > 0 is the vaccinated period. Clearly, system (3.1) is equivalent to the system

Ṡ(t)=A − dS − βSI + δ(N − S − I), İ(t)=βSI − (γ + α + d
)
I, Ṅ(t)=A − dN − αI,

t/=nτ,

S(nτ+) =
(
1 − p)S(nτ), I(nτ+) = I(nτ), N(nτ+) =N(nτ).

(3.2)

Let I = 0, then system (3.2) is simplified as

Ṡ(t) = A − (d + δ)S + δN, Ṅ(t) = A − dN, t /=nτ,

S(nτ+) =
(
1 − p)S(nτ), N(nτ+) =N(nτ).

(3.3)

Lemma 3.1. Consider the following system:

ẋ(t) = a − bx(t), t /=nτ, x(nτ+) =
(
1 − p)x(nτ). (3.4)

Then there exists a positive periodic solution x∗(t), which is globally attractive. Here x∗(t) = a/b(1 −
(p(e−b(t−nτ))/(1 − (1 − p)e−bτ))) for nτ < t ≤ (n + 1)τ .

The proof is so simple that we omit it.

By Lemma 3.1, we can easily know that there exists a positive periodic solution

(S̃(t), Ñ(t)) for system (3.3), and their expression is

S̃(t) =
A

d

(
1 − pe−(d+δ)(t−nτ)

1 − (1 − p)e−(d+δ)τ
)
, Ñ(t) =

A

d
, t /=nτ,

S̃(nτ+) =
A

d

[(
1 − p)(1 − e−(d+δ)τ)
1 − (1 − p)e−(d+δ)τ

]
.

(3.5)

This indicates that system (3.2) has a disease-free periodic solution (S̃(t), 0, Ñ(t)) with period

τ , and its local stability may be determined by considering the behavior of small-amplitude

perturbation of the solution. Define (S(t), I(t),N(t)) = (S̃(t) + x(t), y(t), Ñ(t) + z(t)), than

these may be written

⎡⎢⎣x(t)y(t)
z(t)

⎤⎥⎦ = Φ(t)

⎡⎢⎣x(0)y(0)
z(0)

⎤⎥⎦, (3.6)

where Φ(t) satisfies

dΦ(t)
dt

=

⎡⎢⎣−(d + δ) −
(
δ + βS̃(t)

)
δ

0 βS̃(t) − (γ + α + d
)

0

0 −α −d

⎤⎥⎦Φ(t) (3.7)
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with Φ(0) = I, the identity matrix. The resetting impulsive conditions of (3.2) become

⎡⎢⎣x(nτ
+)

y(nτ+)
z(nτ+)

⎤⎥⎦ =

⎡⎢⎣1 − p 0 0

0 1 0

0 0 1

⎤⎥⎦
⎡⎢⎣x(nτ)y(nτ)
z(nτ)

⎤⎥⎦. (3.8)

Hence, if all eigenvalues μj(j = 1, 2, 3) of the monodromy matrix M,

M =

⎡⎢⎣1 − p 0 0

0 1 0

0 0 1

⎤⎥⎦Φ(τ) =

⎡⎢⎢⎣
(
1 − p)e−(d+δ)τ (

1 − p)a12(τ)
(
1 − p)a13(τ)

0 e−(γ+α+d)τ+β
∫τ

0
S̃(t)dt 0

0 a32(τ) e−dτ

⎤⎥⎥⎦, (3.9)

have absolute value less than one, then the τ-periodic solution (S̃(t), 0, Ñ(t)) is locally stable.

Actually, a12(τ), a13(τ), and a32(τ) need not to be solved out, and we have μ1 = (1−p)e−(d+δ)τ ,
μ2 = e−(γ+α+d)τ+β

∫τ
0
S̃(t)dt, and μ3 = e−dτ . Therefore, if −(γ + α + d)τ + β

∫τ
0
S̃(t)dt < 0, which is

equivalent to A/d · β/(γ + α + d) · (1 − p(e(d+δ)τ − 1)/((d + δ)(e(d+δ)τ − 1 + p)τ)) < 1, then

|μj | < 1 (j = 1, 2, 3) holds. And we have the following.

Theorem 3.2. If inequalityA/d ·β/(γ +α+d) · (1−p(e(d+δ)τ − 1)/((d+δ)(e(d+δ)τ − 1+p)τ)) < 1

holds, then there exists a disease-free periodic solution (S̃(t), 0, Ñ(t)) for (3.2), which is locally stable.
Moreover, it is globally asymptotically stable.

Proof. Denote that R2 = A/d ·β/(γ +α+d) ·(1−p(e(d+δ)τ −1)/((d+δ)(e(d+δ)τ −1+p)τ)). In fact,

we only prove that limt→∞S(t) = S̃(t), limt→∞I(t) = 0, and limt→∞Ñ(t) = A/d for R2 < 1.

For every solution (S(t), I(t),N(t)) of (3.2) with positive initial value (S(0+), I(0+),
N(0+)), it is clear that Ṅ(t) ≤ A − dN, which leads to

N(t) ≤ A
d

+ ε1, t > mτ. (3.10)

Here, ε1 > 0 may be arbitrary small, and a positive integer m may be large enough. Hence,

we have

Ṡ(t) ≤ A
d
(d + δ) + δε1 − (d + δ)S, mτ ≤ nτ < t ≤ (n + 1)τ,

S(nτ+) =
(
1 − p)S(nτ). (3.11)

Furthermore, we consider the system

Ṡ1(t) =
A

d
(d + δ) + δε1 − (d + δ)S1, mτ ≤ nτ < t ≤ (n + 1)τ,

S1(nτ+) =
(
1 − p)S1(nτ).

(3.12)

Therefore, we have S(t) ≤ S1(t), and S1(t) is the solution of (3.12) with the initial value

S1(mτ+) = S(mτ+). In addition, for system (3.12), it is easily known that there exists a positive
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periodic solution S̃1(t), and every solution with positive initial value S1(0+) > 0 is globally

attractive by Lemma 3.1. Here,

S̃1(t) =
(
A

d
+

δε1

d + δ

)(
1 − pe−(d+δ)(t−nτ)

1 − (1 − p)e−(d+δ)τ
)
, nτ < t ≤ (n + 1)τ,

S̃1(nτ+) =
(
A

d
+

δε1

d + δ

) (
1 − p)e−(d+δ)τ

1 − (1 − p)e−(d+δ)τ .
(3.13)

Thus, for an arbitrary small ε2 > 0, there exists a positive integer m1 > m such that

S1(t) < S̃1(t) + ε2, t ≥ m1τ. (3.14)

As a result, we have

İ(t) <
[
β
(
S̃1(t) + ε2

)
− (γ + α + d

)]
I, t ≥ m1τ. (3.15)

So,

0 ≤ I(t) ≤ I(m1τ
+)e

∫ t
m1τ

[β(S̃1(t)+ε2)−(γ+α+d)]dt, t ≥ m1τ. (3.16)

Since R2 < 1 holds, we may choose ε1 and ε2 small enough such that
∫τ

0
[β(S̃1(t) + ε2)− (γ +α+

d)]dt < 0, which leads to

lim
t→∞

I(t) = 0. (3.17)

And since

N(t) =N(0)e−dt +
A

d

(
1 − e−dt

)
− α
∫ t

0

e−d(t−s)I(s)ds, (3.18)

by (3.17), we have

lim
t→∞

N(t) =
A

d
. (3.19)

Therefore, for an arbitrary small ε3 > 0, there exists a positive integer m2(>m1) such that

0 < I(t) < ε3, 0 <
A

d
− ε3 < N(t) <

A

d
+ ε3, t ≥ m2τ. (3.20)
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Then, we have

Ṡ(t) >
[
A(d + δ)

d
− 2δε3

]
− (d + δ + βε3

)
S, m2τ < nτ < t ≤ (n + 1)τ,

S(nτ+) =
(
1 − p)S(nτ), nτ > m2τ.

(3.21)

Considering the system

Ṡ2(t) =
[
A(d + δ)

d
− 2δε3

]
− (d + δ + βε3

)
S2, m2τ < nτ < t ≤ (n + 1)τ,

S2(nτ+) =
(
1 − p)S2(nτ), nτ > m2τ,

(3.22)

we have S(t) ≥ S2(t), where S2(t) is the solution of (3.22) with initial value S2(m2τ
+) =

S(m2τ
+). Denote that S̃2(t) is the globally asymptotically attractive and positive periodic solu-

tion; thus, for an arbitrary small number ε4 > 0, there is a positive integer m3 such that

S̃2(t) − ε4 < S2(t) < S̃2(t) + ε4, t ≥ m3τ, (3.23)

and since S(t) > S2(t), we may get

S̃2(t) − ε4 < S(t), t ≥ m3τ. (3.24)

Let ε = min{ε1, ε2, ε3, ε4} and M = max{m2, m3}, then for t > Mτ , we have

S̃2(t) − ε < S(t) < S̃1(t) + ε. (3.25)

And since S̃1(t) and S̃2(t) will approach the positive periodic solution S̃(t) of system (3.3) for

ε → 0, therefore, we have

lim
t→∞

S(t) = S̃(t). (3.26)

Thus, the global stability of the boundary periodic solution (S̃(t), 0, A/d) has been proven.

This indicates that the disease-free periodic solution (S̃(t), 0, R̃(t)) of (3.1) is also globally

asymptotically stable.

Clearly, if A/d · β/(γ + α + d) < 1 holds, then R2 < 1 is true. So, we have the following.

Corollary 3.3. If A/d · β/(γ + α + d) < 1 holds, then system (3.2) has a unique disease-free periodic
solution (S̃(t), 0, Ñ(t)) for arbitrary p > 0 and τ > 0, which is globally asymptotically stable.

In the following, one only considers the case: A/d · β/(γ + α + d) > 1.

Denote f(τ) � (Aβ/d−(γ+α+d))τ+Aβ/d·p/(d+δ)·(1−exp((d+δ)τ))/(exp((d+δ)τ)−
1 + p). Notice that the function satisfies f(τ) is continuous on [0,+∞), f(0) = 0, f(+∞) = +∞,

f ′(0) = −(γ+α+d) < 0, f ′(+∞) = Aβ/d−(γ+α+d) > 0; moreover, f ′′(τ) = (d+δ)p2e(d+δ)τAβ/d·
(e(d+δ)τ + 1 − p)/(e(d+δ)τ − 1 + p)3 > 0. Then one has the following.
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Lemma 3.4. If A/d · β/(γ + α + d) > 1, then there exists and only exists a root τ0 in (0,+∞) for
function y = f(τ), and f(τ) < 0 for τ < τ0 and f(τ) > 0 for τ > τ0.

Noting that f(τ) < 0 is equivalent to R2 < 1, one has the following.

Corollary 3.5. For system (3.2), if A/d · β/(γ + α + d) > 1, then there exists τ0 > 0 such that sys-
tem (3.2) has a unique disease-free periodic solution (S̃(t), 0, Ñ(t)) for τ < τ0, which is globally asym-
ptotically stable.

Now, we are in the position of studying the behaviors of (3.1) under the assumption of

R2 > 1. Here, we only discuss the existence of endemic periodic solution (S∗(t), I∗(t), R∗(t)) of

system (3.1) with α = 0. From the viewpoint of biology, we neglect the death-related disease.

At this time, system (3.1) can be rewritten as follows:

Ṡ(t) = A − dS − βSI + δ(N − S − I), İ(t) = βSI − (γ + d)I Ṅ(t) = A − dN, t /=nτ,

S(nτ+) =
(
1 − p)S(nτ), I(nτ+) = I(nτ), N(nτ+) =N(nτ).

(3.27)

If (3.27) has a periodic solution, it is certain that N(t) ≡ A/d. Then, we may change to con-

sider the two-dimensional system (3.28), which is equivalent to (3.27).

Ṡ(t) =
A

d
(d + δ) − (d + δ)S − δI − βSI, İ(t) = βSI − (γ + d)I, t /=nτ,

S(nτ+) =
(
1 − p)S(nτ), I(nτ+) = I(nτ).

(3.28)

Note that there exists a positive periodic solution S◦(t) of system

Ṡ = (d + δ)
(
A

d
− S
)
, t /=nτ,

S(nτ+) =
(
1 − p)S(nτ), (3.29)
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where

S◦(t) =
A

d

[
1 − pe−(d+δ)(t−nτ)

1 − (1 − p)e−(d+δ)τ
]
, nτ < t ≤ (n + 1)τ,

S◦(nτ+) =
A

d

[(
1 − p)(e(d+δ)τ − 1

)
e(d+δ)τ − 1 + p

]
,

(3.30)

then system (3.28) has a boundary periodic solution ζ(t) = (S◦(t), 0). With bifurcation tech-

nique and the important Theorem [16], we may obtain the positive periodic solution (S∗(t),
I∗(t)) of (3.28). As

d′0 = 1 − exp

∫ τ
0

(
βS◦(t) − (γ + d))dt,

a′0 = 1 − (1 − p) exp

∫ τ
0

(−(d + δ))dt > 0,

b′0 = −(1 − p) ∫ τ
0

exp

(∫ τ
u

−(d + δ)dr
)(−βS◦(u) − δ) exp

(∫u
0

(
βS◦(u) − (γ + d))dr)

× du > 0,

∂2Φ2(τ,X0)
∂x1∂x2

= βτ exp

∫ τ
0

∂F2(ς(r))
∂x2

dr > 0;

∂2Φ2(τ,X0)
∂x2

2

= β
∫ τ

0

{∫u
0

[
exp

(∫u
p

(−(d+ δ))dr
)(−δ − βS◦(p)) exp

(∫p
0

(
βS◦(r) − (γ + d))dr)]dp}

×
{

exp

(∫ τ
u

(
βS◦(r) − (γ + d))dr)}du < 0,

∂2Φ2(τ,X0)
∂τ∂x2

=
(
βS◦(τ) − (γ + d)) exp

(∫ τ
0

(
βS◦(r) − (γ + d))dr);

∂Φ1(τ,X0)
∂τ

= Ṡ◦(τ) > 0,

(3.31)

and if we choose τ0, the unique root of d′0 = f(τ) = 0, to be the bifurcated parameter, then we

can easily see that ∂2Φ2(τ0, X0)/∂τ∂x2 > 0. Further, we have B < 0 andC > 0. According to the

theorem of Lakmeche and Arino [16], the supercritical bifurcation occurs for system (3.28).

Theorem 3.6. If τ > τ0 and is close to τ0 enough, then there exists positive periodic solution (S∗(t),
I∗(t)) for system (3.28). Here, τ0 is the root of d′0 = 0.

Further, one has the following.

Corollary 3.7. For system (3.1), if τ > τ0 and is close to τ0 enough, then there exists positive periodic
solution (S∗(t), I∗(t), A/d − S∗(t) − I∗(t)). Here, τ0 is defined in Theorem 3.6.
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The time series graph for t-S(t)
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Thus, we complete the discussion on the epidemic model with impulsive vaccination.

And we know that if the period of vaccination is smaller than τ0, the disease will die out

forever, but once it is larger than τ0, the infectious disease is going to be the endemic disease.

4. Discussion and Numerical Simulation

In this paper, we first assume that the susceptible is vaccinated continuously. The model is for-

mulated by a continuous differential system. Similar to most models for the spread of infec-

tious diseases, there is a threshold parameterR1 = A/d·β/(γ+α+d)·(δ+d)/(δ+d+p). IfR1 < 1,

the disease-free equilibrium is approached by all solutions; if R1 > 1, the disease-free equi-

librium is unstable and the endemic equilibrium exists, which is locally stable. Especially, we

prove that the endemic equilibrium is globally asymptotically stable if (γ − p)(p + δ) +αp > 0.
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The time series graph for t-R(t)
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Obviously, there is a unique p0 such that R1 = 1. If p exceeds p0, then R1 < 1, and if p is less

than p0, then R1 > 1. We show that increasing the vaccinated members is helpful to control

the spread of the infectious diseases.

Let A = 1, d = 0.1, β = 0.1, δ = 0.2, p = 0.4, γ = 0.1, and α = 0.3, then we have R1 < 1.

By Theorem 2.1, we know that system (2.1) has a unique disease-free equilibriumE0(S0, 0, R0)
with S0 = 4.285714286, R0 = 5.714285714, which is globally asymptotically stable. The time

series of solutions with initial value [S(0) = 3, I(0) = 1.5, R(0) = 1] are given in Figure 1.

If we choose p := 0.1, then R1 > 1 and (γ − p)(p + δ) + αp > 0. By Theorem 2.2,

there exists a globally asymptotically stable endemic equilibrium E∗(S∗, I∗, R∗) with S∗ =
5.000000000, I∗ = 0.7692307692, and R∗ = 1.923076923. Setting the initial values S(0) = 3,

I(0) = 1.5, and R(0) = 1, we draw the time series graph of the solution of (2.1) in Figure 2.
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The graph of disease-free periodic solution
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The time series graph for t-S(t)
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We continue to analyze our results. Let p = 0, that is, without vaccination on the sus-

ceptible. The model was discussed, and a threshold parameter R = A/d · β/(γ + α + d) was

obtained for such a model in [4]. It is clear that R is identical to R1 with p = 0. In addition,

in [4], the global stability of the endemic equilibrium was not proved. By our conclusion, we

know that the endemic equilibrium is globally asymptotically stable ifR1 > 1, that is, we gene-

ralize the results in [4].
Second, the susceptible is supposed to be vaccinated at fixed moments. Such an epi-

demic model is described by an impulsive differential system, which also has a threshold

parameter R2. If R2 < 1, the disease-free periodic solution is globally stable, while it is un-

stable for R2 > 1. Clearly, if A/d · β/(γ + α + d) < 1, then R2 < 1. Hence, there exists a unique

globally asymptotically disease-free periodic solution. If A/d · β/(γ + α + d) > 1, then there

exists a unique globally asymptotically disease-free periodic solution for τ < τ0, and τ0 is the

root of R2 = 1. With respect to the existence of positive periodic solution, we only consider
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The time series graph for t-I(t)
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a simple model, in which α = 0, that is, the disease-related death is neglected for the infective.

The positive periodic solution exists if the vaccinated period τ satisfies τ > τ0 and is close

to the critical value τ0 enough. It is implied that the epidemic disease may be controlled by

shortening the vaccination period.

Let A = 2, d = 0.1, β = 0.02, δ = 0.2, p = 0.5, γ = 0.1, α = 0 and τ = 2. Then R2 =
0.9636347352 < 1 for impulsive system (3.1). Hence, there exists a disease-free periodic solu-

tion. Moreover, it is globally asymptotically stable. Figures 3, 4, and 5 are the time series of

the solution with initial values S(0) = 5, I(0) = 8, and R(0) = 5, and Figure 6 is the trajectory

phase for it, which implies that this solution tends to the disease-free periodic solution (S̃(t),
0, R̃(t)) with S̃(t) + R̃(t) = A/d = 20.

If we extend the period τ of the vaccination and choose τ = 2.3, then R2 =
1.035848923 > 1. By Corollary 3.7, we know that there exists a positive periodic solution
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The graph of endemic periodic trajectory
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(S∗(t), I∗(t), R∗(t)) with period T = 2.3. We draw its time-series in Figures 7, 8, and 9. And the

graph of its trajectory is drawn in Figure 10.
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Within the last few decades, attempts have been made to characterize the underlying mechanisms
of brain activity by analyzing neural signals recorded, directly or indirectly, from the human brain.
Accordingly, inference of functional connectivity among neural signals has become an indispens-
able research tool in modern neuroscience studies aiming to explore how different brain areas are
interacting with each other. Indeed, remarkable advances in computational sciences and applied
mathematics even allow the estimation of causal interactions among multichannel neural signals.
Here, we introduce the brief mathematical background of the use of causality inference in neuro-
science and discuss the relevant mathematical issues, with the ultimate goal of providing applied
mathematicians with the current state-of-the-art knowledge on this promising multidisciplinary
topic.

1. Introduction and Background

Traditional functional neuroimaging studies have focused on the functional specification

of brain areas. However, only a limited amount of information regarding the underlying

neuronal mechanisms can be obtained when such spatial specification is studied. Recently,

research interests have shifted toward describing how different brain areas interact with each

other, with the hope of better understanding the functional organization of the cortical net-

work [1–7]. Correlation [1, 2], coherence [3], phase locking value [4], mean phase coherence

[5], and mutual information [6, 7] have been used to estimate functional interaction between

multiple neural assemblies. These methods have been applied to signals obtained via

many different functional neuroimaging modalities such as electroencephalography (EEG),
local field potential (LFP), intracranial EEG (iEEG), magnetoencephalography (MEG), and

functional magnetic resonance imaging (fMRI). Recent advances in neural signal analysis
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have also enabled the estimation of direction of information flow between different cortical

areas [8–12] even beyond conventional correlation-based functional connectivity analyses.

Over the past few decades, a number of measures for “directional” coupling between

neural activities have been developed [8–13] and applied to various fields in both basic and

clinical neuroscience [14–24]. Although a variety of causality estimators have been widely

used for characterizing the mechanisms of neuronal networks, notable limitations and issues

still exist that require intervention by applied mathematicians. For example, multivariate au-

toregressive (MVAR) model-based causality estimators do not accurately infer information

flow between nonstationary and/or highly nonlinear neural signals. The determination of

model order and the dependency on the analysis sample size are other issues that should be

addressed in future studies. Furthermore, most non-MVAR-based causality estimators can

only be used to infer causality between two signals, and thus need to be extended to the case

of multichannel (≥3) signal analyses [12, 13, 25].
Here, we introduce several mathematical signal analysis methods for estimating direc-

tional coupling between neural activities, all of which have been widely used in basic and

applied neuroscience. Additionally, this paper attempts to illustrate the important mathemat-

ical issues that need to be addressed to improve the conventional causality estimators, with

the aim to stimulate interest in this imperative multidisciplinary research topic among ap-

plied mathematicians.

2. MVAR-Based Causality Estimators

Recently, a number of causality estimation techniques have been developed to infer causality

among multiple neural signal generators. The MVAR model—a linear multivariate time series

model with a long history of application in econometrics [8]—has been frequently applied for

causality estimations. The MVAR model is an extended version of the autoregressive (AR)
model, a simple approach to time series characterization that assumes that for any given

univariate time series, its consecutive measurements contain information regarding the proc-

ess that generated it. The AR model can be implemented by modeling the current value of

any variable as the weighted linear sum of its previous values. In the AR model, the value of

a time series x at time t, xt can be estimated using:

xt = α0 +
p∑
k=1

αkxt−k + et, (2.1)

where α, p, and et represent AR-matrix coefficients, the model order, and the uncorrelated

Gaussian random process with a zero mean, respectively.

2.1. Granger Causality

Granger causality [8] has been proposed in the field of econometrics to quantify the causal

relationship between two different time series. Specifically, this simple technique uses an

MVAR model to linearly predict the future values of x and y, vectors of deterministic vari-

ables. The MVAR model attempts to estimate the value of xt using:

xt = α0 +
p∑
k=1

αkxt−k +
p∑
k=1

βkyt−k +wt, (2.2)
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where α and β represent the AR-matrix coefficients and wt the uncorrelated multivariate

Gaussian random process with a zero mean. In contrast to (2.1), where the current value of a

time series is estimated as the weighted sum of its previous values, the current value xt in

(2.2) is estimated using the previous values of two signal vectors x and y. We can judge

whether there exists the Granger causality from y to x by inspecting whether the past infor-

mation from both time series significantly improves the prediction of the future of x, rather

than using the past information from x alone. In other words, if the prediction error for the

MVAR model (wt) is smaller than that for the AR model (et), it can be concluded that y causes

x. In this way, Granger causality can be evaluated using

F ≡ (RSS0 − RSS1)/M
RSS1/(T − 2M − 1)

, (2.3)

where

RSS0 =
T∑
i=1

e2
t ,

RSS1 =
T∑
i=1

w2
t ,

(2.4)

where T represents the number of observations. To assess the statistical significance of the

estimated Granger causality, the F-test with the null hypothesis, H0: βk = 0 (i.e., yt does not

influence the generation of xt) is generally used. If βk = 0 for all k = 1, 2, . . . , p, the Granger

causality value F becomes zero as RSS0 equals RSS1. Conversely, if the null hypothesis is

rejected, that is, F is sufficiently large, it can be concluded that yt causes xt.

To test this hypothesis, a traditional F-test derived from an ordinary least squared

regression for each equation can be used. To test the statistical significance of F, the cumula-

tive F distribution is first estimated, after which the probability of the F value can be calcula-

ted by PGC = 1 − CDF(F), where CDF represents the cumulative distribution function and

PGC represents the probability of Granger causality. For example, PGC = 1 would indicate that

no causal interaction exists between two time series, while PGC = 0 would signal a strong

directional influence (yt → xt).
However, the MVAR model is problematic when estimating the appropriate model

order p. Basically, most model order estimation methods are based on the maximum likeli-

hood principle, which allows the determination of the highest possible model order in MVAR

signal modeling. Akaike information criterion (AIC) [26] is also based on this concept and

was the earliest method to estimate MVAR model orders. As AIC generally chooses larger

than optimal model orders, the Bayesian information criterion (BIC) [27]—which is based on

the Bayes estimator—was developed by Schwarz. The BIC generally penalizes free parame-

ters more strongly than the AIC, and thus provides more accurate estimates of MVAR model

orders. Although several modifications of the AIC and BIC have been recently developed

[28–35], the estimation of accurate and reliable model orders remains an important issue.

2.2. Directed Transfer Function

Directed transfer function (DTF) is a widely used tool in identifying information flow

between multichannel neural signals. Even though both Granger causality and DTF are based

on MVAR modeling, the DTF procedure differs slightly from Granger causality. As described



4 Journal of Applied Mathematics

above, Granger causality uses the variance of prediction errors to estimate the causal inter-

action, while DTF uses a matrix transfer function derived from MVAR model coefficients

[9, 36]. In the framework of the MVAR model, a multivariate process of DTF can be described

as a data vector X of N source signals: Xt = (X1(t), X2(t), . . . , XN(t))T . The MVAR model can

then be constructed as

Xt =
p∑
k=1

AkXt−k + Et, (2.5)

where Et represents a vector composed of white noise values at time t, Ak is an N ×N matrix

composed of the model coefficients, and p is the model order of MVAR. Note that (2.1) is a

special case of (2.5) when N = 1. The MVAR model is then transformed into the frequency

domain as follows:

X
(
f
)
= A−1

(
f
)
E
(
f
)
= H
(
f
)
E
(
f
)
, (2.6)

where f denotes a specific frequency and the H(f) matrix represents the so-called transfer

matrix, which is defined as

H
(
f
)
= A−1

(
f
)
=

(
p∑
k=0

Ake
−i2πfk�t

)−1

, A0 = −I, (2.7)

where I is the identity matrix.

The DTF can then be defined in terms of the elements of the transfer matrix Hij as

γ2
ij

(
f
)
=

|Hij

(
f
)|2∑k

m=1|Him

(
f
)|2 , (2.8)

where γ2
ij(f) denotes the ratio between inflow from signal j to signal i and all inflows to signal

i and k represents the number of signals. The DTF ratio γ2
ij(f) ranges from 0 to 1, with values

approaching to 1, suggesting that signal i is caused by signal j, whereas values approaching

to 0 indicating that no information flow from signal j to signal i exists at a specific frequency.

2.3. Partial Directed Coherence

Partial directed coherence (PDC) was proposed by Baccalá and Sameshima as a frequency

domain counterpart to Granger causality [11] and is based on a spectral representation of

(2.5), defined as

A
(
f
)
=

p∑
k=0

Ake
−i2πfk�t,

A
(
f
)
= I −A(f),

(2.9)
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where I is an identity matrix [37]. The estimate of PDC from Xm to Xn is defined as

PDCXn←Xm

(
f
)
=

An,m

(
f
)√∑Q

k=1
|An,k(f)|2

, (2.10)

where An,m is the (n,m)-th element of A.

2.4. Modified MVAR-Based Estimators

Although the MVAR-based causality estimators described above have been shown to be

useful in many neuroscience problems, they are not applicable for all types of neural signals.

For example, signals which have severely unbalanced model residual variances are not ap-

propriate for PDC. Accordingly, several additional modified causality estimators, including

generalized partial directed coherence [38, 39], Geweke’s Granger causality [40, 41], Wiener

Granger causality [42], and direct directed transfer function [43], were subsequently devel-

oped to broaden application.

The generalized partial directed coherence (gPDC) was first proposed by Baccalá et al.

to circumvent the numerical problem associated with time series scaling [38], by which a

variance stabilization of the frequency domain representation of lagged causality could be

achieved [39]. The gPDC estimator is defined as

π
(w)
ij

(
f
)
=

(1/σi)Aij

(
f
)√∑N

k=1

(
1/σ2

k

)
Akj

(
f
)
A∗
kj

(
f
) , (2.11)

where σi represents the variance of the ith input process. gPDC was modified from PDC to

improve the identification of causal interactions between signals with severely unbalanced

model residual variances [39].
The Geweke’s Granger causality is derived from Geweke’s formulation [40, 41] and is

defined as

Ik→ l

(
f
)
=

(
Zkk −

(
Z2
lk
/Zll

))∣∣∣Hlk
2
∣∣∣∣∣Sll(f)∣∣ ,

Il→ k

(
f
)
=

(
Zll −

(
Z2
kl
/Zkk

))∣∣∣Hkl
2
∣∣∣∣∣Skk(f)∣∣ ,

(2.12)

where Skk(f) and Sll(f) represent the individual power spectra of sites k and l, respectively,

and the expressions for Hlk can be found in (2.6). Zkk, Zll, Zlk, and Zkl are elements of the

covariance matrix Z for the noise vector of the bivariate model. Geweke’s Granger causality

at frequency f is expressed as the fraction of the total power at the frequency at one site that

can be explained by the causal influence from the other. As seen in (2.12) and (15), Geweke’s

Granger causality can be evaluated solely using the bivariate model. Recently, Bressler and

Seth [42] introduced Wiener-Granger causality and discussed its merits and limitations in

various neuroscience applications [42].
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The direct directed transfer function (dDTF) was proposed by Korzeniewska [43] for

the analysis of direct information transfer among brain structures using local field potentials.

To calculate the dDTF, partial coherence χij and full-band frequency DTF (ffDTF) ηij were

independently defined as

χ2
ij

(
f
)
=

M2
ij

(
f
)

Mjj

(
f
)
Mii

(
f
) ,

η2
ij

(
f
)
=

|Hij

(
f
)|2∑

f

∑k
m=1|Him

(
f
)|2 ,

(2.13)

where Mij represents the minor produced by removing the ith row and jth column of a spec-

tral matrix S. In multivariate signals, partial coherences may provide more specific informa-

tion regarding causal interactions among signals than ordinary coherences [44]. The value of

dDTF is defined as the product of the above two variables and can be expressed as

δij
(
f
)
= χ2

ij

(
f
)
η2
ij

(
f
)
. (2.14)

The dDTF method was proposed to circumvent some problems associated with DTF,

specifically its inability to differentiate between the direct and indirect connections [43].

2.5. Examples of Practical Applications

To date, Granger causality has been extensively applied to the analysis of neural signals [45–

58]. For examples, Hesse et al. used Granger causality to assess directed interdependencies

between neural signal generators related to the Stroop task [45]. Seth also demonstrated that

Granger causality may represent a useful tool for determining how interregional directional

coupling is modulated by behavior [46]. Moreover, Sato et al. proposed a wavelet-based

Granger causality, which they applied to fMRI signals [47]. Tang et al. applied both a blind

source separation algorithm and Granger causality to the analysis of a high-density scalp EEG

dataset and assessed the top-down and bottom-up influences [48]. Gow et al. demonstrated

the potential value of combining Granger causality analyses with multimodal imaging to

explore the functional architecture of cognition [49].
The DTF algorithm has also been extensively applied to various aspects within neuro-

science, particularly to the analyses of electrophysiological signals such as EEG, MEG, and

iEEG, because frequency-domain analysis is generally required in these modalities. Fran-

aszczuk et al. first applied the DTF algorithm to the localization of ictal onset zones in

temporal lobe epilepsy patients [59, 60]. Astolfi et al. demonstrated that the DTF algorithm

could be used to assess the time-varying functional connectivity patterns from noninvasive

EEG recordings in human [61]. Babiloni et al. investigated cortical causal interactions from

combined high-resolution EEG and fMRI data and showed that DTF was able to unveil the

direction of the information flow between the cortical regions of interest [62]. Kuś et al.

attempted to characterize EEG activity propagation patterns in beta and gamma bands

during finger movements, demonstrating that short-time DTF can successfully identify fre-

quency selective information from EEGs [63]. Ding et al. and Wilke et al. also applied the

DTF algorithm to EEG and iEEG signals acquired from intractable partial epilepsy patients
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in order to better describe the structure of seizures in terms of space, time, and frequency

[64, 65]. Kim et al. applied a source localization technique called FINEs in addition to DTF

to iEEG signals and verified that directional connectivity analysis could be a useful tool to

identify epileptogenic sources located outside of the iEEG electrodes [66].
As with DTF, PDC analyses have recently been applied to a variety of practical appli-

cations: Sun et al. demonstrated that PDC is a useful tool for evaluating changes in cortical

interdependences in the context of different psychotic or mental states and can also be used

to diagnose affective disorders [21]. Similarly, Zhang et al. used PDC to estimate cortical

interactive networks during the mental rotation of Chinese characters, demonstrating differ-

ent changes in cortical networks according to task difficulty [18]. Furthermore, Zhu et al.

studied the effects of brain development and aging on cortical interactive network pattern,

demonstrating that the PDC analysis of EEG is a powerful approach for characterizing brain

development and aging [24].

3. Non-MVAR-Based Causality Estimators

3.1. Transfer Entropy

Information theoretic measures have widely been utilized to quantify mutual dependence

between time series. Although standard time-delayed mutual information can estimate mu-

tual dependence between neural signals, it is not able to distinguish information flow [12]. To

circumvent this issue, Schreiber developed a new causality estimator named transfer entropy

(TE), on the basis of the entropy rate,

hx =
〈− log[P(xn+1 | xn)]

〉
, (3.1)

where < · > denotes an expectation value, P(x) represent the probability of x, P(xn+1 | xn)
is the conditional probability of xn+1 given xn, and n is the time sample position. To estimate

the information flow, the conditional entropy rate of xn+1 given both yn and xn

hx|y =
〈− log

[
P
(
xn+1 | xn, yn

)]〉
(3.2)

has to be introduced. This indicated the average uncertainty about the future state (= xn+1) of

x(t), conditional on the current state (= yn) of y(t) as well as on its own current state (= xn). The

transfer entropy can be defined as the difference between hx and hx|y [67], in the following

form:

Ty→x =
∑

P
(
xn+1, xn, yn

)
log

P
(
xn+1 | xn, yn

)
P(xn+1 | xn) , (3.3)

where P(xn+1, xn, yn) is the joint probability, evaluated by the sum of all available realizations

of (xn+1, xn, yn) in time series.

Many researchers now apply the TE algorithm to the field of neuroscience [67–71],
as TE has been demonstrated to be more sensitive to nonlinear signal properties than the

conventional MVAR-based causality estimators [69]. However, TE analyses are restricted to

bivariate situations and require substantially more data samples than MVAR-based causality

estimators.
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3.2. Phase Slope Index

To robustly estimate the direction of information flow in multivariate time series, Nolte pro-

posed a new causality estimator called phase slope index (PSI) [13], basic assumption of

which states that mixing does not affect the imaginary part of the complex coherency of a

multivariate times series [72]. Measured data Yt are assumed to be a superposition of two

sources Xt and additive noise Et

Yt = Xt + BEt, (3.4)

where B represents a mixing matrix that merges the additive noise into the measurement

channels. The measured data are then divided into K segments and used to calculate the

cross-spectral density as follows:

Sij
(
f
)
=

1

K

∑
k

zi
(
f, k
)
z∗j
(
f, k
)
, (3.5)

where zi(f, k) represents the Fourier transform of the ith channel data and kth segment and

Sij is the cross-spectral matrix between ith and jth time series. PSI is defined as

Ψ̃ij = I

⎛⎝∑
f∈F

C∗ij
(
f
)
Cij

(
f + δf

)⎞⎠, (3.6)

where

Cij

(
f
)
=

Sij
(
f
)√

Sii
(
f
)
Sjj
(
f
) (3.7)

is the complex coherency, δf is the specific frequency resolution, F is the frequency band of

interest, and I(·) denotes the imaginary part. Finally, the PSI is normalized using its standard

deviation and is expressed as

Ψ =
Ψ̃

std
(
Ψ̃
) , (3.8)

Nolte et al. presented several computer simulations, via which the relative performances of

Granger causality and PSI were compared. In these simulations, PSI was found to perform

better than Granger causality in inferring causal relationship between signals with nonlinear

interactions. As the PSI is a nonparametric approach, it has several key advantages over con-

ventional parametric approaches represented by the MVAR models. For instance, the PSI not

only requires a lower computational load than the MVAR-based approaches, but it is also

independent from the signal’s stationarity. However, the PSI has a limitation in that it is also a

pairwise metric of directional interactions and is thereby vulnerable to the ambiguity between

direct and indirect influences [25].



Journal of Applied Mathematics 9

3.3. Nonlinear Granger Causality

To estimate causal interactions between the nonlinear bivariate neural signals, nonlinear

Granger causality (NGC) was developed [73, 74]. The basic concept of NGC is similar to

TE in that NGC concludes that y(t) does not cause x(t) if the value of hx in (3.1) is comparable

to hx|y in (3.2). Gourévitch [37] defined the nonlinear Granger causality as follows:

NGCx←y =
C2
(
xn+1, xn, yn

)
C2
(
xn, yn

) − C
2(xn+1, xn)
C2(xn)

, (3.9)

where C2 is the correlation integral of order 2. This correlation integral was proposed by

Grassberger [75]. For any given vectorial signal dimension L and length of signal T , the cor-

relation integral of order q is defined as

Cq(X) =

⎛⎜⎝ 1

T − L
T∑

t=L+1

⎛⎝ 1

(T − L − 1)

T∑
s=L+1, s /= t

1{||X(t)−X(s)||<r}

⎞⎠q−1
⎞⎟⎠

1/(q−1)

, (3.10)

where || · || represents the maximum norm, 1A is 1 in a set A, 0 otherwise, and r is a positive

scalar. The bivariate version for two signals X and Y of the same dimension L and the same

length T is expressed as

C2(X,Y ) =
1

(T − L)(T − L − 1)

T∑
t=L+1

T∑
s=L+1, s /= t

1{||X(t)−X(s)||<r}1{||Y (t)−Y (s)||<r}. (3.11)

3.4. Partial Nonlinear Granger Causality

Recently, Gourévitch et al. proposed a new method for estimating nonlinear causal interac-

tions [37], termed partial nonlinear Granger causality (PNGC). The PNGC algorithm is able

to estimate direct causality from Xm to Xn when Q signals are considered. PNGC is defined

as

PNGCxn←xm =
C2
(
X
f
n,X

p

1 , . . . , X
p

Q

)
C2
(
X
p

1 , . . . , X
p

Q

) −
C2
(
X
f
n,X

p

1 , . . . , X
p

m−1, X
p

m+1, X
p

Q

)
C2
(
X
p

1 , . . . , X
p

m−1, X
p

m+1, X
p

Q

) , (3.12)

Although PNGC showed promising results when applied to complex systems, it is still

dependent on model order and scale [37]. Consequently, if nonlinearity is suspected, PNGC

should be used only as a complementary tool.

4. Mathematical Issues in Causality Inference
4.1. Issues in MVAR-Based Causality Inference

The most popular causality estimators—GC [8], DTF [9], and PDC [11]—as well as their

modifications are based on MVAR modeling of neural signals. The MVAR modeling is highly
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dependent on the selection of model orders: too low order may not provide an exact ex-

pression of the signal feature, while too high model order may result in overfitting. Thus, the

correct choice of an MVAR model orders is critically important for precise causality inference.

Although several methods have been proposed to estimate proper model orders (like AIC

[26], BIC [27], deviance information criterion (DIC) [33], minimum description length

(MDL) [30], focused information criterion (FIC) [34], minimum message length (MML) [28],
and others [29, 31, 33]) and some investigators have attempted to compare performances of

different model order determination criteria [35, 76], no golden rule exists for the model order

selection, and further research is clearly needed.

Moreover, MAVR-based causality estimators guarantee accurate causality inference

only when datasets (signals) satisfy stationary conditions [9, 77], whereby their multivariate

probability distribution is not affected by timeshift. At the very least, the mean, variance, and

autocorrelation of multivariate time series should not vary over time. Unfortunately, these

conditions cannot be satisfied in most cases, and thus, some mathematical transformations are

often required to make the time series become roughly stationary. Nolte et al. demonstrated

that MVAR-based approaches typically fail to estimate causal interactions between neuronal

signals that are not stationary [13]. Although several stationary tests (e.g., unit root test [78]
and Sargan and Bhargava test [79]) have been introduced to assess whether or not a time

series is stationary, most were not verified in practical neural signals. In neuroscience appli-

cations, issues of stationarity also have to be carefully dealt with by considering an empirical

appraisal of the participants’ behavioral states [11].
Another critical limitation affecting the reliability of causality estimators is the linear

modeling of neural signals [80]. Neural time-series signals can take several forms; for ex-

ample, spikes, noisy signal, and highly correlated signals, may have a nonlinear form [37].
Accordingly, it is imperative to develop techniques for causality analysis that accommodate

nonlinear time series, as most current studies on the causal network inference do not verify

signal linearity, nor do they account for nonlinearity. Specifically, many MVAR-based models

(such as PDC) are not robust to simple nonlinear linkage [37].
Generally, MVAR-based causality estimators require the appropriate selection of signal

sample number. In one study, Schlögl assessed the dependency of several MVAR algorithms

on the number of time samples, demonstrating that sufficient numbers of samples are re-

quired to obtain a reliable estimate of causal interactions among neural signals [81]. More-

over, Schlögl also showed causality inference to be highly dependent on both MVAR estima-

tion methods as well as model order in cases with the same number of time samples. As the

number of time samples is generally limited in most practical examples, a more systematic

approach to reliably determine the number of time samples and appropriate MVAR estima-

tors should be developed in future studies.

4.2. Issues in Non-MVAR-Based Causality Inference

While most non-MVAR-based causality estimators, such as PNGC, nonlinear Granger

causality, TE, and PSI, were introduced to circumvent the well-described problems of MVAR-

based causality estimators, many can only be applied to causality inferences of bivariate neu-

ral signals. As such, further research is required to extend bivariate causality inferences to

include multivariate (more than three) causality inference. Furthermore, a method for deter-

mining the proper model order in PNGC remains an ongoing problem [37], as with MVAR-

based estimators.
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5. Conclusion

Here, we summarized the mathematical techniques used in causality estimation, all of which

have been extensively applied to infer causal relationships among multichannel neural

signals. We also described the limitations of current methods and presented several ongoing

problems, some of which may be of interest to applied mathematicians. We hope that this

paper will serve as a useful guide for researchers in the field of applied mathematics and

helps raise awareness of this important research topic.
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[43] A. Korzeniewska, M. Mańczakb, M. Kamiński, K. J. Blinowska, and S. Kasicki, “Determination of
information flow direction among brain structures by a modified directed transfer function (dDTF)
method,” Journal of Neuroscience Methods, vol. 125, no. 1-2, pp. 195–207, 2003.

[44] P. J. Franaszczuk, K. J. Blinowska, and M. Kowalczyk, “Biological cybernetics in the study of electrical
brain activity,” Biological Cybernetics, vol. 247, pp. 239–247, 1985.
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[52] A. Özkaya and M. Korürek, “Estimating short-run and long-run interaction mechanisms in interictal
state,” Journal of Computational Neuroscience, vol. 28, no. 2, pp. 177–192, 2010.

[53] C. Ligges, M. Ungureanu, M. Ligges, and B. Blanz, “Understanding the time variant connectivity of
the language network in developmental dyslexia: new insights using Granger causality,” Journal of
Neural Transmission, vol. 117, no. 4, pp. 529–543, 2010.

[54] L. Pollonini, S. Pophale, N. Situ et al., “Information communication networks in severe traumatic
brain injury,” Brain Topography, vol. 23, no. 2, pp. 221–226, 2010.

[55] E. Sitnikova, “Thalamo-cortical mechanisms of sleep spindles and spike-wave discharges in rat model
of absence epilepsy (a review),” Epilepsy Research, vol. 89, no. 1, pp. 17–26, 2010.

[56] K. L. Anderson, R. Rajagovindan, G. A. Ghacibeh, K. J. Meador, and M. Ding, “Theta oscillations
mediate interaction between prefrontal cortex and medial temporal lobe in human memory,” Cerebral
Cortex, vol. 20, no. 7, pp. 1604–1612, 2010.

[57] L. Astolfi, J. Toppi, F. De Vico Fallani et al., “Neuroelectrical hyperscanning measures simultaneous
brain activity in humans,” Brain Topography, vol. 23, no. 3, pp. 243–256, 2010.

[58] D. W. Gow, C. J. Keller, E. Eskandar, N. Meng, and S. S. Cash, “Parallel versus serial processing
dependencies in the perisylvian speech network: a Granger analysis of intracranial EEG data,” Brain
and Language, vol. 110, no. 1, pp. 43–48, 2009.

[59] P. J. Franaszczuk, G. K. Bergey, and M. J. Kaminski, “Analysis of mesial temporal seizure onset and
propagation using the directed transfer function method,” Electroencephalography and Clinical Neuro-
physiology, vol. 91, no. 6, pp. 413–427, 1994.

[60] P. J. Franaszczuk and G. K. Bergey, “Application of the directed transfer function method to mesial
and lateral onset temporal lobe seizures,” Brain Topography, vol. 11, no. 1, pp. 13–21, 1998.

[61] L. Astolfi, F. Cincotti, D. Mattia et al., “Assessing cortical functional connectivity by linear inverse
estimation and directed transfer function: simulations and application to real data,” Clinical Neuro-
physiology, vol. 116, no. 4, pp. 920–932, 2005.

[62] F. Babiloni, F. Cincotti, C. Babiloni et al., “Estimation of the cortical functional connectivity with the
multimodal integration of high-resolution EEG and fMRI data by directed transfer function,” Neu-
roImage, vol. 24, no. 1, pp. 118–131, 2005.
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MEG/EEG beamformer source imaging is a promising approach which can easily address spati-
otemporal multi-dipole problems without a priori information on the number of sources and is
robust to noise. Despite such promise, beamformer generally has weakness which is degrading
localization performance for correlated sources and is requiring of dense scanning for covering all
possible interesting (entire) source areas. Wide source space scanning yields all interesting area
images, and it results in lengthy computation time. Therefore, an efficient source space scanning
strategy would be beneficial in achieving accelerated beamformer source imaging. We propose
a new strategy in computing beamformer to reduce scanning points and still maintain effective
accuracy (good spatial resolution). This new strategy uses the distribution of correlation values
between measurements and lead-field vectors. Scanning source points are chosen yielding higher
RMS correlations than the predetermined correlation thresholds. We discuss how correlation
thresholds depend on SNR and verify the feasibility and efficacy of our proposed strategy to
improve the beamformer through numerical and empirical experiments. Our proposed strategy
could in time accelerate the conventional beamformer up to over 40% without sacrificing spatial
accuracy.

1. Introduction

Magnetoencephalography (MEG) and electroencephalography (EEG) are noninvasive im-

aging technologies which provide functional information about human brain dynamics by

providing millisecond temporal images over the entire brain. These technologies have been

widely used to diagnose epilepsy and forward neuroscience research. Particularly, MEG/

EEG source localization estimates current sources from measured spatiotemporal data.

Inherently, MEG/EEG source localization is mathematically ill-posed; that is, it has no unique

solution and is very sensitive to noise. For a couple of decades, many researchers have

tried to develop methods to deal with these difficulties in calculation, resulting in extensive
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research and commercialization of MEG/EEG source localization methods (see [1, 2] for a

review).
In the early 1990s, beamformer techniques originated in the field of antenna signal

processing [3]. Application in MEG/EEG source imaging soon followed. A beamformer

represents a kind of linear spatial filter acting on spatial or spatiotemporal data within

sensor space. It allows a neural signal produced only at designated source point to pass,

filtering out signals originating from other source points. Therefore, even without a priori

information on source quantity, beamformers can effectively image brain activities within

a source space under the assumption that sources are uncorrelated [4–6]. Many varieties

of beamformers have been investigated [7–10] and are roughly categorized into 2 classes:

adaptive beamformers using measurement information, and nonadaptive beamformers

independent of measurement information [11]. Among the variety of options, the minimum-

variance (MV) beamformer has been most widely used and deeply investigated in regard to

MEG/EEG source localization problems [5, 12–17].
Recently, source imaging has been gaining more attention on continuous MEG/EEG

(unaveraged) and single-trial MEG/EEG data in understanding rapidly changing brain

dynamics [18, 19]. This understanding can better facilitate real-time brain activity monitor-

ing, neurofeedback, brain computer interface (BCI) [20–22], among others [23, 24]. Brain

signals can usually be measured by means of MEG or EEG systems and their real-time

interpretation can provide a variety of applications. Beamformer is a promising technique

easily dealing with spatiotemporal multi-dipole source problems as well as being robust

to noise. Regarding real-time source imaging, beamformer speed generally depends on the

quantity of scanned source points, that is, the number of scanning points of interesting brain

area. For this purpose, reducing beamformer scanning points (accelerating beamformer)
without sacrifice of spatial resolution (accuracy) is greatly beneficial in real-time source

imaging. In the present work, a procedure is proposed to accelerate beamformer as well as

to maintain effective spatial resolution. Sensor measurements are composed of a (composite)
linear combination of lead-field vectors (sensitivity of sensors to sources) at active points

as well as noise [15]. For that reason, sensor measurements may produce relatively higher

correlation values than correlation around inactive points. In the present paper, such

reasoning is further investigated culminating in a proposal for reducing scanning points

during beamformer source imaging.

This paper is an extended version of a short conference paper presented in BIOMAG

2010 [25] and is organized in sections. In Section 2, a conventional MV-beamformer is briefly

explained. In Section 3 we follow with a theoretical proposal for reducing scanning regions

and then discuss an effective strategy for computing the correlation distribution between

measurement data and lead-field vectors. Next, both simulated and empirical experimental

results are presented to verify the feasibility and efficacy of the proposed procedure. Lastly,

we discuss other efforts in achieving accelerated beamformer.

2. Minimum-Variance (MV) Beamformer

Beamformer techniques are categorized into two classes: one is adaptive and the other

is nonadaptive. A nonadaptive spatial filter is independent of the measurement, but an

adaptive spatial filter depends on the measurement. Among beamformers, the minimum-

variance (MV) beamformer is superior in accuracy to others [11] and has been widely

used in MEG/EEG source imaging [10]. MV beamformers can be scalar type and vector
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type. In the scalar type beamformers, the source orientation could be estimated to yield

maximum source power (for details, see [10, 15]) or may be predetermined accordingly. On

the contrary, the source orientation could be simultaneously estimated in the vector type

beamformer (uses a set of three weights and each weight detects one component in Cartesian

coordinate system) [4, 5, 26, 27]. Throughout this paper, MV vector type beamformer is

used.

A vector type beamformer enables to estimate simultaneously source orientation and

magnitude. A vector type spatial filter consists of a set of three weight vectors, wx(r), wy(r),
and wz(r) depending on x, y, and z components of the source vector, respectively. Denoting

the weight matrix by W(r) = [wx(r);wy(r);wz(r)], vector-type beamformer is derived solving

the following optimization:

W(r) = argminWTCW, subject to WT (r)L(r) = I, (2.1)

where C = 〈m(t)mT (t)〉t is measurement covariance matrix estimated by time average, L(r) =
[lx(r); ly(r); lz(r)] is the lead-field matrix representing the sensitivity of the whole sensor array

to source activity at r, and I represents an identity matrix. lξ(r) is a lead-field vector of unit

source activity oriented to ξ-axis at r. The weight matrix and output power of this vector type

spatial filter are expressed as follows:

W(r) = C−1L(r)
[
LT (r)C−1L(r)

]−1
,

〈
Q̂(r, t)2

〉
t
=
[
LT (r)C−1L(r)

]−1
.

(2.2)

3. Scanning Reduction Strategy

3.1. Definitions and Principles

In this section, a new strategy of reducing scanning points, thereby accelerating beamformer

source imaging, is proposed without sacrificing accuracy. In beamformer source imaging,

full source space scanning is necessary; sources are located on the brain’s cortical area and

thus all scanning of the brain may be time intensive but achieves whole brain images. On

the other hand, partial scanning accelerates beamformer source imaging. Evidently, reducing

the number of scanning source points while keeping scanning resolution can accelerate the

source imaging process without losing spatial resolution significantly. Our proposed idea is

reducing the scanning region (eventually reduce the number of scanning points) by using the

correlation between measurement and lead-field vectors, defined as

p(r, t) =
m(t) · l(r)
‖m(t)‖‖l(r)‖ . (3.1)
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Here m(t) and l(r) represent the measurement vector at time t and the lead-field vector at

r, respectively. The inner product between m(t) and l(r) vector yields scalar value. At each

source point r, the root mean square (RMS) correlation is computed as follows:

prms(r) =

√√√√ 1

K

K∑
t=1

p(r, t)2, (3.2)

where K is the number of time points. In general, sensor measurements consist of a linear

combination of (composite) lead-field vectors [15] at active points and noise:

m(t) = Ls(t) + n(t)

=
Ns∑
i=1

l(ri)si(t) + n(t) ∼=
na∑
ia=1

l(ria)sia(t) + n(t), na �Ns.
(3.3)

Here s(t) = [s1(t), s2(t), . . . , sNs(t)]
T is a source vector representing a signed source

magnitude at each scanning point ri and time t. L = [l(r1), l(r2), . . . , l(rNs)] is a matrix

consisting of all lead-field vectors, and n(t) is noise at time t, being commonly colored

and independent of signal. Assuming that measurement is produced by a few significantly

strong source activations (such case is common in BCI or spontaneous activity, evoked

response activity, etc.), sources at most scanning points are inactive, yielding a negligibly

small magnitude of si(t), and only a few sources (na sources) are active, the corresponding

si(t) yields significant magnitudes. A correlation value between m(t) and lead-field l(r) at

scanning point r is expressed as

m(t) · l(r) =
na∑
ia=1

sia(t)l(ria) · l(r) + n(t) · l(r). (3.4)

Independence from noise on a signal yields that the 2nd term on the right side of

(3.4) is negligible and thus the correlation value is mainly affected by the 1st term. When a

scanning point is around an active source point, that is, r is very close or equal to ria , then

l(ria) · l(r) gives a significant value. However, when the scanning point is away from all active

points, l(ria) and l(r) may be much less correlated, and thus l(ria)·l(r) may yield a considerably

smaller value in magnitude. Due to such arguments, the correlation value p(r, t) may be more

significant at active points than others. Overall, RMS correlation values at active points are

likely to give more significant magnitude than inactive points. Furthermore, it was observed

in Section 4.1 that RMS correlations tended to have higher values around active than inactive

points. From such reasoning and observations, the following strategy is proposed.

(i) Correlation values p(r, t) for each scanning point r in source space and time point t

are computed using (3.1).

(ii) RMS correlation values prms(r) at each scanning source point r are eventually

computed using (3.2).

(iii) Scanning regions are reduced by selecting source points with higher RMS correla-

tion values than given correlation thresholds. Correlation thresholds are estimated

empirically for various SNRs via the Monte Carlo simulation, while corresponding

criteria are formulated in a least square sense (optimization) at a later time.

(iv) Beamformer is performed at such reduced source region.
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3.2. Correlation Computing Strategy

To reduce scanning points, RMS correlation should be computed at every point within the

source space. Computing RMS correlations across the entire source space, including a plenty

of corresponding time points, may be time intensive. For example, about 500 time samples (2
second-long duration for a 250 Hz acquisition system) are naturally needed to update brain

dynamics or decode user intention in existing BCI systems. As shown in (3.1), correlation

value computation is necessary for all time points, thereby prolonging overall computation.

Downsampling is a possible strategy, but it risks losing important information. Instead, the

use of eigen temporal window (called ETWB) is proposed in this work.

By projecting a measurement matrix onto eigen-temporal space while ignoring negli-

gibly small eigenvalues and corresponding eigenvectors, the number of time points is dra-

matically reduced, thereby reducing correlation computation time. Such a procedure is for-

mulated as follows.

(i) Spatiotemporal measurement matrix M = [m(t1);m(t2); . . . ;m(tK)] of size S×K can

be decomposed by singular value decomposition (SVD) as follows:

M =

⎛⎜⎜⎜⎜⎝
... · · · ...

u1 · · · uK
... · · · ...

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝
λ1 0 0

0
. . . 0

0 0 λS

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
· · · vT1 · · ·
...

...
...

· · · vTS · · ·

⎞⎟⎟⎟⎠ = UΣVT,

λ1 ≥ λ2 ≥ · · · ≥ λS.

(3.5)

(ii) Projection matrix VETWB = [v1;v2; . . . ;vJ] is constructed using J significant tempo-

ral eigenvectors vj (determined by the significance of corresponding eigenvalues)
of measurement matrix M. Threshold of eigenvalues or the number of eigenvalues

J(� K) can be determined empirically.

(iii) Projected measurement matrix METWB of size S×J is defined to compute as follows:

METWB := MVETWB. (3.6)

Reduction of the time dimensionality of the measurement matrix is thus ensured,

thereby significantly reducing correlation computation time. Computing time of about 3 sec-

onds is reduced to 0.7 seconds, which will be discussed later in this paper. The effectiveness

of this strategy is demonstrated in the following section.

4. Results

4.1. Observation on Correlation Distribution

Correlation distribution between active and inactive points was investigated through nu-

merical experiments in this section. A spherical homogeneous conductor head model with

an 8.5 cm radius, centered at origin, was used for forward computing [28], while sensor

geometry from a MEGVISION Yokogawa system with a 160-sensor gradiometer array was

adopted. Two sources were assumed to be located within a box-shaped region defined by
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Figure 1: Two source locations and head geometry description (a), time courses of dipole sources, first
with a solid and second with a dashed line (b), and over-plotted synthetic MEG measurement data (SNR
of 1) for 160 sensors (c).

−8.5 ≤ x ≤ 8.5, −8.5 ≤ y ≤ 8.5, and −2.0 ≤ z ≤ 8.5 (cm) with a total of 10,000 scanning

points comprising equally spaced lattices. Such sources were located at (−3.7, −3.6, 5.0)
and (3.3, 4.1, 4.3) cm, both directed to (1, 0, 0). Synthetic data was generated by adding

white Gaussian noise to calculated sensor values computed through a forward model. A

synthetic magnetic field with 500 time samples was generated with an SNR of 1. The SNR

was defined by ‖S‖F
2/‖N‖F

2, where S and N are signal and noise matrices, respectively, and

‖ · ‖F is a Frobenius norm. Time courses for dipoles were provided as damping sinusoidals

with different wavelengths; these sources were almost uncorrelated. A detailed configuration

description is shown in Figure 1. Numerical experiments were conducted on a workstation

(2x AMD Opteron CPU 2.3 GHz, 64 bit OS, and 64 GB RAM).
Correlation of full-source space with 10,000 scanning points was computed to illustrate

the distribution using (3.2). In Figure 2, three different views of correlation distribution

such as xy-, xz-, and yz-plane projections are depicted. This xy-plane projection map and

others were generated by prms(ix, iy) = maxiz prms(ix, iy, iz) for each pixel point (ix, iy).
Figure 2 shows that correlation values produced around active rather than inactive points

were relatively higher. Therefore, beamformer scanning within regions with relatively high

correlation values seemed to be adequate in reconstructing source information. It is obvious

from this observation that choosing a scanning region in the proposed manner can be a good

strategy in accelerating beamformer.

4.2. Correlation Threshold

In the previous section, correlation distribution was found to play a key role in getting a

priori information on source locations. Intuitively, use of such correlation distribution can
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Figure 2: Correlation distribution for two dipole source problems on the entire source region of the brain.
Darker color represents a higher correlation value.

accelerate beamformer source imaging when beamformer scanning is confined to regions

with relatively high correlation values. To apply such a concept, proper correlation thresholds

should be predetermined in a reasonable way. In general, correlation distribution may

influence various factors such as source locations, source magnitudes, SNR, and sensor

geometry. For simplicity, correlation threshold criterion is assumed to depend only on SNR;

estimation is thus possible with information easily obtainable or observable. Under such

consideration, the following formulation on correlation threshold corrthresh(SNR) is proposed:

corrthresh(SNR) := m + σ · a(SNR),

m := mean
{
prms(·)

}
, σ2 := var

{
prms(·)

}
.

(4.1)

Here m and σ are the first- (mean) and second- (standard deviation) order statistics of

RMS correlation values, which are easily estimated. Further, a(SNR) is a nonlinear function

depending on SNR and should be determined with more caution. In order to estimate a(SNR)
effectively, a Monte Carlo simulation study was executed. For a great number of simulated

data with various SNRs (with real noise), proper a(SNR) values were computed and fitted

to the given model in a least square sense—assuming that correlation values at active source

points are higher than thresholds. From our experience, the following simple logarithmic

model was ideally adopted in the present work:

a(SNR) = max
{
α log

(
β · SNR

)
, 0
}
. (4.2)

Correlation threshold criterion corrthresh(SNR) was estimated through the Monte Carlo

simulation study. The Monte Carlo simulation was conducted with 200 randomly distributed

dipole sources at random orientations across the entire brain. For each dipole (fully correlated

source between lead-field vector l(r) and measurement m(t)), five different empirical noise

realizations and 15 different SNRs (between 0.01 and 8) were generated by noise power

control. Hence, a total of 15,000 single dipole problems were generated in estimating the

correlation threshold. Estimated optimal parameters (α and β) for such ETWB strategy are as

follows:

a(SNR) ≈ max
{

0.214 log(11.309 · SNR), 0
}
. (4.3)
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Figure 3: SNR = 1: beamformer source reconstruction results using the ETWB strategy. (a) Reduced
scanning region (darker shaded region) with a higher correlation value than the predetermined threshold
value in (4.1). (b) Beamformer source imaging in the region with reduced scanning.

Empirical MEG noise used in the Monte Carlo simulation study was acquired under

the following experimental paradigm.

Empirical MEG data was collected from a healthy male volunteer (24-year-

old) who participated after appropriate informed consent was acquired. During

spontaneous activity with eyes closed in a magnetically shielded room, an

acquisition period of 120 seconds was launched. Data was digitized at 2 kHz

with the online lowpass filter set at 500 Hz, postprocessing digital filter applied

from 1 to 100 Hz, excluding 50 Hz due to electrical power conditions. Data was

collected from a whole-head gradiometer system with 160 channels (MEGVISON

Yokogawa system).

Our proposed threshold criterion was generated from a single dipole simulation

study; thus other possible source configurations are not sure to be perfectly accounted for.

Nevertheless, it was found that our proposal proved quite effective throughout the work.

4.3. Experimental Results: Simulated Data

In this section, investigation into the degree of acceleration and reduction of scanning points

resulting from our proposed ETWB strategy was studied. For this purpose, beamformer and

proposed scanning reduction strategy was integrated to apply to a simulated two dipole

problem, which was generated in Section 4.1. For effective inversion of data covariance and

higher output SNR [10], the inversion of data covariance matrix (C + εI)−1 in place of C−1

was used, where ε and I are a regularization factor and an identity matrix, respectively [29].
Regularization factor ε is estimated by ε = max{λ1, λ2, . . . , λS}·10−5, where λi, {i = 1, 2, . . . , S}
is the eigenvalue of the data covariance C. We tested beamformer using the ETWB strategy

addressed in Section 3.1. Reconstructed source imaging by this method is illustrated in

Figure 3. According to (4.1), the correlation threshold was properly chosen in reducing source

scanning regions. In the ETWB strategy, significant eigenvectors were chosen explaining the

amount of information, up to 70%, from measurement matrix M. Thus, approximately one

fifth of 500 total time samples were selected to create an eigen-temporal projection matrix

VETWB.

Figure 3 shows which particular region has higher correlation values than threshold,

and beamformer in the reduced region resulted in images being identical to the beamformer

source imaging with the entire source space scanning. In this experiment, the number of
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Figure 4: Reduced scanning regions (left) by our proposed beamformer and reconstructed images (right)
over simulated data with different SNRs. (a) SNR: 0.1. (b) SNR: 4.

scanning points was reduced to about 3,000, that is, about one third of the total original

scanning points of 10,000. Total elapsed time of beamformer was about 0.53 seconds, even

including correlation computation, while conventional beamformer time (full-brain scan)
was about 1.03 seconds.

Source Imaging Effect on SNR

Conventional full-scan beamformer was compared with reduced scanning beamformer using

the proposed strategy to determine how much scanning reduction was attained over different

SNRs (0.1 or 4). The reduced scanning regions by ETWB strategy are illustrated in Figure 4.

The same ETWB strategy as in previous experiments was used. For simulated data with SNR

0.1, Figure 4(a) shows the results from the reduced scanning region using the ETWB strategy

and the reconstructed image from beamformer. Computation time for the conventional

beamformer was about 1.03 seconds over the entire region of 10,000 points. Conversely, our

proposed strategy took about 0.6 seconds, and scanning points were reduced up to about

4,400 points.

With regards to high SNR 4, the same experiment was conducted. Figure 4(b) shows

the results from the reduced scanning region using the ETWB strategy for processing sim-

ulated data. In this case, computation time for beamformer using our proposed strategy

was about 0.37 seconds, and scanning points were reduced to about 2,300 points. Such

results show that our proposed strategy can accelerate beamformer while maintaining spatial

resolution of source images with respect to SNRs. As previously mentioned in the initial

simulation (SNR = 1), the number of significant eigenvectors needed for the ETWB strategy

was about one fifth of the total time points.

Source Imaging Effect on Source Correlation

In this section, the performance of our proposed beamformer was investigated over different

source correlations between two dipole sources. It is known that beamformer performance
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Figure 5: Reduced scanning regions (left) by our proposed strategy and reconstructed images (right).
All other configurations (source locations, time courses, and SNR (=1)) are the same as in Figure 1. (a)
Correlation: 0.1. (b) Correlation: 0.6. (c) Correlation: 0.9.

degrades for heavily correlated sources. To investigate how much our proposed method

relatively effects source correlation, simulated data was generated under the same config-

urations as in Section 4.1, except for different source correlations such as 0.1, 0.6, and 0.9.

To generate simulated data with different source correlations, the time course of the second

dipole source was made using the formula: ŵ2(t) = (1 − ξ)w1(t) + ξw2(t), where w1(t) and

w2(t) represent the first and second time courses of the sources, respectively. The parameter

ξ controls the degree of the correlation between w1(t) and w2(t). Figure 5 shows the reduced

scanning regions by our proposed strategy and reconstructed source imaging of beamformer.

As correlation increases, sources get more broadly reconstructed; thereby spatial resolution

is poorer. However, reduced scanning regions seem to be almost same; therefore, there is no

significant effect on scanning reduction of correlation between sources.

Source Imaging Effect on Source Depth and Extended Source Model

In general, as brain sources are activated far away from the sensor surface of the MEG/EEG

system, it is dramatically less sensitive to those sources and localization accuracy gets worse.

In this section, the performance of beamformer using our proposed strategy is investigated as

sources gradually move away from the sensor surface. For this investigation, the same source

configuration as in Figure 1 was used except for the depth of one source. Three source depths

(z-coordinate), 5.0, 2.9, and 0.8 cm, were considered. Figure 6 shows the reduced scanning

regions by our proposed strategy over varying source depths. Obviously, as the source is

located deeper, the source signal gets weaker; thus it is harder to reconstruct deep sources
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Figure 6: Reduced scanning regions by our proposed beamformer over varying source depths. Source
configuration is the same as in Figure 1, except for the depth (z-coordinate) of one source. (a) Depth:
z = 5.0 cm. (b) Depth: z = 2.9 cm. (c) Depth: z = 0.8 cm.

by our proposed beamformer. The reduced scanning region got slightly narrower since SNR

gets smaller, but it is not significantly noticeable.

Further, the performance of our proposed beamformer was tested on extended source

models. Extended sources were generated for three different source span diameters: 0, 2.0,

and 5.0 cm. Here the source with a 0 cm span diameter means a dipole source. Extended

sources were generated on the plane (z = 5.0 cm) parallel to the xy-plane. Each center of

the extended sources is located on (−3.7, −3.6, 5.0) cm. All dipole sources within extended
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source regions were oriented to the same direction. Expectedly, there was no big variation

on different span diameters, but extended sources with span diameter 5.0 cm seemed slightly

broad spread. However, reduction of scanning regions was almost unchanged (not shown).

Comparison on Computing Time

So far, many kinds of simulated data over different SNRs, different source depths, different

source correlations as well as different extended source spans have been tested to compare

reduced scanning beamformer using our proposed strategy to conventional full-scan beam-

former. Overall, our proposed beamformer shows its relative acceleration in time and yields

comparable in accuracy to the conventional beamformer. Figure 7 depicts comparative com-

putational time over numerous simulated problems, which were generated as follows.

(i) For single dipole problem, 1,000 dipoles were randomly distributed within the

spherical head model. For each dipole, 7 single dipole problems with different

SNRs (between 0.01 and 8) were generated by adding white Gaussian noise, thus

yielding 7,000 single dipole problems. Particularly, for different diameter of source

simulation, 6 different diameters of source (between 0 and 50 mm) at each source

were considered. Thus 6,000 single source problems were generated with keeping

SNR of 1 in this case.

(ii) For two-dipole problem, 1,000 pairs of two dipoles were randomly chosen among

1000 dipoles generated in single dipole problems. For each pair, two-dipole

problems were generated with 7 different SNRs (between 0.01 and 8), 7 different

source correlation coefficients (between 0 and 1), and 6 different interdistance

between two sources (between 0 and 100 mm). Hence, total 294,000 two-dipole

problems were generated to test.

For each problem, the number of scanning point and computational time were

estimated. Evidently, computational time is linearly proportional to the reduced scanning

points. In our proposed strategy, we found that averaged correlation computing time

including SVD computation was about 0.15 seconds, which was added to computational

time. The averaged computational time of the conventional beamformer was about 1.035

seconds. Each point in Figure 7 represents an averaged computing time with standard de-

viation over all corresponding simulated problems.

Figure 7(a) shows that our strategy speeds up as SNR gets higher. It means that

reduction rate of scanning points is higher as SNR goes higher. Further, computational time

has no noticeable difference as extent of source and source correlation vary (Figures 7(b)
and 7(c)). However, computational time over inter-source distance seems slight difference

(Figure 7(d)). As two sources get far, computational time increases slightly, but not sub-

stantial.

It is remarkable that correlation computation time did not change with respect to

SNRs; however, we found that computation time of SVD varied slightly over SNRs. We

guess that such small variation of SVD computing time may stem from different matrix

characteristics. Total original scanning points amounted to 10,000 and the temporal size of

the measurement matrix was 500. Figure 7(a) shows that beamformer utilizing our proposed

ETWB strategy computed significantly quicker than the conventional beamformer, yielding

about 30–60% improvement. These experiments demonstrate how the beamformer with our

strategy was effective in accelerating beamformer source imaging.
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Figure 7: Comparative computational time of our proposed strategy and conventional beamformer over
different problems varying SNR, source correlation, diameter of source, and distance between two sources.
Each problem requires a total of 10,000 scanning points and has temporal window of 500 time samples.
Each point is the averaged computational time with standard deviation.

4.4. Experimental Results: Empirical Data

In the present section, reduced scanning beamformer with our proposed strategy was applied

to empirical MEG data. Four kinds of empirical MEG datasets were acquired on a whole-head

gradiometer MEGVISION Yokogawa system with 160 channels—median nerve stimulations

(right hand/left hand) and auditory stimulations (left ear/right ear). Experimental paradigm

is detailed as follows.

A healthy male volunteer (24-year-old) participated in the MEG measurement

after appropriate informed consent. First, the somatosensory electrostimulation

median nerve of his right/left hand was stimulated and all measurements were
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done in a magnetically shielded room. During measurement, the subject was

instructed to keep his eyes closed.

A 2.9 (right)/3.5 (left)mA current and a 2 Hz sampling were applied with 0.3-

millisecond current pulses. Interstimulus-interval (ISI) was randomized with 0.5 s

duration. Second, the auditory stimulation of his right/left ear was stimulated

with eyes closed. A 80 dB sound pressure and a 2 Hz sampling were applied

with 40 ms plateau with 10 ms rise and falls. Also, ISI was randomized with a

2 s duration (random 50%, 1–3 s). Data were digitized at 2 kHz, lowpass filtered

at 500 Hz as well as postprocessed via a digital filter at 1–100 Hz (median nerve

stimulation)/1–50 Hz (auditory stimulation), excluding 50 Hz due to electrical

power conditions. In the case of median nerve stimulation, a total 399 (right-

hand)/418 (left-hand) single trials were acquired. Total 73 (right-ear)/70 (left-

ear) single trials were obtained in the case of auditory simulations.

Each collected single trial data (unaveraged) with 0–250 millisecond (time-locked, 500

time samples) time window after stimulation onset were analyzed. Such analysis can better

facilitate real-time brain activity monitoring for neurofeedback and brain computer interface

(BCI) [23], among others. For single trial analysis, the reduced scanning beamformer with

our proposed strategy and the conventional full-scan beamformer were used. We used entire

the source region consisting of a total of 8,640 scanning points and a temporal window with

500 samples corresponding to a duration of 250 milliseconds. The correlation threshold was

accordingly determined through formula defined in (4.1). Eigen-temporal projection matrix

VETWB was estimated as having explained 70% of the measurement matrix information. To

compare source reconstruction performance, all of each single trial was reconstructed and

their source information (number of scanning points × number of time samples × number

of trials) was averaged over the trials. Also, total computing time elapsed for single trial

analysis was measured over different datasets and two kinds of beamformers. Figure 8 shows

the averaged-over-trial-reconstructed source power maps of both conventional full-scan

beamformer and reduced scanning beamformer with our proposed strategy for median nerve

stimulation data (right and left). To verify the capability of our proposed reduced scanning

beamformer, we attempted single-trial analysis for empirical data. Both beamformers

were applied to compare and averaged source power maps over trial were generated by

considering zero power out of the reduced scanning region. Since each trial has different

reduced scanning region based on correlation threshold, averaged-over-trial source power

map was seen in the whole region.

Beamformer source imaging for averaged median nerve stimulation data yielded

focused source activity in the upper contralateral posterior central sulcus (not shown here),
which is relevant to existing literature (see [30] and therein). As illustrated in Figure 8,

strong source activity appeared in the upper contralateral area and most mildly active sources

seemed scattered around strong source activity, which is relevant to beamformer results (not

shown) for averaged median nerve stimulation data. Evidently, both beamformers showed

almost identical results, thereby reduced scanning beamformer being comparable in accuracy

to the conventional one. However, significant improvement in computing time was achieved

in the reduced scanning beamformer with our proposed strategy, and comparative total

elapsed computing time for each experiment was tabulated in Table 1.

These results tell that overall improvement in computing time of reduced scanning

beamformer with our proposed strategy is over 40%. In conclusion, our proposed reduced
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Figure 8: Averaged-over-trial-reconstructed source power maps of both conventional beamformer (left)
and reduced scanning beamformer with our proposed strategy (right) for empirical median nerve
stimulation data. (a) Right-hand movement. (b) Left-hand movement.

Table 1: Comparative total computing time (in seconds) of single trial analysis for different empirical
data between conventional full-scan beamformer and reduced scanning beamformer with our proposed
strategy. Source region with a total of 8,640 scanning points and a temporal window of 500 time samples
were used. Experiments were conducted on a PC (Intel Core 2 Duo CPU 2.4 GHz, 32 bit OS, and 4 GB
RAM).

Experiment (No. of trials) Elapsed time of beamformer imaging (sec)
Improvement (%)

Full-scan Reduced scanning

Median-right (399) 723.3 418.8 42.1

Median-left (418) 760.6 430.2 43.4

Auditory-right (73) 132.1 74.7 43.5

Auditory-left (70) 126.9 72.1 43.2

scanning beamformer is feasible and very applicable in accelerating the conventional beam-

former.

5. Discussion

5.1. Other Possible Accelerating Strategies

In this work, one beamformer using ETWB strategy was proposed to reduce the beamformer

scanning regions by computing correlation distribution, thereby accelerating beamformer.

Similar to the ETWB strategy, another strategy is possibly proposed by doing eigen-tem-

poral projection and in addition doing eigen-spatial projection. We call this strategy eigen-

spatiotemporal window-based method (we call it ESTWB). The discarding of relatively

insignificant sensor information via the ESTWB strategy seems more efficient in relation to

computation time while the ETWB strategy will inherently provide a more accurate correla-

tion distribution as well as yielding more reliable beamformer source imaging. In addition to
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ETWB and ESTWB strategies, temporal downsampling is another idea; however, it possibly

loses useful information.

Computing correlation in (3.1) and (3.2) amounts to a spatial matched filter when

normalization term of measurement vector m(t) in (3.1) is dropped. So, it is not surprising

that correlation behaves like another spatial filter, thereby yielding rough less accurate but

fast spatial imaging. This information is used for prescreening to determine final scanning

region of more elegant spatial filter, that is, MV beamformer. Such argument gives more

general perspective in developing speeding-up strategies of scanning methods. Any hybrid

between a fast scanning method and an accurate scanning method can be possible when they

can yield synergy effect due to reasonable combination strategies.

Furthermore, there exist other strategies to speed up scanning methods. One can

consider downsampling in spatial scanning to reduce computation effort. It is commonly

applicable in scanning methods like beamformer. When our strategy would be applied

together, scanning methods should be boosted easily. Another easy strategy is to increase

computational resources such as parallel computing to use many personal computers at

the same time. This provides powerful computing ability; thus tens to hundreds of times

improvement would be possible. Certainly, such a strategy demands a relatively high cost;

thus, it may be not easily affordable to most investigators. It is noted that our proposed

strategy of simple consideration of correlation distribution can be achieved on a single

personal computer.

5.2. Applicability of Our Proposed Strategy

As discussed in Section 4.1, simple description and observation of correlation distribution

around active and inactive sources motivated us to conduct this kind of investigation. For a

few strong brain sources being well separated, our strategy is favorably relevant. However,

for many sources, the correlation threshold may become lower due to more mixed source

intercorrelations; thus, scanning points will be slightly reduced and our proposed correlation

threshold criterion may not be effective in such cases. Nevertheless, real-time brain activity

monitoring systems (or BCI systems) are usually designed to find relatively rapidly changing

source information (or discriminative information among different conditions); thus, a few

strong sources may be accountable and helpful for providing such information.

In real-time monitoring or BCI systems, seamless monitoring or control decision is

of great importance. In reality, most systems have some delay coming from computation

implicitly required to do any defined action; however, such delay is reasonably small or one

may design the system to have delay constant or within an affordable bound; thus it looks

real-time system to user. Particularly, source imaging analysis introduced in these systems

may not avoid significant delay incurring from intense computation. However, well-desiged

system to hide such significant delay may be possible. For example, assuming that every 1-

second-long window data is collected to analyze and source imaging requires 1 second, such

system may be designed that data is analyzed to give final result to the system during system

being collected next 1 second-long data; then system continues to do the same procedure.

This system can achieve seamless procedure (it looks real-time system from user) with

constant delay of 1 second. From this perspective on real-time monitoring or BCI systems,

the faster source imaging can achieve the higher monitoring scan or decision rate. Therefore,

our proposed strategy yielding about 40% speed-up of source imaging is well applicable in

this reasoning.
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On the other hand, in BCI systems, one could define a region-of-interest (ROI)
manually [23, 24] or by elegant procedures [31, 32]. Source imaging on such ROI could

increase the spatial specificity or enhance SNR in source space [31]. Furthermore, it is possible

to achieve far more accelerated source imaging than whole brain source imaging. To achieve

real-time source activity monitoring or source information-based BCI [20, 22–24], naturally

higher spatial resoluted imaging within ROI is beneficial in such development. However, it

requires more computation time. Our proposed strategy can be still applicable on ROI in the

same manner. Furthermore, single-trial analysis using fast beamformer has been beneficial

in developing many applications [18, 19]. Accordingly, our proposed method was applied

to single-trial data, such as empirical median nerve stimulation and auditory stimulation, as

discussed in Section 4.4. It revealed several dynamic activation regions, usually not visible

during averaged data analysis (not shown here). Such single-trial analysis and online BCI

application will be investigated in more detail and reported in a subsequent paper.

5.3. Other Issues

Through the Monte Carlo simulation, our correlation threshold criterion, depending on SNR,

was formulated in a least square sense. This criterion was dependent on sensor configuration

(geometry); so it should be reestimated under other sensor configurations. Factors other than

SNR may have some effects on correlation thresholds. Accordingly, more thorough research

is currently under investigation.

Even though the conventional vector-type MV-beamformer among the beamformer

variants was adopted in this work, scalar-type or other nonadaptive beamformers are simi-

larly applicable. Furthermore, this strategy is very straightforward for EEG or simultaneous

MEG/EEG data application, and subsequent work on simultaneous MEG/EEG beamformers

[33] is currently under investigation.
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