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Maria Grazia Naso, Italy
Sylvia Novo, Spain
Micah Osilike, Nigeria
Mitsuharu Ôtani, Japan
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Modern biology and epidemiology have become more
and more driven by the need of mathematical models and
theory to elucidate general phenomena arising from the
complexity of interactions on the numerous spatial, temporal,
and hierarchical scales at which biological systems operate
and diseases spread. Epidemic modeling and study of disease
spread such as gonorrhea, HIV/AIDS, BSE, foot and mouth
disease, measles, and rubella have had an impact on public
health policy around the world which includes the United
Kingdom, The Netherlands, Canada, and the United States.
A wide variety of modeling approaches are involved in
building up suitable models. Ordinary differential equation
models, partial differential equationmodels, delay differential
equation models, stochastic differential equation models,
difference equation models, and nonautonomous models
are examples of modeling approaches that are useful and
capable of providing applicable strategies for the coexistence
and conservation of endangered species, to prevent the
overexploitation of natural resources, to control disease’s
outbreak, and to make optimal dosing polices for the drug
administration, and so forth.

This special issue is concerned with the nonlinear
dynamicmodeling and related analysis of interacting popula-
tions and important epidemic diseases. All papers submitted
to this special issue went through a thorough peer-refereeing
process. Based on the reviewer’s reports, we collect 50
original research articles by more than 100 active interna-
tional researchers on differential equations. In the following,
we briefly review each of the papers by highlighting the
significance of the key contributions.

Twenty papers are concerned about the disease dynamics
of differential equations on time scales. N. Wang et al. study
the global stability of amultigroup SEIR epidemicmodel with
general latency distribution and general incidence rate and
define the basic reproduction number 𝑅

0
as the role of a

threshold. L. Feng et al. present a mathematical model which
combines the scale-free trait of Internet with the formation
of P2P botnet and demonstrate that the model has a globally
stable endemic equilibrium when the infection rate is greater
than a critical value. C. Liu et al. establish a hybrid SIR
vector disease model with incubation and show that there is
a phenomenon of singularity inducing bifurcation as well as
local stability switch around interior equilibrium when the
economic interest increases forward zero. L. Qi et al. establish
a mathematical model of schistosomiasis transmission under
flood in Anhui province, China, and show that the disease-
free equilibrium is locally asymptotically stable if the basic
reproduction number is less than one, and the stability of the
unique endemic equilibrium may be changed under some
conditions even if the basic reproduction number is larger
than one. J.Wang et al. analyze the impact of seasonal activity
of psyllid on the dynamics ofHuanglongbing (HLB) infection
and establish a new model about HLB transmission and
show that if 𝑅

0
< 1, the disease-free periodic solution is

globally asymptotically stable while if 𝑅
0
> 1 the disease

persists. F. Wang et al. present an estimating formula for
hospital potential capacity and demonstrate that the formula
is useful to estimate the basic reproduction number in
epidemiology.The resultsmay contribute to the improvement
of decision-making in the allocation ofmedical resources and
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the evaluation of the interventions and control efforts of the
infectious disease. C. Yan and J. Jia study the local stability
of the disease-free, endemic equilibria and Hopf bifurcation
of a delayed SIR epidemic model with information variables
and limitedmedical resources. Y. Pei et al. propose a delay SIR
epidemic model with difference in immunity and successive
vaccination and obtain that the basic reproduction number
governs the dynamic behavior of the system. C.Huang andA.
Fan study the relationship between antimicrobial resistance
and the concentration of antibiotics with dynamical model
of competitive population and indicate that long-term high-
strength antibiotic treatment and prevention can induce the
extinction of susceptible strain. M. Li and X. Liu investigate
the disease dynamics of an SIR epidemic model with nonlin-
ear incidence rate and show that the global properties of the
system depend on both properties of these general functions.
C. Dai et al. investigate the dynamic behavior of a viral
infectionmodel with general contact rate between susceptible
host cells and free virus particles and give the local stability
of the equilibria. M. A. Obaid and A. M. Elaiw propose and
analyze two virus infection models with antibody immune
response and chronically infected cells and give the global
asymptotic stability of all steady states of themodels. G. Li and
G. Li consider an SIR endemic model in which the contact
transmission function is related to the number of infected
population and show that the model exhibits the bistability
and undergoes saddle-node bifurcation, the Hopf bifurca-
tion, and the Bogdanov-Takens bifurcation. H.-F. Huo and
G.-M. Qiu study the dynamics of a malaria model and show
that the disease-free equilibrium is globally asymptotically
stable if 𝑅

0
< 1, and the system is uniformly persistent

if 𝑅
0
> 1. C. Chen and Y. Xiao propose a mathematical

model to consider the effects of saturated diagnosis and
vaccination on HIV/AIDS infection and find that there exists
a backward bifurcationwhich suggests that the disease cannot
be eradicated even if the basic reproduction number is less
than unity. When the basic reproduction number is greater
than unity, the system is uniformly persistent. The findings
suggest that increasing vaccination rate and vaccine efficacy
and enhancing interventions like reducing share injectors
can greatly reduce the transmission of HIV among IDUs in
Yunnan province, China. J. Cui and Z. Wu consider an SIRS
model incorporating a general nonlinear contact function
andfind thatwhen the basic reproductionnumber𝑅

0
< 1, the

disease-free equilibrium is locally asymptotically stable, while
when 𝑅

0
> 1, there is a unique endemic equilibrium that

is locally asymptotically stable. P. Bi and H. Xiao consider a
tumor-immune competitionmodel with delay which consists
of two-dimensional nonlinear differential equation and give
the general formulas for the direction, period, and stability of
the bifurcated periodic solutions are given for codimension-1
and codimension-2 bifurcations, including Hopf bifurcation
and BT bifurcation. L. Wang et al. study a class of discrete
SIRS epidemic models with nonlinear incidence rate and
find that if basic reproduction number 𝑅

0
< 1, then the

disease-free equilibrium is globally asymptotically stable,
and if 𝑅

0
> 1, then the model has a unique endemic

equilibrium and when some additional conditions hold, the
endemic equilibrium is also globally asymptotically stable.

X. Zhou and X. Shi analyze a discrete-time-delay differential
mathematical model that describes HIV infection of CD4+T
cells with drugs therapy and give the stability of the two
equilibria and the existence ofHopf bifurcation at the positive
equilibrium. K. Wang et al. propose a patch model for
echinococcosis due to dogs migration and show that the
dynamics of themodel can be completely determined by𝑅

0
. If

𝑅
0
< 1, the disease-free equilibrium is globally asymptotically

stable. When 𝑅
0
> 1, the model is permanent and endemic

equilibrium is globally asymptotically stable.
Seven papers are developed to discuss the stochastic

dynamics of population models. S. Zhao and M. Song
consider the global existence and positivity of the solution
and give sufficient conditions for the global stability in prob-
ability of a stochastic predator-prey system with Beddington-
DeAngelis functional response and stage structure. X. Ji
and S. Yuan study the dynamics of a delayed stochastic
model simulating wastewater treatment process and give
the sufficient conditions for the stochastic stability of its
positive equilibrium. F. Rao investigates an SIR epidemic
model with stochastic perturbations and gives the existence
of global positive solutions, stochastic boundedness, and
permanence. L. Wang et al. study the stochastic dynamics of
an SIRS epidemic model incorporating media coverage and
find that if the intensity of noise is large, then the disease is
prone to extinction, which can provide us with some useful
control strategies to regulate disease dynamics. J. Zhao et al.
investigate a stochastic SI epidemic model in the complex
networks and show that the solution will oscillate around
the disease-free equilibrium of deterministic system when
𝑅
0
≤ 1, while it is persistent when 𝑅

0
> 1. F. Rao et al.

investigate a Hassell-Varley type predator-prey model with
stochastic perturbations and find some sufficient conditions
for stochastically asymptotical boundedness, permanence,
persistence inmean, and extinction of the solution. L. Zu et al.
analyze the influence of stochastic perturbations on a single-
species logistic model with the population’s nonlinear diffu-
sion among 𝑛 patches and give the sufficient conditions for
stochastic permanence and persistence in mean, stationary
distribution, and extinction.

Four papers focus on the travelingwave solutions. X. Tian
and R. Xu investigate a delayed SIRS infectious disease model
with nonlocal diffusion and nonlinear incidence and derive
the existence of a traveling wave solution connecting the
disease-free steady state and the endemic steady state. X. Wu
et al. establish the existence of traveling wave solutions and
small amplitude traveling wave train solutions of a reaction-
diffusion system based on a predator-prey model incorpo-
rating a prey refuge and analyze the dynamic behavior of
this model in the three-dimensional phase space. T. Zhang
and Q. Gou consider the minimal wave speed of bacterial
colonymodel with saturated functional response and give the
existence and nonexistence of the traveling wave solutions.
T. Zhang et al. investigate the spreading speed of a reaction-
diffusion cholera model and find that there exists a traveling
wave solution.

Four papers study the impulsive dynamics of population
models. M. Zhao and C. Dai investigate the population
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dynamics of a three-species ecological system with impul-
sive effect and give the conditions for the system to be
permanent when the number of predators released is less
than some critical value. In particular, the authors find that
less beneficial prey can support the predator alone when
more beneficial prey goes extinct. J. Li considers a class of
neural networks described by nonlinear impulsive neutral
nonautonomous differential equations with delays and gives
the criteria on global exponential stability. M. Zhao et al.
investigate the dynamics of a Holling-Tanner predator-prey
system with state-dependent impulsive effects and give the
existence of periodic solution of the system with state-
dependent impulsive effects. Z. Luo investigates the existence
of multiple positive periodic solutions of a class of impulsive
functional differential equations with a parameter.

Five papers consider the stationary patterns in the
reaction-diffusion equations. L. Zhang focuses on the pattern
formation of a ratio-dependent food chain model and finds
that the model dynamics exhibits complex pattern replica-
tion. X. Lian et al. investigate the spatiotemporal dynamics
of a bacterial colony model and derive the conditions for
Hopf and Turing bifurcations. L. Zhang and Z. Li focus on
a spatially extended Holling-type IV predator-prey model
that contains some important factors, such as noise (random
fluctuations), external periodic forcing, and diffusion pro-
cesses, and find that noise or external periodic forcing can
induce instability and enhance the oscillation of the species
density, and the cooperation between noise and external
periodic forces inherent to the deterministic dynamics of
periodically driven models gives rise to the appearance of
a rich transport phenomenology. Y. Yuan et al. investigate
the disease dynamics of a reaction-diffusion epidemic model
and give the conditions of the existence and nonexistence
of the positive nonconstant steady states, which guarantees
the existence of the stationary patterns. Y. Wang et al.
investigate a nonlinear reaction-advection-diffusion model
of the interaction between nutrients and plankton and find
that if the sinking velocity exceeds a certain critical value,
the stable state becomes unstable and the wavelength of
phytoplankton increases with the increase of sinking velocity.

Three papers investigate the predation dynamics. Y.
Gao and S. Liu investigate a predator-prey model with
dispersal for both predator and prey among 𝑛 patches
and derive sufficient conditions under which the positive
coexistence equilibrium of this model is unique and globally
asymptotically stable if it exists. X. Feng et al. formulate
and investigate a nonautonomous predator-prey model with
infertility control in the prey and give the conditions for the
permanence and extinction of fertility prey and infertility
prey. X. Fan et al. study the global property in a delayed
periodic predator-prey model with stage-structure in prey
and density-independence in predator and give the sufficient
conditions of the integrable form for the permanence and
extinction.

There are seven new results in the special issue. Y.
Peng and T. Zhang investigate stability and Hopf bifurcation
analysis of a gene expression model with diffusion and time
delay and give the local stability and delay-induced Hopf
bifurcation. M. Li et al. establish the interaction model of

two-cell populations following the concept of the random-
walk. After assuming that the cell movement is constrained
by space limitation primarily, the authors analyze the model
to obtain the behavior of two-cell populations as time is close
to initial state and far into the future. P. Tang et al. establish a
mathematical model for national fitness in China.The results
indicate that national fitness put forward by the Chinese
government is reasonable, and, in order to increase the
number of people who frequently participate in sport exercise
in a short period of time, if only one measure can be chosen,
guiding people who never take part in physical exercise will
be the best measure. X. Wang et al. presents a deterministic
SATQ-type mathematical model for the spread of alcoholism
with two control strategies and give some properties of the
solutions to the model including positivity, existence, and
stability. Y. Gao et al. give the sufficient conditions for the
existence of at least two positive periodic solutions for a
plant-haremodel with toxin-determined functional response
(nonmonotone). Y. Zhai et al. investigate the behavior of
price differential equation model based on economic theory
with two delays and show the linear stability and local
Hopf bifurcation. W. Wang and B. Liu consider the shunting
inhibitory cellular neural networks with time-varying delays
in the leakage (or forgetting) terms and employ a novel
argument to establish a criterion on the global exponential
stability of pseudo-almost periodic solutions.
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The population dynamics of a three-species ecological systemwith impulsive effect are investigated. Using the theories of impulsive
equations and small-amplitude perturbation scales, the conditions for the system to be permanent when the number of predators
released is less than some critical value can be obtained. Furthermore, because the predator in the system follows the predictions
of optimal foraging theory, it follows that optimal foraging promotes species coexistence. In particular, the less beneficial prey
can support the predator alone when the more beneficial prey goes extinct. Moreover, the influences of the impulsive effect and
optimal foraging on inherent oscillations are studied using simulation, which reveals rich dynamic behaviors such as period-halving
bifurcations, a chaotic band, a periodic window, and chaotic crises. In addition, the largest Lyapunov exponent and the power
spectra of the strange attractor, which can help analyze the chaotic dynamic behavior of themodel, are investigated.This information
will be useful for studying the dynamic complexity of ecosystems.

1. Introduction

In recent years, interest in studying nonlinear dynamic
systems has exploded. In the 1970s, since the pioneering work
ofMay on the relationship between food-web complexity and
stability and the chaotic phenomenon [1–3], more and more
researchers have become interested in dynamic behavior
involving ecological mechanisms that promote species diver-
sity [4–20]. More recently, dynamic systems’ studies have
benefited from an infusion of interest and new techniques in
ecology.

It is known that when a predator is shared by two non-
competing species, predator-mediated apparent competition
often leads to competitive exclusion of one prey popula-
tion [21]. This phenomenon is related to optimal foraging
and adaptive foraging. A two-prey-one-predator population
model with optimal predator foraging behavior has been
studied in a fine-grained environment [22–24]. On this basis,
Křivan and Eisner considered a system composed of two prey

types and an optimally foraging predator [25] in a system
described by the following model:

̇𝑥 (𝑡) = 𝑥 (𝑡) (𝑟1 (𝑥 (𝑡))

−
𝜆
1
𝑧 (𝑡)

1 + ℎ
1
𝜆
1
𝑥 (𝑡) + 𝑢ℎ

2
𝜆
2
𝑦 (𝑡)

)

̇𝑦 (𝑡) = 𝑦 (𝑡) (𝑟
2
(𝑦 (𝑡))

−
𝑢𝜆
2
𝑧 (𝑡)

1 + ℎ
1
𝜆
1
𝑥 (𝑡) + 𝑢ℎ

2
𝜆
2
𝑦 (𝑡)

)

̇𝑧 (𝑡) = 𝑧 (𝑡) (
𝑒
1
𝜆
1
𝑥 (𝑡) + 𝑢𝑒2𝜆2𝑦 (𝑡)

1 + ℎ
1
𝜆
1
𝑥 (𝑡) + 𝑢ℎ

2
𝜆
2
𝑦 (𝑡)

− 𝑚) .

(1)

This paper considers an impulsive differential-equation
model based on model (1), which assumes that predators
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forage according to optimal foraging theory [23, 24]. This
system can be expressed by the following equations:

̇𝑥 (𝑡) = 𝑟
1
𝑥 (𝑡) (

𝑘
0
− 𝑥 (𝑡)

𝑘
1
− 𝑥 (𝑡)

) − 𝑏
1
𝑥
2
(𝑡)

−
𝜆
1
𝑥 (𝑡) 𝑧 (𝑡)

1 + ℎ
1
𝜆
1
𝑥 (𝑡) + 𝑢ℎ2𝜆2𝑦 (𝑡)

̇𝑦 (𝑡) = 𝑟
2
𝑦 (𝑡) (

𝑘
2
− 𝑦 (𝑡)

𝑘
3
− 𝑦 (𝑡)

) − 𝑏
2
𝑦
2
(𝑡)

−
𝑢𝜆
2
𝑦 (𝑡) 𝑧 (𝑡)

1 + ℎ
1
𝜆
1
𝑥 (𝑡) + 𝑢ℎ2𝜆2𝑦 (𝑡)

̇𝑧 (𝑡) = 𝑧 (𝑡) (
𝑒
1
𝜆
1
𝑥 (𝑡) + 𝑢𝑒

2
𝜆
2
𝑦 (𝑡)

1 + ℎ
1
𝜆
1
𝑥 (𝑡) + 𝑢ℎ2𝜆2𝑦 (𝑡)

− 𝑚)

𝑡 ̸= 𝑛𝑇

𝑥 (𝑡
+
) = 𝑥 (𝑡)

𝑦 (𝑡
+
) = 𝑦 (𝑡)

𝑧 (𝑡
+
) = 𝑧 (𝑡) + 𝑝

𝑡 = 𝑛𝑇,

(2)

where 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) are, respectively, the densities of two
prey types and one predator at time 𝑡, 𝑟

𝑖
(𝑖 = 1, 2) is the

per capita prey intrinsic growth rate, 𝑟
1
⋅ 𝑘
0
(0 ≤ 𝑘

0
/𝑘
1
≤

1), 𝑟
2
⋅ 𝑘
2
(0 ≤ 𝑘

2
/𝑘
3
≤ 1) are the respective carrying

capacities of the prey, and 𝑘
1
, 𝑘
3
are the corresponding values

of available resources or in the ideal case (i.e., where no
resources are wasted) the carrying capacity. However, the
ideal case is impossible in reality. The ratios 𝑘

0
/𝑘
1
, 𝑘
2
/𝑘
3

express the relative efficiency of nutrient utilization in species
𝑥, 𝑦. At any time, if 𝑥 < 𝑘

0
< 𝑘
1
, 𝑦 < 𝑘

2
< 𝑘
3
, the efficiency

is high as long as 𝑘
0
/𝑘
1
, 𝑘
2
/𝑘
3
are close to one; when the

values are lower, this indicates that resource limitations are
restricting the population increase [23]. 𝑏

𝑖
(𝑖 = 1, 2) are the

rate of intraspecific competition of the prey, 𝜆
𝑖
(𝑖 = 1, 2)

is the cropping rate of a predator feeding on the 𝑖th prey
type, 𝑒

𝑖
(𝑖 = 1, 2) is the conversion factor relating predator

reproduction to prey consumption, and ℎ
𝑖
(𝑖 = 1, 2) is the

per capita mortality rate for the forager. In this paper, it is
assumed that prey type 𝑥 is more beneficial than the other
and hence 𝑒

1
/ℎ
1
> 𝑒
2
/ℎ
2
[26, 27]. To study optimal foraging,

a control parameter 𝑢 (0 ≤ 𝑢 ≤ 1) is introduced [25],
which represents the probability that the alternative second
prey type is included in the predator’s diet. 𝑇 is the period
of the impulsive effect, 𝑛 ∈ 𝑁, and 𝑝 > 0 is the number of
predators released at 𝑡 = 𝑛𝑇. To achieve a set of conditions
which can guarantee that the system will be permanent and
that the numbers of the two prey types are not so large that
they go extinct because of exceeding the carrying capacity of
the environment, the model will release a certain number of
predators only at 𝑡 = 𝑛𝑇 because the predator is assumed to
be a versatile and advanced predator.

The rest of this paper is organized as follows. Section 2
will review the effect of impulsive perturbations, establish

conditions for extinction, and obtain the conditions for
permanence of System (2) using the Floquet theory of impul-
sive equations at small-amplitude perturbation scales. In
Section 3, the results of computer-based numerical analysis
are shown and discussed briefly. In addition, the largest Lya-
punov exponent, which also indicates the chaotic dynamic
behavior of the model, is computed, and the Fourier spectra,
which illustrate the qualitative nature of strange attractors, are
plotted. Finally, conclusions and remarks are stated.

2. Analysis of the System

Let 𝑅
+
= [0,∞), 𝑅

+
= {𝑋 ∈ 𝑅

3
: 𝑋 ≥ 0,𝑋 = (𝑥, 𝑦, 𝑧)},

Ω = int𝑅3
+
, and let 𝑁 be the set of all nonnegative integers.

Themap 𝑔 = (𝑔
1
, 𝑔
2
, 𝑔
3
)
𝑇 is defined by the right-hand side of

the first three equations of System (2).
Let 𝑉 : 𝑅

+
× 𝑅
3

+
→ 𝑅
+
; then 𝑉 is said to belong to class

𝑉
0
if
(1) 𝑉 is continuous in (𝑛𝑇, (𝑛 + 1)𝑇] × 𝑅3

+
, and for each

𝑥 ∈ 𝑅
3

+
, 𝑛 ∈ 𝑁, lim

(𝑡,𝑦)→ (𝑛𝑇
+
,𝑥)
𝑉(𝑡, 𝑦) = 𝑉(𝑛𝑇

+
, 𝑥)

exists;
(2) 𝑉 is locally Lipschitzian in𝑋.

Definition 1. Let 𝑉 ∈ 𝑉
0
; then, for (𝑡, 𝑥) ∈ (𝑛𝑇, (𝑛 + 1)𝑇] ×

𝑅
3

+
, the upper right derivative of 𝑉(𝑡, 𝑥) with respect to the

impulsive differential System (2) can be defined as

𝐷
+
𝑉 (𝑡, 𝑥) = lim

ℎ→0

sup 1
ℎ
[𝑉 (𝑡 + ℎ, 𝑥 + ℎ𝑔 (𝑡, 𝑥)) − 𝑉 (𝑡, 𝑥)] .

(3)

The solution of System (2) is a piecewise continuous
function𝑋 : 𝑅

+
→ 𝑅
3

+
, where𝑋(𝑡) is continuous on (𝑛𝑇, (𝑛+

1)𝑇], 𝑛 ∈ 𝑁, and 𝑋(𝑛𝑇+) = lim
𝑡→𝑛𝑇

𝑋(𝑡) exists. Obviously,
the smoothness property of 𝑔 guarantees the global existence
and uniqueness of a solution of System (2) (for details, see
[28–30]).

Definition 2. System (2) is said to be permanent if there
exists a compact region Ω = int𝑅3

+
such that every

solution (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) of System (2) will eventually enter
and remain in the regionΩ.

The following lemma will now be presented.

Lemma3. Let𝑋(𝑡) be a solution of System (2)with𝑋(0+) ≥ 0;
then 𝑋(𝑡) ≥ 0 for all 𝑡 ≥ 0, and furthermore 𝑋(𝑡) > 0, 𝑡 ≥ 0 if
𝑋(0
+
) > 0.

An important comparison theorem will now be used on
the impulsive differential equation.

Lemma 4 (see [28–30]). Let 𝑉 ∈ 𝑉
0
and assume that

𝐷
+
𝑉 (𝑡, 𝑋) ≤ 𝑓 (𝑡, 𝑉 (𝑡, 𝑋)) 𝑡 ̸= 𝑛𝑇

𝑉 (𝑡, 𝑋 (𝑡
+
)) ≤ 𝜑

𝑛
(𝑉 (𝑡, 𝑋)) 𝑡 = 𝑛𝑇,

(4)

where𝑓 : 𝑅
+
×𝑅
+
→ 𝑅 is continuous in (𝑛𝑇, (𝑛+1)𝑇]×𝑅

+
and

for 𝜇 ∈ 𝑅
+
, 𝑛 ∈ 𝑁, lim

(𝑡,𝑦)→ (𝑛𝑇
+
,𝜇)
𝑓(𝑡, 𝑦) = 𝑓(𝑛𝑇

+
, 𝜇) exists
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and 𝜑
𝑛
: 𝑅
+
→ 𝑅
+
is nondecreasing. Let 𝑟(𝑡) be the maximal

solution to the scalar impulsive differential equation

̇𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) 𝑡 ̸= 𝑛𝑇

𝑢 (𝑡
+
) = 𝜑
𝑛
(𝑢 (𝑡)) 𝑡 = 𝑛𝑇

𝑢 (0
+
) = 𝑢
0

(5)

existing on [0,∞). Then 𝑉(0
+
, 𝑋
0
) ≤ 𝑢

0
implies that

𝑉(𝑡, 𝑋(𝑡)) ≤ 𝑟(𝑡), 𝑡 ≥ 0, where 𝑋(𝑡) is any solution to System
(2).

Theorem 5. There exists a constant 𝑀 such that 𝑥(𝑡) ≤

𝑀, 𝑦(𝑡) ≤ 𝑀, and 𝑧(𝑡) ≤ 𝑀 for each solution 𝑋(𝑡) =
(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) of System (2) for all 𝑡 large enough.

Proof. Define 𝑉(𝑡, 𝑋(𝑡)) such that

𝑉 (𝑡, 𝑋 (𝑡)) = 𝑒
1
𝑥 (𝑡) + 𝑒

2
𝑦 (𝑡) + 𝑧 (𝑡) , (6)

where 𝑉 ∈ 𝑉
0
. Since ̇𝑥(𝑡) ≤ 𝑟

1
𝑥(𝑡) − 𝑏

1
𝑥
2
(𝑡) and ̇𝑦(𝑡) ≤

𝑟
2
𝑦(𝑡) − 𝑏

2
𝑦
2
(𝑡), then 𝑥(𝑡) ≤ 𝑟

1
/𝑏
1
, 𝑦(𝑡) ≤ 𝑟

2
/𝑏
2
, and the

upper right derivative of 𝑉(𝑡, 𝑋(𝑡)) can be calculated along
a solution of System (2), yielding the following impulsive
differential equation:

𝐷
+
𝑉 (𝑡) + 𝐿𝑉 (𝑡) = 𝐿𝑒1𝑥 (𝑡) + 𝑟1𝑒1𝑥 (𝑡) (

𝑘
0
− 𝑥 (𝑡)

𝑘
1
− 𝑥 (𝑡)

)

− 𝑏
1
𝑒
1
𝑥
2
(𝑡) + 𝐿𝑒2𝑦 (𝑡)

+ 𝑟
2
𝑒
2
𝑦 (𝑡) (

𝑘
2
− 𝑦 (𝑡)

𝑘
3
− 𝑦 (𝑡)

) − 𝑏
2
𝑒
2
𝑦
2
(𝑡)

+ (𝐿 − 𝑚) 𝑧 (𝑡) 𝑡 ̸= 𝑛𝑇

𝑉 (𝑡
+
) = 𝑉 (𝑡) + 𝑝 𝑡 = 𝑛𝑇.

(7)

Obviously,

𝐷
+
𝑉 (𝑡) + 𝐿𝑉 (𝑡) ≤ (𝐿𝑒

1
+ 𝑟
1
𝑒
1
) 𝑥 (𝑡) − 𝑏

1
𝑒
1
𝑥
2
(𝑡)

+ (𝐿𝑒
2
+ 𝑟
2
𝑒
2
) 𝑦 (𝑡) − 𝑏

2
𝑒
2
𝑦
2
(𝑡)

+ (𝐿 − 𝑚) 𝑧 (𝑡) .

(8)

Let 0 < 𝐿 < 𝑚; then 𝐷+𝑉(𝑡) + 𝐿𝑉(𝑡) is bounded. Select
𝐿
1
, 𝐿
2
such that

𝐷
+
𝑉 (𝑡) ≤ −𝐿

1
𝑉 (𝑡) + 𝐿

2
𝑡 ̸= 𝑛𝑇

𝑉 (𝑡
+
) = 𝑉 (𝑡) + 𝑝 𝑡 = 𝑛𝑇,

(9)

where 𝐿
1
, 𝐿
2
are two positive constants.

According to Lemma 4,

𝑉 (𝑡) ≤ (𝑉 (0
+
) −

𝐿
2

𝐿
1

) exp (−𝐿
1
𝑡)

+
𝑝 exp (1 − exp (−𝑛𝐿

1
𝑡))

exp (𝐿
1
𝑇) − 1

exp (𝐿
1
𝑡)

× exp (−𝐿
1
(𝑡 − 𝑛𝑡)) +

𝐿
2

𝐿
1

,

(10)

where 𝑡 ∈ (𝑛𝑇, (𝑛 + 1)𝑇]. Hence,

lim
𝑡→∞

𝑉 (𝑡) ≤
𝐿
2

𝐿
1

+
𝑝 exp (𝐿

1
𝑇)

exp (𝐿
1
𝑇) − 1

. (11)

Therefore,𝑉(𝑡, 𝑋(𝑡)) is ultimately bounded, and it follows
that each positive solution of System (2) is uniformly ulti-
mately bounded. This completes the proof.

Next, some basic properties of the following subsystem of
System (2), in which the two prey types are absent, will be
defined:

̇𝑧 (𝑡) = −𝑚𝑧 (𝑡) 𝑡 ̸= 𝑛𝑇

𝑧 (𝑡
+
) = 𝑧 (𝑡) + 𝑝 𝑡 = 𝑛𝑇

𝑧 (0
+
) = 𝑧
0
.

(12)

Clearly, 𝑧∗(𝑡) = 𝑝 exp(−𝑚(𝑡 − 𝑛𝑇))/(1 − exp(−𝑚𝑇)), 𝑡 ∈
(𝑛𝑇, (𝑛+1)𝑇], 𝑛 ∈ 𝑁, 𝑧∗(0+) = 𝑝/(1−exp(−𝑚𝑇)) is a positive
periodic solution of System (12). Hence,

𝑧 (𝑡) = (𝑧 (0
+
) −

𝑝

1 − exp (−𝑚𝑇)
) exp (−𝑚𝑇) + 𝑧∗ (𝑡) (13)

is a solution of System (12) with initial value 𝑧
0
≥ 0, where

𝑡 ∈ (𝑛𝑇, (𝑛 + 1)𝑇], 𝑛 ∈ 𝑁.

Lemma 6. For a positive periodic solution 𝑧∗(𝑡) of System (12)
and every solution 𝑧(𝑡) of System (12) with 𝑧

0
≥ 0, |𝑧(𝑡) −

𝑧
∗
(𝑡)| → 0, 𝑡 → ∞.

Hence, when only the predator is present, it is possible
to obtain the complete expression for the periodic solution
(0, 0, 𝑧

∗
(𝑡)) of System (2).

Based on these discussions, the following theorems can
be proved.

Theorem 7. Let (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) be any solution of System (2).
Then

(1) (0, 0, 𝑧∗(𝑡)) is said to be locally asymptotically stable if
𝑝 > max(𝑟

1
𝑘
0
𝑇𝑚/𝜆

1
𝑘
1
, 𝑟
2
𝑘
2
𝑇𝑚/𝑢𝜆

2
𝑘
3
);

(2) (0, 0, 𝑧∗(𝑡)) is said to be globally asymptotically stable
if 𝑝 > max(𝑟

1
𝑘
0
𝑇𝑚/𝜆

1
𝑘
1
, 𝑟
2
𝑘
2
𝑇𝑚/𝑢𝜆

2
𝑘
3
) and

𝑝 exp (−𝑚𝑇)
1 − exp (−𝑚𝑇)

> max(
𝑟
1
(1 + ℎ

1
𝜆
1
𝑀+ 𝑢ℎ

2
𝜆
2
𝑀)

𝜆
1

,

𝑟
2
(1 + ℎ

1
𝜆
1
𝑀+ 𝑢ℎ

2
𝜆
2
𝑀)

𝑢𝜆
2

) .

(14)
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Proof. The local stability of the periodic solution (0, 0, 𝑧∗(𝑡))
may be determined by considering the behavior of small-
amplitude perturbations of the solution. Define

𝑥 (𝑡) = 𝑢 (𝑡) , 𝑦 (𝑡) = V (𝑡) , 𝑧 (𝑡) = 𝑤 (𝑡) + 𝑧
∗
(𝑡) .

(15)

Then substitute (15) into System (2). The linearization of the
system becomes

̇𝑢 (𝑡) = (𝑟
1

𝑘
0

𝑘
1

− 𝜆
1
𝑧
∗
)𝑢 (𝑡)

̇V (𝑡) = (𝑟2
𝑘
2

𝑘
3

− 𝑢𝜆
2
𝑧
∗
) V (𝑡)

̇𝑤 (𝑡) = 𝑧
∗
𝑒
1
𝜆
1
𝑢 (𝑡) + 𝑧

∗
𝑢𝑒
2
𝜆
2
V (𝑡) − 𝑚𝑤 (𝑡)

𝑡 ̸= 𝑛𝑇

𝑢 (𝑡
+
) = 𝑢 (𝑡)

V (𝑡+) = V (𝑡)

𝑤 (𝑡
+
) = 𝑤 (𝑡)

𝑡 = 𝑛𝑇.

(16)

Therefore,

(

𝑢 (𝑡)

V (𝑡)
𝑤 (𝑡)

) = Φ (𝑡)(

𝑢 (0)

V (0)
𝑤 (0)

) 0 ≤ 𝑡 ≤ 𝑇, (17)

where Φ(𝑡) satisfies

𝑑Φ

𝑑𝑡
=(

𝑟
1

𝑘
0

𝑘
1

− 𝜆
1
𝑧
∗

0 0

0 𝑟
2

𝑘
2

𝑘
3

− 𝑢𝜆
2
𝑧
∗

0

𝑧
∗
𝑒
1
𝜆
1

𝑧
∗
𝑢𝑒
2
𝜆
2

−𝑚

)Φ(𝑡) (18)

and Φ(0) = 𝐼, the identity matrix, and

(

𝑢 (𝑛𝑇
+
)

V (𝑛𝑇+)
𝑤 (𝑛𝑇

+
)

) = (

1 0 0

0 1 0

0 0 1

)(

𝑢 (𝑛𝑇)

V (𝑛𝑇)
𝑤 (𝑛𝑇)

) . (19)

The stability of the periodic solution (0, 0, 𝑧∗(𝑡)) is deter-
mined by the eigenvalues of

Θ = (

1 0 0

0 1 0

0 0 1

)Φ (𝑇) (20)

which are

𝜇
1
= exp(∫

𝑇

0

𝑟
1

𝑘
0

𝑘
1

− 𝜆
1
𝑧
∗
𝑑𝑡) ,

𝜇
2
= exp(∫

𝑇

0

𝑟
2

𝑘
2

𝑘
3

− 𝑢𝜆
2
𝑧
∗
𝑑𝑡)

𝜇
3
= exp (−𝑚𝑇) < 1.

(21)

According to Floquet theory, (0, 0, 𝑧∗(𝑡)) is locally asymp-
totically stable if |𝜇

1
| < 1 and |𝜇

2
| < 1; that is, 𝑝 >

max(𝑟
1
𝑘
0
𝑇𝑚/𝜆

1
𝑘
1
, 𝑟
2
𝑘
2
𝑇𝑚/𝑢𝜆

2
𝑘
3
).

If (0, 0, 𝑧∗(𝑡)) is locally asymptotically stable and a global
attractor, then (0, 0, 𝑧∗(𝑡)) is globally asymptotically stable. In
the following, global attractiveness will be demonstrated.

Let 𝑉(𝑡) = 𝑥(𝑡) + 𝑦(𝑡); then

𝑉(𝑡)
(2)
= 𝑟
1
𝑥 (𝑡) (

𝑘
0
− 𝑥 (𝑡)

𝑘
1
− 𝑥 (𝑡)

) − 𝑏
1
𝑥
2
(𝑡)

−
𝜆
1
𝑥 (𝑡) 𝑧 (𝑡)

1 + ℎ
1
𝜆
1
𝑥 (𝑡) + 𝑢ℎ

2
𝜆
2
𝑦 (𝑡)

+ 𝑟
2
𝑦 (𝑡) (

𝑘
2
− 𝑦 (𝑡)

𝑘
3
− 𝑦 (𝑡)

) − 𝑏
2
𝑦
2
(𝑡)

−
𝑢𝜆
2
𝑦 (𝑡) 𝑧 (𝑡)

1 + ℎ
1
𝜆
1
𝑥 (𝑡) + 𝑢ℎ

2
𝜆
2
𝑦 (𝑡)

𝑉 (𝑡)
(2)
≤ (𝑟
1
−

𝜆
1
𝑧 (𝑡)

1 + ℎ
1
𝜆
1
𝑥 (𝑡) + 𝑢ℎ

2
𝜆
2
𝑦 (𝑡)

) 𝑥 (𝑡)

− 𝑏
1
𝑥
2
(𝑡)

+ (𝑟
2
−

𝑢𝜆
2
𝑧 (𝑡)

1 + ℎ
1
𝜆
1
𝑥 (𝑡) + 𝑢ℎ2𝜆2𝑦 (𝑡)

) 𝑦 (𝑡)

− 𝑏
2
𝑦
2
(𝑡) .

(22)

By Theorem 5, there exists a constant 𝑀 > 0 such that
𝑥(𝑡) ≤ 𝑀, 𝑦(𝑡) ≤ 𝑀, and 𝑧(𝑡) ≤ 𝑀 for each solution
𝑋(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) of System (2) with all 𝑡 large enough.
Therefore,

̇𝑧 (𝑡) = 𝑧 (𝑡) (
𝑒
1
𝜆
1
𝑥 (𝑡) + 𝑢𝑒

2
𝜆
2
𝑦 (𝑡)

1 + ℎ
1
𝜆
1
𝑥 (𝑡) + 𝑢ℎ2𝜆2𝑦 (𝑡)

− 𝑚)

≥ − 𝑚𝑧 (𝑡) 𝑡 ̸= 𝑛𝑇.

𝑧 (𝑡
+
) = 𝑧 (𝑡) + 𝑝 𝑡 = 𝑛𝑇

(23)

By Lemmas 4 and 6, it is known that there exists 𝑡
1
> 0

and it is possible to select 𝜀 > 0 small enough so that 𝑧(𝑡) ≥
𝑧
∗
(𝑡) − 𝜀. Therefore, for all 𝑡 ≥ 𝑡

1
,

𝑧 (𝑡) ≥ 𝑧
∗
(𝑡) − 𝜀

=
𝑝 exp (−𝑚 (𝑡 − 𝑛𝑇))
1 − exp (−𝑚𝑇)

− 𝜀

≥
𝑝 exp (−𝑚𝑇)
1 − exp (−𝑚𝑇)

− 𝜀.

(24)

Define

𝛾 =
𝑝 exp (−𝑚𝑇)
1 − exp (−𝑚𝑇)

− 𝜀. (25)
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Then 𝑟
1
− (𝜆
1
𝛾/(1 + ℎ

1
𝜆
1
𝑀 + 𝑢ℎ

2
𝜆
2
𝑀)) < 0 and 𝑟

1
−

(𝑢𝜆
2
𝛾/(1 + ℎ

1
𝜆
1
𝑀+ 𝑢ℎ

2
𝜆
2
𝑀)) < 0. Thus, for 𝑡 ≥ 𝑡

1
,

𝑉(𝑡)
(2)
≤ (𝑟
1
−

𝜆
1
𝛾

1 + ℎ
1
𝜆
1
𝑀+ 𝑢ℎ

2
𝜆
2
𝑀
)𝑥 (𝑡) − 𝑏

1
𝑥
2
(𝑡)

+ (𝑟
2
−

𝑢𝜆
2
𝛾

1 + ℎ
1
𝜆
1
𝑀+ 𝑢ℎ

2
𝜆
2
𝑀
)𝑦 (𝑡)

− 𝑏
2
𝑦
2
(𝑡) < 0.

(26)

So 𝑉(𝑡) → 0, 𝑥(𝑡) → 0, 𝑦(𝑡) → 0 as 𝑡 → ∞.
Note that the limiting case of System (2) is exactly System (12)
together with Lemma 6. It follows that the periodic solution
(0, 0, 𝑧

∗
(𝑡)) is a global attractor.This completes the proof.

Theorem 8. System (2) is permanent if

𝑝 < min(
𝑟
1
𝑘
0
𝑇𝑚

𝜆
1
𝑘
1

,
𝑟
2
𝑘
2
𝑇𝑚

𝑢𝜆
2
𝑘
3

) ,

𝑝 exp (−𝑚𝑇)
1 − exp (−𝑚𝑇)

< min(
𝑟
1
(1 + ℎ

1
𝜆
1
𝑀+ 𝑢ℎ

2
𝜆
2
𝑀)

𝜆
1

,

𝑟
2
(1 + ℎ

1
𝜆
1
𝑀+ 𝑢ℎ

2
𝜆
2
𝑀)

𝑢𝜆
2

) .

(27)

Proof. Let 𝑋(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) be any solution of System
(2) with 𝑋(0) > 0. From Theorem 5, assume that 𝑥(𝑡) ≤
𝑀, 𝑦(𝑡) ≤ 𝑀, 𝑧(𝑡) ≤ 𝑀.

From System (2), ̇𝑥(𝑡) ≤ (𝑟
1
− 𝑏
1
𝑥(𝑡))𝑥(𝑡).

Consider the following equation:

̇𝑤(𝑡) = 𝑤 (𝑡) (𝑟
1
− 𝑏
1
𝑤 (𝑡))

𝑤 (0) = 𝑥 (0) .

(28)

It is possible to obtain 𝑥(𝑡) ≤ 𝑤(𝑡) and 𝑤(𝑡) → 𝑟
1
/𝑏
1
as

𝑡 → ∞. Hence, for any 𝜀
1
> 0, 𝑥(𝑡) < 𝑟

1
/𝑏
1
+ 𝜀
1
for all 𝑡

sufficiently large. For simplification, it may be assumed that
𝑥(𝑡) < 𝑟

1
/𝑏
1
+ 𝜀
1
holds for all 𝑡 > 0. The same arguments can

be made for any 𝜀
2
> 0, 𝑦(𝑡) < 𝑟

2
/𝑏
2
+ 𝜀
2
for all 𝑡 > 0. Let

𝑚
3
= (𝑝 exp(−𝑚𝑇))/(1 − exp(−𝑚𝑇)) − 𝜀(𝜀 > 0). Note that

̇𝑧(𝑡) ≥ −𝑚𝑧(𝑡), and consider the following equation:

̇𝑤(𝑡) = − 𝑏
3
𝑤 (𝑡) 𝑡 ̸= 𝑛𝑇

𝑤 (𝑡
+
) = 𝑤 (𝑡) + 𝑝 𝑡 = 𝑛𝑇

𝑤 (0
+
) = 𝑧 (0

+
) > 0.

(29)

From Lemmas 4 and 6, 𝑧(𝑡) ≥ 𝑤(𝑡) > 𝑧∗(𝑡) − 𝜀 > 0,
and hence 𝑧(𝑡) > 𝑚

3
for all 𝑡 sufficiently large. Therefore, it

is necessary to find 𝑙
1
> 0 and 𝑙

2
> 0 such that 𝑥(𝑡) ≥ 𝑙

1
,

𝑦(𝑡) ≥ 𝑙
2
for all 𝑡 large enough. This can be done as shown in

the following two steps.
First, choose 0 < 𝑙

1
< 𝑚/2𝑒

1
𝜆
1
, 0 < 𝑙

2
< 𝑚/2𝑢𝑒

2
𝜆
2
such

that 𝑒
1
𝜆
1
𝑙
1
+ 𝑢𝑒
2
𝜆
2
𝑙
2
< 𝑚. Then there exist 𝑡

1
∈ (0,∞) and

𝑡
2
∈ (0,∞) such that 𝑥(𝑡

1
) ≥ 𝑙
1
, 𝑦(𝑡
2
) ≥ 𝑙
2
. Otherwise,

(1) there exists a 𝑡
2
> 0 such that 𝑦(𝑡

2
) ≥ 𝑙
2
, but 𝑥(𝑡

1
) < 𝑙
1

for all 𝑡 > 0;
(2) there exists a 𝑡

1
> 0 such that 𝑥(𝑡

1
) ≥ 𝑙
1
, but 𝑦(𝑡

2
) < 𝑙
2

for all 𝑡 > 0;
(3) there are 𝑥(𝑡

1
) < 𝑙
1
and 𝑦(𝑡

2
) < 𝑙
2
for all 𝑡 > 0.

For case (1), according to Theorem 8, select 𝜂
1
> 0 small

enough so that

𝜔
1
= ∫

(𝑛+1)𝑇

𝑛𝑇

(𝑟
1
− 𝑏
1
𝑙
1
− 𝜆
1
(V∗ + 𝜂

1
)) 𝑑𝑡 > 0. (30)

From case (1),

̇𝑧 (𝑡) ≤ (𝑒
1
𝜆
1
𝑥 (𝑡) + 𝑢𝑒

2
𝜆
2
𝑦 (𝑡) − 𝑚) 𝑧 (𝑡)

≤ (−𝑚 + 𝑒
1
𝜆
1
𝑙
1
+ 𝑢𝑒
2
𝜆
2
(
𝑟
2

𝑏
2

+ 𝜀
1
))𝑧 (𝑡)

= 𝐴𝑧 (𝑡) 𝑡 ̸= 𝑛𝑇

𝑧 (𝑡
+
) = 𝑧 (𝑡) + 𝑝 𝑡 = 𝑛𝑇,

(31)

where 𝐴 = −𝑚 + 𝑒
1
𝜆
1
𝑙
1
+ 𝑢𝑒
2
𝜆
2
(𝑟
2
/𝑏
2
+ 𝜀
1
). Therefore, 𝑧(𝑡) ≤

V(𝑡) and V(𝑡) → V∗(𝑡) as 𝑡 → ∞, where V(𝑡) is the solution
of the following equation:

̇V (𝑡) = 𝐴V (𝑡) 𝑡 ̸= 𝑛𝑇

V (𝑡+) = V (𝑡) + 𝑝 𝑡 = 𝑛𝑇

V (0+) = 𝑧 (0+) ≥ 0

(32)

and V∗(𝑡) = 𝑝 exp(𝐴(𝑡 −𝑛𝑇))/(1− exp(𝐴𝑇)). Therefore, there
exists a 𝑇

1
> 0, when 𝑡 > 𝑇

1
,

𝑧 (𝑡) ≤ V (𝑡) < V∗ (𝑡) + 𝜂1, (33)

̇𝑥 (𝑡) ≥ (𝑟
1
− 𝑏
1
𝑙
1
− 𝜆
1
(V∗ (𝑡) + 𝜂

1
)) 𝑥 (𝑡) 𝑡 ̸= 𝑛𝑇

𝑥 (𝑡
+
) = 𝑥 (𝑡) 𝑡 = 𝑛𝑇.

(34)

Let𝑁
1
∈ 𝑁 and𝑁

1
𝑇 ≥ 𝑇

1
. Integrating (34) on (𝑛𝑇, (𝑛 +

1)𝑇], 𝑛 ≥ 𝑁
1
, the following result can be obtained:

𝑥 ((𝑛 + 1) 𝑇)

≥ 𝑥 (𝑛𝑇) exp(∫
(𝑛+1)𝑇

𝑛𝑇

(𝑟
1
− 𝑏
1
𝑙
1
− 𝜆
1
(V∗ + 𝜂

1
)) 𝑑𝑡)

= 𝑥 (𝑛𝑇) exp (𝜔
1
) .

(35)

Then 𝑥((𝑁
1
+ 𝑘)𝑇) ≥ 𝑥(𝑁

1
𝑇) exp(𝑘𝜔

1
) → ∞ as 𝑘 → ∞,

which is a contradiction.
For case (2), the same arguments can be used.
Now consider case (3). Choose 𝜂

2
> 0 small enough so

that

𝜔
2
= ∫

(𝑛+1)𝑇

𝑛𝑇

(𝑟
1
− 𝑏
1
𝑙
1
− 𝜆
1
(𝑢
∗
+ 𝜂
2
)) 𝑑𝑡 > 0. (36)
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From case (3),

̇𝑧 (𝑡) ≤ (𝑒
1
𝜆
1
𝑥 (𝑡) + 𝑢𝑒

2
𝜆
2
𝑦 (𝑡) − 𝑚) 𝑧 (𝑡)

≤ (−𝑚 + 𝑒
1
𝜆
1
𝑙
1
+ 𝑢𝑒
2
𝜆
2
𝑙
2
) 𝑧 (𝑡)

= 𝐵𝑧 (𝑡) 𝑡 ̸= 𝑛𝑇

𝑧 (𝑡
+
) = 𝑧 (𝑡) + 𝑝 𝑡 = 𝑛𝑇,

(37)

where 𝐵 = −𝑚 + 𝑒
1
𝜆
1
𝑙
1
+ 𝑢𝑒
2
𝜆
2
𝑙
2
. Therefore, 𝑧(𝑡) ≤ 𝑢(𝑡) and

𝑢(𝑡) → 𝑢
∗
(𝑡) as 𝑡 → ∞, where 𝑢(𝑡) is the solution of the

following equation:

̇𝑢 (𝑡) = 𝐵𝑢 (𝑡) 𝑡 ̸= 𝑛𝑇

𝑢 (𝑡
+
) = 𝑢 (𝑡) + 𝑝 𝑡 = 𝑛𝑇

𝑢 (0
+
) = 𝑧 (0

+
) ≥ 0

(38)

and 𝑢∗(𝑡) = 𝑝 exp(𝐵(𝑡−𝑛𝑇))/(1−exp(𝐵𝑇)).Then there exists
a 𝑇
2
> 0, when 𝑡 ≥ 𝑇

2
, such that

𝑧 (𝑡) ≤ 𝑢 (𝑡) < 𝑢
∗
(𝑡) + 𝜂2, (39)

̇𝑥 (𝑡) ≥ (𝑟
1
− 𝑏
1
𝑙
1
− 𝜆
1
(𝑢
∗
(𝑡) + 𝜂

2
)) 𝑥 (𝑡) 𝑡 ̸= 𝑛𝑇

𝑥 (𝑡
+
) = 𝑥 (𝑡) 𝑡 = 𝑛𝑇.

(40)

Let𝑁
2
∈ 𝑁 and𝑁

2
𝑇 ≥ 𝑇

2
. Integrating (40) on (𝑛𝑇, (𝑛 +

1)𝑇], 𝑛 ≥ 𝑁
2
, the following result can be obtained:

𝑥 ((𝑛 + 1) 𝑇)

≥ 𝑥 (𝑛𝑇) exp(∫
(𝑛+1)𝑇

𝑛𝑇

(𝑟
1
− 𝑏
1
𝑙
1
− 𝜆
1
(𝑢
∗
+ 𝜂
2
)) 𝑑𝑡)

= 𝑥 (𝑛𝑇) exp (𝜔
2
) .

(41)

Then 𝑥((𝑁
2
+ 𝑘)𝑇) ≥ 𝑥(𝑁

2
𝑇) exp(𝑘𝜔

2
) → ∞ as 𝑘 → ∞,

which is a contradiction.
In conclusion, there exist 𝑡

1
> 0 and 𝑡

2
> 0 such that

𝑥(𝑡) ≥ 𝑙
1
, 𝑦(𝑡) ≥ 𝑙

2
.

Second, if 𝑥(𝑡
1
) ≥ 𝑙
1
, for all 𝑡 > 𝑡

1
, then the objective has

been attained. Otherwise, there exists 𝑡 such that 𝑥(𝑡) < 𝑙
1
,

for 𝑡 > 𝑡
1
. Let 𝑡∗ = inf

𝑡<𝑡
∗{𝑥(𝑡) < 𝑙

1
}. Then 𝑥(𝑡

1
) ≥ 𝑙
1
, for

𝑡 ∈ [𝑡
1
, 𝑡
∗
) and 𝑡∗ ∈ (𝑛

1
𝑇, (𝑛
1
+ 1)𝑇], 𝑛

1
∈ 𝑁, and 𝑥(𝑡∗) = 𝑙

1
,

because 𝑥(𝑡) is continuous. Choose 𝑛
2
, 𝑛
3
∈ 𝑁 such that

𝑛
2
𝑇 > 𝑇

2
=
ln (𝜂
1
/ (𝑀 + 𝑝))

𝐴
,

exp (𝛿 (𝑛
2
+ 1) 𝑇) exp (𝑛

3
𝜔
1
) > 1,

(42)

where 𝛿 = 𝑟
1
−𝑏
1
𝑙
1
−𝜆
1
𝑀 < 0. Let 𝑇 = 𝑛

2
𝑇+𝑛
3
𝑇; then there

must be a 𝑡 ∈ ((𝑛
1
+ 1)𝑇, (𝑛

1
+ 1)𝑇 + 𝑇


] such that 𝑥(𝑡) ≥ 𝑙

1
;

otherwise 𝑥(𝑡) < 𝑙
1
, 𝑡 ∈ ((𝑛

1
+1)𝑇, (𝑛

1
+1)𝑇+𝑇


]. Considering

(32) with V((𝑛
1
+ 1)𝑇

+
) = 𝑧((𝑛

1
+ 1)𝑇

+
),

V (𝑡) = (V ((𝑛1 + 1) 𝑇
+
) −

𝑝

1 − exp (𝐴𝑇)
)

× exp (𝐴 (𝑡 − (𝑛
1
+ 1) 𝑇)) + V∗ (𝑡)

(43)

for 𝑡 ∈ (𝑛𝑇, (𝑛 + 1)𝑇] and 𝑛
1
+ 1 < 𝑛 < 𝑛

1
+ 1 + 𝑛

2
+ 𝑛
3
. Then,

for (𝑛
1
+ 1 + 𝑛

2
)𝑇 ≤ 𝑡 ≤ (𝑛

1
+ 1)𝑇 + 𝑇

,

V (𝑡) − V
∗
(𝑡)
 < (𝑀 + 𝑝) exp (𝐴 (𝑡 − (𝑛

1
+ 1) 𝑇)) < 𝜂

1

𝑧 (𝑡) ≤ V (𝑡) < V∗ (𝑡) + 𝜂
1
.

(44)

It can be concluded that (34) holds for (𝑛
1
+ 1 + 𝑛

2
)𝑇 ≤ 𝑡 ≤

(𝑛
1
+1)𝑇+𝑇

. As in the first step above, it is possible to obtain
𝑥((𝑛
1
+ 1 + 𝑛

2
+ 𝑛
3
)𝑇) ≥ 𝑥((𝑛

1
+ 1 + 𝑛

2
)𝑇) exp(𝑛

3
𝜔
1
). There

are two possible cases for 𝑡 ∈ (𝑡∗, (𝑛
1
+ 1)𝑇].

Case (𝑎). If 𝑥(𝑡) < 𝑙
1
for 𝑡 ∈ (𝑡∗, (𝑛

1
+ 1)𝑇], then 𝑥(𝑡) < 𝑙

1
for

𝑡 ∈ (𝑡
∗
, (𝑛
1
+ 1 + 𝑛

2
)𝑇]. From System (2),

̇𝑥 (𝑡) ≥ (𝑟
1
− 𝑏
1
𝑥 (𝑡) − 𝜆

1
𝑧 (𝑡)) 𝑥 (𝑡)

≥ (𝑟
1
− 𝑏
1
𝑙
1
− 𝜆
1
𝑀)𝑥 (𝑡) = 𝛿𝑥 (𝑡) .

(45)

Integrating (45) on (𝑡∗, (𝑛
1
+ 1 + 𝑛

2
)𝑇], 𝑥((𝑛

1
+ 1 + 𝑛

2
)𝑇) ≥

𝑙
1
exp(𝛿(1 + 𝑛

2
)𝑇).

Thus

𝑥 ((𝑛
1
+ 1 + 𝑛

2
+ 𝑛
3
) 𝑇)

≥ 𝑙
1
exp (𝛿 (1 + 𝑛

2
) 𝑇) exp (𝑛

3
𝜔
1
) > 𝑙
1

(46)

which is a contradiction.
Let 𝑡 = inf

𝑡>𝑡
∗{𝑥(𝑡) ≥ 𝑙

1
}, so that 𝑥(𝑡) = 𝑙

1
and (45) holds

on [𝑡∗, 𝑡). Integrating (45) on [𝑡∗, 𝑡),

𝑥 (𝑡) ≥ 𝑥 (𝑡
∗
) exp (𝛿 (𝑡 − 𝑡∗))

≥ 𝑙
1
exp (𝛿 (1 + 𝑛

2
+ 𝑛
3
) 𝑇)

Δ

→ 𝑙
1
.

(47)

For 𝑡 > 𝑡, the same arguments can be used because 𝑥(𝑡) ≥ 𝑙
1
.

Case (𝑏). There exists a 𝑡 ∈ (𝑡∗, (𝑛
1
+ 1)𝑇] such that 𝑥(𝑡) ≥

𝑙
1
; let 𝑡 = inf

𝑡>𝑡
∗{𝑥(𝑡) ≥ 𝑙

1
}; then 𝑥(𝑡) < 𝑙

1
for [𝑡∗, 𝑡) and

𝑥(𝑡) = 𝑙
1
. For 𝑡 ∈ [𝑡∗, 𝑡), (45) holds true. Integrating (45) on

[𝑡
∗
, 𝑡),

𝑥 (𝑡) ≥ 𝑥 (𝑡
∗
) exp (𝛿 (𝑡 − 𝑡∗)) ≥ 𝑙

1
exp (𝛿𝑇) > 𝑙1. (48)

For 𝑡 > 𝑡, the same arguments can be used because 𝑥(𝑡) ≥ 𝑙
1
.

In summary, 𝑥(𝑡) ≥ 𝑙
1
can be obtained for all 𝑡 > 𝑡

1
. In the

same way, it can be proved that 𝑦(𝑡) ≥ 𝑙
2
for all 𝑡 > 𝑡

2
. This

completes the proof.

3. Numerical Analysis

3.1. The Impulsive Effect and Optimal Foraging. To study
the population dynamics of a three-species ecological model
with impulsive effect, the solution of System (2) with initial
conditions in the first quadrant is obtained numerically
for a biologically feasible range of parametric values, and
the bifurcation diagram provides a summary of the basic
population dynamic behavior of the system.
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Figure 1: Time series of System (2) when 𝑢 = 0.8 and 𝑝 = 4.2.

Now two different control parameters will be discussed,
the number of predators released, 𝑝, and the probability 𝑢.
Other parameters are set to

𝑎
1
= 0.35, 𝑎

2
= 0.4, 𝑟

1
= 0.9, 𝑟

2
= 0.8,

𝑘
0
= 15, 𝑘

1
= 20, 𝑘

2
= 12, 𝑘

3
= 15,

𝑏
1
= 0.045, 𝑏

2
= 0.2, ℎ

1
= 0.8, ℎ

2
= 0.45,

𝑒
1
= 0.5, 𝑒

2
= 0.6, 𝑚 = 0.1, 𝑇 = 20.

(49)

From Theorem 7, it is known that the prey-eradication
periodic solution (0, 0, 𝑧∗(𝑡)) is locally asymptotically stable
provided that 𝑝 > 𝑝max ≈ 4.098648. Figure 1 shows a typical
prey-eradication periodic solution of System (2), in which it
can be observed that the variable 𝑧 oscillates in a stable cycle.
At the same time, the prey types 𝑥 and 𝑦 rapidly diminish
and go to zero beyond 𝑝max ≈ 4.098648. If the number of
predators released, 𝑝, is less than 𝑝max, the prey-eradication
solution becomes unstable. It is, however, possible that the
two prey types and the predator can coexist in a stable
positive periodic solution. In other words, the system can be
permanent when the number of predators released, 𝑝, is less
than 𝑝max.
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Figure 2: Bifurcation diagram of System (2) with initial conditions 𝑥(0) = 0.3, 𝑦(0) = 0.5, 𝑧(0) = 0.3, 𝑢 = 0.8, and 0.009 ≤ 𝑝 ≤ 4.5.

Next, the bifurcation diagrams for the control parameter
𝑝 will be examined. Figure 2 is plotted as a function of
the bifurcation parameter 𝑝 and shows that the system
has rich population dynamic behavior consistent with the
theoretical analysis, such as period-halving bifurcation (see
Figure 3), a chaotic band, a periodic window, and chaotic
crises. Furthermore, Theorem 8 indicates that the system is
permanentwhen the value of𝑝 is less than some critical value.
When the value of 𝑝 is in the interval [0.009, 3.257895], the
two prey types and one predator can coexist. When the value
of 𝑝 is in the interval [3.257895, 4.098648], the prey 𝑥 will
become extinct rapidly, but the prey 𝑦 and the predator 𝑧 can
coexist. These results may show that prey 𝑥 is inferior to prey
𝑦 in its ability to reproduce or prey 𝑥 is a favorite food of
predator 𝑧. When the number of predators released is greater
than some critical value, all species in the system will become
extinct. All these results demonstrate the effectiveness of
mathematical analysis for understanding such systems.

The next question is how 𝑢 impacts the complex pop-
ulation dynamics. In Figure 4, when prey and predator

populations are plotted as a function of the probability 𝑢,
the value of 𝑝 is 1.45. In the former case, it is assumed that
the foraging behavior of predator 𝑧 follows optimal foraging
theory [16–18] and prey 𝑥 is more beneficial for predator 𝑧
than prey 𝑦. In other words, the more beneficial prey 𝑥 is
always included in the predator’s diet, but if the density of
prey 𝑥 falls below a critical threshold or goes to zero, prey 𝑦 is
includedwith probability one. FromFigure 4, it can be clearly
observed that the two prey types and the predator can coexist
in the intervals [0, 0.1136] and [0.7215, 0.8792], where the
system dynamics can be chaotic, periodic, or nonperiodic. In
the interval (0.1136, 0.7215), prey 𝑥 goes extinct, while prey 𝑦
and predator 𝑧 can coexist stably.This means that if the more
beneficial prey 𝑥 disappears, prey 𝑦 alone can support the
population of predator 𝑧. As 𝑢 increases, prey 𝑦 goes extinct,
but prey 𝑥 and predator 𝑧 can coexist stably.

3.2. The Largest Lyapunov Exponent. Deterministic chaos is
an important problem that is solved by measuring the largest
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Figure 3: Transition from chaos to period-halving in System (2): (a) chaos when 𝑝 = 1.5; (b) 8T-periodic solution when 𝑝 = 1.73; (c)
4T-periodic solution when 𝑝 = 1.85; (d) 2T-periodic solution when 𝑝 = 2.5.

Lyapunov exponent [31–36]. Based on research by various
investigators, these results have confirmed the importance
of detecting and exploring chaos. In this paper, the largest
Lyapunov exponents for chaotic system (2) are examined.
The largest Lyapunov exponents take into account the average
exponential rates of divergence or convergence of nearby
orbits in phase space [31, 32]. If the attractor is chaotic, the
largest Lyapunov exponent must be positive, which implies
a stable or a periodic state. In Figure 2, the corresponding
largest Lyapunov exponent ([0 ≤ 𝑝 ≤ 3]) can be calculated
for System (2) (see Figure 5).

3.3. The Strange Attractor and Power Spectra. To study the
properties of strange attractors, commonly used methods
such as power spectra can be used [35, 36]. A power spectrum
was calculated using 4096 points corresponding to the time
series of the variable 𝑥 with time increment Δ𝑡 = 0.5 [35, 36].
For strange attractors (a) and (b), it is known that the value
of the largest Lyapunov exponent for the strange attractor
(a) is 0.25603, while for (b) the computed largest Lyapunov

exponent is 0.30567. Therefore, strange attractors (a) and (b)
are chaotic attractors. Moreover, the strange attractor (b)
displays more chaotic dynamics than (a) because its positive
exponent is larger than that of (a). In addition, the spectra
of strange attractors (a) and (b) consist of strong broadband
components and sharp peaks (Figures 6(c) and 6(d)) These
results conform to the observation that strange attractors (a)
and (b) arise from some weak limit cycles which can lose
stability due to noise.

4. Conclusions and Remarks

Complex population dynamics of a three-species ecological
model with optimal foraging and impulsive control
strategy have been investigated both numerically and
analytically. The periodic solution has been shown
to be globally asymptotically stable by use of the
Floquet theorem and small-amplitude perturbations, if
𝑝 > max(𝑟

1
𝑘
0
𝑇𝑚/𝜆

1
𝑘
1
, 𝑟
2
𝑘
2
𝑇𝑚/𝑢𝜆

2
𝑘
3
) and 𝑝 exp(−𝑚𝑇)/

(1 − exp(−𝑚𝑇)) > max(𝑟
1
(1 + ℎ

1
𝜆
1
𝑀+ 𝑢ℎ

2
𝜆
2
𝑀)/𝜆

1
, 𝑟
2
(1 +
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Figure 4: Bifurcation diagram of System (2) with initial conditions 𝑝 = 1.45, 𝑥(0) = 0.3, 𝑦(0) = 0.5, 𝑧(0) = 0.3, and 0 ≤ 𝑢 ≤ 1.
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𝑀)/𝑢𝜆

2
). At the same time, using themethod

of comparison involving multiple Lyapunov functions, the
permanence of the system can be proved. Bifurcation
diagrams of the impulsive perturbation 𝑝 and the probability
parameter 𝑢 have also been obtained. The bifurcation
diagrams of 𝑝 have shown that dynamic complexity
exists in System (2), including chaotic behavior, periodic

windows, chaotic bands, chaotic crises, and period-halving
bifurcations. The bifurcation diagrams of 𝑢 indicate that
optimal foraging promotes species coexistence and that if the
more beneficial prey goes extinct, the less beneficial prey can
support the predator so that it will not die out. In addition,
the presence of chaotic dynamics was confirmed, and the
qualitative nature of strange attractors was investigated using
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Figure 6: Strange attractors and power spectra: (a)strange attractor when 𝑝 = 1.2, (b) strange attractor when 𝑝 = 1.51, (c) power spectrum
of attractor (a), and (d) power spectrum of attractor (b).

computer simulations of the largest Lyapunov exponents and
Fourier spectra. All these results may be useful in the study
of the dynamic complexity of ecosystems.
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A delay SIR epidemic model with difference in immunity and successive vaccination is proposed to understand their effects on the
disease spread. From theorems, it is obtained that the basic reproduction number governs the dynamic behavior of the system.The
existence and stability of the possible equilibria are examined in terms of a certain threshold condition about the basic reproduction
number. By use of new computational techniques for delay differential equations, we prove that the system is permanent. Our
results indicate that the recovery rate and the vaccination rate are two factors for the dynamic behavior of the system. Numerical
simulations are carried out to investigate the influence of the key parameters on the spread of the disease, to support the analytical
conclusion, and to illustrate possible behavioral scenarios of the model.

1. Introduction

The current threat of some new type diseases has raised our
awareness that curbing the spread of some emerging and
reemerging human diseases is of public health importance
such asH1N1.This emerging disease, whichwas first reported
in Mexico, spread very quickly, due to the travel of infected
persons by airplanes, trains, and buses to some other regions.
It continued to spread around the world and caused about
5000 deaths. In recent years, many mathematical models
have been developed for the transmission dynamics of
infectious diseases such as SARS, HIV/AIDS, measles, and
smallpox ([1–6], to name a few, and the references therein).
Thesemodels have provided understanding of the underlying
mechanisms which influence the spread of diseases and
suggested some control strategies. Moreover, to our knowl-
edge, the first effective control strategy for the elimination
of infectious diseases is obtaining immunity. It has been
reported that “People’s immunity to A/H1N1 flu virus is
greater than previously thought after access vaccines. The
WHO is working to givemore nations access vaccines to fight
the H1N1 flu pandemic.”

Besides these above studies, many authors formulated
and analyzed SIR epidemic models for the control of diseases
[7–20]. In particular, some authors have studied the effects
of vaccination on the spread of diseases [7–11]; others have
studied the effects of treatment on the spread of diseases
[12–15]. Gao et al. have proposed an epidemic model with
density-dependent birth pulses and seasonal prevention [16].
Recently, some works have investigated permanent and tem-
porary immunity [17–20]. However, in these SIR models, an
unrealistic assumption is that all the rest of infected indi-
viduals acquire immunity besides death.Measles encephalitis
in adults in [21, 22] shows that there is difference in immunity
of infected individuals.That is, some infected individuals can
acquire immunity after recovery, but some do not acquire
immunity and can be infected once more. At the same time,
vaccination is an important strategy for the elimination of
infectious diseases [7–11].

Vaccinations have many types; impulsive vaccination
and successive vaccination are two main policies. Successive
vaccination is that people have been vaccinated at birth to
protect themselves from disease; the studies can be found in
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[23, 24]. Makinde in [23] studied a SIR model for the trans-
mission dynamics of a childhood disease in the presence of a
preventive vaccine and analyzed the vaccination reproductive
number for disease control and eradication qualitatively.
Impulsive vaccination (only at fixed time sequencewe execute
effectively the vaccination for the disease) is an important and
effective strategy for the elimination of infectious diseases
and has been studied in the literature. For example, see
[10, 17, 25–27]. In above-mentioned papers, authors almost
considered the vaccination of susceptible population. But,
in fact, under a certain situation, the vaccine treatment also
should be considered for the newborns of the susceptible,
the exposed, and the removed. We find that there are few
studies on the aspect of the vaccination of newborns. In
this case, successive vaccination seems more reasonable than
impulsive vaccination. Therefore, in this paper, a SIR model
with difference in immunity and successive vaccination is
considered.

As far as disease transmission is concerned, the incidence
rate, defined as the rate of new infection, plays a very
important role in modelling infectious diseases. Bilinear
incidence rate 𝛽𝑆𝐼 in [28, 29] and standard incidence rates
𝜆𝑆𝐼/𝑁 in [30, 31] have often been used in epidemic models.
However, it is unreasonable to consider the bilinear incidence
rate (based on the law of mass action) as the number of
susceptibles is large, owing to the number of susceptibles with
which every infective contact within a certain time is limited.
Standard incidence rate may be a good approximation if the
number of available partners is large enough but it is not
possible to make more contacts when the population 𝑁 is
small. Combine the two previous approaches by assuming
that if the number of available partners𝑁 is low, the number
of actual per capita partners is proportional to𝑁, whereas if
the number of available partners is large, there is a saturation
effect which makes the number of actual partners constant.
Considering this case, a saturation incidence rate of type
𝑓(𝐼)𝑆 with 𝑓(𝐼) = 𝑘𝐼/(1 + 𝛼𝐼) is being proposed in [32].
More general incidence rate used in the literature is the one
for which 𝑓(𝐼) = 𝑘𝐼

𝑙
/(1 + 𝛼𝐼

ℎ
) [33, 34], where 𝐼𝑙 measures

the infection force of the disease and 𝑓(𝐼) = 1/(1 + 𝛼𝐼
ℎ
)

measures the inhibitory effect caused by behavioral changes.
Note that if 𝑓(𝐼) is decreasing when 𝐼 is large, this may be
interpreted as the fact that susceptibles tend to reduce their
social contacts if the perceived number of infectives increases
over a psychologically significant value.The above saturation
incidence rate depends also on the size of the infectives
𝐼 termed as infectives-dependent. Particular examples of
susceptibles-dependent incidence rate are 𝑓(𝑆) = 𝑘𝑆/(1+𝛼𝑆)
[35]. Very general incidence rates which are not linear in 𝑆 are
also used in Derrick and van denDriessche [36] (𝑓(𝑆, 𝐼,𝑁) =
𝐼Φ(𝑆, 𝐼,𝑁), where𝑁 = 𝑆 + 𝐼), Korobeinikov and Maini [37]
(𝑓(𝑆, 𝐼) = ℎ

1
(𝐼)ℎ
2
(𝑆)), and Moghadas and Alexander [38]

(𝑓(𝑆, 𝐼) = 𝛽(1 + 𝑔(𝐼, V))𝐼𝑆).
Nie et al. [19] and Ji et al. [39] respectively considered

a delay SIR epidemic model with nonlinear incidence rate
and density-dependent birth and death rates. Motivated
by the main idea described in [6, 39], in this paper, we
consider a delay SIR model with difference in immunity and

successive vaccination and an abstract incidence rate. The
main difference between our study and those described in [6,
39] is the difference in immunity and successive vaccination
and an abstract incidence rate. An abstract incidence rate of
type 𝑓(𝐼)𝑆 is employed to model the spread of the disease
which is propagated through the infective individuals, under
a few biologically feasible assumptions upon 𝑓(𝐼).

In view of above facts, we will formulate a mathematical
model in Section 2. We provide the region of biologically
feasible solutions in Section 3. Then, we study the existence
and stability of the steady states in the next section, analyze
the permanence result in Section 5, and give some numerical
simulations in Section 6. Lastly, we end the paper with a brief
discussion of our results in Section 6.

2. Model Formulation and Invariant Region

In this section, we will present a delay SIR epidemic model
with a general nonlinear incidence rate. The total population
𝑁(𝑡) is divided into three subclasses, namely, the susceptibles
𝑆(𝑡), the infectives 𝐼(𝑡), and the recovered individuals 𝑅(𝑡).
Based on the SIR model in [12, 39], we considered following
system:

𝑑𝑆

𝑑𝑡
= [𝑏 −

𝑎𝑟𝑁

𝐾
]𝑁 − 𝛽𝑒

−𝑑
1
𝜏
𝑆𝑓 (𝐼 (𝑡 − 𝜏))

− [𝑑 +
(1 − 𝑎) 𝑟𝑁

𝐾
] 𝑆 − 𝜃𝑆 + 𝜇

1
𝐼,

𝑑𝐼

𝑑𝑡
= 𝛽𝑒
−𝑑
1
𝜏
𝑓 (𝐼 (𝑡 − 𝜏)) 𝑆

− [𝑑 +
(1 − 𝑎) 𝑟𝑁

𝐾
] 𝐼 − 𝜇

1
𝐼 − 𝑒
−𝑑
1
𝜔
𝛿𝐼 (𝑡 − 𝜔) ,

𝑑𝑅

𝑑𝑡
= 𝑒
−𝑑
1
𝜔
𝛿𝐼 (𝑡 − 𝜔) − [𝑑 +

(1 − 𝑎) 𝑟𝑁

𝐾
]𝑅 + 𝜃𝑆,

𝑁 (0) = 𝑆
0
> 0, 𝐼 (0) = 𝜑 (𝜃) ≥ 0,

∀𝜃 ∈ [−𝜏, 0] , 𝑅 (0) = 𝑅0 ≥ 0,

(1)

where 𝜏 = max{𝜏, 𝜔} and 𝜑 ∈ 𝐶([−𝜏, 0], 𝑅). We give the
following useful assumptions.

(1) There are no disease induced deaths, and all the
newborns are susceptible.

(2) 𝑓(𝐼) is the nonlinear incidence rate satisfying the
following assumptions:

𝑓 (0) = 0, 𝑓

(𝐼) > 0, 𝑓


(𝐼) < 0,

lim
𝑡→∞

𝑓 (𝐼) = 𝑐 < +∞.

(2)

(3) The force of infection at any time 𝑡 is dominated by
𝛽𝑒
−𝑑
1
𝜏
𝑆(𝑡)𝑓(𝐼(𝑡−𝜏)), where 𝜏 is incubation period and

0 < 𝑒
−𝑑
1
𝜏
≤ 1 represents the survival probability of

individuals in the population after time 𝜏 [20]. It is
also assumed that 𝑑

1
≤ 𝑑 in [−𝜏, 0], where 𝑑 is the

death rate and 𝑑
1
is the death rate in the time interval

[−𝜏, 0].
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(4) The parameters 𝑎 are a convex combination constant,
𝑟 = 𝑏 − 𝑑 > 0 is the intrinsic growth rate (𝑏 is the
birth rate), and 𝐾 > 0 is the carrying capacity of the
population.The term (𝑏 − (𝑎𝑟𝑁(𝑡)/𝐾)) has a density-
dependent per capita birth rate and the term (𝑑+((1−

𝑎)𝑟𝑁(𝑡)/𝐾))has a density-dependent per capita death
rate [39].

(5) For 0 < 𝑎 < 1, the birth and death rates are consistent
with the limited resources associated with density
dependence. The birth rate is density independent
when 𝑎 = 0 and the death rate is density independent
when 𝑎 = 1. Thus, the spread of the disease (animals
such as rodents, etc.) is assumed to be governed by the
following system of logistic equations with time delay.

(6) The total population is assumed to be large enough to
be adequately described by a deterministic model and
is divided into compartments based on the disease
status [40].

(7) The successive vaccination rate 𝜃 is positive. The pos-
itive constant 𝜇

1
is the recovery rate of the infectious

individuals from compartment 𝐼 to 𝑆.The parameters
𝛽 are the effective per capita contact rate constant
of infected individuals. The parameters 𝛿 are the
recovery rate of infected individuals.

(8) Models are formulated as functional differential
and/or integral equations when time delay is included
[40]. Ours follows the former with the assumption
that the 𝐼-equation satisfies a certain integral condi-
tion [41].

Models with multiple delays are not common, but few
authors have in the past considered these-Beretta et al. [42]-
to name but a few. Since 𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡), thus the
governing equation (1) can be rewritten as

𝑑𝑁

𝑑𝑡
= 𝑟 [1 −

𝑁

𝐾
]𝑁,

𝑑𝐼

𝑑𝑡
= 𝛽𝑒
−𝑑
1
𝜏
(𝑁 − 𝐼 − 𝑅) 𝑓 (𝐼 (𝑡 − 𝜏))

− [𝑑 +
(1 − 𝑎) 𝑟𝑁

𝐾
] 𝐼 − 𝜇

1
𝐼 − 𝑒
−𝑑
1
𝜔
𝛿𝐼 (𝑡 − 𝜔) ,

𝑑𝑅

𝑑𝑡
= 𝑒
−𝑑
1
𝜔
𝛿𝐼 (𝑡 − 𝜔)

− [𝑑 +
(1 − 𝑎) 𝑟𝑁

𝐾
]𝑅 + 𝜃 (𝑁 − 𝐼 − 𝑅) .

(3)

Let 𝜏 = max(𝜔, 𝜏). Then (3) satisfies the following initial
conditions

𝑁(0) = 𝑆
0
> 0, 𝐼 (0) = 𝜑 (𝜃) ≥ 0,

∀𝜃 ∈ [−𝜏, 0] , 𝑅 (0) = 𝑅0 ≥ 0.

(4)

In this paper, we will consider two different delays 𝜏, 𝜔
which are important parameters on the dynamic behavior. So,
the present study is continuation of the previous work 𝜏 = 𝜔
by Naresh et al. [43].

Lemma 1. All solutions of the model system (3) starting in 𝑅3
+

are bounded and eventually enter the compact attracting set

Φ = {(𝑆, 𝐼, 𝑅) ∈ 𝑅
3

+
: 𝑆 (𝑡) + 𝐼 (𝑡) + 𝑅 (𝑡) = 𝑁 (𝑡) ≤ 𝐾} . (5)

Lemma 2. Let the initial data be 𝑁(0) = 𝑆
0
> 0, 𝐼(0) =

𝐼
0
(𝑢) ≥ 0, for all 𝑢 ∈ [−𝜏, 0], with 𝐼

0
(0) > 0, 𝑅(0) = 𝑅

0
≥

0. Then, the solution (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)) of the model remains
positive for all time 𝑡 > 0.

Lemma 3 (see [44]). For the characteristic equation in the
form 𝑝(𝜆) + 𝑞(𝜆)𝑒

−𝑟𝜆
= 0, where 𝑝 and 𝑞 are polynomials with

real coefficients and 𝑟 > 0 is the delay, suppose

(a) 𝑝(𝜆) ̸= 0, 𝑅(𝜆) > 0;

(b) |𝑞(𝑖𝑦)| < |𝑝(𝑖𝑦)|; 0 ≤ 𝑦 < ∞;

(c) lim
|𝜆|→∞,𝑅(𝜆)≥0

|𝑞(𝜆)/𝑝(𝜆)| = 0.

Then 𝑅(𝜆) < 0 for every root 𝜆 and all 𝑟 > 0.

3. Equilibrium and Stability Analysis

In this section, we focus on the existence and local stability of
equilibria. Let the right-hand side of equalities in model (3)
be zero. Then, there are two equilibria; namely,

(i) 𝐸
0
= (𝐾, 0, 𝑝), 𝑝 = 𝐾𝜃/[𝑑+(1−𝑎)𝑟+𝜃]), disease-free

equilibrium;

(ii) 𝐸∗ = (𝑁∗, 𝐼∗, 𝑅∗), endemic equilibrium,

where the values of𝑁∗, 𝐼∗, and 𝑅∗ are given in Section 3.2.

3.1. Community Matrix. Firstly, after computing the Jacobian
or community matrix of model (3) at point (𝑁, 𝐼, 𝑅), the
characteristic equation is given by



𝑟 −
2𝑟

𝐾
𝑁 − 𝜆 0 0

𝛽𝑒
−𝑑
1
𝜏
𝑓 (𝐼) −

(1 − 𝑎) 𝑟

𝐾
𝐼 𝑚𝑒
−(𝑑
1
+𝜆)𝜏

− 𝛿𝑒
−(𝑑
1
+𝜆)𝜔

− 𝑛 − 𝜆 𝛽𝑒
−𝑑
1
𝜏
𝑓 (𝐼)

𝜃 −
(1 − 𝑎) 𝑟

𝐾
𝑅 𝛿𝑒

−(𝑑
1
+𝜆)𝜔

− 𝜃 − [𝑑 +
(1 − 𝑎) 𝑟

𝐾
𝑁 + 𝜃] − 𝜆



= 0, (6)
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where 𝑚 = 𝛽(𝑁 − 𝐼 − 𝑅)𝑓

(𝐼), 𝑛 = 𝛽𝑒

−𝑑
1
𝜏
𝑓(𝐼) + 𝑑 + ((1 −

𝑎)𝑟/𝐾)𝑁 + 𝜇
1
.

Now, we analyze the equilibria stability of system (3).
Computing the Jacobian of system (3) evaluated at 𝐸

0
, one

gets the following matrix

𝐽 (𝐸
0
) = (

−𝑟 − 𝜆 0 0

0 𝑎
22
− 𝜆 0

(𝑑 + 𝜃) 𝜃

𝑑 + (1 − 𝑎) 𝑟 + 𝜃
𝛿𝑒
−(𝑑
1
+𝜆)𝜏

− 𝜃 − [𝑑 + (1 − 𝑎) 𝑟 + 𝜃] − 𝜆

) , (7)

where

𝑎
22
= 𝛽 (𝐾 − 𝑝)𝑓


(0) 𝑒
−(𝑑
1
+𝜆)𝜏

− 𝛿𝑒
−(𝑑
1
+𝜆)𝜔

− [𝑑 + (1 − 𝑎) 𝑟 + 𝜇
1
] .

(8)

Denote

𝐴 = 𝛽 (𝐾 − 𝑝)𝑓

(0) , 𝐶 = 𝑑 + (1 − 𝑎) 𝑟 + 𝜇

1
; (9)

then

𝑎
22
= 𝐴𝑒
−(𝑑
1
+𝜆)𝜏

− 𝛿𝑒
−(𝑑
1
+𝜆)𝜔

− 𝐶. (10)

Denote

ℎ (𝜆) = 𝐴𝑒
−(𝑑
1
+𝜆)𝜏

− 𝛿𝑒
−(𝑑
1
+𝜆)𝜔

− 𝐶 − 𝜆. (11)

The eigenvalues of the system (3) about the steady state
𝐸
0
are 𝜆
1
= −𝑟, ℎ(𝜆) = 0 and 𝜆

3
= −[𝑑 + (1 − 𝑎)𝑟 + 𝜃]. All

the parameters of the model are assumed to be nonnegative.
Therefore, 𝜆

1
and 𝜆

3
are negative. Next, we discuss the roots

of ℎ(𝜆) = 0 in five cases.

Case 1. For 𝜏 = 𝜔 ̸= 0, from the second equation of the system
(3), we can get the following.

Proposition 4. For 𝜏 = 𝜔 > 0, 𝑅(𝜆) < 0 for every root 𝜆 of
ℎ(𝜆) = 0 when

(𝐴 − 𝛿) 𝑒
−𝑑
1
𝜏
< 𝐶. (12)

Proof. From the above analysis, 𝜆
2
satisfies the following

characteristic equation:

𝑔 (𝜆) = (𝐴 − 𝛿) 𝑒
−(𝑑
1
+𝜆)𝜏

− 𝐶 − 𝜆 = 0. (13)

(1) Clearly, 𝜆 = 0 is not a root of 𝑔(𝜆) = 0.
(2) From the fact that 𝑔(0) < 0, 𝑔(𝜆) < 0 for 𝜆 > 0, it is

obtained that 𝑔(𝜆) = 0 has no positive real root.
(3) It is sufficient to show that 𝑔(𝜆) = 0 does not admit

a purely imaginary root. In fact, if 𝜆 = 𝑖V (V > 0) is
a root of (𝑔(𝜆) = 0), then by separating the real part,
one gets

(𝐴 − 𝛿) 𝑒
−𝑑
1
𝜏 cos (V𝜏) = 𝐶. (14)

Together with the condition of Proposition 4, we have

cos (V𝜏) > 1. (15)

This is impossible.

(4) It is easy to show that 𝑔(𝜆) = 0 has no imaginary
root whose real part is positive. Otherwise, there is
an imaginary root 𝜆 = 𝑢 + 𝑖V with 𝑢 > 0. Without any
loss of generality, we consider V > 0.Then, we take the
real and imaginary parts of 𝑔(𝜆) = 0; namely,

(𝐴 − 𝛿) 𝑒
−(𝑑
1
+𝑢)𝜏 cos (V𝜏) = 𝐶 + 𝑢. (16)

Combined with (9), we have

𝐶 > (𝐴 − 𝛿) 𝑒
−𝑑
1
𝜏
> (𝐴 − 𝛿) 𝑒

−(𝑑
1
+𝑢)𝜏 cos (V𝜏) = 𝐶 + 𝑢. (17)

This is a contradictionwhich implies that all eigenvalues roots
of 𝑔(𝜆) have negative real parts. Therefore, the disease-free
equilibrium of the system (3) is locally asymptotically stable
when (9) holds. The proof is completed.

Case 2. For 𝜏 ̸= 0, 𝜔 = 0, by the same way as in Case 1, one
gets the following.

Proposition 5. For all 𝜏 ̸= 0, 𝜔 = 0, 𝑅(𝜆) < 0 for every root 𝜆
of ℎ(𝜆) = 0 when

𝐴𝑒
−𝑑
1
𝜏
− 𝛿 < 𝐶. (18)

Case 3. For 𝜔 ̸= 0, 𝜏 = 0, one gets the following.

Proposition 6. For 𝜔 ̸= 0, 𝜏 = 0, 𝑅(𝜆) < 0 for every root 𝜆 of
ℎ(𝜆) = 0 when

𝛿𝑒
−𝑑
1
𝜔
< |𝐴 − 𝐶| . (19)

Proof. By the fact that ℎ(𝜆) = 0 is equivalent to 𝑝(𝜆) +
𝑞(𝜆)𝑒
−𝜆𝜔

= 0 with 𝑝(𝜆) = 𝐴 − 𝐶 − 𝜆, 𝑞(𝜆) = −𝛿𝑒−𝑑1𝜔.

(i) Suppose 𝜆 = 𝑢 + 𝑖V (𝑢 > 0). Then, 𝑝(𝜆) = 𝐴−𝐶− 𝑢 −
𝑖V ̸= 0.

(ii) By |𝑞(𝑖V)| = 𝛿𝑒
−𝑑
1
𝜔, |𝑝(𝑖V)| = |𝐴 − 𝐶 −

𝑖V| = √(𝐴 − 𝑐)
2
+ V2, together with the condition of

Proposition 6, we know that |𝑞(𝑖V)| < |𝑝(𝑖V)|.
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(iii) Suppose 𝜆 = 𝑢 + 𝑖V, (𝑢 > 0). Then,

lim
𝑢
2
+V2→+∞



𝑞 (𝜆)

𝑝 (𝜆)



= 𝛿𝑒
−𝑑
1
𝜔
,

lim
𝑢
2
+V2→+∞

1

√(𝐴 − 𝐶 − 𝑢)
2
+ V2

= 0.

(20)

Then, using Lemma 3, we have 𝑅(𝜆) < 0 for all 𝜔.

Case 4. For 𝜔 > 𝜏 > 0, let 𝜀 = 𝜔 − 𝜏. Then, 𝜔 = 𝜏 + 𝜀. For
fixed 𝜏,

ℎ (𝜆) = 𝐴𝑒
−(𝑑
1
+𝜆)𝜏

− 𝛿𝑒
−(𝑑
1
+𝜆)(𝜏+𝜀)

− 𝐶 − 𝜆. (21)

Let 𝜆 = 𝑢 + 𝑖V (𝑢 > 0). Then, we take the real and imaginary
parts of ℎ(𝜆) = 0; namely,

𝐴𝑒
−(𝑑
1
+𝑢)𝜏 cos (V𝜏) − 𝛿𝑒−(𝑑1+𝑢)(𝜏+𝜀) cos (V (𝜏 + 𝜀))

= 𝐶 + 𝑢,

−𝐴𝑒
−(𝑑
1
+𝑢)𝜏 sin (V𝜏) − 𝛿𝑒−(𝑑1+𝑢)(𝜏+𝜀) sin (V (𝜏 + 𝜀)) = V.

(22)

Sum of squares of the above equalities is

𝐴
2
𝑒
−2(𝑑
1
+𝑢)𝜏

+ 𝛿
2
𝑒
−2(𝑑
1
+𝑢)(𝜏+𝜀)

− 2𝐴𝛿𝑒
−(𝑑
1
+𝑢)(2𝜏+𝜀) cos (V𝜀) − (𝐶 + 𝑢)2 − V2 = 0.

(23)

Then, we have

𝜕𝑢

𝜕𝜀

𝜀=0

=
𝛿 (𝑢 + 𝑑

1
) (𝐴 − 𝛿)

(𝐴 − 𝛿)
2
𝜏 + (𝐶 + 𝑢) 𝑒

2𝜏(𝑢+𝛿)
. (24)

Obviously, 𝜕𝑢/𝜕𝜀|
𝜀=0

< 0 when 𝐴 − 𝛿 < 0. Combined with
(𝐴 − 𝛿)𝑒

−𝑑
1
𝜏
< 𝐴𝑒
−𝑑
1
𝜏
− 𝛿𝑒
−𝑑
1
𝜔, we have the following.

Proposition 7. For 𝜔 > 𝜏 > 0, 𝑅(𝜆) < 0 for every root 𝜆 of
ℎ(𝜆) = 0 when

𝐴𝑒
−𝑑
1
𝜏
− 𝛿𝑒
−𝑑
1
𝜔
< 𝐶, 𝐴 − 𝛿 < 0, 0 < 𝜔 − 𝜏 ≪ 1. (25)

Case 5. For 0 < 𝜏 < 𝜔, in the same way as in Case 4, we have
the following.

Proposition 8. For 0 < 𝜏 < 𝜔, 𝑅(𝜆) < 0 for every root 𝜆 of
ℎ(𝜆) = 0 when

𝐴𝑒
−𝑑
1
𝜏
− 𝛿𝑒
−𝑑
1
𝜔
< 𝐶, 𝐴 − 𝛿 > 0, 0 < 𝜏 − 𝜔 ≪ 1. (26)

From what has been discussed above, we get the follow-
ing.

Theorem 9. The disease-free equilibrium of the system (3) is
locally asymptotically stable if one of the following conditions
holds.

(a) 𝜏 = 𝜔 ̸= 0, (𝐴 − 𝛿)𝑒−𝑑1𝜏 < 𝐶.
(b) 𝜏 ̸= 0, 𝜔 = 0, 𝐴𝑒−𝑑1𝜏 − 𝛿 < 𝐶.
(c) 𝜏 = 0, 𝜔 ̸= 0, 𝛿𝑒−𝑑1𝜔 < |𝐴 − 𝐶|.
(d) 𝐴𝑒−𝑑1𝜏 − 𝛿𝑒−𝑑1𝜔 < 𝐶, 𝐴 − 𝛿 < 0, 0 < 𝜔 − 𝜏 ≪ 1.
(e) 𝐴𝑒−𝑑1𝜏 − 𝛿𝑒−𝑑1𝜔 < 𝐶, 𝐴 − 𝛿 > 0, 0 < 𝜏 − 𝜔 ≪ 1.

3.2. Existence of Endemic Equilibrium. Thus, by Theorem 9,
we may define the basic reproduction number as

𝑅
0
=
𝐴𝑒
−𝑑
1
𝜏
− 𝛿𝑒
−𝑑
1
𝜔

𝐶
. (27)

This threshold 𝑅
0
defines the average number of sec-

ondary infections generated by a typical infectious individual
in a completely susceptible population in a steady demo-
graphic state.

In Theorem 9, we have already shown that the system
(3) has an infection-free steady state which is locally asymp-
totically stable under condition 𝑅

0
< 1. The disease-free

equilibrium is unstable when 𝑅
0
> 1, and the system (3) has

a nontrivial endemic equilibrium 𝐸
∗
= (𝑁

∗
, 𝐼
∗
, 𝑅
∗
) when

𝑅
0
> 1. From (3),

𝑁
∗
= 𝐾 > 0,

𝑅
∗
=

𝛿𝑒
−𝑑
1
𝜔
− 𝜃

𝑑 + (1 − 𝑎) 𝑟 + 𝜃
𝐼
∗

+
𝐾𝜃

𝑑 + (1 − 𝑎) 𝑟 + 𝜃
≐ 𝑞𝐼
∗
+ 𝑝,

(28)

where 𝑞 = (𝑒−𝑑1𝜔𝛿 − 𝜃)/(𝑑 + (1 − 𝑎)𝑟 + 𝜃). Substituting these
values of𝑁∗ and 𝑅∗ in the second equation of (3), we get the
following equation for 𝐼:

𝐺 (𝐼) = 𝛽𝑒
−𝑑
1
𝜏
(𝐾 − (1 + 𝑞) 𝐼 − 𝑝) 𝑓 (𝐼) − [𝐶 + 𝛿𝑒

−𝑑
1
𝜔
] 𝐼.

(29)

Obviously, 𝐼 = 0 is one of the roots of (29) as 𝑓(0) = 0.
Therefore, to exclude that root, choose

𝐻(𝐼) = 𝛽𝑒
−𝑑
1
𝜏
(𝐾 − (1 + 𝑞) 𝐼 − 𝑝)

𝑓 (𝐼)

𝐼
− [𝐶 + 𝛿𝑒

−𝑑
1
𝜔
] .

(30)

It can easily be seen that the function𝐻(𝐼) is negative for
large positive 𝐼; that is,

𝐻(𝐾) = −𝛽𝑒
−𝑑
1
𝜏
(𝐾𝑞 + 𝑝)

𝑓 (𝑘)

𝐾
− [𝐶 + 𝛿𝑒

−𝑑
1
𝜔
] < 0. (31)

Next, we determine the sign of its derivative

𝐻

(𝐼) = 𝛽𝑒

−𝑑
1
𝜏
(𝐾 − 𝑝)

𝑓

(𝐼) 𝐼 − 𝑓 (𝐼)

𝐼2

− 𝛽𝑒
−𝑑
1
𝜏
(1 + 𝑞) 𝑓


(𝐼) .

(32)

It can easily be seen that 𝐾 > 𝑝. In addition, from the
properties of the function 𝑓(𝐼), in particular from 𝑓(0) = 0

and 𝑓(0) < 0, it follows that 𝑓(𝐼) − 𝑓(𝐼)𝐼 > 0, and
consequently𝐻(𝐼) < 0 for all 𝐼 > 0. Therefore, for a positive
root of𝐻(𝐼) = 0 to exist,𝐻(𝐼) has to satisfy𝐻(0) > 0; that is,

𝐻(0) = 𝐴𝑒
−𝑑
1
𝜏
− 𝛿𝑒
−𝑑
1
𝜔
− 𝐶

= (
𝐴𝑒
−𝑑
1
𝜏
− 𝑒
−𝑑
1
𝜔
𝛿

𝐶
− 1)𝐶

= (𝑅
0
− 1)𝐶.

(33)



6 Abstract and Applied Analysis

Hence, one needs the requirement that 𝑅
0
> 1 to ensure

the existence of the endemic equilibrium. From the above
analysis, we have the following theorem.

Theorem 10. The system (3) has a nontrivial endemic equilib-
rium 𝐸

∗
= (𝑁
∗
, 𝐼
∗
, 𝑅
∗
) when 𝑅

0
> 1.

3.3. Local Stability of the Endemic Equilibrium. In this sec-
tion, we analyze the local stability of the endemic equilibrium
𝐸
∗ for 𝜏 = 𝜔. Its characteristic equation is given by



−𝑟 − 𝜆 0 0

𝛽𝑒
−𝑑
1
𝜏
𝑓 (𝐼
∗
) −

(1 − 𝑎) 𝑟𝐼
∗

𝐾
𝑚𝑒
−(𝑑
1
+𝜆)𝜏

− 𝑛 − 𝜆 𝛽𝑒
−𝑑
1
𝜏
𝑓 (𝐼
∗
)

𝜃 −
(1 − 𝑎) 𝑟𝑅

∗

𝐾
𝛿𝑒
−(𝑑
1
+𝜆)𝜏

− 𝜃 − [𝑑 + (1 − 𝑎) 𝑟 + 𝜃] − 𝜆



= 0, (34)

where𝑚 = 𝛽(𝐾 − 𝐼
∗
− 𝑅
∗
)𝑓

(𝐼
∗
) − 𝛿, 𝑛 = 𝛽𝑒−𝑑1𝜏𝑓(𝐼∗) + 𝑑 +

(1 − 𝑎)𝑟 + 𝜇
1
.

The Jacobin matrix leads to the characteristic equation

(𝜆 + 𝑟) [𝜆
2
+ 𝑚
1
𝜆 + 𝑚

0
+ (𝑛
1
𝜆 + 𝑛
0
) 𝑒
−𝜆𝜏
] = 0, (35)

where

𝑚
1
= 𝛽𝑒
−𝑑
1
𝜏
𝑓 (𝐼
∗
) + 2𝑑 + 2 (1 − 𝑎) 𝑟 + 𝜃 + 𝜇

1
> 0,

𝑚
0
= [𝛽𝑒

−𝑑
1
𝜏
𝑓 (𝐼
∗
) + 𝑑 + (1 − 𝑎) 𝑟 + 𝜇1]

× (𝑑 + (1 − 𝑎) 𝑟 + 𝜃) + (𝑑 + (1 − 𝑎) 𝑟 + 𝜇1) 𝜃 > 0,

𝑛
1
= − [𝛽𝑓


(𝐼
∗
) (𝐾 − 𝐼

∗
− 𝑅
∗
) − 𝛿] 𝑒

−𝑑
1
𝜏
,

𝑛
0
= [𝛽𝑓


(𝐼
∗
) (𝐾 − 𝐼

∗
− 𝑅
∗
) − 𝛿] [𝑑 + (1 − 𝑎) 𝑟 + 𝜃]

× 𝑒
−𝑑
1
𝜏
+ 𝛿𝑓 (𝐼

∗
) 𝑒
−2𝑑
1
𝜏
.

(36)

Since all the model parameters are assumed to be nonnega-
tive, it follows that one eigenvalue is negative; that is, 𝜆

1
= −𝑟.

Thus, the stability of 𝐸∗ depends on the roots of the quasi-
polynomial

𝜆
2
+ 𝑚
1
𝜆 + 𝑚

0
+ (𝑛
1
𝜆 + 𝑛
0
) 𝑒
−𝜆𝜏

= 0. (37)

We note that 𝑚
1
> 0 and 𝑚

0
> 0, whereas 𝑛

1
and 𝑛

0
may be

positive or negative. For 𝜏 = 0, we state the following results
that follow directly from (39). The endemic steady state is
locally asymptotically stable if the following conditions hold:

𝛽𝑓 (𝐼
∗
) + 2𝑑 + 2 (1 − 𝑎) 𝑟 + 𝜃 + 𝜇

1
+ 𝛿𝛽𝑓


(𝐼
∗
)

> 𝛽 (𝐾 − 𝐼
∗
− 𝑅
∗
) 𝑓

(𝐼
∗
) ,

(𝐻
1
)

[𝛽𝑓 (𝐼
∗
) + 𝑑 + (1 − 𝑎) 𝑟 + 𝜇

1
+ 𝛿 − 𝛽 (𝐾 − 𝐼

∗
− 𝑅
∗
) 𝑓

(𝐼
∗
)]

× [𝑑 + (1 − 𝑎) 𝑟 + 𝜃] + 𝑓 (𝐼
∗
) 𝛿 > 0.

(𝐻
2
)

The main purpose of this paper is to study the stability
behavior of 𝐸∗ in the case 𝜏 ̸= 0. Obviously, 𝑖𝜂 (𝜂 > 0) is the
root of (29) if and only if 𝜂 satisfies

−𝜂
2
+ 𝑚
1
𝑖𝜂 + 𝑚

0
= − (𝑛

1
𝑖𝜂 + 𝑛

0
) (cos 𝜂𝜏 − 𝑖 sin 𝜂𝜏) . (38)

Separating the real and imaginary parts, we have

−𝜂
2
+ 𝑚
0
= −𝑛
0
cos 𝜂𝜏 − 𝑛

1
𝜂 sin 𝜂𝜏, (39)

𝑚
1
𝜂 = −𝑛

1
𝜂 cos 𝜂𝜏 + 𝑛

0
sin 𝜂𝜏. (40)

Eliminating 𝜏 by squaring and adding (39) and (40), we
obtain a polynomial in 𝜂 as

𝜂
4
+ (𝑚
2

1
− 𝑛
2

1
− 2𝑚
0
) 𝜂
2
+ 𝑚
2

0
− 𝑛
2

0
= 0. (41)

Suppose that the conditions

𝑚
2

1
> 𝑛
2

1
+ 2𝑚
0
, 𝑚
2

0
> 𝑛
2

0
(𝐻
3
)

hold for all 𝜏 ≥ 0.Then, the infected steady state of the system
(3) is locally asymptotically stable.

Theorem 11. For 𝜏 = 𝜔, if 𝑅
0
> 1, then the endemic

equilibrium of the system (3) is locally asymptotically stable,
when conditions (𝐻

1
)–(𝐻
3
) hold.

Corollary 12. For 𝜏 = 𝜔, if 𝜇
1
< 𝜇
∗

1
or 𝜃 < 𝜃

∗, then the
endemic equilibrium of the system (3) is locally asymptotically
stable, when conditions (𝐻

1
)–(𝐻
3
) hold.

4. Permanence

In this section, we investigate a permanence result [5]. The
following is our main result of this paper. We will give the
following result by using some techniques given in [8, 11].
The proof of the permanence with nonlinear incidence is a
daunting task. Consequently, for simplicity andmathematical
convenience, let us choose a linear incidence rate 𝑓(𝐼) =

𝐼. The result holds with the nonlinear incidence, as shown
numerically, but the algebraic proof is long and tedious, and
the conditions to impose on some of the parameters may be
very restrictive. Now, let us firstly give the following theorem.
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Theorem 13. If 𝑅
0
> 1 holds, then the system (1) with 𝜏 = 𝜔

is permanent; that is, there are positive constants 𝑐
𝑖
(𝑖 = 1, 2, 3)

such that

𝑐
1
< lim
𝑡→∞

inf 𝑆 (𝑡) ≤ lim
𝑡→∞

sup 𝑆 (𝑡) ≤ 𝐾,

𝑐
2
< lim
𝑡→∞

inf 𝐼 (𝑡) ≤ lim
𝑡→∞

sup 𝐼 (𝑡) ≤ 𝐾,

𝑐
3
< lim
𝑡→∞

inf 𝑅 (𝑡) ≤ lim
𝑡→∞

sup𝑅 (𝑡) ≤ 𝐾

(42)

hold for any solution of (1) with (𝜙
1
(𝜃), 𝜙
2
(𝜃), 𝜙
3
(𝜃)) in the

interior of Φ for all 𝜃 ∈ [−𝜏, 0]. In fact, 𝑐
𝑖
(𝑖 = 1, 2, 3) can

be chosen explicitly as

𝑐
1
=

(𝑏 − 𝑎𝑟)𝐾

𝛽𝐾𝑒−𝑑1𝜏 + 𝑑 + (1 − 𝑎) 𝑟 + 𝜃
,

𝑐
2
= 𝐼
∗
𝑒
−(𝑑+(1−𝑎)𝑟+𝜇

1
+𝑒
−𝑑
1
𝜏
𝛿)
,

𝑐
3
=
𝛿𝑒
−𝑑
1
𝜏
𝑐
2
+ 𝜃𝑐
1

𝑑 + (1 − 𝑎) 𝑟
.

(43)

Proof. Note that 0 < 𝑁(𝑡) < 𝐾 for all 𝑡 ≥ 0 and that
lim
𝑡→∞

𝑁(𝑡) = 𝐾. It is easy to see that lim
𝑡→∞

inf 𝑆(𝑡) ≥ 𝑐
1
.

In fact, let 𝜖 < 𝐾 be arbitrary. Choose 𝑇
1
> 𝜏 so large that

𝑁(𝑡) > 𝐾 − 𝜖 for 𝑡 > 𝑇
1
. We have the following inequality:

̇𝑆 (𝑡) > − [𝛽𝐾𝑒
−𝑑
1
𝜏
+ 𝑑 + (1 − 𝑎) 𝑟 + 𝜃] 𝑆 (𝑡)

+ (𝑏 − 𝑎𝑟) (𝐾 − 𝜖) ,

(44)

for all 𝑡 ≥ 𝑇
1
, which implies that

lim inf
𝑡→∞

𝑆 (𝑡) ≥
(𝑏 − 𝑎𝑟) (𝐾 − 𝜖)

𝛽𝐾𝑒−𝑑1𝜏 + 𝑑 + (1 − 𝑎) 𝑟 + 𝜃
. (45)

Note that 𝜖may be arbitrarily small so that lim
𝑡→∞

inf 𝑆(𝑡) ≥
𝑐
1
.
Next, we will show lim

𝑡→∞
inf 𝐼(𝑡) ≥ 𝑐

2
. For any 𝜉 :

0 < 𝜉 < 1, we see the inequality 𝑆∗ < [(𝑏 − 𝑎𝑟)𝐾 +

𝜇
1
𝐼
∗
]/(𝛽𝑒
−𝑑
1
𝜏
𝜉𝐼
∗
+ 𝑑 + (1 − 𝑎)𝑟 + 𝜃). There exist sufficiently

large 𝜌 ≥ 1 and sufficiently small 𝜖 such that 𝑆∗ < {[(𝑏 −

𝑎𝑟)(𝐾 − 𝜖) + 𝜇
1
𝐼
∗
]/(𝛽𝑒−𝑑1𝜏𝜉𝐼∗ + 𝑑 + (1 − 𝑎)𝑟 + 𝜃)}(1 −

𝑒
−(𝛽𝑒
−𝑑
1
𝜏
𝜉𝐼
∗
+𝑑+(1−𝑎)𝑟+𝜃)𝜌𝜏

) ≡ 𝑆
Δ. We show that 𝐼(𝑡

0
) > 𝑞𝐼

∗ for
some 𝑡

0
≥ 𝜌𝜏. In fact, if not, it follows from the first equation

of (1) that, for all 𝑡 ≥ 𝜌𝜏 + 𝜏 ≥ 𝑇
1
+ 𝜏,

̇𝑆 (𝑡) ≥ (𝑏 − 𝑎𝑟) (𝐾 − 𝜖) + 𝜇1𝐼
∗

− [𝛽𝑒
−𝑑
1
𝜏
𝜉𝐼
∗
+ 𝑑 + (1 − 𝑎) 𝑟 + 𝜃] 𝑆 (𝑡) .

(46)

Hence, for 𝑡 ≥ 𝜌𝜏 + 𝜏,

𝑆 (𝑡) ≥ 𝑒
−(𝛽𝑒
−𝑑
1
𝜏
𝜉𝐼
∗
+𝑑+(1−𝑎)𝑟+𝜃)(𝑡−𝜌𝜏−𝜏)

× [𝑆 (𝜌𝜏 + 𝜏) + (𝑏 − 𝑎𝑟) (𝐾 − 𝜖) + 𝜇1𝐼
∗
]

× ∫

𝑡

𝜌𝜏+𝜏

𝑒
−(𝛽𝑒
−𝑑
1
𝜏
𝜉𝐼
∗
+𝑑+(1−𝑎)𝑟+𝜃)(𝑡−𝜌𝜏−𝜏)

𝑑𝜃

>
[(𝑏 − 𝑎𝑟) (𝐾 − 𝜖) + 𝜇1𝐼

∗
]

𝛽𝑒−𝑑1𝜏𝜉𝐼∗ + 𝑑 + (1 − 𝑎) 𝑟 + 𝜃

× (1 − 𝑒
−(𝛽𝑒
−𝑑
1
𝜏
𝜉𝐼
∗
+𝑑+(1−𝑎)𝑟+𝜃)(𝑡−𝜌𝜏−𝜏)

) ,

(47)

which gives us, for 𝑡 ≥ 2𝜌𝜏 + 𝜏,

𝑆 (𝑡) > 𝑆
Δ
> 𝑆
∗
. (48)

For 𝑡 ≥ 0, we define a positive differentiable function 𝑉(𝑡) as
follows:

𝑉 (𝑡) = 𝐼 (𝑡) +
[𝛽 (𝐾 − 𝑝) − 𝛿] 𝑒

−𝑑
1
𝜏

𝑅
0

∫

𝑡

𝑡−𝜏

𝐼 (𝑠) 𝑑𝑠. (49)

We obtain the inequality, for 𝑡 ≥ 2𝜌𝜏 + 𝜏,

𝑉 (𝑡) = [𝛽𝑒
−𝑑
1
𝜏
(𝑆 (𝑡) − 𝑆

∗
) 𝐼 (𝑡 − 𝜏) + (1 − 𝑎) 𝑟]

× (1 −
𝑁 (𝑡)

𝐾
) 𝐼 (𝑡)

> 𝛽𝑒
−𝑑
1
𝜏
(𝑆 (𝑡) − 𝑆

∗
) 𝐼 (𝑡 − 𝜏)

> 𝛽𝑒
−𝑑
1
𝜏
(𝑆
Δ
− 𝑆
∗
) 𝐼 (𝑡 − 𝜏) .

(50)

Let 𝑖 = min
𝜃∈[−𝜏,0]

𝐼(2𝜌𝜏 + 2𝜏 + 𝜃). Now, let us show that
𝐼(𝑡) ≥ 𝑖 for all 𝑡 ≥ 2𝜌𝜏 + 𝜏. In fact, if there exists 𝑇

2
≥ 0 such

that 𝐼(𝑡) ≥ 𝑖 for 2𝜌𝜏+𝜏 ≤ 𝑡 ≤ 2𝜌𝜏+2𝜏+𝑇
2
, 𝐼(2𝜌𝜏+2𝜏+𝑇

2
) = 𝑖

and ̇𝐼(2𝜌𝜏 + 2𝜏 +𝑇
2
) ≤ 0. Direct calculation using the second

equation of (1) and (48) gives

̇𝐼 (2𝜌𝜏 + 2𝜏 + 𝑇
2
)

> [𝛽𝑒
−𝑑
1
𝜏
(𝑆 (2𝜌𝜏 + 2𝜏 + 𝑇

2
)

− (𝑑 + (1 − 𝑎) 𝑟 + 𝜇
1
+ 𝑒
−𝑑
1
𝜏
𝛿)] 𝑖

> (𝑑 + (1 − 𝑎) 𝑟 + 𝜇1 + 𝑒
−𝑑
1
𝜏
𝛿) [

𝑆
Δ

𝑆∗
− 1] 𝑖 > 0.

(51)

This contradicts the definition of 𝑇
2
. Thus, we have shown

that 𝐼(𝑡) ≥ 𝑖 for all 𝑡 ≥ 2𝜌𝜏 + 𝜏. Hence, for all 𝑡 ≥ 2𝜌𝜏 + 2𝜏,

𝑉 (𝑡) > 𝛽𝑒
−𝑑
1
𝜏
(𝑆
Δ
− 𝑆
∗
) 𝑖, (52)

which implies that 𝑉(𝑡) → +∞ as 𝑡 → +∞. This
contradicts the boundedness of 𝑉(𝑡). Consequently, 𝐼(𝑡

0
) >

𝜉𝐼
∗ for some 𝑡

0
≥ 𝜌𝜏.

In the rest, we now need to consider two cases:

(i) 𝐼(𝑡) ≥ 𝜉𝐼∗ for all large 𝑡;
(ii) 𝐼(𝑡) oscillates about 𝜉𝐼∗ for all large 𝑡.
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Wenowneed to show that 𝐼(𝑡) ≥ 𝜉𝑐
2
for large 𝑡. Obviously,

it suffices to show that it holds only for case (ii). We suppose
that for any large 𝑇 there exists 𝑡

1
, 𝑡
2
> 𝑇 such that 𝐼(𝑡

1
) =

𝐼(𝑡
2
) = 𝜉𝐼

∗ and 𝐼(𝑡) < 𝜉𝐼∗ for 𝑡
1
< 𝑡 < 𝑡

2
. If 𝑡
2
− 𝑡
1
≤ 𝜏, the

second equation (1) gives us ̇𝐼(𝑡) > −(𝑑 + (1 − 𝑎)𝑟 + 𝜇
1
)𝐼(𝑡),

which implies that 𝐼(𝑡) > 𝐼(𝑡
1
)𝑒
−(𝑑+(1−𝑎)𝑟+𝜇

1
)(𝑡−𝑡
1
) on (𝑡

1
, 𝑡
2
).

Thus, 𝐼(𝑡) > 𝜉𝑐
2
. On the other hand, if 𝑡

2
− 𝑡
1
> 𝜏, applying

the same manner gives 𝐼(𝑡) ≥ 𝜉𝑐
2
on [𝑡
1
, 𝑡
1
+ 𝜏], and hence

the remaining work is to show 𝐼(𝑡) ≥ 𝜉𝑐
2
on [𝑡
1
+ 𝜏, 𝑡
2
]. In

fact, assuming that there exists 𝑇
3
> 0 such that 𝐼(𝑡) ≥ 𝜉𝑐

2
on

[𝑡
1
, 𝑡
1
+ 𝜏 + 𝑇

3
], 𝐼(𝑡
1
+ 𝜏 + 𝑇

3
) = 𝜉𝑐
2
, and ̇𝐼(𝑡

1
+ 𝜏 + 𝑇

3
) ≤ 0, it

follows from (1) that

̇𝐼 (𝑡
1
+ 𝜏 + 𝑇

3
)

≥ [𝛽𝑒
−𝑑
1
𝜏
𝑆 (𝑡
1
+ 𝜏 + 𝑇

3
)

− (𝑑 + (1 − 𝑎) 𝑟 + 𝜇1 + 𝑒
−𝑑
1
𝜏
𝛿)] 𝜉𝑐

2

> (𝑑 + (1 − 𝑎) 𝑟 + 𝜇
1
+ 𝑒
−𝑑
1
𝜏
𝛿) [

𝑆
Δ

𝑆∗
− 1] 𝜉𝑐

2
> 0.

(53)

This contradicts the definition of 𝑇
3
. Hence, 𝐼(𝑡) ≥ 𝜉𝑐

2
on

[𝑡
1
, 𝑡
2
]. Consequently, 𝐼(𝑡) ≥ 𝜉𝑐

2
for large 𝑡 in the case (ii).

Therefore, lim
𝑡→∞

inf 𝐼(𝑡) ≥ 𝜉𝑐
2
. Note that 𝑞may be so close

to 1 that lim
𝑡→∞

inf 𝐼(𝑡) ≥ 𝑐
2
.

Finally, let us show that lim
𝑡→∞

inf 𝑅(𝑡) ≥ (𝛿𝑒
−𝑑
1
𝜏
𝑐
2
+

𝜃𝑐
1
)/(𝑑 + (1 − 𝑎)𝑟). The third equation gives us

̇𝑅 (𝑡) ≥ [𝛿𝑒
−𝑑
1
𝜏
𝐼 + 𝜃𝑆 − [𝑑 + (1 − 𝑎) 𝑟] 𝑅

≥ [𝛿𝑒
−𝑑
1
𝜏
𝜉𝑐
2
+ 𝜃𝜉𝑐
1
− [𝑑 + (1 − 𝑎) 𝑟] 𝑅

(54)

for large 𝑡. Hence, lim
𝑡→∞

inf 𝑅(𝑡) ≥ (𝛿𝑒
−𝑑
1
𝜏
𝜉𝑐
2
+

𝜃𝜉𝑐
1
)/(𝑑 + (1 − 𝑎)𝑟). In a similar manner, we could show

lim
𝑡→∞

inf 𝑅(𝑡) ≥ 𝑐
3
. This proves the theorem.

Corollary 14. If 𝜇
1
< 𝜇
∗

1
and 𝜃 < 𝜃∗, then the system (1) with

𝜏 = 𝜔 is permanent.

5. Numerical Analysis

Since it is important to visualize the dynamical behavior of
the model, the model system (3) is integrated numerically
with the help of MATLAB 7.0 using the following set of
parameters.

(1) Let 𝑟 = 0.5, 𝑘 = 8, 𝑑 = 0.04, 𝑑
1
= 0.04, 𝛽 = 1,

𝑎 = 0.3, 𝛿 = 0.2, 𝜇
1
= 0.8, 𝜃 = 0.01, and 𝜏 = 5. It is

easy to compute that 𝐸
0
= (8, 0, 0.2) and 𝑅

0
= 0.94 < 1. In

Figure 1, the infective population and recovered population,
respectively, are plotted against the total population. We see
from the figure that for any initial start the solution curves
tend to the equilibrium 𝐸

0
. Hence, we infer that the system

(3) may be stable about the disease-free equilibrium point 𝐸
0
,

which satisfies Theorem 9.
(2) Let 𝑟 = 0.5, 𝑘 = 8, 𝑑 = 0.04, 𝑑

1
= 0.04, 𝛽 = 1,

𝑎 = 0.3, 𝛿 = 0.2, 𝜇
1
= 0.2, 𝜃 = 0.02, and 𝜏 = 5. We

get 𝐸∗ = (8, 2.23, 1.11) and this set of parameter values
satisfies the local asymptotic stability conditions of 𝐸∗. It is
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0
is locally asymptotically

stable. Variation of infective population 𝐼(𝑡) and recovered popula-
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4 5 6 7
8

9

0
1

2
3
0

0.5

1

1.5

2

2.5

The endemic equilibrium

R
(t
)

I(t)
N(t)

Figure 2:The endemic equilibrium 𝐸
∗ is locally asymptotically sta-

ble. Variation of infective population 𝐼(𝑡) and recovered population
𝑅(𝑡) with total population𝑁(𝑡).

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

In
fe

ct
iv

es
I(
t)

an
d 

re
co

ve
re

d 
in

di
vi

du
al

sR
(t
)

Time (t)

1 R(t)

2 R(t)

3 I(t)

4 I(t)

𝜇1 = 0.2

𝜇1 = 0.4

𝜇1 = 0.2

𝜇1 = 0.4

Figure 3: Variation of infective population 𝐼(𝑡) and recovered
population 𝑅(𝑡) with time for different values of 𝜇

1
.



Abstract and Applied Analysis 9

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

In
fe

ct
iv

es
I(
t)

an
d 

re
co

ve
re

d 
in

di
vi

du
al

sR
(t
)

Time (t)

𝜃 = 0.03

𝜃 = 0.02

𝜃 = 0.03

𝜃 = 0.02

1 R(t)

2 R(t)

3 I(t)

4 I(t)

Figure 4: Variation of infective population 𝐼(𝑡) and recovered
population 𝑅(𝑡) with time for different values of 𝜃.

easy to verify that 𝑅
0
= 1.83 > 1 and all other conditions of

Theorem 11 are satisfied. So, we can obtain from Figure 2 that
the system (3) is stable at the endemic equilibrium point 𝐸∗.

(3) The results of numerical simulation are displayed
graphically in Figures 3 and 4. In Figure 3, the variation
of the infective population and recovered population is
shown with time for different values of the removal rate
constant from groups 𝐼 to 𝑆, 𝜇

1
. It is found that both the

infective population and the recovered population decrease
as 𝜇
1
increases. Figure 4 depicts the variation of infective

population and recovered population, respectively, with time
for the different successive vaccination rate, 𝜃. As 𝜃 increases,
the infective population decreases whereas the recovered
population increases.

6. Discussion

In this paper, we will consider two different delays which
are important parameters on the dynamic behavior. So, the
present study is continuation of the previous work by [43].
Furthermore, from biological epidemic point of view, we
investigate successive vaccination and difference in immunity
in our system. From mathematical point of view, we study
the stability of disease-free equilibrium and the existence
of endemic equilibrium for different delay and consider the
permanence of the system in the new paper.

In Theorems 9, 10, 11, and 13 corresponding to their
corollaries, when the effect of the successive vaccination
rate and the transfer rate from the infectious group to the
susceptible group after treatment is strong, that is, 𝜃 > 𝜃

∗

and 𝜇
1
> 𝜇
∗

1
, the basic reproduction number 𝑅

0
being

unity is a strict threshold for the control of the disease;
the disease will be extinct or otherwise will tend to break
out and persist. The other results are displayed graphically
from our numerical simulation. We show the variation of

the infective population and recovered population with time
for different values of 𝜇

1
. It is found that both the infective

population and the recovered population decrease as 𝜇
1

increases. The infective population decreases whereas the
recovered population increases as the successive vaccination
rate increases, 𝜃, respectively.
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We focus on a spatially extendedHolling-type IV predator-preymodel that contains some important factors, such as noise (random
fluctuations), external periodic forcing, and diffusion processes. By a brief stability and bifurcation analysis, we arrive at the
Hopf and Turing bifurcation surface and derive the symbolic conditions for Hopf and Turing bifurcation on the spatial domain.
Based on the stability and bifurcation analysis, we obtain spiral pattern formation via numerical simulation. Additionally, we
study the model with a color noise and external periodic forcing. From the numerical results, we know that noise or external
periodic forcing can induce instability and enhance the oscillation of the species density, and the cooperation between noise and
external periodic forces inherent to the deterministic dynamics of periodically driven models gives rise to the appearance of a rich
transport phenomenology. Our results show that modeling by reaction-diffusion equations is an appropriate tool for investigating
fundamental mechanisms of complex spatiotemporal dynamics.

1. Introduction

Predation, a complex natural phenomenon, exists widely in
theworld, for example, the sea, the plain, the forest, the desert,
and so on [1]. To model this phenomenon, the predator-prey
model has been suggested for a long time since the pioneering
works of Kendall [2]. Predator-prey model is a kind of “pur-
suit and evasion” system in which the prey trie to evade the
predator and the predator tries to catch the prey if they inter-
act [3]. Pursuit means the predator tries to shorten the spatial
distance between the predator and the prey; evasion means
the prey tries to widen this spatial distance. In fact, predator-
prey model is a mathematical method to approximate some
part of our real world. And the dynamic behavior of predator-
prey model has long been and will continue to be one of the
dominant themes in both ecology and mathematical ecology
due to its universal existence and importance [4, 5].

In general, a classical predator-prey model can be written
as the form [6, 7]

𝑑𝑁

𝑑𝑡
= 𝑁𝑓 (𝑁) − 𝑚𝑃𝑔 (𝑁, 𝑃) ,

𝑑𝑃

𝑑𝑡
= 𝑃 [𝑐𝑚𝑔 (𝑁, 𝑃) − 𝑑] ,

(1)

where 𝑁 and 𝑃 stand for prey and predator quantity,
respectively, 𝑓(𝑁) is the per capita rate of increase of the
prey in absence of predation, 𝑑 is the food-independent
death rate of predator, 𝑔(𝑁, 𝑃) is the functional response, the
prey consumption rate by an average single predator, which
obviously increases with the prey consumption rate and can
be influenced by the predator density, which refers to the
change in the density of prey attached per unit time per
predator as the prey density changes,𝑚𝑔(𝑁, 𝑃) is the amount
of prey consumed per predator per unit time, and 𝑐𝑚𝑔(𝑁, 𝑃)

is the predator production per capita with predation.
In population dynamics, a functional response 𝑔(𝑁, 𝑃)

describes the relationship between the predator and their
prey, and the predator-prey model is always named after
the corresponding functional response for its key position
[6–9]. In the history of population ecology, both ecologists
and mathematicians have a great interest in the Holling-type
predator-prey models [3, 8, 10–21], including Holling-types
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I–III, originally due to Holling [22, 23], and Holling-type
IV, suggested by Andrews [24]. The Holling-type functional
responses are the so-called “prey-dependent” type [8], for
𝑔(𝑁, 𝑃) in (1) is a function only related to prey 𝑁. The
classical expression of Holling-type II functional response is
𝑔(𝑁, 𝑃) = 𝑚𝑁/(1 + 𝑏𝑁), and 𝑔(𝑁, 𝑃) = 𝑚𝑁

2
/(1 + 𝑎𝑁

2
)

is called Holling-type III. The Holling-type IV functional
response is written as follows:

𝑔 (𝑁, 𝑃) =
𝑚𝑁

1 + 𝑏𝑁 + 𝑎𝑁2
. (2)

Function (2) is called Monod-Haldane-type functional
response too [25]. In addition, when 𝑏 = 0, a simplified form
𝑔(𝑁, 𝑃) = 𝑚𝑁/(1+𝑎𝑁

2
) is proposed by Sokol [26], and some

scholars also called it as Holling-type IV [9, 25]. In this paper,
we focus on the Holling-IV functional response taking the
form (2), and the corresponding predator-prey model takes
the form

𝑑𝑁

𝑑𝑡
= 𝑟𝑁(1 −

𝑁

𝐾
) −

𝑚𝑁𝑃

1 + 𝑏𝑁 + 𝑎𝑁2
,

𝑑𝑃

𝑑𝑡
= 𝑃(−𝑞 +

𝑐𝑚𝑁

1 + 𝑏𝑁 + 𝑎𝑁2
) ,

(3)

where 𝑟 > 0 stands for maximum per capita growth rate of
the prey,𝑚 > 0 is the capture rate, 𝑐 > 0 is the conversion rate
of prey captured by predator, 𝑞 > 0 is the food-independent
death rate of predator, 𝐾 > 0 is the carrying capacity, and
𝑎 > 0 is the so-called half-saturation constant; 𝑏 > −2√𝑎

such that the denominator of above system does not vanish
for nonnegative𝑁.

On the other hand, the real world we live in is a spatial
world, and spatial patterns are ubiquitous in nature, which
modify the temporal dynamics and stability properties of
population density at a range of spatial scales, whose effects
must be incorporated in temporal ecological models that do
not represent space explicitly [27]. And the spatial component
of ecological interactions has been identified as an important
factor in how ecological communities are shaped. Empirical
evidence suggests that the spatial scale and structure of the
environment can influence population interactions and the
composition of communities [1].

The reaction-diffusion model is a typical spatially
extended model. It considers not only time but also space
and consists of several species which react with each other
and diffuse within the spatial domain. It involves a pair of
partial differential equations and represents the time course
of reacting and diffusing process. In spatially extended
predator-prey model, the interaction between the predator
and the prey is the reaction item, and the diffusion item
comes to being for the predator’s “pursuit” and the prey’s
“evasion.” Diffusion is a spatial process, and the whole model
describes the evolution of the predator and the prey going
with time.

Decades after Turing [28] demonstrated that spatial
patterns could arise from the interaction of reactions or
growth processes and diffusion; reaction-diffusion models
have been studied in ecology to describe the population
dynamics of predator-prey model for a long time since Segel

and Jackson applied Turing’s idea [29]. Since then, a new
field of ecology, pattern formation, came into being. The
problemof pattern and scale is the central problem in ecology,
unifying population biology and ecosystems science and
marrying basic and applied ecology [30]. The study of spatial
patterns in the distribution of organisms is a central issue
in ecology, geology, chemistry, physics, and so on [1, 3, 11,
15, 16, 25, 31–56]. Theoretical work has shown that spatial
and temporal pattern formation can play a very important
role in ecological and evolutionary systems. Patterns can
affect, for example, stability of ecosystems, the coexistence
of species, invasion of mutants, and chaos. Moreover, the
patterns themselves may interact, leading to selection on the
level of patterns, interlocking eco-evolutionary time scales,
evolutionary stagnation, and diversity.

Based on the above discussions, the spatially extended
Holling-type IV predator-prey model with reaction diffusion
takes as the form

𝜕𝑁

𝜕𝑡
= 𝑟𝑁(1 −

𝑁

𝐾
) −

𝑚𝑁𝑃

1 + 𝑏𝑁 + 𝑎𝑁2
+ 𝑑
1
∇
2
𝑁,

𝜕𝑃

𝜕𝑡
= 𝑃(−𝑞 +

𝑐𝑚𝑁

1 + 𝑏𝑁 + 𝑎𝑁2
) + 𝑑
2
∇
2
𝑃,

(4)

where 𝑑
1
and 𝑑

2
are the diffusion coefficients, respectively,

and∇
2
= 𝜕/𝜕𝑥

2
+𝜕/𝜕𝑦

2 is the usual Laplacian operator in two-
dimensional space; other parameters are the same definition
as those in model (3).

It is easy to know that when a spatially extended predator-
prey model is considered, the evolution of the model is
decided by two sorts of sources (internal source and external
source) which act together.The internal source is the dynam-
ics of the individuals of the model, and the external source
is the variability of environment. Some of the variability is
periodic, such as temperature, water, food supply of the prey,
and mating habits. It is necessary and important to consider
models with periodic ecological parameters or perturbations
which might be quite naturally exposed [57]. These periodic
factors are regarded as external periodic forcing in the
predator-prey systems. The external forcing can affect the
population of predator and prey, respectively, which would
go extinct in a deterministic environment. And some of
the variability is irregular, such as the seasonal changes of
the weather, food supply of the prey, and mating habits,
and the effects of this variability are the so-called “noise.”
Ecological population dynamics are inevitably “noisy” [2].
In the predator-prey systems, the random fluctuations also
are undeniably arising from either environmental variability
or internal species. To quantify the relationship between
fluctuations and species’ concentration with spatial degrees
of freedom, the consideration of these fluctuations supposes
to deal with noisy quantities whose variance might at times
be a sizable fraction of their mean levels. For example, the
birth and death processes of individuals are intrinsically
stochastic fluctuations which become especially pronounced
when the number of individuals is small [16].Moreover, there
are many other stochastically factors causing predator-prey
populations to change, such as effects of spatial structure of
the habitat on the predator-prey ecosystem. The interactions
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between the predator and prey, which are far from being
uniformly distributed, also introduce randomness. And these
processes can be regarded as a parameter that fluctuates
irregularly in space and time.

External forcing and noise induce effects in population
dynamics, such as pattern formation, stochastic resonance,
delayed extinction, enhanced stability, and quasiperiodic
oscillations, which have been investigated with increasing
interest in the past decades [16, 34, 48, 56, 58–63]. And
noise cannot systematically be neglected in models of popu-
lation dynamics [63]. Zhou and Kurths [56] concluded these
periodic variabilities as external forcing and investigated the
interplay among noise, excitability, and mixing and external
forcing in excitablemedia advected by a chaotic flow, in a two-
dimensional FitzHugh-Nagumo model described by a set
of reaction-advection-diffusion equations. And Si et al. [61]
studied the propagation of traveling waves in subexcitable
systems driven; Liu et al. [59] considered a spatially extended
phytoplankton-zooplankton system with additive noise and
periodic forcing. Following thesemodels they considered, the
Holling-type IV predator-prey model with external periodic
forcing and colored noise is as follows:
𝜕𝑁

𝜕𝑡
= 𝑟𝑁(1 −

𝑁

𝐾
) −

𝑚𝑁𝑃

1 + 𝑏𝑁 + 𝑎𝑁2
+ 𝐴 sin (𝜔𝑡) + 𝑑

1
∇
2
𝑁,

𝜕𝑃

𝜕𝑡
= 𝑃(−𝑞 +

𝑐𝑚𝑁

1 + 𝑏𝑁 + 𝑎𝑁2
) + 𝜂 (r, 𝑡) + 𝑑

2
∇
2
𝑃,

(5)

where 𝐴 sin(𝜔𝑡) denotes the periodic forcing with ampli-
tude 𝐴 and angular frequency 𝜔. The colored noise term
𝜂(r, 𝑡) (r = (𝑥, 𝑦)) is introduced additively in space and
time, referring to the fluctuations in the predator death rate,
which partially results from the environmental factors such
as epidemics, weather, and nature disasters and it is the
Ornstein-Uhlenbeck process that obeys the following linear
stochastic partial differential equation:

𝜕𝜂 (r, 𝑡)
𝜕𝑡

= −
1

𝜏
𝜂 (r, 𝑡) + 1

𝜏
𝜉 (r, 𝑡) , (6)

where 𝜉(r, 𝑡) is a Gaussian white noise or the so-called
Markovian random telegraph process in both space and time
with zero mean and correlation:

⟨𝜉 (r, 𝑡)⟩ = 0, ⟨𝜉 (r, 𝑡) 𝜉 (r, 𝑡)⟩ = 2𝜀𝛿 (r − r) 𝛿 (𝑡 − 𝑡

) ,

(7)

where ⟨⋅⟩ denotes averaging with respect to the noise 𝜉(r, 𝑡)
and 𝛿 the Dirac delta-function and 𝛿(r − r) is the spatial
correlation function of the Gaussian white noise 𝜉(r, 𝑡).

Integrating (6) with respect to time 𝑡, we get

𝜂 (r, 𝑡) = 𝜂 (r, 0) 𝑒−𝑡/𝜏 + 1

𝜏
𝑒
−𝑡/𝜏

∫

𝑡

0

𝑒
𝑠/𝜏

𝜉 (r, 𝑠) 𝑑𝑠. (8)

The mean value of the colored noise is

⟨𝜂 (r, 𝑡)⟩ = ⟨𝜂 (r, 0)⟩ 𝑒−𝑡/𝜏 + 1

𝜏
𝑒
−𝑡/𝜏

× ∫

𝑡

0

𝑒
𝑠/𝜏

⟨𝜉 (r, 𝑠)⟩ 𝑑𝑠 = ⟨𝜂 (r, 0)⟩ 𝑒−𝑡/𝜏,
(9)

and the correlation function of the colored noise is given by

⟨𝜂 (r, 𝑡) 𝜂 (r, 𝑡)⟩

= ⟨𝜂 (r, 0)⟩ ⟨𝜂 (r, 0)⟩ 𝑒
−(𝑡+𝑡

)/𝜏

+
1

𝜏2
𝑒
−(𝑡+𝑡

)/𝜏

× ∫

𝑡

0

∫

𝑡


0

𝑒
(𝑠+𝑠

)/𝜏

⟨𝜉 (r, 𝑠) 𝜉 (r, 𝑠)⟩ 𝑑𝑠 𝑑𝑠


= ⟨𝜂 (r, 0)⟩ ⟨𝜂 (r, 0)⟩ 𝑒
−(𝑡+𝑡

)/𝜏

+
𝜀

𝜏2
𝑒
−(𝑡+𝑡

)/𝜏

𝛿 (r − r)

× ∫

𝑡

0

∫

𝑡


0

𝑒
(𝑠+𝑠

)/𝜏

𝛿 (𝑡 − 𝑡

) 𝑑𝑠 𝑑𝑠



= ⟨𝜂 (r, 0)⟩ ⟨𝜂 (r, 0)⟩ 𝑒
−(𝑡+𝑡

)/𝜏

+
𝜀

𝜏
𝛿 (r − r)

× (𝑒
−(𝑡+𝑡

)/𝜏

− 2𝑒
−𝑡/𝜏

+ 𝑒
−(𝑡−𝑡

)/𝜏

) .

(10)

Let 𝑡 → +∞; then

⟨𝜂 (r, 𝑡) 𝜂 (r, 𝑡)⟩ →
𝜀

𝜏
𝑒
−(𝑡−𝑡

)/𝜏

𝛿 (r − r) . (11)

The colored noise 𝜂(r, 𝑡) generated in this way represents
a simple spatiotemporal structured noise that can be used
to real mimic situations, which is temporally correlated and
white in space, satisfying

⟨𝜂 (r, 𝑡) 𝜂 (r, 𝑡)⟩ =
𝜀

𝜏
𝑒
−|𝑡−𝑡

|/𝜏

𝛿 (r − r) , (12)

where the temporal memory of the stochastic process is
controlled by 𝜏 and 𝜀 is the intensity of noise. In this paper,
we set 𝜏 = 1.

Based on these discussions above, in this paper, we
mainly focus on the spatiotemporal dynamics of models (4)
and (5). And the organization is as follows. In Section 2,
we employ the method of stability analysis to derive the
symbolic conditions for Hopf and Turing bifurcation in the
spatial domain. In Section 3, we give the complex dynamics
of models (4) and (5), involving pattern formation, phase
portraits, time-series plots and resonant response, and so on,
via numerical simulation. Then, in the last section, we give
some discussions and remarks.

2. Hopf and Turing Bifurcation

The nonspatial model (3) has at least two equilibria (steady
states) which correspond to spatially homogeneous equilibria
of models (4) and (5), in the positive quadrant: (0, 0) (total
extinct) is a saddle; (𝐾, 0) (extinct of the predator or prey-
only) is a attracting node if 𝑞 > 𝑐𝑚𝐾/(1+𝐾𝑏+𝑎𝐾

2), a saddle
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if 𝑞 < 𝑐𝑚𝐾/(1+𝐾𝑏+𝑎𝐾
2
), or a saddle-node if 𝑞 = 𝑐𝑚𝐾/(1+

𝐾𝑏 + 𝑎𝐾
2
). When

(𝑎, 𝑏, 𝑐, 𝑚, 𝑞, 𝑟, 𝐾) ∈ 𝐸
1
,

here, 𝐸
1
= { (𝑎, 𝑏, 𝑐, 𝑚, 𝑞, 𝑟, 𝐾) | 𝑚𝑐 > 𝑞𝑏,

𝑞
2
𝑎 < (𝑚𝑐 − 𝑞𝑏)

2
,

√ (𝑚𝑐 − 𝑞𝑏)

2

− 4 𝑞2𝑎

> (−𝑚
2
𝑐
2
+ 2 𝑞𝑏𝑚𝑐 + 𝑞𝑎𝐾𝑚𝑐

− 𝑞
2
𝑎𝐾𝑏 + 2 𝑞

2
𝑎 − 𝑞
2
𝑏
2
)

× (−𝑚𝑐 + 𝑞𝑏 + 𝑞𝑎𝐾)
−1

> 0,

𝑏

𝑎
−

𝑚𝑐

𝑞𝑎
+ 𝐾 < 0} ,

(13)

there exists unique stationary coexistence state (𝑁
∗

1
, 𝑃
∗

1
),

where

𝑁
∗

1
=

1

2

−𝑞𝑏 + 𝑚𝑐 − 𝐴

𝑞𝑎
,

𝑃
∗

1
=

𝑐𝑟 ((−𝑚𝑐 + 𝑏𝑞 + 𝑞𝑎𝐾)𝑁
∗

1
+ 𝑞)

𝑎𝑞2𝐾
.

(14)

On the other hand, when

(𝑎, 𝑏, 𝑐, 𝑚, 𝑞, 𝑟, 𝐾) ∈ 𝐸
2
,

here, 𝐸
2
= { (𝑎, 𝑏, 𝑐, 𝑚, 𝑞, 𝑟, 𝐾) | 𝑚𝑐 > 𝑞𝑏,

𝑞
2
𝑎 < (𝑚𝑐 − 𝑞𝑏)

2
,

√ (𝑚𝑐 − 𝑞𝑏)

2

− 4𝑞2𝑎

> − (−𝑚
2
𝑐
2
+ 2 𝑞𝑏𝑚𝑐 + 𝑞𝑎𝐾𝑚𝑐

− 𝑞
2
𝑎𝐾𝑏 + 2 𝑞

2
𝑎 − 𝑞
2
𝑏
2
)

× (−𝑚𝑐 + 𝑞𝑏 + 𝑞𝑎𝐾)
−1

> 0,

𝑏

𝑎
−

𝑚𝑐

𝑞𝑎
+ 𝐾 > 0} ,

(15)

there exists another unique stationary coexistence state
(𝑁
∗

2
, 𝑃
∗

2
) implying

𝑁
∗

2
=

1

2

−𝑞𝑏 + 𝑚𝑐 + 𝐴

𝑞𝑎
,

𝑃
∗

2
=

𝑐𝑟 ((−𝑚𝑐 + 𝑏𝑞 + 𝑞𝑎𝐾)𝑁
∗

2
+ 𝑞)

𝑎𝑞2𝐾
.

(16)

It is worth mentioning that equilibria (𝑁
∗

1
, 𝑃
∗

1
) and

(𝑁
∗

2
, 𝑃
∗

2
) cannot coexist. In this paper, we mainly focus on

the dynamics of (𝑁
∗

1
, 𝑃
∗

1
) and rewrite it as (𝑁

∗
, 𝑃
∗
). The

dynamics behavior of (𝑁∗
2
, 𝑃
∗

2
) is similar to that of (𝑁∗

1
, 𝑃
∗

1
).

To perform a linear stability analysis, we linearize model
(3) around the stationary state (𝑁∗, 𝑃∗) for small space- and
time-dependent fluctuations and expand them in Fourier
space:

𝑁(r, 𝑡) ∼ 𝑁
∗
𝑒
𝜆𝑡
𝑒
𝑖 ⃗𝑘⋅r

, 𝑃 (r, 𝑡) ∼ 𝑃
∗
𝑒
𝜆𝑡
𝑒
𝑖 ⃗𝑘⋅r

,

r = (𝑥, 𝑦) , ⃗𝑘 = (𝑘
𝑥
, 𝑘
𝑦
) ,

(17)

where 𝜆 is the eigenvalue of the Jacobian matrix of model (3).
Hopf bifurcation is an instability induced by the transfor-

mation of the stability of a focus. Mathematically speaking,
Hopf bifurcation occurs when Im(𝜆) ̸= 0 and Re(𝜆) = 0, at
𝑘 = 0; Im(𝜆) is the imaginary part, Re(𝜆) is the real part, and
𝑘 is the wave number. So we get the Hopf bifurcation surface:

𝐻 = {(𝑎, 𝑏, 𝑐, 𝑚, 𝑞, 𝑟, 𝐾) | det (𝐽
0
) > 0,

trace (𝐽
0
) = 0} ,

(18)

where

det (𝐽
0
) = −(𝑟 − 2

𝑟𝑁
∗

𝐾
)𝑞

+
𝑚𝑞𝑃
∗
+ 𝑐𝑚 (𝑟 − 2 (𝑟𝑁

∗
/𝐾))𝑁

∗

(1 + 𝑏𝑁∗ + 𝑎𝑁∗
2
)

−
𝑚𝑞𝑁
∗
𝑃
∗
(𝑏 + 2𝑎𝑁

∗
)

(1 + 𝑏𝑁∗ + 𝑎𝑁∗
2
)
2
,

trace (𝐽
0
) = 𝑟 − 2

𝑟𝑁
∗

𝐾
− 𝑞

+

𝑚(−𝑃
∗
+ 𝑐𝑁
∗
+ 𝑎𝑁
∗2
𝑃
∗
+ 𝑏𝑐𝑁

∗2
+ 𝑐𝑁
∗3
𝑎)

(1 + 𝑏𝑁∗ + 𝑎𝑁∗
2
)
2

,

(19)
the frequency of periodic oscillations in time 𝜔

𝐻
satisfies

𝜔
𝐻

= Im(𝜆) = √det(𝐽
0
), and the corresponding wavelength

𝜆
𝐻
satisfies 𝜆

𝐻
= 2𝜋/𝜔

𝐻
= 2𝜋/√det(𝐽

0
). In particular, we

take 𝐾 as the bifurcation parameter and can get the critical
value of Hopf bifurcation from (18):

𝐾
𝐻

= (− (𝑎𝑞
2
(5𝑚𝑐 − 3𝑞𝑏) − (3𝑚𝑐 − 𝑞𝑏) (𝑚𝑐 − 𝑞𝑏)

2
)

× √(𝑚𝑐 − 𝑞𝑏)
2
− 4𝑞2𝑎 − 4𝑞

4
𝑎
2
+ 𝑞
2
(𝑚𝑐 − 𝑞𝑏)

× (11𝑚𝑐 − 5𝑞𝑏) 𝑎 − (3𝑚𝑐 − 𝑞𝑏) (𝑚𝑐 − 𝑞𝑏)
3
)

× ((−𝑎𝑞 (((2𝑚𝑐 − 𝑞𝑏) (𝑚𝑐 − 𝑞𝑏) − 2𝑞
2
𝑎)

× √(𝑚𝑐 − 𝑞𝑏)
2
− 4𝑞2𝑎 − 2𝑎𝑞

2

× (3𝑚𝑐 − 2𝑞𝑏) + (2𝑚𝑐 − 𝑞𝑏)

×(𝑚𝑐 − 𝑞𝑏)
2
)))
−1

.

(20)
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Turing instability is induced only by “pursuit and evasion”
if the predator can catch the prey by pursuit. We call the
critical state of Turing instability as Turing bifurcation. Turing
bifurcation occurs when “Im(𝜆) = 0 and Re(𝜆) = 0, at 𝑘 =

𝑘
𝑇

̸=0,” and thewavenumber 𝑘
𝑇
satisfies 𝑘2

𝑇
= √det(𝐽

0
)/𝑑
1
𝑑
2
.

In addition, at the Turing threshold, the spatial symmetry of
the system is broken and the patterns are stationary in time
and oscillatory in space with the wavelength 𝜆

𝑇
= 2𝜋/𝑘

𝑇
.

And the Turing bifurcation surface is given by

𝑇 = {(𝑎, 𝑏, 𝑐, 𝑚, 𝑞, 𝑟, 𝑑
1
, 𝑑
2
, 𝐾) | det (𝐽

𝑘
) = 0,

trace (𝐽
𝑘
) = 0} ,

(21)

where

det (𝐽
𝑘
)

= −(𝑟 − 2
𝑟𝑁
∗

𝐾
− 𝑑
1
𝑘
2
) (𝑞 + 𝑑

2
𝑘
2
)

× ((𝑞 + 𝑑
2
𝑘
2
)𝑚𝑃
∗

+ (𝑟 − 2(
𝑟𝑁
∗

𝐾
) − 𝑑
1
𝑘
2
) 𝑐𝑚𝑁

∗
)

× (1 + 𝑏𝑁
∗
+ 𝑎𝑁
∗2
)
−1

−

𝑚 (𝑏 + 2𝑎𝑁
∗
) (𝑞 + 𝑑

2
𝑘
2
)𝑁
∗
𝑃
∗

(1 + 𝑏𝑁∗ + 𝑎𝑁∗
2
)
2

,

(22)

trace (𝐽
𝑘
) = 𝑟 − 2

𝑟𝑁
∗

𝐾
− 𝑞 − (𝑑

1
+ 𝑑
2
) 𝑘
2

+

𝑚(−𝑃
∗
+ 𝑐𝑁
∗
+ 𝑎𝑁
∗2
𝑃
∗
+ 𝑏𝑐𝑁

∗2
+ 𝑐𝑁
∗3
𝑎)

(1 + 𝑏𝑁∗ + 𝑎𝑁∗
2
)
2

,

(23)

and the critical value of Turing bifurcation can be obtained
from (21) as follows:

𝐾
𝑇
=

𝐹
1

𝐹
2

, (24)

where

𝐹
1
= 𝑟 ((4𝑞

2
𝑎 (2𝑚𝑐 − 𝑞𝑏)

− (3𝑚𝑐 − 𝑞𝑏) (𝑚𝑐 − 𝑞𝑏)
2
)

× √(𝑚𝑐 − 𝑞𝑏)
2
− 4𝑞2𝑎

+ ((𝑚𝑐 − 𝑞𝑏)
2
− 4𝑞
2
𝑎)

⋅ ((3𝑚𝑐 − 𝑞𝑏) (𝑚𝑐 − 𝑞𝑏) − 2𝑞
2
𝑎))

× ( (3𝑚𝑐 − 𝑞𝑏) (𝑚𝑐 − 𝑞𝑏) − 4𝑞
2
𝑎 − (3𝑚𝑐 + 𝑞𝑏)

×√(𝑚𝑐 − 𝑞𝑏)
2
− 4𝑞2𝑎) 𝑑

2
,

𝐹
2
= 𝑞𝑎 (2𝑚𝑐 ((𝑚𝑐 − 𝑞𝑏)√(𝑚𝑐 − 𝑞𝑏)

2
− 4𝑞2𝑎

+ 4𝑞
2
𝑎 − (𝑚𝑐 − 𝑞𝑏)

2
)𝐵

+ ( (3𝑚𝑐 − 𝑞𝑏) 𝑑
2

⋅ (2𝑚
2
𝑐
2
− 3𝑞𝑏𝑚𝑐 + 𝑞

2
𝑏
2
− 4𝑞
2
𝑎) 𝑟

+ 2𝑞𝑑
1
𝑚𝑐(𝑚𝑐 − 𝑞𝑏)

2
)

× ((𝑚𝑐 − 𝑞𝑏)
2
− 4𝑞
2
𝑎)

+ (−2𝑑
2
((3𝑚𝑐 − 𝑞𝑏) (2𝑚𝑐 − 𝑞𝑏) (𝑚𝑐 − 𝑞𝑏)

2

− 2𝑞
2
𝑎 (−4𝑞

2
𝑎 + 3𝑞

2
𝑏
2

− 12𝑞𝑏𝑚𝑐 + 11𝑚
2
𝑐
2
)) 𝑟

−4𝑞𝑐𝑚 (𝑚𝑐 − 𝑞𝑏) 𝑑
1
((𝑚𝑐 − 𝑞𝑏)

2
− 4𝑞
2
𝑎))

× √(𝑚𝑐 − 𝑞𝑏)
2
− 4𝑞2𝑎

+ (𝑞
2
𝑏
2
− 2𝑞𝑏𝑚𝑐 + 𝑚

2
𝑐
2
− 4𝑞
2
𝑎)

× ( (2𝑚𝑐 − 𝑞𝑏) 𝑑
2
(3𝑚
2
𝑐
2
− 4𝑞𝑏𝑚𝑐

+𝑞
2
𝑏
2
− 4𝑞
2
𝑎) 𝑟

+2𝑚𝑐𝑞𝑑
1
((𝑚𝑐 − 𝑞𝑏)

2
− 4𝑞
2
𝑎) ) ) ,

𝐵 = ( − 2𝑑
1
𝑞 (( (𝑑

1
𝑏𝑞
2
− 𝑞𝑑
1
𝑚𝑐 − 𝑞𝑟𝑏𝑑

2
+ 2𝑟𝑚𝑐𝑑

2
)

× (4𝑞
2
𝑎 − (𝑚𝑐 − 𝑞𝑏)

2
)

−𝑟𝑚𝑐𝑑
2
(𝑚𝑐 − 𝑞𝑏)

2
)

⋅ √(𝑚𝑐 − 𝑞𝑏)
2
− 4𝑞2𝑎

+ (8𝑞
4
𝑑
2
𝑟 − 8𝑞

5
𝑑
1
) 𝑎
2

+ 4 (𝑚𝑐 − 𝑞𝑏) 𝑎𝑞
2
𝑟𝑚𝑐𝑑
2

+ (3𝑟𝑚𝑐𝑑
2
− 𝑞𝑑
1
𝑚𝑐 + 𝑑

1
𝑏𝑞
2
− 𝑞𝑟𝑏𝑑

2
)

× ((𝑚𝑐 − 𝑞𝑏)
3
− 6(𝑚𝑐 − 𝑞𝑏)𝑎𝑞

2
)) )

1/2

.

(25)

Linear stability analysis yields the bifurcation diagram
with 𝑟 = 1, 𝑎 = 0.125, 𝑏 = 1, 𝑐 = 0.7, 𝑚 = 0.625, 𝑞 = 0.18,
and 𝑑

2
= 0.2 as shown in Figure 1(a). In this case, parameters

(𝑎, 𝑏, 𝑐, 𝑚, 𝑞, 𝑟, 𝐾) ∈ 𝐸
1
, and (𝑁

∗
, 𝑃
∗
) is the unique stationary

coexistence state. From Figure 1(a), one can see that the Hopf
bifurcation line and the Turing bifurcation curve separate
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the parametric space into three distinct domains. In domain
I, all two bifurcation lines are located below; the uniform
steady state is the only stable solution of the model. Domain
II is the region of pure Hopf instability. When the parameters
correspond to domain III, which is located above all two
bifurcation lines, both Hopf and Turing instability occur.
Figure 1(b) illustrates the relation between the real and the
imaginary parts of the eigenvalue 𝜆 with 𝐾 = 2.8 > 𝐾

𝐻
=

2.279, which is located in domain II; one can see that when
𝑘 = 0, Re(𝜆(𝑘)) > 0 and Im(𝜆(𝑘)) ̸= 0. Figure 1(c) displays
the case of the critical value of Turing bifurcation 𝐾 = 𝐾

𝑇
=

3.499; in this case, Re(𝜆(𝑘)) = 0 and Im(𝜆(𝑘)) = 0 at 𝑘 =

𝑘
𝑇
= 2.080. When𝐾 = 4.0, parameters are located in domain

III; Figure 1(d) indicates that, at 𝑘 = 0, Re(𝜆(𝑘)) > 0 and
Im(𝜆(𝑘)) ̸= 0.

3. Spatiotemporal Dynamics of the Models

In this section, we perform extensive numerical simula-
tions of the spatially extended models (4) and (5) in two-
dimensional space, and the qualitative results are shown
here. All our numerical simulations employ the zero-flux
Neumannboundary conditionswith a system size of 200×200
space units. The parameters are 𝑟 = 1, 𝑎 = 0.125, 𝑏 = 1, 𝑐 =

0.7, 𝑚 = 0.625, 𝑞 = 0.18, 𝑑
1
= 0.02, 𝑑

2
= 0.2, and 𝐾 = 2.8 or

𝐾 = 4.0, which satisfy (𝑎, 𝑏, 𝑐, 𝑚, 𝑞, 𝑟, 𝐾) ∈ 𝐸
1
.Models (4) and

(5) are integrated initially in two-dimensional space from the
homogeneous steady state; that is, we start with the unstable
uniform solution (𝑁

∗
, 𝑃
∗
) with small random perturbation

superimposed; in each, the initial condition is always a small
amplitude random perturbation (±5 × 10

−4
), using a finite

difference approximation for model (4) or Fourier transform
method for model (5) for the spatial derivatives and an
explicit Euler method for the time integration with a time
stepsize of Δ𝑡 = 1/24 and space stepsize (lattice constant) of
Δ𝑥 = Δ𝑦 = 1.When the system reached a periodic oscillatory
state, we took a snapshot with white corresponding to the
high value of prey 𝑁 while black corresponding to the low
one.

In the numerical simulations, different types of dynamics
are observed and we have found that the distributions of
predator and prey are always of the same type. Consequently,
we can restrict our analysis of pattern formation to one
distribution. In this section, we show, for instance, the
distribution of prey𝑁.

3.1. Pattern Formation of Model (4). Figure 2 shows the
evolution of the spatial patterns of prey 𝑁 at 𝑡 = 0, 100,
300, 500, 1000, and 2000, with random small perturbation
of the equilibrium (𝑁

∗
, 𝑃
∗
) = (0.748, 2.132) of model (4)

with 𝐾 = 2.8, located in domain II, more than the Hopf
bifurcation threshold 𝐾

𝐻
= 2.279 and less than the Turing

bifurcation threshold 𝐾
𝑇

= 3.499. In this case, pure Hopf
instability occurs.One can see that, formodel (4), the random
initial distribution (cf. Figure 2(a)) leads to the formation
of macroscopic spiral patterns (cf. Figures 2(d) to 2(f)). In
other words, in this situation, spatially uniform steady-state
predator-prey coexistence no longer exists. Small random

fluctuations will be strongly amplified by diffusion, leading
to nonuniform population distributions. From the analysis in
Section 2, we find that, with these parameters in domain II,
the spiral pattern arises from the Hopf instability. The lower
panel in Figure 2 shows the corresponding (g) time series
and (h) phase portraits. Figure 2(g) illustrates the evolution
process of prey𝑁 and periodic oscillating in time finally; (h)
exhibits the fact that a limit cycle arises, which is caused by
the Hopf bifurcation.

When 𝐾 = 4.0 > 𝐾
𝑇

> 𝐾
𝐻
, in this case,

parameters in domain III (Figure 1(a)) and both Hopf and
Turing instabilities occur. The nontrivial stationary state is
(𝑁
∗
, 𝑃
∗
) = (0.748, 2.365). As an example, the formation

of a regular macroscopic two-dimensional spatial pattern is
shown in Figure 3. The lower panel in Figure 3 shows the
corresponding (g) time-series plots and (h) phase portraits.

Comparing this situation (Figure 3) with the one above
(Figure 2), it is easy to see that the pattern formations are
all spiral wave. From the analysis in Section 2, we know that
when 𝐾 = 2.8, the wavelength 𝜆 = 3.100 while, at 𝐾 = 4.0,
𝜆 = 3.021. And the frequency of periodic oscillations in time
is as inverse proportion with wavelength, so we can know
that Turing instability has positive effect on the frequency
while it has negative effect on wavelength. This is the reason
why the spiral curves are more dense in Figure 3(f) than
in Figure 2(f). On the other hand, one can see that when
𝐾 = 4.0, the time-series plots (cf. Figure 3(g)) indicate that
when Turing instability occurs, the solution of model (4)
is strongly oscillatory in time while with 𝐾 = 2.8 (pure
Hopf bifurcation emerges) it is periodic (cf. Figure 2(g)). In
addition, comparing Figure 2(g) with Figure 3(g), one can see
that Turing instability has positive effects on the amplitude of
prey 𝑁. And from Figure 3(h), one can see that a quasilimit
cycle emerges while, in Figure 2(h), it is a cycle. Although
there is some difference points between Figures 2 and 3,
we can know that Turing instability cannot give birth to
different type pattern. In our previous work [51], we find that
Turing instability can change pattern type. This may be an
important difference between the Holling-type IV and the
ratio-dependent functional response of predator-preymodel.

On the other hand, the basic idea of diffusion-driven
instability in a reaction-diffusion system can be understood
in terms of an activator-inhibitor system or predator-prey
model (4). The functioning of this mechanism is based on
three points [6]. First, a random increase of activator species
(prey 𝑁) should have a positive effect on the creation rate
of both activator (prey 𝑁) and inhibitor (prey 𝑃) species.
Second, an increment in inhibitor species should have a
negative effect on formation rate of both species. Finally,
inhibitor species 𝑃 must diffuse faster than activator species
𝑁. Certainly, the reaction-diffusion predator-prey model
(4), with Holling-type IV functional response and predators
diffusing faster than prey (i.e., 𝑑

2
> 𝑑
1
), provides this

mechanism. And spirals and curves are the most fascinating
clusters to emerge from the predator-preymodel. A spiral will
form from a wave front when the prey line (which is leading
the front) overlaps the pursuing line of predator [38]. The
prey on the extreme end of the line stops moving as there is
no predator in their immediate vicinity. However the prey𝑁
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Figure 1: (a) 𝐾 − 𝑑
1
Bifurcation diagram for model (4) with 𝑟 = 1, 𝑎 = 0.125, 𝑏 = 1, 𝑐 = 0.7, 𝑚 = 0.625, 𝑞 = 0.18, and 𝑑

2
= 0.2. Hopf

and Turing bifurcation lines separate the parameter space into three domains. The other parameters in (b)–(d) are 𝑑
1
= 0.02; the bifurcation

parameter𝐾 equals (b) 2.8 > 𝐾
𝐻

= 2.279; (c) 3.499 = 𝐾
𝑇
; (d) 4.0 > 𝐾

𝑇
> 𝐾
𝐻
. The real parts Re(𝜆) and the imaginary parts Im(𝜆) are shown

by solid curves and dashed curves, respectively.

and the predator 𝑃 in the center of the line continue moving
forward. This forms a small trail of prey at one (or both) end
of the front. This prey starts breeding and the trailing line
of prey thickens and attracts the attention of predator at the
end of the fox line that turns towards this new source of prey.
Thus a spiral forms with predator 𝑃 on the inside and prey
𝑁 on the outside. If the original overlap of prey occurs at
both ends of the line a double spiral will form. Spirals can also
form as prey blob collapses after predator eats into it. This is
the reason why the pattern formation of model (4) is spiral
wave.

3.2. The Effect of Noise Only of Model (5). Now, we turn our
focus on the effect of noise on the predator 𝑃 of stochastic
model (5). In this case, 𝐴 = 0; that is, the periodic forcing is
not present.

Figure 4 shows the dynamics of model (5) with noise
on the predator. The first row of Figure 4, that is, (a), 𝜀 =

0.0001; the second row, (b), 𝜀 = 0.01; the third row, (c),
𝜀 = 0.05; and the last row of Figure 4, (d), 𝜀 = 0.1.
And the first column of Figure 4, marked as (i), shows the
snapshots of spatiotemporal pattern of model (5) at 𝑡 =

2000 with different intensity of noise, respectively. In this
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Figure 2: Grey-scaled snapshots of spatiotemporal pattern of the prey 𝑁 of model (4) with 𝐾 = 2.8. (a) 𝑡 = 0, (b) 𝑡 = 100, (c)
𝑡 = 300, (d) 𝑡 = 500, (e) 𝑡 = 1000, and (f) 𝑡 = 2000. The lower panels show the corresponding (g) time-series plots and (h) phase portraits.

case, one can see that the pattern formation turns into
spatial chaotic from spiral wave with the increase of noise
intensity 𝜀. And the second column of Figure 4, marked as
(ii), displays the phase portraits of model (5) with different
intensity of noise, respectively. We can see that, as noise
intensity 𝜀 increasing, the symmetry of the limit cycle is
broken and gives rise to chaos. The last column of Figure 4,
(iii), illustrates the time-series plots of prey 𝑁 with different
intensity of noise, respectively. One can see that noise breaks
the periodic oscillations in time and gives rise to drastically
ruleless oscillations in time.

3.3.The Effect of Periodic Forcing ofModel (5). In the previous
subsection, we have shown the effect of noise on the predator
𝑃 ofmodel (5). An interesting question is whether such noise-
sustained oscillations can be entrained by a weak external
forcing, in this case, 𝜀 = 0. This is investigated here.

When model (5) is noise free, there is a phenomenon
of frequency locking or resonant response [56, 58–61]. That

is, without noise, the spatially homogeneous oscillation does
not respond to the external periodic forcing when the
amplitude 𝐴 is below a threshold whose value depends on
the external period 𝑇in = 2𝜋/𝜔. Above the threshold, model
(5) may produce oscillations about period 𝑇out with respect
to external period 𝑇in, which is called frequency locking or
resonant response. That is, the model produces one spike
within each of the𝑀 = 𝑇out/𝑇in periods of the external force,
called 𝑀 : 1 resonant response [56, 61]. The phenomenon of
coherence resonance is of great importance [60]. Following
Si et al. [61], in the present paper, the output period 𝑇out is
defined as follows:𝑇

𝑖
is the time interval between the 𝑖th spike

and (𝑖 + 1)th spike. 𝑚 spikes are taken into account and the
average value of them is 𝑇out = ∑

𝑚−1

𝑖=1
𝑇
𝑖
/(𝑚 − 1).

As an example, with the amplitude 𝐴 = 0.001, Figure 5
shows 5 : 1 resonant response with 𝜔 = 0.2𝜋 (a) and
𝜔 = 0.02𝜋 (c), respectively. And Figures 5(b) and 5(d) are the
phase portraits corresponding to (a) and (c). We can see that
when𝜔 = 0.2𝜋, there exists a periodic orbit, while,𝜔 = 0.02𝜋,
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Figure 3: Grey-scaled snapshots of spatiotemporal pattern of the prey 𝑁 of model (4) with 𝐾 = 4.0. (a) 𝑡 = 0, (b) 𝑡 = 100, (c) 𝑡 = 300, (d)
𝑡 = 500, (e) 𝑡 = 1000, and (f) 𝑡 = 2000. The lower panels show the corresponding (g) time-series plots and (h) phase portraits.

a periodic-2 orbit of model (5) emerges. Obviously, different
𝜔 can emerge from the same resonant response, and different
phase orbits, that is, different numerical solution ofmodel (5),
may correspond to the same resonant response.

3.4. The Effect of Noise and Periodic Forcing of Model (5).
Now, we consider the dynamics about resonant response of
model (5) with both noise and periodic forcing. As depicted
in Figure 6, the prey can generate 5 : 1 (a) and 4 : 1 (c)

locked oscillations, depending on the amplitude 𝐴 and
angular frequency 𝜔. Figures 6(b) and 6(d) illustrate the
spiral pattern at 𝑡 = 2000 corresponding to (a) and (c),
respectively. In contrast, we change one of the parameters
of Figure 6(c) 𝐴 = 0.001 to 𝐴 = 0.01 (e); one can see that
the resonant response vanishes and the corresponding spiral
pattern (f) is similar to (b). It indicates that the amplitude
𝐴 is a control factor for pattern formation. In addition,
comparing Figure 6(b) with 6(d), one can see that the
pattern formations are determined by noise intensity 𝜀, too.
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Figure 4: Dynamics of model (5), for the following noise intensity. (a) 𝜀 = 0.0001; (b) 𝜀 = 0.01; (c) 𝜀 = 0.05; (d) 𝜀 = 0.1. (i) Snapshots of
pattern formation at time 2000; (ii) phase portraits; (iii) time-series plots. 𝐴 = 0 and the other parameters are the same as those in Figure 2.

In Figure 7, we have shown a typical pattern formation
process in the 5 : 1 frequency locking regime with 𝐴 = 0.001

and 𝜔 = 0.2𝜋. From 𝑡 = 1870 (a) to 𝑡 = 1920 (f), the pattern
formation of prey𝑁 is spiral wave and some small excitations
already develop.One can see that, during the secondperiod of
the forcing, the prey is almost fully synchronized and relaxes
slowly back to the state atmoment (f). Obviously, the external
periodic forcing at moment (e) repeats that at moment (a).
However, the prey 𝑁 does not exactly repeat that due to a
small fluctuation of the phase difference.

4. Conclusions and Remarks

In this paper, we present a spatial Holling-type IV predator-
prey model containing some important factors, such as noise
(random fluctuations), the external periodic forcing, and
diffusion processes. And the numerical simulations were
consistent with the predictions drawn from the bifurcation
analysis, that is, Hopf bifurcation and Turing bifurcation.

If the parameter 𝐾, the carrying capacity, is located in
domain II of Figure 1(a), the Hopf instability occurs and
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Figure 5: External periodic forcing induced frequency locking of model (4). The solid curve is time series of prey 𝑈; the dash curve is the
corresponding external periodic forcing. Other parameters are the same as those in Figure 3.

the destruction of the pattern begins from the prey 𝑁, while
it begins from the predator 𝑃 if 𝐾 is located in domain
III and both Hopf and Turing instabilities occur. From an
ecological viewpoint, it shows that the initial and relatively
rapid invasion of prey by predators can be followed by two
subsequent invasions.

Furthermore, we demonstrate that noise and the external
periodic forces play a key role in the predator-prey model
(5) with the numerical simulations. We provoke qualitative
transformations of the response of the model by changing
noise intensity; noise can enhance the oscillation of the
species density and format large clusters in the space. Periodic
oscillations appear when the spatial noise and external peri-
odic forcing are turned on; it also has been realized thatmodel
(5) is very sensitive to external periodic forcing through the
natural annual variation of prey growth. In conclusion, we
have shown that the cooperation between noise and external

periodic forces inherent to the deterministic dynamics of
periodically driven models gives rise to the appearance of a
rich transport phenomenology.

Significantly, model (5) exhibits oscillations when both
noise and external forces are present. This means that
the dynamics of the predator population may be partly
determined not only by the deterministic factors but also
by the external forcing and the stochastic factors. There-
fore, the model for spatially extended systems composed
of two species could be useful to explain spatiotempo-
ral behaviors of populations whose dynamics are strongly
affected by noise and the environmental physical vari-
ables, and the results of this paper are an important
step toward providing the theoretical biology commu-
nity with simple practical numerical methods, for inves-
tigating the key dynamics of realistic predator-prey mod-
els.
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Figure 6: Dynamics of model (5) with both noise and periodic forcing. (b, d, and f) are snapshots at 𝑡 = 2000 corresponding to the left hand
side resonant response. The other parameters are the same as those in Figure 3.
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Figure 7: Typical pattern formation of the forced noisy prey in the 5 : 1 locking region at 𝐴 = 0.001 and 𝜀 = 0.0001 corresponding to
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A hybrid SIR vector disease model with incubation is established, where susceptible host population satisfies the logistic equation
and the recovered host individuals are commercially harvested. It is utilized to discuss the transmission mechanism of infectious
disease and dynamical effect of commercial harvest on population dynamics. Positivity and permanence of solutions are analytically
investigated. By choosing economic interest of commercial harvesting as a parameter, dynamical behavior and local stability of
model system without time delay are studied. It reveals that there is a phenomenon of singularity induced bifurcation as well
as local stability switch around interior equilibrium when economic interest increases through zero. State feedback controllers are
designed to stabilizemodel system around the desired interior equilibria in the case of zero economic interest and positive economic
interest, respectively. By analyzing corresponding characteristic equation of model system with time delay, local stability analysis
around interior equilibrium is discussed due to variation of time delay. Hopf bifurcation occurs at the critical value of time delay
and corresponding limit cycle is also observed. Furthermore, directions of Hopf bifurcation and stability of the bifurcating periodic
solutions are studied. Numerical simulations are carried out to show consistency with theoretical analysis.

1. Introduction

In recent decades, plenty of mathematical models describing
the population dynamics of infectious disease have been
extensively utilized to understand the transmission mecha-
nism of infectious disease within population ecosystem (see
[1–4] and references therein). Much research efforts have
been paid to susceptible-infective-recovered (SIR) vector
disease model and corresponding model dynamics (see
[5–12] and references therein). Generally, in modelling of
communicable disease, the incidence rate (the rate of new
infections) is considered to play a vital role in ensuring that
the model can provide a reasonable qualitative description of
the infectious disease dynamics [3, 4].

In order to discuss the spread of an infectious disease
transmitted by a vector (e.g., mosquitoes and rats), Takeuchi
et al. [7] formulated a delayed SIR epidemic model with

a bilinear incidence rate. Beretta et al. [8] considered the
global stability of disease free equilibrium and endemic
equilibrium of model system; it was shown that the disease
free equilibrium is globally stable for any time delay while
the endemic equilibrium is not feasible. By constructing
a suitable Lyapunov functional, sufficient conditions were
derived to guarantee that if the endemic equilibrium is
feasible, it is also globally stable for the delay being sufficiently
small. Ruan and Wang [13] studied the global dynamics of
an SIR model with vital dynamics and nonlinear incidence
rate of saturated mass action and global qualitative and
bifurcation analyses are carried out. Ma et al. [14] derived an
explicit expression of lower bound of the infective individual
of solution of model system, which was proposed as an open
problem. They therefore gave an estimation of the length of
timedelay ensuring global asymptotic stability of the endemic
equilibrium. Xu and Ma [15] proposed an SIR epidemic
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model with nonlinear incidence rate and time delay. By
analyzing the corresponding characteristic equations, local
stability of an endemic equilibrium and a disease free equi-
librium are discussed. An SIR model with distributed delay
and a general incidence function is studied inMcCluskey [9],
and the global dynamics for the SIR epidemiological system
is analyzed in Zhou and Cui [10]. Wang et al. [11] considered
the asymptotic behavior of the following SIR vector model:

̇𝑆 (𝑡) = 𝑟 (1 −
𝑆 (𝑡)

𝑘
) − 𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏) ,

̇𝐼 (𝑡) = 𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏) − 𝜇
1
𝐼 (𝑡) − 𝑚𝐼 (𝑡) ,

̇𝑅 (𝑡) = 𝑚𝐼 (𝑡) − 𝜇2𝑅 (𝑡) ,

(1)

where 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡) represent the population density of
susceptible, infective, and recovered host individuals at time
𝑡, respectively. It is assumed that the population growth of
susceptible host individuals is governed by the logistic growth
with a carrying capacity 𝑘 > 0 as well as intrinsic birth rate
constant 𝑟 > 0. 𝛽 > 0 is the average number of constants per
infective per unit time and 𝜏 ≥ 0 denotes the incubation time,
and 𝜇

1
> 0 and 𝜇

2
> 0 stand for the death rate of infective and

recovered host individuals, respectively.𝑚 > 0 represents the
recovery rate of infective host individuals. The local stability
of endemic equilibrium is investigated, and conditions for
Hopf bifurcation to occur are derived in [11]. Along with
the line of this research, Enatsu et al. [12] analyze stability
of equilibria for a delayed SIR epidemic model, in which
population growth is subject to logistic growth in absence of
disease and the proposed model with a nonlinear incidence
rate satisfying suitable monotonicity conditions.

Nowadays, biological resource within ecosystem is com-
mercially harvested and sold with aim of achieving eco-
nomic interest [16, 17]. It is well known that harvesting has
a strong impact on the dynamic evolution of population
and several mathematical models have been established to
discuss dynamic effects of harvest effort on population in
ecological-epidemiological system, which can be found in
[18–21] and the references therein.The role of harvesting in a
predator-prey-parasite system is discussed in [18]; theoretical
results show that, using impulsive harvesting effort as control
parameter, it is not only possible to control the cyclic behavior
of the system populations leading to the persistence of all
species but other desired stable equilibrium including disease
free can be obtained. A ratio-dependent eco-epidemiological
system is proposed in [19] where prey population is subject
to harvesting. Positive invariance, boundedness, stability of
equilibria, and permanence of system have been established.
In [20], an eco-epidemiological model is studied where
prey disease is modeled by a susceptible-infective scheme,
and the role of harvesting and switching on the dynamics
of disease propagation and/or eradication is discussed. An
eco-epidemiological model with distributed time delay and
impulsive control strategy is investigated in [21]; local stability
and complex dynamical behavior are discussed. Under the
system of market economy, harvest effort is usually influ-
enced by variation of economic interest of commercial har-
vesting [16, 22]. It should be noted that the above mentioned

related work [18–21] only concentrate on the role of harvest
effort on population dynamics, while the dynamic effect of
economic interest on commercial harvesting and indirect
dynamic effect on ecosystem are not considered. The work
done in [12] is an extension of [11] with nonlinear incidence
rate, while dynamic effect of harvest effort on population
dynamics is not considered.

Recently, some hybrid dynamical models are proposed in
[23–28], which are utilized to discuss the interaction mech-
anism of harvested ecosystem from an economic perspec-
tive. Compared with the traditional mathematical models
(differential equations or difference equations) discussing the
population dynamics in ecosystem, the hybrid mathematical
models proposed in [23–28] are made up of differential
equations and algebraic equations, where differential equa-
tions concentrate on coexistence and interaction mechanism
of population and algebraic equations offer a simpler way
to study the effect of harvest effort on ecosystem from
an economic perspective. Complex dynamical behavior and
stability analysis in prey-predator ecosystems with stage-
structured population and gestation delay are considered
in [23–28]. In general, differential-algebraic models exhibit
more complicated dynamics than ordinary differential mod-
els. The differential-algebraic models have been applied
widely in power systems, aerospace engineering, chemical
processes, social management systems, biological systems,
network analysis and oil catalysis, and cracking process (see
[29–31] and references therein). With the help of differential-
algebraic model for the power systems and bifurcation
theory, complex dynamical behaviors of the power systems,
especially the bifurcation phenomena that reveal the insta-
bility mechanism of power systems have been extensively
studied, which can be found in [32–34] and the refer-
ences therein. Furthermore, some applications of differential-
algebraic models in the field of economy, which can be found
in [35, 36].

It is well known that the recovered host individuals are
naturally immune to vector disease [1], and its potential eco-
nomic interest can be commercially exploited. Furthermore,
harvest effort is usually influenced by variation of economic
interest of commercial harvesting [16, 22] under the system of
market economy. Consequently, it is necessary to discuss the
coexistence and interaction mechanism of population within
harvested epidemiological ecosystem as well as dynamical
effect of harvest effort due to variation of economic interest.
However, as far as knowledge goes, nobody has explicitly
proposed a mathematical model to discuss the dynamic
effect of commercial harvest on epidemiological system
under the system of market economy. The main objective of
this paper is to investigate the transmission mechanism of
infectious disease anddynamical effect of commercial harvest
on population dynamics, especially the complex dynamical
behavior and stability switch due to variation of incubation
and commercial harvest economic interest. The organisation
of the rest section of this paper is as follows. By introducing
commercial harvest effort into model system (1), a hybrid
epidemiological-economic model is established in Section 2.
Positivity and permanence of solutions of model system are
discussed in Section 3. In Section 4, qualitative analyses of



Abstract and Applied Analysis 3

model system are performed. Conditions for existence of
interior equilibrium of model system are studied. Dynam-
ical behavior of model system without incubation around
the interior equilibrium is investigated due to variation of
economic interest, and state feedback controllers are designed
to stabilize model system around the desired interior equi-
libria. Furthermore, local stability analysis of model system
with incubation is analyzed due to variation of time delay;
directions of Hopf bifurcation and stability of the bifurcating
periodic solutions are also studied. Numerical simulations
are made in Section 5, which are utilized to support the
theoretical findings obtained in this paper. Finally, this paper
ends with a conclusion.

2. Model Formulation

In 1954, Gordon [22] proposed the economic theory of
a common-property resource, which studies the effect of
harvest effort on ecosystem from an economic perspective.
In [22], an algebraic equation is proposed to investigate the
economic interest of yield of the harvest effort, which takes
form as follows:

Net Economic Revenue (NER)

= Total Revenue (TR) − Total Cost (TC) .
(2)

Associated with model (1), an algebraic equation, which
considers the economic interest V of the harvest effort on
recovered host individuals in epidemiological system, that is,
𝑅(𝑡), is established as follows:

𝐸 (𝑡) (𝑤𝑅 (𝑡) − 𝑐) = V, (3)

where 𝐸(𝑡) represents the harvest effort on recovered host
individuals at time 𝑡. V represents the economic interest of
harvest effort on the recovered host individuals. 𝑤 and 𝑐
represent unit price of harvested population and cost of
harvest effort, respectively.

Based on (1) and (3), a delayed hybrid model which
consists of three differential equations and an algebraic
equation can be established as follows:

̇𝑆 (𝑡) = 𝑟 (1 −
𝑆 (𝑡)

𝑘
) − 𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏) ,

̇𝐼 (𝑡) = 𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏) − 𝜇
1
𝐼 (𝑡) − 𝑚𝐼 (𝑡) ,

̇𝑅 (𝑡) = 𝑚𝐼 (𝑡) − 𝜇2𝑅 (𝑡) − 𝐸 (𝑡) 𝑅 (𝑡) ,

0 = 𝐸 (𝑡) (𝑤𝑅 (𝑡) − 𝑐) − V,

(4)

where 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡), 𝐸(𝑡), and other parameters share the
same interpretations mentioned in (1) and (3), and initial
conditions 𝜓 = (𝜓

1
, 𝜓

2
, 𝜓

3
, 𝜓

4
) for model system (4) are

defined in the Banach space:

{𝜓 ∈ 𝐶
+
([−𝜏, 0] ,R

4

+
) | 𝜓

1
(𝜃) = 𝑆 (𝜃) , 𝜓

2
(𝜃) = 𝐼 (𝜃) ,

𝜓
3 (𝜃) = 𝑅 (𝜃) , 𝜓4 (𝜃) = 𝐸 (𝜃) } ,

(5)

where R4

+
= {(𝑆, 𝐼, 𝑅, 𝐸) ∈ R4

: 𝑆 ≥ 0, 𝐼 ≥ 0, 𝑅 ≥ 0, 𝐸 ≥ 0}.
It is also assumed that 𝜓

𝑖
(0) > 0 (𝑖 = 1, 2, 3, 4) for a biological

reason.
Model system (4) can be expressed in the following form:

Ξ (𝑡)𝑋 (𝑡) = 𝐹 (𝑋 (𝑡)) , (6)

where

𝑋 (𝑡) = (𝑆 (𝑡) , 𝐼 (𝑡) , 𝑅 (𝑡) , 𝐸 (𝑡))
𝑇
,

Ξ (𝑡) =
[
[
[

[

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

]
]
]

]

,

𝐹 (𝑋 (𝑡)) =
[
[
[

[

𝐹
1 (𝑋 (𝑡))

𝐹
2 (𝑋 (𝑡))

𝐹
3 (𝑋 (𝑡))

𝐹
4 (𝑋 (𝑡))

]
]
]

]

=

[
[
[
[

[

𝑟(1 −
𝑆 (𝑡)

𝑘
) − 𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏)

𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏) − 𝜇1𝐼 (𝑡) − 𝑚𝐼 (𝑡)

𝑚𝐼 (𝑡) − 𝜇2𝑅 (𝑡) − 𝐸 (𝑡) 𝑅 (𝑡)

𝐸 (𝑡) (𝑤𝑅 (𝑡) − 𝑐) − V

]
]
]
]

]

.

(7)

Remark 1. The algebraic equation in model system (6) con-
tains no differentiated variables; hence, the leading matrix
Ξ(𝑡) in model system (6) has a corresponding zero row.

Remark 2. The model proposed in [11], which composed
of differential equations, only discusses the interaction and
coexistence mechanism of susceptible, infective, and recov-
ered host individuals. Compared with the model proposed in
[11], algebraic equations are incorporated into the model sys-
tem (4), which focus on the economic interest of harvesting
on recovered host individuals. Hence, the established model
not only investigates interaction and coexistence mechanism
of population in harvested ecosystem but also studies the
dynamical behavior due to the variation of economic interest
of commercial harvesting and incubation.

3. Positivity and Permanence

Theorem 3. Any solutions of model system (4) with initial
conditions are positive.

Proof . For any solutions of model system (4), it is easy to
show that𝐹

𝑖
: R4+1

+
→ R4 is locally Lipschitz and satisfies the

condition, 𝐹
𝑖
(𝑋(𝑡))|

𝑋∈R4 > 0, where 𝐹
𝑖
(𝑋(𝑡)) (𝑖 = 1, 2, 3, 4)

have been defined in model system (4).
Due to the lemma in [37] and Theorem A.4 in [38], any

solution of the model system (4) with positive initial con-
ditions exists uniquely and each component of the solution
remainswithin the interval [0, 𝐴

0
) for some𝐴

0
> 0. Standard

and simple arguments show that solutions of model system
(4) always exist and stay positive. Hence, this completes the
positivity of the solutions of model system (4).

From a viewpoint of biological and economic interest
perspective, persistence of solutions of model system (4) in
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the case of economic interest V ≥ 0will be investigated in this
section. Some preliminaries are introduced as follows.

Definition 4 (see [39]). Model system (4) is said to be
permanent if there exists a compact region Ω

0
∈ intΩ such

that every solution ofmodel system (4)with initial conditions
will eventually enter and remain in regionΩ

0
.

Definition 5 (see [39]). Consider ametric space𝑄withmetric
𝑑. The distance 𝑑(𝑥, 𝑦) of a point 𝑥 ∈ 𝑄 from a subset 𝑌 of 𝑄
is defined by

𝑑 (𝑥, 𝑦) = inf
𝑦∈𝑌

𝑑 (𝑥, 𝑦) . (8)

It is further assumed that 𝑄 is the closure of an open set
𝑄

0, and 𝑄0
= 𝜕𝑄

0 is nonempty and is the boundary of 𝑄0.
Consequently,𝑄0

∪𝑄
0
= 𝑄,𝑄

0
∩𝑄

0
= Ø.Wewill also suppose

that 𝑇(𝑡) is a 𝑄0 semigroup on 𝑄 satisfying

𝑇 (𝑡) : 𝑄
0
→ 𝑄

0
, 𝑇 (𝑡) : 𝑄

0
→ 𝑄

0
. (9)

Let 𝑇
𝜕
(𝑡) = 𝑇(𝑡)|

𝑄
0

and 𝐴
𝜕
be the global attractor for

𝑇
𝜕
(𝑡).

Lemma 6 (see [39]). Suppose that 𝑇(𝑡) satisfies (9) and the
following conditions hold.

(i) There is a 𝑡
0
≥ 0 such that 𝑇(𝑡) is compact for 𝑡 > 𝑡

0
;

(ii) 𝑇(𝑡) is point dissipative in 𝑄;
(iii) 𝐴

𝜕
= ⋃

𝑥∈𝐴
𝜕

𝜔(𝑥) is isolated and has an acyclic
covering 𝑍.

Then 𝑇(𝑡) is uniformly persistent if and only if for each 𝑍
𝑖
∈ 𝑍,

𝑊
𝑠
(𝑍

𝑖
) ∩ 𝑄

0
= Ø for 𝑖 = 1, 2, . . . , 𝑛.

Lemma 7 (see [40]). Consider the following equation:

̇𝑢 (𝑡) = 𝑎𝑢 (𝑡 − 𝜏) − 𝑏𝑢 (𝑡) , (10)

where 𝑎, 𝑏, 𝜏 > 0 and 𝑢(𝑡) > 0 for all −𝜏 ≤ 𝑡 ≤ 0; it derives the
following:

(i) If 𝑎 < 𝑏, then lim
𝑡→+∞

𝑢(𝑡) = 0,
(ii) If 𝑎 > 𝑏, then lim

𝑡→+∞
𝑢(𝑡) = +∞.

Lemma 8. For any solutions of model system (4), we have

lim sup
𝑡→+∞

𝑆 (𝑡) ≤ 𝑘,

lim sup
𝑡→+∞

(𝑆 (𝑡) + 𝐼 (𝑡)) ≤
𝑘(𝑟 + 𝜇

1
+ 𝑚)

2

4𝑟 (𝜇
1
+ 𝑚)

.

(11)

Proof . By usingTheorem 3, it follows from the first equation
of model system (4) that

̇𝑆 (𝑡) ≤ 𝑟 (1 −
𝑆 (𝑡)

𝑘
) 𝑆 (𝑡) , (12)

which derives that lim sup
𝑡→+∞

𝑆(𝑡) ≤ 𝑘.

According to Theorem 3 and the first and second equa-
tion of model system (4), it gives that

̇𝑆 (𝑡) + ̇𝐼 (𝑡) ≤ 𝑟 (1 −
𝑆 (𝑡)

𝑘
) 𝑆 (𝑡) − (𝜇

1
+ 𝑚) 𝐼 (𝑡) , (13)

which derives that lim sup
𝑡→+∞

(𝑆(𝑡) + 𝐼(𝑡)) ≤ 𝑘(𝑟 + 𝜇
1
+

𝑚)
2
/4𝑟(𝜇

1
+ 𝑚).

Lemma 9. If 𝜇
1
+ 𝑚 < 1, then (𝑆(𝑡), 𝐼(𝑡)) of solution of model

system (4) with initial conditions satisfies

lim inf
𝑡→+∞

𝑆 (𝑡) ≥ 𝑆
𝜂
, lim inf

𝑡→+∞

𝐼 (𝑡) ≥ 𝐼
𝜂
, (14)

where 𝑆
𝜂
> 0 and 𝐼

𝜂
> 0 are independent of corresponding

initial values of model system (4).

Proof. Firstly, let 𝐶+
([−𝜏, 0],R2

+
) denote space of continuous

functions mapping [−𝜏, 0] into R2

+
, where R2

+
= {(𝑥, 𝑦) | 𝑥 ≥

0, 𝑦 ≥ 0}:

𝑄
1
= {(𝜙

1
, 𝜙

2
) ∈ 𝐶

+
([−𝜏, 0] ,R

2

+
) | 𝜙

1 (𝜃) = 0, 𝜃 ∈ [−𝜏, 0]} ,

𝑄
2
= {(𝜙

1
, 𝜙

2
) ∈ 𝐶

+
([−𝜏, 0] ,R

2

+
) | 𝜙

1
(𝜃) > 0,

𝜙
2
(𝜃) = 0, 𝜃 ∈ [−𝜏, 0] } .

(15)

Denote 𝑄
0
= 𝑄

1
∪ 𝑄

2
, 𝑄 = 𝐶

+
([−𝜏, 0],R2

+
) and 𝑄0

=

int𝐶+
([−𝜏, 0],R2

+
).

Next, all conditions in Lemma 6 will be checked. In order
to facilitate the proof, we consider the following subsystem of
model system (4):

̇𝑆 (𝑡) = 𝑟 (1 −
𝑆 (𝑡)

𝑘
) − 𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏) ,

̇𝐼 (𝑡) = 𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏) − 𝜇
1
𝐼 (𝑡) − 𝑚𝐼 (𝑡) ,

(16)

where 𝑆(𝜃) ≥ 0, 𝐼(𝜃) ≥ 0 are continuous on 𝜃 ∈ [−𝜏, 0] and
𝑆(0) > 0, 𝐼(0) > 0.

ByDefinition 5 andmodel system (16), it is easy to see that
𝑄

0 and𝑄
0
are positively invariant, and conditions (i) and (ii)

of Lemma 6 clearly hold.
Since model system (16) possesses two constant solutions

in 𝑄
0
: �̃�

0
∈ 𝑄

1
, �̃�

1
∈ 𝑄

2
with the following form:

�̃�
0
= {(𝜙

1
, 𝜙

2
) ∈ 𝐶

+
([−𝜏, 0] ,R

2

+
) | 𝜙

1
(𝜃) = 𝜙

2
(𝜃) = 0,

𝜃 ∈ [−𝜏, 0] } ,

�̃�
1
= {(𝜙

1
, 𝜙

2
) ∈ 𝐶

+
([−𝜏, 0] ,R

2

+
) | 𝜙

1
(𝜃) = 1, 𝜙

2
(𝜃) = 0,

𝜃 ∈ [−𝜏, 0] } .

(17)

It follows from simple computation that

̇𝑆 (𝑡)
(𝜙
1
,𝜙
2
)∈𝑄
1

= 0, 𝑆 (𝑡)
(𝜙
1
,𝜙
2
)∈𝑄
1

= 0 for 𝑡 ≥ 0. (18)
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Moreover, it follows from the second equation of model
system (16) that

̇𝐼 (𝑡)
(𝜙
1
,𝜙
2
)∈𝑄
1

= − (𝜇
1
+ 𝑚) 𝐼 (𝑡) ≤ 0, (19)

which reveals that all points in 𝑄
1
approach to �̃�

0
; that is,

𝑄
1
= 𝑊

𝑠
(�̃�

0
). By using the similar analysis mentioned above,

it can be also concluded that all points in 𝑄
2
approach to �̃�

1
;

that is, 𝑄
2
= 𝑊

𝑠
(�̃�

1
). Based on the above analysis, it shows

that invariant sets �̃�
0
and �̃�

1
are isolated invariant, and {�̃�

0
, �̃�

1
}

is isolated and an acyclic covering. It can be concluded that
condition (iii) of Lemma 6 holds.

Finally, we will show that𝑊𝑠
(�̃�

𝑖
) ∩ 𝑄

0
= Ø for 𝑖 = 0, 1.

Based on the definition of �̃�
0
, it is easy to show that𝑊𝑠

(�̃�
0
) ∩

𝑄
0
= Ø.We will show𝑊𝑠

(�̃�
1
)∩𝑄

0
= Ø in the following part.

If 𝑊𝑠
(�̃�

1
) ∩ 𝑄

0
̸=Ø, then there exists a positive solution

(𝑆(𝑡), 𝐼(𝑡)) to model system (16) with lim
𝑡→+∞

(𝑆(𝑡), 𝐼(𝑡)) =

(1, 0). If 𝜇
1
+𝑚 < 1, then 𝜇

1
+𝑚 < 1 − 𝜖 holds for sufficiently

small 𝜖 > 0 and there exists a positive constant 𝑇 = 𝑇(𝜖) such
that 𝑆(𝑡) > 1 − 𝜖 > 0, and 0 < 𝐼(𝑡) < 𝜖 for all 𝑡 ≥ 𝑇.

By the second equation of model system (16), it derives
that

̇𝐼 (𝑡) ≥ (1 − 𝜖) 𝐼 (𝑡 − 𝜏) − (𝜇
1
+ 𝑚) 𝐼 (𝑡) (20)

holds for all 𝑡 ≥ 𝑇 + 𝜏.
Consider the following equation:

̇𝑥 (𝑡) = (1 − 𝜖) 𝑥 (𝑡 − 𝜏) − (𝜇1 + 𝑚) 𝑥 (𝑡) , 𝑡 ≥ 𝑇 + 𝜏,

𝑥 (𝑡) = 𝐼 (𝑡) , 𝑇 ≤ 𝑡 ≤ 𝑇 + 𝜏.

(21)

Based on (21) and the comparison principle, it derives that
𝐼(𝑡) ≥ 𝑥(𝑡) for all 𝑡 > 𝑇.

On the other hand, if 𝜇
1
+ 𝑚 < 1, then it follows from

Lemma 7 that lim
𝑡→+∞

𝑥(𝑡) = +∞ for all solutions of (21).
It can be concluded that lim

𝑡→+∞
𝐼(𝑡) = ∞, which is a

contradiction to 𝐼(𝑡) < 𝜖. Consequently, it can be derived that
𝑊

𝑠
(�̃�

1
) ∩ 𝑄

0
= Ø.

According to the above analysis, all conditions of
Lemma 6 hold. By using Lemma 6, it can be obtained that

lim inf
𝑡→+∞

𝑆 (𝑡) ≥ 𝑆
𝜂
, lim inf

𝑡→+∞

𝐼 (𝑡) ≥ 𝐼
𝜂
, (22)

where 𝑆
𝜂
> 0 and 𝐼

𝜂
> 0 are independent of the correspond-

ing initial values of model system (4).

Theorem 10. If 𝜇
1
+ 𝑚 < 1, 𝑐𝜇

2
< 𝑚𝑤𝐼

𝜂
, and 0 ≤ V <

𝑐𝜇
2
+ 𝑚𝑤𝐼

𝜂
, then all solutions of model system (4) with initial

conditions are persistent.

Proof . According to Lemmas 8 and 9, it can be obtained that

𝑆
𝜂
≤ 𝑆 (𝑡) ≤ 𝑘, 𝑆 (𝑡) + 𝐼 (𝑡) ≤

𝑘(𝑟 + 𝜇
1
+ 𝑚)

2

4𝑟 (𝜇
1
+ 𝑚)

, (23)

hold for all 𝑡 > 0, which derive that

𝐼
𝜂
≤ 𝐼 (𝑡) ≤

𝑘(𝑟 + 𝜇
1
+ 𝑚)

2

4𝑟 (𝜇
1
+ 𝑚)

− 𝑆
𝜂
. (24)

When the economic interest V = 0, it follows from
Theorem 3 and the fourth equation of model system (4) that

𝑅 (𝑡) =
𝑐

𝑤
(25)

and ̇𝑅(𝑡) = 0. Based on the third equation of model system
(4), it can be computed that 𝐸(𝑡) = (𝑚𝑤/𝑐)𝐼(𝑡) − 𝜇

2
. Accord-

ng to (24), it derives that

0 <

𝑚𝑤𝐼
𝜂
− 𝑐𝜇

2

𝑐
≤ 𝐸 (𝑡)

≤

𝑚𝑤 [𝑘(𝑟 + 𝜇
1
+ 𝑚)

2
− 4𝑆

𝜂
𝑟 (𝜇

1
+ 𝑚)]

4𝑐𝑟 (𝜇
1
+ 𝑚)

− 𝜇
2

(26)

provided that 𝑐𝜇
2
< 𝑚𝑤𝐼

𝜂
.

In the case of V > 0, it derives that 𝐸(𝑡) = V/(𝑤𝑅(𝑡) − 𝑐)
based on implicit function theory [41]. According to the third
equation of model system (4), it can be obtained that

̇𝑅 (𝑡) ≥ 𝑚𝐼
𝜂
+
𝑐𝜇

2
− V
𝑤

− 𝜇
2
𝑅 (𝑡) , (27)

which derives that

lim inf
𝑡→+∞

𝑅 (𝑡) ≥

𝑚𝑤𝐼
𝜂
+ 𝑐𝜇

2
− V

𝑤𝜇
2

:= 𝑅 > 0, (28)

provided that 0 < V < 𝑐𝜇
2
+ 𝑚𝑤𝐼

𝜂
.

It follows from Theorem 3 and the third equation of
model system (4) that

̇𝑅 (𝑡) ≤ 𝑚𝐼 (𝑡) − 𝜇
2
𝑅 (𝑡) , (29)

which derives that

lim sup
𝑡→+∞

𝑅 (𝑡) ≤

𝑚 [𝑘(𝑟 + 𝜇
1
+ 𝑚)

2
− 4𝑆

𝜂
𝑟 (𝜇

1
+ 𝑚)]

4𝑟𝜇
2
(𝜇

1
+ 𝑚)

:= 𝑅.

(30)

Hence, it gives that V/(𝑤𝑅 − 𝑐) ≤ 𝐸(𝑡) ≤ V/(𝑤𝑅 − 𝑐), and
it can be rewritten as follows:

4𝑟𝜇
2
V (𝜇

1
+ 𝑚)

𝑤𝑚 [𝑘(𝑟 + 𝜇
1
+ 𝑚)

2
− 4𝑆

𝜂
𝑟 (𝜇

1
+ 𝑚)] − 4𝑟𝑐𝜇

2
(𝜇

1
+ 𝑚)

≤ 𝐸 (𝑡) ≤
𝜇
2
V

𝑚𝑤𝐼
𝜂
− V

.

(31)

Based on (23), (24), (25), and (26), it can be concluded
that all solutions of model system (4) with initial conditions
are persistent in the case of V = 0, and it follows from (23),
(24), (28), (30) and (31) that all solutions of model system (4)
with initial conditions are persistent in the case of 0 < V <
𝑐𝜇

2
+ 𝑚𝑤𝐼

𝜂
.
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4. Qualitative Analysis of Model System

Dynamical effects of harvest effort and time delay on pop-
ulation dynamics are discussed in this section. It should be
noted that the interior equilibrium biologically interprets
that susceptible, infective, and recovered host individuals
survive as well as harvest on recovered host individuals
exists. Bifurcation phenomenon around the interior equi-
libria can reveal instability mechanism of model system,
which are theoretically relevant to infectious disease con-
trol and sustainable yield on recovered host individuals in
the real world. Consequently, we will mainly concentrate
on dynamical behavior and local stability analysis around
interior equilibrium of model system (4) in this paper.

4.1. Model System without Time Delay. In this section,
dynamical behavior of model system (4) without time delay
is investigated, and local stability analysis around the interior
equilibrium is discussed due to variation of economic inter-
est of commercial harvesting. Furthermore, state feedback
controllers are designed to stabilize model system around
the desired interior equilibria in the case of zero economic
interest and positive economic interest, respectively.

4.1.1. Singularity Induced Bifurcation

Theorem 11. Model system (4)without time delay has a singu-
larity induced bifurcation around the interior equilibrium, and
V = 0 is a bifurcation value. Furthermore, local stability switch
occurs as V increases through 0.

Proof. Based on the economic theory of a common-property
resource [22], there is a phenomenon of bioeconomic equi-
librium in the case of zero harvest economic interest; that is,
V = 0. An interior equilibrium can be obtained as follows:
𝑃
∗
(𝑆

∗
, 𝐼

∗
, 𝑅

∗
, 𝐸

∗
), where 𝑆∗ = (𝜇

1
+ 𝑚)/𝛽, 𝐼∗ = 𝑟(𝑘𝛽 −

𝜇
1
− 𝑚)/𝑘𝛽

2, 𝑅∗
= 𝑐/𝑤, and 𝐸∗

= (𝑤𝑚𝑟(𝑘𝛽 − 𝜇
1
− 𝑚) −

𝑐𝑘𝜇
2
𝛽
2
)/𝑐𝑘𝛽

2.
According to biological interpretation of the interior

equilibrium, it follows that 𝑆∗ > 0, 𝐼∗ > 0, 𝑅∗
> 0 and 𝐸∗

>

0. In order to guarantee the existence of interior equilibrium,
some inequalities are satisfied:

𝑘𝛽 − 𝜇
1
− 𝑚 > 0,

𝑤𝑚𝑟 (𝑘𝛽 − 𝜇
1
− 𝑚) − 𝑐𝑘𝜇

2
𝛽
2
> 0.

(32)

Let V be a bifurcation parameter,𝐻(𝑡) = (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡))𝑇,

ℎ
1
(𝐻 (𝑡) , 𝐸 (𝑡) , V) = [

[

[

𝑟 (1 −
𝑆 (𝑡)

𝑘
) − 𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏) ,

𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏) − 𝜇1𝐼 (𝑡) − 𝑚𝐼 (𝑡) ,

𝑚𝐼 (𝑡) − 𝜇
2
𝑅 (𝑡) − 𝐸 (𝑡) 𝑅 (𝑡)

]
]

]

,

ℎ
2
(𝐻 (𝑡) , 𝐸 (𝑡) , V) = 𝐸 (𝑡) (𝑤𝑅 (𝑡) − 𝑐) − V.

(33)

It can be calculated that

trace (𝐷
𝐸
ℎ
1
adj (𝐷

𝐸
ℎ
2
) (𝐷

𝐻
ℎ
2
, 𝐷

𝐸
ℎ
2
))
𝑃∗

= −
𝑤𝑚𝑟 (𝑘𝛽 − 𝜇

1
− 𝑚) − 𝑐𝑘𝜇

2
𝛽
2

𝑘𝛽2
.

(34)

By virtue of (32), it can be obtained that

trace (𝐷
𝐸
ℎ
1
adj (𝐷

𝐸
ℎ
2
) (𝐷

𝐻
ℎ
2
, 𝐷

𝐸
ℎ
2
))
𝑃∗

̸=0. (35)

Furthermore, it can be also calculated that


𝐷
𝐻
ℎ
1
𝐷

𝐸
ℎ
1

𝐷
𝐻
ℎ
2
𝐷

𝐸
ℎ
2

𝑃∗

=

𝑟 (𝜇
1
+ 𝑚) (𝑘𝛽 − 𝜇

1
− 𝑚) [𝑤𝑚𝑟 (𝑘𝛽 − 𝜇

1
− 𝑚) − 𝑐𝑘𝜇

2
𝛽
2
]

𝑘2𝛽3
.

(36)

It follows from (32) that


𝐷
𝐻
ℎ
1
𝐷

𝐸
ℎ
1

𝐷
𝐻
ℎ
2
𝐷

𝐸
ℎ
2

𝑃∗
̸=0. (37)

Based on Section IV(A) in [42], ℎ
3
(𝐻(𝑡), 𝐸(𝑡), V) can be

defined as follows:

ℎ
3
(𝐻 (𝑡) , 𝐸 (𝑡) , V) = det (𝐷

𝐸
𝑔) = 𝑤𝑅 (𝑡) − 𝑐. (38)

By simple computing,



𝐷
𝐻
ℎ
1
𝐷

𝐸
ℎ
1
𝐷Vℎ1

𝐷
𝐻
ℎ
2
𝐷

𝐸
ℎ
2
𝐷Vℎ2

𝐷
𝐻
ℎ
3
𝐷

𝐸
ℎ
3
𝐷Vℎ3

𝑃∗

=
𝑐𝑟 (𝜇

1
+ 𝑚) (𝑘𝛽 − 𝜇

1
+ 𝑚)

𝑘𝛽
. (39)

According to (32), it derives that



𝐷
𝐻
ℎ
1
𝐷

𝐸
ℎ
1
𝐷Vℎ1

𝐷
𝐻
ℎ
2
𝐷

𝐸
ℎ
2
𝐷Vℎ2

𝐷
𝐻
ℎ
3
𝐷

𝐸
ℎ
3
𝐷Vℎ3

𝑃∗

̸=0. (40)

Based on the above analysis, four items (i–iv) can be
obtained as follows.

(i) It is easy to show that 𝐷
𝐸
ℎ
2
has a simple zero

eigenvalue:

ℎ
1
(𝐻 (𝑡) , 𝐸 (𝑡) , V)𝑃∗ = 0, ℎ

2
(𝐻 (𝑡) , 𝐸 (𝑡) , V)𝑃∗ = 0,

(41)

and trace(𝐷
𝐸
ℎ
1
adj(𝐷

𝐸
ℎ
2
)(𝐷

𝐻
ℎ
2
, 𝐷

𝐸
ℎ
2
))|

𝑃
∗ ̸=0 based

on (35).
(ii) It follows from (37) that [𝐷𝐻ℎ1 𝐷𝐸ℎ1

𝐷
𝐻
ℎ
2
𝐷
𝐸
ℎ
2

] is nonsingular
around 𝑃∗.

(iii) By virtue of (40), it can be shown that

[

𝐷
𝐻
ℎ
1
𝐷
𝐸
ℎ
1
𝐷Vℎ1

𝐷
𝐻
ℎ
2
𝐷
𝐸
ℎ
2
𝐷Vℎ2

𝐷
𝐻
ℎ
3
𝐷
𝐸
ℎ
3
𝐷Vℎ3

] is nonsingular around 𝑃
∗; hence

rank [
𝐷
𝐻
ℎ
1
𝐷
𝐸
ℎ
1
𝐷Vℎ1

𝐷
𝐻
ℎ
2
𝐷
𝐸
ℎ
2
𝐷Vℎ2

𝐷
𝐻
ℎ
3
𝐷
𝐸
ℎ
3
𝐷Vℎ3

] = 5.
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(iv) It is easy to show rank (ℎ
1
(𝐻(𝑡), 𝐸(𝑡), V)) = 3 and

rank(ℎ
2
(𝐻(𝑡), 𝐸(𝑡), V)) = 1, which follows

rank[

[

𝐷
𝐻
ℎ
1
𝐷

𝐸
ℎ
1
𝐷Vℎ1

𝐷
𝐻
ℎ
2
𝐷

𝐸
ℎ
2
𝐷Vℎ2

𝐷
𝐻
ℎ
3
𝐷

𝐸
ℎ
3
𝐷Vℎ3

]

]

= rank (ℎ
1 (𝐻 (𝑡) , 𝐸 (𝑡) , V))

+ rank (ℎ
2
(𝐻 (𝑡) , 𝐸 (𝑡) , V)) + 1.

(42)

It should be noted that the conditions for singularity
induced bifurcation, which is introduced in Section III (A)
in [42], consist of three conditions, that is, SI1, SI2, and SI3.
According to the above items (i)–(iv), SI1, SI2, and SI3 are all
satisfied; hencemodel (4) without time delay has a singularity
induced bifurcation around the interior equilibrium 𝑃

∗ and
the bifurcation value is V = 0.

Along with the line of the above proof, for model (4)
without time delay, it follows from simple computing that

𝑀 = −trace (𝐷
𝐸
ℎ
1
adj (𝐷

𝐸
ℎ
2
) (𝐷

𝐻
ℎ
2
, 𝐷

𝐸
ℎ
2
))
𝑃∗

=
𝑤𝑚𝑟 (𝑘𝛽 − 𝜇

1
− 𝑚) − 𝑐𝑘𝜇

2
𝛽
2

𝑘𝛽2
,

𝑁 = [𝐷Vℎ3 − [𝐷𝐻
ℎ
3
, 𝐷

𝐸
ℎ
3
] [
𝐷

𝐻
ℎ
1
𝐷

𝐸
ℎ
1

𝐷
𝐻
ℎ
2
𝐷

𝐸
ℎ
2

]

−1

[
𝐷Vℎ1
𝐷Vℎ2

]]

𝑃∗

=
𝑐𝑟 (𝜇

1
+ 𝑚) (𝑘𝛽 − 𝜇

1
− 𝑚)

𝑘𝛽
.

(43)

It follows from (32) that

𝑀

𝑁
=
𝑚𝑟𝑤 (𝑘𝛽 − 𝜇

1
− 𝑚) − 𝑐𝑘𝜇

2
𝛽
2

𝑐𝑟𝛽 (𝜇
1
+ 𝑚) (𝑘𝛽 − 𝜇

1
− 𝑚)

> 0. (44)

Inequality (44) satisfies Theorem 3 of [42]. According
to Theorem 3 of [42], when V increases through 0, one
eigenvalue (denoted by 𝜆

1
) of model system (4) without time

delay moves from C− to C+ along the real axis by diverging
through infinity; the movement behavior of this eigenvalue
influences the stability of model system (4) without time
delay.

Since the Jacobian ofmodel system (4) without time delay
evaluated around 𝑃∗ takes the following form:

𝐽
𝑃
∗ =

[
[
[
[
[

[

−
𝑟𝑆

∗

𝑘
−𝛽𝑆

∗
0 0

𝛽𝐼
∗

0 0 0

0 𝑚 − (𝜇
2
+ 𝐸

∗
) −𝑅

∗

0 0 𝑤𝐸
∗

0

]
]
]
]
]

]

, (45)

according to the leading matrix Ξ(𝑡) in model system (4)
and 𝐽

𝑃
∗ , the characteristic equation of the model system (4)

without time delay around 𝑃∗ is

det (𝜆Ξ − 𝐽
𝑃
∗) = 0. (46)

Table 1: Signs of real parts of eigen values of model (4) without time
delay around interior equilibrium 𝑃

∗.

Re𝜆
1

Re𝜆
2

Re𝜆
3

𝜐 < 0 − − −

𝜐 > 0 + − −

By virtue of simple computation, the characteristic equa-
tion is as follows:

𝜆
2
+
𝑟𝑆

∗

𝑘
𝜆 + 𝛽

2
𝑆
∗
𝐼
∗
= 0. (47)

It can be concluded that the rest eigenvalues of model
system (4) without time delay (denoted by 𝜆

2
and 𝜆

3
) have

negative real parts by using the Routh-Hurwitz criteria [43].
It follows from Theorem 3 in [42] that there is only one
eigenvalue diverging to infinity as V increases through 0,
and the rest eigenvalues are continuous and nonzero and
cannot jump from one half open complex plane to another
one as V increases through 0. It has been shown that 𝜆

1

moves fromC− toC+ along the real axis by diverging through
infinity. Therefore, 𝜆

2
and 𝜆

3
are continuous and bounded

in the C− half plane as V increases through 0 and their
movement behaviors have no influence on the stability of
model system (4) without time delay around the interior
equilibrium 𝑃

∗.

According to Table 1 and the stability theory, it can be
concluded that model system (4) without time delay is stable
around 𝑃∗ as V < 0 and model system (4) without time delay
is unstable around 𝑃∗ as V > 0. Consequently, a stability
switch occurs as V increases through 0.

Remark 12. Some preliminaries of singularity induced bifur-
cation are introduced below. Parameter dependent differen-
tial-algebraic hybrid system of the form

̇𝑥 (𝑡) = ℎ (𝑥 (𝑡) , 𝑦 (𝑡) , 𝜆) , ℎ : 𝑅
𝑛
× 𝑅

𝑚
× 𝑅

𝑝
→ 𝑅

𝑛
,

0 = 𝑔 (𝑥 (𝑡) , 𝑦 (𝑡) , 𝜆) , 𝑔 : 𝑅
𝑛
× 𝑅

𝑚
× 𝑅

𝑝
→ 𝑅

𝑚
,

(48)

where 𝑥(𝑡), 𝑦(𝑡), and 𝜆 have appropriate dimensions. It has
been shown recently that there are generically three types
of codimension one local bifurcation associated with the
differential-algebraic model (48), namely, saddle-node bifur-
cation, Hopf bifurcation, and singularity induced bifurcation
(see [42]).

The singularity induced bifurcation is firstly introduced
and analyzed in [42, 44]. It is a new type of bifurcation and
does not occur in usual ordinary differential equation system,
which has been characterized for differential-algebraic sys-
tem, and later improved in [45, 46]. Roughly speaking, the
singularity induced bifurcation refers to a stability change of
the differential-algebraic hybrid model (48) owing to some
eigenvalues of related linearization ℎ

𝑥
−ℎ

𝑦
𝑔
−1

𝑦
𝑔
𝑥
diverging to

infinity when Jacobian 𝑔
𝑦
is singular.
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One of the important consequences of the singularity
induced bifurcation is that it leads to an impulse phe-
nomenon, whichmay result in the collapse of the differential-
algebraic system (see [45]). More detailed introductions of
the singularity induced bifurcation can be found in [42, 44–
46].

Remark 13. It follows from Theorem 11 that there is a phe-
nomenon of singularity induced bifurcation around the inte-
rior equilibrium when economic interest increases through
zero, which can cause local stability switch of model sys-
tem (4). As stated in Remark 12, the singularity induced
bifurcation can result in impulse phenomenon, which may
lead to the collapse of the proposed model. In the harvested
epidemiological-economic system, the impulse phenomenon
is vividly reflected with the outbreak of infectious disease
during a short period in the real world. Under this climate,
the infected population will be beyond the carrying capacity
of environment, which is disastrous for sustainable develop-
ment of the harvested ecosystem as well as prosperous yield
on recovered host individuals.

4.1.2. State Feedback Controller. In order to maintain the
sustainable yield on recovered host individuals biological
resource as well as economic interest of commercial harvest-
ing at an ideal level, some corresponding control strategies
should be taken to eliminate the impulse phenomenon
caused by singularity induced bifurcation and stabilizemodel
(4) without time delay. In this subsection, state feedback
controllers are designed to stabilizemodel system (4) without
time delay around corresponding interior equilibria in the
case of V = 0 and V > 0, respectively.

According to the leading matrix Ξ(𝑡) in model system (4)
and 𝐽

𝑃
∗ in (45) (the Jacobian ofmodel system (4)without time

delay around the interior equilibrium𝑃∗), it can be calculated
that rank (𝐽

𝑃
∗ , Ξ𝐽

𝑃
∗ , Ξ

2
𝐽
𝑃
∗ , Ξ

3
𝐽
𝑃
∗) = 4. By using Theorem

2-2.1 in [47], it is easy to show that the model system (4)
without time delay is locally controllable around the interior
equilibrium 𝑃

∗ in the case of V = 0. Consequently, a state
feedback controller can be applied to stabilize the model
system (4) without time delay around 𝑃∗. By using Theorem
3-1.2 in [47], a state feedback controller 𝑢(𝑡) = 𝑙(𝐸(𝑡) − 𝐸∗

)

(𝑙 is a feedback gain and 𝐸∗ is the component of the interior
equilibrium 𝑃

∗) can be applied to stabilize model system (4)
without time delay around 𝑃∗.

Furthermore, the controlled model system (4) without
time delay takes the following form:

̇𝑆 (𝑡) = 𝑟 (1 −
𝑆 (𝑡)

𝑘
) − 𝛽𝑆 (𝑡) 𝐼 (𝑡) ,

̇𝐼 (𝑡) = 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝜇1𝐼 (𝑡) − 𝑚𝐼 (𝑡) ,

̇𝑅 (𝑡) = 𝑚𝐼 (𝑡) − 𝜇
2
𝑅 (𝑡) − 𝐸 (𝑡) 𝑅 (𝑡) ,

0 = 𝐸 (𝑡) (𝑤𝑅 (𝑡) − 𝑐) − V + 𝑢 (𝑡) .

(49)

Theorem 14. When economic interest of harvesting is zero, V =
0, if the feedback gain 𝑙 satisfies the following inequality:

𝑙 > max { 𝑘𝑤𝐸
∗
𝑅
∗

𝑟𝑆∗ + 𝑘 (𝜇
2
+ 𝐸∗)

,
𝑤𝐸

∗
𝑅
∗

𝜇
2
+ 𝐸∗

,
𝑟𝑤𝐸

∗
𝑅
∗

𝑘𝛽2𝐼∗ + 𝑟 (𝜇
2
+ 𝐸∗)

,

(𝑤𝐸
∗
𝑅
∗
[2𝑘𝑟 (𝜇

2
+ 𝐸

∗
) + 2𝑘

2
𝛽
2
𝐼
∗
+ 𝑟

2
𝑆
∗
]

+√4𝑘4𝛽4𝐼∗2 + 8 (𝜇
2
+ 𝐸∗) 𝑟𝑘3𝛽2𝐼∗ + 𝑟4𝑆∗2)

× (2𝑟 [𝑟 (𝜇
2
+ 𝐸

∗
) 𝑆

∗
+ 𝑘𝛽

2
𝐼
∗
𝑆
∗

+ 𝑘(𝜇
2
+ 𝐸

∗
)
2
])

−1

} ,

(50)

then singularity induced bifurcation is eliminated and model
system (49) is stable around 𝑃∗.

Proof. The Jacobian of themodel system (49) evaluated at the
interior equilibrium 𝑃

∗ takes the form

𝐽
𝑃
∗ =

[
[
[
[
[

[

−
𝑟𝑆

∗

𝑘
−𝛽𝑆

∗
0 0

𝛽𝐼
∗

0 0 0

0 𝑚 − (𝜇
2
+ 𝐸

∗
) −𝑅

∗

0 0 𝑤𝐸
∗

𝑙

]
]
]
]
]

]

. (51)

According to the leading matrix Ξ(𝑡) in the model system
(4) and 𝐽

𝑃
∗ , the characteristic equation of model system (49)

around 𝑃∗ is det(𝜆Ξ − 𝐽
𝑃
∗) = 0, which can be expressed as

follows:

𝜆
3
+ 𝐵

1
𝜆
2
+ 𝐵

2
𝜆 + 𝐵

3
= 0, (52)

where 𝐵
1
= 𝜇

2
+ 𝐸

∗
+ 𝑟𝑆

∗
/𝑘 − 𝑤𝐸

∗
𝑅
∗
/𝑙, 𝐵

2
= 𝛽

2
𝐼
∗
𝑆
∗
+

(𝑟𝑆
∗
/𝑘)(𝜇

2
+ 𝐸

∗
− 𝑤𝐸

∗
𝑅
∗
/𝑙), and 𝐵

3
= 𝛽

2
𝐼
∗
𝑆
∗
(𝜇

2
+ 𝐸

∗
−

𝑤𝐸
∗
𝑅
∗
/𝑙).

By using the Routh-Hurwitz criteria [43], model (49) is
locally stable around 𝑃∗ if and only if 𝑙 satisfies

𝑙 > max { 𝑘𝑤𝐸
∗
𝑅
∗

𝑟𝑆∗ + 𝑘 (𝜇
2
+ 𝐸∗)

,
𝑤𝐸

∗
𝑅
∗

𝜇
2
+ 𝐸∗

,
𝑟𝑤𝐸

∗
𝑅
∗

𝑘𝛽2𝐼∗ + 𝑟 (𝜇
2
+ 𝐸∗)

,

(𝑤𝐸
∗
𝑅
∗
[2𝑘𝑟 (𝜇

2
+ 𝐸

∗
) + 2𝑘

2
𝛽
2
𝐼
∗
+ 𝑟

2
𝑆
∗
]

+√4𝑘4𝛽4𝐼∗2 + 8 (𝜇
2
+ 𝐸∗) 𝑟𝑘3𝛽2𝐼∗ + 𝑟4𝑆∗2)

× (2𝑟 [𝑟 (𝜇
2
+ 𝐸

∗
) 𝑆

∗
+ 𝑘𝛽

2
𝐼
∗
𝑆
∗

+ 𝑘(𝜇
2
+ 𝐸

∗
)
2
])

−1

} .

(53)

Consequently, if the feedback gain satisfies the above
inequality, then model system (49) is stable around 𝑃∗ in the
case of zero interest of harvesting.
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Let �̃�∗
(𝑆

∗
, 𝐼

∗
, �̃�

∗
, 𝐸

∗
) denote interior equilibrium of

model (4) in the case of positive economic interest of
harvesting (V > 0), where 𝑆∗ = (𝜇

1
+ 𝑚)/𝛽, 𝐼∗ = 𝑟(𝑘𝛽 −

𝜇
1
−𝑚)/𝑘𝛽

2, 𝐸∗
= V/(𝑤𝑅∗

− 𝑐), and �̃�∗ satisfies the following
equation:

�̃�
∗2
+ 𝐵

2
�̃�
∗
+ 𝐵

3
= 0, (54)

where 𝐵
2
= (𝑘𝛽

2
(V − 𝑐𝜇

2
) + 𝑤𝑚𝑟(𝑚 + 𝜇

1
− 𝑘𝛽))/𝑘𝑤𝜇

2
𝛽
2,

𝐵
3
= 𝑐𝑚𝑟(𝑘𝛽 − 𝑚𝑢

1
− 𝑚)/𝑘𝑤𝜇

2
𝛽
2.

Based on Routh-Hurwitz criteria [43], (54) has two
positive roots if economic interest V satisfies the following
inequalities:

0 < V < min{𝑐𝜇
2
+
𝑤𝑚𝑟 (𝑘𝛽 − 𝑚 − 𝜇

1
)

𝑘𝛽2
,

(1 − 𝑐) 𝑐𝜇
2
+
𝑤𝑚𝑟 (𝑐 + 1) (𝑘𝛽 − 𝜇1 − 𝑚)

𝑘𝛽2
}

:= Ṽ.
(55)

As analyzed above, there are two interior equilibria
(denoted by �̃�∗

1
and �̃�∗

2
) when 0 < V∗ < Ṽ. In this subsection,

we only design the controller for the model (4) around the
interior equilibrium �̃�

∗

1
. Some symmetric results about �̃�∗

2

can be also obtained, and �̃�∗

1
is denoted as �̃�∗ for simplicity

in the following part.

Theorem 15. When economic interest of harvesting is positive,
0 < V∗ < Ṽ, if feedback gain �̃� of controller 𝑢(𝑡) = �̃�(𝐸(𝑡) − 𝐸∗

)

satisfies following inequality:

�̃� > max{ 𝑘𝑤𝐸
∗
�̃�
∗

𝑟𝑆∗ + 𝑘 (𝜇
2
+ 𝐸∗)

,
𝑤𝐸

∗
�̃�
∗

𝜇
2
+ 𝐸∗

,
𝑟𝑤𝐸

∗
�̃�
∗

𝑘𝛽2𝐼∗ + 𝑟 (𝜇
2
+ 𝐸∗)

,

(𝑤𝐸
∗
�̃�
∗
[2𝑘𝑟 (𝜇

2
+ 𝐸

∗
) + 2𝑘

2
𝛽
2
𝐼
∗
+ 𝑟

2
𝑆
∗
]

+√4𝑘4𝛽4𝐼∗2 + 8 (𝜇
2
+ 𝐸∗) 𝑟𝑘3𝛽2𝐼∗ + 𝑟4𝑆∗2)

× (2𝑟 [𝑟 (𝜇
2
+ 𝐸

∗
) 𝑆

∗
+ 𝑘𝛽

2
𝐼
∗
𝑆
∗

+ 𝑘(𝜇
2
+ 𝐸

∗
)
2

])} ,

(56)

then model system (49) is stable around the interior equilib-
rium �̃�

∗
(𝑆

∗
, 𝐼

∗
, �̃�

∗
, 𝐸

∗
).

Proof. The proof is similar to the proof of Theorem 14 of this
paper.

Remark 16. It follows from (55) and Theorem 15 that eco-
nomic interest of commercial harvesting should be regulated
within certain interval V ∈ (0, Ṽ), which guarantees the
existence of interior equilibrium in the case of positive

economic interest. After applying the state feedback con-
troller into model system (4) without time delay, model
system can be stabilized around the corresponding interior
equilibrium, respectively. The elimination of the singularity
induced bifurcation means the harvested epidemiological-
economic system restores to ecological balance and avoid-
ance of infectious disease outbreak.

4.2. Model System with Time Delay. By analyzing corre-
sponding characteristic equation of model system with time
delay, local stability analysis around the interior equilibrium
due to variation of time delay is discussed. Conditions for
existence ofHopf bifurcation are studied. Furthermore, direc-
tions of Hopf bifurcation and stability of periodic solutions
are investigated.

4.2.1. Local Stability and Hopf Bifurcation. As analyzed in
the above subsection, in the case of time delay and positive
economic interest of harvesting 0 < V∗ < Ṽwhere Ṽ is defined
in (55), there are two interior equilibria �̃�∗

1
and �̃�∗

2
for model

system (4) with respect to the positive economic interest V∗.
In this subsection, we only investigate dynamical behav-

ior of model system (4) around the interior equilibrium �̃�
∗

1
.

Some symmetric results about the interior equilibrium �̃�
∗

2

can be also obtained, and �̃�∗

1
is denoted as �̃�∗ for simplicity.

According to Jacobian evaluated at the interior equilibrium
�̃�
∗ and the leading matrix Ξ(𝑡) in model system (4), we can

obtain the characteristic equation ofmodel system (4) around
�̃�
∗, which can be expressed as follows:



𝜆 +
𝑟𝑆

∗

𝑘
𝛽𝑆

∗
𝑒
−𝜆𝜏

0 0

−𝛽𝐼
∗

𝜆 − 𝛽𝑆
∗
𝑒
−𝜆𝜏

+ 𝜇
1
+ 𝑚 0 0

0 −𝑚 𝜆 + 𝜇
1
+ 𝐸

∗
�̃�
∗

0 0 −𝑤𝐸
∗

−
V∗

𝐸∗



= 0.

(57)

⇒

𝑀(𝜆) + 𝑁 (𝜆) 𝑒
−𝜆𝜏

= 0, (58)

where

𝑀(𝜆) = 𝜆
3
+ 𝑚

1
𝜆
2
+ 𝑚

2
𝜆 + 𝑚

3
,

𝑁 (𝜆) = 𝑛
1
𝜆
2
+ 𝑛

2
𝜆 + 𝑛

3
,

𝑚
1
= 𝜇

2
+ (𝜇

1
+ 𝑚)(1 +

𝑟

𝑘𝛽
) −

𝑐V∗

(𝑤�̃�∗ − 𝑐)
2
,

𝑚
2
=
𝜇
1
+ 𝑚

𝑘𝛽

[

[

𝑟(𝜇
1
+ 𝑚 + 𝜇

2
−

𝑐V∗

(𝑤�̃�∗ − 𝑐)
2
)

+𝑘𝛽(𝜇
2
−

𝑐V∗

(𝑤�̃�∗ − 𝑐)
2
)]

]

,
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𝑚
3
=
𝑟(𝜇

1
+ 𝑚)

2

𝑘𝛽

[

[

𝜇
2
−

𝑐V∗

(𝑤�̃�∗ − 𝑐)
2

]

]

,

𝑛
1
= − 𝜇

1
− 𝑚,

𝑛
2
= − (𝜇

1
+ 𝑚)

× [

[

𝜇
2
+
2𝑟 (𝜇

1
+ 𝑚) − 𝑘𝑟𝛽

𝑘𝛽
−

𝑐V∗

(𝑤�̃�∗ − 𝑐)
2

]

]

,

𝑛
3
= − 𝑟 (𝜇

1
+ 𝑚) [

2 (𝜇
1
+ 𝑚)

𝑘𝛽
− 1]

× [

[

𝜇
2
−

𝑐V∗

(𝑤�̃�∗ − 𝑐)
2

]

]

.

(59)

Now substituting 𝜆 = 𝑖𝜎 (𝜎 is a positive real number)
into (58) and separating the real and imaginary parts, two
transcendental equations can be obtained as follows:

𝜎
3
− 𝑚

2
𝜎 = 𝑛

2
𝜎 cos (𝜎𝜏) − (𝑛

3
− 𝑛

1
𝜎
2
) sin (𝜎𝜏) , (60)

𝑚
1
𝜎
2
− 𝑚

3
= (𝑛

3
− 𝑛

1
𝜎
2
) cos (𝜎𝜏) + 𝑛

2
𝜎 sin (𝜎𝜏) . (61)

By squaring and adding (60) and (61), it can be calculated
that

(𝑛
3
− 𝑛

1
𝜎
2
)
2

+ 𝑛
2

2
𝜎
2
= (𝑚

1
𝜎
2
− 𝑚

3
)
2

+ (𝜎
3
− 𝑚

2
𝜎)

2

, (62)

⇒

𝜎
6
+ 𝐶

1
𝜎
4
+ 𝐶

2
𝜎
2
+ 𝐶

3
= 0, (63)

where𝐶
1
= 𝑚

2

1
−2𝑚

2
−𝑛

2

1
, 𝐶

2
= 𝑚

2

2
−2𝑚

1
𝑚

3
+2𝑛

1
𝑛
3
−𝑛

2

2
, 𝐶

3
=

𝑚
2

3
− 𝑛

2

3
.

According to the values of𝐶
𝑗
, (𝑗 = 1, 2, 3) and the Routh-

Hurwitz criteria [43], a simple assumption that (58) has at
least one positive real root 𝜎

0
is 𝐶

3
< 0, which derives that

𝑘𝛽 > 3(𝜇
1
+𝑚). Hence, under this assumption, (58) will have

a pair of purely imaginary roots of the form ±𝑖𝜎
0
.

By eliminating sin(𝜎𝜏) from (60) and (61), it can be
calculated that the 𝜏∗

𝑗
corresponding to 𝜎

0
is as follows:

𝜏
∗

𝑗
=
1

𝜎
0

× arccos[
𝑛
2
𝜎
2

0
(𝜎

2

0
− 𝑚

2
) + (𝑛

3
− 𝑛

1
𝜎
2

0
) (𝑚

1
𝜎
2

0
− 𝑚

3
)

(𝑛
3
− 𝑛

1
𝜎
2

0
)
2
+ (𝑛

2
𝜎
0
)
2

]

+
2𝑗𝜋

𝜎
0

,

(64)

where 𝑗 = 0, 1, 2, . . ..
By using Butler’s lemma [48], model system (4) is locally

stable around �̃�∗ for 𝜏 < 𝜏
∗

0
. Subsequently, conditions for

existence ofHopf bifurcation in [39] are utilized to investigate
whether Hopf bifurcation occurs as 𝜏 increases through 𝜏∗

𝑗
.

Theorem 17. If 𝑘𝛽 > 3(𝜇
1
+ 𝑚), then model system (4)

undergoes Hopf bifurcation around the interior equilibrium �̃�∗

when 𝜏 = 𝜏
∗

𝑗
, 𝑗 = 0, 1, 2, . . .. Furthermore, an attracting

invariant closed curve bifurcates from interior equilibrium �̃�
∗

when 𝜏 > 𝜏∗
0
and ‖𝜏 − 𝜏∗

0
‖ ≪ 1.

Proof. As mentioned above, let 𝜆 = 𝑖𝜎
0
represent the purely

imaginary root of (58). It follows from (58) that |𝑀(𝑖𝜎
0
)| =

|𝑁(𝑖𝜎
0
)|, which determines a set of possible values of 𝜎

0
.

In the following part, we determine the direction of
motion of 𝜆 = 𝑖𝜎

0
as 𝜏 is varied; namely, we determine

Θ = sign [d (Re 𝜆)
d𝜏

]

𝜆=𝑖𝜎
0

= sign[Re(d𝜆
d𝜏
)

−1

]

𝜆=𝑖𝜎
0

. (65)

By differentiating (58) with respect to 𝜏, it can be obtained
that

(
d𝜆
d𝜏
)

−1

=
3𝜆

2
+ 2𝑚

1
𝜆 + 𝑚

2

𝜆𝑒−𝜆𝜏 (𝑛
1
𝜆2 + 𝑛

2
𝜆 + 𝑛

3
)
+

2𝑛
1
𝜆 + 𝑛

2

𝜆 (𝑛
1
𝜆2 + 𝑛

2
𝜆 + 𝑛

3
)

−
𝜏

𝜆

=
3𝜆

2
+ 2𝑚

1
𝜆 + 𝑚

2

−𝜆 (𝜆3 + 𝑚
1
𝜆2 + 𝑚

2
𝜆 + 𝑚

3
)

+
2𝑛

1
𝜆 + 𝑛

2

𝜆 (𝑛
1
𝜆2 + 𝑛

2
𝜆 + 𝑛

3
)
−
𝜏

𝜆

=
2𝜆

3
+ 𝑚

1
𝜆
2
− 𝑚

3

−𝜆2 (𝜆3 + 𝑚
1
𝜆2 + 𝑚

2
𝜆 + 𝑚

3
)

+
𝑛
1
𝜆
2
− 𝑛

3

𝜆2 (𝑛
1
𝜆2 + 𝑛

2
𝜆 + 𝑛

3
)
−
𝜏

𝜆
.

(66)

From (62) and the above equation, it can be obtained that

Θ = sign[Re(d𝜆
d𝜏
)

−1

]

𝜆=𝑖𝜎
0

=
1

𝜎
2

0

sign[
(𝑚

3
+ 𝑚

1
𝜎
2

0
) (𝑚

1
𝜎
2

0
− 𝑚

3
) + 2𝜎

4

0
(𝜎

2

0
− 𝑚

2
)

(𝑚
1
𝜎
2

0
− 𝑚

3
)
2
+ (𝜎

3

0
− 𝑚

2
𝜎
0
)
2

+

(𝑛
1
𝜎
2

0
+ 𝑛

3
) (𝑛

3
− 𝑛

1
𝜎
2

0
)

(𝑛
3
− 𝑛

1
𝜎
2

0
)
2
+ (𝑛

2
𝜎
0
)
2
]

= sign [((𝑚
3
+ 𝑚

1
𝜎
2

0
) (𝑚

1
𝜎
2

0
− 𝑚

3
) + 2𝜎

4

0
(𝜎

2

0
− 𝑚

2
)

+ (𝑛
1
𝜎
2

0
+ 𝑛

3
) (𝑛

3
− 𝑛

1
𝜎
2

0
))
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× ((𝑚
1
𝜎
2

0
− 𝑚

3
)
2

+ (𝜎
3

0
− 𝑚

2
𝜎
0
)
2

)

−1

]

= sign[
2𝜎

6

0
+ (𝑚

2

1
− 2𝑚

2
− 𝑛

2

1
) 𝜎

4

0
+ 𝑛

2

3
− 𝑚

2

3

(𝑚
1
𝜎
2

0
− 𝑚

3
)
2
+ (𝜎

3

0
− 𝑚

2
𝜎
0
)
2

] ,

= sign[
2𝜎

6

0
+ 𝐶

1
𝜎
4

0
− 𝐶

3

(𝑚
1
𝜎
2

0
− 𝑚

3
)
2
+ (𝜎

3

0
− 𝑚

2
𝜎
0
)
2
] .

(67)

According to the values of 𝐶
𝑗
, (𝑗 = 1, 2, 3) given in (58)

of this paper, it is easy to show that 𝐶
1
= 𝑚

2

1
− 2𝑚

2
− 𝑛

2

1
=

𝑟
2
(𝜇

1
+ 𝑚)

2
/𝑘

2
𝛽
2
+ [𝜇

2
− 𝑐V∗/(𝑤�̃� − 𝑐)2]2 > 0.

Furthermore, if 𝑘𝛽 > 3(𝜇
1
+ 𝑚), then it can be shown

that 𝐶
3
> 0. Hence, it can be concluded that 2𝜎6

0
+ 𝐶

1
𝜎
4

0
−

𝐶
3
> 0, which derives sign[d(Re 𝜆)/d𝜏]

𝜏=𝜏
∗

𝑗
,𝜎=𝜎
0

> 0. Con-
sequently, the transversality condition holds and Hopf bifur-
cation occurs at 𝜎 = 𝜎

0
, 𝜏 = 𝜏∗

𝑗
. Furthermore, an attracting

invariant closed curve bifurcates from interior equilibrium
�̃�
∗ when 𝜏 > 𝜏∗

0
and ‖𝜏 − 𝜏∗

0
‖ ≪ 1.

Remark 18. sign[d(Re 𝜆)/d𝜏]
𝜏=𝜏
∗

𝑗

> 0 signifies that there
exists at least one eigenvalue with positive real part for 𝜏 =
𝜏
∗

𝑗
, and the conditions for Hopf bifurcation in [39] are also

satisfied yielding the required periodic solution.

4.2.2. Properties of Hopf Bifurcation. By using normal theory
and center manifold theorem [49], directions of Hopf bifur-
cation and stability of the bifurcating periodic solutions are
discussed in this section. As analyzed in Section 4.1.2, when
economic interest of harvesting 0 < V∗ < Ṽ (V is defined in
(55)), it follows from implicit function theorem [41] and the
fourth equation of model system (4) that 𝐸(𝑡) = V∗/(𝑤𝑅(𝑡) −
𝑐). Furthermore, model system (4) can be transformed into
the following form:

̇𝑆 (𝑡) = 𝑟 (1 −
𝑆 (𝑡)

𝑘
) − 𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏) ,

̇𝐼 (𝑡) = 𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏) − 𝜇1𝐼 (𝑡) − 𝑚𝐼 (𝑡) ,

̇𝑅 (𝑡) = 𝑚𝐼 (𝑡) − 𝜇
2
𝑅 (𝑡) −

V∗𝑅 (𝑡)
𝑤𝑅 (𝑡) − 𝑐

.

(68)

Firstly, some transformations associated with component
(𝑆

∗
, 𝐼

∗
, �̃�

∗
) of interior equilibrium �̃�

∗ are given as follows:

𝑦
1
= 𝑆 − 𝑆

∗
, 𝑦

2
= 𝐼 − 𝐼

∗
, 𝑦

3
= 𝑅 − �̃�

∗
,

𝑦
𝑖
(𝑡) = 𝑦

𝑖
(𝜏𝑡) , 𝜏 = 𝜌 + 𝜏

𝑗
, 𝜌 ∈ R = (−∞, +∞) .

(69)

Then 𝜌 = 0 is the Hopf bifurcation value of model system
(4). Bars of variables are dropped for simplicity of notations;
model system (4) is transformed to a functional differential
equation in 𝐶 = 𝐶([−1, 0],R3

) as

̇𝑦 (𝑡) = 𝐿𝜌
(𝑦

𝑡
) + 𝑓 (𝜌, 𝑦

𝑡
) , (70)

where 𝐶 = 𝐶([−1, 0],R3
) is the Banach space of continuous

functions mapping the interval [−𝜏, 0] into R3, 𝑦(𝑡) =

(𝑦
1
(𝑡), 𝑦

2
(𝑡), 𝑦

3
(𝑡))

𝑇
∈ R3, 𝑦

𝑡
(𝜃) = 𝑦(𝑡 + 𝜃) for 𝜃 ∈ [−𝜏, 0]

and 𝐿
𝜌
: 𝐶 → R3, 𝑓 : R × 𝐶 → R3 are defined as follows,

respectively:

𝐿
𝜌
(𝜙) = (𝜏

𝑗
+ 𝜌)

×(

(

−
𝑟𝑆

∗

𝑘
0 0

𝛽𝐼
∗

− (𝜇
1
+ 𝑚) 0

0 𝑚 −𝜇
2
+

𝑐V∗

(𝑤�̃�∗ − 𝑐)
2

)

)

×(

𝜙
1
(0)

𝜙
2 (0)

𝜙
3
(0)

) + (𝜏
𝑗
+ 𝜌)(

0 −𝛽𝑆
∗
0

0 𝛽𝑆
∗
0

0 0 0

)

×(

𝜙
1
(−1)

𝜙
2
(−1)

𝜙
3
(−1)

) ,

(71)

𝑓 (𝜌, 𝜙) = (𝜏
𝑗
+ 𝜌)(

−
𝑟

𝑘
𝜙
2

1
(0) − 𝛽𝜙

1
(0) 𝜙

2
(−1)

𝛽𝜙
1
(0) 𝜙

2
(−1)

∞

∑

𝑗=1

𝑓
(3)

𝑗
𝜙
𝑗

3
(0)

) , (72)

where 𝑓(3)

𝑗
= (d𝑖(−V∗𝑅/(𝑤𝑅 − 𝑐))/d𝑅𝑖

)|
(𝑆
∗
,𝐼
∗
,�̃�
∗
)
, 𝑗 = 1, 2, 3.

It is easy to show that 𝐿
𝜌
is a continuous linear func-

tion mapping 𝐶 into R3. According to Riesz representation
theorem [40], there exists a 3 × 3 matrix function 𝜂(𝜃, 𝜌) of
bounded variation for 𝜃 ∈ [−1, 0] such that

𝐿
𝜌
(𝜙) = ∫

0

−1

d𝜂 (𝜃, 𝜌) 𝜙 (𝜃) , (73)

where 𝜙 ∈ 𝐶([−1, 0],R3
).

In fact, we can choose

𝜂 (𝜃, 𝜌) = (𝜏
𝑗
+ 𝜌)

×(

(

−
𝑟𝑆

∗

𝑘
0 0

𝛽𝐼
∗

− (𝜇
1
+ 𝑚) 0

0 𝑚 −𝜇
2
+

𝑐V∗

(𝑤�̃�∗ − 𝑐)
2

)

)

×𝛿(𝜃)

− (𝜏
𝑗
+ 𝜌)(

0 −𝛽𝑆
∗
0

0 𝛽𝑆
∗
0

0 0 0

)𝛿 (𝜃 + 1) ,

(74)

where 𝛿 denotes the Dirac delta function.
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If 𝜙 is any given function in𝐶([−1, 0],R3
) and 𝑦(𝜙) is the

unique solution of the linearized equation ̇𝑦(𝑡) = 𝐿
𝜌
(𝑦

𝑡
) of

(70) with initial function 𝜙 at zero, then the solution operator
�̃�(𝑡) : 𝐶 → 𝐶 is defined by

�̃� (𝑡) 𝜙 = 𝑦
𝑡
(𝜙) , 𝑡 ≥ 0. (75)

It follows from Lemma 7.1.1 in [39] that �̃�(𝑡), 𝑡 ≥ 0 is a
strongly continuous semigroup of linear transformation on
[0, +∞) and the infinitesimal generator𝐴

𝜌
of �̃�(𝑡), 𝑡 ≥ 0 is as

follows:

𝐴
𝜌
(𝜙) =

{{{{

{{{{

{

d𝜙 (𝜃)
d𝜃

, 𝜃 ∈ [−1, 0)

∫

0

−1

d𝜂 (𝜌, 𝑠) 𝜙 (𝑠) , 𝜃 = 0,

(76)

for 𝜙 ∈ 𝐶1
([−1, 0],R3

), the space of functions mapping the
interval [−1, 0] intoR3 which have continuous first derivative
and also define

𝑅 (𝜌) (𝜙) = {
0, 𝜃 ∈ [−1, 0)

𝑓 (𝜌, 𝜙) , 𝜃 = 0
(77)

then model system (70) is equivalent to

̇𝑦
𝑡
= 𝐴 (𝜌) 𝑦

𝑡
+ 𝑅 (𝜌) 𝑦

𝑡
. (78)

For 𝜓 ∈ 𝐶1
([0, 1], (R3

)
∗
), the space of functions mapping

interval [0, 1] into the three-dimensional row vectors which
have continuous first derivative, define

𝐴
∗
𝜙 (𝑠) =

{{{{

{{{{

{

−
d𝜓 (𝑠)
d𝑠

, 𝑠 ∈ (0, 1]

∫

0

−1

d𝜂𝑇 (𝑡, 0) 𝜓 (−𝑡) , 𝑠 = 0,

(79)

and a bilinear inner product

⟨𝜓 (𝑠) , 𝜙 (𝜃)⟩ = 𝜓 (0) 𝜙 (0)

− ∫

0

−1

∫

𝜃

𝜉=0

𝜓 (𝜉 − 𝜃) d𝜂 (𝜃) 𝜙 (𝜉) d𝜉,
(80)

where 𝜂(𝜃) = 𝜂(𝜃, 0). It follows from the above analysis 𝐴(0)
and 𝐴∗ are adjoint operators.

By virtue of discussion in Section 4.2.1, ±𝑖𝜔
0
𝜏
𝑗
are eigen-

values of 𝐴(0). Hence, they are also eigenvalues of 𝐴∗. In the
following, eigenvectors of 𝐴(0) and 𝐴∗ are corresponding to
𝑖𝜔

0
𝜏
𝑗
and −𝑖𝜔

0
𝜏
𝑗
, respectively.

Suppose 𝑞(𝜃) = (1, 𝑎, 𝑏)
𝑇
𝑒
𝑖𝜔
0
𝜏
𝑗
𝜃 is the eigenvec-

tors of 𝐴(0) corresponding to 𝑖𝜔
0
𝜏
𝑗
, which derives that

𝐴(0)𝑞(𝜃) = 𝑖𝜔
0
𝜏
𝑗
𝑞(𝜃). By using the definition of 𝐴(0), (71)

and (72), it gives that

(

(

−
𝑟𝑆

∗

𝑘
0 0

𝛽𝐼
∗

− (𝜇
1
+ 𝑚) 0

0 𝑚 −𝜇
2
+

𝑐V∗

(𝑤�̃�∗ − 𝑐)
2

)

)

𝑞(0)

+ (

0 −𝛽𝑆
∗
0

0 𝛽𝑆
∗
0

0 0 0

)𝑞 (−1) = 𝑖𝜔0
𝑞 (0) .

(81)

For 𝑞(−1) = 𝑞(0)𝑒−𝑖𝜔0𝜏𝑗 , then it can be obtained that

𝑎 = −
𝑟 (𝜇

1
+ 𝑚) + 𝑖𝑘𝛽𝜔

0

𝑘𝛽 (𝜇
1
+ 𝑚) 𝑒

−𝑖𝜔
0
𝜏
𝑗

,

𝑏 =

𝑚(𝑤�̃�
∗
− 𝑐)

2

[𝑟 (𝑚 + 𝜇
1
) + 𝑖𝑘𝛽𝜔

0
]

𝑘𝛽 (𝜇
1
+ 𝑚) [𝑐V∗ − (𝜇

2
+ 𝑖𝜔

0
) (𝑤�̃�∗ − 𝑐)

2

] 𝑒
−𝑖𝜔
0
𝜏
𝑗

.

(82)

Similarly, it follows from simple computation that eigen-
vector 𝑞∗(𝑠) = 𝐽(1, 𝑎

∗
, 𝑏

∗
)𝑒

𝑖𝜔
0
𝜏
𝑗
𝑠 of 𝐴∗ is corresponding to

−𝑖𝜔
0
𝜏
𝑗
, where

𝑎
∗
= −

𝑟 (𝜇
1
+ 𝑚) − 𝑖𝑘𝛽𝜔

0

𝑘𝛽 (𝜇
1
+ 𝑚) 𝑒

𝑖𝜔
0
𝜏
𝑗

,

𝑏
∗
=

𝑚(𝑤�̃�
∗
− 𝑐)

2

[𝑟 (𝜇
1
+ 𝑚) − 𝑖𝑘𝛽𝜔

0
]

𝑘𝛽 (𝜇
1
+ 𝑚) [𝑐V∗ − (𝜇

2
− 𝑖𝜔

0
) (𝑤�̃�∗ − 𝑐)

2

] 𝑒
𝑖𝜔
0
𝜏
𝑗

.

(83)

In order to assume ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 1, we need to deter-
mine the value of 𝐽 in the following part.

By virtue of (80), it derives that

⟨𝑞
∗
(𝑠) , 𝑞 (𝜃)⟩

= 𝐽 (1, 𝑎
∗
, 𝑏

∗

) (1, 𝑎, 𝑏)
𝑇

− ∫

0

−1

∫

𝜃

𝜉=0

𝐽 (1, 𝑎
∗
, 𝑏

∗
) 𝑒

−𝑖𝜔
0
𝜏
𝑗
(𝜉−𝜃)d𝜂 (𝜃)

× (1, 𝑎, 𝑏)
𝑇
𝑒
𝑖𝜔
0
𝜏
𝑗
𝜉d𝜉

= 𝐽 [1 + 𝑎𝑎
∗
+ 𝑏𝑏

∗

− ∫

0

−1

(1, 𝑎
∗
, 𝑏

∗

) 𝜃𝑒
𝑖𝜔
0
𝜏
𝑗
𝜃d𝜂 (𝜃) (1, 𝑎, 𝑏)𝑇]

= 𝐽 [1 + 𝑎𝑎
∗
+ 𝑏𝑏

∗

+ 𝑘𝑏
∗

𝜏
𝑗
(�̃�

∗
+ 𝑏𝑆

∗
) 𝑒

𝑖𝜔
0
𝜏
𝑗] .

(84)

Hence, we can choose 𝐽 as follows:

𝐽 =
1

1 + 𝑎𝑎∗ + 𝑏𝑏∗ + 𝑘𝑏∗𝜏
𝑗
(�̃�∗ + 𝑏𝑆∗) 𝑒

𝑖𝜔
0
𝜏
𝑗

. (85)
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Next, we will compute the coordinate to describe the
centre manifold 𝐶

0
at 𝜌 = 0. Let 𝑦

𝑡
be the solution of (78)

when 𝜌 = 0.
Define

𝑧 (𝑡) = ⟨𝑞
∗
, 𝑦

𝑡
⟩, 𝑊 (𝑡, 𝜃) = 𝑦𝑡 (𝜃) − 2Re {𝑧 (𝑡) 𝑞 (𝜃)} .

(86)

On the center manifold 𝐶
0
, it derives that

𝑊(𝑡, 𝜃) = 𝑊 (𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃) , (87)

where

𝑊(𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃) = 𝑊20 (𝜃)
𝑧
2

2
+𝑊

11 (𝜃) 𝑧𝑧 +𝑊02

𝑧
2

2
+ ⋅ ⋅ ⋅ ,

(88)

𝑧 and 𝑧 are local coordinates for center manifold 𝐶
0
in the

direction of 𝑞∗ and 𝑞∗.
It is noted that𝑊 is real if 𝑦

𝑡
is real, and we only consider

real solutions. For solution 𝑦
𝑡
∈ 𝐶

0
of (78), since 𝜌 = 0, it

derives that

̇𝑧 (𝑡) = 𝑖𝜔
0
𝜏
𝑗
𝑧 + 𝑞

∗
(0) 𝑓 (0,𝑊 (𝑧, 𝑧, 0) + 2Re {𝑧𝑞 (𝜃)})

≜ 𝑖𝜔
0
𝜏
𝑗
𝑧 + 𝑞

∗
(0) 𝑓0 (𝑧, 𝑧) .

(89)

The above equation can be rewritten as follows:

̇𝑧 (𝑡) = 𝑖𝜔
0
𝜏
𝑗
𝑧 (𝑡) + 𝑔 (𝑧, 𝑧) , (90)

where

𝑔 (𝑧, 𝑧) = 𝑞
∗
(0) 𝑓

0
(𝑧, 𝑧)

= 𝑔
20

𝑧
2

2
+ 𝑔

11
𝑧𝑧 + 𝑔

02

𝑧
2

2
+ 𝑔

21

𝑧
2
𝑧

2
+ ⋅ ⋅ ⋅ .

(91)

It follows from (86) and (88) that

𝑦
𝑡
(𝜃) = 𝑊 (𝑡, 𝜃) + 2Re {𝑧 (𝑡) 𝑞 (𝜃)}

= 𝑊
20
(𝜃)

𝑧
2

2
+𝑊

11
(𝜃) 𝑧𝑧 +𝑊

02
(𝜃)

𝑧
2

2

+ (1, 𝑎, 𝑏)
𝑇
𝑒
𝑖𝜔
0
𝜏
𝑗
𝜃
𝑧 + (1, 𝑎, 𝑏)

𝑇

𝑒
−𝑖𝜔
0
𝜏
𝑗
𝜃
𝑧 + ⋅ ⋅ ⋅ .

(92)

By virtue of (72), (91), and (92), it derives that

𝑔 (𝑧, 𝑧) = 𝑞
∗
(0) 𝑓

0
(𝑧, 𝑧)

= 𝑞
∗
(0) 𝑓 (0, 𝑦𝑡)

= 𝜏
𝑗
𝐽(

−
𝑟

𝑘
𝑦
2

1𝑡
(0) − 𝛽𝑦1𝑡 (0) 𝑦2𝑡 (−1)

𝛽𝑦
1𝑡 (0) 𝑦2𝑡 (−1)
∞

∑

𝑗=1

𝑓
(3)

𝑗
𝑦
𝑗

3𝑡
(0)

)

= 𝜏
𝑗
𝐽[

[

−
𝑟

𝑘
𝑦
2

1𝑡
(0) − 𝛽𝑦1𝑡 (0) 𝑦2𝑡 (−1)

+ 𝑎
∗
𝛽𝑦

1𝑡
(0) 𝑦

2𝑡
(−1) +

∞

∑

𝑗=1

𝑏
∗

𝑓
(3)

𝑗
𝑦
𝑗

3𝑡
(0)]

]

= 𝜏
𝑗
𝐽[

[

−
𝑟

𝑘
𝑦
2

1𝑡
(0) + (𝑎

∗
− 1) 𝛽𝑦

1𝑡
(0) 𝑦

2𝑡
(−1)

+

∞

∑

𝑗=1

𝑏
∗

𝑓
(3)

𝑗
𝑦
𝑗

3𝑡
(0)]

]

= −
𝑟

𝑘
𝜏
𝑗
𝐽 [𝑧 + 𝑧 +𝑊

(1)

20
(0)

𝑧
2

2
+𝑊

(1)

11
(0) 𝑧𝑧

+𝑊
(1)

02
(0)

𝑧
2

2
+ 𝑜 (|(𝑧, 𝑧)|

3
)]

2

+ (𝑎
∗
− 1) 𝛽𝜏

𝑗
𝐽

× [𝑧 + 𝑧 +𝑊
(1)

20
(0)

𝑧
2

2
+𝑊

(1)

11
(0) 𝑧𝑧

+𝑊
(1)

02
(0)

𝑧
2

2
+ 𝑜 (|𝑧, 𝑧|

3
)]

× [𝑒
−𝑖𝜔
0
𝜏
𝑗𝑧 + 𝑒

𝑖𝜔
0
𝜏
𝑗𝑧 +𝑊

(2)

20
(−1)

𝑧
2

2

+𝑊
(2)

11
(−1) 𝑧𝑧 +𝑊

(2)

02
(−1)

𝑧
2

2
+ 𝑜 (|𝑧, z|3)]

+ 𝜏
𝑗
𝐽𝑏

∗

[𝑓
(3)

1
(𝑧 + 𝑧 +𝑊

(3)

20
(0)

𝑧
2

2
+𝑊

(3)

11
(0) 𝑧𝑧

+𝑊
(1)

02
(0)

𝑧
2

2
+ 𝑜 (|𝑧, 𝑧|

3
))

+ 𝑓
(3)

2
(𝑧 + 𝑧 +𝑊

(3)

20
(0)

𝑧
2

2

+𝑊
(3)

11
(0) 𝑧𝑧 +𝑊

(1)

02
(0)

𝑧
2

2

+ 𝑜 (|𝑧, 𝑧|
3
)) + ⋅ ⋅ ⋅ ] .

(93)
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By comparing the coefficients with (91), it gives that

𝑔
20
= 2𝜏

𝑗
𝐽 [ −

𝑟

𝑘
+ (𝑎

∗
− 1) 𝛽𝑒

−𝑖𝜔
0
𝜏
𝑗

+ 𝑏
∗

(
𝑓
(3)

1
𝑊

(3)

20
(0)

2
+ 𝑓

(3)

2
)] ,

𝑔
11
= 𝜏

𝑗
𝐽 [ −

2𝑟

𝑘
+ 2 (𝑎

∗
− 1) 𝛽 cos𝜔

0
𝜏
𝑗

+ 𝑓
(3)

1
𝑊

(3)

11
(0) + 2𝑓

(3)

2
] ,

𝑔
02
= 2𝜏

𝑗
𝐽 [ −

𝑟

𝑘
+ (𝑎

∗
− 1) 𝛽𝑒

−𝑖𝜔
0
𝜏
𝑗

+ 𝑏
∗

(
𝑓
(3)

1
𝑊

(3)

02
(0)

2
+ 𝑓

(3)

2
)] ,

𝑔
21
= 2𝜏

𝑗
𝐽 [𝛽 (𝑎

∗
− 1)

× (𝑊
(2)

11
(−1) +

𝑊
(3)

20
(−1) + 𝑊

(1)

20
(0) 𝑒

𝑖𝜔
0
𝜏
𝑗

2

+𝑊
(1)

11
(0) 𝑒

−𝑖𝜔
0
𝜏
𝑗)

−
𝑟

𝑘
(𝑊

(1)

20
(0) + 2𝑊

(1)

11
(0))

+𝑓
(3)

2
(𝑊

(3)

20
(0) + 2𝑊

(3)

11
(0)) ] .

(94)

Since 𝑔
21

is associated with 𝑊
20
(𝜃) and 𝑊

11
(𝜃), further

attempts should be carried out to compute 𝑊
20
(𝜃) and

𝑊
11
(𝜃).
By virtue of (78) and (86), we have

𝑊 = ̇𝑦
𝑡
− ̇𝑧𝑞 − ̇𝑧𝑞

= {
𝐴𝑊 − 2Re {𝑞∗ (0) 𝑓

0
𝑞 (𝜃)} , 𝜃 ∈ [−1, 0)

𝐴𝑊 − 2Re {𝑞∗ (0) 𝑓0𝑞 (0) + 𝑓0} , 𝜃 = 0.

≜ 𝐴𝑊 +𝐻 (𝑧, 𝑧, 𝜃) ,

(95)

where

𝐻(𝑧, 𝑧, 𝜃) = 𝐻20 (𝜃)
𝑧
2

2
+ 𝐻

11 (𝜃) 𝑧𝑧 + 𝐻02 (𝜃)
𝑧
2

2
+ ⋅ ⋅ ⋅ .

(96)

By substituting the corresponding series into (95) and
comparing the coefficients, we have

(𝐴 − 2𝑖𝜔
0
𝜏
𝑗
)𝑊

20
(𝜃) = −𝐻

20
(𝜃) ,

𝐴𝑊
11
(𝜃) = −𝐻

11
(𝜃) , . . . .

(97)

It follows from (95) that for 𝜃 ∈ [−1, 0)

𝐻 (𝑧, 𝑧, 𝜃) = − 𝑞
∗
(0) 𝑓

0
𝑞 (𝜃) − 𝑞

∗
(0) 𝑓

0
𝑞 (𝜃)

= − 𝑔 (𝑧, 𝑧) 𝑞 (𝜃) − 𝑔 (𝑧, 𝑧) 𝑞 (𝜃) .

(98)

By comparing coefficients in (96) with those in (94), it
derives that

𝐻
20
(𝜃) = −𝑔

20
𝑞 (𝜃) − 𝑔

02
𝑞 (𝜃) , (99)

𝐻
11
(𝜃) = −𝑔

11
𝑞 (𝜃) − 𝑔

11
𝑞 (𝜃) . (100)

Based on the definition of 𝐴 and (97) and (99), it can be
obtained that

𝑊
20 (𝜃) = 2𝑖𝜔0

𝜏
𝑗
𝑊

20 (𝜃) + 𝑔20𝑞 (𝜃) + 𝑔02𝑞 (𝜃) . (101)

For 𝑞(𝜃) = (1, 𝑎, 𝑏)𝑇𝑒𝑖𝜔0𝜏𝑗𝜃,

𝑊
20
(𝜃) =

𝑖𝑔
20

𝜔
0
𝜏
𝑗

𝑞 (0) 𝑒
𝑖𝜔
0
𝜏
𝑗
𝜃
+
𝑖𝑔

02

3𝜔
0
𝜏
𝑗

𝑞 (0) 𝑒
−𝑖𝜔
0
𝜏
𝑗
𝜃
+ 𝐺

1
𝑒
2𝑖𝜔
0
𝜏
𝑗
𝜃
,

(102)

where 𝐺
1
= (𝐺

(1)

1
, 𝐺

(2)

1
, 𝐺

(3)

1
) is a constant vector.

Similarly, it follows from (97) and (100) that

𝑊
11 (𝜃) = −

𝑖𝑔
11

𝜔
0
𝜏
𝑗

𝑞 (0) 𝑒
𝑖𝜔
0
𝜏
𝑗
𝜃
+
𝑖𝑔

11

𝜔
0
𝜏
𝑗

𝑞 (0) 𝑒
−𝑖𝜔
0
𝜏
𝑗
𝜃
+ 𝐺

2
,

(103)

where 𝐺
2
= (𝐺

(1)

2
, 𝐺

(2)

2
, 𝐺

(3)

2
) is a constant vector.

Subsequently, values of 𝐺
1
and 𝐺

2
should be computed.

By using the definition of 𝐴 and (95), we have

∫

0

−1

d𝜂𝑤
20
(𝜃) = 2𝑖𝜔

0
𝜏
𝑗
𝑊

20
(0) − 𝐻

20
(0) , (104)

∫

0

−1

d𝜂 (𝜃)𝑊11 (𝜃) = −𝐻11 (0) , (105)

where 𝜂(𝜃) = 𝜂(0, 𝜃). Based on (95), it derives that in the case
of 𝜃 = 0,
𝐻(𝑧, 𝑧, 0) = − 2Re {𝑞∗ (0) 𝑓0𝑞 (0)} + 𝑓 (0)

= − 𝑞
∗
(0) 𝑓

0
𝑞 (0) − 𝑞

∗
(0) 𝑓

0
𝑞 (0) + 𝑓

0

= − 𝑔 (𝑧, 𝑧) 𝑞 (0) − 𝑔 (𝑧, 𝑧) 𝑞 (0) + 𝑓
0
,

(106)

which follows that

𝐻
20
(𝜃)

𝑧
2

2
+ 𝐻

11
(𝜃) 𝑧𝑧 + 𝐻

02
(𝜃)

𝑧
2

2
+ ⋅ ⋅ ⋅

= −𝑞 (0) (𝑔
20

𝑧
2

2
+ 𝑔

11
𝑧𝑧 + 𝑔

02

𝑧
2

2
+ ⋅ ⋅ ⋅ )

− 𝑞 (0) (𝑔
20

𝑧
2

2
+ 𝑔

11
𝑧𝑧 + 𝑔

02

𝑧
2

2
+ ⋅ ⋅ ⋅ ) + 𝑓

0
.

(107)
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By virtue of (72), it gives that

𝑓
0
= 𝜏

𝑘
(

−
𝑟

𝑘
𝑦
2

1𝑡
(0) − 𝛽𝑦

1𝑡
(0) 𝑦

2𝑡
(−1)

𝛽𝑦
1𝑡
(0) 𝑦

2𝑡
(−1)

∞

∑

𝑗=1

𝑓
(3)

𝑗
𝑦
𝑗

3𝑡
(0)

) . (108)

By virtue of (86), it can be obtained that

𝑦
𝑡
(𝜃) = 𝑊 (𝑡, 𝜃) + 2Re {𝑧 (𝑡) 𝑞 (𝜃)}

= 𝑊 (𝑡, 𝜃) + 𝑧 (𝑡) 𝑞 (𝜃) + 𝑧 (𝑡) 𝑞 (𝜃)

= 𝑊
20 (𝜃)

𝑧
2

2
+𝑊

21 (𝜃) 𝑧𝑧 + 𝑧 (𝑡) 𝑞 (𝜃)

+ 𝑧 (𝑡) 𝑞 (𝜃) + ⋅ ⋅ ⋅ .

(109)

Then we have

𝑓
0
= 𝜏

𝑗
(

−
𝑟

𝑘
− 𝛽𝑒

−𝑖𝜔
0
𝜏
𝑗

𝛽𝑒
−𝑖𝜔
0
𝜏
𝑗

𝑓
(3)

1

𝑊
(3)

20
(0)

2
+ 𝑓

(3)

2

)𝑧
2

+ 𝜏
𝑘
(

−
2𝑟

𝑘
− 2𝛽 cos𝜔

0
𝜏
𝑗

2𝛽 cos𝜔
0
𝜏
𝑗

2𝑓
(3)

2
+ 𝑓

(3)

1
𝑊

(3)

11
(0)

)𝑧𝑧 + ⋅ ⋅ ⋅ .

(110)

According to (107) and (110), we have

𝐻
20 (0) = − 𝑔

20
𝑞 (0) − 𝑔

02
𝑞 (0)

+ 2𝜏
𝑗
(

−
𝑟

𝑘
− 𝛽𝑒

−𝑖𝜔
0
𝜏
𝑗

𝛽𝑒
−𝑖𝜔
0
𝜏
𝑗

𝑓
(3)

1

𝑊
(3)

20
(0)

2
+ 𝑓

(3)

2

),

(111)

𝐻
11 (0) = − 𝑔

11
𝑞 (0) − 𝑔

11
𝑞 (0)

+ 𝜏
𝑗
(

−
2𝑟

𝑘
− 2𝛽 cos𝜔

0
𝜏
𝑗

2𝛽 cos𝜔
0
𝜏
𝑗

2𝑓
(3)

2
+ 𝑓

(3)

1
𝑊

(3)

11
(0)

) .

(112)

Since 𝑖𝜔
0
𝜏
𝑗
is the eigenvalue of 𝐴(0) and 𝑞(0) is the

corresponding eigenvector, we obtain that

(𝑖𝜔
0
𝜏
𝑗
𝐼 − ∫

0

−1

𝑒
𝑖𝜔
0
𝜏
𝑗
𝜃d𝜂 (𝜃)) 𝑞 (0) = 0,

(−𝑖𝜔
0
𝜏
𝑗
𝐼 − ∫

0

−1

𝑒
−𝑖𝜔
0
𝜏
𝑗
𝜃d𝜂 (𝜃)) 𝑞 (0) = 0,

(113)

where 𝐼 is identity matrix.
By substituting (102) and (111) into (104), it can be

obtained that

(2𝑖𝜔
0
𝜏
𝑗
𝐼 − ∫

0

−1

𝑒
2𝑖𝜔
0
𝜏
𝑗
𝜃d𝜂 (𝜃))𝐺

1

= 2𝜏
𝑗
(

−
𝑟

𝑘
− 𝛽𝑒

−𝑖𝜔
0
𝜏
𝑗

𝛽𝑒
−𝑖𝜔
0
𝜏
𝑗

𝑓
(3)

1

𝑊
(3)

20
(0)

2
+ 𝑓

(3)

2

),

(114)

which can be rewritten as follows:

(

2𝑖𝜔
0
+
𝑟𝑆

∗

𝑘
𝛽𝑆

∗
𝑒
−2𝑖𝜔
0
𝜏
𝑗 0

−𝛽𝐼
∗

2𝑖𝜔
0
+ (𝜇

1
+ 𝑚) − 𝛽𝑆

∗
𝑒
−2𝑖𝜔
0
𝜏
𝑗 0

0 −𝑚 2𝑖𝜔
0
+ 𝜇

2
−

𝑐V∗

(𝑤�̃�∗ − 𝑐)
2

)𝐺
1
= 2(

−
𝑟

𝑘
− 𝛽𝑒

−𝑖𝜔
0
𝜏
𝑗

𝛽𝑒
−𝑖𝜔
0
𝜏
𝑗

𝑓
(3)

1

𝑊
(3)

20
(0)

2
+ 𝑓

(3)

2

). (115)

Based on Grammar Law [43], 𝐺(1)

1
, 𝐺(2)

1
, and 𝐺(3)

1
can be

obtained as follows:

𝐺
(1)

1
=
2

𝑈
1



−
𝑟

𝑘
− 𝛽𝑒

−𝑖𝜔
0
𝜏
𝑗 𝛽𝑆

∗
𝑒
−2𝑖𝜔
0
𝜏
𝑗 0

𝛽𝑒
−𝑖𝜔
0
𝜏
𝑗 2𝑖𝜔

0
+ (𝜇

1
+ 𝑚) − 𝛽𝑆

∗
𝑒
−2𝑖𝜔
0
𝜏
𝑗 0

𝑓
(3)

1

𝑊
(3)

20
(0)

2
+ 𝑓

(3)

2
−𝑚 2𝑖𝜔

0
+ 𝜇

2
−

𝑐V∗

(𝑤�̃�∗ − 𝑐)
2



,



16 Abstract and Applied Analysis

𝐺
(2)

1
=
2

𝑈
1



2𝑖𝜔
0
+
𝑟𝑆

∗

𝑘
−
𝑟

𝑘
− 𝛽𝑒

−𝑖𝜔
0
𝜏
𝑗 0

−𝛽𝐼
∗

𝛽𝑒
−𝑖𝜔
0
𝜏
𝑗 0

0 𝑓
(3)

1

𝑊
(3)

20
(0)

2
+ 𝑓

(3)

2
2𝑖𝜔

0
+ 𝜇

2
−

𝑐V∗

(𝑤�̃�∗ − 𝑐)
2



,

𝐺
(3)

1
=
2

𝑈
1



2𝑖𝜔
0
+
𝑟𝑆

∗

𝑘
𝛽𝑆

∗
𝑒
−2𝑖𝜔
0
𝜏
𝑗 −

𝑟

𝑘
− 𝛽𝑒

−𝑖𝜔
0
𝜏
𝑗

−𝛽𝐼
∗

2𝑖𝜔
0
+ (𝜇

1
+ 𝑚) − 𝛽𝑆

∗
𝑒
−2𝑖𝜔
0
𝜏
𝑗 𝛽𝑒

−𝑖𝜔
0
𝜏
𝑗

0 −𝑚 𝑓
(3)

1

𝑊
(3)

20
(0)

2
+ 𝑓

(3)

2



,

(116)

where

𝑈
1
=



2𝑖𝜔
0
+
𝑟𝑆

∗

𝑘
𝛽𝑆

∗
𝑒
−2𝑖𝜔
0
𝜏
𝑗 0

−𝛽𝐼
∗

2𝑖𝜔
0
+ (𝜇

1
+ 𝑚) − 𝛽𝑆

∗
𝑒
−2𝑖𝜔
0
𝜏
𝑗 0

0 −𝑚 2𝑖𝜔
0
+ 𝜇

2
−

𝑐V∗

(𝑤�̃�∗ − 𝑐)
2



. (117)

Similarly, substituting (103) and (112) into (105), it can be
obtained that

(

(

𝑟𝑆
∗

𝑘
𝛽𝑆

∗
0

−𝛽𝐼
∗
𝜇
1
+ 𝑚 − 𝛽𝑆

∗
0

0 −𝑚 𝜇
2
−

𝑐V∗

(𝑤�̃�∗ − 𝑐)
2

)

)

𝐺
2

= 2(

−
2𝑟

𝑘
− 2𝛽 cos𝜔

0
𝜏
𝑗

2𝛽 cos𝜔
0
𝜏
𝑗

2𝑓
(3)

2
+ 𝑓

(3)

1
𝑊

(3)

11
(0)

) .

(118)

Based on Grammar Law [43], 𝐺(1)

2
, 𝐺(2)

2
, and 𝐺(3)

2
can be

obtained as follows:

𝐺
(1)

2

=
1

𝑈
2



−
2𝑟

𝑘
− 2𝛽 cos𝜔

0
𝜏
𝑗

𝛽𝑆
∗

0

2𝛽 cos𝜔
0
𝜏
𝑗

𝜇
1
+ 𝑚 − 𝛽𝑆

∗
0

2𝑓
(3)

2
+ 𝑓

(3)

1
𝑊

(3)

11
(0) −𝑚 𝜇

2
−

𝑐V∗

(𝑤�̃�∗ − 𝑐)
2



,

𝐺
(2)

2

=
1

𝑈
2



𝑟𝑆
∗

𝑘
−
2𝑟

𝑘
− 2𝛽 cos𝜔

0
𝜏
𝑗

0

−𝛽𝐼
∗

2𝛽 cos𝜔
0
𝜏
𝑗

0

0 2𝑓
(3)

2
+ 𝑓

(3)

1
𝑊

(3)

11
(0) 𝜇

2
−

𝑐V∗

(𝑤�̃�∗ − 𝑐)
2



,

𝐺
(3)

2

=
1

𝑈
2



𝑟𝑆
∗

𝑘
𝛽𝑆

∗
−
2𝑟

𝑘
− 2𝛽 cos𝜔

0
𝜏
𝑗

−𝛽𝐼
∗
𝜇
1
+ 𝑚 − 𝛽𝑆

∗
2𝛽 cos𝜔

0
𝜏
𝑗

0 −𝑚 2𝑓
(3)

2
+ 𝑓

(3)

1
𝑊

(3)

11
(0)



,

(119)

where

𝑈
2
=



𝑟𝑆
∗

𝑘
𝛽𝑆

∗
0

−𝛽𝐼
∗
𝜇
1
+ 𝑚 − 𝛽𝑆

∗
0

0 −𝑚 𝜇
2
−

𝑐V∗

(𝑤�̃�∗ − 𝑐)
2



. (120)

It follows from the above computation and analysis that
𝑊

20
(𝜃) and 𝑊

11
(𝜃) can be determined based on (102) and

(103).
Furthermore, we can compute 𝑔

21
based on (94). Hence,

the following values can be computed as follows:

𝑑
1
(0) =

𝑖

2𝜔
0
𝜏
𝑗

(𝑔
20
𝑔
11
− 2
𝑔11



2
−

𝑔02


2

3
) +

𝑔
21

2
,

𝛿
2
= −

Re {𝑑
1 (0)}

Re {𝜆 (𝜏
𝑗
)}

,

𝛾
2
= 2Re (𝑑

1
(0)) ,

𝑇
2
=

Im {𝑑
1
(0)} + 𝛿

2
Im {𝜆 (𝜏

𝑗
)}

𝜔
0
𝜏
𝑗

.

(121)
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Table 2: Values of parameters for numerical simulation.

Parameter Value
𝑟 0.1
𝑘 1
𝛽 1
𝑚 0.1
𝜇
1

0.1
𝜇
2

0.1
𝑤 20
𝑐 1

By using similar arguments in [49], some properties of
bifurcating periodic solutions of model (4) in the center
manifold at the critical values are discussed in this paper.
Based on the analysis in Section 4.2.2 of this paper, the
following theorem can be concluded.

Theorem 19. The properties of Hopf bifurcation are deter-
mined by values in (121).

(i) 𝛿
2
determines directions of Hopf bifurcation: if 𝛿

2
>

0 (𝛿
2
< 0), then Hopf bifurcation is supercritical

(subcritical) and the bifurcating periodic solutions exist
for 𝜏 > 𝜏

𝑗
(𝜏 < 𝜏

𝑗
).

(ii) 𝛾
2
determines the stability of bifurcating periodic solu-

tions: bifurcating periodic solutions are stable (unsta-
ble) if 𝛾

2
< 0 (𝛾

2
> 0).

(iii) 𝑇
2
determines the period of bifurcating periodic solu-

tions: period increases (decreases) if 𝑇
2
> 0 (𝑇

2
< 0).

5. Numerical Simulation

In this section, some numerical simulations are provided to
substantiate the theoretical results obtained in Section 4 of
this paper.

5.1. Numerical Simulation of State Feedback Controller for
Singularity Induced Bifurcation and Local Stability Switch. In
this subsection, values of parameters are partially taken from
Section 5 of [11] and set in appropriate units, which can
be found in Table 2. Numerical simulations are provided to
illustrate the effectiveness of the state feedback controllers
designed in Section 4.1 in the case of zero economic interest
and positive economic interest, respectively.

In the case of zero economic interest, model (4) without
time delay takes the following form:

̇𝑆 (𝑡) = 0.1 (1 − 𝑆 (𝑡)) − 𝑆 (𝑡) 𝐼 (𝑡) ,

̇𝐼 (𝑡) = 𝑆 (𝑡) 𝐼 (𝑡) − 0.1𝐼 (𝑡) − 0.1𝐼 (𝑡) ,

̇𝑅 (𝑡) = 0.1𝐼 (𝑡) − 0.1𝑅 (𝑡) − 𝐸 (𝑡) 𝑅 (𝑡) ,

0 = 𝐸 (𝑡) (20𝑅 (𝑡) − 1) .

(122)
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Figure 1: Dynamical responses of model system (123) with state
feedback controller, which shows that model system (123) is stable
around (0.2, 0.08, 0.05, 0.06).

By using Theorem 11 of this paper, it can be shown
that the model (4) without time delay has a singularity
induced bifurcation around the interior equilibrium
𝑃
∗
(0.2, 0.08, 0.05, 0.06), and local stability switch occurs as V

increases through 0.
Based on the analysis in Section 4.1.2 and Theorem 14 of

this paper, a state feedback controller 𝑢(𝑡) = 𝑙(𝐸(𝑡) − 0.06)

can be applied to stabilize model system (122) around𝑃∗, and
then themodel system (122)with the state feedback controller
takes the following form:

̇𝑆 (𝑡) = 0.1 (1 − 𝑆 (𝑡)) − 𝑆 (𝑡) 𝐼 (𝑡) ,

̇𝐼 (𝑡) = 𝑆 (𝑡) 𝐼 (𝑡) − 0.1𝐼 (𝑡) − 0.1𝐼 (𝑡) ,

̇𝑅 (𝑡) = 0.1𝐼 (𝑡) − 0.1𝑅 (𝑡) − 𝐸 (𝑡) 𝑅 (𝑡) ,

0 = 𝐸 (𝑡) (20𝑅 (𝑡) − 1) + 𝑙 (𝐸 (𝑡) − 0.06) .

(123)

By using Theorem 14 of this paper, if the feedback gain 𝑙
satisfies 𝑙 > 2.2429, then model system (122) is stable around
𝑃
∗ and singularity induced bifurcation of the model system

(122) is also eliminated. The dynamical responses of model
system (122) can be shown in Figure 1.

Furthermore, based on the analysis and inequality (55)
in Section 4.1.2, there are two interior equilibria (denoted
by �̃�∗

1
and �̃�∗

2
) when 0 < V < 0.00668. In the following

part, we focus on the case of 0 < V < 0.00668, and the
economic interest is set as V∗ = 0.005 ∈ (0, 0.00668) in
appropriate unit, which is arbitrarily selected within the
interval (0, 0.00668) and is enough to merit the theoretical
analysis obtained in Section 4.1.2. By virtue of the given values
of parameters in Table 2 and (54), two interior equilibria
can be obtained as follows: �̃�∗

1
(0.2, 0.08, 0.0557, 0.0439) and

�̃�
∗

2
(0.2, 0.08, 0.07175, 0.0115). By using Theorem 11 of this



18 Abstract and Applied Analysis

paper, it can be shown that model system (124) is unstable
around �̃�∗

1
and �̃�∗

2
:

̇𝑆 (𝑡) = 0.1 (1 − 𝑆 (𝑡)) − 𝑆 (𝑡) 𝐼 (𝑡) ,

̇𝐼 (𝑡) = 𝑆 (𝑡) 𝐼 (𝑡) − 0.1𝐼 (𝑡) − 0.1𝐼 (𝑡) ,

̇𝑅 (𝑡) = 0.1𝐼 (𝑡) − 0.1𝑅 (𝑡) − 𝐸 (𝑡) 𝑅 (𝑡) ,

0 = 𝐸 (𝑡) (20𝑅 (𝑡) − 1) − 0.005.

(124)

Based on the analysis in Section 4.1.2 of this paper, state
feedback controllers 𝑢(𝑡) = �̃�(𝐸(𝑡) − 0.0439) and 𝑢(𝑡) =

�̃�(𝐸(𝑡) − 0.0115) can be applied to stabilize the model system
(124) around �̃�∗

1
and �̃�∗

2
, respectively.Themodel system (124)

with respective state feedback controller takes the following
form:

̇𝑆 (𝑡) = 0.1 (1 − 𝑆 (𝑡)) − 𝑆 (𝑡) 𝐼 (𝑡) ,

̇𝐼 (𝑡) = 𝑆 (𝑡) 𝐼 (𝑡) − 0.1𝐼 (𝑡) − 0.1𝐼 (𝑡) ,

̇𝑅 (𝑡) = 0.1𝐼 (𝑡) − 0.1𝑅 (𝑡) − 𝐸 (𝑡) 𝑅 (𝑡) ,

0 = 𝐸 (𝑡) (20𝑅 (𝑡) − 1) − 0.005 + �̃� (𝐸 (𝑡) − 0.0439) ,

(125)

̇𝑆 (𝑡) = 0.1 (1 − 𝑆 (𝑡)) − 𝑆 (𝑡) 𝐼 (𝑡) ,

̇𝐼 (𝑡) = 𝑆 (𝑡) 𝐼 (𝑡) − 0.1𝐼 (𝑡) − 0.1𝐼 (𝑡) ,

̇𝑅 (𝑡) = 0.1𝐼 (𝑡) − 0.1𝑅 (𝑡) − 𝐸 (𝑡) 𝑅 (𝑡) ,

0 = 𝐸 (𝑡) (20𝑅 (𝑡) − 1) − 0.005 + �̃� (𝐸 (𝑡) − 0.0115) .

(126)

By using Theorem 15 of this paper, if the feedback gain
�̃� satisfies �̃� > 3.753, then model system (125) is stable
around �̃�∗

1
and model system (126) is stable around �̃�∗

2
. The

dynamical responses of model system (125) and (126) can be
shown in Figures 2 and 3, respectively.

5.2. Numerical Simulation for Hopf Bifurcation and Local
Stability Switch. In this subsection,values of parameters are
partially taken from Section 5 of [11] and set in appropriate
units, which can be found in Table 3. Numerical simulations
are provided to support the theoretical findings obtained in
Section 4.2 of this paper.

Based on the analysis and inequality (55) in Section 4.1.2,
there are two interior equilibria (denoted by �̃�∗

1
and �̃�∗

2
)

when 0 < V < 0.01831. In the following part, we
focus on the case of 0 < V < 0.01831, and the eco-
nomic interest is set as V∗ = 0.012 ∈ (0, 0.01831) in
appropriate unit, which is arbitrarily selected within the
interval (0, 0.01831) and is enough to merit the theoretical
analysis obtained in Section 4.2. By virtue of the given values
of parameters in Table 3 and (54), two interior equilibria
can be obtained as follows: �̃�∗

1
(0.2, 0.08, 0.0907, 0.0147) and

�̃�
∗

2
(0.2, 0.08, 0.0573, 0.0821). Furthermore, it can be com-

puted that 𝑘𝛽 > 3(𝜇
1
+ 𝑚). Based on the analysis in
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Figure 2: Dynamical responses of model system (125) with state
feedback controller, which shows that model system (125) is stable
around (0.2, 0.08, 0.0557, 0.0439).
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Figure 3: Dynamical responses of model system (126) with state
feedback controller, which shows that model system (126) is stable
around (0.2, 0.08, 0.07175, 0.0115).

Table 3: Values of parameters for numerical simulation.

Parameter Value
𝑟 0.1
𝑘 1
𝛽 1
𝑚 0.13
𝜇
1

0.1
𝜇
2

0.1
𝑤 20
𝑐 1

Section 4.2.1, it satisfies the assumption that (58) has a
positive root, and then the corresponding 𝜏∗

0
= 2.7814

can be calculated by solving (64). It follows from (121) that
𝛿
2
= 1.2963 > 0, 𝛾

2
= −0.3012 < 0, and 𝑇

2
=

1.2467 > 0. Consequently, the interior equilibrium �̃�
∗

1
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Figure 4: Dynamical responses of model system (4) with time delay
𝜏 = 1.54, which shows that model system (4) is stable around
(0.2, 0.08, 0.0907, 0.0147).
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Figure 5: Dynamical responses of model system (4) with time delay
𝜏 = 3, which shows that model system (4) is unstable around
(0.2, 0.08, 0.0907, 0.0147).

remains stable for 𝜏 < 𝜏
∗

0
, and dynamical responses of

model system (4) with 𝜏 = 1.54 are plotted in Figure 4.
It should be noted that 𝜏 = 1.54 in Figure 4 is ran-domly
selected in the interval (0, 2.7814), which is enough to merit
the above mathematical study. Only the dynamical responses
and corresponding phase portrait of model (4) around �̃�∗
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Figure 6: A limit cycle corresponding to the periodic solution in
Figure 5 in the S-I-R space.
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Figure 7: Limit cycle corresponding to the periodic solution in
Figure 5 in the S-I-E space.

are plotted; some symmetric results about �̃�∗

2
can be also

obtained. As 𝜏 increases through 𝜏
∗

0
, a periodic solution

caused by the phenomenon of Hopf bifurcation occurs; that
is, a family of periodic solutions bifurcate from the interior
equilibrium �̃�

∗

1
. Since 𝛿

2
> 0 and 𝛾

2
< 0, the Hopf bifurcation

is supercritical, the directions of the Hopf bifurcation is 𝜏 >
𝜏
∗

0
, and these bifurcating periodic solutions from the interior

equilibrium �̃�
∗

1
at 𝜏∗

0
are stable. Dynamical responses of

model (4) with 𝜏 = 3 > 𝜏
∗

0
are plotted in Figure 5. Figures

6 and 7 show a limit cycle corresponding to the periodic
solution in Figure 5 in the S-I-R and S-I-E space, respectively.

6. Conclusion

It is well known that the recovered host individuals are
naturally immune to vector disease [1], and its potential eco-
nomic interest can be commercially exploited. Furthermore,
harvest effort is usually influenced by variation of economic
interest under market economy. Consequently, it is necessary
to discuss the coexistence and interaction mechanism of
population within harvested epidemiological ecosystem as
well as dynamical effect of harvest effort due to variation of
economic interest.
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By introducing commercial harvest effort into model
proposed in [11], a delayed hybrid mathematical model is
established to investigate the dynamical effect of commercial
harvesting and incubation time delay on epidemiological
economic system, which extends the work done in [11]
from a bioeconomic perspective. Positivity and persistence
of solutions of model system are discussed in Theorems 3
and 10, respectively. The economic interest of commercial
harvesting should be restricted within certain interval that
guarantees the existence of interior equilibrium, which can
be found in Remark 16. Since the interior equilibrium bio-
logically interprets that susceptible, infective, and recovered
host individuals survive as well as harvest on recovered
host individuals exist, the bifurcation phenomena around
the interior equilibria can reveal the instability mechanism
of model system, which are theoretically relevant to infec-
tious disease control and sustainable yield on recovered
host individuals. Consequently, we will mainly concentrate
on dynamical behavior and local stability switch around
interior equilibrium of model system (4) in this paper. As
analyzed in Theorem 11 of this paper, a singularity induced
bifurcation occurs which leads to local stability switch in
the case of positive economic interest of harvesting. In the
perspective of practical viewpoint, a direct damage done by
the singularity induced bifurcation to the proposed model
is impulse phenomenon, which may lead to outbreak of
infectious disease and hamper prosperous harvesting on
recovered host individual population resource in the har-
vested ecosystem, which can be found in Remark 13.With the
purpose ofmaintaining the economic interest at an ideal level,
state feedback controllers are designed to stabilize model
system around the desirable interior equilibria in the case
of zero economic interest and positive economic interest,
respectively. The design of the state feedback controller can
be found inTheorems 14 and 15 of this paper. The theoretical
results and numerical simulations obtained in this paper
suggest that incorporating harvest effort on recovered host
individuals can not only prevent the stability switch of model
system,but also drive model system to stable equilibrium,
which will contribute to the persistence and sustainable yield
of the harvested ecosystem.

Further attempts are made to understand the dynamical
effect of incubation time delay and economic interest on local
stability of model system around interior equilibrium. Local
stability analysis reveals that incubation delay is responsible
for local stability switch of the proposed model, and a family
of periodic solutions bifurcate from the interior equilibrium
which occurs as incubation delay increases through a critical
threshold, which can be found in Theorem 17. The direc-
tion and stability of Hopf bifurcation are also discussed in
Theorem 19 of this paper, which reveals that Hopf bifurcation
is supercritical, the directions of Hopf bifurcation is 𝜏 > 𝜏∗

0
,

and these bifurcating periodic solutions from the interior
equilibrium are stable. The model proposed in [11] does not
discuss the harvest effort on economic population. For the
model proposed in [11], the threshold value of incubation
delay where Hopf bifurcation occurs in [11] is 𝜏

0
= 2.0842.

However, the harvest effort on recovered host individuals is
considered in this paper. As calculated in Section 5.2 of this

paper, the Hopf bifurcation occurs at 𝜏∗
0
= 2.7814 in the case

of positive economic interest. It is obvious that 𝜏∗
0
> 𝜏

0
, which

implies that the harvesting has a stabilizing impact on the
dynamical behavior of population dynamics; cyclic behavior
caused by incubation delay can be deferred by introduction
of commercial harvesting effort.

It should be noted that somehybrid dynamicalmodels are
proposed in [23–28], which are utilized to discuss the inter-
action mechanism of harvested ecosystem from an economic
perspective in recent years. Complex dynamical behavior
and stability analysis in prey-predator ecosystems with stage-
structured population and gestation delay are considered.
However, as far as knowledge goes, nobody has explicitly
proposed amathematicalmodel to discuss the dynamic effect
of commercial harvest on epidemiological system under
the market economy environment. The main objective of
this paper is to investigate the transmission mechanism of
infectious disease anddynamical effect of commercial harvest
on population dynamics, especially the complex dynamical
behavior and stability switch due to variation of incubation
and commercial harvest economic interest, which makes
the work studied in this paper has some new and positive
features.
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The authors introduce stochasticity into a predator-prey systemwithBeddington-DeAngelis functional response and stage structure
for predator. We present the global existence and positivity of the solution and give sufficient conditions for the global stability in
probability of the system. Numerical simulations are introduced to support the main theoretical results.

1. Introduction

The classical predator-prey model with Beddington-
DeAngelis type functional response can be denoted as

̇𝑥 (𝑡) = 𝑥 [𝑏1 − 𝑎11𝑥 −
𝑎
12
𝑦

1 + 𝑚𝑥 + 𝑛𝑦
] ,

̇𝑦 = 𝑦[−𝑏
2
+

𝑎
21
𝑥

1 + 𝑚𝑥 + 𝑛𝑦
− 𝑎
22
𝑦] ,

(1)

where 𝑥(𝑡) and 𝑦(𝑡) represent predator and prey densities at
time 𝑡, respectively. 𝑏

𝑖
, 𝑎
𝑖𝑗
, 𝑚, and 𝑛 are positive constants, 𝑖,

𝑗 = 1, 2. For biological representation of each coefficient in
(1) we refer the reader to [1, 2]. In model (1), it is assumed
that all individuals of a single species have largely similar
capabilities to hunt or to reproduce. But the life cycle of most
animals consists of at least two stages, immature and mature,
and the individuals in the first stage often can neither hunt or
reproduce, being raised by their mature parents and there are
recognizable morphological and behavioral differences that
may exist between these stages. In [3], the authors studied
the global properties of a predator-preymodel with nonlinear
functional response and stage structure for the predator, and
the condition of the existence and the global stability of
the positive steady states were established. However, May
[4] pointed out that due to environment noise, the birth

rate, carrying capacity, competition coefficients, and other
parameters involved in the system exhibit randomfluctuation
to a greater or lesser extent. So, a lot of authors introduced
stochastic noise into deterministic models to reveal the effect
of environmental variability on the population dynamics in
mathematical ecology [5–7]. In Liu andWang [5], the authors
investigated the global stability of stage-structured predator-
prey models with Beddington-DeAngelis type functional
response and with stage structure for the prey. The authors
[5] also pointed out that there are some technical obstacles
that cannot be overcome at present to investigate the stage
structure on predator model. So, in this paper we are going to
do some work on this problem. The following model,

d𝑥
d𝑡
= 𝑥(𝛾 −

𝑞𝑦
2

1 + 𝑚𝑥 + 𝑛𝑦
2

− 𝛽𝑥) ,

d𝑦
1

d𝑡
= 𝛼𝑦
2
− 𝑑
1
𝑦
1
− 𝑎
1
𝑦
2

1
− 𝑏𝑦
1
,

d𝑦
2

d𝑡
= 𝑏𝑦
1
− 𝑑
2
𝑦
2
− 𝑎
2
𝑦
2

2
+

𝑝𝑦
2
𝑥

1 + 𝑚𝑥 + 𝑛𝑦
2

,

(2)

is derived under the following assumptions.

(H1) The immature predator population 𝑦
1
: the birth rate

into the immature population is proportional to
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the existing mature predator population with prob-
ability 𝛼 > 0; the death rate is proportional to the
existing immature predator population with propor-
tionality 𝑑

1
> 0; overcrowding rate of the immature

predator population is 𝑎
1
> 0; the transformation

rate from the immature predator to mature predator
is proportional to the existing immature predator
population with proportionality 𝑏 > 0.

(H2) The mature predator population 𝑦
2
: 𝑑
2
> 0 and

𝑎
2
> 0 are the death rate and the overcrowding rate

of the mature predator population, respectively, and
only the mature predator population feeds the prey.
It seems reasonable that a number of mammals, who
are immature predators, are raised by their parents.
𝑝/𝑞 is the rate of conversion of nutrients into the
reproduction of the predator.

(H3) The prey population 𝑥: the growth of the species is of
the Lotka-Volterra nature and 𝛾 > 0 is the birth rate;
𝛽 > 0 is the overcrowding rate. 𝑞 > 0 is the capturing
rate of the predator.

System (2) is greatly different from themodel investigated
in [3] for we comprehend that the effect of the response
function will diminish the death rate of the predator and the
predator does not only feed on the prey.

Suppose that (𝑥∗, 𝑦∗
1
, 𝑦
∗

2
) is a positive equilibrium of (2).

If we take the environmental noise into account, we can
replace the birth rate of prey population and death rate
of predator population by an average value plus a random
fluctuation, respectively,

𝛾 + 𝜎 (𝑥 − 𝑥
∗
) ̇𝐵 (𝑡) ,

𝑑
1
+ 𝜎
1
(𝑦
1
− 𝑦
∗

1
) ̇𝐵
1
(𝑡) ,

𝑑
2
+ 𝜎
2
(𝑦
2
− 𝑦
∗

2
) ̇𝐵
2 (𝑡) ,

(3)

where𝜎2,𝜎2
1
,𝜎2
2
represent the intensities of the noise and ̇𝐵(𝑡),

̇𝐵
1
(𝑡), ̇𝐵
2
(𝑡) are standardwhite noise; namely,𝐵(𝑡),𝐵

1
(𝑡),𝐵
2
(𝑡)

are standard Brownian motion defined on a complete prob-
ability space (Ω,F, 𝑃) with a filtration {F

𝑡
}
𝑡∈R
+

satisfying
the usual condition (i.e., it is right continuous and increasing
while F

0
contains all 𝑃-null sets). So the corresponding

stochastic system of (2) is

d𝑥 = 𝑥(𝛾 −
𝑞𝑦
2

1 + 𝑚𝑥 + 𝑛𝑦
2

− 𝛽𝑥) d𝑡

+ 𝜎𝑥 (𝑥 − 𝑥
∗
) d𝐵 (𝑡) ,

d𝑦
1
= (𝛼𝑦

2
− 𝑑
1
𝑦
1
− 𝑎
1
𝑦
2

1
− 𝑏𝑦
1
) d𝑡

+ 𝜎
1
𝑦
1
(𝑦
1
− 𝑦
∗

1
) d𝐵
1 (𝑡) ,

d𝑦
2
= (𝑏𝑦

1
− 𝑑
2
𝑦
2
− 𝑎
2
𝑦
2

2
+

𝑝𝑥𝑦
2

1 + 𝑚𝑥 + 𝑛𝑦
2

) d𝑡

− 𝜎
2
𝑦
2
(𝑦
2
− 𝑦
∗

2
) d𝐵
2
(𝑡) ,

(4)

with the initial condition (𝑥(0), 𝑦
1
(0), 𝑦
2
(0)) ∈ R3

+
where

R3
+
= {𝑥 ∈ R3 | 𝑥, 𝑦

1
, 𝑦
2
> 0, 𝑖 = 1, 2, 3}.

The paper is organized as follows. In Section 2, we prove
the existence, uniqueness, and the positivity of the solution
to (4). In Section 3, we established the condition for the
global stability of the positive equilibrium. We work out two
simulation figures to illustrate our main results in Section 4.
Section 5 gives the conclusions and future directions.

2. Existence of the Global Positive Solution

Theorem 1. For any initial value (𝑥(0), 𝑦
1
(0), 𝑦
2
(0)) ∈ R3

+
,

system (4) has a unique global positive solution
(𝑥(𝑡), 𝑦

1
(𝑡), 𝑦
2
(𝑡)) on 𝑡 > 0 with probability one.

Proof. We see that the coefficients of the system are locally
Lipschitz continuous, so, for any given initial values 𝑥(0) > 0,
𝑦
1
(0) > 0, 𝑦

2
(0) > 0, there is a unique maximal local solution

(𝑥(𝑡), 𝑦
1
(𝑡), 𝑦
2
(𝑡)) on 𝑡 ∈ [0, 𝜏

𝑒
), where 𝜏

𝑒
is the explosion time

[8]. To show this solution is global, we need to show that 𝜏
𝑒
=

∞. Define the stopping time by

𝜏
𝑘
= inf {𝑡 ∈ (0,∞) , 𝑦

𝑖
(𝑡) =

1

𝑘

or 𝑦
𝑖
(𝑡) = 𝑘, 𝑖 = 1, 2,

or 𝑥 (𝑡) = 1
𝑘
or 𝑥 (𝑡) = 𝑘} ,

(5)

where, throughout this paper, we set inf 0 = ∞. Clearly, 𝜏
𝑘
is

increasing as 𝑘 → ∞. Set 𝜏
∞
= lim
𝑘→∞

𝜏
𝑘
, whence 𝜏

∞
≤ 𝜏
𝑒

a.s. If we can show that 𝜏
∞
= ∞ a.s., then 𝜏

𝑒
= ∞ a.s. Namely,

to complete the proof, it is sufficient to show that 𝜏
∞
= ∞ a.s.

If this statement is false, then there is a pair of constants𝑇 > 0
and 𝜖 ∈ (0, 1), such that 𝑃{𝜏

∞
≤ 𝑇} > 𝜖. Hence, there is an

integer 𝑘
1
≥ 𝑘
0
such that

𝑃 {𝜏
𝑘
≤ 𝑇} ≥ 𝜖 ∀𝑘 ≥ 𝑘

1
, (6)

where 𝑘
0
is satisfying 1/𝑘

0
< 𝑦
𝑖
(0) < 𝑘

0
, 𝑖 = 1, 2, and 1/𝑘

0
<

𝑥(0) < 𝑘
0
.

Define a 𝐶2-function 𝑉: R3
+
→ R
+
by

𝑉 (𝑥, 𝑦
1
, 𝑦
2
) = (√𝑥 − 1 − 0.5 ln𝑥) + (√𝑦1 − 1 − 0.5 ln𝑦1)

+ (√𝑦2 − 1 − 0.5 ln𝑦2) .
(7)

Using Itô’s formula, we get

d𝑉 = 1
2
(𝑥
−1/2
− 𝑥
−1
) ⋅ d𝑥 + 1

2
(𝑦
−1/2

1
− 𝑦
−1

1
) ⋅ d𝑦
1

+
1

2
(𝑦
−1/2

2
− 𝑦
−1

2
) ⋅ d𝑦
2

+
1

2
(−
1

4
𝑥
−3/2
+
1

2
𝑥
−2
) ⋅ (d𝑥)2

+
1

2
(−
1

4
𝑦
−3/2

1
+
1

2
𝑦
−2

1
) ⋅ (d𝑦

1
)
2

+
1

2
(−
1

4
𝑦
−3/2

2
+
1

2
𝑦
−2

2
) ⋅ (d𝑦

2
)
2
,

(8)



Abstract and Applied Analysis 3

𝐿𝑉 =
1

2
(𝑥
1/2
− 1) (𝛾 −

𝑞𝑦
2

1 + 𝑚𝑥 + 𝑛𝑦
2

− 𝛽𝑥)

+
1

2
(−
1

4
𝑥
1/2
+
1

2
) 𝜎
2
(𝑥 − 𝑥

∗
)
2

+
1

2
(𝑦
−1/2

1
− 𝑦
−1

1
) (𝛼𝑦
2
− 𝑑
1
𝑦
1
− 𝑎
1
𝑦
2

1
− 𝑏𝑦
1
)

+
1

2
(−
1

4
𝑦
1/2

1
+
1

2
) 𝜎
2

1
(𝑦
1
− 𝑦
∗

1
)
2

+
1

2
(𝑦
−1/2

2
− 𝑦
−1

2
)

× (𝑏𝑦
1
− 𝑑
2
𝑦
2
− 𝑎
2
𝑦
2

2
+

𝑝𝑥𝑦
2

1 + 𝑚𝑥 + 𝑛𝑦
2

)

+
1

2
(−
1

4
𝑦
1/2

2
+
1

2
) 𝜎
2

2
(𝑦
2
− 𝑦
∗

2
)
2

=
1

2
(𝑥
1/2
− 1) (𝛾 −

𝑞𝑦
2

1 + 𝑚𝑥 + 𝑛𝑦
2

− 𝛽𝑥)

+
1

2
(𝑦
−1/2

2
− 𝑦
−1

2
) 𝑏𝑦
1
+
1

2
(𝑦
−1/2

1
− 𝑦
−1

1
) 𝛼𝑦
2

+
1

2
(𝑦
1/2

1
− 1) (−𝑑

1
− 𝑎
1
𝑦
1
− 𝑏)

+
1

2
(𝑦
1/2

2
− 1) (−𝑑

2
− 𝑎
2
𝑦
2
+

𝑝𝑦
2

1 + 𝑚𝑥 + 𝑛𝑦
2

)

+
1

2
(−
1

4
𝑥
1/2
+
1

2
) 𝜎
2
(𝑥 − 𝑥

∗
)
2

+
1

2
(−
1

4
𝑦
1/2

1
+
1

2
) 𝜎
2

1
(𝑦
1
− 𝑦
∗

1
)
2

+
1

2
(−
1

4
𝑦
1/2

2
+
1

2
) 𝜎
2

2
(𝑦
2
− 𝑦
∗

2
)
2
.

(9)

Now, we pay attention to the term (1/2)(𝑦−1/2
1
− 𝑦
−1

1
)𝛼𝑦
2
. If

𝑦
1
< 1, then (1/2)(𝑦−1/2

1
− 𝑦
−1

1
)𝛼𝑦
2
< 0, so, this term can

be omitted from the right side of the inequality. If 𝑦
1
> 1,

then (1/2)(𝑦−1/2
1
− 𝑦
−1

1
)𝛼𝑦
2
< (1/2)(𝑦

1/2

1
− 1)𝛼𝑦

2
. The similar

argument can be taken on (1/2)(𝑦−1/2
2
−𝑦
−1

2
)𝑏𝑦
1
. So we get the

following inequality:

𝐿𝑉 ≤
1

2
[−𝛽𝑥
3/2
+ 𝛽𝑥 + 𝛾𝑥

1/2
+
𝑞

𝑛
− 𝛾]

+
𝑏

2
𝑦
1
(√𝑦2 − 1) +

𝛼

2
𝑦
2
(√𝑦1 − 1)

+
1

2
[−𝑎
1
𝑦
3/2

1
− (𝑑
1
+ 𝑏) 𝑦

1/2

1
+ 𝑎
1
𝑦
1
+ 𝑑
1
+ 𝑏]

+
1

2
[−𝑎
2
𝑦
3/2

2
+ (
𝑝

𝑛
− 𝑑)𝑦

1/2

2
+ 𝑎
2
𝑦
2
+ 𝑑
2
]

+
1

2
𝜎
2
(−
1

4
𝑥
5/2
+
1

2
𝑥
2
+
1

2
𝑥
∗
𝑥
3/2

−𝑥
∗
𝑥 −
1

4
𝑥
∗2

2
𝑥
1/2
+
1

2
𝑥
∗2

2
)

+
1

2
𝜎
2

1
(−
1

4
𝑦
5/2

1
+
1

2
𝑦
2

1
+
1

2
𝑦
∗

1
𝑦
3/2

1

−𝑦
∗

1
𝑦
1
−
1

4
𝑦
∗2

1
𝑦
1/2

1
+
1

2
𝑦
∗2

1
)

+
1

2
𝜎
2

2
(−
1

4
𝑦
5/2

2
+
1

2
𝑦
2

2
+
1

2
𝑦
∗

2
𝑦
3/2

2

−𝑦
∗

2
𝑦
2
−
1

4
𝑦
∗2

2
𝑦
1/2

2
+
1

2
𝑦
∗2

2
)

≤
1

2
[−𝛽𝑥
3/2
+ 𝛽𝑥 + 𝛾𝑥

1/2
+
𝑞

𝑛
]

+
1

2
[
𝑏

2
𝑦
2

1
− 𝑎
1
𝑦
3/2

1
− (𝑑
1
+ 𝑏) 𝑦

1/2

1

+(𝑎
1
− 𝑏 +

𝛼

2
)𝑦
1
+ 𝑑
1
+ 𝑏]

+
1

2
[
𝛼

2
𝑦
2

2
− 𝑎
2
𝑦
3/2

2
+ (
𝑝

𝑛
− 𝑑)𝑦

1/2

2

+(𝑎
2
− 𝛼 +

𝑏

2
)𝑦
2
+ 𝑑
2
]

+
1

2
𝜎
2
(−
1

4
𝑥
5/2
+
1

2
𝑥
2
+
1

2
𝑥
∗
𝑥
3/2

−𝑥
∗
𝑥 −
1

4
𝑥
∗2

2
𝑥
1/2
+
1

2
𝑥
∗2

2
)

+
1

2
𝜎
2

1
(−
1

4
𝑦
5/2

1
+
1

2
𝑦
2

1
+
1

2
𝑦
∗

1
𝑦
3/2

1

−𝑦
∗

1
𝑦
1
−
1

4
𝑦
∗2

1
𝑦
1/2

1
+
1

2
𝑦
∗2

1
)

+
1

2
𝜎
2

2
(−
1

4
𝑦
5/2

2
+
1

2
𝑦
2

2
+
1

2
𝑦
∗

2
𝑦
3/2

2

−𝑦
∗

2
𝑦
2
−
1

4
𝑦
∗2

2
𝑦
1/2

2
+
1

2
𝑦
∗2

2
)

≤ 𝐾,

(10)

where 𝐾 is positive constant. Integrating both sides of (8)
from 0 to 𝜏

𝑘
∧ 𝑇 and then taking the expectations lead to

𝑉 (𝑥 (𝜏
𝑘
∧ 𝑇) , 𝑦

1
(𝜏
𝑘
∧ 𝑇) , 𝑦

2
(𝜏
𝑘
∧ 𝑇))

≤ 𝑉 (𝑥 (0) , 𝑥1 (0) , 𝑦2 (0)) + 𝐾𝑇.

(11)

Setting Ω
𝑘
= 𝑃{𝜏

𝑘
≤ 𝑇} for 𝑘 ≥ 𝑘

1
, then by the inequality

(6) we have 𝑃(Ω
𝑘
) ≥ 𝜖; note that for every 𝜔 ∈ Ω

𝑘
,

𝑉(𝑥(𝜏
𝑘
, 𝜔), 𝑦

1
(𝜏
𝑘
, 𝜔), 𝑦

2
(𝜏
𝑘
, 𝜔)) is no less than min{√𝑘 − 1 −

0.5 ln 𝑘,√1/𝑘 − 1 − 0.5 ln(1/𝑘)}.
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It then follows from (11) that

𝐸 [𝐼
Ω
𝑘

𝑉 (𝑥 (𝜏
𝑘
) , 𝑥
1
(𝜏
𝑘
) , 𝑦
2
(𝜏
𝑘
))]

≤ 𝑉 (𝑥 (0) , 𝑦1 (0) , 𝑦2 (0)) + 𝐾𝑇,

(12)

where 𝐼
Ω
𝑘

is the indicator function of Ω
𝑘

and
𝐸[𝐼
Ω
𝑘

𝑉(𝑥(𝜏
𝑘
), 𝑦
1
(𝜏
𝑘
), 𝑦
2
(𝜏
𝑘
))] ≥ 𝜖min{√𝑘 − 1 − 0.5 ln 𝑘,

√1/𝑘 − 1 − 0.5 ln(1/𝑘)}. So,

𝜖min{√𝑘 − 1 − 0.5 ln 𝑘,√ 1
𝑘
− 1 − 0.5 ln 1

𝑘
}

≤ 𝑉 (𝑥, 𝑦
1 (0) (0) , 𝑦2 (0)) + 𝐾𝑇.

(13)

Letting 𝑘 → ∞ leads to the contradiction

∞ > 𝑉(𝑥 (0) , 𝑦
1
(0) , 𝑦

2
(0)) + 𝐾𝑇 ≥ ∞. (14)

This contradiction shows that 𝜏
∞
= ∞, which completes the

proof.

3. Global Behavior

Suppose 𝑧 = 𝑧(𝑡) is the solution of the following 𝑛-
dimensional stochastic differential equation:

d𝑧 (𝑡) = 𝑓 (𝑧 (𝑡) , 𝑡) d𝑡 + 𝑔 (𝑧 (𝑡) , 𝑡) d𝐵 (𝑡) , (15)

and 𝑧∗ is the equilibrium position of (15).
From the stability theory of stochastic differential equa-

tions, we only need to find a Lyapunov function 𝑉(𝑧)
satisfying 𝐿𝑉(𝑧) ≤ 0 and the identity holds if and only if
𝑧 = 𝑧
∗ [9], where 𝑧 = 𝑧(𝑡) is the solution of the 𝑛-dimensional

stochastic differential equation (15) and 𝑑𝑉(𝑥(𝑡), 𝑡) = 𝐿𝑉𝑑𝑡 +
𝑉
𝑥
(𝑥(𝑡), 𝑡)𝑔(𝑡)𝑑𝐵(𝑡).

Theorem2. If 𝑎
1
−(𝜎
2

1
/2) > 0, 𝑎

2
−(𝜎
2

2
/2) > 0, and𝛽−(𝜎2/2)−

(𝑞𝑚𝑦
∗

2
/(1 + 𝑚𝑥

∗
+ 𝑛𝑦
∗

2
)) > 0, then the positive equilibrium

(𝑥
∗
, 𝑦
∗

1
, 𝑦
∗

2
) of model (4) is globally asymptotically stable with

probability one.

Proof. System (4) can be rewritten as

d𝑥 =
𝑞𝑥 [𝑚𝑦

∗

2
(𝑥 − 𝑥

∗
) − (1 + 𝑚𝑥

∗
) (𝑦
2
− 𝑦
∗

2
)]

(1 + 𝑚𝑥 + 𝑛𝑦
2
) (1 + 𝑚𝑥∗ + 𝑛𝑦

∗

2
)

d𝑡

− 𝛽𝑥 (𝑥 − 𝑥
∗
) d𝑡 + 𝜎𝑥 (𝑥 − 𝑥∗) d𝐵 (𝑡) ,

d𝑦
1
=
𝛼

𝑦
∗

1

[𝑦
1
(𝑦
2
− 𝑦
∗

2
) − 𝑦
2
(𝑦
1
− 𝑦
∗

1
)] d𝑡

− 𝑎
1
𝑦
1
(𝑦
1
− 𝑦
∗

1
) d𝑡 + 𝜎

1
𝑦
1
(𝑦
1
− 𝑦
∗

1
) d𝐵
1
(𝑡) ,

d𝑦
2
=
𝑏

𝑦
∗

2

[𝑦
2
(𝑦
1
− 𝑦
∗

1
) − 𝑦
1
(𝑦
2
− 𝑦
∗

2
)] d𝑡

+
𝑝𝑦
2
[(1 + 𝑛𝑦

∗

2
) (𝑥 − 𝑥

∗
) − 𝑛𝑥

∗
(𝑦
2
− 𝑦
∗

2
)]

(1 + 𝑚𝑥 + 𝑛𝑦
2
) (1 + 𝑚𝑥∗ + 𝑛𝑦

∗

2
)

d𝑡

− 𝑎
2
𝑦
2
(𝑦
2
− 𝑦
∗

2
) d𝑡 + 𝜎

2
𝑦
2
(𝑦
2
− 𝑦
∗

2
) d𝐵
2
(𝑡) .

(16)

Define

𝑉 (𝑥
1
, 𝑥
2
, 𝑦) = 𝑐

1
(𝑥 − 𝑥

∗
− 𝑥
∗ ln( 𝑥

𝑥∗
))

+ 𝑐
2
(𝑦
1
− 𝑦
∗

1
− 𝑦
∗

1
ln(
𝑦
1

𝑦
∗

1

))

+ 𝑐
3
(𝑦
2
− 1 − 𝑦

∗

2
ln
𝑦
2

𝑦
∗

2

) ,

(17)

where 𝑐
𝑖
(𝑖 = 1, 2, 3) are positive numbers to be determined.

Applying Itô’s formula to system (16) gives

𝐿𝑉 = 𝑐
2
{ (𝑦
1
− 𝑦
∗

1
)
𝛼

𝑦
∗

1

[(𝑦
2
− 𝑦
∗

2
) −
𝑦
2

𝑦
1

(𝑦
1
− 𝑦
∗

1
)]

−𝑎
1
(𝑦
1
− 𝑦
∗

1
)
2
+
𝜎
2

1

2
(𝑦
1
− 𝑦
∗

1
)
2
}

+ 𝑐
3
{ (𝑦
2
− 𝑦
∗

2
)
𝑏

𝑦
∗

2

[(𝑦
1
− 𝑦
∗

1
) −
𝑦
1

𝑦
2

(𝑦
2
− 𝑦
∗

2
)]

−𝑎
2
(𝑦
2
− 𝑦
∗

2
)
2
+
𝜎
2

2

2
(𝑦
2
− 𝑦
∗

2
)
2
}

+ 𝑐
3
𝑝 (𝑦
2
− 𝑦
∗

2
)
(1 + 𝑛𝑥

∗
) (𝑥 − 𝑥

∗
) − 𝑛𝑥

∗
(𝑦
2
− 𝑦
∗

2
)

(1 + 𝑚𝑥 + 𝑛𝑦
2
) (1 + 𝑚𝑥∗ + 𝑛𝑦

∗

2
)

+ 𝑐
1
𝑞 (𝑥 − 𝑥

∗
)
𝑚𝑦
∗

2
(𝑥 − 𝑥

∗
) − (1 + 𝑚𝑥

∗
) (𝑦
2
− 𝑦
∗

2
)

(1 + 𝑚𝑥 + 𝑛𝑦
2
) (1 + 𝑚𝑥∗ + 𝑛𝑦

∗

2
)

− 𝑐
1
𝛽(𝑥 − 𝑥

∗
)
2
+ 𝑐
1

𝜎
2

2
(𝑥 − 𝑥

∗
)
2
.

(18)

Set 𝑐
2
= 𝑦
∗

1
/𝛼, 𝑐
3
= 𝑦
∗

2
/𝑏, 𝑐
1
= 𝑐
3
𝑝(1 + 𝑛𝑥

∗

2
)/𝑞(1 + 𝑚𝑦

∗
) =

(𝑦
∗

2
/𝑏)(𝑝/𝑞)((1 + 𝑚𝑥

∗
)/(1 + 𝑛𝑦

∗
)). Then we have

𝐿𝑉 = {−
𝑦
2

𝑦
1

(𝑦
1
− 𝑦
∗

1
)
2
+ 2 (𝑦

1
− 𝑦
∗

1
) (𝑦
2
− 𝑦
∗

2
)

−
𝑦
1

𝑦
2

(𝑦
2
− 𝑦
∗

2
)
2
} − 𝑐
2
(𝑎
1
−
𝜎
2

1

2
) (𝑦
1
− 𝑦
∗

1
)
2

− 𝑐
3
(𝑎
2
−
𝜎
2

2

2
) (𝑦
2
− 𝑦
∗

2
)
2

−
𝑐
3
𝑝𝑛𝑥
∗
(𝑦
2
− 𝑦
2
)
2

(1 + 𝑚𝑥 + 𝑛𝑦
2
) (1 + 𝑚𝑥∗ + 𝑛𝑦

∗

2
)

− 𝑐
1
(𝛽 −

𝜎
2

2
) (𝑥 − 𝑥

∗
)
2

+
𝑐
1
𝑞𝑦
∗

2
𝑚(𝑥 − 𝑥

∗
)
2

(1 + 𝑚𝑥 + 𝑛𝑦
2
) (1 + 𝑚𝑥∗ + 𝑛𝑦

∗

2
)
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≤ −[√
𝑦
2

𝑦
1

(𝑦
1
− 𝑦
∗

1
) − √

𝑦
1

𝑦
2

(𝑦
2
− 𝑦
∗

2
)]

2

−
𝑦
∗

1

𝛼
(𝑎
1
−
𝜎
2

1

2
) (𝑦
1
− 𝑦
∗

1
)
2

− (
𝑦
∗

2

𝑏
𝑎
2
−
𝑦
∗

2

𝑏

𝜎
2

2

2
) (𝑦
2
− 𝑦
∗

2
)
2
−
𝑦
∗

2

𝑏

𝑝

𝑞

1 + 𝑛𝑥
∗

1 + 𝑚𝑦∗

× (𝛽 −
𝜎
2

2
−

𝑞𝑚𝑦
∗

2

1 + 𝑚𝑥∗ + 𝑛𝑦
∗

2

) (𝑥 − 𝑥
∗
)
2

≤ −
𝑦
∗

1

𝛼
(𝑎
1
−
𝜎
2

1

2
) (𝑦
1
− 𝑦
∗

1
)
2
−
𝑦
∗

2

𝑏
(𝑎
2
−
𝜎
2

2

2
)

× (𝑦
2
− 𝑦
∗

2
)
2
−
𝑦
∗

2

𝑏

𝑝

𝑞

1 + 𝑚𝑥
∗

1 + 𝑛𝑦∗

× (𝛽 −
𝜎
2

2
−

𝑞𝑚𝑦
∗

2

1 + 𝑚𝑥∗ + 𝑛𝑦
∗

2

) (𝑥 − 𝑥
∗
)
2
.

(19)

The condition in Theorem 2 implies 𝐿𝑉 ≤ 0, and the
identity holds if and only if (𝑥, 𝑦

1
, 𝑦
2
) = (𝑥

∗
, 𝑦
∗

1
, 𝑦
∗

2
). By

Theorem 2.1 in [9] and the description of that theorem, we
get the conclusion.

4. Numerical Simulations

In this section, we will use the Euler method and theMilstein
method mentioned in [10] to substantiate the analytical
findings. For system (4), consider the discretization equations

𝑥
(𝑘+1)
− 𝑥
(𝑘)
= 𝑥
(𝑘)
(𝛾 −

𝑞𝑦
(𝑘)

2

1 + 𝑚𝑥(𝑘) + 𝑛𝑦
(𝑘)

2

− 𝛽𝑥
(𝑘)
)

+ 𝜎𝑥
(𝑘)
(𝑥
(𝑘)
− 𝑥
∗
)√Δ𝑡𝜉

(𝑘)

+
𝜎
2

2
(𝑥
(𝑘)
− 𝑥
∗
) [(𝜉
(𝑘)
)
2

− 1] ,

𝑦
(𝑘+1)

1
− 𝑦
(𝑘)

1
= [𝛼𝑦

(𝑘)

2
− 𝑑
1
𝑦
(𝑘)

1
− 𝑎
1
(𝑦
(𝑘)

1
)
2

− 𝑏𝑦
(𝑘)

1
] Δ𝑡

− 𝜎
1
𝑦
(𝑘)

1
(𝑦
(𝑘)

1
− 𝑦
∗

1
)√Δ𝑡𝜁

(𝑘)

+
𝜎
2

1

2
(𝑦
(𝑘)

1
− 𝑦
∗

1
) [(𝜁
(𝑘)
)
2

− 1] ,

𝑦
(𝑘+1)

2
− 𝑦
(𝑘)

2
= [𝑏𝑦

(𝑘)

1
− 𝑑
2
𝑦
(𝑘)

2
− 𝑎
2
(𝑦
(𝑘)

2
)
2

+
𝑝𝑦
(𝑘)

2
𝑥
(𝑘)

1 + 𝑚𝑥(𝑘) + 𝑛𝑦
(𝑘)

2

]Δ𝑡
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Figure 1: The solution of (2) with initial values 𝑥(0) = 10, 𝑦
1
(0) =

10, 𝑦
2
(0) = 12.

− 𝜎
2
𝑦
(𝑘)

2
(𝑦
(𝑘)

2
− 𝑦
∗

2
)√Δ𝑡𝜂

(𝑘)

+
𝜎
2

2

2
(𝑦
(𝑘)

2
− 𝑦
∗

2
) [(𝜂
(𝑘)
)
2

− 1] ,

(20)

where 𝜉(𝑘), 𝜁(𝑘), 𝜂(𝑘), 𝑘 = 1, 2, . . . , 𝑛 are the Gaussian random
variables which follow𝑁(0, 1).

In Figure 1, we show the dynamics of the deterministic
model with parameters 𝛼 = 1.2, 𝑑

1
= 0.26, 𝑏 = 0.58, 𝑎

1
=

0.01, 𝑞 = 1.5, 𝑝 = 1, 𝛽 = 0.375, 𝑑
2
= 0.32, 𝑎

2
= 0.13, 𝑚 = 1,

𝑛 = 0.081, 𝛾 = 5.9, 𝜎 = 𝜎
1
= 𝜎
2
= 0; then 𝑥∗ = 12.37,

𝑦
∗

1
= 13.1, 𝑦∗

2
= 10.6.

In Figure 2, we choose the same parameter values as
Figure 1 except that 𝜎 = 0.4, 𝜎

1
= 0.45, 𝜎

2
= 0.375,

which satisfy the condition in Theorem 2, so Figure 2 clearly
supports the conclusion of Theorem 2.

In Figure 3, we choose 𝛼 = 0.9, d
1
= 0.34, 𝑏 = 0.4, 𝑞 = 0.9,

𝑝 = 0.4, 𝛽 = 0.15, 𝑑
2
= 0.12, 𝑎

1
= 0.1, 𝑎

2
= 0.6, 𝑚 = 0.8, 𝑛 =

0.5, 𝛾 = 0.75, 𝜎 = 𝜎
1
= 𝜎
2
= 0; then 𝑥∗ = 3.066, 𝑦

1
= 1.157,

𝑦
2
= 1.1.; in Figure 4, we choose the same parameter values

as Figure 1 except that 𝜎
1
= 0.2; 𝜎

2
= 0.42; 𝜎

3
= 0.25. So

the conditions of our theoretical results hold. Obviously, the
numerical simulations are indeed confirming our analytical
results.

5. Discussion

In this paper, a stochastic predator-prey model with stage
structure for the predator has been proposed and investi-
gated.We discuss the biological significance of themodel and
establish sufficient conditions for global asymptotic stability
of the model. These results are important because from the
biological point of view, a global stable positive equilibrium
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Figure 2: The solution of the stochastic model (4) with the same
parameters as in Figure 1.
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Figure 3: The solution of (2) with initial values 𝑥(0) = 3, 𝑦
1
(0) =

3.6, 𝑦
2
(0) = 3.2.

means that the community consisting of two species is a stable
biotic community in which all species will coexist. To the best
of our knowledge, the present paper is the first attempt to
study system (4).

Although we only consider the global stability of the
positive equilibrium, some interesting questions deserved
investigation, like the stage structure effect on the long term
behavior of the system. In fact, in (4) we have supposed that
the predator is not only feeding on prey; we can also discuss
the case in which the predator feeds on prey only. We want to
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Figure 4: The solution of the stochastic model (4) with the same
parameters as in Figure 3.

mention that we are unable to give the sufficient conditions
under which system (4) or (2) has a positive equilibrium, for
there are some technical obstacles that cannot be overcome at
present stage. However, the values in Figure 1 show that the
system (2) has the positive equilibrium position in some case,
and we leave this for future work.
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We establish the existence of traveling wave solutions and small amplitude traveling wave train solutions for a reaction-diffusion
system based on a predator-prey model incorporating a prey refuge. By using the shooting argument, invariant manifold theory,
and theHopf bifurcation theorem, we analyze the dynamic behavior of this model in the three-dimensional phase space. Numerical
results are also presented to illustrate the theoretical results.

1. Introduction

In mathematical biology, one interesting and dominant
theme is the dynamic relationship between predators and
their prey [1–3]. Predator-prey models have been studied
mathematically since the pioneering work of Lotka and
Volterra. In recent years, Leslie-Gower model [4, 5], an
important predator-prey model, has been extensively mod-
ified and studied by many authors [6–11]. A modified Leslie-
Gower predator-prey model is read as

d𝐻
d𝑡

= 𝐻 (𝑟 − 𝑎𝐻) −
𝛽
1
𝐻𝑃

𝑏 + 𝐻
,

d𝑃
d𝑡

= 𝑃(𝑑 −
𝛽
2
𝑃

𝑏 + 𝐻
) ,

(1)

where function values 𝐻 and 𝑃 represent prey and predator
population densities, respectively, at any time 𝑡. The model
parameters 𝑟, 𝑎, 𝑏, 𝛽

1
, 𝛽
2
, and 𝑑 are positive constants. 𝑟

describes the growth rate of prey𝐻. 𝑎measures the strength
of competition among individuals of species 𝐻. 𝑏 measures
the extent to which environment provides protection to prey
𝐻. 𝑑 is the growth rate of predators 𝑃. 𝛽

1
is the maximum

value of per capita reduction of 𝐻 due to 𝑃. 𝛽
2
has a similar

meaning to 𝛽
1
.

As the authors of [6] said, we live in a spatial world,
and spatial component of ecological interaction has been
identified as an important factor in how ecological com-
munities are shaped. Mite predator-prey interactions often
exhibit spatial refugia, which means the prey received some
degree of protection from predation and reduces the chance
of extinction due to predation [6, 9–15]. A great deal of
researches on the effects of prey refuges on the population
dynamic has been studied. Kar [12] indicated that the increas-
ing refuge can increase prey densities and lead to population
outbreaks. Chen et al. [9] showed that the prey refuge could
greatly influence the densities of both prey and predator
species, while it has no influence on the species’ persistence
property. In [13–15] it was obtained that the refuges protecting
a constant number of prey have a stronger stabilizing effect on
population dynamic than the refuges protecting a constant
proportion of prey.

On the other hand, the existence of traveling solutions has
been wildly studied by many researchers [16–24]. A traveling
wave solution is a spatial translation invariant solution of
differential equations with spatial-diffusion. Dunbar [16]
proved the existence of traveling wave solutions of diffusive
Lotka-Volterra and used the methods of a shooting argument
and a Lyapunov function. Zhang [19] showed the existence of
traveling wave solutions in a modified vector-disease model
by using the geometric singular perturbation theory. Hou
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and Leung [20] used the method of upper-lower solutions
to prove the existence of traveling solutions of a competitive
reaction-diffusive system. Ahmad et al. [21, 22] used only
functional analysis, without constructing a Lyapunov func-
tion, to prove the existence of such solutions for a class of
reaction-diffusion equations. Huang et al. [23] and Li and
Wu [24] used Dunbar’ method to study the existence of
traveling solutions of diffusive predator-prey models with
Holling type-II and Holling type-III, respectively.

In this paper, based on the above discussion, we are
interested in the existence of traveling wave solutions of a
reaction-diffusion Leslie-Gower-type model incorporating a
prey refuge, which is modified from model (1). Taking 𝑃 =
𝛽
1
𝑃, 𝛽 = 𝛽

2
/𝛽
1
and dropping the stars on 𝑃, we will extend

model (1) by incorporating a prey refuge into the following
system:

𝜕𝐻

𝜕𝑡
= 𝐷
1
Δ𝐻 +𝐻 (𝑟 − 𝑎𝐻) −

(1 − 𝑚)𝐻𝑃

𝑏 + (1 − 𝑚)𝐻
,

𝜕𝑃

𝜕𝑡
= 𝐷
2
Δ𝑃 + 𝑃(𝑑 −

𝛽𝑃

𝑏 + (1 − 𝑚)𝐻
) ,

(2)

where Δ = ∇
2
= (𝜕
2
/𝜕𝑥
2
+ 𝜕
2
/𝜕𝑦
2
) is the usual Laplacian

operator in two-dimensional space. 𝐷
1
and 𝐷

2
are the

diffusion coefficients of prey and predator, respectively. 𝑚 ∈

[0, 1) is constant.𝑚𝐻 is a refuge protecting of the prey, which
means (1 − 𝑚)𝐻 of prey available to the predator. To ensure
system (2) has a positive equilibrium point, we require that
𝑟 > 𝑑(1 − 𝑚). Obviously, system (2) has four equilibrium
points:

𝐸
0
(0, 0) , 𝐸

1
(
𝑟

𝑎
, 0) , 𝐸

2
(0,

𝑎𝑏

𝛽
) , 𝐸 (𝐻

∗
, 𝑃
∗
) , (3)

where

𝐻
∗
=
𝑑𝑚 − 𝑑 + 𝛽𝑟

𝑎𝛽
,

𝑃
∗
=
𝑎𝑏𝑑𝛽 + (𝑑𝑚 − 𝑑 + 𝛽𝑟) (1 − 𝑚) 𝑑

𝑎𝛽2

=
𝑑 (𝑏 + (1 − 𝑚)𝐻

∗
)

𝛽
.

(4)

The equilibrium point 𝐸
0
corresponds to absence of both

species, 𝐸
1
corresponds to the prey at the environment

carrying capacity in the absence of the predator,𝐸
2
means the

extinct of prey, and 𝐸 corresponds to coexistence of the two
species. From [6], we know 𝐸

0
and 𝐸

1
are two saddle points

and 𝐸 is globally asymptotical stable when 𝑑𝐻
∗
(1 − 𝑚)

3
<

𝑎𝑑𝛽(𝑏+(1−𝑚)𝐻
∗
), which indicates that system (2)may have

traveling waves.
For mathematical simplicity, we assume that 𝐷

1
= 0

(considered as the 𝐷
1
is sufficient small which indicates the

prey disperse very slowly relative to the mobile herbivore

predator [16]). Then system (2) can be converted to the
system:

𝜕𝐻

𝜕𝑡
= 𝐻 (𝑟 − 𝑎𝐻) −

(1 − 𝑚)𝐻𝑃

𝑏 + (1 − 𝑚)𝐻
,

𝜕𝑃

𝜕𝑡
= 𝐷Δ𝑃 + 𝑃(𝑑 −

𝛽𝑃

𝑏 + (1 − 𝑚)𝐻
) .

(5)

Wewill establish the existence of traveling wave solutions and
small amplitude traveling wave train solutions of this system.
The method used here is a shooting argument inR3 together
with a Lyapunov function, LaSalle’s invariant principle, and
Hopf bifurcation theorem.

Remark that although the methods we use to prove the
existence are similar to these in [16, 23, 24], there are several
differences. For one thing, it is a different model, a modified
Leslie-Gower model incorporating a prey refuge. For the
other thing, we construct a different Wazewski set 𝑊 and a
new Lyapunov function [25–27].

The rest of the paper is organized as follows. In Section 2,
main results on the existence of traveling wave solutions and
small amplitude wave train solutions are stated. In Section 3,
we give the proofs of the main results. In Section 4, some
numerical results are presented.

2. Main Results

A traveling wave solution is a spatial translation invariant
solution. In order to establish the existence of traveling wave
solutions of system (5), we assume the systemhas a solution of
the special form𝐻(𝑥, 𝑡) = 𝐻(𝑥+𝑐𝑡),𝑃(𝑥, 𝑡) = 𝑃(𝑥+𝑐𝑡), where
parameter 𝑐(> 0) is the wave speed. Substituting 𝐻(𝑥, 𝑡) =

𝐻(𝑠), 𝑃(𝑥, 𝑡) = 𝑃(𝑠), 𝑠 = 𝑥 + 𝑐𝑡 into (5), the corresponding
wave equations become

𝑐𝐻

= 𝐻 (𝑟 − 𝑎𝐻) −

(1 − 𝑚)𝐻𝑃

𝑏 + (1 − 𝑚)𝐻
,

𝑐𝑃

= 𝐷𝑃

+ 𝑃(𝑑 −

𝛽𝑃

𝑏 + (1 − 𝑚)𝐻
) .

(6)

Here () denotes the differentiation with respect to the travel-
ing wave variable 𝑠. Due to ecological motivation, we require
that the travelingwave solutions𝐻 and𝑃 are nonnegative and
satisfying the following boundary conditions:

𝐻(−∞) =
𝑟

𝑎
, 𝐻 (+∞) = 𝐻

∗
,

𝑃 (−∞) = 0, 𝑃 (+∞) = 𝑃
∗
.

(7)

Rewrite the system (6) as a system of first order equation in
R3:

𝐻

=
1

𝑐
𝐻 (𝑟 − 𝑎𝐻) −

1

𝑐

(1 − 𝑚)𝐻𝑃

𝑏 + (1 − 𝑚)𝐻
,

𝑃

= 𝑈,

𝑈

=

𝑐

𝐷
𝑈 −

1

𝐷
𝑃(𝑑 −

𝛽𝑃

𝑏 + (1 − 𝑚)𝐻
) .

(8)
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Lemma 1. Let 𝑓(𝐻) = (𝑟 − 𝑎𝐻)(𝑏 + (1 − 𝑚)𝐻) − (1 − 𝑚)𝑃
∗,

and then 𝑓(𝐻∗) = 0 and 𝑓(𝐻) = 0 has two real roots when
𝑟 > ((𝑑(1 − 𝑚))/𝛽) (i.e., 𝑏𝑟 − (1 − 𝑚)𝑃

∗
> 0). Furthermore,

the following results hold:

(a) if 0 < 𝐻 < 𝐻
∗, then 𝑓(𝐻) > 0;

(b) if𝐻 > 𝐻
∗, then 𝑓(𝐻) < 0.

Now we state the main results as follows.

Theorem 2. (i) If 0 < 𝑐 < √4𝐷𝑑, then there are no
nonnegative solutions of system (8) satisfying the boundary
conditions (7).

(ii) If 𝑐 > √4𝐷𝑑, 𝑟 > ((𝑑(1 − 𝑚))/𝛽), then there are
nonnegative solutions of system (8) satisfying the boundary
conditions (7), which correspond to traveling wave solutions of
system (5).

Theorem 3. Let 𝑃(𝜆) = 𝜆
3
−(𝑀/𝑐+𝑐/𝐷)𝜆

2
+((𝑀−𝑑)/𝐷)𝜆−

(𝑎𝑑𝐻
∗
/𝑐𝐷) = 0, where𝑀 = −𝑎𝐻

∗
+ ((1 − 𝑚)

2
𝐻
∗
𝑑
2
/𝛽
2
𝑃
∗
).

(a) If 𝑃(𝜆)maximum < 0, then 𝐻, 𝑃 spreads to the posi-
tive equilibrium point (𝐻∗, 𝑃∗) nonmonotonously for
traveling wave variable 𝑠.

(b) If 𝑃(𝜆)maximum ≥ 0, then 𝐻, 𝑃 spreads to the positive
equilibrium point (𝐻∗, 𝑃∗)monotonously for traveling
wave variable 𝑠.

Theorem 4. Let 𝑝 = 𝑀 − 𝑑 and 𝑞 = 𝑎𝑑𝐻
∗. If

max{(1 − 𝑚) , 𝑑 (1 − 𝑚)
𝑟

} < 𝛽 <
𝑎𝑏𝑑(1 − 𝑚)

2

(𝑟 (1 − 𝑚) + (3/2) 𝑎𝑏)
2
,

(9)

then, as the parameter 𝛽 crosses the bifurcation curve 𝑐2 =

𝐷[𝑞/𝑝 − 𝑝 − 𝑑] at 𝛽
0
in the (𝛽, 𝑐)-parameter plane, sys-

tem (8) undergoes a Hopf bifurcation to a small amplitude
periodic solution at the equilibrium point (𝐻∗, 𝑃∗, 0), which
corresponds to a small amplitude traveling wave train solution
of system (5).

3. Proofs of the Main Results

3.1. Proof of Theorem 2. In this section, we subdivide the
proof into several Sections 3.1.1–3.1.4 for convenience. In
Section 3.1.1, we recall some notations used throughout
this section and state the well-known Wazewski Theorem.
Section 3.1.2 contains a Wazewski set 𝑊 and the exit set
𝑊
−. In Section 3.1.3, the behavior of trajectories on the

strongly unstable manifold at ((𝑟/𝑎), 0, 0) is presented by
some technical lemmas. In Section 3.1.4, we finish the proof
of existence of traveling wave solutions by constructing a
Lyapunov function.

3.1.1. Recall the Wazewski Theorem [16, 17]. Consider the
differential equation:

d𝑦
d𝑠

= 𝑓 (𝑦) , 𝑦 ∈ R
N
, (10)

where 𝑓 : RN
→ RN is a continuous function and satisfying

a Lipschitz condition. Let 𝑦(0, 𝑦
0
) be the unique solution of

(10) satisfying 𝑦(0, 𝑦
0
) = 𝑦
0
. For convenience, set 𝑦(𝑠, 𝑦

0
) =

𝑦
0
⋅ 𝑠. Let 𝑈 ⋅ 𝑆 be the set of points 𝑦

0
⋅ 𝑠, where 𝑦

0
∈ 𝑈 and

𝑠 ∈ 𝑆.
Given𝑊 ⊆ RN, define

𝑊
−
= {𝑦
0
∈ 𝑊 : ∀𝑠 > 0, 𝑦

0
⋅ [0, 𝑠) ̸⊆ 𝑊} . (11)

𝑊
− is called the immediate exit set of𝑊. Given Σ ⊆ 𝑊, let

Σ
0
= {𝑦
0
∈ Σ : ∃𝑠

0
= 𝑠
0
(𝑦
0
) such that 𝑦

0
⋅ 𝑠
0
∉ 𝑊} . (12)

For 𝑦
0
∈ Σ
0, define

𝑇 (𝑦
0
) = sup {𝑠 : 𝑦

0
⋅ [0, 𝑠) ⊆ 𝑊} . (13)

𝑇(𝑦
0
) is called an exit time. Note that 𝑦

0
⋅ 𝑇(𝑦
0
) ∈ 𝑊

− and
𝑇(𝑦
0
) = 0 if and only if 𝑦

0
∈ 𝑊
−. The notation cl(𝑊) denotes

the closure of𝑊.

Lemma 5. Suppose that

(i) if 𝑦
0
∈ Σ and 𝑦

0
⋅ [0, 𝑠] ⊆ cl(𝑊), then 𝑦

0
⋅ [0, 𝑠] ⊆ 𝑊;

(ii) if 𝑦
0
∈ Σ, 𝑦

0
⋅ 𝑠 ∈ 𝑊 and 𝑦

0
⋅ 𝑠 ∉ 𝑊

−, then there is an
open set 𝑉

𝑠
about 𝑦

0
⋅ 𝑠 disjoint from𝑊

−;
(iii) Σ = Σ

0, Σ is a compact set and intersects a trajectory of
(10) only once. Then the mapping 𝐹(𝑦

0
) = 𝑦
0
⋅ 𝑇(𝑦
0
) is

a homeomorphism from Σ to its image on𝑊−.

A set 𝑊 ⊆ RN satisfying the conditions (i) and (ii) is
called a Wazewski set.

3.1.2. Construct𝑊 and𝑊−. Evaluating the Jacobin of system
(8) at the equilibrium 𝐸

1
((𝑟/𝑎), 0, 0) gives

𝐽 (𝐸
1
) = (

−
𝑟

𝑐
−

(1 − 𝑚) 𝑟

𝑐 (𝑎𝑏 + (1 − 𝑚) 𝑟)
0

0 0 1

0 −
𝑑

𝐷

𝑐

𝐷

). (14)

The corresponding eigenvalues of (14) are

𝜆
1
= −

𝑟

𝑐
,

𝜆
2
=
𝑐/𝐷 − √𝑐2/𝐷2 − 4𝑑/𝐷

2
,

𝜆
3
=
𝑐/𝐷 + √𝑐2/𝐷2 − 4𝑑/𝐷

2
.

(15)

If 0 < 𝑐 < √4𝐷𝑑, then 𝜆
2
and 𝜆

3
are a pair of complex

conjugate eigenvalues with positive real part. By Theorems
6.1 and 6.2 in [25], there exists a 2-dimensional unstable
manifold based at ((𝑟/𝑎), 0, 0), the point is a spiral point
on this unstable manifold, and the trajectory approaching
((𝑟/𝑎), 0, 0) as 𝑠 → −∞must have 𝑃(𝑠) < 0 for some 𝑠. This
violates the requirement that the travelingwave solutionmust
be nonnegative. So the first part of Theorem 2 is proved.
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We only need to account for the case 𝑐 > √4𝐷𝑑 in
the following. It is obvious that 𝜆

1
< 0 < 𝜆

2
< 𝜆
3
, the

eigenvectors x
1
, x
2
, x
3
associated with 𝜆

1
, 𝜆
2
, 𝜆
3
, respectively,

are

x
𝑖
= (−1, 𝑝 (𝜆

𝑖
) , 𝜆
𝑖
𝑝 (𝜆
𝑖
)) , 𝑖 = 1, 2, 3, (16)

where 𝑝(𝜆
𝑖
) = ((𝑐(𝑎𝑏 + (1 − 𝑚)𝑟))/((1 − 𝑚)𝑟)) ⋅ (𝜆

𝑖
+

𝑟/𝑐). Applying Theorems 6.1 and 6.2 in [25], we get a one-
dimension strongest unstable manifold u

1
tangent to x

3
at

((𝑟/𝑎), 0, 0) and a two-dimension strongly unstable manifold
u
2
tangent to the span of x

2
, x
3
at point ((𝑟/𝑎), 0, 0). In a small

neighborhood of ((𝑟/𝑎), 0, 0), points on u
1
are parametrically

represented by a function 𝑓
1
(𝑚) (R1 → R2):

𝑓
1
(𝑚) = (

𝑟

𝑎
, 0, 0)

𝑇

+ 𝑚x
3
+ 𝑜 (|𝑚|) , (17)

and points on u
2
also could be represented by a function

𝑓
2
(𝑚) (R2 → R3):

𝑓
2
(𝑚) = (

𝑟

𝑎
, 0, 0)

𝑇

+ 𝑚x
3
+ 𝑛x
2
+ 𝑜 (|𝑚| + |𝑛|) . (18)

Obviously, u
1
⊆ u
2
.

The motivation and method of constructing the
Wazewski set𝑊 are similar to that in Dunbar [17]: it will be
the complement of two blocks of R3 and the two blocks are
chosen so that 𝑈 has the same sign as 𝑈. Thus, solutions
would not have 𝑈 → 0 as 𝑠 → ∞ when entering these
blocks. In this paper, the Wazewski set 𝑊 is defined as
follows:

𝑊 = R
3
\ (𝑇 ∪ 𝑄) , (19)

where
𝑇 = {(𝐻, 𝑃, 𝑈) : 𝑈 > 0, 𝐻 < 𝐻

∗
, 𝑃 > 𝑃

∗
} ,

𝑄 = {(𝐻, 𝑃, 𝑈) : 𝑈 < 0, 𝐻 > 𝐻
∗
, 𝑃 < 𝑃

∗
} .

(20)

Note that 𝑇 ∩ 𝑄 = ⌀ and𝑊 is a closed set. We obtain

𝜕𝑊 = 𝜕𝑇 ∪ 𝜕𝑄,

𝑊
−
= 𝜕𝑊 \ (𝐽 ∪ {(𝐻

∗
, 𝑃
∗
, 𝑈
∗
)}) ,

(21)

where

𝐽 = {(𝐻, 𝑃, 𝑈) : 𝐻 ≥ 𝐻
∗
, 𝑃 ≤ 0, 𝑈 = 0} . (22)

Obviously, 𝑊− is not a connected set. Actually, one compo-
nent of𝑊− is 𝜕𝑃 \ {(𝐻

∗
, 𝑃
∗
, 𝑈
∗
)} and the other is 𝜕𝑄 \ (𝐽 ∪

{(𝐻
∗
, 𝑃
∗
, 𝑈
∗
)}).

As the details of proving that 𝑊− is the set described
above are tedious, we just prove the portion 𝜕𝑄 of 𝜕𝑊 to show
why the set 𝐽must be excluded from 𝜕𝑊 to𝑊−.

(1) 𝐻 = 𝐻
∗, 𝑃 < 𝑃

∗, 𝑈 < 0. Then we have

𝐻

=
𝐻

𝑐
(𝑟 − 𝑎𝐻 −

(1 − 𝑚)𝑃

𝑏 + (1 − 𝑚)𝐻
)

𝐻=𝐻
∗
, 𝑃<𝑃
∗

>
𝐻
∗

𝑐
(𝑟 − 𝑎𝐻

∗
−

(1 − 𝑚)𝑃
∗

𝑏 + (1 − 𝑚)𝐻
∗
) = 0.

(23)

Then the trajectory enters 𝑄.

(2) 𝐻 > 𝐻
∗, 𝑃 = 𝑃

∗, 𝑈 < 0. Then

𝑃

= 𝑈 < 0. (24)

Thus, 𝑃 is decreasingly entering 𝑄.

(3) 𝐻 > 𝐻
∗, 𝑃 < 𝑃

∗, 𝑈 = 0. Then

𝑈

=
𝑃

𝐷
(

𝛽𝑃

𝑏 + (1 − 𝑚)𝐻
− 𝑑) . (25)

(i) 0 < 𝑃 < 𝑃
∗, and thus 𝛽𝑃/(𝑏 + (1 − 𝑚)𝐻) − 𝑑 <

𝛽𝑃
∗
/(𝑏 + (1 −𝑚)𝐻

∗
) − 𝑑 = 0 and the trajectory

enters the 𝑄.
(ii) 𝑃 < 0, then 𝑈 > 0. This implies 𝐻 > 𝐻

∗, 𝑃 <

𝑃
∗, 𝑈 > 0. The trajectory does not enter 𝑇 and

𝑄.
(iii) 𝑃 = 0, and then 𝑈


= 𝑃

= 0, 𝑈 = 𝑃


= 0;

furthermore, 𝑈(𝑛) = 𝑃
(𝑛)

= 0. This implies the
trajectory does not enter the inner of 𝑄.

(4) 𝐻 = 𝐻
∗, 𝑃 = 𝑃

∗, 𝑈 = 0. This is a singular point not
in the immediate exit set.

(5) 𝐻 = 𝐻
∗, 𝑃 = 𝑃

∗, 𝑈 < 0. Then 𝑃 = 𝑈 < 0, 𝐻 = 0

and

𝐻

=
𝐻
∗

𝑐
(−

(1 − 𝑚)𝑈

𝑏 + (1 − 𝑚)𝐻
∗
) < 0, (26)

which implies 𝑃 and𝐻 both decrease. The trajectory
enters 𝑄.

(6) 𝐻 > 𝐻
∗, 𝑃 = 𝑃

∗, 𝑈 = 0. Then

𝑈

=

1

𝐷
(𝑐𝑈 − 𝑃(𝑑 −

𝛽𝑃

𝑏 + (1 − 𝑚)𝐻
))

𝐻>𝐻
∗
, 𝑃=𝑃
∗
, 𝑈=0

< 0,

𝑃

= 𝑈 = 0, 𝑃


= 𝑈

< 0.

(27)

Hence, the trajectory enters 𝑄.

(7) 𝐻 = 𝐻
∗, 𝑃 < 𝑃

∗, 𝑈 = 0. Then

𝐻

=
𝐻

𝑐
(𝑟 − 𝑎𝐻 −

(1 − 𝑚)𝑃

𝑏 + (1 − 𝑚)𝐻
)

𝐻=𝐻
∗
, 𝑃<𝑃
∗

=
𝐻
∗

𝑐
(𝑟 − 𝑎𝐻

∗
−

(1 − 𝑚)𝑃

𝑏 + (1 − 𝑚)𝐻
∗
)

>
𝐻
∗

𝑐
(𝑟 − 𝑎𝐻

∗
−

(1 − 𝑚)𝑃
∗

𝑏 + (1 − 𝑚)𝐻
∗
) = 0.

(28)

(i) 𝑃 < 0, and then 𝑈 > 0. This implies 𝐻 > 𝐻
∗,

𝑃 < 𝑃
∗, 𝑈 > 0. The trajectory does not enter 𝑃

and 𝑄.
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(ii) 𝑃 = 0, and then 𝑈(𝑛) = 𝑃
(𝑛)

= 0, (𝑛 = 1, 2, . . .).
This implies the trajectory does not enter the
inner of 𝑄.

(iii) 0 < 𝑃 < 𝑃
∗, and then

𝑈

=

1

𝐷
(𝑐𝑈 − 𝑃(𝑑 −

𝛽𝑃

𝑏 + (1 − 𝑚)𝐻
))

𝐻=𝐻
∗
, 𝑈=0

=
1

𝐷
(−𝑃(𝑑 −

𝛽𝑃

𝑏 + (1 − 𝑚)𝐻
∗
))

<
1

𝐷
(−𝑃
∗
(𝑑 −

𝛽𝑃
∗

𝑏 + (1 − 𝑚)𝐻
∗
)) = 0.

(29)

Hence, it implies𝐻 > 𝐻
∗, 𝑃 < 𝑃

∗, 𝑈 < 0, which ensures the
trajectory enters the 𝑄.

Based on the above analysis, 𝐽 = {(𝐻, 𝑃, 𝑈) : 𝐻 ≥

𝐻
∗
, 𝑃 ≤ 0, 𝑈 = 0} and (𝐻

∗
, 𝑃
∗
, 0) must be excluded from

𝜕𝑊 to𝑊−.

3.1.3. Construct the Set Σ. We need to construct the set Σ
before using Lemma 5. By a series of lemmas (Lemmas
5–9), we obtain set Σ will be an arc of a sufficient small
circle surrounding ((𝑟/𝑎), 0, 0) on the unstable manifold u

2
.

Furthermore, one endpoint of the arc is the intersection of
the circle with the strongly unstable manifold u

1
, and the

other endpoint is the intersection of the circle with the plane
defined by 𝑈 = 0. Lemmas also show that the first endpoint
is carried by the strongly unstable manifold into 𝑇 while the
other is carried into 𝑃.

We take a notation Ω
1
= {(𝐻, 𝑃, 𝑈) : 𝐻 ≤ (𝑟/𝑎), 𝑃 ≥

0, 𝑈 ≥ 0}.

Lemma 6. Let 𝑐 > √4𝐷𝑑. Any solutions of (8) having a point
𝑠
0
such that 0 < 𝐻(𝑠

0
), 𝑃(𝑠
0
) > 0, and 𝑈(𝑠

0
) > (𝑐/2𝐷)𝑃(𝑠

0
)

will have 𝑃(𝑠) > 0 and 𝑈(𝑠) > (𝑐/2𝐷)𝑃(𝑠) for all 𝑠 > 𝑠
0
.

This is particularly true for trajectories on the branch of strongly
unstable manifold u

1
in the octant Ω

1
.

Proof. Take 𝑠
0
= 0 without loss of generality. Suppose, on

the contrary, that there exists an 𝑠 > 0 such that 𝑈(𝑠) <

(𝑐/2𝐷)𝑃(𝑠). Let

𝑠
1
= inf {𝑠 > 0 : 𝑈 (𝑠) ≤

𝑐

2𝐷
𝑃 (𝑠)} . (30)

For 0 ≤ 𝑠 ≤ 𝑠
1
, 𝑃(𝑠) = 𝑈(𝑠) ≥ (𝑐/2𝐷)𝑃(𝑠) and 𝑃(0) > 0, so

𝑃(𝑠
1
) > 0. Also 𝑈(𝑠

1
) = (𝑐/2𝐷)𝑃(𝑠

1
) and 𝑈(𝑠) > (𝑐/2𝐷)𝑃(𝑠)

for 0 ≤ 𝑠 < 𝑠
1
. Thus (𝑐/2𝐷)𝑃(𝑠

1
) ≥ 𝑈


(𝑠
1
) (i.e., 𝑈(𝑠

1
) −

(𝑐/2𝐷)𝑃

(𝑠
1
) ≤ 0). Then, from (8), we have

(
𝑐

𝐷
𝑈 −

𝑃

𝐷
(𝑑 −

𝛽𝑃

𝑏 + (1 − 𝑚)𝐻
) −

𝑐

2𝐷
𝑈)

𝑠
1

≤ 0. (31)

Then
𝑐

2𝐷
𝑈 (𝑠
1
) −

𝑑

𝐷
𝑃 (𝑠
1
)

≤
𝑐

2𝐷
𝑈 (𝑠
1
) −

1

𝐷
𝑃 (𝑠
1
) (𝑑 −

𝛽𝑃 (𝑠
1
)

𝑏 + (1 − 𝑚)𝐻 (𝑠
1
)
) ≤ 0.

(32)

Since 𝑈(𝑠
1
) = (𝑐/2𝐷)𝑃(𝑠

1
), we have 𝑐2 ≤ 4𝐷𝑑.

It must be the case that 0 < 𝐻(𝑠
1
) < (𝑟/𝑎). The plane

defined by 𝑈 = 0 is an invariant manifold, so 𝐻(𝑠
1
) > 0 is

obvious. We just verify that𝐻(𝑠
1
) < (𝑟/𝑎). If this is not true,

then there exists 0 < 𝑠
2
≤ 𝑠
1
such that 𝐻(𝑠

2
) = (𝑟/𝑎) and

𝐻

(𝑠
2
) ≥ 0. But then

0 ≤ 𝐻

(𝑠
2
) = (

1

𝑐
𝐻(𝑟 − 𝑎𝐻) −

1

𝑐

(1 − 𝑚)𝐻𝑃

𝑏 + (1 − 𝑚)𝐻
)

𝑠=𝑠
2

= −
1

𝑐

(1 − 𝑚)𝐻𝑃

𝑏 + (1 − 𝑚)𝐻
|
𝑠=𝑠
2

< 0,

(33)

so 0 < 𝐻(𝑠
1
) < (𝑟/𝑎) for 0 ≤ 𝑠 ≤ 𝑠

1
. So 𝑐2 ≤ 4𝐷𝑑, which is

a contradiction. Thus 𝑈(𝑠) > (𝑐/2𝐷)𝑃(𝑠) for all 𝑠 > 0. Then
also 𝑃(𝑠) > 0 for all 𝑠 > 0.

A trajectory on the branch of the strongly unstable
manifold u

1
in the octantΩ

1
approaches ((𝑟/𝑎), 0, 0) tangent

to x
3
. From subset 𝐵, the second and third components of

this tangent vector satisfy 𝑈 = 𝜆
3
𝑃. Thus there exists a point

𝑠
0
on the trajectory whose components satisfy 0 < 𝐻(𝑠

0
) <

(𝑟/𝑎), 𝑃(𝑠
0
) > 0, and 𝑈(𝑠

0
) = 𝜆

3
𝑃(𝑠
0
) > (𝑐/2𝐷)𝑃(𝑠

0
). This

completes the proof.

Lemma 7. Assume that 𝑐 > √4𝐷𝑑; then a trajectory on the
portion of the strongly unstable manifold u

1
in the octant Ω

1

must satisfy

𝑃 (𝑠) ≥ − (𝐻 (𝑠) −
𝑟

𝑎
)(

𝑐 (𝑎𝑏 + (1 − 𝑚) 𝑟)

(1 − 𝑚) 𝑟

𝑐
2
+ 2𝐷𝑟

2𝐷𝑐
) ,

(34)

for all 𝑠.

Proof. A trajectory on the portion of the strongly unstable
manifold u

1
in the octant Ω

1
could be written as 𝑃(𝑠) =

−𝑝(𝜆
3
)(𝐻(𝑠) − 𝑟/𝑎), where

𝑝 (𝜆
3
) =

𝑐 (𝑎𝑏 + (1 − 𝑚) 𝑟)

(1 − 𝑚) 𝑟
(𝜆
3
+
𝑟

𝑐
)

=
𝑐 (𝑎𝑏 + (1 − 𝑚) 𝑟)

(1 − 𝑚) 𝑟

× (
𝑐/𝐷 + √𝑐2/𝐷2 − 4𝑑/𝐷

2
+
𝑟

𝑐
)

>
𝑐 (𝑎𝑏 + (1 − 𝑚) 𝑟)

(1 − 𝑚) 𝑟

𝑐
2
+ 2𝐷𝑟

2𝐷𝑐
.

(35)

Lemma 8. Let 𝑙 > (𝑐/𝐷) be a fixed number. A solutions of (8)
having a point 𝑠

0
such that 0 < 𝐻(𝑠

0
) < (𝑟/𝑎), 𝑃(𝑠

0
) > 0, and

𝑈(𝑠
0
) < 𝑙𝑃(𝑠

0
) will have 𝑈(𝑠) < 𝑙𝑃(𝑠) for all 𝑠 > 𝑠

0
such that

𝑃(𝑠) > 0. In particular, this is true for trajectories on branch of
the strongly unstable manifold u

1
in the octant Ω

1
.

The proof is similar to that of Lemma 6, so it is omitted.

Lemma 9. If a solution of (8) has a point, taking to 𝑠 = 0

without loss of generality, such that𝐻(0) < (𝑟/𝑎), 0 < 𝑃(0) <

−((𝑐(𝑎𝑏 + (1 − 𝑚)𝑟))/(𝑎𝐻
∗
(1 − 𝑚)))(𝑙 + (𝑟/𝑐))(𝐻(𝑠) − (𝑟/𝑎)),
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and 𝑈(0) < 𝑙𝑃(0), then for all 𝑠 > 0, as long as 𝐻(𝑠) > 𝐻
∗,

𝑃(𝑠) > 0 the trajectory must have that 𝑃(𝑠) < −(𝑐(𝑎𝑏 + (1 −

𝑚)𝑟)/𝑎𝐻
∗
(1 − 𝑚))(𝑙 + (𝑟/𝑐))(𝐻(𝑠) − (𝑟/𝑎)). In particular, this

is true for a trajectory on the branch of the strongly unstable
manifold u

1
in the octant Ω

1
.

Proof. We first prove that𝐻(𝑠) < (𝑟/𝑎) for all 𝑠 > 0 such that
𝑃(𝑠) > 0. If this is not true, then there exists a first time 𝑠

1
> 0

such that𝐻(𝑠) = (𝑟/𝑎),𝐻(𝑠
1
) ≥ 0 and 𝑃(𝑠

1
) > 0. But then,

0 ≤ 𝐻

(𝑠
1
) = (

1

𝑐
𝐻 (𝑟 − 𝑎𝐻) −

1

𝑐

(1 − 𝑚)𝐻𝑃

𝑏 + (1 − 𝑚)𝐻
)

𝑠=𝑠
1

< 0.

(36)

This is a contradiction. Thus 𝐻(𝑠) < (𝑟/𝑎) for all 𝑠 > 0 such
that 𝑃(𝑠) > 0.

Now we show that 𝑃(𝑠) < −𝐴
0
(𝐻(𝑠) − (𝑟/𝑎)) for all 𝑠 > 0

as long as 𝐻(𝑠) > 𝐻
∗ and 𝑃(𝑠) > 0. Let 𝐴

0
= (𝑐(𝑎𝑏 + (1 −

𝑚)𝑟)/𝑎𝐻
∗
(1 − 𝑚))(𝑙 + (𝑟/𝑐)). Suppose on the contrary that

there exists a first time 𝑠
2
such that 𝐻(𝑠

2
) > 𝐻

∗, 𝑃(𝑠
2
) > 0,

but 𝑃(𝑠
2
) = −𝐴

0
(𝐻(𝑠
2
) − (𝑟/𝑎)). Then 𝑃(𝑠

2
) ≥ −𝐴

0
(𝐻

(𝑠
2
)).

By Lemma 8, 𝑈(𝑠) < 𝑙𝑃(𝑠) for all 𝑠 > 𝑠
0
such that 𝑃(𝑠) > 0.

Then

𝑙𝑃 (𝑠
2
) ≥ 𝑈 (𝑠

2
) = 𝑃

(𝑠
2
) ≥ −𝐴

0
(𝐻

(𝑠
2
))

= −𝐴
0

𝐻

𝑐
(𝑟 − 𝑎𝐻 −

(1 − 𝑚)𝑃

𝑏 + (1 − 𝑚)𝐻
)

𝑠=𝑠
2

.

(37)

For 𝑃(𝑠
2
) = −𝐴

0
(𝐻(𝑠
2
) − (𝑟/𝑎)) and𝐻∗ < 𝐻(𝑠

2
) < (𝑟/𝑎), we

have

𝑙 ≥

−𝐴
0
(𝐻/𝑐) (𝑟 − 𝑎𝐻 − ((1 − 𝑚)𝑃) / (𝑏 + (1 − 𝑚)𝐻))

𝑠=𝑠
2

−𝐴
0
(𝐻 (𝑠
2
) − (𝑟/𝑎))

= −
1

𝑐
(

𝐴
0
𝐻(𝑟 − 𝑎𝐻)

−𝐴
0
(𝐻 − (𝑟/𝑎))

−
(1 − 𝑚)𝑃

𝑏 + (1 − 𝑚)𝐻
⋅
𝐴
0
𝐻

𝑃
)

𝑠=𝑠
2

= −
1

𝑐
(𝑎𝐻 −

𝐴
0
(1 − 𝑚)𝐻

𝑏 + (1 − 𝑚)𝐻
)

𝑠=𝑠
2

>
1

𝑐
(

𝐴
0
(1 − 𝑚)𝐻

∗

𝑏 + (1 − 𝑚) (𝑟/𝑎)
− 𝑟)

=
𝑎𝐴
0 (1 − 𝑚)𝐻

∗

𝑐 (𝑎𝑏 + (1 − 𝑚) 𝑟)
−
𝑟

𝑐

= 𝑙,

(38)

which is a contradiction. This completes the proof.

Now combine all the results of Lemmas 6–9 to follow
the trajectory of a solution of (8) on the strongly unstable
manifold u

1
. Let

R = {(𝐻, 𝑃, 𝑈) : 𝐻
∗
< 𝐻 <

𝑟

𝑎
,

−
𝑐 (𝑎𝑏 + (1 − 𝑚) 𝑟)

(1 − 𝑚) 𝑟
⋅
𝑐
2
+ 2𝑑𝑟

2𝑑𝑐
(𝐻 −

𝑟

𝑎
) < 𝑃

< −
𝑐 (𝑎𝑏 + (1 − 𝑚) 𝑟)

𝑎𝐻∗ (1 − 𝑚)
(𝑙 +

𝑟

𝑐
) (𝐻 −

𝑟

𝑎
) ,

𝑐

2𝐷
𝑃 < 𝑈 < 𝑙𝑃} .

(39)

Then the trajectory of a solution of (8) on the strongly
unstable manifold u

1
is contained in R. Since 0 < 𝑚 < 1,

we obtain

𝑃 ≥ −
𝑐 (𝑎𝑏 + (1 − 𝑚) 𝑟)

(1 − 𝑚) 𝑟
⋅
𝑐
2
+ 2𝐷𝑟

2𝐷𝑐
(𝐻 −

𝑟

𝑎
)

= (
𝑟

𝑎
− 𝐻) ⋅

𝑐 (𝑎𝑏 + (1 − 𝑚) 𝑟)

(1 − 𝑚) 𝑟
⋅ (

𝑐

2𝐷
+
𝑟

𝑐
)

≥ (
𝑟

𝑎
− 𝐻) ⋅

𝑐 (𝑎𝑏 + (1 − 𝑚) 𝑟)

(1 − 𝑚) 𝑟
⋅
𝑟

𝑐

= (𝑟 − 𝑎𝐻)
𝑏 + (1 − 𝑚) (𝑟/𝑎)

(1 − 𝑚)

> (𝑟 − 𝑎𝐻)
𝑏 + (1 − 𝑚)𝐻

(1 − 𝑚)
.

(40)

This shows the regionR lies in the region defined by𝐻 > 0

and𝑃 > (𝑟−𝑎𝐻)(𝑏+(1−𝑚)𝐻/(1−𝑚)).Then, on the strongly
unstable manifold u

1
,𝐻 = 𝐻((𝑟 − 𝑎𝐻) − ((1 − 𝑚)𝑃/𝑏 + (1 −

𝑚)𝐻)) < 0. So, for a solution of (8) on u
1
, 𝐻(𝑠) decreases

until 𝐻(𝑠
0
) = 𝐻

∗ for some finite 𝑠
0
. And at the time 𝑠

0
, we

have

𝑃 > (𝑟 − 𝑎𝐻
∗
)
𝑏 + (1 − 𝑚)𝐻

∗

(1 − 𝑚)
=
𝑑 (𝑏 + (1 − 𝑚)𝐻

∗
)

𝛽
= 𝑃
∗
.

(41)

Thus the trajectory of this solution hits 𝜕𝑊 on the face 𝐻 =

𝐻
∗, 𝑃 > 𝑃

∗, and𝑈 > 0. Therefore, the vector field shows that
the solution of (8) on u

1
enters the region 𝑇 at some finite

time.

Lemma 10. In a sufficient small neighborhood of ((𝑟/𝑎), 0, 0)
the two-dimensional unstable manifold u

2
intersects the plane

defined by𝑈 = 0 in a smoothC1 curve Γ, given by 𝑃 = M(𝐻),
𝑈 = 0, where

𝑃 = M (𝐻)

= −
𝜆
3
𝑝 (𝜆
3
)

𝜆
2
𝑝 (𝜆
2
)
(𝐻 −

𝑟

𝑎
)

= −
𝜆
3
(𝑟 + 𝑐𝜆

3
)

𝜆
2
(𝑟 + 𝑐𝜆

2
)
(𝐻 −

𝑟

𝑎
) .

(42)
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Proof. The proof is similar to Lemma 5 in [16] and is omitted.

Remark 11. The portion of the curve Γ is in the region 𝐻 <

(𝑟/𝑎). Obviously, the 𝑃 component of points along the curve
Γ satisfies 𝑃 > 0 from Lemma 10. From the direction of the
vector filed on the quarter plane,𝐻 > 𝐻

∗, 𝑃 > 0, and 𝑈 = 0,
any trajectory passing through a point of Γ near ((𝑟/𝑎), 0, 0)
will immediately enter the region 𝑄.

Now, we place a sufficiently small circle about ((𝑟/𝑎), 0, 0)
on the two-dimensional unstable manifold u

2
. The circle

is contained in the neighborhood of ((𝑟/𝑎), 0, 0) given in
Lemma 10 and satisfies the conditions of Lemmas 6–9. Then
the circle intersects the curve Γ. Define Σ to be arc of this
circle contained in the octant Ω

1
whose endpoints are the

intersections of the circle with u
1
and the curve Γ.

3.1.4. Proof of (ii) of Theorem 2. In this section, we firstly use
Lemma 5 to produce a trajectory which remains in the region
W. Second, we construct a Lyapunov function to demonstrate
that the trajectory approaches (𝐻∗, 𝑃∗, 0). For simplicity, we
denote𝑁 = {(𝐻, 𝑃, 𝑈) : 𝑃 = 𝑈 = 0}, 𝐿 = {(𝐻, 𝑃, 𝑈) : 𝐻 = 0}.

Lemma 12. There exists a point 𝑦∗ ∈ Σ such that the solution
𝑦(𝑠, 𝑦

∗
) = (𝐻

1
(𝑠), 𝑃
1
(𝑠), 𝑈
1
(𝑠)) of (8) remains in the region𝑊

for all 𝑠.

Proof. It is obvious that the set𝑊 is closed satisfying the (i) of
Lemma 5. Before using Lemma 5 to prove this conclusion, we
also need to check the conditions (ii) and (iii) of it. Suppose
𝑦
0
∈ Σ, 𝑠 < 𝑇(𝑦

0
), 𝑦(𝑠, 𝑦

0
) ∈ 𝑊\𝑊

−.Then 𝑦(𝑠, 𝑦
0
) ∈ int 𝑊∪

𝐽. As 𝑠 < 𝑇(𝑦
0
), we easily verify that

𝑦 (𝑠, 𝑦
0
) ∉ {(𝐻, 𝑃, 𝑈) : 𝐻 ≥ 𝐻

∗
, 𝑃 < 0, 𝑈 = 0} . (43)

Moreover, as𝑁 is an invariant manifold,

𝑦 (𝑠, 𝑦
0
) ∉ {(𝐻, 𝑃, 𝑈) : 𝐻 ≥ 𝐻

∗
, 𝑃 = 0, 𝑈 = 0} . (44)

Thus 𝑦(𝑠, 𝑦
0
) ∈ int 𝑊 and there exists an open set 𝑉 around

𝑦(𝑠, 𝑦
0
) disjoint from 𝜕𝑊. So (ii) of Lemma 5 is satisfied.

From the previous 5 lemmas, we know that the image of
one endpoint of Σ lies in the portion 𝜕𝑇\{(𝐻∗, 𝑃∗, 0)} of𝑊−;
and the image of the other endpoint is in the component 𝜕𝑄\

(𝐽 ∪ {(𝐻
∗
, 𝑃
∗
, 0)}) of 𝑊−. Thus Σ is compact, intersects any

trajectory of (8) only once, and is simple connected. IfΣ = Σ
0,

then 𝐹would be a homeomorphism of the connected set Σ to
its image in the disconnected set 𝑊−. This is impossible. So
Σ ̸=Σ
0. Thus there exists some point 𝑦∗ such that 𝑦(𝑠, 𝑦∗) ∈

𝑊 for all 𝑠.

Lemma 13. The solution 𝑦(𝑠, 𝑦∗) remains in the region

Ω = { (𝐻, 𝑃, 𝑈) : 0 < 𝐻 <
𝑟

𝑎
, 0 < 𝑃 < 𝑘 (𝐻) ,

−
𝛽𝑃
2

𝑐𝑏
< 𝑈 < 𝑙𝑃} ,

(45)

for all 𝑠, where

𝑘 (𝐻) =

{{{{{{{{{

{{{{{{{{{

{

−
𝑐 (𝑎𝑏 + (1 − 𝑚) 𝑟)

𝑎𝐻∗ (1 − 𝑚)
(𝑙 +

𝑟

𝑐
) (𝐻 −

𝑟

𝑎
) ,

𝐻
∗
< 𝐻 <

𝑟

𝑎
,

−
𝑐 (𝑎𝑏 + (1 − 𝑚) 𝑟)

𝑎𝐻∗ (1 − 𝑚)
(𝑙 +

𝑟

𝑐
) (𝐻
∗
−
𝑟

𝑎
) ,

0 < 𝐻
∗
≤ 𝐻
∗
.

(46)

Proof. Firstly, 𝑦(𝑠, 𝑦∗)must have𝐻
1
(𝑠) > 0 for all 𝑠, as 𝐿 is an

invariant manifold.
Secondly, we prove𝑃

1
(𝑠) > 0. If it is not true, then𝑦(𝑠, 𝑦∗)

enters region 𝑁
1
= {(𝐻, 𝑃, 𝑈) : 𝑃 < 0}. Let 𝑠

1
= inf{𝑠 :

𝑦(𝑠, 𝑦
∗
) ∈ 𝑁
1
}. Then 𝑃

1
(𝑠
1
) = 0 and 𝑃

1
(𝑠
1
) ≤ 0, so𝑈

1
(𝑠
1
) ≤ 0.

As𝑁 is an invariant manifold, 𝑈
1
(𝑠
1
) < 0. And𝐻

1
(𝑠
1
) < 𝐻

∗

for 𝑦(𝑠, 𝑦∗) ∉ 𝑄. From (8),𝐻
1
(𝑠
1
) > 0, which means𝐻

1
(𝑠) is

increasing for 𝑠 > 𝑠
1
. Then the solution enters

𝑁
2
= {(𝐻, 𝑃, 𝑈) : 𝐻1 (𝑠1) < 𝐻 < 𝐻

∗
, 𝑃 < 0, 𝑈 < 0} . (47)

Obviously, in𝑁
2
, 𝑃 = 𝑈 < 0, so 𝑃

1
(𝑠) is decreasing.Thus, we

have

𝐻


1
(𝑠) ≥

1

𝑐
min {𝐻

1
(𝑠
1
) (𝑟 − 𝑎𝐻

1
(𝑠
1
)) ,𝐻
∗
(𝑟 − 𝑎𝐻

∗
)} .

(48)

So𝐻
1
(𝑠) increases to𝐻∗ in the finite time 𝑠

2
; that is,𝐻

2
(𝑠) =

𝐻
∗.Then also𝑃

1
(𝑠
2
) < 0,𝑈

1
(𝑠
2
) < 0. So 𝑦(𝑠, 𝑦∗) enter𝑄.This

is a contradiction. Therefore, 𝑃
1
(𝑠) > 0 for all time.

By Lemma 9, we know

𝑃
1
< −

𝑐 (𝑎𝑏 + (1 − 𝑚) 𝑟)

𝑎𝐻∗ (1 − 𝑚)
(𝑙 +

𝑟

𝑐
) (𝐻
1
−
𝑟

𝑎
) ,

for 𝐻∗ < 𝐻
1
≤
𝑟

𝑎
.

(49)

As 𝑃
1
(𝑠) > 0, so𝐻

1
(𝑠) < (𝑟/𝑎) for all 𝑠.

Suppose, on the contrary, there exists 𝑠 such that 𝑃
1
(𝑠) ≥

−𝐴
0
(𝐻
∗
− (𝑟/𝑎)) for 0 < 𝐻

1
≤ 𝐻
∗, where 𝐴

0
= (𝑐(𝑎𝑏 + (1 −

𝑚)𝑟)/𝑎𝐻
∗
(1 − 𝑚))(𝑙 + 𝑟/𝑐). Take

𝑠
2
= inf {𝑠 : 𝑃

1 (𝑠) ≥ −𝐴
0
(𝐻
∗
−
𝑟

𝑎
)} . (50)

Then 𝐻
1
(𝑠
2
) ≤ 𝐻

∗, 𝑃
1
(𝑠
2
) > 𝑃

∗, and 𝑈
1
(𝑠
2
) = 𝑃



1
(𝑠
2
) ≥ 0.

Then either 𝑦(𝑠, 𝑦∗) ∈ 𝑇 or 𝑦(𝑠, 𝑦∗) immediately enter 𝑇,
which is impossible. So 𝑃

1
(𝑠) ≤ −𝐴

0
(𝐻
∗
− (𝑟/𝑎)) for 0 <

𝐻
1
≤ 𝐻
∗.

At last, we prove −(𝛽𝑃
2

1
/𝑐𝑏) < 𝑈

1
< 𝑙𝑃
1
. 𝑈
1
< 𝑙𝑃
1

is obvious. Because a trajectory starting on Σ approaches
((𝑟/𝑎), 0, 0) tangent to x

2
or x
3
has𝑈 = 𝜆

2
𝑃 or𝑈 = 𝜆

3
𝑃. Since

𝜆
2
, 𝜆
3
< 𝑙, fromLemma8,we know𝑈

1
(𝑠) < 𝑙𝑃

1
(𝑠) for all s.We

only need to prove−(𝛽𝑃2
1
/𝑐𝑏) < 𝑈

1
. Suppose, on the contrary,
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that there exists a 𝑠
3
such that 𝑈

1
(𝑠
3
) < −(𝛽𝑃

2

1
(𝑠
3
)/𝑐𝑏) < 0;

then 𝑈
1
(𝑠
3
) < −(𝛽𝑃

2

1
(𝑠
3
)/𝑐𝑏) for all 𝑠 > 𝑠

3
. If this is not true,

there exists a 𝑠
4
> 𝑠
3
such that 𝑈

1
(𝑠
4
) = −(𝛽𝑃

2

1
(𝑠
4
)/𝑐𝑏), and

thus 𝑈
1
(𝑠
4
) + (𝛽𝑃

2

1
(𝑠
4
)/𝑐𝑏) ≥ 0. Then from (8) we have

(
𝑐

𝐷
𝑈 −

𝑑

𝐷
𝑃 +

𝛽𝑃
2

𝐷 (𝑏 + (1 − 𝑚)𝐻)
+
2𝛽𝑃𝑈

𝑐𝑏
)

𝑠=𝑠
4

≥ 0. (51)

Then after some calculation, we obtain

(−
𝛽
2
𝑃

𝐷
(
1

𝑏
−

1

𝑏 + (1 − 𝑚)𝐻
) −

𝑑

𝐷
𝑃 −

2𝛽
2
𝑃
3

𝑐2𝑏
)

𝑠=𝑠
4

≥ 0,

(52)

this is a contradiction. So if 𝑈
1
(𝑠
3
) < −(𝛽𝑃

2

1
(𝑠
3
)/𝑐𝑏), then

𝑈
1
(𝑠
3
) < −(𝛽𝑃

2

1
(𝑠
3
)/𝑐𝑏) for all 𝑠 > 𝑠

3
. Thus,

𝑈


1
=

𝑐

𝐷
𝑈
1
−
𝑑

𝐷
𝑃
1
+

𝛽𝑃
2

1

𝐷 (𝑏 + (1 − 𝑚)𝐻)

< −
𝛽𝑃
2

1

𝐷
(
1

𝑏
−

1

𝑏 + (1 − 𝑚)𝐻
1

) −
𝑑

𝐷
𝑃
1
< 0,

(53)

for all 𝑠 > 𝑠
3
. So 𝑈

1
(𝑠) < 𝑈

1
(𝑠
3
) for all 𝑠 > 𝑠

3
. Thus

𝑃


1
(𝑠) = 𝑈

1
(𝑠) < 0 and bounded away from zero by 𝑈

1
(𝑠
3
).

Therefore𝑃
1
(𝑠) < 0 for some finite 𝑠, which is a contradiction.

So −(𝛽𝑃2
1
/𝑐𝑏) < 𝑈

1
.

This completes the proof.

Lemma 14. The trajectory 𝑦(𝑠, 𝑦∗) → (𝐻
∗
, 𝑃
∗
, 0) as 𝑠 →

−∞.

Proof. Define following Lyapunov function:

𝑉 (𝐻, 𝑃, 𝑈) =
𝑑𝑐

𝐷
[𝐻 − 𝐻

∗ ln𝐻] + [𝑐 (
𝑃

𝐷
− 𝑃
∗
) − 𝑈]

+ 𝑃
∗
[
𝑈

𝑃
−

𝑐

𝐷
ln 𝑃

𝑃∗
] .

(54)

Then𝑉(𝐻, 𝑃, 𝑈) is continuous and bounded below onΩ,
and

𝑑𝑉

𝑑𝑠
=
𝜕𝑉

𝜕𝐻
⋅ 𝐻
𝑡
+
𝜕𝑉

𝜕𝑃
⋅ 𝑃
𝑡
+
𝜕𝑉

𝜕𝑈
⋅ 𝑈
𝑡

=
𝑑𝑐 (𝐻 − 𝐻

∗
)

𝐷𝐻
⋅
𝐻

𝑐
[𝑟 − 𝑎𝐻 −

(1 − 𝑚)𝑃

𝑏 + (1 − 𝑚)𝐻
]

+ [
𝑐

𝐷
(1 −

𝑃
∗

𝑃
) −

𝑃
∗
𝑈

𝑃2
] ⋅ 𝑈

+ (
𝑃
∗

𝑃
− 1) ⋅

1

𝐷
[𝑐𝑈 +

𝛽𝑃
2

𝑏 + (1 − 𝑚)𝐻
− 𝑃𝑑]

=
𝑑 (𝐻 − 𝐻

∗
)

𝐷
[𝑟 − 𝑎𝐻 −

(1 − 𝑚)𝑃

𝑏 + (1 − 𝑚)𝐻
]

+
𝑃
∗
− 𝑃

𝐷
[

𝛽𝑃

𝑏 + (1 − 𝑚)𝐻
− 𝑑] −

𝑃
∗
𝑈
2

𝑃2

=
𝑑 (𝐻 − 𝐻

∗
)

𝐷
[𝑟 − 𝑎𝐻 −

(1 − 𝑚)𝑃

𝑏 + (1 − 𝑚)𝐻
] −

𝑃
∗
𝑈
2

𝑃2

+
𝑃
∗
− 𝑃

𝐷
[

𝛽𝑃

𝑏 + (1 − 𝑚)𝐻
−

𝛽𝑃
∗

𝑏 + (1 − 𝑚)𝐻

+
𝛽𝑃
∗

𝑏 + (1 − 𝑚)𝐻
− 𝑑]

=
𝑑 (𝐻 − 𝐻

∗
)

𝐷
[𝑟 − 𝑎𝐻 −

(1 − 𝑚)𝑃

𝑏 + (1 − 𝑚)𝐻
]

+
𝑃
∗
− 𝑃

𝐷
[

(1 − 𝑚)𝑃
∗

𝑏 + (1 − 𝑚)𝐻
− 𝑑]

−
𝛽(𝑃
∗
− 𝑃)
2

𝐷 (𝑏 + (1 − 𝑚)𝐻)
−
𝑃
∗
𝑈
2

𝑃2

=
𝑑 (𝐻 − 𝐻

∗
)

𝐷
[𝑟 − 𝑎𝐻 −

(1 − 𝑚)𝑃

𝑏 + (1 − 𝑚)𝐻
]

+
𝑃
∗
− 𝑃

𝐷
⋅
𝑑 (1 − 𝑚) (𝐻 − 𝐻

∗
)

𝑏 + (1 − 𝑚)𝐻

−
𝛽(𝑃
∗
− 𝑃)
2

𝐷 (𝑏 + (1 − 𝑚)𝐻)
−
𝑃
∗
𝑈
2

𝑃2

=
𝑑 (𝐻 − 𝐻

∗
)

𝐷
[𝑟 − 𝑎𝐻 −

(1 − 𝑚)𝑃
∗

𝑏 + (1 − 𝑚)𝐻
]

−
𝛽(𝑃
∗
− 𝑃)
2

𝐷 (𝑏 + (1 − 𝑚)𝐻)
−
𝑃
∗
𝑈
2

𝑃2
,

(55)

where 𝑔(𝐻) = 𝑓(𝐻)/(𝑏 + (1 − 𝑚)𝐻) is defined. Obviously,
𝑏+(1−𝑚)𝐻 > 0 inΩ and 𝑔(𝐻∗) = 0. According to Lemma 1,
when 𝑟 > (𝑑(1 − 𝑚)/𝛽), the following result always holds:

𝑑 (𝐻 − 𝐻
∗
)

𝐷
[𝑟 − 𝑎𝐻 −

(1 − 𝑚)𝑃
∗

𝑏 + (1 − 𝑚)𝐻
] ≤ 0. (56)

Therefore, the 𝑑𝑉/𝑑𝑠 is always nonpositive in Ω. Moreover,
𝑑𝑉/𝑑𝑠 = 0 if and only if 𝐻 = 𝐻

∗, 𝑃 = 𝑃
∗, and 𝑈 = 0;

the largest invariant subset of this segment is the single point
(𝐻
∗
, 𝑃
∗
, 0). By LaSalle’s Invariance Principle, 𝑦(𝑠, 𝑦∗) →

(𝐻
∗
, 𝑃
∗
, 0) as 𝑠 → −∞. This completes the proof.
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3.2. Proof of Theorem 3. The Jacobin of system (8) at the
equilibrium 𝐸(𝐻

∗
, 𝑃
∗
, 0) is

𝐽 (𝐸)

= (

−
1

𝑐
(−𝑎𝐻

∗
+
(1 − 𝑚)

2
𝐻
∗
𝑑
2

𝛽2𝑃∗
) −

𝑑 (1 − 𝑚)𝐻
∗

𝑐𝛽𝑃∗
0

0 0 1

−
𝑑
2
(1 − 𝑚)

𝛽𝐷
−
𝑑

𝐷

𝑐

𝐷

).

(57)

Let 𝑀 = −𝑎𝐻
∗
+ ((1 − 𝑚)

2
𝐻
∗
𝑑
2
/𝛽
2
𝑃
∗
); then the

corresponding characteristic equation of (57) is given by

𝑃 (𝜆) = 𝜆
3
− (

𝑀

𝑐
+

𝑐

𝐷
)𝜆
2
+
𝑀 − 𝑑

𝐷
𝜆 −

𝑎𝑑𝐻
∗

𝑐𝐷
= 0. (58)

In order to get the sign of the roots of characteristic equation
(58), we will use Routh-Hurwitz analysis [25]. The Routh-
Hurwitz range of (58) is

𝜆
3

𝑎
3
= 1 𝑎

1
=
(𝑀 − 𝑑)

𝐷

𝜆
2
𝑎
2
= −(

𝑀

𝑐
+

𝑐

𝐷
) 𝑎
0
= −

𝑎𝑑𝐻
∗

𝑐𝐷

𝜆
1

𝑏
1

𝑏
2

𝜆
0

𝑐
1

𝑐
2

, (59)

where

𝑏
1
= −

1

𝑎
2



𝑎
3
𝑎
1

𝑎
2
𝑎
0



= −
1

𝑀/𝑐 + 𝑐/𝐷



1
𝑀 − 𝑑

𝐷

−(
𝑀

𝑐
+

𝑐

𝐷
) −

𝑎𝑑𝐻
∗

𝑐𝐷



= −
𝑎𝑑𝐻
∗

𝑀𝐷 + 𝑐2
+
𝑀 − 𝑑

𝐷
,

𝑏
2
= −

1

𝑎
2



𝑎
3
0

𝑎
2
0



= 0,

𝑐
1
= −

1

𝑏
1



𝑎
2
𝑎
0

𝑏
1
𝑏
2



= 𝑎
0
= −

𝑎𝑑𝐻
∗

𝑐𝐷
,

𝑐
2
= −

1

𝑏
1



𝑎
2
0

𝑏
1
0



= 0.

(60)

In the above range, we easily know that 𝑎
3
> 0, 𝑐
1
< 0. When

𝛽 > 1 − 𝑚, (i) if𝑀/𝑐 + 𝑐/𝐷 < 0 (𝑎
2
> 0), then no matter the

sigh of 𝑏
1
, the sigh of the first arrange of (59) will change once,

and the no row of (59) is full zero. So character equation (59)
always has a real root and two complex roots with negative
real part; (ii) if 𝑀/𝑐 + 𝑐/𝐷 > 0 (𝑎

2
< 0), we obtain ((𝑀 −

𝑑)/𝐷) < 0 with 𝛽 > 1 − 𝑚, and then 𝑏
1
< 0. Thus, the sigh

of the first arrange of (59) will change once and the no row
of (59) is full zero. So character equation (58) has a real root
and two complex roots with negative real part.

Therefore, there is a 2-dimensional stable manifold and
1-dimensional unstable manifold based at (𝐻∗, 𝑃∗, 0) when
𝛽 > 1 − 𝑚.

The differentiation of (58) is

𝑃

(𝜆) = 3𝜆

2
− 2 (

𝑀

𝑐
+

𝑐

𝐷
)𝜆 +

𝑀 − 𝑑

𝐷
. (61)

Let 𝑃(𝜆) = 0; then we obtain

𝜆
±
=
2 (𝑀/𝑐 + 𝑐/𝐷) ± √4 (𝑀/𝑐 + 𝑐/𝐷) − 12 ((𝑀 − 𝑑) /𝐷)

6
.

(62)

Thus, 𝑃(𝜆) get the maximum at 𝜆 = 𝜆
−
, 𝑃(𝜆) get the

minimumat𝜆 = 𝜆
+
, and𝑃(𝜆)minimum < 0. Sowe just consider

𝑃(𝜆)maximum = 𝜆
−

3
− (

𝑀

𝑐
+

𝑐

𝐷
)𝜆
−

2
+
𝑀 − 𝑑

𝐷
𝜆
−
−
𝑎𝑑𝐻
∗

𝑐𝐷
.

(63)

If 𝑃(𝜆)maximum > 0, (58) has two negative roots and a
positive root. If 𝑃(𝜆)maximum = 0, (58) has a negative
root and a positive root. If 𝑃(𝜆)maximum < 0, (58) has a
positive root and two complex roots with negative real part.
So the solution of (8) satisfying (7) spreads to the positive
equilibrium (𝐻

∗
, 𝑃
∗
, 0) monotonously when 𝑃(𝜆)maximum ≥

0, and it spreads to the positive equilibrium (𝐻
∗
, 𝑃
∗
, 0)

nonmonotonously when 𝑃(𝜆)maximum < 0.

3.3. Proof ofTheorem 4. In order to proveTheorem 4, we take
𝐷, 𝑟, 𝑎,𝑚, and 𝑑 as fixed and 𝛽 and 𝑐 as parameters. It means
we only allow the predator effectiveness to vary.We search for
purely imaginary roots of the characteristic equation

𝜆
3
− (

𝑝 + 𝑑

𝑐
+

𝑐

𝐷
)𝜆
2
+
𝑝

𝐷
𝜆 −

𝑞

𝑐𝐷
= 0, (64)

where 𝑝 = 𝑀 − 𝑑, 𝑞 = 𝑎𝑑𝐻
∗, 𝑀 = −𝑎𝐻

∗
+ ((1 −

𝑚)
2
𝐻
∗
𝑑
2
/𝛽
2
𝑃
∗
), and𝐻∗ = ((𝑑𝑚 − 𝑑 + 𝛽𝑟)/𝑎𝛽).

It is easy to see that 𝑝 < 0, 𝑞 > 0 and 0 < 𝐻
∗
< 𝑟/𝑎.

Substituting 𝜆 = 𝑘𝑖 into (64) and simplifying it, we have

𝑘
2
=
𝑝

𝐷
,

𝑘
2
=

𝑞

𝐷 (𝑝 + 𝑑) + 𝑐2
.

(65)

Thus, a pair of imaginary eigenvalues exists if the parameters
𝛽 and 𝑐 satisfy the condition

𝑐
2
= 𝐷(

𝑞

𝑝
− 𝑝 − 𝑑) . (66)
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Figure 1: The traveling wave solution of system (8) from 𝐸
1
(1, 0) tends to 𝐸(𝐻∗, 𝑃∗) monotonously with the parameters 𝐷 = 0.8, 𝑟 = 1,

𝑎 = 1,𝑚 = 0.3, 𝑏 = 6.65, 𝑑 = 0.5, and 𝛽 = 0.5.

Regarding 𝜆 as a function of 𝛽 and differentiating the
characteristic equation (64) with respect to 𝛽, we obtain

d𝜆 (𝛽)
d𝛽

=

(𝑝

/𝑐) 𝜆
2
− (𝑝

/𝐷) 𝜆 + (𝑞


/𝑐𝐷)

3𝜆2 − 2 (((𝑝 + 𝑑) /𝑐) + (𝑐/𝐷)) 𝜆 + (𝑝/𝐷)
. (67)

Here () denotes the differentiation with respect to 𝛽. Substi-
tuting 𝜆 = 𝑘𝑖 into (66), we have

d𝜆 (𝛽)
d𝛽

=

(− (𝑝

/𝑐) 𝑘
2
+ (𝑞

/𝑐𝐷)) − (𝑝


/𝐷) 𝑘𝑖

(3𝑘2 + (𝑝/𝐷)) − 2 (((𝑝 + 𝑑) /𝑐) + 𝑐/𝐷) 𝑘𝑖
. (68)

After some calculation, we have that the sign of the real part
of d𝜆(𝛽)/d𝛽 is determined by the sign of

−2

𝑐𝐷
(𝑝𝑞

− 𝑝
2
𝑝

− 𝑝

𝑞) . (69)

From (64), we know (d𝑐2/d𝛽) = (𝐷/𝑝
2
)(𝑝𝑞

− 𝑝
2
𝑝

− 𝑝

𝑞).

Thus, it is obvious that

−
2𝑝
2

𝑐𝐷2

d𝑐2

d𝛽
=
−2

𝑐𝐷
(𝑝𝑞

− 𝑝
2
𝑝

− 𝑝

𝑞) . (70)
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Figure 2:The travelingwave solution of system (8) from𝐸
1
(10, 0) tends to𝐸(𝐻∗, 𝑃∗) nonmonotonously with the parameters𝐷 = 0.8, 𝑟 = 1.5,

𝑎 = 0.15,𝑚 = 0.35, 𝑏 = 0.15, 𝑑 = 1, and 𝛽 = 0.75.

So the sign of Re(d𝜆(𝛽)/d𝛽) is opposite to that of 𝑑𝑐2/𝑑𝛽. In
fact, 𝑞 = 𝑎𝑑(𝐻

∗
)


𝛽
= 𝑑(1 − 𝑚)/𝑎𝛽

2
> 0, while

𝑝

= {𝑀 − 𝑑}



𝛽

= {−𝑎𝐻
∗
+

𝑑(1 − 𝑚)
2
𝐻
∗

𝛽 (𝑏 + (1 − 𝑚)𝐻
∗
)
− 𝑑}



𝛽

= −
𝑑 (1 − 𝑚)

𝛽2

+ (
𝑑
2
(1 − 𝑚)

3

𝑎𝛽
[𝑏 + (1 − 𝑚)𝐻

∗
]

− 𝑑(1 − 𝑚)
2
𝐻
∗
[𝑏 + (1 − 𝑚)𝐻

∗
+
𝑑(1 − 𝑚)

2

𝑎𝛽
])

× (𝛽
2
[𝑏 + (1 − 𝑚)𝐻

∗
]
2
)
−1

= 𝑑 (1 − 𝑚){
𝑏𝑑(1 − 𝑚)

2

𝑎𝛽

− [(1 − 𝑚)
2
(𝐻
∗
)
2
+ 3𝑏 (1 − 𝑚)𝐻

∗
+ 𝑏
2
] } .

(71)

Define function ℎ(𝐻∗) = (1 − 𝑚)
2
(𝐻
∗
)
2
+ 3𝑏(1 −𝑚)𝐻

∗
+ 𝑏
2,

and then ℎ(𝐻∗) = 2(1 − 𝑚)𝐻
∗
+ 3𝑏(1 − 𝑚) > 0 if 0 < 𝐻

∗
<

𝑟/𝑎, where () denotes the differentiation with respect to𝐻∗.
So ℎ(𝐻∗) is increasing with respect to𝐻∗. Thus,

ℎ (𝐻
∗
) < ℎ (

𝑟

𝑎
) =

(1 − 𝑚)
2
𝑟
2
+ 3𝑎𝑏𝑟 (1 − 𝑚) + 𝑎

2
𝑏
2

𝑎2

<
((1 − 𝑚) 𝑟 + (3/2) 𝑎𝑏)

2

𝑎2
.

(72)
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So if

𝛽 <
𝑎𝑏𝑑(1 − 𝑚)

2

((1 − 𝑚) 𝑟 + (3/2) 𝑎𝑏)
2
, (73)

we have

𝑏𝑑(1 − 𝑚)
2

𝑎𝛽
− ℎ (𝐻

∗
) > 0, that is 𝑝 > 0. (74)

Then we have

d𝑐2

d𝛽
=
𝐷

𝑝2
(𝑝𝑞

− 𝑝

(𝑝
2
+ 𝑞)) < 0. (75)

Therefore,

Re(
d𝜆 (𝛽)
d𝛽

) > 0. (76)

By the Hopf bifurcation Theorem, we obtain that when the
parameter 𝛽 crosses the bifurcation curve 𝑐2 = 𝐷((𝑞/𝑝)−𝑝−

𝑑) at 𝛽
0
in the 𝛽 − 𝑐 parameter plane, system (8) undergoes

a Hopf bifurcation to a small amplitude periodic solution at
the equilibrium point (𝐻∗, 𝑃∗, 0). It corresponds to a small
amplitude traveling wave train solution of system (5). This
completes the proof.

4. Numerical Simulations

In this section, we will give numerical examples to illustrate
the results ofTheorems 2 and 3. All the numerical simulations
are under the Neumann boundary conditions.

Figure 1 shows that there exists traveling wave solution
and it from 𝐸

1
((𝑟/𝑎), 0) tends to 𝐸(𝐻∗, 𝑃∗)monotonously. In

Figure 1, we consider the following parameters𝐷 = 0.8, 𝑟 = 1,
𝑎 = 1, 𝑚 = 0.3, 𝑏 = 6.65, 𝑑 = 0.5, and 𝛽 = 0.5. Figure 2
shows that there exists traveling wave solution and it from
𝐸
1
((𝑟/𝑎), 0) tends to 𝐸(𝐻

∗
, 𝑃
∗
) nonmonotonously with the

parameters 𝐷 = 0.8, 𝑟 = 1.5, 𝑎 = 0.15, 𝑚 = 0.35, 𝑏 = 0.15,
𝑑 = 1, and 𝛽 = 0.75.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Theauthorswould like to thank the reviewers for their helpful
suggestions and comments.This research is supported by the
National Science Foundation of China (11001204).

References

[1] Y. Kuang and E. Beretta, “Global qualitative analysis of a ratio-
dependent predator-prey system,” Journal ofMathematical Biol-
ogy, vol. 36, no. 4, pp. 389–406, 1998.

[2] D. Xiao and S. Ruan, “Global dynamics of a ratio-dependent
predator-prey system,” Journal of Mathematical Biology, vol. 43,
no. 3, pp. 268–290, 2001.

[3] Y.-H. Fan and W.-T. Li, “Global asymptotic stability of a ratio-
dependent predator-prey system with diffusion,” Journal of
Computational and Applied Mathematics, vol. 188, no. 2, pp.
205–227, 2006.

[4] P. H. Leslie, “Some further notes on the use of matrices in
populationmathematics,”Biometrika, vol. 35, pp. 213–245, 1948.

[5] P. H. Leslie, “A stochastic model for studying the properties of
certain biological systems by numerical methods,” Biometrika,
vol. 45, pp. 16–31, 1958.

[6] X. Guan, W. Wang, and Y. Cai, “Spatiotemporal dynamics of a
Leslie-Gower predator-preymodel incorporating a prey refuge,”
Nonlinear Analysis: Real World Applications, vol. 12, no. 4, pp.
2385–2395, 2011.

[7] M. A. Aziz-Alaoui, “Study of a Leslie-Gower-type tritrophic
population model,” Chaos, Solitons & Fractals, vol. 14, no. 8, pp.
1275–1293, 2002.

[8] L. Chen and F. Chen, “Global stability of a Leslie-Gower
predator-prey model with feedback controls,” Applied Mathe-
matics Letters, vol. 22, no. 9, pp. 1330–1334, 2009.

[9] F. Chen, L. Chen, and X. Xie, “On a Leslie-Gower predator-prey
model incorporating a prey refuge,” Nonlinear Analysis: Real
World Applications, vol. 10, no. 5, pp. 2905–2908, 2009.

[10] S. Yuan and Y. Song, “Stability and Hopf bifurcations in a
delayed Leslie-Gower predator-prey system,” Journal of Math-
ematical Analysis and Applications, vol. 355, no. 1, pp. 82–100,
2009.
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Peer-to-peer (P2P) botnets have emerged as one of the serious threats to Internet security. To prevent effectively P2P botnet, in this
paper, a mathematical model which combines the scale-free trait of Internet with the formation of P2P botnet is presented. Explicit
mathematical analysis demonstrates that the model has a globally stable endemic equilibrium when infection rate is greater than
a critical value. Meanwhile, we find that, in scale-free network, the critical value is very little. Hence, it is unrealistic to completely
dispel the P2P botnet. Numerical simulations show that one can take effective countermeasures to reduce the scale of P2P botnet
or delay its outbreak. Our findings can provide meaningful instruction to network security management.

1. Introduction

A botnet is a network of thousands of compromised com-
puters (bots) under the control of botmaster, which usually
recruits new vulnerable computers by running all kinds
of malicious software, such as Trojan horses, worms, and
computer viruses [1]. For nefarious profits, the botnetmas-
ter which operates a botnet manipulates remotely zombie
computers to work on various malicious activities, such as
distributed denial-of-service attacks (DDoS), email spam,
and password cracking. Nowadays, botnets have become one
of the most serious threats to Internet.

According to operating mechanism of botnets, there are
two kinds of botnets. One is the traditional botnet using
Internet relay chat (IRC) as a form of communication for
centralized command and control (C&C) structure (see
Figure 1 [2]). The other is peer-to-peer botnet utilizing a
distributed command-and-control structure (see Figure 2
[2]). Traditional botnets are easily checked and cracked
by defenders, and the threats of botnets can be mitigated
and eliminated if the central of C&C is unavailable [3]. By
contrast, P2P botnets employing a decentralized command-
and-control structure are more robust and are much harder
for security community to dismantle [4]. Therefore, P2P
botnets, such as Trojan.Peacomm and Storm botnet [5], have

emerged and gradually escalated in recent years. Moreover,
P2P botnets are increasingly sophisticated and thus their
potential damage is much greater than traditional botnets.
Further, the potential for more damage exits in the future.

Therefore, threats of P2P botnets to Internet security have
drawn widespread attention [6–12]. Yan et al. [6] mathemati-
cally analyzed the performance of Antbot—a new type of P2P
botnets—from the perfectives of resilience, reachability, and
scalability, and the authors developed a distributed P2P bot-
net simulator to evaluate the effectiveness of Antbot against
pollution-based mitigation in practice. Kolesnichenko et al.
[7] developed the mean-field model to analyze behaviors of
P2P botnet and compared it with simulations obtained from
theMobius tool (a software tool for modeling the behavior of
complex systems). Results show that the mean-field method
is much faster than simulation for predicting the behavior
of P2P botnet. van Ruitenbeek and Sanders [8] presented
a stochastic model of Storm Worm P2P botnet to examine
how different factors, such as the removal rate and the initial
infection rate, impact the total propagation bots. To be well
prepared for future botnet attacks, Wang et al. [9] studied
advanced botnet attack techniques that could be developed
by botmasters in the future and proposed the design of an
advanced hybrid P2P botnet. Results show that a honeypot,
in computer terminology, is a trap set to detect, deflect, or,
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in some manner, counteract attempts at unauthorized use
of information systems. Generally, a honeypot consists of a
computer, data, or a network site that appears to be part
of a network, but is actually isolated and monitored, and
which seems to contain information or a resource of value
to attackers—play an important role to defend against an
advanced botnet.

Nevertheless, few people studied the dynamical behaviors
of P2P botnets. In [7], the authors proposed a mean-field
model of P2P botnet, but the model has not been analyzed
mathematically. In fact, explicit mathematical analysis con-
tributes to understand deeply the prevalent characteristics
of P2P botnet. Aiming at describing the dynamics of P2P
botnets in a more effective way, in this paper, we employ the
dynamical model of computer worms, which has been widely
used bymany researchers to study Internetmalware propaga-
tion [13–22]. Asmany botnets are created by computerworms
[23], it is reasonable to describe the prevalence of P2P botnets
with the model of worm propagation. In addition, by ana-
lyzing data from real computer virus epidemics, the authors
[24] pointed out the importance of incorporating the peculiar
topology of scale-free network in the theoretical description
of computer worm propagation. In biological epidemic areas,
there is much valuable research which considers the effect

of complex network on pathophoresis [25, 26]. However, we
have not seen the reportwhich considers the effect of complex
network on prevalence of P2P botnet. Hence, it is necessary
to examine the effect of the topology of the network on the
propagation of P2P botnet.

In this paper, the dynamics of leaching P2P botnets are
investigated. In a leaching P2P botnet, botmasters recruit new
zombies on the Internet. For constructing this kind of P2P
botnet, there are two steps: the first step is trying to infect
new vulnerable hosts throughout the Internet, and the second
step is newly compromised hosts joining the botnet and
connecting with other bots [2]. In SF network, taking into
account the heterogeneity induced by the hosts with different
degree 𝑘, we divide the hosts into different states where the
hosts in each state have the same degree 𝑘.

2. The Model

To model the propagation of the P2P botnet on the Internet,
we assume that the total number of nodes on Internet is a
constant𝑁. Each node changes over time among four states:
susceptible (𝑆), exposed (𝐸), infected (𝐼), and recovered (𝑅)

due to the spread of computer worm. We describe these four
states in detail as follows.

(1) Susceptible (𝑆): a node has the software vulnerability
that the bot program can exploit.

(2) Exposed (𝐸): a node has been infected by the bot
program, but it has not become a member of P2P
botnet.

(3) Infected (𝐼): a node is a formalmember of P2P botnet,
which means the node can infect its neighbors with
the bot program.

(4) Removed (𝑅): a node has installed a detection tool
that can identify and remove the bot program, or a
node has installed a software patch to eliminate the
node vulnerability exploited by the bot program.

There are five state transitions among these four states.

(1) Propagating the bot program: nodes in the “suscepti-
ble” state will change to the “exposed” state with the
infection rate 𝛽.

(2) Joining the P2P botnet from exposed state: nodes in
the “exposed” state will join the P2P botnet under
the control of the botmaster and change to “infected”
state at the proportion 𝛿.

(3) Immunizing nodes from susceptible state: nodes in
the “susceptible” state will change to the “recovered”
state at the proportion 𝑟

𝑠
if corresponding nodes take

countermeasures, for example, antivirus software,
patching, firewall, and intrusion detection system
(IDS). The immune rate is affected by many factors,
for example, user vigilance.

(4) Immunizing nodes from exposed state: nodes in the
“exposed” state will change to the “recovered” state
at the proportion 𝑟

1
if corresponding nodes take

antivirus countermeasures.
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(5) Immunizing nodes from infected state: nodes in the
“infected” state will change to the “recovered” state
at the proportion 𝑟

2
if corresponding nodes take

antivirus countermeasures.

Let 𝑆
𝑘
(𝑡), 𝐸
𝑘
(𝑡), 𝐼
𝑘
(𝑡), and 𝑅

𝑘
(𝑡) be the number of degree

𝑘 in states 𝑆, 𝐸, 𝐼, and 𝑅 at time 𝑡, respectively. Then one has

𝑆
𝑘
(𝑡) + 𝐸

𝑘
(𝑡) + 𝐼

𝑘
(𝑡) + 𝑅

𝑘
(𝑡) = 𝑁. (1)

The dynamic equations can be written as

𝑑𝑆
𝑘
(𝑡)

𝑑𝑡
= 𝜇 − 𝛼𝑘𝜃 (𝐼 (𝑡)) 𝑆

𝑘
(𝑡) − (𝜇 + 𝑟

𝑠
) 𝑆
𝑘
(𝑡) ,

𝑑𝐸
𝑘 (𝑡)

𝑑𝑡
= 𝛼𝑘𝜃 (𝐼 (𝑡)) 𝑆𝑘 (𝑡) − (𝜇 + 𝑟

1
+ 𝛿) 𝐸

𝑘 (𝑡) ,

𝑑𝐼
𝑘 (𝑡)

𝑑𝑡
= 𝛿𝐸
𝑘 (𝑡) − (𝜇 + 𝑟

2
) 𝐼
𝑘 (𝑡) ,

𝑑𝑅
𝑘 (𝑡)

𝑑𝑡
= 𝑟
𝑠
𝑆
𝑘
(𝑡) + 𝑟

1
𝐸
𝑘
(𝑡) + 𝑟

2
𝐼
𝑘
(𝑡) − 𝜇𝑅

𝑘
(𝑡) ,

(2)

where the probability 0 ≤ 𝜃(𝐼(𝑡)) ≤ 1 describes a link
pointing to an infected host, which satisfies the relation

𝜃 (𝐼 (𝑡)) =
1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘) 𝐼
𝑘
(𝑡) , (3)

and 𝐼(𝑡) = ∑
𝑘
𝑃(𝑘)𝐼
𝑘
is the density of infected hosts in the

whole network at time 𝑡; 𝑃(𝑘) is a degree distribution. Other
parameters can be explained as follows. 𝜇 is the replacement
rate of the hosts per hour; 𝛼 is infection rate per hour; 𝑟

𝑠
is the

state transition rate from 𝑆
𝑘
to 𝑅
𝑘
due to immune measures;

𝑟
𝑖
(𝑖 = 1, 2) is the recovery rate from exposed state 𝐸

𝑘
and

infected state 𝐼
𝑘
, respectively; and 𝛿 is transition rate from 𝐸

𝑘

to 𝐼
𝑘
.

3. Model Analysis

In this subsection, we solve the equilibria of system (2) and
investigate their stability.

The first three equations in system (2) do not depend
on the fourth equation, and, therefore, this equation may be
omitted without loss of generality. Hence, system (2) can be
rewritten as

𝑑𝑆
𝑘 (𝑡)

𝑑𝑡
= 𝜇 − 𝛼𝑘𝜃 (𝐼 (𝑡)) 𝑆𝑘 (𝑡) − (𝜇 + 𝑟

𝑠
) 𝑆
𝑘 (𝑡) ,

𝑑𝐸
𝑘
(𝑡)

𝑑𝑡
= 𝛼𝑘𝜃 (𝐼 (𝑡)) 𝑆

𝑘
(𝑡) − (𝜇 + 𝑟

1
+ 𝛿) 𝐸

𝑘
(𝑡) ,

𝑑𝐼
𝑘
(𝑡)

𝑑𝑡
= 𝛿𝐸
𝑘
(𝑡) − (𝜇 + 𝑟

2
) 𝐼
𝑘
(𝑡) .

(4)

The equilibria of system (7) are determined by setting

𝜇 − 𝛼𝑘𝜃 (𝐼 (𝑡)) 𝑆𝑘 (𝑡) − (𝜇 + 𝑟
𝑠
) 𝑆
𝑘 (𝑡) = 0,

𝛼𝑘𝜃 (𝐼 (𝑡)) 𝑆
𝑘
(𝑡) − (𝜇 + 𝑟

1
+ 𝛿) 𝐸

𝑘
(𝑡) = 0,

𝛿𝐸
𝑘
(𝑡) − (𝜇 + 𝑟

2
) 𝐼
𝑘
(𝑡) = 0.

(5)

There is always a disease-free equilibrium (DFE) 𝑄
0

=

(𝜇/(𝜇 + 𝑟
𝑠
), 0, 0). Furthermore, solving the endemic equilib-

rium of (5), one can obtain 𝑄
1
= (𝑆
∗

𝑘
, 𝐸
∗

𝑘
, 𝐼
∗

𝑘
), where

𝑆
∗

𝑘
=

𝜇

𝛼𝑘𝜃 + 𝜇 + 𝑟
𝑠

,

𝐸
∗

𝑘
=

𝜇𝛼𝑘𝜃

(𝛼𝑘𝜃 + 𝜇 + 𝑟
𝑠
) (𝜇 + 𝑟

1
+ 𝛿)

,

𝐼
∗

𝑘
=

𝛿𝜇𝛼𝑘𝜃

(𝛼𝑘𝜃 + 𝜇 + 𝑟
𝑠
) (𝜇 + 𝑟

1
+ 𝛿) (𝜇 + 𝑟

2
)
.

(6)

Substituting 𝐼
∗

𝑘
into (3), we have

𝜃 =
1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘) 𝐼𝑘 (𝑡)

=
1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘)
𝛿𝜇𝛼𝑘𝜃

(𝛼𝑘𝜃 + 𝜇 + 𝑟
𝑠
) (𝜇 + 𝑟

1
+ 𝛿) (𝜇 + 𝑟

2
)
.

(7)

Obviously, if the endemic equilibrium exists, there must be
0 < 𝜃 ≤ 1. That is, it must satisfy

𝑑

𝑑𝜃
[

1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘)
𝛿𝜇𝛼𝑘𝜃

(𝛼𝑘𝜃 + 𝜇 + 𝑟
𝑠
) (𝜇 + 𝑟

1
+ 𝛿) (𝜇 + 𝑟

2
)
]

𝜃=0

≥ 1,

(8)

and it equals

1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘) { (𝛿𝜇𝛼𝑘 (𝜇 + 𝑟
1
+ 𝛿) (𝜇 + 𝑟

2
) (𝛼𝑘𝜃 + 𝜇 + 𝑟

𝑠
)

− (𝜇 + 𝑟
1
+ 𝛿) (𝜇 + 𝑟

2
) 𝛿𝜇𝛼
2
𝑘
2
𝜃)

× ((𝛼𝑘𝜃 + 𝜇 + 𝑟
𝑠
) (𝜇 + 𝑟

1
+ 𝛿) (𝜇 + 𝑟

2
))
−1
}
𝜃=0

≥ 1.

(9)

Let 𝛼
𝑐
be the minimum value of 𝛼 satisfying the above

inequality. Then,

𝛿𝜇𝛼
𝑐

⟨𝑘⟩ (𝜇 + 𝑟
𝑠
) (𝜇 + 𝑟

1
+ 𝛿) (𝜇 + 𝑟

2
)
∑

𝑘

𝑘
2
𝑃 (𝑘) = 1; (10)

that is

⟨𝑘
2
⟩ 𝛿𝜇𝛼

𝑐

⟨𝑘⟩ (𝜇 + 𝑟
𝑠
) (𝜇 + 𝑟

1
+ 𝛿) (𝜇 + 𝑟

2
)
= 1, (11)

where ⟨𝑘2⟩ = ∑
𝑘
𝑘
2
𝑃(𝑘).

Hence,

𝛼
𝑐
=

⟨𝑘⟩ (𝜇 + 𝑟
𝑠
) (𝜇 + 𝑟

1
+ 𝛿) (𝜇 + 𝑟

2
)

⟨𝑘2⟩ 𝛿𝜇
. (12)

Summarizing the above analysis, one can get the following
theorem.
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Theorem 1. If 𝛼 < 𝛼
𝑐
, then system (4) has only one free-

equilibrium 𝑄
0
; if 𝛼 > 𝛼

𝑐
, then system (4) has endemic-

equilibrium 𝑄
∗ except 𝑄

0
.

In what follows, the endemic-equilibrium point 𝑄∗ will be
analyzed.

The Jacobian matrix of system (4) at 𝑄∗ is

𝐽 = (

−𝛼𝑘
1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘) 𝐼
∗

𝑘
0 𝛼𝑘𝑆

∗

𝑘

1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘)

𝛼𝑘
1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘) 𝐼
∗

𝑘
− (𝜇 + 𝛾

1
+ 𝛿) 𝛼𝑘𝑆

∗

𝑘

1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘)

0 𝛿 − (𝜇 + 𝛾
2
)

) ,

(13)

and the associated characteristic equation is

𝜆
3
+ 𝑎𝜆
2
+ 𝑏𝜆 + 𝑐 = 0, (14)

where

𝑎 = 𝜇 + 𝑟
1
+ 𝛿 + 𝜇 + 𝑟

2
+ 𝛼𝑘

1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘) 𝐼
∗

𝑘
,

𝑏 = (𝜇 + 𝑟
1
+ 𝛿) (𝜇 + 𝑟

2
) − 𝛿𝛼𝑘𝑆

∗

𝑘

1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘)

+ (𝛼𝑘
1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘) 𝐼
∗

𝑘
+ 𝜇 + 𝑟

𝑠
)(𝑟
1
+ 𝛿 + 2𝜇 + 𝑟

2
) ,

𝑐 = (𝛼𝑘
1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘) 𝐼
∗

𝑘
+ 𝜇 + 𝑟

𝑠
)(𝜇 + 𝑟

1
+ 𝛿) (𝜇 + 𝑟

2
)

− (𝛿𝛼𝑘𝑆
∗

𝑘

1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘))

× (𝛼𝑘
1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘) 𝐼
∗

𝑘
+ 𝜇 + 𝑟

𝑠
+ 𝛼𝑘

1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘)) .

(15)

According to Hurwitz criteria [27],

𝐻
1
= 𝜇 + 𝑟

1
+ 𝛿 + 𝜇 + 𝑟

2
+ 𝛼𝑘

1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘) 𝐼
∗

𝑘
> 0,

𝐻
2
= 𝐻
1
𝑏 − 𝑐, 𝐻

3
= 𝐻
2
𝑐.

(16)

Hence, one can obtain the following lemmas.

Lemma 2. For system (4), if𝐻
2
> 0 and𝐻

3
> 0 hold, then the

endemic-equilibrium 𝑄
∗ is locally asymptotically stable.

For depicting the globally asymptotical stability of 𝑄
∗,

firstly, one can introduce three preliminary results.

Lemma 3 (see [28, 29]). Suppose that the initial relative
infected density 0 < 𝐼

𝑘
(0) < 1 satisfies ∑

𝑘
𝑘𝑃(𝑘)𝐼

𝑘
(0) > 0.

Then, for all 𝑡 > 0, the solution of system (4) satisfies 0 <

𝜃(𝐼(𝑡)) < 1 and 0 < 𝐼
𝑘
(𝑡) < 1.

Proposition 4 (see [28, 29]). Suppose that the solution 𝐼
𝑘
(𝑡) of

system (4) satisfies lim sup
𝑡→∞

𝐼
𝑘
≤ 𝑈
𝑘
and lim inf

𝑡→∞
𝐼
𝑘
≥

ℓ
𝑘
, where 𝑈

𝑘
≥ 0 and ℓ

𝑘
≥ 0. Then,

lim
𝑡→∞

sup 𝐼
𝑘
≤ (𝛼𝛿𝜇𝑘

1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘)𝑈𝑘)

× ( (𝜇 + 𝑟
1
+ 𝛿) (𝜇 + 𝑟

2
)

× (𝜇 + 𝑟
𝑠
+ 𝛼𝑘

1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘)𝑈
𝑘
))

−1

,

lim
𝑡→∞

inf 𝐼
𝑘
≥ (𝛼𝛿𝜇𝑘

1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘) ℓ𝑘)

× ( (𝜇 + 𝑟
1
+ 𝛿) (𝜇 + 𝑟

2
)

× (𝜇 + 𝑟
𝑠
+ 𝛼𝑘

1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘)𝑈
𝑘
))

−1

.

(17)

Proposition 5 (see [28, 29]). Suppose that the initial relative
infected densities 0 < 𝐼

𝑘
(0) < 1 satisfy 𝛼 > 𝛼

𝑐
and

∑
𝑘
𝑘𝑃(𝑘)𝐼

𝑘
(0) > 0. Then, the solution of system (4) satisfies

lim
𝑡→∞

inf 𝜃(𝐼(𝑡)) > 0 and lim
𝑡→∞

inf 𝐼
𝑘
(𝑡) > 0.

The proofs of the above conclusions are similar to those
presented in [28, 29]. Here, we will omit them.

Next, main results will be presented.

Lemma 6. Suppose that the initial relative infected densities
0 < 𝐼

𝑘
(0) < 1 satisfy 𝛼 > 𝛼

𝑐
and ∑

𝑘
𝑘𝑃(𝑘)𝐼

𝑘
(0) >

0. Then, the solution of system (4) satisfies lim
𝑡→∞

𝐼
𝑘
(𝑡) =

𝐼
𝑘
, lim

𝑡→∞
𝐸
𝑘
(𝑡) = 𝐸

𝑘
, and lim

𝑡→∞
𝑆
𝑘
(𝑡) = 𝑆

𝑘
,

where 𝐼
1
, 𝐼
2
, 𝐼
3
, . . . , 𝐼

𝑛
(𝐸
1
, 𝐸
2
, 𝐸
3
, . . . , 𝐸

𝑛
; 𝑆
1
, 𝑆
2
, 𝑆
3
, . . . , 𝑆

𝑛
) are

the unique nonzero stationary points of system (4).
The proof is completed in the appendix

Combining Lemma 2 with Lemma 6, one can conclude
the following conclusion.

Theorem 7. If the endemic-equilibrium 𝑄
∗ exists, then it is

globally asymptotically stable.

4. Numerical Analysis and Control Strategies

4.1. Numerical Examples. In this subsection we present the
results of numerical experiments investigating the effective-
ness of theoretic analysis. In order to observe the effects
of parameters on transmission process, we use system (4)
to simulate the evolution behavior of P2P botnet for given
parameters on SF network with ⟨𝑘⟩ = 8 and 𝑁 = 100000.
Here, we set the parameter values of system (4) which are,
respectively, 𝜇 = 0.01, 𝑟

𝑠
= 0.01, 𝑟

1
= 0.06, 𝑟

2
= 0.06, and

𝛿 = 0.6. By calculation, one can obtain 𝛼
𝑐
= 1.49 × 10

−5.
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Figure 3: The density of infected nodes with parameters 𝜇 = 0.01,
𝑟
𝑠
= 0.01, 𝑟

1
= 0.06, 𝑟

2
= 0.06, 𝛼 = 0.005 > 𝛼

𝑐
, ⟨𝑘⟩ = 8, and

𝑁 = 100000.
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Figure 4: The density of infected nodes with parameters 𝜇 = 0.01,
𝑟
𝑠
= 0.01, 𝑟

1
= 0.06, 𝑟

2
= 0.06, 𝛼 = 1.5 × 10

−8
< 𝛼
𝑐
, ⟨𝑘⟩ = 8, and

𝑁 = 100000.

Figures 3 and 4 show the simulation results with 𝛼 = 0.005 >

𝛼
𝑐
and𝛼 = 1.5 × 10

−6
< 𝛼
𝑐
, respectively, which are consistent

with theoretical analysis.
From the conclusion of Theorem 7, we learn that it is

necessary for eliminating P2P botnet on the Internet to let
𝛼 < 𝛼

𝑐
by corresponding countermeasures. Meanwhile, the

simulation results show that the critical value of infection
𝛼
𝑐
is very little, and this means that it is difficult to destroy

completely the P2P botnet in reality.

4.2. Control Strategies. In what follows, we consider mainly
the effect of the real-time immune measurement and
antivirus software on the scale of the P2P botnet.

(i) For fixed model parameters, 𝜇 = 0.01, 𝑟
1
= 0.06, 𝑟

2
=

0.06, 𝛿 = 0.6, and 𝛼 = 0.005, we investigate the effect
of different real-time immunity (𝑟

𝑠
) on the scale of

P2P botnet. Simulation result is depicted in Figure 5.
From Figure 5, it can be observed that enhancing
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Figure 5: An illustration of the impact of real-time immune
measure (𝑟

𝑠
) on the density of infected nodes.
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Figure 6: An illustration of the impact of antivirus software (𝛿) on
the density of infected nodes.

real-time immunemeasures contributes to reduce the
scale of P2P botnet and delay its outbreak. Hence, it
is strongly advised that network users should install
patches for bugs in time and update antivirus software
to the latest version.

(ii) For fixed model parameters, 𝜇 = 0.01, 𝑟
1

= 0.06,
𝑟
2
= 0.06, 𝑟

𝑠
= 0.01, and 𝛼 = 0.005, we investigate

the effect of antivirus software (𝛿) on the scale of P2P
botnet. Simulation results are depicted in Figure 6.
The profile of Figure 6 demonstrates that the larger
percent conversion from 𝐸 to 𝐼 there is, the bigger
scale a P2P botnet has. Thus, it is proposed that
malware is killed when the node is infected by the bot
program but does not join botnet.
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Figure 7: An illustration of the impact of average degree (⟨𝑘⟩) on
the density of infected nodes.

Additionally, the effect of average degree ⟨𝑘⟩ on prevalent
behavior of P2P botnet is depicted in Figure 7. FromFigure 7,
we find that the scale of P2P botnet will increase when ⟨𝑘⟩

becomes larger. So decreasing the average degree of network
can also control the massive outbreak of P2P botnet.

5. Conclusions

As a new kind of attack platform to network security, P2P
botnets have attracted considerable attention. Research is
necessary to fully understand the threat andprepare to defend
against it. To better exploit the spreading behavior of P2P
botnet, in this paper, we present amathematicalmodel of cre-
ation of P2P botnet, which combines the scale-free character
of Internet with the formation trait of P2P botnet. Hence, the
model can portrait more accurately the dynamical features
of P2P botnet propagation. Theoretical analysis shows that
the model has a globally stable endemic equilibrium. The
influence of some parameters to the scale of P2P botnet has
been investigated. Simulation results demonstrate that it is
difficult to destroy completely the P2P botnet in reality. This
is the reason that many malwares saturate to a very low level
of persistence [30]. However, Figures 6 and 7 show that we
can reduce the scale of P2P botnet and delay its outbreak
by efficient countermeasures, such as real-time immunity or
autorunning of antivirus software.

The dynamical model we present could be extended to
study the growth possibilities of P2P botnets in future work.
Themodel is also possible to predict howbotnetmasters could
create more potent and aggressive botnets. Such predictions
could ultimately be useful to antimalware developers as well.

Appendix

Proof of Lemma 6. Substituting (3)into 𝐼
∗

𝑘
, we can obtain

𝐼
∗

𝑘
= (𝛼𝛿𝜇𝑘

1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘) 𝐼
𝑘
)

× ( (𝜇 + 𝑟
1
+ 𝛿) (𝜇 + 𝑟

2
)

× (𝜇 + 𝑟
𝑠
+ 𝛼𝑘

1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘) 𝐼
𝑘
))

−1

.

(A.1)

Let 𝑈(1)
𝑘

= 1, and define the following sequence:

𝑈
(𝑚+1)

𝑘
= (𝛼𝛿𝜇𝑘

1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘)𝑈
(𝑚)

𝑘
)

× ( (𝜇 + 𝑟
1
+ 𝛿) (𝜇 + 𝑟

2
)

× (𝜇 + 𝑟
𝑠
+ 𝛼𝑘

1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘)𝑈
(𝑚)

𝑘
))

−1

.

(A.2)

Then, according to Lemma 3, for 1 ≤ 𝑘 ≤ 𝑛,
lim
𝑡→∞

sup 𝐼
𝑘
(𝑡) ≤ 1 = 𝑈

(1)

𝑘
. By applying Proposition 4, we

obtain

lim sup 𝐼
𝑘 (𝑡)

𝑡→∞

≤ 𝑈
(𝑚)

𝑘
, 0 ≤ 𝑘 ≤ 𝑛, 𝑚 = 1, 2, . . . . (A.3)

Inwhat follows, consider the convergence of the sequence
defined in (A.2). By (A.2), for all 𝑘, 𝑈(2)

𝑘
≤ 1 = 𝑈

(1)

𝑘
. If for all

𝑘, 𝑈
(𝑚+1)

𝑘
≤ 𝑈
(𝑚)

𝑘
, then it is easy to obtain 𝑈

(𝑚+2)

𝑘
≤ 𝑈
(𝑚+1)

𝑘
.

By induction, for all 𝑘, the sequence 𝑈
(𝑚)

𝑘
is decreasing,

so its limit exists, denoted by 𝑈
𝑘
= lim

𝑚→∞
𝑈
(𝑚)

𝑘
. Then it is

easy to show that 𝑈
𝑘
= lim
𝑡→∞

sup 𝐼
𝑘
(𝑡) ≤ 𝑈

𝑘
.

On the other hand, substituting (A.1) into (3), we can get
the following equation:

𝜃 (𝑡) =
1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘) 𝐼𝑘

=
1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘)(𝛼𝛿𝜇𝑘
1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘) 𝐼𝑘)

× ( (𝜇 + 𝑟
1
+ 𝛿) (𝜇 + 𝑟

2
)

×(𝜇 + 𝑟
𝑠
+ 𝛼𝑘

1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘) 𝐼
𝑘
))

−1

.

(A.4)

From (7), 𝜃 = 𝐹(𝜃), so by letting ℎ(𝑥) = 𝐹(𝑥) − 𝑥, one can
obtain that ℎ(0) = 0 and ℎ


(0) > 0. By the definition of

derivative, if 𝑥 > 0 is sufficiently small, then ℎ(𝑥) > ℎ(0) = 0.
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According to Proposition 5, we can take ℓ(1)
𝑘

such that, for
all 𝑘, 0 < ℓ

(1)

𝑘
< lim
𝑡→∞

inf 𝐼
𝑘
(𝑡).

Let

𝑥 =
1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘) ℓ
(1)

𝑘
, ℎ (

1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘) ℓ
(1)

𝑘
) > 0;

(A.5)

we have
1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘) ℓ
(2)

𝑘
>

1

⟨𝑘⟩
∑

𝑘

𝑘𝑃 (𝑘) ℓ
(1)

𝑘
. (A.6)

If for all 𝑘, ℓ(𝑚+1)
𝑘

> ℓ
(𝑚)

𝑘
, it is easy to obtain ℓ

(𝑚+2)

𝑘
>

ℓ
(𝑚+1)

𝑘
.

Thus, by induction, for each 𝑘, the sequence ℓ
(𝑚)

𝑘
is

increasing, so its limit exists, denoted by ℓ
𝑘
= lim

𝑚→∞
ℓ
(𝑚)

𝑘
.

Thus, it is easy to verify that ℓ
𝑘
< lim
𝑡→∞

inf 𝐼
𝑘
(𝑡).

Both 𝑈
𝑘
and ℓ

𝑘
are positive stationary points of system

(4). Therefore, by the uniqueness of the positive stationary
point of the differential equation, we have 𝑈

𝑘
= ℓ
𝑘
= 𝐼
𝑘
and

𝐼
𝑘
≤ lim

𝑡→∞
inf 𝐼
𝑘
(𝑡) ≤ lim

𝑡→∞
sup 𝐼
𝑘
(𝑡) ≤ 𝐼

𝑘
, 1 ≤ 𝑘 ≤ 𝑛;

that is, lim
𝑡→∞

𝐼
𝑘
(𝑡) = 𝐼

𝑘
.

Substituting 𝐼
𝑘
into (5), we will obtain lim

𝑡→∞
𝐸
𝑘
(𝑡) = 𝐸

𝑘

and lim
𝑡→∞

𝑆
𝑘
(𝑡) = 𝑆

𝑘
.

Lemma 6 is proven.
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The global stability of amultigroup SEIR epidemicmodelwith general latency distribution and general incidence rate is investigated.
Under the given assumptions, the basic reproduction numberR

0
is defined and proved as the role of a threshold; that is, the disease-

free equilibrium 𝑃
0
is globally asymptotically stable if R

0
≤ 1, while an endemic equilibrium 𝑃

∗ exists uniquely and is globally
asymptotically stable if R

0
> 1. For the proofs, we apply the classical method of Lyapunov functionals and a recently developed

graph-theoretic approach.

1. Introduction

Mathematical models have become important tools in ana-
lyzing the spread and control of infectious diseases. The SIR
model is one of the most popular ones in this field, for which
the total population is subdivided into three compartments:
susceptible, infectious, and removed. For some diseases, it
is reasonable to include a latent (or exposed) class for those
susceptible individuals who are infected with the disease but
are not yet infectious, which leads to SEIR model [1–6]. Let
𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), and 𝑅(𝑡) be the numbers of individuals in the
susceptible, exposed, infectious, and removed compartments,
respectively, with the total population 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) +

𝐼(𝑡) + 𝑅(𝑡). Suppose that 𝑑 > 0 represents the constant
recruitment rate and the natural mortality rate. Assuming
mass action for the disease transmission and letting 𝛽 > 0

denote the effective contact rate, the rate of change of 𝑆(𝑡) is

𝑆

(𝑡) = 𝑑 − 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝑑𝑆 (𝑡) . (1)

Taking into consideration a general exposed distribution, van
den Driessche et al. [5] formulated and studied the following
model:

𝑆

(𝑡) = 𝑑 − 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝑑𝑆 (𝑡) ,

𝐸 (𝑡) = ∫

𝑡

0

𝛽𝑆 (𝑢) 𝐼 (𝑢) 𝑒
−𝑑(𝑡−𝑢)

𝑃 (𝑡 − 𝑢) d𝑢,

𝑅

(𝑡) = 𝑟𝐼 (𝑡) − 𝑑𝑅 (𝑡) ,

𝐼 (𝑡) = 𝑁 − 𝑆 (𝑡) − 𝐸 (𝑡) − 𝑅 (𝑡) ,

(2)

where 𝑟 ≥ 0 is the rate at which infective individuals recover.
𝑁 is constant total populations. It is assumed in [5] that
individuals rarely die of the disease and the disease-induced
death is negligible, which ensures a constant population; that
is, 𝑁(𝑡) = 𝑁 ⋅ 𝑃(𝑡) denotes the probability (without taking
death into account) that an exposed individual still remains
in the exposed class 𝑡 time units after entering the exposed
class and it satisfies the following.

(A
1
) 𝑃 : [0,∞) → [0, 1] is nonincreasing, piecewise

continuous with possibly finitely many jumps and satisfies
𝑃(0
+
) = 1, lim

𝑡→∞
𝑃(𝑡) = 0 with ∫

∞

0
𝑃(𝑢)𝑑𝑢 being positive

and finite.
In fact, the integral term in model (2) is in the sense of

Riemann-Stieltjes integrals; the second equation of (2) takes
the following form:

𝐸

(𝑡) = 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝑑𝐸 (𝑡)

+ ∫

𝑡

0

𝛽𝑆 (𝑢) 𝐼 (𝑢) 𝑒
−𝑑(𝑡−𝑢)

𝑑
𝑡
𝑃 (𝑡 − 𝑢) d𝑢,

(3)
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where 𝑑
𝑡
𝑃(𝑡 − 𝑢) = 𝑑𝑃(𝑡 − 𝑢)/𝑑𝑡. It follows from total

population size 𝑁 which is constant that the rate of change
of 𝐼 is governed by

𝐼

(𝑡) = −∫

𝑡

0

𝛽𝑆 (𝑢) 𝐼 (𝑢) 𝑒
−𝑑(𝑡−𝑢)

𝑑
𝑡
𝑃 (𝑡 − 𝑢) d𝑢 − (𝑑 + 𝑟) 𝐼 (𝑡) .

(4)

Thus, model (2) can be written as the system

𝑆

(𝑡) = 𝑑 − 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝑑𝑆 (𝑡) ,

𝐸

(𝑡) = 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝑑𝐸 (𝑡)

+ ∫

𝑡

0

𝛽𝑆 (𝑢) 𝐼 (𝑢) 𝑒
−𝑑(𝑡−𝑢)

𝑑
𝑡
𝑃 (𝑡 − 𝑢) d𝑢,

𝐼

(𝑡) = − ∫

𝑡

0

𝛽𝑆 (𝑢) 𝐼 (𝑢) 𝑒
−𝑑(𝑡−𝑢)

𝑑
𝑡
𝑃 (𝑡 − 𝑢) d𝑢

− (𝑑 + 𝑟) 𝐼 (𝑡) ,

𝑅

(𝑡) = 𝑟𝐼 (𝑡) − 𝑑𝑅 (𝑡) .

(5)

Recently, a model of this type including the possibility of
disease relapse has been proposed in [5, 6] to study the
transmission and spread of some infectious diseases such
as herpes, and its global dynamics have been completely
investigated in [5, 7].

Heterogeneity in the host population can result from dif-
ferent contactmodes such as those among children and adults
for childhood diseases (e.g., measles andmumps) or different
behaviors such as the numbers of sexual partners for some
sexually transmitted infections (e.g., herpes and condyloma
acuminatum). Taking into consideration different contact
patterns, distinct number of sexual partners, or different
geography and so forth, it is more proper to divide individual
hosts into groups. Therefore, lots of multigroup models have
been proposed in the literature to describe the transmission
of infectious disease in heterogeneity environment (see [8–17]
and references cited therein).

In multigroup epidemic models, a heterogeneous host
population is divided into several homogeneous groups
according tomodes of transmission, contact patterns, or geo-
graphic distributions, so that within-group and intergroup
interactions can be modeled separately. In this paper, we
formulate a multigroup SEIR epidemic model with general
exposed distribution and general incidence rates. The pop-
ulation is divided into 𝑛 distinct groups (𝑛 ≥ 2). For 1 ≤

𝑘 ≤ 𝑛, the 𝑘th group is further partitioned into four compart-
ments: susceptible, exposed, infectious, and recovered, whose
numbers of individuals at time 𝑡 are denoted by 𝑆

𝑘
(𝑡), 𝐸
𝑘
(𝑡),

𝐼
𝑘
(𝑡), and 𝑅

𝑘
(𝑡), respectively. Within the 𝑘th group, 𝜑

𝑘
(𝑆
𝑘
)

represents the growth rate of 𝑆
𝑘
, which includes both the

production and the natural death of susceptible individuals.
In [18], Zhang et al. studied a multigroup SEIR epi-

demic model with general exposed distribution and general
incidence rates. By using the well-known “linear chain
trick,” the authors reformulate the model into an equivalent
ordinary differential equations system. The global stability

results of equilibria are obtained by constructing suitable
Lyapunov functionals for general incidence rate function
𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡), 𝐼
𝑗
(𝑡)). In [19], Hattaf et al. introduced a general

incidence rate 𝑓(𝑆, 𝐼)𝐼 in a delayed SIR epidemic model.
Motivated by these facts, in this paper, we incorporate

the general incidence rate presented in [19] to the following
system of differential and integral equations:

𝑆


𝑘
(𝑡) = 𝜑

𝑘
(𝑆
𝑘 (𝑡)) −

𝑛

∑

𝑗=1

𝑓
𝑘𝑗
(𝑆
𝑘 (𝑡) , 𝐼𝑗 (𝑡)) 𝐼𝑗 (𝑡) ,

𝐸


𝑘
(𝑡)

=

𝑛

∑

𝑗=1

𝑓
𝑘𝑗
(𝑆
𝑘 (𝑡) , 𝐼𝑗 (𝑡)) 𝐼𝑗 (𝑡)

−

𝑛

∑

𝑗=1

∫

𝑡

0

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑢) , 𝐼
𝑗
(𝑢)) 𝐼
𝑗
(𝑢) 𝑒
−𝛿
𝑘
(𝑡−𝑢)

𝑔
𝑘
(𝑡 − 𝑢) d𝑢

− 𝛿
𝑘
𝐸
𝑘
(𝑡) ,

𝐼


𝑘
(𝑡) =

𝑛

∑

𝑗=1

∫

𝑡

0

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑢) , 𝐼
𝑗
(𝑢)) 𝐼
𝑗
(𝑢) 𝑒
−𝛿
𝑘
(𝑡−𝑢)

𝑔
𝑘
(𝑡 − 𝑢) d𝑢

− (𝛿
𝑘
+ 𝛾
𝑘
) 𝐼
𝑘 (𝑡) ,

𝑅


𝑘
(𝑡) = 𝛾

𝑘
𝐼
𝑘
(𝑡) − 𝛿

𝑘
𝑅
𝑘
(𝑡) ,

(6)

where 𝑔
𝑗
(𝑡) = −𝑃



𝑗
(𝑡), the nonlinear term 𝑓

𝑘𝑗
(𝑆
𝑘
(𝑡), 𝐼
𝑗
(𝑡))𝐼
𝑗
(𝑡)

represents the cross-infection from group 𝑗 to group 𝑘, 𝛿
𝑘

denotes the natural death rates of exposed and infectious
classes in the 𝑘th group, and 𝛾

𝑘
denotes the production of

the recovered individuals from infectious ones in the 𝑘th
group. All constants 𝛿

𝑘
, 𝛾
𝑘
, 𝑘 = 1, 2, . . . , 𝑛, are assumed to

be positive.
The organization of this paper is as follows; in the next

section, we give some preliminaries of our main model. In
Section 3, we prove the global asymptotic stability of the
disease-free equilibrium 𝑃

0
for R

0
≤ 1 using the classical

method of Lyapunov.The existence of endemic equilibrium is
also proved. In Section 4, we prove global asymptotic stability
of an endemic equilibrium 𝑃

∗ for R
0
> 1 using the graph-

theoretic approach.

2. Preliminaries

Since the variables 𝐸
𝑘
and 𝑅

𝑘
do not appear in the first and

third equations of (6), we can only consider the reduced
system as follows:

𝑆


𝑘
(𝑡) = 𝜑

𝑘
(𝑆
𝑘
(𝑡)) −

𝑛

∑

𝑗=1

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡) , 𝐼
𝑗
(𝑡)) 𝐼
𝑗
(𝑡) ,

𝐼


𝑘
(𝑡) =

𝑛

∑

𝑗=1

∫

𝑡

0

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑢) , 𝐼
𝑗
(𝑢)) 𝐼
𝑗
(𝑢) 𝑒
−𝛿
𝑘
(𝑡−𝑢)

𝑔
𝑘
(𝑡 − 𝑢) d𝑢

− (𝛿
𝑘
+ 𝛾
𝑘
) 𝐼
𝑘
(𝑡) .

(7)
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The incidence function 𝑓
𝑘𝑗
(𝑆
𝑘
, 𝐼
𝑗
) in (7) is assumed to be

continuously differentiable in the interior ofR2
+
and to satisfy

the following hypotheses:

(S
1
) 𝑓
𝑘𝑗
(0, 𝐼
𝑗
) = 0, for all 𝐼

𝑗
≥ 0;

(S
2
) 𝜕𝑓
𝑘𝑗
(𝑆
𝑘
, 𝐼
𝑗
)/𝜕𝑆
𝑘
> 0, for all 𝑆

𝑘
> 0 and 𝐼

𝑗
≥ 0;

(S
3
) 𝜕𝑓
𝑘𝑗
(𝑆
𝑘
, 𝐼
𝑗
)/𝜕𝐼
𝑗
≤ 0, for all 𝑆

𝑘
≥ 0 and 𝐼

𝑗
≥ 0;

assume that the functions 𝜑
𝑘
satisfy the following

conditions:
(S
4
) 𝜑
𝑘
are local Lipschitz on [0,∞) with 𝜑

𝑘
(0) > 0, and

there is a unique positive solution 𝜉 = 𝑆
0

𝑘
for the

equation 𝜑
𝑘
(𝜉) = 0; 𝜑

𝑘
(𝑆
𝑘
) > 0 for 0 ≤ 𝑆

𝑘
< 𝑆
0

𝑘
, and

𝜑
𝑘
(𝑆
𝑘
) < 0 for 𝑆

𝑘
> 𝑆
0

𝑘
.

Typical examples of 𝑓
𝑘𝑗
(𝑆
𝑘
, 𝐼
𝑗
) satisfying (S

1
)–(S
3
) include

common incidence functions such as

𝑓
𝑘𝑗
(𝑆
𝑘
, 𝐼
𝑗
) = 𝑆
𝑘
𝐼
𝑗 [20, 2, 3] , 𝑓

𝑘𝑗
(𝑆
𝑘
, 𝐼
𝑗
) = 𝑆
𝑞

𝑘
𝐼
𝑗 [21] ,

𝑓
𝑘𝑗
(𝑆
𝑘
, 𝐼
𝑗
) =

𝜂𝑆
𝑘
𝐼
𝑗

1 + 𝜃𝑆
𝑘

[1] .

(8)

The class of 𝜑
𝑘
(𝑆
𝑘
) that satisfies (S

4
) includes both 𝜆

𝑘
− 𝑑
𝑆

𝑘
𝑆
𝑘

and 𝜆
𝑘
−𝑑
𝑆

𝑘
𝑆
𝑘
+𝑟
𝑘
𝑆
𝑘
(1−𝑆
𝑘
/𝑁
𝑘
), which have been widely used

in the literature of population dynamics [1, 8].
For model (7), the existence, uniqueness, and continuity

of solutions follow from the theory for integrodifferential
equations in [22]. It can be easily verified that every solution
of (7) with nonnegative initial conditions remains nonneg-
ative. It follows from (S

4
) and the first equation in (7) that

𝑆


𝑘
(𝑡) ≤ 𝜑

𝑘
(𝑆
𝑘
(𝑡)), and thus

lim sup
𝑡→∞

𝑆
𝑘
(𝑡) ≤ 𝑆

0

𝑘
, for 1 ≤ 𝑘 ≤ 𝑛. (9)

From the biological significance, we only need to consider (7)
in the following region:

Γ := { (𝑆
1
, 𝐼
1
, 𝑆
2
, 𝐼
2
, . . . , 𝑆

𝑛
, 𝐼
𝑛
)

∈ R
2𝑛

+
: 𝑆
𝑘
, 𝐼
𝑘
≥ 0, 𝑆
𝑘
+ 𝐼
𝑘
≤ 𝑆
0

𝑘
, 1 ≤ 𝑘 ≤ 𝑛} .

(10)

Indeed, one can easily verify that the set Γ is positively
invariant with respect to (7).

It is clear that system (7) has a disease-free equilibrium
𝑃
0

= (𝑆
0

1
, 0, 𝑆
0

1
, 0, . . . , 𝑆

0

𝑛
, 0) in Γ. Next, we will give some

notations which will be useful for our main results.
Let

𝐽 (𝜉) = ∫

∞

𝜉

𝑔
𝑘
(𝑢) 𝑒
−𝛿
𝑘
𝑢d𝑢,

𝑄
𝑘
= 𝐽 (0) = ∫

∞

0

𝑔
𝑘
(𝑢) 𝑒
−𝛿
𝑘
𝑢d𝑢.

(11)

It can be verified that 𝑄
𝑘
∈ (0, 1).

For finite time 𝑡, system (7) may not have an endemic
equilibrium. If system (7) has an endemic equilibrium, the
endemic equilibrium must satisfy the limiting system

𝑆


𝑘
(𝑡) = 𝜑

𝑘
(𝑆
𝑘
(𝑡)) −

𝑛

∑

𝑗=1

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡) , 𝐼
𝑗
(𝑡)) 𝐼
𝑗
(𝑡) ,

𝐼


𝑘
(𝑡) =

𝑛

∑

𝑗=1

∫

∞

0

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡 − 𝑢) , 𝐼

𝑗
(𝑡 − 𝑢))

× 𝐼
𝑗
(𝑡 − 𝑢) 𝑒

−𝛿
𝑘
𝑢
𝑔
𝑘
(𝑢) d𝑢

− (𝛿
𝑘
+ 𝛾
𝑘
) 𝐼
𝑘 (𝑡) .

(12)

Since the limiting system (12) contains an infinite delay,
its associated initial condition needs to be restricted in an
appropriate fading memory space. For any 𝜎

𝑘
∈ (0, 𝛿

𝑘
),

define the following Banach space of fadingmemory type (see
[23, 24] and references therein):

𝐶
𝑘
= {𝜙

𝑘
∈ 𝐶 ((−∞, 0] ,R) : 𝜙𝑘 (𝑠) 𝑒

𝜎
𝑘
𝑠

is uniformly continuous on (−∞, 0] ,

sup
𝑠≤0

𝜙𝑘 (𝑠)
 𝑒
𝜎
𝑘
𝑠
< ∞} ,

𝑌
Δ
= {𝜙
𝑘
∈ 𝐶
𝑘
: 𝜙
𝑘 (𝑠) ≥ 0 ∀𝑠 ≤ 0}

(13)

with norm ‖𝜙‖
𝑘
= sup

𝑠≤0
|𝜙(𝑠)|𝑒

𝜎
𝑘
𝑠. Let 𝜓

𝑡
∈ 𝐶
𝑖
and 𝑡 > 0 be

such that 𝜓
𝑡
(𝑠) = 𝜓(𝑡 + 𝑠), 𝑠 ∈ (−∞, 0].

Let 𝜙
𝑘
, 𝜓
𝑘

∈ 𝐶
𝑘
such that 𝜙

𝑘
(𝑠), 𝜓
𝑘
(𝑠) ≥ 0 for

all 𝑠 ∈ (−∞, 0]. We consider solutions of system (12),
(𝑆
1𝑡
, 𝐼
1𝑡
, . . . , 𝑆

𝑛𝑡
, 𝐼
𝑛𝑡
), with initial conditions
(𝜙
1
, 𝜓
1
, 𝜙
2
, 𝜓
2
, . . . , 𝜙

𝑛
, 𝜓
𝑛
) . (14)

The standard theory of functional differential equations [24]
implies (𝑆

1𝑡
, 𝐼
1𝑡
, . . . , 𝑆

𝑛𝑡
, 𝐼
𝑛𝑡
) ∈ 𝐶

𝑘
for all 𝑡 > 0. We study

system (12) in the following phase space:

Xg =

𝑛

∏

𝑘=1

(R × 𝐶
𝑘
) . (15)

It can be verified that solutions of (12) in Xg with initial
conditions (14) remain nonnegative.

An equilibrium 𝑃
∗

= (𝑆
∗

1
, 𝐼
∗

1
, 𝑆
∗

2
, 𝐼
∗

2
, . . . , 𝑆

∗

𝑛
, 𝐼
∗

𝑛
) in the

interior of Γ is called an endemic equilibrium of system (12),
where 𝑆∗

𝑘
, 𝐼
∗

𝑘
> 0 satisfy the equilibrium equations

𝜑
𝑘
(𝑆
∗

𝑘
) =

𝑛

∑

𝑗=1

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗
,

𝑛

∑

𝑗=1

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗
𝑄
𝑘
= (𝛿
𝑘
+ 𝛾
𝑘
) 𝐼
∗

𝑘
.

(16)

Set𝑅
0
= 𝜌(𝑀

0
) to denote the special radius of thematrix𝑀0,

where

𝑀
0
= (

𝑓
𝑘𝑗
(𝑆
0

𝑘
, 0)𝑄
𝑘

𝛿
𝑘
+ 𝛾
𝑘

)

𝑛×𝑛

. (17)
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The parameter 𝑅
0
is defined as the basic reproduction

number [25, 26]. Since it can be verified that system (7)
satisfies conditions (𝐴

1
)–(𝐴
5
) of Theorem 2 of [26], we have

the following lemma.

Lemma 1. For system (7), the disease-free equilibrium 𝑃
0
is

locally asymptotically stable if R
0
< 1 while it is unstable if

R
0
> 1.

3. Global Stability of
the Disease-Free Equilibrium

Theorem 2. Assume that the functions 𝜑
𝑘
and 𝑓

𝑘𝑗
satisfy

(S
1
)–(S
4
), and𝑀0 is irreducible.

(i) If R
0
≤ 1, then 𝑃

0
is the unique equilibrium of system

(7), and 𝑃
0
is globally asymptotically stable in Γ.

(ii) If R
0

> 1, then 𝑃
0
is unstable and system (7) is

uniformly persistent.

Proof. It follows from the Perron-Frobenius theorem (see
Theorem 2.1.4 in [27]) that the nonnegative irreducible
matrix 𝑀

0 has a positive eigenvector (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
) such

that

(𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
) 𝜌 (𝑀

0
) = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
)𝑀
0
. (18)

Now, we construct a Lyapunov functional

𝑉
𝑃
0

=

𝑛

∑

𝑘=1

𝜔
𝑘

𝛿
𝑘
+ 𝛾
𝑘

𝐼
𝑘
. (19)

Differentiating𝑉
𝑃
0

along the solution of system (7) and under
(S
2
) and (S

3
), we obtain

𝑉


𝑃
0

=

𝑛

∑

𝑘=1

𝜔
𝑘
[

1

𝛿
𝑘
+ 𝛾
𝑘

×

𝑛

∑

𝑗=1

∫

𝑡

0

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑢) , 𝐼
𝑗
(𝑢)) 𝐼
𝑗
(𝑢)

× 𝑒
−𝛿
𝑘
(𝑡−𝑢)

𝑔
𝑘
(𝑡 − 𝑢) d𝑢

−𝐼
𝑘
(𝑡) ]

≤

𝑛

∑

𝑘=1

𝜔
𝑘
[

[

1

𝛿
𝑘
+ 𝛾
𝑘

𝑛

∑

𝑗=1

𝑓
𝑘𝑗
(𝑆
𝑘
, 0) 𝐼
𝑗
(𝑡) 𝑄
𝑘
− 𝐼
𝑘
(𝑡)]

]

≤

𝑛

∑

𝑘=1

𝜔
𝑘
[

[

1

𝛿
𝑘
+ 𝛾
𝑘

𝑛

∑

𝑗=1

𝑓
𝑘𝑗
(𝑆
0

𝑘
, 0) 𝐼
𝑗
(𝑡) 𝑄
𝑘
− 𝐼
𝑘
(𝑡)]

]

= (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
) [𝑀
0
𝐼 − 𝐼]

= [𝜌 (𝑀
0
) − 1] (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
) 𝐼,

(20)

where 𝐼 = (𝐼
1
, 𝐼
2
, . . . , 𝐼

𝑛
)
𝑇. Suppose that 𝜌(𝑀0) < 1. Then,

𝑉


𝑃
0

= 0 if and only if 𝐼 = 0. Suppose that 𝜌(𝑀0) = 1. Then, it
follows from (20) that 𝑉

𝑃
0

= 0 implies

𝑛

∑

𝑘=1

𝜔
𝑘
[

[

1

𝛿
𝑘
+ 𝛾
𝑘

𝑛

∑

𝑗=1

𝑓
𝑘𝑗
(𝑆
𝑘
, 0) 𝐼
𝑗
(𝑡) 𝑄
𝑘
]

]

=

𝑛

∑

𝑘=1

𝜔
𝑘
𝐼
𝑘
(𝑡) . (21)

If 𝑆
𝑘

̸=𝑆
0

𝑘
, then

𝑛

∑

𝑘=1

𝜔
𝑘
[

[

1

𝛿
𝑘
+ 𝛾
𝑘

𝑛

∑

𝑗=1

𝑓
𝑘𝑗
(𝑆
𝑘
, 0) 𝐼
𝑗
(𝑡) 𝑄
𝑘
]

]

≤

𝑛

∑

𝑘=1

𝜔
𝑘
[

[

1

𝛿
𝑘
+ 𝛾
𝑘

𝑛

∑

𝑗=1

𝑓
𝑘𝑗
(𝑆
0

𝑘
, 0) 𝐼
𝑗
(𝑡) 𝑄
𝑘
]

]

≤ (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)𝑀
0
𝐼

= (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
) 𝜌 (𝑀

0
) 𝐼

= (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
) 𝐼,

(22)

which implies that (21) has only the trivial solution 𝐼 = 0.
Therefore, 𝑉

𝑃
0

= 0 if and only if 𝐼
𝑘
= 0 or 𝑆

𝑘
= 𝑆
0

𝑘
provided

𝜌(𝑀
0
) = 1. It can be verified that the only compact invariant

subset of the set where 𝑉


𝑃
0

= 0 is the singleton {𝑃
0
}. By

LaSalle’s Invariance Principle, 𝑃
0
is globally asymptotically

stable in Γ if 𝜌(𝑀0) ≤ 1.
IfR
0
> 1 and 𝐼 ̸= 0, it is easy to see that

[𝜌 (𝑀
0
) − 1] (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
) 𝐼 > 0. (23)

It follows from the continuity that 𝑉
𝑃
0

> 0 holds in a small
neighborhood of 𝑃

0
. This implies that 𝑃

0
is unstable. Using a

uniform persistence result from [28] and similar arguments
as in [4, 10, 13, 16, 17], we know that, ifR

0
> 1, the instability

of 𝑃
0
implies the uniform persistence of (7) in Γ; that is, there

exists a positive constant 𝜖 > 0 such that

lim inf
𝑡→∞

𝑆
𝑘
(𝑡) ≥ 𝜖, lim inf

𝑡→∞

𝐼
𝑘
(𝑡) ≥ 𝜖, 𝑘 = 1, 2, . . . , 𝑛.

(24)

The uniform persistence of system (7) together with the
uniform boundedness of solutions in Γ, which follows from
the positive invariance of Γ, implies the existence of an
endemic equilibrium 𝑃

∗ in Γ (see Theorem 2.8.6 of [29] or
Theorem D.3 of [30]). Summarizing the statements above, if
R
0
> 1, system (7) is uniformly persistent and there exists

at least one endemic equilibrium 𝑃
∗ in Γ. This completes the

proof.

4. Global Stability of an Endemic Equilibrium

Denote

𝐻(𝑢) = 𝑢 − 1 − ln 𝑢, ∀𝑢 > 0. (25)
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Obviously, 𝐻 : R+ → R+ attains its strict global minimum
at 𝑢 = 1 and𝐻(1) = 0.

To get the global stability of 𝑃∗, we make the following
assumptions:

(S
5
) (𝜑
𝑘
(𝑆
𝑘
) − 𝜑
𝑘
(𝑆
∗

𝑘
))(𝑆
𝑘
− 𝑆
∗

𝑘
) ≤ 0 for 𝑆

𝑘
≥ 0;

(S
6
) (𝜑
𝑘
(𝑆
𝑘
) − 𝜑
𝑘
(𝑆
∗

𝑘
))[𝑓
𝑘𝑘
(𝑆
𝑘
, 𝐼
∗

𝑘
) − 𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
)] < 0 for

𝑆
𝑘

̸=𝑆
∗

𝑘
;

(S
7
) (((𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
)𝑓
𝑘𝑗
(𝑆
𝑘
, 𝐼
𝑗
)𝐼
𝑗
)/(𝑓
𝑘𝑘
(𝑆
𝑘
, 𝐼
∗

𝑘
)𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
)𝐼
∗

𝑗
))

− 1)(1 − ((𝑓
𝑘𝑘
(𝑆
𝑘
, 𝐼
∗

𝑘
)𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
))/(𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
)𝑓
𝑘𝑗
(𝑆
𝑘
,

𝐼
𝑗
)))) ≤ 0 for 𝑆

𝑘
, 𝐼
𝑗
> 0.

Theorem 3. Assume that the functions 𝜑
𝑘
and 𝑓

𝑘𝑗
satisfy

(S
1
)–(S
7
), and the matrix 𝑀

0 is irreducible. If R
0
> 1, then

there is a unique endemic equilibrium 𝑃
∗ for system (12), and

𝑃
∗ is globally asymptotically stable in the interior of Γ.

Proof. Define a Lyapunov functional as

𝑉
𝑃
∗ = 𝑄

𝑘
∫

𝑆
𝑘
(𝑡)

𝑆
∗

𝑘

𝑓
𝑘𝑘
(𝜂, 𝐼
∗

𝑘
) − 𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
)

𝑓
𝑘𝑘
(𝜂, 𝐼
∗

𝑘
)

d𝜂

+ 𝐼
∗

𝑘
𝐻(

𝐼
𝑘
(𝑡)

𝐼
∗

𝑘

) + 𝑉
+
,

(26)

where

𝑉
+
=

𝑛

∑

𝑗=1

∫

∞

0

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗
𝐽 (𝑢)

× 𝐻(

𝑓
𝑘𝑗
(𝑆
𝑘 (𝑡 − 𝑢) , 𝐼𝑗 (𝑡 − 𝑢)) 𝐼𝑗 (𝑡 − 𝑢)

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

) d𝑢.

(27)

First, we calculate the derivative of 𝑉
+
; then, we have

𝑉


+

=

𝑛

∑

𝑗=1

∫

∞

0

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗
𝐽 (𝑢)

d
d𝑡

× 𝐻(

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡 − 𝑢) , 𝐼

𝑗
(𝑡 − 𝑢)) 𝐼

𝑗
(𝑡 − 𝑢)

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

) d𝑢

= −

𝑛

∑

𝑗=1

∫

∞

0

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗
𝐽 (𝑢)

d
d𝑢

× 𝐻(

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡 − 𝑢) , 𝐼

𝑗
(𝑡 − 𝑢)) 𝐼

𝑗
(𝑡 − 𝑢)

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

) d𝑢

= −

𝑛

∑

𝑗=1

𝑓
𝑘𝑗
(S∗
𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗
𝐽 (𝑢)

×𝐻(

𝑓
𝑘𝑗
(𝑆
𝑘 (𝑡 − 𝑢) , 𝐼𝑗 (𝑡 − 𝑢)) 𝐼𝑗 (𝑡 − 𝑢)

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

)



∞

𝑢=0

+

𝑛

∑

𝑗=1

∫

∞

0

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

× 𝐻(

𝑓
𝑘𝑗
(𝑆
𝑘 (𝑡 − 𝑢) , 𝐼𝑗 (𝑡 − 𝑢)) 𝐼𝑗 (𝑡 − 𝑢)

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

) d𝐽 (𝑢)

=

𝑛

∑

𝑗=1

𝑄
𝑘
𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗
𝐻(

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡) , 𝐼
𝑗
(𝑡)) 𝐼
𝑗
(𝑡)

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

)

−

𝑛

∑

𝑗=1

∫

∞

0

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗
𝑔
𝑘 (𝑢) 𝑒

−𝛿
𝑘
𝑢

× 𝐻(

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡 − 𝑢) , 𝐼

𝑗
(𝑡 − 𝑢)) 𝐼

𝑗
(𝑡 − 𝑢)

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

) d𝑢

=

𝑛

∑

𝑗=1

𝑄
𝑘
(𝑓
𝑘𝑗
(𝑆
𝑘 (𝑡) , 𝐼𝑗 (𝑡)) 𝐼𝑗 (𝑡) − 𝑓

𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

× ln
𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡) , 𝐼
𝑗
(𝑡)) 𝐼
𝑗
(𝑡)

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

)

−

𝑛

∑

𝑗=1

∫

∞

0

𝑔
𝑘
(𝑢) 𝑒
−𝛿
𝑘
𝑢

× [

[

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡 − 𝑢) , 𝐼

𝑗
(𝑡 − 𝑢)) 𝐼

𝑗
(𝑡 − 𝑢)

− 𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗
.

× ln
𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡 − 𝑢) , 𝐼

𝑗
(𝑡 − 𝑢)) 𝐼

𝑗
(𝑡 − 𝑢)

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

]

]

d𝑢.

(28)

Calculating the time derivative of 𝑉
𝑃
∗ along the solution of

system (12), we have

𝑉


𝑃
∗ = 𝑄

𝑘
(1 −

𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
)

𝑓
𝑘𝑘
(𝑆
𝑘 (𝑡) , 𝐼

∗

𝑘
)
)

× [

[

𝜑
𝑘
(𝑆
𝑘 (𝑡)) −

𝑛

∑

𝑗=1

𝑓
𝑘𝑗
(𝑆
𝑘 (𝑡) , 𝐼𝑗 (𝑡)) 𝐼𝑗 (𝑡)

]

]

+ (1 −
𝐼
∗

𝑘

𝐼
𝑘
(𝑡)

)

× [

[

𝑛

∑

𝑗=1

∫

∞

0

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑢) ,

𝐼
𝑗 (𝑢)) 𝐼𝑗 (𝑢) 𝑒

−𝛿
𝑘
(𝑡−𝑢)

𝑔
𝑘 (𝑡 − 𝑢) d𝑢

− (𝛿
𝑘
+ 𝛾
𝑘
) 𝐼
𝑘
(𝑡) ]

]

+ 𝑉


+
.

(29)
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Using equilibrium equations (16), we have

𝑉


𝑃
∗ = 𝑄

𝑘
(𝜑
𝑘
(𝑆
𝑘
(𝑡)) − 𝜑

𝑘
(𝑆
∗

𝑘
)) (1 −

𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
)

𝑓
𝑘𝑘
(𝑆
𝑘
(𝑡) , 𝐼
∗

𝑘
)
)

+

𝑛

∑

𝑗=1

𝑄
𝑘
𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗
−

𝑛

∑

𝑗=1

𝑄
𝑘
𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡) , 𝐼
𝑗
(𝑡)) 𝐼
𝑗
(𝑡)

−

𝑛

∑

𝑗=1

𝑄
𝑘
𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
)

𝑓
𝑘𝑘
(𝑆
𝑘 (𝑡) , 𝐼

∗

𝑘
)

+

𝑛

∑

𝑗=1

𝑄
𝑘
𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡) , 𝐼
𝑗
(𝑡)) 𝐼
𝑗
(𝑡)

𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
)

𝑓
𝑘𝑘
(𝑆
𝑘
(𝑡) , 𝐼
∗

𝑘
)

+

𝑛

∑

𝑗=1

∫

∞

0

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡 − 𝑢) , 𝐼

𝑗
(𝑡 − 𝑢))

× 𝐼
𝑗
(𝑡 − 𝑢) 𝑒

−𝛿
𝑘
𝑢
𝑔
𝑘
(𝑢) d𝑢

−
𝐼
𝑘
(𝑡)

𝐼
∗

𝑘

𝑛

∑

𝑗=1

∫

∞

0

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗
𝑒
−𝛿
𝑘
𝑢
𝑔
𝑘 (𝑢) d𝑢

−
𝐼
∗

𝑘

𝐼
𝑘
(𝑡)

𝑛

∑

𝑗=1

∫

∞

0

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡 − 𝑢) , 𝐼

𝑗
(𝑡 − 𝑢))

× 𝐼
𝑗
(𝑡 − 𝑢) 𝑒

−𝛿
𝑘
𝑢
𝑔
𝑘
(𝑢) d𝑢

+

𝑛

∑

𝑗=1

∫

∞

0

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗
𝑒
−𝛿
𝑘
𝑢
𝑔
𝑘
(𝑢) d𝑢 + 𝑉



+
.

(30)

Using 𝑉
+
, we rewrite (30) as

𝑉


𝑃
∗ = 𝑄

𝑘
(𝜑
𝑘
(𝑆
𝑘
(𝑡)) − 𝜑

𝑘
(𝑆
∗

𝑘
)) (1 −

𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
)

𝑓
𝑘𝑘
(𝑆
𝑘
(𝑡) , 𝐼
∗

𝑘
)
)

+

𝑛

∑

𝑗=1

𝑄
𝑘
𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

× [2 −
𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
)

𝑓
𝑘𝑘
(𝑆
𝑘
(𝑡) , 𝐼
∗

𝑘
)

+

𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
) 𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡) , 𝐼
𝑗
(𝑡)) 𝐼
𝑗
(𝑡)

𝑓
𝑘𝑘
(𝑆
𝑘
(𝑡) , 𝐼
∗

𝑘
) 𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

−
𝐼
𝑘
(𝑡)

𝐼
∗

𝑘

]

−

𝑛

∑

𝑗=1

∫

∞

0

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗
𝑔
𝑘
(𝑢) 𝑒
−𝛿
𝑘
𝑢

⋅ [

[

𝐼
∗

𝑘
𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡 − 𝑢) , 𝐼

𝑗
(𝑡 − 𝑢)) 𝐼

𝑗
(𝑡 − 𝑢)

𝐼
𝑘
(𝑡) 𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

− ln
𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡 − 𝑢) , 𝐼

𝑗
(𝑡 − 𝑢)) 𝐼

𝑗
(𝑡 − 𝑢)

𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡) , 𝐼
𝑗
(𝑡)) 𝐼
𝑗
(𝑡)

]

]

d𝑢.

(31)

Therefore,

𝑉


𝑃
∗

= 𝑄
𝑘
(𝜑
𝑘
(𝑆
𝑘
(𝑡)) − 𝜑

𝑘
(𝑆
∗

𝑘
)) (1 −

𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
)

𝑓
𝑘𝑘
(𝑆
𝑘
(𝑡) , 𝐼
∗

𝑘
)
)

−

𝑛

∑

𝑗=1

𝑄
𝑘
𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

× [

[

𝐻(
𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
)

𝑓
𝑘𝑘
(𝑆
𝑘 (𝑡) , 𝐼

∗

𝑘
)
)

+ 𝐻(

𝑓
𝑘𝑘
(𝑆
𝑘
(𝑡) , 𝐼
∗

𝑘
) 𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
)

𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
) 𝑓
𝑘𝑗
(𝑆
𝑘 (𝑡) , 𝐼𝑗 (𝑡))

)]

]

+

𝑛

∑

𝑗=1

𝑄
𝑘
𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
)

× (

𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
) 𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡) , 𝐼
𝑗
(𝑡)) 𝐼
𝑗
(𝑡)

𝑓
𝑘𝑘
(𝑆
𝑘
(𝑡) , 𝐼
∗

𝑘
) 𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

− 1)

× (1 −

𝑓
𝑘𝑘
(𝑆
𝑘
(𝑡) , 𝐼
∗

𝑘
) 𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
)

𝑓
𝑘𝑘
(𝑆
∗

𝑘
, 𝐼
∗

𝑘
) 𝑓
𝑘𝑗
(𝑆
𝑘 (𝑡) , 𝐼𝑗 (𝑡))

)

−

𝑛

∑

𝑗=1

∫

∞

0

𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗
𝑔
𝑘
(𝑢) 𝑒
−𝛿
𝑘
𝑢

× 𝐻(

𝐼
∗

𝑘
𝑓
𝑘𝑗
(𝑆
𝑘
(𝑡 − 𝑢) , 𝐼

𝑗
(𝑡 − 𝑢)) 𝐼

𝑗
(𝑡 − 𝑢)

𝐼
𝑘 (𝑡) 𝑓𝑘𝑗 (𝑆

∗

𝑘
, 𝐼
∗

𝑗
) 𝐼
∗

𝑗

) d𝑢

+

𝑛

∑

𝑗=1

𝑄
𝑘
𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
)

× 𝐼
∗

𝑗
[

𝐼
𝑗
(𝑡)

𝐼
∗

𝑗

−
𝐼
𝑘
(𝑡)

𝐼
∗

𝑘

− ln
𝐼
𝑗
(𝑡)

𝐼
∗

𝑗

+ ln
𝐼
𝑘
(𝑡)

𝐼
∗

𝑘

] .

(32)

Furthermore, under (S
5
)–(S
7
), we have

𝑉


𝑃
∗ ≤

𝑛

∑

𝑗=1

𝑄
𝑘
𝑓
𝑘𝑗
(𝑆
∗

𝑘
, 𝐼
∗

𝑗
)

× 𝐼
∗

𝑗
[

𝐼
𝑗 (𝑡)

𝐼
∗

𝑗

−
𝐼
𝑘
(𝑡)

𝐼
∗

𝑘

− ln
𝐼
𝑗 (𝑡)

𝐼
∗

𝑗

+ ln
𝐼
𝑘
(𝑡)

𝐼
∗

𝑘

] .

(33)
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Obviously, the equalities in (33) hold if and only if 𝑆
𝑘
= 𝑆
∗

𝑘

and 𝐼
𝑘
= 𝐼
∗

𝑘
, 𝑘 = 1, 2, . . . , 𝑛. Therefore, the functional 𝑉 =

∑
𝑛

𝑘=1
V
𝑘
𝑉
𝑃
∗ as defined in Theorem 3.1 of [12] is a Lyapunov

function for system (12). Using similar arguments as in [4,
8–13, 16, 17], one can show that the largest invariant subset
where 𝑉

𝑝
∗ = 0 is the singleton {𝑃

∗
}. By LaSalle’s Invariance

Principle, 𝑃∗ is globally asymptotically stable in the interior
of Γ. This completes the proof of Theorem 3.
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Predator-preymodels describe biological phenomena of pursuit-evasion interaction. And this interaction exists widely in the world
for the necessary energy supplement of species. In this paper, we have investigated a ratio-dependent spatially extended food chain
model. Based on the bifurcation analysis (Hopf and Turing), we give the spatial pattern formation via numerical simulation, that is,
the evolution process of the system near the coexistence equilibrium point (𝑢∗

2
, V∗
2
, 𝑤
∗

2
), and find that the model dynamics exhibits

complex pattern replication. For fixed parameters, on increasing the control parameter 𝑐
1
, the sequence “holes → holes-stripe

mixtures → stripes → spots-stripe mixtures → spots” pattern is observed. And in the case of pure Hopf instability, the model
exhibits chaotic wave pattern replication. Furthermore, we consider the pattern formation in the case of which the top predator is
extinct, that is, the evolution process of the system near the equilibrium point (𝑢∗

1
, V∗
1
, 0), and find that the model dynamics exhibits

stripes-spots pattern replication.Our results show that reaction-diffusionmodel is an appropriate tool for investigating fundamental
mechanism of complex spatiotemporal dynamics. It will be useful for studying the dynamic complexity of ecosystems.

1. Introduction

Predator-prey models are studied in detail in the focus on
equilibria, stability, asymptotic behavior, persistence, bifurca-
tion, chaos, and so on [1–8]. In the past 40 years, with the idea
of Turing [9], spatial extended models, in which not only the
species evolve through time but also distribute in space, and
pattern formation are one of the hot spots [6, 8, 10–20].

Food web models describe the same phenomena as
predator-prey models, but the former description is more
actual than the latter since our real world is so complex. Until
recently, food webs models are widely studied as predator-
preymodels [12–14, 17, 21–29]. But as far as we know, spatially
extended models seem rare and not regarded. In fact, we live
in a spatial world, and the spatial component of ecological
interactions has been identified as an important factor in
how ecological communities are shaped. Understanding the
role of space is challenging both theoretically and empirically
[30]. And the issue of spatial and spatiotemporal pattern for-
mation in biological communities is probably one of themost
exciting problems in modern biology and ecology [31, 32].

And the food web models with spatial distribution will do
better job than the classical models.

In general, a classical food chain model with the nondi-
mensional form can be written as follows:

𝑑𝑢

𝑑𝑡
= 𝑢𝑔 (𝑢) − 𝑐

1
𝑓
1
(𝑢, V) V,

𝑑V
𝑑𝑡

= (𝑚
1
𝑓
1
(𝑢, V) − 𝑞

1
) V − 𝑐

2
𝑝
2
(V, 𝑤)𝑤,

𝑑𝑤

𝑑𝑡
= (𝑚
2
𝑓
2
(V, 𝑤) − 𝑞

2
) 𝑤,

(1)

where 𝑢 stands for prey density,𝑤 is the top predator density,
and V—the density of the intermediate predator—describes
the predator of 𝑢 and the prey of 𝑤; 𝑔(𝑢) is the per capita
rate of increase of the prey in the absence of predation.
And all coefficients are positive constants, 𝑐

1
and 𝑐
2
are the

maximum ingestion rates of intermediate predator and top
predator, 𝑚

1
is the conversion factor of prey to intermediate

predator,𝑚
2
is the conversion factor of intermediate predator
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to top predator, 𝑞
1
is the food-independent death rate of

the intermediate predator, and 𝑞
2
is the food-independent

death rate of the top predator. 𝑓
𝑖
is the functional response.

The functional response is the prey consumption rate by
an average single predator. It can be influenced by the prey
consumption rate and the predator density. 𝑐

𝑖
𝑓
𝑖
is the amount

of prey consumed per predator per unit time, 𝑚
𝑖
𝑓
𝑖
is the

predator production per capita with predation.
In this paper, we focus on the following ratio-dependent

food chain model [28]:

𝑑𝑢

𝑑𝑡
= 𝑢 (1 − 𝑢) − 𝑐

1

𝑢

𝑢 + V
V,

𝑑V
𝑑𝑡

= (𝑚
1

𝑢

𝑢 + V
− 𝑞
1
) V − 𝑐

2

V
V + 𝑤

𝑤,

𝑑𝑤

𝑑𝑡
= (𝑚
2

V
V + 𝑤

− 𝑞
2
)𝑤.

(2)

The necessary condition of the persistence of V and𝑤 is𝑚
1
>

𝑞
1
and𝑚

2
> 𝑞
2
, respectively.

When all the species distribute randomly in the space,
model (2) can be rewritten with a supplement:

𝑑𝑢

𝑑𝑡
= 𝑢 (1 − 𝑢) − 𝑐

1

𝑢

𝑢 + V
V + 𝑑
1
∇
2
𝑢,

𝑑V
𝑑𝑡

= (𝑚
1

𝑢

𝑢 + V
− 𝑞
1
) V − 𝑐

2

V
V + 𝑤

𝑤 + 𝑑
2
∇
2V,

𝑑𝑤

𝑑𝑡
= (𝑚
2

V
V + 𝑤

− 𝑞
2
)𝑤 + 𝑑

3
∇
2
𝑤,

(3)

where 𝑑
1
, 𝑑
2
, and 𝑑

3
are the diffusion coefficients of the three

species, respectively,∇2 = 𝜕/𝜕𝑥
2
+𝜕/𝜕𝑦

2 is the usual Laplacian
operator in two-dimensional space, and other parameters
have the same definitions as those above.

Model (3) is to be analyzed under the nonzero initial
condition and Neumann, or zero flux, boundary conditions:

𝑢 (𝑥, 𝑦, 0) ≥ 0, V (𝑥, 𝑦, 0) ≥ 0, 𝑤 (𝑥, 𝑦, 0) ≥ 0,

(𝑥, 𝑦) ∈ Ω ⊂ R
2
,

𝜕𝑢

𝜕n
=

𝜕V
𝜕n

=
𝜕V
𝜕n

= 0, (𝑥, 𝑦) ∈ 𝜕Ω.

(4)

In the above, n is the outward unit normal vector of the
boundary 𝜕Ω which we will assume is smooth. The main
reason for choosing such boundary conditions is that we
are interested in the self-organization of pattern; zero-flux
conditions imply no external input [17].

This paper is organized as follows. In the next section,
we give a local stability analysis of model (3). Then, we
present the pattern formation of model (3) via numerical
simulations, which is followed by Section 2. Finally, we give
some discussions in Section 4.

c 1

1

2

3

4

5

6

7

q1

0.5 0.6 0.7 0.8 0.9 1.0 1.1

Noncoexistence

Hopf line

Turing line
I

II

III

IV

Figure 1: 𝑐
1
-𝑞
1
bifurcation diagram formodel 3 with𝑚

1
= 1.5, 𝑚

2
=

2, 𝑞
2

= 1, 𝑐
2

= 0.5, 𝑑
1

= 0.01, 𝑑
2

= 0.1, 𝑑
3

= 1, and 𝑞
1
a

variational parameter. Hopf and Turing bifurcation curves separate
the coexistence parameter space into four domains. . . .: the dividing
line of coexistence and noncoexistence of prey and their predators.

2. Linear Stability Analysis

There are two equilibria (steady states) in model (2), which
correspond to spatially homogeneous equilibria of model (3):

𝐸
∗

1
= (𝑢
∗

1
, V∗
1
, 0)

= (−
−𝑚
1
+ 𝑐
1
𝑚
1
− 𝑐
1
𝑞
1

𝑚
1

,

−
(−𝑚
1
+ 𝑐
1
𝑚
1
− 𝑐
1
𝑞
1
) (𝑚
1
− 𝑞
1
)

𝑚
1
𝑞
1

, 0) ,

(5)

corresponding to top-predator extinction when 𝑚
1
(𝑐
1
−

1)/𝑐
1
< 𝑞
1
. Consider

𝐸
∗

2
= (𝑢
∗

2
, V∗
2
, 𝑤
∗

2
) , (6)

corresponding to coexistence of prey and predators when

𝑐
1
< 1,

𝑚
2
𝑐
2
− 𝑞
2
𝑐
2

𝑚
2

< 𝑞
1
<
𝑚
2
𝑐
2
− 𝑞
2
𝑐
2

𝑚
2

− 𝑚
1
+
𝑚
1

𝑐
1

, (7)

or

𝑐
1
= 1, 𝑞

1
<
𝑚
2
𝑐
2
− 𝑞
2
𝑐
2

𝑚
2

, (8)

or

𝑐
1
> 1,

𝑚
2
𝑐
2
− 𝑞
2
𝑐
2

𝑚
2

− 𝑚
1
+
𝑚
1

𝑐
1

< 𝑞
1
<
𝑚
2
𝑐
2
− 𝑞
2
𝑐
2

𝑚
2

,

(9)

where

𝑢
∗

2
=
𝑚
1
𝑚
2
− 𝑐
1
𝑚
1
𝑚
2
+ 𝑐
1
𝑚
2
𝑞
1
+ 𝑐
1
𝑚
2
𝑐
2
− 𝑐
1
𝑞
2
𝑐
2

𝑚
1
𝑚
2

,
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Figure 2: Holes pattern of the prey 𝑢 obtained with model (3) with 𝑐
1
= 1.84 and 𝑞

1
= 0.6. Iterations: (a) 0, (b) 20000, (c) 60000, and

(d) 200000.
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Figure 3: Pattern formation of the prey 𝑢 of model (3) with 𝑞
1
= 0.6, 𝑐

1
= 1.87 (a) and 𝑐

1
= 1.95 (b). Iterations: (a) 100000 and (b) 20000.

V∗
2
= − (𝑚

1
𝑚
2
− 𝑐
1
𝑚
1
𝑚
2
+ 𝑐
1
𝑚
2
𝑞
1
+ 𝑐
1
𝑚
2
𝑐
2
− 𝑐
1
𝑞
2
𝑐
2
)

× (−𝑚
1
𝑚
2
+ 𝑚
2
𝑞
1
+ 𝑚
2
𝑐
2
− 𝑞
2
𝑐
2
)

× (𝑚
1
𝑚
2
(𝑚
2
𝑞
1
+ 𝑚
2
𝑐
2
− 𝑞
2
𝑐
2
))
−1
,

𝑤
∗

2
= − (𝑚

1
𝑚
2
− 𝑐
1
𝑚
1
𝑚
2
+ 𝑐
1
𝑚
2
𝑞
1
+ 𝑐
1
𝑚
2
𝑐
2
− 𝑐
1
𝑞
2
𝑐
2
)

× (−𝑚
1
𝑚
2
+ 𝑚
2
𝑞
1
+ 𝑚
2
𝑐
2
− 𝑞
2
𝑐
2
) (𝑚
2
− 𝑞
2
)

× (𝑚
1
𝑚
2
(𝑚
2
𝑞
1
+ 𝑚
2
𝑐
2
− 𝑞
2
𝑐
2
) 𝑞
2
)
−1
.

(10)
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Figure 4: Pattern formation of the prey 𝑢 of model (3) with 𝑞
1
= 0.6, 𝑐

1
= 2.1 (a) and 𝑐

1
= 2.21 (b). Iterations: (a) 100000 and (b) 20000.

And in the presence of diffusion, set 𝑢 = 𝑢
∗
+ �̃�, V =

V∗ + Ṽ, 𝑤 = 𝑤
∗
+ 𝑤, and the standard linear analysis predicts

exponentially growing solutions of model (3) in the form

�̃� (r, 𝑡) ∼ 𝑒
𝜆𝑡
𝑡𝑒
𝑖 ⃗𝑘⋅r

, Ṽ (r, 𝑡) ∼ 𝑒
𝜆𝑡
𝑡𝑒
𝑖 ⃗𝑘⋅r

, 𝑤 (r, 𝑡) ∼ 𝑒
𝜆𝑡
𝑡𝑒
𝑖 ⃗𝑘⋅r

,

r = (𝑥, 𝑦) ,

(11)

where ⃗𝑘⋅ ⃗𝑘 = 𝑘
2, 𝑘, and 𝜆 are the wave-number and frequency,

respectively.
And the eigenvalue equation then reads


𝜆𝐼 + 𝑘

2
𝐷 − 𝐽


= 0, (12)

where the diffusion matrix 𝐷 = diag(𝑑
1
, 𝑑
2
, 𝑑
3
), and 𝐽 the

Jacobian matrix

𝐽 =

[
[
[
[
[
[
[
[
[

[

1 − 2𝑢 −
𝑐
1
V

𝑢 + V
+

𝑐
1
𝑢V

(𝑢 + V)2
−

𝑐
1
𝑢

𝑢 + V
+

𝑐
1
𝑢V

(𝑢 + V)2
0

𝑚
1
V

𝑢 + V
−

𝑚
1
𝑢V

(𝑢 + V)2
𝑚
1
𝑢

𝑢 + V
−

𝑚
1
𝑢V

(𝑢 + V)2
− 𝑞
1
−

𝑐
2
𝑤

V + 𝑤
+

𝑐
2
V𝑤

(V + 𝑤)
2

−
𝑐
2
V

V + 𝑤
+

𝑐
2
V𝑤

(V + 𝑤)
2

0
𝑚
2
𝑤

V + 𝑤
−

𝑚
2
V𝑤

(V + 𝑤)
2

𝑚
2
V

V + 𝑤
−

𝑚
2
V𝑤

(V + 𝑤)
2
− 𝑞
2

]
]
]
]
]
]
]
]
]

](𝑢∗
2
,V∗
2
,𝑤
∗

2
)

=
[
[

[

𝐽
11

𝐽
12

𝐽
13

𝐽
21

𝐽
22

𝐽
23

𝐽
31

𝐽
32

𝐽
33

]
]

]

.

(13)

Then we can obtain the eigenvalues 𝜆(𝑘) as functions of
the wave number 𝑘 as the roots of

𝜆
3
+ 𝑝 (𝑘

2
) 𝜆
2
+ 𝑞 (𝑘

2
) 𝜆 + 𝑟 (𝑘

2
) = 0, (14)

where

𝑝 (𝑘
2
) = (𝑑

1
+ 𝑑
2
+ 𝑑
3
) 𝑘
2
− (𝐽
11
+ 𝐽
22
+ 𝐽
33
) ,

𝑞 (𝑘
2
) = (𝑑

1
𝑑
2
+ 𝑑
1
𝑑
3
+ 𝑑
2
𝑑
3
) 𝑘
4

− (𝑑
1
𝐽
22
+ 𝑑
1
𝐽
33
+ 𝑑
2
𝐽
11

+𝑑
2
𝐽
33
+ 𝑑
3
𝐽
11
+ 𝑑
3
𝐽
22
) 𝑘
2

+ (𝐽
11
𝐽
22
+ 𝐽
11
𝐽
33
− 𝐽
12
𝐽
21
+ 𝐽
22
𝐽
33
− 𝐽
23
𝐽
32
) ,

𝑟 (𝑘
2
) = 𝑑
1
𝑑
2
𝑑
3
𝑘
6
− (𝑑
1
𝑑
2
𝐽
33
+ 𝑑
1
𝑑
3
𝐽
22
+ 𝑑
2
𝑑
3
𝐽
11
) 𝑘
4

+ (𝑑
1
𝐽
22
𝐽
33
− 𝑑
1
𝐽
23
𝐽
32
+ 𝑑
2
𝐽
11
𝐽
33

+𝑑
3
𝐽
11
𝐽
22
− 𝑑
3
𝐽
12
𝐽
21
) 𝑘
2

+ (−𝐽
11
𝐽
22
𝐽
33
+ 𝐽
11
𝐽
23
𝐽
32
+ 𝐽
12
𝐽
21
𝐽
33
) .

(15)
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Figure 5: Chaotic wave pattern of the prey 𝑢 obtained with model (3) with 𝑐
1
= 5.15 and 𝑞

1
= 1.07. Iterations: (a) 0, (b) 50000, (c) 100000,

and (d) 200000.

And one type of bifurcation will break one type of
symmetry of a system; that is, in the bifurcation point, two
equilibrium states intersect and exchange their stability. Bio-
logically speaking, this bifurcation corresponds to a smooth
transition between equilibrium states [33]. The reaction-
diffusion systems have led to the characterization of two
basic types of symmetry-breaking bifurcations—Hopf and
Turing bifurcation, which are responsible for the emergence
of spatiotemporal patterns.

The onset of Hopf instability corresponds to the case
when a pair of imaginary eigenvalues cross the real axis
from the negative to the positive side. And this situation
occurs only when the diffusion vanishes. Mathematically
speaking, the Hopf bifurcation occurs when Re(𝜆(𝑘2)) = 0,
Im(𝜆(𝑘

2
)) ̸= 0 at the wavenumber 𝑘 = 0. For unstable steady

states to heterogeneous perturbations leading to Turing
patterns, the real part of the eigenvalue, Re(𝜆(𝑘2)), has to
be greater than zero. Mathematically speaking, the Turing
bifurcation occurs when I(𝜆(𝑘)) = 0, R(𝜆(𝑘)) = 0 at the
wavenumber 𝑘 ̸= 0.

Here, we take 𝑐
1
as the bifurcation parameter; linear

stability analysis yields the bifurcation diagram with 𝑚
1
=

1.5, 𝑚
2

= 2, 𝑞
2

= 1, 𝑐
2

= 0.5, 𝑑
1

= 0.01, 𝑑
2

= 0.1,

𝑑
3

= 1, and 𝑞
1
is a variational parameter (c.f., Figure 1).

In Figure 1, the spotted curve is critical state in which
above the spotted curve, the three species cannot both be
positive; under the spotted curve, they are both positive. The
𝑐
1
-𝑞
1
bifurcation diagram shows the two bifurcation curves

separate the coexistence space into four domains. In domain
I, located below all two bifurcation lines, the uniform steady
state is the only stable solution of the model. Domain II is
the region of pure Turing instability. Domain III is the region
of pure Hopf instability. When the parameters correspond to
domain IV, which is located above all two bifurcation lines,
both Hopf instability and Turing instability occur.

In Figure 1, the stationary state in the parameter domains
II and IV (sometimes called the “Turing space”) is unstable
only to a nonuniform perturbation. As expected, this domain
exists only when the inhibitor species (for predator-prey
system, predator 𝑢) diffuses faster than the activator species
(for predator-prey system, prey V, 𝑤) and the area of this
Turing space increases with 𝑑

3
> 𝑑
2
> 𝑑
1
.

3. Pattern Formation

In this section, we perform extensive numerical simulations
of the spatially extended model (3) in two-dimensional
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Figure 6: Dynamical behaviors of model (3). (a) Time-series plot of 𝑢, (b) time-series plot of V, (c) time-series plot of 𝑤; (d) phase portrait.
The parameters are the same as those in Figure 5.

spaces, and the qualitative results are shown here. The
parameters are 𝑚

1
= 1.5, 𝑚

2
= 2, 𝑞

2
= 1, 𝑐

2
= 0.5, 𝑑

1
=

0.01, 𝑑
2
= 0.1, and 𝑑

3
= 1. Model (3) is integrated initially in

two-dimensional space from the homogeneous steady state;
that is, we start with the unstable uniform solution 𝐸

∗

2
=

(𝑢
∗

2
, V∗
2
, 𝑤
∗

2
) with small random perturbation superimposed;

in each, the initial condition is always a small amplitude
random perturbation (±5 × 10

−4
), using an explicit Euler

method for the time integration with a time stepsize of
Δ𝑡 = 0.01. We use the standard five-point approximation
for the Laplacian operator with the Zero-flux boundary
conditions and the system size is 50 × 50 space units with
space stepsize (lattice constant) ℎ = Δ𝑥 = Δ𝑦 = 0.25,
discretized through 𝑥 → (𝑥

0
, 𝑥
1
, . . . , 𝑥

𝑖
, . . . , 𝑥

200
) and 𝑦 →

(𝑦
0
, 𝑦
1
, . . . , 𝑦

𝑗
, . . . , 𝑦

200
). The form of the Laplacian operator

is taken as follows:

Δ
ℎ
𝑢
𝑛

𝑖,𝑗
=

𝑢
𝑛

𝑖+1,𝑗
+ 𝑢
𝑛

𝑖−1,𝑗
+ 𝑢
𝑛

𝑖,𝑗+1
+ 𝑢
𝑛

𝑖,𝑗−1
− 4𝑢
𝑛

𝑖,𝑗

ℎ2
. (16)

The concentrations (𝑢𝑛+1
𝑖,𝑗

, V𝑛+1
𝑖,𝑗

, 𝑤
𝑛+1

𝑖,𝑗
) at the moment (𝑛 +

1)𝜏 at the mesh position (𝑖, 𝑗) are given by

𝑢
𝑛+1

𝑖,𝑗
= 𝑢
𝑛

𝑖,𝑗
+ 𝜏𝑑
1
Δ
ℎ
𝑢
𝑛

𝑖,𝑗
+ 𝜏𝑓
1
(𝑢
𝑛

𝑖,𝑗
, V𝑛
𝑖,𝑗
, 𝑤
𝑛

𝑖,𝑗
) ,

V𝑛+1
𝑖,𝑗

= V𝑛
𝑖,𝑗
+ 𝜏𝑑
2
Δ
ℎ
V𝑛
𝑖,𝑗
+ 𝜏𝑓
2
(𝑢
𝑛

𝑖,𝑗
, V𝑛
𝑖,𝑗
, 𝑤
𝑛

𝑖,𝑗
) ,

𝑤
𝑛+1

𝑖,𝑗
= 𝑤
𝑛

𝑖,𝑗
+ 𝜏𝑑
3
Δ
ℎ
𝑤
𝑛

𝑖,𝑗
+ 𝜏𝑓
3
(𝑢
𝑛

𝑖,𝑗
, V𝑛
𝑖,𝑗
, 𝑤
𝑛

𝑖,𝑗
) .

(17)

When the evolution processes reached steady state, we
took a snapshot with white corresponding to the high value
of prey 𝑢 while black corresponding to the low one.

In the numerical simulations, different types of dynamics
are observed and it is found that the distributions of predator
and prey are always of the same type. Consequently, we can
restrict our analysis of pattern formation to one distribution.
In this section, we show the distribution of prey 𝑢, for
instance.

From the bifurcation diagram in the above section (cf.,
Figure 1), the results of numerical simulations show that the
type of the system dynamics is determined by the values of
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𝑐
1
and 𝑞
1
. And for different sets of parameters, the features of

the spatial patterns become essentially different if 𝑐
1
exceeds

the bifurcation curves which depend on 𝑞
1
.

First, we consider the pattern formation for the param-
eters (𝑞

1
, 𝑐
1
) located in domain II (c.f., Figure 1); the region

of pure Turing instability occurs while Hopf stability occurs.
As an example, we show the time evolution of three typical
patterns when 𝑞

1
= 0.6. With the parameters set, one can

conclude that the critical value of Hopf bifurcation is 𝑐
1
=

1.81365 and Turing bifurcation value is 𝑐
1
= 2.12057. So, the

values of 𝑐
1
that we adopt are between 1.81365 and 2.12057.

As an example, in Figure 2, we show the time evolu-
tion of holes pattern of prey 𝑢 at 0, 20000, 60000, and
200000 iterations for (𝑞

1
, 𝑐
1
) = (0.6, 1.84). In this case,

one can see that for model (1), the pattern takes a long
time to settle down, starting with a homogeneous state
(𝑢
∗
, V∗, 𝑤∗) = (0.20267, 0.15498, 0.15498) (c.f., Figure 5(a)),

and the random initial distribution leads to the formation of
regular holes (c.f., Figure 2(d)).This pattern (c.f., Figure 2(d))
consists of black (minimumdensity of 𝑢) hexagons on awhite
(maximum density of 𝑢) background, that is, isolated zones
with low population densities. Baurmann et al. [33] called this
type pattern “cold spots” and vonHardenberg et al. [34] called
it “holes.” In this paper, we adopt the name “holes.”

When increasing 𝑐
1
to 1.87, a few of stripes emerge, and

the remainder of the holes pattern remains time indepen-
dent (Figure 3(a)). And while increasing 𝑐

1
to 1.95, model

dynamics exhibits a transition from stripe-hole growth to
stripes replication; that is, holes decay and the stripes pattern
emerges (Figure 3(b)).

Next, we consider the pattern formation in domain IV
in Figure 1; both Hopf and Turing instability occur in this
domain. We adopt 𝑞

1
= 0.6 and 2.12057 < 𝑐

1
< 2.30769—

the maximized value of the coexistence of prey and their
predators. The model dynamics exhibits two typical pattern
formations.

In Figure 4, with the increasing of 𝑐
1
to 2.1, a few of

white hexagons (i.e., spots, associate with high population
densities) fill in the stripes; that is, the stripes-spots pat-
tern emerges (c.f., Figure 4(a)). And while increasing 𝑐

1
to

2.21, model dynamics exhibits a transition from stripe-spots
growth to spots replication; that is, stripes decay and the spots
pattern emerges(c.f., Figure 4(b)).

FromFigures 2–4, one can see that, with fixed parameters,
on increasing the control parameter 𝑐

1
, the sequence “holes

→ holes-stripes mixtures → stripes → spots-stripes mix-
tures → spots” pattern is observed.

In addition, we consider the pattern formation when
(𝑐
1
, 𝑞
1
) locates in domain III in Figure 1, pure Hopf instability

occurs. Figure 5 shows the evolution of the chaotic wave
pattern of prey 𝑢 at 0, 50000, 100000, and 200000 iterations
with (𝑞

1
, 𝑐
1
) = (1.07, 5.15). With these fixed parameters, the

critical value of Hopf bifurcation is 𝑐
1

= 5.13108 and the
Turing bifurcation values equal 𝑐

1
= 5.24545. In order to

make it clearer, in Figure 6, we show oscillate time series plots
of 𝑢, V, 𝑤 (c.f., Figures 6(a), 6(b), and 6(c)), respectively. And
phase portrait (c.f., Figure 6(d)) shows that there exhibits the
“local” phase plane of the system obtained in a fixed point
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1.05

1.00

q1

0 0.1 0.2 0.3

Non-coexistence

Hopf line

Turing line I

II

Figure 7: 𝑐
1
-𝑞
1
bifurcation diagram for model (3) with 𝑚

1
=

1.5, 𝑚
2
= 2, 𝑞

2
= 1, 𝑐

2
= 0.5, 𝑑

1
= 0.01, 𝑑

2
= 0.1, 𝑑

3
= 1 and 𝑞

1
;

the corresponding steady state is (𝑢∗
1
, V∗
1
, 0) = (0.04667, 0.30333, 0).

. . .: the dividing line of coexistence and noncoexistence of prey and
their predators.

𝐸
∗

2
= (0.38200, 0.05209, 0.05209) inside the region invaded

by the irregular spatiotemporal oscillations.
Furthermore, we restrict our attention to the case when

the top predator vanishes. Extinction of the top predator is
studied by Chiu and coworkers; they gave a criterion for the
extinction of top predator [35]. Here, we will illustrate the
pattern formation about this case.

According to food chainmodel,𝐸∗
1
= (𝑢
∗

1
, V∗
1
, 0) describes

extinction of the top predator. With the same method and
the same parameters in Section 2, the bifurcation diagram
is shown in Figure 7. In Figure 7, the spotted curve is
critical state in which the domain above the spotted curve is
noncoexistence space; the domain under the spotted curve
is coexistence space. Only Turing curve intersects with the
spotted curve, and it separates the coexistence space into two
domains.When (𝑐

1
, 𝑞
1
) locates in domain I, under the Turing

curve, the steady state is only stable solution of model (3);
when (𝑐

1
, 𝑞
1
) locates in domain II in Figure 7, pure Turing

instability occurs. That is to say, domain II is the “Turing
space” only.

Figure 8 shows the evolution of the spatial pattern of prey
at 0, 10000, 100000, and 300000 iterations with 𝑐

1
= 1.1 and

𝑞
1
= 0.2; that is, (𝑐

1
, 𝑞
1
) point locates in domain II in Figure 7.

The random initial distribution around the steady state 𝐸∗
1
=

(0.04667, 0.30333, 0) leads to the formation of stripes-spots
pattern (c.f., Figure 8(d)).

4. Conclusions and Remarks

In summary, we have investigated a ratio-dependent spatially
extended food chainmodel. Based on the bifurcation analysis
(Hopf and Turing), we give the spatial pattern formation
via numerical simulation. For the coexistence equilibrium
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Figure 8: Spatiotemporal pattern of the prey 𝑢 of model (3) with 𝑐
1
= 1.07 and 𝑞

1
= 0.2; the initial condition is the random initial distribution

around the steady state (𝑢∗
1
, V∗
1
, 0) = (0.04667, 0.30333, 0). Iterations: (a) 0, (b) 10000, (c) 100000, and (d) 300000.

point 𝐸∗
2

= (𝑢
∗

2
, V∗
2
, 𝑤
∗

2
), we find that the model dynamics

exhibits complex pattern replication, such as holes, holes-
stripes, stripes, spots-stripes, spots, and chaotic wave pattern.
And for the extinction of the top predator equilibrium point
𝐸
∗

1
= (𝑢
∗

1
, V∗
1
, 0), we find that the model dynamics exhibits

stripes-spots pattern replication.
In fact, in our world, every day, hundreds of species are

extinct, and the extinction of a species is a fearful thing. And
the top predator is extinct because there is a balance between
the prey 𝑢 and the intermediate predator V. In the case we
considered, the density of the intermediate predator V is not
small, but very big. The intermediate predator V is strong
enough to fight back the top predator 𝑤.

On the other hand, in the analysis of bifurcations (i.e.,
Hopf and Turing), we find that huge-sized computations are
required, so we have to obtain more help via computers. In
fact, computer-aided analysis is useful for nonlinear analysis.
And computers have played an important role throughout
the history of ecology. Today, numerical simulations also play
an important role in spatial ecology. There are some interna-
tional mathematical softwares, such as Matlab, Maple, and
Mathematica, all of which have powerful function library

and can provide scientific calculation and programming
with friendly platform. We have finished all our symbolic
computations in Maple and obtained our pattern snapshots
(i.e., numerical simulations) in Matlab as Maple is more
superior in symbolic computations while Matlab is more
superior in numerical computations.
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A tumor-immune competition model with delay is considered, which consists of two-dimensional nonlinear differential equation.
The conditions for the linear stability of the equilibria are obtained by analyzing the distribution of eigenvalues. General formulas
for the direction, period, and stability of the bifurcated periodic solutions are given for codimension one and codimension two
bifurcations, including Hopf bifurcation, steady-state bifurcation, and B-T bifurcation. Numerical examples and simulations are
given to illustrate the bifurcations analysis and obtained results.

1. Introduction

In this century, cancer remains one of the most dangerous
killers of humankind; every year millions of people suffer
from cancer and die from this disease throughout the world;
see Boyle et al. [1]. Recently, there has been much interest
in mathematical modeling of immune response with the
intruder (see, e.g., Liu et al. [2, 3], Yafia [4], d’Onofrio et al.
[5, 6], and the references cited therein). In fact, mathematical
models are feasible to propose simple models which are
capable of displaying some of the essential immunological
phenomena. The delayed models of tumor and immune
response interactions have been studied extensively; we refer
to Bi and Ruan [7], Yafia [8], Mayer et al. [9], Yafia [10],
and the references cited therein, which have shown that
various bifurcations can occur in suchmodels. It is interesting
to consider the nonlinear dynamics of the delayed tumor-
immune model.

In 1994, Kuznetsov et al. [11] took into account the
penetration of tumor cells (TCs) by effector cells (ECs) and
proposed a model describing the response of ECs to the
growth of TCs. They assumed that interactions between ECs
and TCs in vitro can be described by the kinetic scheme
shown in Figure 1, where 𝐸, 𝑇, 𝐶, 𝑇

∗, and 𝐸
∗ are the local

concentrations of ECs, TCs, EC-TC complexes, inactivated

ECs, and lethally hit TCs, respectively. Then the Kuznetsov
and Taylor model is as follows:

d𝐸
d𝑡

= 𝑐 + 𝐹 (𝐶, 𝑇) − 𝑑
1
𝐸 − 𝑘
1
𝐸𝑇 + (𝑘

−1
+ 𝑘
3
) 𝐶,

d𝑇
d𝑡

= 𝑎𝑇 (1 − 𝑏𝑇tot) − 𝑘
1
𝐸𝑇 + (𝑘

−1
+ 𝑘
2
) 𝐶,

d𝐶
d𝑡

= 𝑘
1
𝐸𝑇 − (𝑘

−1
+ 𝑘
2
+ 𝑘
3
) 𝐶,

d𝑇∗

d𝑡
= 𝑘
3
𝐶 − 𝑑

2
𝑇
∗
,

d𝐸∗

d𝑡
= 𝑘
2
𝐶 − 𝑑

3
𝐸
∗
,

(1)

where 𝑐 is the normal rate of the flow of adult ECs into the
tumor site, 𝐹(𝐶, 𝑇) describes the accumulation of effector
cells in the tumor cells localization due to the presence of the
tumor, 𝑑

1
, 𝑑
2
, and 𝑑

3
are the coefficients of the processes of

destruction and migration for E, EC, and TC, respectively,
𝑎 is the coefficient of the maximal growth of tumor, and 𝑏

is the environment capacity. Kuznetsov et al. [11] claimed
that experimental observations motivate the approximation
𝑑𝐶/𝑑𝑡 ≈ 0; therefore, it is reasonable to assume that𝐶 ≈ 𝐾𝐸𝑇
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Figure 1: Kinetic scheme describing interactions between ECs and
TCs.

with𝐾 = 𝑘
1
/(𝑘
1
+𝑘
2
+𝑘
3
). Kuznetsov et al. [11] also suggested

that the function𝐹 is in theMichaelis-Menten form𝐹(𝐶, 𝑇) =

𝐹(𝐸, 𝑇) = (𝑓𝐶/(𝑔 + 𝑇))(𝑓, 𝑔 > 0). In 2003, Gałach [12]
suggested that the function 𝐹 should be in a Lotka-Volterra
form 𝐹(𝐶, 𝑇) = 𝐹(𝐸, 𝑇) = 𝑛

1
𝐸𝑇; then the model (1) can be

reduced to
d𝑥
d𝑡

= 𝑐 + 𝑛
1
𝑥𝑦 − 𝑚

1
𝑥𝑦 − 𝑑

1
𝑥,

d𝑦
d𝑡

= 𝑎𝑦 (1 − 𝑏𝑦) − 𝑚
2
𝑥𝑦,

(2)

where 𝑥 denotes the dimensionless density of ECs, 𝑦 stands
for the dimensionless density of the population of TCs,𝑚

1
=

𝑘𝑘
2
, 𝑚
2
= 𝑘𝑘
3
, and all coefficients are positive. Set 𝑥 = 𝑥

0
𝑥
,

𝑦 = 𝑦
0
𝑦
, 𝑡 = (1/𝑚

2
𝑥
0
)𝑡
, 𝑥
0
> 0, 𝑦

0
> 0. Replace 𝑥 with 𝑥



and 𝑦 with 𝑦
. Then (2) can be written as

d𝑥
d𝑡

= 𝜎 + 𝑛𝑥𝑦 − 𝑚𝑥𝑦 − 𝛿𝑥,

d𝑦
d𝑡

= 𝛼𝑦 (1 − 𝛽𝑦) − 𝑥𝑦,

(3)

where 𝜎 = 𝑠/𝑚
2
𝑥
2

0
, 𝑛 = 𝑛

1
𝑦
0
/𝑚
2
𝑥
0
, 𝑚 = 𝑚

1
𝑦
0
/𝑚
2
𝑥
0
, 𝛿 =

𝑑
1
/𝑚
2
𝑥
0
, 𝛼 = 𝑎/𝑚

2
𝑥
0
, and 𝛽 = 𝑏𝑦

0
.

Mayer et al. [9] and Asachenkov et al. [13] pointed out
that the delays should be taken into account to describe
the times necessary for molecule production, proliferation,
differentiation of cells, transport, and so forth. In fact, the
immune system needs time to develop a suitable response
after the invasion of tumor cells; the binding of EC and TC
also needs time. Therefore, we introduce time delays into the
model of immune response. Integrating models [9–11], we
will consider the model as follows:

d𝑥
d𝑡

= 𝜎 + 𝜁𝑥 (𝑡 − 𝜏
1
) 𝑦 (𝑡 − 𝜏

1
) − 𝛿𝑥,

d𝑦
d𝑡

= 𝛼𝑦 (1 − 𝛽
2
𝑦) − 𝑥 (𝑡 − 𝜏

2
) 𝑦 (𝑡 − 𝜏

2
) ,

(4)

where 𝜁 = 𝑛 −𝑚; if the stimulation coefficient of the immune
system exceeds the neutralization coefficient of ECs in the
process of the formation of EC-TC complexes, then 𝜁 > 0.
Yafia [4] studied the linear stability of the equilibria and the
existence of Hopf bifurcation for model (4) with 𝜏

1
= 𝜏
2
= 0.

Yafia [10] and Gałach [12] obtained similar results as those
of Yafia [4] for (4) with 𝜏

2
= 0. Recently, Bi and Xiao [14]

give conditions for the properties of Hopf bifurcated periodic
solution and existence of the global Hopf bifurcation for (4)
with 𝜏

2
= 0.

In this paper, we will consider the dynamical behaviors
of model (4) with 𝜏

1
= 𝜏
2

= 𝜏. The rest of this paper

is organized as follows. In Section 2, the linear analysis of
the model is carried out and local stability of the equilibria
and the conditions of Hopf bifurcation are given. Section 3
is devoted to the analysis of Hopf, steady-state bifurcations,
and B-T bifurcation. Numerical results and simulations are
carried out to illustrate the main results. A brief discussion
and more numerical simulations are given in Section 4.

2. Local Analysis

In this section, wewill study the local stability of the equilibria
and the Hopf bifurcations of system

d𝑥
d𝑡

= 𝜎 + 𝜁𝑥 (𝑡 − 𝜏) 𝑦 (𝑡 − 𝜏) − 𝛿𝑥,

d𝑦
d𝑡

= 𝛼𝑦 (1 − 𝛽
2
𝑦) − 𝑥 (𝑡 − 𝜏) 𝑦 (𝑡 − 𝜏) .

(5)

It is easy to obtain that system (5) have three equilibria
𝑃
0
(𝜎/𝛿, 0), 𝑃

1
(𝑥
1
, 𝑦
1
), and 𝑃

2
(𝑥
2
, 𝑦
2
), where

𝑥
1
=
−𝛼 (𝛽𝛿 − 𝜁) − √Δ

2𝜁
,

𝑦
1
=
𝛼 (𝛽𝛿 + 𝜁) + √Δ

2𝛼𝛽𝜁
,

𝑥
2
=
−𝛼 (𝛽𝛿 − 𝜁) + √Δ

2𝜁
,

𝑦
2
=
𝛼 (𝛽𝛿 + 𝜁) − √Δ

2𝛼𝛽𝜁
,

(6)

Δ = 𝛼
2
(𝛽𝛿 − 𝜁)

2
+ 4𝛼𝛽𝜁𝜎 > 0. It is easy to see that 𝑥

1
< 0.

Because the number of tumor cells or effect cells is positive,
we only consider the dynamical behaviors of the equilibria 𝑃

0

(tumor-free point) and 𝑃
2
in the rest of the paper.

Let 𝑧
1
(𝑡) = 𝑥(𝑡) − 𝑥

∗, 𝑧
2
(𝑡) = 𝑦(𝑡) − 𝑦

∗. System (5) can
be written as

𝑧


1
(𝑡) = 𝛼

1
𝑧
1
(𝑡) + 𝛼

2
𝑧
1
(𝑡 − 𝜏)

+ 𝛼
3
𝑧
2
(𝑡 − 𝜏) + 𝜁𝑧

1
(𝑡 − 𝜏) 𝑧

2
(𝑡 − 𝜏) ,

𝑧


2
(𝑡) = 𝛽

1
𝑧
1
(𝑡 − 𝜏) + 𝛽

2
𝑧
2
(𝑡) + 𝛽

3
𝑧
2
(𝑡 − 𝜏)

− 𝛼𝛽𝑧
2

2
(𝑡) − 𝑧

1
(𝑡 − 𝜏) 𝑧

2
(𝑡 − 𝜏) ,

(7)

where 𝛼
1
= −𝛿 < 0, 𝛼

2
= 𝜁𝑦
∗
≥ 0, 𝛼

3
= 𝜁𝑥
∗
> 0, 𝛽

1
=

−𝑦
∗
≤ 0, 𝛽

2
= 𝛼 − 2𝛼𝛽𝑦

∗, 𝛽
3
= −𝑥
∗
< 0 and (𝑥

∗
, 𝑦
∗
) is the

coordinate of the equilibrium.
It is easy to see that the linear system of system (7) is

𝑧


1
(𝑡) = 𝛼

1
𝑧
1
(𝑡) + 𝛼

2
𝑧
1
(𝑡 − 𝜏) + 𝛼

3
𝑧
2
(𝑡 − 𝜏) ,

𝑧


2
(𝑡) = 𝛽

1
𝑧
1
(𝑡 − 𝜏) + 𝛽

2
𝑧
2
(𝑡) + 𝛽

3
𝑧
2
(𝑡 − 𝜏) ,

(8)

where 𝛼
1
, 𝛼
2
, 𝛼
3
, 𝛽
1
, 𝛽
2
, and 𝛽

3
are the same as those in (7).
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2.1. Tumor-Free Point. The characteristic equation of system
(8) at the tumor-free equilibrium 𝑃

0
is

Δ (𝜆) = (𝜆 + 𝛿) (𝜆 − 𝛼 +
𝜎

𝛿
𝑒
−𝜆𝜏

) = 0. (9)

Then we have the following results.

Lemma 1. (I) If 𝛼 = 𝜎/𝛿, then

(1) Equation (9) has a simple zero root, and all other roots
have negative real parts as 0 ≤ 𝜏 < 𝛿/𝜎;

(2) Equation (9) has a double zero root, and all other roots
have negative real parts as 𝜏 = 𝛿/𝜎;

(3) Equation (9) has at least one root with positive real
parts as 𝜏 > 𝛿/𝜎.

(II) If 𝛼 < 𝜎/𝛿, then

(1) all roots of (9) have negative real parts as 0 ≤ 𝜏 < 𝜏
0
;

(2) Equation (9) has a pair of conjugate purely imaginary
roots ±𝑖𝜔

+
, and all other roots have negative real parts

as 𝜏 = 𝜏
0
;

(3) Equation (9) has at least one root with positive real
parts as 𝜏 > 𝜏

0
.

(III) Equation (9) has a negative root−𝛿, and all other roots
have positive real parts as 𝛼 > 𝜎/𝛿.

Proof. 𝜆 = 0 is a root of (9) if and only if 𝛼 = 𝜎/𝛿. If 𝜏 = 0,
(9) has two roots 𝜆

1
= −𝛿 and 𝜆

2
= 𝛼 − 𝜎/𝛿. Then there are

three cases: (1) 𝜆
2
= 0 as 𝛼 = 𝜎/𝛿; (2) 𝜆

2
< 0 as 𝛼 < 𝜎/𝛿; (3)

𝜆
2
> 0 as 𝛼 > 𝜎/𝛿.
We will consider the case 𝜏 > 0 as follows. If 𝛼 = 𝜎/𝛿,

𝜏 = 𝛿/𝜎, then

Δ

(𝜆) = 2𝜆 − 𝛼 +

𝜎

𝛿
𝑒
−𝜆𝜏

− 𝜏𝜆
𝜎

𝛿
𝑒
−𝜆𝜏

+ 𝛿 − 𝜎𝜏𝑒
−𝜆𝜏

; (10)

hence, Δ(𝜆)|
𝜆=0

= 0, and Δ

(𝜆)|
𝜆=0

= 𝛿
2
/𝜎 > 0. Thus 𝜆 = 0

is the double zero root of (9).
If (9) has purely imaginary roots, then the roots must be

the solution of

Δ
0
(𝜆) = 𝜆 − 𝛼 +

𝜎

𝛿
𝑒
−𝜆𝜏

= 0. (11)

Assume that 𝜆 = 𝑖𝜔(𝜔 > 0) is the root of (11); that is,

−𝛼 +
𝜎

𝛿
cos𝜔𝜏 = 0,

𝜔 −
𝜎

𝛿
sin𝜔𝜏 = 0;

(12)

that is 𝜔2 = 𝜎
2
/𝛿
2
− 𝛼
2. Hence (11) has a positive root 𝜔

+
=

√𝜎2/𝛿2 − 𝛼2 if and only if 𝛼 < 𝜎/𝛿, and the corresponding
critical values are

𝜏
𝑘
=

1

𝜔
+

{arc cos 𝛼𝛿
𝜎

+ 2𝑘𝜋} , 𝑘 = 0, 1, 2, . . . . (13)

Using Rouché theorem, we know that conclusions (II)(1),
(II)(2), and (III) hold.

If 0 < 𝜏 < 𝛿/𝜎, 𝛼 = 𝜎/𝛿, we can obtain Δ


0
(𝜆)|
𝜆=0

=

1 − (𝜎/𝛿)𝜏 > 0, Δ
0
(0) = 0. Noting the continuous of the

function Δ
0
(𝜆), we know that there is at least a 𝜆 < 0 such

that Δ
0
(𝜆) < 0. On the other hand, it is easy to see that

lim
𝜆→−∞

Δ
0
(𝜆) = +∞; then there exists 𝜆 < 0 such that

Δ
0
(𝜆) = 0.
Differentiating both sides of (11) with respect to 𝜏, we have

d𝜆
d𝜏

=
𝜆 (𝜎/𝛿) 𝑒

−𝜆𝜏

1 − (𝜎/𝛿) 𝜏𝑒
−𝜆𝜏

. (14)

If 𝜏 ̸= 𝛿/𝜎, then

d𝜆
d𝜏

 𝜆=0

=
𝜆 (𝜎/𝛿) 𝑒

−𝜆𝜏

1 − (𝜎/𝛿) 𝜏𝑒
−𝜆𝜏

 𝜆=0

= 0. (15)

UsingRouché theorem,we know that the conclusions of (I)(1)
and (I)(2) are true.

If 𝜏 = 𝛿/𝜎, then

lim
𝜆→0

d𝜏
d𝜆

= lim
𝜆→0

−𝜏 (𝜎/𝛿) (−𝜏) 𝑒
−𝜆𝜏

(𝜎/𝛿) 𝑒
−𝜆𝜏 − (𝜎/𝛿) 𝜏𝜆𝑒

−𝜆𝜏
= 𝜏
2
. (16)

Thus

sgn{Re(d𝜆
d𝜏

)

 𝜆=0

} = sgn{Re(d𝜏
d𝜆

)

 𝜆=0

} = 1 > 0.

(17)

Hence the conclusion (I)(3) is true.
Noting

sgn{Re(d𝜆
d𝜏

)

 𝜆=𝑖𝜔
+

} = sgn{Re(d𝜏
d𝜆

)

 𝜆=𝑖𝜔
+

}

= sgn{
sin𝜔
+
𝜏

(𝜎/𝛿) 𝜔+

}

= sgn{(𝛿

𝜎
)

2

} = 1 > 0,

(18)

then (II)(3) is proved. Then all the proof is finished.

Thus the following results can be obtained by Lemma 1.

Theorem 2. (I) If 𝛼 = 𝜎/𝛿, then

(1) system (5) undergoes a codimension one steady-state
bifurcation at the tumor-free equilibrium 𝑃

0
as 0 < 𝜏 <

𝛿/𝜎;
(2) the tumor-free equilibrium 𝑃

0
is a B-T singular equilib-

rium as 𝜏 = 𝛿/𝜎.

(II) If 𝛼 < 𝜎/𝛿, then

(1) the tumor-free equilibrium 𝑃
0
is asymptotically stable

as 0 ≤ 𝜏 < 𝜏
0
;

(2) the tumor-free equilibrium 𝑃
0
is unstable as 𝜏 > 𝜏

0
;

(3) system (5)undergoesHopf bifurcation at the tumor-free
equilibrium 𝑃

0
as 𝜏 = 𝜏

𝑘
.

(III) The tumor-free equilibrium 𝑃
0
is unstable as 𝛼 > 𝜎/𝛿.
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2.2. Positive Equilibrium. If 𝛼𝛿 − 𝜎 > 0, then the positive
equilibrium 𝑃

2
exists. The characteristic equation of system

(8) at the point 𝑃
2
is

𝜆
2
+ 𝑝𝜆 + 𝑞𝜆𝑒

−𝜆𝜏
+ 𝑟 + 𝑙𝑒

−𝜆𝜏
= 0, (19)

where

𝑝 = − (𝛼 − 𝛿 − 2𝛼𝛽𝑦
2
) ,

𝑞 = 𝑥
2
− 𝜁𝑦
2
,

𝑟 = −𝛿 (𝛼 − 2𝛼𝛽𝑦
2
) ,

𝑙 = 𝛿𝑥
2
+ 𝜁𝑦
2
(𝛼 − 2𝛼𝛽𝑦

2
) .

(20)

Lemma 3. If 𝛼𝛿 − 𝜎 > 0, 𝛽 < 𝛼𝛿/2(𝛼𝛿 − 𝜎), then

(1) all roots of (19) have negative real parts as 0 ≤ 𝜏 < 𝜏


0
;

(2) Equation (19) has a pair of conjugate purely imaginary
roots 𝑖�̃�

+
, and all other roots have negative real parts as

𝜏 = 𝜏


0
;

(3) Equation (19) has at least one root with positive real
parts as 𝜏 > 𝜏



0
.

Proof. Noting 𝛽 < 𝛼𝛿/2(𝛼𝛿 − 𝜎), 1 − 2𝛽𝑦
2
> 0, one has

𝑟 + 𝑙 = 𝜁𝛼𝑦
2
(1 − 2𝛽𝑦

2
) + 𝛿𝛼𝛽𝑦

2
> 0; (21)

thus (19) has no zero root.
If 𝜏 = 0, then (19) can be written as

𝜆
2
+ (𝑝 + 𝑞) 𝜆 + 𝑟 + 𝑙 = 0. (22)

It is easy to see

𝑝 + 𝑞 = 𝛿 − 𝛼 (1 − 2𝛽𝑦
2
) + 𝑥
2
− 𝜁𝑦
2
= 𝛿 + (𝛼𝛽 − 𝜁) 𝑦

2
> 0,

(23)

and then all roots of (22) have negative real parts.
If 𝜏 > 0, we assume that (19) has a pair of purely imaginary

roots 𝜆 = 𝑖𝜔 (𝜔 > 0); thus

−𝜔
2
+ 𝑙 cos𝜔𝜏 + 𝑞𝜔 sin𝜔𝜏 + 𝑟 = 0,

𝑝𝜔 + 𝑞𝜔 cos𝜔𝜏 − 𝑙 sin𝜔𝜏 = 0,

(24)

and hence

𝜔
4
+ (𝑝
2
− 2𝑟 − 𝑞

2
) 𝜔
2
+ 𝑟
2
− 𝑙
2
= 0. (25)

Noting 𝑟 + 𝑙 > 0, 𝑟 < 0, then we have 𝑟 − 𝑙 < 0 and 𝑟
2
− 𝑙
2
=

(𝑟 + 𝑙)(𝑟 − 𝑙) < 0. That is to say, (25) has only one positive root

�̃�
+
=
√− (𝑝

2
− 2𝑟 − 𝑞

2
) + √(𝑝2 − 2𝑟 − 𝑞2)

2
− 4 (𝑟2 − 𝑙2)

2
,

(26)

and the corresponding critical value is

𝜏


𝑘
=

{{{{{{{

{{{{{{{

{

1

�̃�
+

{arc tan
𝑙𝑝�̃�
+
+ 𝑞�̃�
+
(�̃�
2

+
− 𝑟)

𝑙 (�̃�2
+
− 𝑟) − 𝑝𝑞�̃�2

+

+ 2𝑘𝜋}

𝑖𝑓 𝑙 (�̃�
2

+
− 𝑟) − 𝑝𝑞�̃�

2

+
> 0; 𝑘 ∈ N.

1

�̃�
+

{arc tan
𝑙𝑝�̃�
+
+ 𝑞�̃�
+
(�̃�
2

+
− 𝑟)

𝑙 (�̃�2
+
− 𝑟) − 𝑝𝑞�̃�2

+

+ (2𝑘 + 1) 𝜋} ,

𝑖𝑓 𝑙 (�̃�
2

+
− 𝑟) − 𝑝𝑞�̃�

2

+
< 0.

(27)

We can also give the following transversal condition:

sgn{Re(d𝜆
d𝜏

)

𝜆=𝑖�̃�+

}

= sgn{Re(d𝜏
d𝜆

)

𝜆=𝑖�̃�+

}

= sgn{Re(
2𝜆 + 𝑝

𝜆 (𝑞𝜆 + 𝑙) 𝑒−𝜆𝜏
+

𝑞

𝜆 (𝑞𝜆 + 𝑙)
)

𝜆=𝑖�̃�+

}

= sgn {2 (�̃�2
+
− 𝑟) + 𝑝

2
− 𝑞
2
}

= sgn { − (𝑝
2
− 2𝑟 − 𝑞

2
) + (𝑝

2
− 2𝑟 − 𝑞

2
)

+√(𝑝2 − 2𝑟 − 𝑞2)
2
− 4 (𝑟2 − 𝑙2)}

= 1 > 0.

(28)

Then all results of this theorem have been proven.

From Lemma 3, the following theorem can be obtained
directly.

Theorem 4. Suppose that 𝛼𝛿−𝜎 > 0, 𝛽 < 𝛼𝛿/2(𝛼𝛿 − 𝜎); then

(1) the positive equilibrium 𝑃
2
is stable as 0 ≤ 𝜏 < 𝜏



0
;

(2) the positive equilibrium 𝑃
2
is unstable as 𝜏 > 𝜏



0
;

(3) system (5) undergoes a Hopf bifurcation at the equilib-
rium 𝑃

2
as 𝜏 = 𝜏



𝑘
.

3. Direction and Stability of the Bifurcations

3.1. Hopf Bifurcation. In the previous section, we know that
system (5) undergoes Hopf bifurcation at the tumor-free
equilibrium 𝑃

0
and positive equilibrium 𝑃

2
under certain

conditions. In this section, we will study the stability and
direction of the Hopf bifurcated periodic solution by using
the center manifold reduction and normal form theory of
retarded functional differential equations due to the ideals
of Faria and Magalhães [15, 16]. Throughout this section, we
always assume that system (5) undergoesHopf bifurcations at
the equilibrium 𝑃 (𝑃

0
or 𝑃
2
) as the critical parameter 𝜏 = 𝜏

𝑘

and the corresponding purely imaginary roots are ±𝑖𝜔
𝑘
.
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Normalizing the delay 𝜏 in system (7) by the time-scaling
𝑡 → 𝑡/𝜏, then (7) is transformed into

𝑧


1
(𝑡) = 𝜏 [𝛼

1
𝑧
1 (𝑡) + 𝛼

2
𝑧
1 (𝑡 − 1)

+ 𝛼
3
𝑧
2
(𝑡 − 1) + 𝜁𝑧

1
(𝑡 − 1) 𝑧

2
(𝑡 − 1)] ,

𝑧


2
(𝑡) = 𝜏 [𝛽

1
𝑧
1
(𝑡 − 1) + 𝛽

2
𝑧
2
(𝑡) + 𝛽

3
𝑧
2
(𝑡 − 1)

− 𝛼𝛽𝑧
2

2
(𝑡) − 𝑧

1
(𝑡 − 1) 𝑧

2
(𝑡 − 1)] .

(29)

This scaling is irrelevant for the study of the stability of
the equilibrium but will be crucial for the Hopf bifurcation
analysis.

Let 𝑧(𝑡) = {
𝑧
1
(𝑡)

𝑧
2
(𝑡)

. we transformed (29) into an FDE in
𝐶([−1, 0],R2):

̇𝑧 (𝑡) = 𝑁 (𝜏) (𝑧
𝑡
) + 𝐹 (𝑧

𝑡
, 𝜏) , (30)

where 𝑁(𝜑) : 𝐶([−1, 0],R2) → R2, 𝐹(𝜑) : 𝐶([−1, 0]R2) →

R2, are given by

𝑁(𝜏) (𝜑) = 𝜏(
𝛼
1
𝜑
1
(0) + 𝛼

2
𝜑
1
(−1) + 𝛼

3
𝜑
2
(−1)

𝛽
1
𝜑
1
(−1) + 𝛽

2
𝜑
2
(0) + 𝛽

3
𝜑
2
(−1)

) ,

𝐹 (𝜑, 𝜏) = 𝜏 (
𝜁𝜑
1
(−1) 𝜑

2
(−1)

−𝛼𝛽𝜑
2

2
(0) − 𝜑

1 (−1) 𝜑2 (−1)
) ,

(31)

where 𝜑 = col(𝜑
1
, 𝜑
2
) ∈ 𝐶([−1, 0], R2). Let Λ = {𝑖𝜔

𝑘
, −𝑖𝜔
𝑘
}.

Setting the new parameter 𝛾 = 𝜏−𝜏
𝑘
, then (30) can be written

as

̇𝑧 (𝑡) = 𝑁 (𝜏
𝑘
) (𝑧
𝑡
) + 𝐹 (𝑧

𝑡
, 𝛾) , (32)

where 𝐹(𝑧
𝑡
, 𝛾) = 𝑁(𝛾)(𝑧

𝑡
) + 𝐹(𝑧

𝑡
, 𝜏
𝑘
+ 𝛾).

Assume that 𝐴 is the infinitesimal generator of ̇𝑧(𝑡) =

𝑁(𝜏
𝑘
)(𝑧
𝑡
) satisfying 𝐴Φ = Φ𝐵 with

𝐵 = (
𝑖𝜔
𝑘

0

0 −𝑖𝜔
𝑘

) , (33)

and 𝐴 has a pair of conjugate purely imaginary roots ±𝑖𝜔
𝑘
.

Denote that 𝑃 is the invariant space of 𝐴 associated with Λ;
then dim𝑃 = 2. We can decompose 𝐶 := 𝐶([−1, 0],R2) to
𝐶 = 𝑃⨁𝑄 by the formal adjoint theory for FDEs by Hale
[17]. Considering complex coordinates, we still denote 𝐶 as
([−1, 0], 𝐶

2
). LetΦ = (Φ

1
, Φ
2
) be the bases of 𝑃, where

Φ
1
= 𝑒
𝑖𝜔
𝑘
𝜃V, Φ

2
= Φ
1
, 𝜃 ∈ [−1, 0] , (34)

V = (
V
1

V
2
) is a vector in 𝐶

2 and𝑁(𝜏
𝑘
)Φ
1
= 𝑖𝜔
𝑘
V.

Choose a basis Ψ for the adjoint space 𝑃
∗, such that

(Ψ,Φ) = 𝐼
2
, where (⋅, ⋅) is the bilinear form on 𝐶

∗
× 𝐶

associated with the adjoint equation. Thus, Ψ = col(Ψ
1
, Ψ
2
)

with

Ψ
1
= 𝑒
−𝑖𝜔
𝑘
𝜃
𝑢
𝑇
, Ψ
2
= Ψ
1
, 𝑢 = (

𝑢
1

𝑢
2

) ,

𝜃 ∈ [0, 1] ,

(35)

such that (Ψ
1
, Φ
1
) = 1, (Ψ

1
, Φ
2
) = 0. Then

V = (

1

𝑖𝜔
𝑘
− (𝛼
1
+ 𝛼
2
𝑒
−𝑖𝜔
𝑘) 𝜏
𝑘

𝜏
𝑘
𝛼
3
𝑒−𝑖𝜔𝑘

),

𝑢 = 𝑢
1
(

1

𝑖𝜔
𝑘
− (𝛼
1
+ 𝛼
2
𝑒
−𝑖𝜔
𝑘) 𝜏
𝑘

𝜏
𝑘
𝛽
1
𝑒−𝑖𝜔𝑘

),

(36)

and 1/𝑢
1

= 1 + (1 + 𝛽
3
𝑒
−𝑖𝜔
𝑘)V
2
((𝑖𝜔
𝑘
− (𝛼
1
+ 𝛼
2
𝑒
−𝑖𝜔
𝑘)𝜏
𝑘
)/

𝜏
𝑘
𝛽
1
𝑒
−𝑖𝜔
𝑘) + (𝛼

2
+ 2𝛼
3
V
2
)𝑒
−𝑖𝜔
𝑘 .

Take the enlarged phase space 𝐵𝐶, defined as

𝐵𝐶 := {𝜑 : [−1, 0] → C
2
| 𝜑 is continuous on [−1, 0) ,

lim
𝜃→0

−

𝜑 (𝜃) exists} .

(37)

The projection 𝜋 : 𝐵𝐶 → 𝑃 is defined as

𝜋 (𝜑 + 𝑋
0
𝑏) = Φ [(Ψ, 𝜑) + Ψ (0) 𝑏] , ∀𝜑 ∈ 𝐶, 𝑏 ∈ R

2
;

(38)

thus we have the decomposition 𝐵𝐶 = 𝑃⨁Ker𝜋. Let 𝑧
𝑡
=

Φ𝑥 + 𝑦, 𝑥 ∈ C2, 𝑦 ∈ ker(𝜋) ∩ 𝐶
1
:= 𝑄
1, we can decompose

(32) to

̇𝑥 = 𝐵𝑥 + Ψ (0) 𝐹 (Φ𝑥 + 𝑦, 𝛾) ,

d𝑦
d𝑥

= 𝐴
𝑄
1𝑦 + (𝐼 − 𝜋)𝑋0𝐹 (Φ𝑥 + 𝑦, 𝛾) ,

(39)

where

𝑋
0
(𝜃) = {

𝐼, 𝜃 = 0;

0, −1 ≤ 𝜃 < 0.
(40)

We write the Taylor expansion as follows:

Ψ (0) 𝐹 (Φ𝑥 + 𝑦, 𝛾) =
1

2
𝑓
1

2
(𝑥, 𝑦, 𝛾) +

1

3!
𝑓
1

3
(𝑥, 𝑦, 𝛾) + h.o.t.,

(𝐼 − 𝜋)𝑋
0
𝐹 (Φ𝑥 + 𝑦, 𝛾) =

1

2
𝑓
2

2
(𝑥, 𝑦, 𝛾)

+
1

3!
𝑓
2

3
(𝑥, 𝑦, 𝛾) + h.o.t.,

(41)

where 𝑓1
𝑘
and 𝑓

2

𝑘
are homogeneous polynomials in 𝑥, 𝑦, and

𝛾 of degree 𝑘, 𝑘 = 2, 3, with coefficients in C2 and Ker𝜋,
h.o.t. stands for higher order terms.The normal formmethod
implies a normal formon the centermanifold of the origin for
(32) which is

̇𝑥 = 𝐵𝑥 +
1

2
𝑔
1

2
(𝑥, 0, 𝛾) +

1

3!
𝑔
1

3
(𝑥, 0, 𝛾) + h.o.t., (42)
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where 𝑔1
2
(𝑥, 0, 𝛾) and 𝑔

1

3
(𝑥, 0, 𝛾) are homogeneous polyno-

mials in 𝑥 and 𝛾, respectively.
From (39), it follows that

𝑓
1

2
(𝑥, 0, 𝛾) = 2Ψ (0) [𝑁 (𝛾) (Φ𝑥) + 𝐹 (Φ𝑥, 𝜏

𝑘
)] ; (43)

that is,

𝑓
1

2
(𝑥, 0, 𝛾)

= 2 (
𝐴
1
𝑥
1
𝛾 + 𝐴

2
𝑥
2
𝛾 + 𝑎
20
𝑥
2

1
+ 𝑎
11
𝑥
1
𝑥
2
+ 𝑎
02
𝑥
2

2

𝐴
1
𝑥
2
𝛾 + 𝐴
2
𝑥
1
𝛾 + 𝑎
02
𝑥
2

1
+ 𝑎
11
𝑥
1
𝑥
2
+ 𝑎
20
𝑥
2

2

) ,

(44)

where

𝐴
1
=
𝑖𝜔
𝑘

𝜏
𝑘

𝑢
𝑇V, 𝐴

2
=
−𝑖𝜔
𝑘

𝜏
𝑘

𝑢
𝑇V,

𝑎
20

= 𝜏
𝑘
[𝑢
1
𝑒
−2𝑖𝜔
𝑘𝜁V
1
V
2
+ 𝑢
2
(−𝛼𝛽V2

2
− 𝑒
−2𝑖𝜔
𝑘V
1
V
2
)] ,

𝑎
11

= 𝜏
𝑘
[𝜁𝑢
1
(V
1
V
2
+ V
1
V
2
)

− 𝑢
2
(2𝛼𝛽V

2
V
2
+ V
1
V
2
+ V
1
V
2
)] ,

𝑎
02

= 𝜏
𝑘
[𝑢
1
𝑒
2𝑖𝜔
𝑘𝜁V
1
V
2
+ 𝑢
2
(−𝛼𝛽V2

2
− 𝑒
2𝑖𝜔
𝑘V
1
V
2
)] .

(45)

Thus

𝑔
1

2
(𝑥, 0, 𝛾) = ProjKer(𝑀1

2
)
𝑓
1

2
(𝑥, 0, 𝛾) = (

2𝐴
1
𝑥
1
𝛾

2𝐴
1
𝑥
2
𝛾
) . (46)

We will compute the cubic terms 𝑔1
3
(𝑥, 0, 𝛾) as follows.

Since 𝑂(|𝑥|𝛾
2
) are irrelevant to determine the generic

Hopf bifurcation, then

𝐽 = span{(𝑥
2

1
𝑥
2

0
) , (

0

𝑥
1
𝑥
2

2

)} ; (47)

hence

𝑔
1

3
(𝑥, 0, 𝛾) = Proj

𝐽
𝑓
1

3
(𝑥, 0, 0) + 𝑜 (|𝑥| 𝛾

2
) , (48)

where 𝑓
1

3
(𝑥, 0, 0) = (3/2)[(𝐷

𝑥
𝑓
1

2
)𝑢
1

2
− (𝐷
𝑥
𝑢
1

2
)𝑔
1

2
]
(𝑥,0,0)

+

(3/2)[(𝐷
𝑦
𝑓
1

2
)𝑢
2

2
]
(𝑥,0,0)

. In order to obtain 𝑔
1

3
(𝑥, 0, 𝛾), we

need to compute 𝑓
1

3
(𝑥, 0, 0); that is, Proj

𝐽
[(𝐷
𝑥
𝑓
1

2
)𝑢
1

2
]
(𝑥,0,0)

,
Proj
𝐽
[(𝐷
𝑥
𝑢
1

2
)𝑔
1

2
]
(𝑥,0,0)

, and Proj
𝐽
[(𝐷
𝑦
𝑓
1

2
)𝑢
2

2
]
(𝑥,0,0)

should be
given; we will compute them as follows.

Firstly, knowing that

𝑓
1

2
(𝑥, 0, 0) = 2(

𝑎
20
𝑥
2

1
+ 𝑎
11
𝑥
1
𝑥
2
+ 𝑎
02
𝑥
2

2

𝑎
02
𝑥
2

1
+ 𝑎
11
𝑥
1
𝑥
2
+ 𝑎
20
𝑥
2

2

) ,

𝑢
1

2
(𝑥, 0) =

2

𝑖𝜔
𝑘

(

𝑎
20
𝑥
2

1
− 𝑎
11
𝑥
1
𝑥
2
−
1

3
𝑎
02
𝑥
2

2

1

3
𝑎
02
𝑥
2

1
+ 𝑎
11
𝑥
1
𝑥
2
− 𝑎
20
𝑥
2

2

),

(49)

then

Proj
𝐽
[(𝐷
𝑥
𝑓
1

2
) 𝑢
1

2
]
(𝑥,0,0)

=
4

𝑖𝜔
𝑘

(

(−𝑎
20
𝑎
11
+
2

3

𝑎02


2
+
𝑎11



2
)𝑥
2

1
𝑥
2

(−
2

3

𝑎02


2
−
𝑎11



2
+ 𝑎
20
𝑎
11
)𝑥
1
𝑥
2

2

)

= 4(

𝐴
3
𝑥
2

1
𝑥
2

̄𝐴
3
𝑥
1
𝑥
2

2

) .

(50)

Secondly, noting (46), we know that 𝑔1
2
(𝑥, 0, 0) = 0; then

Proj
𝐽
[(𝐷
𝑥
𝑢
1

2
)𝑔
1

2
]
(𝑥,0,0)

= 0.
Lastly, we will compute Proj

𝐽
[(𝐷
𝑦
𝑓
1

2
)𝑢
2

2
]
(𝑥,0,0)

as follow.
Let ℎ = 𝑢

2

2
= ℎ
200

𝑥
2

1
+ℎ
020

𝑥
2

2
+ℎ
002

𝛾
2
+ℎ
110

𝑥
1
𝑥
2
+ℎ
101

𝑥
1
𝛾+

ℎ
011

𝑥
2
𝛾. Noting 𝑔2

2
= 0, one has

𝑀
2

2
ℎ (𝑥, 𝛾) = 𝑓

2

2
= 2 (𝐼 − 𝜋)𝑋

0
𝐹 (Φ𝑥, 𝛾)

= 2 (𝐼 − 𝜋)𝑋
0
[𝑁 (𝛾) (Φ𝑥) + 𝐹 (Φ𝑥, 𝜏

𝑘
)] .

(51)

On the other hand, we know that

𝑀
2

2
ℎ (𝑥, 𝛾)

= 𝐷
𝑥
ℎ (𝑥, 𝛾) 𝐵𝑥 − 𝐴

𝑄
1ℎ (𝑥, 𝛾)

= 𝐷
𝑥
ℎ (𝑥, 𝛾) 𝐵𝑥

− [ℎ̇ (𝑥, 𝛾) + 𝑋
0
(𝐿 (𝜏
𝑘
) (ℎ (𝑥, 𝛾)) − ℎ̇ (𝑥, 𝛾) (0))] .

(52)

If 𝛾 = 0, then

ℎ̇ (𝑥) − 𝐷
𝑥
ℎ (𝑥) 𝐵𝑥 = 2ΦΨ (0) 𝐹 (Φ𝑥, 𝜏

𝑘
) ,

ℎ̇ (𝑥) (0) − 𝐿 (𝜏
𝑘
) (ℎ (𝑥)) = 2𝐹 (Φ𝑥, 𝜏

𝑘
) .

(53)

Let

𝑊(𝜃) = Φ𝑥 + 𝑦 = Φ
1
𝑥
1
+ Φ
2
𝑥
2
+ 𝑦 (𝜃)

= 𝑒
𝑖𝜔
𝑘
𝜃V𝑥
1
+ 𝑒
−𝑖𝜔
𝑘
𝜃V𝑥
2
+ 𝑦 (𝜃) ,

�̃� (𝜃) = Φ𝑥 = Φ
1
𝑥
1
+ Φ
2
𝑥
2
= 𝑒
𝑖𝜔
𝑘
𝜃V𝑥
1
+ 𝑒
−𝑖𝜔
𝑘
𝜃V𝑥
2
.

(54)

From

𝑓
1

2
(𝑥, 𝑦, 0)

= 2𝜏
𝑘
(

𝑢
𝑇
(

𝜁𝑊
1
(−1)𝑊

2
(−1)

−𝛼𝛽𝑊
2

2
(0) − 𝑊

1
(−1)𝑊

2
(−1)

)

𝑢
𝑇
(

𝜁𝑊
1 (−1)𝑊2 (−1)

−𝛼𝛽𝑊
2

2
(0) − 𝑊

1 (−1)𝑊2 (−1)
)

) ,

(55)
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we obtain

[(𝐷
𝑦
𝑓
1

2
) ℎ]
(𝑥,0,0)

= 2(

𝜏
𝑘
𝑢
𝑇
(

𝜁�̃�
2
(−1) ℎ

1
(−1) + 𝜁�̃�

1
(−1) ℎ

2
(−1)

−�̃�
2 (−1) ℎ

1
(−1) − �̃�

1 (−1) ℎ
2
(−1) − 2𝛼𝛽�̃�

2 (0) ℎ
2
(0)

)

𝜏
𝑘
𝑢
𝑇
(

𝜁�̃�
2 (−1) ℎ

1
(−1) + 𝜁�̃�

1 (−1) ℎ
2
(−1)

−�̃�
2
(−1) ℎ

1
(−1) − �̃�

1
(−1) ℎ

2
(−1) − 2𝛼𝛽�̃�

2
(0) ℎ
2
(0)

)

) , (56)

Proj
𝐽
[(𝐷
𝑦
𝑓
1

2
) 𝑢
2

2
]
(𝑥,0,0)

= 2(
𝐴
4
𝑥
2

1
𝑥
2

𝐴
4
𝑥
1
𝑥
2

2

) , (57)

where

𝐴
4
= 𝜏
𝑘
[𝑢
1
𝜁 (𝑒
−𝑖𝜔
𝑘V
2
ℎ
1

110
(−1) + 𝑒

𝑖𝜔
𝑘V
2
ℎ
1

200
(−1)

+𝑒
−𝑖𝜔
𝑘V
1
ℎ
2

110
(−1) + 𝑒

𝑖𝜔
𝑘V
1
ℎ
2

200
(−1))]

+ 𝑢
2
𝜏
𝑘
[−𝑒
−𝑖𝜔
𝑘V
2
ℎ
1

110
(−1) − 𝑒

𝑖𝜔
𝑘V
2
ℎ
1

200
(−1)

−𝑒
−𝑖𝜔
𝑘V
1
ℎ
2

110
(−1) − 𝑒

𝑖𝜔
𝑘V
1
ℎ
2

200
(−1)]

− 𝑢
2
𝜏
𝑘
[2𝛼𝛽 (V

2
ℎ
2

110
(0) + V

2
ℎ
2

200
(0))] .

(58)

In order to obtain 𝐴
4
, we need to compute ℎ

110
(𝜃),

ℎ
200

(𝜃). From (53), it follows that

ℎ̇
110

= 2 (Φ
1
, Φ
2
) (

𝑎
11

𝑎
11

) ,

ℎ̇
110 (0) − 𝐿 (𝜏

𝑘
) (ℎ
110

) = 𝜏
𝑘
(
𝑎
1

𝑏
1

) ,

ℎ̇
200

− 2𝑖𝜔
𝑘
ℎ
200

= 2 (Φ
1
, Φ
2
) (

𝑎
20

𝑎
02

) ,

ℎ̇
200

(0) − 𝐿 (𝜏
𝑘
) (ℎ
200

) = 𝜏
𝑘
(
𝑎
2

𝑏
2

) ,

(59)

where 𝑎
1
= 2[𝜁(V

1
V
2
+V
1
V
2
)], 𝑏
1
= 2[−2𝛼𝛽V

2
V
2
−(V
1
V
2
+V
1
V
2
)],

𝑎
2
= 2[𝜁V

1
V
2
𝑒
−2𝑖𝜔
𝑘], and 𝑏

2
= 2[−𝛼𝛽V2

2
− 𝑒
−2𝑖𝜔
𝑘V
1
V
2
]. Solving

(59), we can obtain

ℎ
110

= 2 [
𝑎
11

𝑖𝜔
𝑘

Φ
1
−
𝑎
11

𝑖𝜔
𝑘

Φ
2
] + 𝐶
1
,

ℎ
200

= 2 [
𝑎
20

−𝑖𝜔
𝑘

Φ
1
+

𝑎
02

−3𝑖𝜔
𝑘

Φ
2
] + 𝐶
2
𝑒
2𝑖𝜔
𝑘
𝜃
,

(60)

where

𝐶
1
= (

𝐶
1

1

𝐶
2

1

) ,

𝐶
1

1
=



𝑎
1
−𝛼
3

𝑏
1
−(𝛽2+𝛽3)




−(𝛼1+𝛼2) −𝛼
3

−𝛽
1
−(𝛽2+𝛽3)



,

𝐶
2

1
=



−(𝛼1+𝛼2) 𝑎1
−𝛽
1
𝑏
1




−(𝛼1+𝛼2) −𝛼
3

−𝛽
1
−(𝛽2+𝛽3)



,

𝐶
2
= (

𝐶
1

2

𝐶
2

2

) ,

𝐶
1

2
=



𝜏
𝑘
𝑎
2
−𝜏
𝑘
𝛼
3
𝑒
−2𝑖𝜔
𝑘

𝜏
𝑘
𝑏
2
2𝑖𝜔
𝑘
+𝜏
𝑘
𝛽
2
+𝜏
𝑘
𝛽
3
𝑒
−2𝑖𝜔
𝑘




2𝑖𝜔
𝑘
−𝜏
𝑘
𝛼
1
−𝜏
𝑘
𝛼
2
𝑒
−2𝑖𝜔
𝑘 −𝜏

𝑘
𝛼
3
𝑒
−2𝑖𝜔
𝑘

−𝜏
𝑘
𝛽
1
𝑒
−2𝑖𝜔
𝑘 2𝑖𝜔

𝑘
+𝜏
𝑘
𝛽
2
+𝜏
𝑘
𝛽
3
𝑒
−2𝑖𝜔
𝑘



,

𝐶
2

2
=



2𝑖𝜔
𝑘
−𝜏
𝑘
𝛼
1
−𝜏
𝑘
𝛼
2
𝑒
−2𝑖𝜔
𝑘 𝜏
𝑘
𝑎
2

−𝜏
𝑘
𝛽
1
𝑒
−2𝑖𝜔
𝑘 𝜏

𝑘
𝑏
2




2𝑖𝜔
𝑘
−𝜏
𝑘
𝛼
1
−𝜏
𝑘
𝛼
2
𝑒
−2𝑖𝜔
𝑘 −𝜏

𝑘
𝛼
3
𝑒
−2𝑖𝜔
𝑘

−𝜏
𝑘
𝛽
1
𝑒
−2𝑖𝜔
𝑘 2𝑖𝜔

𝑘
+𝜏
𝑘
𝛽
2
+𝜏
𝑘
𝛽
3
𝑒
−2𝑖𝜔
𝑘



.

(61)

Hence

𝑔
1

3
(𝑥, 0, 0) = (

(6𝐴
3
+ 3𝐴
4
) 𝑥
2

1
𝑥
2

(6𝐴
3
+ 3𝐴
4
) 𝑥
1
𝑥
2

2

) . (62)

Thus, the normal form of system (42) has the form

̇𝑥 = 𝐵𝑥 + (
𝐴
1
𝑥
1
𝛾

𝐴
1
𝑥
2
𝛾
) +

1

3!
(

(6𝐴
3
+ 3𝐴
4
) 𝑥
2

1
𝑥
2

(6𝐴
3
+ 3𝐴
4
) 𝑥
1
𝑥
2

2

)

+ 𝑜 (|𝑥|
4
+ |𝑥| 𝛾

2
) .

(63)

Let 𝑥
1
= 𝜉
1
− 𝑖𝜉
2
, 𝑥
2
= 𝜉
1
+ 𝑖𝜉
2
, 𝜉
1
= 𝜌 cos𝜔, and 𝜉

2
=

𝜌 sin𝜔. Then the normal form becomes

̇𝜌 = 𝑟
1
𝛾𝜌 + 𝑟

2
𝜌
3
+ 𝑂 (𝛾

2
𝜌 +

(𝜌, 𝛾)


4
) ,

̇𝜔 = −𝜔
𝑘
− Im (𝐴

1
) 𝛾 − Im(𝐴

3
+
1

2
𝐴
4
) 𝜌
2
+ 𝑜 (


(𝜌
2
, 𝛾)


) ,

(64)

where 𝑟
1
= Re𝐴

1
, 𝑟
2
= Re(𝐴

3
+ (1/2)𝐴

4
).

Summarizing all above, we have the following theorem.

Theorem5. Theflow on the centermanifold of the equilibrium
𝑃 at 𝛾 = 0 is given by (64). Also the following results hold:

(1) the Hopf bifurcation is supercritical if 𝑟
1
𝑟
2
< 0 and

subcritical if 𝑟
1
𝑟
2
> 0;
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Figure 2: (a) The equilibrium (1.3344, 92.1911) is stable when 𝜏 = 0.2. (b) The oscillation solutions 𝑥(𝑡) and 𝑦(𝑡) in terms of time 𝑡 when
𝜏 = 0.2 < 𝜏

0
. (c) The oscillation solution 𝑥(𝑡) in terms of 𝑡 when 𝜏 = 0.372892. (d) The oscillation solution 𝑦(𝑡) in terms of 𝑡.

(2) the bifurcated periodic solution is stable if 𝑟
2
< 0 and

unstable if 𝑟
2
> 0;

(3) the period of the bifurcated periodic solution is

𝑝 (𝛾) =
2𝜋

𝜔
𝑘

−
2𝜋𝛾 (𝑟

2
Im (𝐴

1
) − 𝑟
1
Im (𝐴

3
+ (1/2) 𝐴

4
))

𝑟
2
𝜔
2

𝑘

+ 𝑂 (𝛾
2
) .

(65)

In the following, we will give some simulations to
illustrate the results of Theorems 4 and 5 for model (4).
We cite the parameters in [11], that is, 𝜎 = 0.1181, 𝜁 =

0.0031, 𝛿 = 0.3743, 𝛼 = 1.636, and 𝛽 = 0.002. Then (4)
has a tumor-free equilibrium (0.3155, 0), which is unstable,
and a positive equilibrium (1.33435, 92.1911), which is locally
asymptotically stable.We only simulate local properties of the

stable equilibrium (1.33435, 92.1911) here in Figures 2(a) and
2(b).

Remark 6. From Figures 2(c) and 2(d), we can see that the
amplitude vibration for 𝑥(𝑡) is much bigger than that of 𝑦(𝑡);
also both 𝑥(𝑡) and 𝑦(𝑡) with respect to 𝑡 are not so smooth.
Then the Hopf bifurcated periodic solution on (𝑥(𝑡), 𝑦(𝑡))

plan is not given here. At the same time, we can see that
the dynamical behaviors of the system have been changed
although 𝜏 is small.

3.2. Steady-State Bifurcation. From Section 2, we know that
system (5) undergoes a steady-state bifurcation at the tumor-
free equilibrium 𝑃

0
as 𝛼 = 𝜎/𝛿, 0 < 𝜏 < 𝛿/𝜎. In this section,

we will discuss the properties of the steady-state bifurcation
by using the center manifold reduction and normal form
theories of retarded functional differential equations.



Abstract and Applied Analysis 9

At the tumor-free equilibrium 𝑃
0
, we write system (5) as

an FDE:

̇𝑧 (𝑡) = 𝑁 (𝑧
𝑡
) + 𝐹 (𝑧

𝑡
) , (66)

where

𝑁(𝜑) = 𝜏(

−𝛿𝜑
1
(0) + 𝜁

𝜎

𝛿
𝜑
2
(−1)

𝛼𝜑
2
(0) −

𝜎

𝛿
𝜑
2
(−1)

) ,

𝐹 (𝜑) = 𝜏(
𝜁𝜑
1 (−1) 𝜑2 (−1)

−𝛼𝛽𝜑
2

2
(0) − 𝜑

1 (−1) 𝜑2 (−1)
) .

(67)

Letting 𝛼 = (𝜎/𝛿) + 𝛾, then (66) can be written as

̇𝑧 (𝑡) = 𝑁(
𝜎

𝛿
) (𝑧
𝑡
) + 𝐹 (𝑧

𝑡
, 𝛾) , (68)

where 𝐹(𝑧
𝑡
, 𝛾) = 𝑁(𝛾)(𝑧

𝑡
) + 𝐹(𝑧

𝑡
, 𝛾).

Assuming that 𝐴 is the infinitesimal generator of ̇𝑧(𝑡) =

𝑁(𝜎/𝛿)(𝑧
𝑡
), then 𝐴 has a simple zero root. Set Λ = {0} and

we denote by 𝑃 the invariant space of 𝐴 associated with Λ;
then dim𝑃 = 1. We can decompose 𝐶 := 𝐶([−1, 0],R2) to
𝐶 = 𝑃⨁𝑄 by the formal adjoint theory for FDEs by Hale
[17]. Let 𝑃 = span(Φ) be the bases for 𝑃, where Φ = (

V
1

V
2
),

which is a vector in R2 satisfying

𝑁(
𝜎

𝛿
)Φ = Φ̇ (0) . (69)

Choose a basisΨ for the adjoint space𝑃∗, whereΨ = (𝑢
1
, 𝑢
2
),

which is a vector in R2∗ satisfying Ψ𝑁(𝜎/𝛿) = −Ψ̇(0). Thus
we can obtain

Φ = (

1

𝛿
2

𝜁𝜎

) , Ψ = (0,
1

(𝛿2/𝜁𝜎) − (𝜏𝛿/𝜁)
) . (70)

According to the method of Faria and a similar computa-
tion in the last section, we can obtain

𝑓
1

2
(𝑥, 0, 𝛾) = 2Ψ (0) [𝑁 (𝛾) (Φ𝑥) + 𝐹 (Φ𝑥, 𝜏

𝑘
)]

= 2
𝜏

𝛿/𝜎 − 𝜏
[𝛾

𝛿

𝜎
𝑥 − ((𝛽𝛿

2
) /𝜁𝜎 + 𝛿/𝜎) 𝑥

2
] .

(71)

Noting

Ker (𝑀1
2
) = span {𝑥2, 𝑥𝛾, 𝛾2} , (72)

one has

𝑔
1

2
(𝑥, 0, 𝛾) = ProjKer(𝑀1

2
)
𝑓
1

2
(𝑥, 0, 𝛾)

= 2
𝜏

𝛿/𝜎 − 𝜏
[𝛾

𝛿

𝜎
𝑥 − (

𝛽𝛿
2

𝜁𝜎
+
𝛿

𝜎
)𝑥
2
] .

(73)

Thus, the normal form of system (5) is

̇𝑥 =
𝜏

𝛿/𝜎 − 𝜏
[𝛾

𝛿

𝜎
𝑥 − (

𝛽𝛿
2

𝜁𝜎
+
𝛿

𝜎
)𝑥
2
] + 𝑜 (𝑥

2
) . (74)

Then the following two results are obvious.

Theorem 7. If 𝛼 = 𝜎/𝛿, 0 < 𝜏 < 𝛿/𝜎, then the tumor-free
equilibrium 𝑃

0
is stable.

Theorem 8. If 0 < 𝜏 < 𝛿/𝜎, 𝛼 = 𝜎/𝛿 + 𝛾, and 𝛾 is small
enough, then

(1) the tumor-free equilibrium 𝑃
0
is stable as 𝛾 > 0 and

unstable as 𝛾 < 0;
(2) system (5) undergoes transcritical bifurcation at the

tumor-free equilibrium 𝑃
0
.

3.3. Bogdanov-Takens Bifurcation. FromTheorem 2 we know
that the tumor-free equilibrium 𝑃

0
is a B-T singular equilib-

rium of the system (5) as 𝛼 = 𝜎/𝛿, 𝜏 = 𝛿/𝜎. In this section,
we will discuss the bifurcations of the system (5) at 𝑃

0
.

At tumor-free equilibrium 𝑃
0
, we can write (5) as an FDE:

̇𝑧 (𝑡) = 𝑁 (𝑧
𝑡
) + 𝐹 (𝑧

𝑡
) , (75)

where

𝑁(𝜑) = 𝜏(

−𝛿𝜑
1
(0) + 𝜁

𝜎

𝛿
𝜑
2
(−1)

𝛼𝜑
2 (0) −

𝜎

𝛿
𝜑
2 (−1)

) ,

𝐹 (𝜑) = 𝜏(
𝜁𝜑
1
(−1) 𝜑

2
(−1)

−𝛼𝛽𝜑
2

2
(0) − 𝜑

1
(−1) 𝜑

2
(−1)

) .

(76)

Let 𝛼 = 𝜎/𝛿+𝛾
1
, 𝜏 = 𝛿/𝜎+𝛾

2
.Then system (75) can bewritten

as

̇𝑧 (𝑡) = 𝑁(
𝜎

𝛿
) (𝑧
𝑡
) + 𝐹 (𝑧

𝑡
, 𝛾) , (77)

where 𝐹(𝑧
𝑡
, 𝛾) = 𝑁(𝛾)(𝑧

𝑡
) + 𝐹(𝑧

𝑡
, 𝛾), 𝛾 = (

𝛾
1

𝛾
2
).

Assuming that 𝐴 is the infinitesimal generator of ̇𝑧(𝑡) =

𝑁(𝜎/𝛿)(𝑧
𝑡
), then 𝐴 has double zero roots. Set Λ = {0} and

denote by 𝑃 the invariant space of 𝐴 associated with Λ; then
dim𝑃 = 2. We can decompose 𝐶 := 𝐶([−1, 0],R2) as 𝐶 =

𝑃⨁𝑄 by the formal adjoint theory for FDEs by Hale [17].
Assume that 𝑃 = span(Φ) and 𝑃

∗
= span(Ψ). On the other

hand, we know that 𝐴Φ = Φ𝐵, where

𝐵 = (
0 1

0 0
) , (78)

that is,𝑁Φ = Φ̇(0) = Φ𝐵,Ψ𝑁 = −Ψ̇(0) = −𝐵Ψ, and (Ψ,Φ) =

𝐼
2
.
Let

𝐴

= (

−
𝛿
2

𝜎
0

0 1

) , 𝐵

= (

0 𝜁

0 −1
) . (79)
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From Lemma 3.1 by Xu and Huang [18], we can get

Φ (𝜃) = (

𝜎

𝛿2

𝜎

𝛿2
𝜃 −

𝜎
2

𝛿4

1

𝜁

1

𝜁
(𝜃 + 1)

) , (80) Ψ(𝜃) = (
0 −

4

3
𝜁 − 2𝜁𝜃

0 2𝜁

) . (81)

Using the method of Faria and the last section, we can obtain

𝑓
1

2
(𝑥, 0, 𝛾) = 2Ψ (0) [𝑁 (𝛾) (Φ𝑥) + 𝐹 (Φ𝑥, 𝜏

𝑘
)]

= 2(

−
4

3
[
𝛿

𝜎
𝛾
1
𝑥
1
+ (

𝛿

𝜎
𝛾
1
+
𝜎

𝛿
𝛾
2
)𝑥
2
− (

𝛽

𝜁
+
1

𝛿
)𝑥
2

1
+ (−

2𝛽

𝜁
+

𝜎

𝛿3
+
1

𝛿
)𝑥
1
𝑥
2
−
𝛽

𝜁
𝑥
2

2
]

2 [
𝛿

𝜎
𝛾
1
𝑥
1
+ (

𝛿

𝜎
𝛾
1
+
𝜎

𝛿
𝛾
2
)𝑥
2
− (

𝛽

𝜁
+
1

𝛿
)𝑥
2

1
+ (−

2𝛽

𝜁
+

𝜎

𝛿3
+
1

𝛿
)𝑥
1
𝑥
2
−
𝛽

𝜁
𝑥
2

2
]

) .

(82)

On the other hand, the basis of Ker(𝑀1
2
) is

(
0

𝑥
1
𝛾
1

) , (
0

𝑥
2
𝛾
1

) ,

(
0

𝑥
2

1

) , (
0

𝑥
1
𝑥
2

) ,

(
0

𝑥
1
𝛾
2

) , (
0

𝑥
2
𝛾
2

) ,

(
0

𝛾
2

1

) , (
0

𝛾
2

2

) , (
0

𝛾
1
𝛾
2

) ,

(83)

and then we can obtain

𝑔
1

2
(𝑥, 0, 𝛾) = ProjKer(𝑀1

2
)
𝑓
1

2
(𝑥, 0, 𝛾)

= 2(

0

2 [
𝛿

𝜎
𝛾
1
𝑥
1
+ (

𝛿

𝜎
𝛾
1
+
𝜎

𝛿
𝛾
2
)𝑥
2
− (

𝛽

𝜁
+
1

𝛿
)𝑥
2

1
+ (−

2𝛽

𝜁
+

𝜎

𝛿3
+
1

𝛿
)𝑥
1
𝑥
2
]
) .

(84)

Thus, the normal form of the system (5) is

̇𝑥
1
= 𝑥
2
,

̇𝑥
2
= 𝑎
1
𝑥
1
+ 𝑎
2
𝑥
2
+ 𝑏
1
𝑥
2

1
+ 𝑏
2
𝑥
1
𝑥
2
+ h.o.t,

(85)

where

𝑎
1
= 2

𝛿

𝜎
𝛾
1
, 𝑎

2
= 2(

𝛿

𝜎
𝛾
1
+
𝜎

𝛿
𝛾
2
) ,

𝑏
1
= −2(

𝛽

𝜁
+
1

𝛿
) , 𝑏

2
= 2(−

2𝛽

𝜁
+

𝜎

𝛿3
+
1

𝛿
) .

(86)

From above, we know that the following result can be
obtained with the help of the theories of Xu and Huang [18]
and Chow and Hale [19].

Theorem 9. Assume that 𝛼 = 𝜎/𝛿 + 𝛾
1
, 𝜏 = 𝛿/𝜎 + 𝛾

2
,

𝑏
2

> 0, and 𝛾 is small enough; then system (5) undergoes
Bogdanov-Takens bifurcation at the tumor-free equilibrium𝑃

0
.

Furthermore, on the (𝑎
1
, 𝑎
2
)-parameter plane, both𝐻 and𝐻𝐿

are located in the area 𝑎
1
> 0, 𝑎

2
< 0 and 𝐻 is on the left of

𝐻𝐿, where𝐻 is Hopf bifurcation curve defined by

𝐻 = { (𝛾
1
, 𝛾
2
)

: 𝑎
2
(𝛾
1
, 𝛾
2
) =

𝑏
2

𝑏
1

𝑎
1
(𝛾
1
, 𝛾
2
) + h.o.t., 𝑎

1
(𝛾
1
, 𝛾
2
) > 0} ,

(87)

𝐻𝐿 is the homoclinic bifurcation curve defined by

𝐻𝐿 = {0 (𝛾
1
, 𝛾
2
)

: 𝑎
2
(𝛾
1
, 𝛾
2
) = 𝜇 (√𝑎

1
(𝛾
1
, 𝛾
2
)) 𝑎
1
(𝛾
1
, 𝛾
2
)

+ h.o.t., 𝑎
1
(𝛾
1
, 𝛾
2
) > 0} ,

(88)

and 𝜇 is a continuously differentiable function with 𝜇(0) =

6𝑏
2
/7𝑏
1
.

Take the same parameter in last section, that is, 𝜎 =

0.1181, 𝜁 = 0.0031, 𝛿 = 0.3743, and 𝛽 = 0.002; then
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Figure 3: The bifurcation diagram of system (5) at the tumor-free
equilibrium 𝑃

0
.

the tumor-free equilibrium is (0.3155, 0). From Theorem 9,
we can obtain that the Hopf bifurcation curve is 𝑎

2
=

−1.0955𝑎
1
and the homoclinic bifurcation is 𝑎

2
= −0.939𝑎

1
.

Then on (𝑎
1
, 𝑎
2
)-parameter plane, the bifurcation diagram of

system (5) at the equilibrium 𝑃
0
is in Figure 3.

4. Discussion

We have studied the nonlinear dynamics of Kuznetsov,
Makalkin, and Taylor’s model with delay, which is a two-
dimensional model of tumor cells and immune system. We
first provided linear analysis of the model with delays at
the possible equilibria, namely, the tumor-free and positive
equilibria, and discussed the existence of Hopf bifurcation
at the equilibria. We investigated the Hopf bifurcation,
Bogdanov-Takens bifurcation, and steady-state bifurcation in
themodel. Numerical simulationswere presented to illustrate
the theoretical analysis and results.

Our analysis on the existence and stability of the tumor-
free equilibrium corresponds to this elimination process and
on the existence and stability of the positive equilibrium
corresponds to coexistence of the immune system and the
tumor system. Our results on the existence and stability of
the Hopf bifurcated periodic solutions of 𝑃

2
describe the

equilibrium process. When a stable periodic orbit exists,
it can be understood that the tumor and the immune
system can coexist although the cancer is not eliminated.
The conditions for the parameters provide theories basis to
control the development or progression of the tumors. The
phenomena have been observed in somemodels as d’Onofrio
[5], Kuznetsov et al. [11], and Bi and Xiao [14]. In particular,
Bi and Ruan [7] have shown that various bifurcations,
including Hopf bifurcation, Bautin bifurcation, and Hopf-
Hopf bifurcation, can occur in such models. Our results on
the existence and stability of the bifurcated (Hopf, Bogdanov-
Takens, and steady-state) periodic solutions describe rich
dynamical behaviors of 𝑃

0
, which show that the elimination

process is so complex and difficult to control.

Finally, we should point out that we have studied the
local dynamical behaviors of 𝑃

0
and 𝑃

2
. As the example

in our paper showed these two equilibria may coexist.
Correspondingly, the system can exhibit more degenerate
bifurcations including Hopf-Hopf and resonant higher codi-
mension bifurcations. It would be interesting to consider
these dynamics of the delayed model.
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We consider a model for gene expression with one or two time delays and diffusion. The local stability and delay-induced Hopf
bifurcation are investigated. We also derive the formulas determining the direction and the stability of Hopf bifurcations by
calculating the normal form on the center manifold.

1. Introduction

The study on dynamics of a biological model is one of
the dominant subjects in mathematical biology due to its
universal existence and importance. In this paper, we con-
sider amathematicalmodel of intracellular regulatory system
which began with the work of Goodwin [1]. Since then,
many researchers developed this work [2–5]. However, it
is Monk who developed the first mathematical model for
the Hes1 system and validated it with biological data [6].
In order to describe the intracellular process more precisely,
he introduced time delays to account for the processes of
transcription and translation. If we denote by 𝑀(𝑡) and
𝑃(𝑡) the concentrations of Hes1 mRNA and Hes1 protein,
respectively, the basic reaction kinetics for this system can be
expressed in the form of

𝑑𝑀(𝑡)

𝑑𝑡
= 𝑓 (𝑃 (𝑡 − 𝜏

𝑚
)) − 𝑐𝑀 (𝑡) ,

𝑑𝑃 (𝑡)

𝑑𝑡
= 𝑎𝑀(𝑡 − 𝜏

𝑝
) − 𝑏𝑃 (𝑡) ,

(1)

where 𝑓(𝑃) = 𝛼/(1 + (𝑃/𝑃
0
)
𝑛
). The parameter 𝑎 is the rate

at which Hes1 protein is produced from Hes1 mRNA and 𝑏
and 𝑐 are the decay rates of Hes1 protein and Hes1 mRNA,
respectively. 𝑓(𝑃) is the rate of production of new mRNA
molecules, with 𝛼 and 𝑃

0
as constants, to represent the rate

of transcript initiation in the absence of Hes1 protein and

the reference concentration of protein, respectively, and 𝑛 is
the Hill coefficient. 𝜏

𝑚
and 𝜏

𝑝
represent the transcriptional

and translational time delays. The units of the parameters are
as follows. 𝑎 is measured in protein molecules per mRNA
molecule per minute; 𝑏 and 𝑐 are measured in molecules per
minute; 𝛼 is measured in mRNA molecules per diploid cell
per minute; 𝑃

0
is measured in molecules and time delays 𝜏

𝑚

and 𝜏
𝑝
are measured in minute.

In order to reduce the number of parameters, [7] intro-
duced transformations

𝑚 =
𝑀

𝛼
, 𝑝 =

𝑃

𝛼𝑎
, 𝑝

0
=
𝑃
0

𝛼𝑎
, (2)

under which system (1) takes the following form:

𝑑𝑚 (𝑡)

𝑑𝑡
=

1

1 + (𝑝 (𝑡 − 𝜏
𝑚
) /𝑝
0
)
𝑛
− 𝑐𝑚 (𝑡) ,

𝑑𝑝 (𝑡)

𝑑𝑡
= 𝑚 (𝑡 − 𝜏

𝑝
) − 𝑏𝑝 (𝑡) .

(3)

Recently, Zhang et al. [8] investigated the stability and Hopf
bifurcation of the equilibrium of system (3). By using the
method ofmultiple time scales, they also obtained the normal
form on the center manifold of delay differential equations
(3).

The diffusion process comes naturally in biology as
pointed out byMurray in [9]. Experimental data also suggests
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that many pathways exhibit oscillation in concentrations
of substance involved, both temporally and spatially. For
example, a type diffusion process appears in a process of
assemblage of particles, which is due to the particles spread
out as a result of an irregular individual particle’s motion.
In these cases, a partial differential equation or system of
partial differential equations will be employed to describe
the processes. Nowadays, models involving delays and also
spatial diffusion are increasingly applied to the study due to
more appropriate biological justification. Reference [10] gave
plausible biological explanations for the delays appearing in
themodel (3). Inwhat follows, spatial diffusionwill be applied
to the model (3) to gain new information about the precise
spatiotemporal dynamics of mRNA and proteins. In fact,
Sturrock et al. [11] derived a system of partial differential
equations to capture the evolution in space and time of
the variables in the Hes1 and p53-Mdm2 systems. In this
paper, we extend previous mathematical model (3) into its
spatial version by considering spatial interactions within the
cell explicitly (of course, the clear biological explanation
will be given behind the model (4) of promotion); namely,
we consider the delayed reaction-diffusion system with the
following initial and boundary conditions:

𝜕𝑚 (𝑥, 𝑡)

𝜕𝑡
= 𝑑
1

𝜕
2
𝑚(𝑥, 𝑡)

𝜕𝑥2
+

1

1 + (𝑝 (𝑥, 𝑡 − 𝜏
𝑚
) /𝑝
0
)
𝑛

− 𝑐𝑚 (𝑥, 𝑡) , 𝑡 > 0, 𝑥 ∈ (0, 𝜋) ,

𝜕𝑝 (𝑥, 𝑡)

𝜕𝑡
= 𝑑
2

𝜕
2
𝑝 (𝑥, 𝑡)

𝜕𝑥2
+ 𝑚(𝑥, 𝑡 − 𝜏

𝑝
) − 𝑏𝑝 (𝑥, 𝑡) ,

𝑡 > 0, 𝑥 ∈ (0, 𝜋) ,

𝜕𝑚 (𝑥, 𝑡)

𝜕𝑥
=
𝜕𝑝 (𝑥, 𝑡)

𝜕𝑥
= 0, 𝑥 = 0, 𝜋, 𝑡 ≥ 0,

𝑚 (𝑥, 𝑡) = 𝜙 (𝑥, 𝑡) ≥ 0, 𝑝 (𝑥, 𝑡) = 𝜓 (𝑥, 𝑡) ≥ 0,

(𝑥, 𝑡) ∈ [0, 𝜋] × [−𝜏, 0] ,

(4)

where 𝑑
1
and 𝑑
2
are the diffusion coefficients for Hes1 mRNA

andHes1 protein, respectively, with unit such as cm/min.The
initial function 𝜙(𝑡, 𝑥), 𝜓(𝑡, 𝑥) ∈ C := 𝐶([−𝜏, 0], 𝐿2([0, 𝜋])).
The imposed Neumann boundary condition here implies
that mRNA and protein are not exported across the nuclear
membrane or the cell membrane.

Obviously, (4) is a system of reaction-diffusion equations
modeling the spatiotemporal evolution of the Hes1 system.
The same reaction kinetics from the ODE model (3) are
retained but are now also coupled with diffusion to model
explicitly protein andmRNA transport in a cell.That is to say,
molecules move from the nucleus to the cytoplasm and from
cytoplasm to nucleus across the nuclear membrane. Here,
we use a system of PDEs (4) to reflect the reality that the
mRNA is transcribed from DNA exclusively in the nucleus
and that protein is translated from mRNA exclusively in the
cytoplasm.The main advantage of using systems of PDEs (4)
tomodel intracellular reactions is that the PDEs enable spatial

effects to be examined explicitly.Themain object of this paper
is to investigate the effect of the delay and diffusion on the
dynamics of system (4). In addition, in order to determine
the direction and the stability of Hopf bifurcations, we use the
normal form procedure for functional differential equations
(FDEs) with diffusion due to Faria [12, 13].

This paper is organized as follows. In Section 2, stability
of positive equilibrium and existence of Hopf bifurcation are
studied using 𝜏 as a parameter. In Section 3, the effect of
diffusion on the Hopf bifurcation will be investigated. Using
the normal form technique for partial functional differential
equations, the formulas for determining the direction and
stability of Hopf bifurcation are presented in Section 4.
Finally, in Section 5, we will illustrate the theoretical results
by numerical simulations along with some discussion.

2. Stability of Positive Equilibrium and
Existence of Hopf Bifurcation

It is easy to verify that system (4) has a unique positive
equilibrium 𝐸∗(𝑚∗, 𝑝∗) determined by

1

1 + (𝑝∗/𝑝
0
)
𝑛
− 𝑐𝑚
∗
= 0,

𝑚
∗
− 𝑏𝑝
∗
= 0.

(5)

The object here is then to relate the dynamics of (3) and
(4) in the neighborhood of 𝐸∗, at the first critical point of the
parameter 𝜏. To this end, we let 𝑚 = 𝑚 − 𝑚∗, 𝑝 = 𝑝 − 𝑝∗.
With the help of (5), after dropping the bars for simplicity of
notation, (4) is transformed into the following system:

𝜕𝑚 (𝑥, 𝑡)

𝜕𝑡
= 𝑑
1

𝜕
2
𝑚(𝑥, 𝑡)

𝜕𝑥2
+

1

1 + ((𝑝 (𝑥, 𝑡 − 𝜏
𝑚
) + 𝑝∗) /𝑝

0
)
𝑛

− 𝑐 (𝑚 (𝑥, 𝑡) + 𝑚
∗
) ,

𝜕𝑝 (𝑥, 𝑡)

𝜕𝑡
= 𝑑
2

𝜕
2
𝑝 (𝑥, 𝑡)

𝜕𝑥2
+ 𝑚(𝑥, 𝑡 − 𝜏

𝑝
) − 𝑏𝑝 (𝑥, 𝑡)

(6)

with the origin as its equilibrium.
Let

𝑓
(1)
(𝑚, 𝑝) =

1

1 + ((𝑝 (𝑥, 𝑡 − 𝜏
𝑚
) + 𝑝∗) /𝑝

0
)
𝑛

− 𝑐 (𝑚 (𝑥, 𝑡) + 𝑚
∗
) ,

𝑓
(2)
(𝑚, 𝑝) = 𝑚 (𝑥, 𝑡 − 𝜏

𝑝
) − 𝑏𝑝 (𝑥, 𝑡) .

(7)

Define 𝑓(1)
𝑖𝑗
(𝑖 + 𝑗 ≥ 1) and 𝑓(2)

𝑖𝑗
(𝑖 + 𝑗 ≥ 1) as follows:

𝑓
(1)

𝑖𝑗
=
𝜕
𝑖+𝑗
𝑓
(1)
(0, 0)

𝜕𝑚𝑖𝜕𝑝𝑗
, 𝑓

(2)

𝑖𝑗
=
𝜕
𝑖+𝑗
𝑓
(2)
(0, 0)

𝜕𝑚𝑖𝜕𝑝𝑗
, (8)



Abstract and Applied Analysis 3

where 𝑖 and 𝑗 are the nonnegative integers. Then system (6)
can be rewritten as

𝜕𝑚 (𝑥, 𝑡)

𝜕𝑡
= 𝑑
1

𝜕
2
𝑚(𝑥, 𝑡)

𝜕𝑥2
+ 𝑎
11
𝑚(𝑥, 𝑡) + 𝑎

12
𝑝 (𝑥, 𝑡 − 𝜏

𝑚
)

+ ∑

𝑖+𝑗≥2

1

𝑖!𝑗!
𝑓
(1)

𝑖𝑗
𝑚
𝑖
(𝑥, 𝑡) 𝑝

𝑗
(𝑥, 𝑡 − 𝜏

𝑚
) ,

𝜕𝑝 (𝑥, 𝑡)

𝜕𝑡
= 𝑑
2

𝜕
2
𝑝 (𝑥, 𝑡)

𝜕𝑥2
+ 𝑎
21
𝑚(𝑥, 𝑡 − 𝜏

𝑝
) + 𝑎
22
𝑝 (𝑥, 𝑡)

+ ∑

𝑖+𝑗≥2

1

𝑖!𝑗!
𝑓
(2)

𝑖𝑗
𝑚
𝑖
(𝑥, 𝑡 − 𝜏

𝑝
) 𝑝
𝑗
(𝑥, 𝑡) ,

(9)

where

𝑎
11
= 𝑓
(1)

10
=
𝜕𝑓
(1)

𝜕𝑚
(0, 0) = −𝑐,

𝑎
12
= 𝑓
(1)

01
=
𝜕𝑓
(1)

𝜕𝑝
(0, 0) = −

𝑛𝑐
2
𝑏
2
(𝑝
∗
)
𝑛+1

𝑝
𝑛

0

,

𝑎
21
= 𝑓
(2)

10
=
𝜕𝑓
(2)

𝜕𝑚
(0, 0) = 1,

𝑎
22
= 𝑓
(2)

01
=
𝜕𝑓
(2)

𝜕𝑝
(0, 0) = −𝑏.

(10)

For simplification of notation, we use𝑚(𝑡) for𝑚(⋅, 𝑡) and 𝑝(𝑡)
for 𝑝(⋅, 𝑡) and (𝑚(𝑡), 𝑝(𝑡)) = (𝑚(⋅, 𝑡), 𝑝(⋅, 𝑡)) is in a suitable
Hilbert space𝑋

𝑋={(𝑚, 𝑝) : 𝑚, 𝑝 ∈ 𝑊
2,2
(0, 𝜋) ,

𝜕𝑚

𝜕𝑥
=
𝜕𝑝

𝜕𝑥
=0 at 𝑥 = 0, 𝜋} .

(11)

By setting 𝑈(𝑡) = (𝑚(𝑡), 𝑝(𝑡)) ∈ 𝑋, we further write (9) as an
abstract equation inC := 𝐶([−𝜏, 0], 𝑋):

𝑑𝑈 (𝑡)

𝑑𝑡
= 𝑑Δ𝑈 (𝑡) + 𝐿 (𝑈

𝑡
) + 𝐹 (𝑈

𝑡
) , (12)

where 𝑑Δ = (𝑑
1
Δ, 𝑑
2
Δ) and 𝐿 : C → 𝑅2, and 𝐹 : C × 𝑅 →

𝑅
2 are given by

𝐿 (𝜑) = (

𝑎
11
𝜑
1
(0) + 𝑎

12
𝜑
2
(−𝜏
𝑚
)

𝑎
21
𝜑
1
(−𝜏
𝑝
) + 𝑎
22
𝜑
2
(0)
) ,

𝐹 (𝜑) = (

∑

𝑖+𝑗≥2

1

𝑖!𝑗!
𝑓
(1)

𝑖𝑗
𝜑
𝑖

1
(0) 𝜑
𝑗

2
(−𝜏
𝑚
)

∑

𝑖+𝑗≥2

1

𝑖!𝑗!
𝑓
(2)

𝑖𝑗
𝜑
𝑖

1
(−𝜏
𝑝
) 𝜑
𝑗

2
(0)

) ,

(13)

for 𝜑 = (𝜑
1
, 𝜑
2
) ∈ C. Obviously, 𝐿 is a linear operator. The

linearization of (12) is

𝑑𝑈 (𝑡)

𝑑𝑡
= 𝑑Δ𝑈 (𝑡) + 𝐿 (𝑈𝑡) . (14)

It has a characteristic equation given by

Δ
𝑘
(𝜆, 𝜏) = 𝜆

2
+ 𝑝
𝑘
𝜆 + 𝑟
𝑘
+ 𝐾𝑒
−2𝜆𝜏
= 0, 𝑘 = 0, 1, 2, . . . ,

(15)

where 𝑝
𝑘
= (𝑑
1
+ 𝑑
2
)𝑘
2
+ (𝑏 + 𝑐), 𝑟

𝑘
= (𝑑
1
𝑘
2
+ 𝑐)(𝑑

2
𝑘
2
+ 𝑏),

𝐾 = 𝑛𝑐
2
𝑏
2
(𝑝
∗
)
𝑛+1
/𝑝
𝑛

0
, and 2𝜏 = 𝜏

𝑚
+𝜏
𝑝
is the total time delay.

When there is no diffusion effect, namely, 𝑑
1
= 𝑑
2
= 0, (15)

can be written as

𝜆
2
+ (𝑏 + 𝑐) 𝜆 + 𝑏𝑐 + 𝐾𝑒

−2𝜆𝜏
= 0, (16)

which is equivalent to (12) of Zhang et al.’s work in [8], and the
related stability and Hopf bifurcation have been investigated.

In what follows, we will analyze the effect of diffusion
terms by the distribution of the roots of (15) with 𝑑

1
> 0,

𝑑
2
> 0. We first consider the case when the delay is zero. For

(15), if 𝜏 = 0, then we have

𝜆
2
+ 𝑝
𝑘
𝜆 + 𝑟
𝑘
+ 𝐾 = 0, 𝑘 = 0, 1, 2. (17)

Since 𝑝
𝑘
> 0, 𝑟

𝑘
> 0 for any 𝑘 ∈ 𝑁 and 𝐾 > 0, it is easy

to verify that (17) has a pair of roots with negative real parts.
And, for 𝜏 > 0, we have the following lemma.

Lemma 1. Assume that

(𝑑
1
+ 𝑐) (𝑑

2
+ 𝑏) ≥ 𝐾 (𝐻)

holds.Then all the roots of the characteristic equation (15) have
negative real part for 𝜏 > 0.

Proof. If the conclusion is not true, namely, (15) admits at least
one root 𝜆 = 𝜇 + 𝑖𝜔 with 𝜇 ≥ 0, then we obtain

(𝜇 + 𝑖𝜔)
2
+ 𝑝
𝑘
(𝜇 + 𝑖𝜔) + 𝑟

𝑘
+ 𝐾𝑒
−2𝜏(𝜇+𝑖𝜔)

= 0. (18)

Separating the real and imaginary parts yields

𝜇
2
− 𝜔
2
+ 𝑝
𝑘
𝜇 + 𝑟
𝑘
+ 𝐾𝑒
−𝜇⋅2𝜏 cos (𝜔 ⋅ 2𝜏) = 0,

2𝜇𝜔 + 𝑝
𝑘
𝜔 − 𝐾𝑒

−𝜇⋅2𝜏 sin (𝜔 ⋅ 2𝜏) = 0.
(19)

It implies that

(𝜇
2
− 𝜔
2
+ 𝑝
𝑘
𝜇 + 𝑟
𝑘
)
2

+ (2𝜇𝜔 + 𝑝
𝑘
𝜔)
2
= 𝐾
2
𝑒
−2𝜇⋅2𝜏

; (20)

namely,

𝜇
4
+ 𝜔
4
+ 𝑝
2

𝑘
𝜇
2
+ 𝑟
2

𝑘
+ 2𝜇
2
𝜔
2
+ 2𝑝
𝑘
𝜇
3

+ 2𝜇
2
𝜔
2
+ (𝑝
2

𝑘
− 2𝑟
𝑘
) 𝜔
2
+ 2𝑝
𝑘
𝜇𝑟
𝑘
= 𝐾
2
𝑒
−2𝜇⋅2𝜏

.

(21)

Since 𝑝2
𝑘
− 2𝑟
𝑘
= 𝑘
4
(𝑑
2

1
+ 𝑑
2

2
) + 2(𝑏𝑑

2
+ 𝑐𝑑
1
)𝑘
2
+ 𝑏
2
+ 𝑐
2
> 0,

we can easily verify

𝑟
2

𝑘
< 𝐾
2
𝑒
−2𝜇⋅2𝜏

< 𝐾
2
. (22)

That is, 𝑟
𝑘
< 𝐾. Notice that (𝑑

1
+ 𝑐)(𝑑

2
+ 𝑏) ≤ 𝑟

𝑘
, for 𝑘 ≥ 1,

𝑘 ∈ 𝑁, gives

(𝑑
1
+ 𝑐) (𝑑

2
+ 𝑏) < 𝐾. (23)

It is a contradiction. Thus the conclusion follows.
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Notice that when 𝜏 = 0, all roots of (15) have negative
real part and the roots of (15) continuously depend on the
parameter 𝜏, and we can summarize our conclusion as
follows.

Theorem 2. Assume that (𝐻) holds. Then the equilibrium
point 𝐸∗ of system (4) is asymptotically stable for 𝜏 ≥ 0.

3. Effects of Diffusion on the Hopf Bifurcation

Assume that 𝑖𝜔 (𝜔 > 0) is a purely imaginary root of (15);
then we have

−𝜔
2
+ 𝑟
𝑘
+ 𝐾 cos (𝜔 ⋅ 2𝜏) = 0,

𝑝
𝑘
𝜔 − 𝐾 sin (𝜔 ⋅ 2𝜏) = 0,

(24)

which implies that

𝜔
4
+ 𝑃
𝑘
𝜔
2
+ 𝑅
𝑘
= 0, 𝑘 = 0, 1, 2, . . . , (25)

where

𝑃
𝑘
= 𝑝
2

𝑘
− 2𝑟
𝑘

= (𝑑
2

1
+ 𝑑
2

2
) 𝑘
4
+ 2 (𝑏𝑑

2
+ 𝑐𝑑
1
) 𝑘
2
+ 𝑏
2
+ 𝑐
2
> 0,

𝑅
𝑘
= 𝑟
2

𝑘
− 𝐾
2
= (𝑟
𝑘
+ 𝐾) (𝑟

𝑘
− 𝐾)

= [(𝑑
1
𝑘
2
+ 𝑐) (𝑑

2
𝑘
2
+ 𝑐) + 𝐾]

× [(𝑑
1
𝑘
2
+ 𝑐) (𝑑

2
𝑘
2
+ 𝑐) − 𝐾] .

(26)

Equation (25) implies that𝑅
𝑘
should be negative for some 𝑘 ∈

N. It is equivalent to the fact that

�̃�
𝑘
= (𝑑
1
𝑘
2
+ 𝑐) (𝑑

2
𝑘
2
+ 𝑐) − 𝐾 (27)

should be less than 0 as it is easy to see that 𝑅
𝑘
has the same

sign as that of �̃�
𝑘
. Rewrite �̃�

𝑘
into the following form:

�̃�
𝑘
= 𝑑
1
𝑑
2
𝑘
4
+ (𝑑
1
𝑏 + 𝑑
2
𝑐) 𝑘
2
+ 𝑏𝑐 − 𝐾. (28)

It is obviously a quadratic polynomial in terms of 𝑘2. Equation
(28) implies that there exists a 𝑘

1
∈ N such that �̃�

𝑘
1

< 0 if and
only if 𝑏𝑐 − 𝐾 < 0. Furthermore, we have

�̃�
𝑘
< 0 for 0 ≤ 𝑘 ≤ 𝑘

1
,

�̃�
𝑘
> 0 for 𝑘 > 𝑘

1
, 𝑘 ∈ N.

(29)

From (29), we obtain that, for each 𝑘 ∈ {0, 1, . . . , 𝑘
1
}, (25) has

only one positive real root 𝜔
𝑘
, which is given by

𝜔
𝑘
=
√2

2

√−𝑃
𝑘
+ √𝑃
2

𝑘
− 4𝑅
𝑘
. (30)

We now can make the following conclusion.

Lemma 3. Assume that (𝐻) is not true.Then (15) has a pair of
purely imaginary roots ±𝑖𝜔

𝑘
for each 𝑘 ∈ {0, 1, . . . , 𝑘

1
} and has

no purely imaginary roots for 𝑘
1
< 𝑘 ∈ N, where 𝑘

1
and 𝜔

𝑘
are

defined as above.

In the rest of this section, we will discuss the case of 𝑘 <
𝑘
1
.
From (24), we have

sin (𝜔 ⋅ 2𝜏) =
𝑝
𝑘
𝜔

𝐾
, cos (𝜔 ⋅ 2𝜏) =

𝜔
2
− 𝑟
𝑘

𝐾
. (31)

Then, for 𝑘 ∈ {0, 1, . . . , 𝑘
1
}, define

𝜏
𝑘

𝑗
=
1

𝜔
𝑘

(arccos
𝜔
2

𝑘
− 𝑟
𝑘

𝐾
+ 2𝑗𝜋) , 𝑗 = 0, 1, 2, . . . . (32)

In the following, we will order the sequence of 𝜏𝑘
𝑗
depending

on the diffusion coefficients 𝑑
1
and 𝑑

2
for 𝑘 ∈ {0, 1, . . . , 𝑘

1
}.

Lemma 4. If 𝑑
1
= 𝑑
2
and (𝐻) holds, then

𝜏
0

0
= min {𝜏𝑘

𝑗
}
𝑘∈{0,1,...,𝑘

1
}
, 𝑗 = 0, 1, 2, . . . . (33)

Proof. If 𝑑
1
= 𝑑
2
, from (30), we have

𝜔
2

𝑘
=
1

2
[ − (𝑏 + 𝑐)

2
− 2 (𝑏 + 𝑐) 𝑑𝑘

2
− 2𝑑
2
𝑘
4
+ 2𝑏𝑐

+ √(𝑏 − 𝑐)
2
[2𝑑𝑘2 + (𝑏 + 𝑐)]

2
+ 4𝐾2] ,

𝜔
2

𝑘
− 𝑟
𝑘
=
1

2
[ − (𝑏 + 𝑐)

2
− 4 (𝑏 + 𝑐) 𝑑𝑘

2
− 4𝑑
2
𝑘
4

+√(𝑏 − 𝑐)
2
[2𝑑𝑘2 + (𝑏 + 𝑐)]

2
+ 4𝐾2] .

(34)

Let 𝑥 = √(𝑏 − 𝑐)2[2𝑑𝑘2 + (𝑏 + 𝑐)]2 + 4𝐾2; it is easy to verify

𝑥 > (𝑏 − 𝑐)
2
, (35)

𝜔
2

𝑘
=
1

2
[𝑥 −

𝑥
2
− 4𝐾
2

2(𝑏 − 𝑐)
2
+
(𝑏 − 𝑐)

2

2
] ,

𝜔
2

𝑘
− 𝑟
𝑘
=
1

2
[𝑥 −

𝑥
2
− 4𝐾
2

2(𝑏 − 𝑐)
2
] .

(36)

Thus, according to (32), we obtain

𝜏
𝑘

𝑗
= 𝜏 (𝑥)

=

arccos [(𝑥 − ((𝑥2 − 4𝐾2) /(𝑏 − 𝑐)2) /2𝐾) + 2𝑗𝜋]

(√2/2) [𝑥 − ((𝑥2 − 4𝐾2) /2(𝑏 − 𝑐)
2
) + ((𝑏 − 𝑐)

2
/2)]
1/2
.

(37)

In addition,

𝑑 (𝑥 − ((𝑥
2
− 4𝐾
2
) /2(𝑏 − 𝑐)

2
))

𝑑𝑥
= 1 −

𝑥

(𝑏 − 𝑐)
2
. (38)
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From (35), we know that𝑥−((𝑥2−4𝐾2)/2(𝑏−𝑐)2) is decreasing
with respect to𝑥.Thenwe obtain 𝜏𝑘+1

𝑗
> 𝜏
𝑘

𝑗
if𝑑
1
= 𝑑
2
. Clearly,

𝜏
𝑘

𝑗+1
> 𝜏
𝑘

𝑗
, so we have

𝜏
0

0
= min {𝜏𝑘

𝑗
}
𝑘∈{0,1,2,...}

, 𝑗 = 0, 1, 2, . . . . (39)

According to Lemma 4 and the continuous dependence
of 𝜏𝑘
𝑗
on 𝑑
1
and 𝑑

2
, we summarize the following lemma.

Lemma 5. For any 𝑑 > 0, there exists an 𝜖(𝑑) > 0 such
that, for any 𝑑

1
, 𝑑
2
∈ (𝑑 − 𝜖, 𝑑 + 𝜖) satisfying (𝐻), 𝜏0

0
=

min{𝜏𝑘
𝑗
}
𝑘∈{0,1,...,𝑘

1
}
, 𝑗 = 0, 1, 2, . . ..

Let 𝜆
𝑘
(𝜏) = 𝜇

𝑘
(𝜏)+𝑖𝜔

𝑘
(𝜏) be the roots of (15) near 2𝜏 = 𝜏𝑘

𝑗

satisfying 𝜇
𝑘
(𝜏
𝑘

𝑗
) = 0, 𝜔

𝑘
(𝜏
𝑘

𝑗
) = 𝜔

𝑘
. By using the method in

[14, 15], we can prove the following transversality condition.

Lemma 6. If 𝑑
1
and 𝑑
2
satisfy the condition in Lemma 5, then,

for 𝑘 ∈ {0, 1, . . . , 𝑘
1
} and 𝑗 ∈ N

0
, 𝑑Re(𝜆)/𝑑𝜏|

2𝜏=𝜏
𝑘

𝑗

> 0.

Proof. Differentiating equation (15) with respect to 𝜏, we
obtain

(
𝑑𝜆

𝑑𝜏
)

−1

=
(2𝜆 + 𝑝

𝑘
) 𝑒
2𝜆𝜏

2𝜆𝐾
−
𝜏

𝜆
. (40)

From (24), we have

Re( 𝑑𝜆
𝑑𝜏

2𝜏=𝜏𝑘
𝑗

)

−1

=

2𝜔
𝑘
cos (𝜔

𝑘
𝜏
𝑘

𝑗
) + 𝑝
𝑘
sin (𝜔

𝑘
𝜏
𝑘

𝑗
)

2𝑘𝜔
𝑘

=

2𝜔
𝑘
⋅ ((𝜔
2

𝑘
− 𝑟
𝑘
) /𝐾) + 𝑝

𝑘
⋅ (𝑝
𝑘
𝜔
𝑘
/𝐾)

2𝑘𝜔
𝑘

=

2𝜔
2

𝑘
+ (𝑝
2

𝑘
− 2𝑟
𝑘
)

2𝐾2
> 0

(41)

since 𝑝2
𝑘
− 2𝑟
𝑘
> 0.

Combining the above analysis and the qualitative theory
of partial functional differential equations in [16], we have the
following results on the stability of equilibrium 𝐸∗ of system
(4) and existence of Hopf bifurcation near 𝐸∗.

Theorem 7. Assume that 𝑑
1
, 𝑑
2
satisfy the condition in

Lemma 5. Then, for system (4),

(i) the positive equilibrium 𝐸∗ is asymptotically stable for
𝜏 ∈ [0, 𝜏

0

0
) and unstable for 𝜏 ∈ (𝜏0

0
, +∞);

(ii) it undergoes Hopf bifurcations near the positive equilib-
rium 𝐸∗ at 2𝜏 = 𝜏𝑘

𝑗
for 𝑘 ∈ {0, 1, . . . , 𝑘

1
} and 𝑗 ∈ N

0
.

Remark 8. If 𝑑
1
= 𝑑
2
= 0, Theorem 2 and Theorem 7 are

the conclusion of Theorem 1 in [8]. That is, assuming either
condition (𝐻) or (𝐻), Theorem 2 and Theorem 7 show that

the local stability of 𝐸∗ for 0 ≤ 𝜏 < 𝜏0
0
is the same for

system (3) and system (4). Here we can know the effect of the
diffusion coefficients 𝑑

1
and 𝑑

2
, or, in order to more clearly

understand the effect of diffusion, we take 𝑏 = 𝑐 = 0.03,
𝑝
0
= 0.4, 𝑛 = 2, and thenwe get𝑝∗ = 5.6134,𝐾 ≈ 17.91×10−4

by calculation. In the absence of diffusion, 𝑏×𝑐 = 9×10−4 < 𝐾,
it is known that the equilibrium 𝐸∗ of system (3) is stable
when 𝜏 < 𝜏0

0
according to Theorem 1 in [8]. In the presence

of diffusion, for example, taking 𝑑
1
= 0.008, 𝑑

2
= 0.02, which

implies (𝑑
1
+ 𝑐)(𝑑

2
+ 𝑏) = 19 × 10

−4
> 𝐾, we know that the

equilibrium 𝐸∗ of system (4) is stable for 𝜏 ≥ 0 byTheorem 2.

4. The Direction and Stability of
Hopf Bifurcation

In this section, we assume the hypotheses of Theorem 7 hold
and 𝜏
𝑚
= 𝜏
𝑝
= 𝜏. For the case of 𝜏

𝑚
̸=𝜏
𝑝
, which is not our

concern in this paper, the calculation of the normal form
should follow the method developed in [17]. By using the
normal form method in [12] for partial differential equations
with time delay, we will investigate the stability of these Hopf
bifurcations. For standard notations and classical results on
partial functional differential equations, please refer to [12,
13, 17]. More details on techniques for computing the normal
form can also be found in recent work [18].

Now, normalizing by the time-scaling 𝑡 → 𝑡/𝜏, then (12)-
(13) can be rewritten as

𝑑𝑈 (𝑡)

𝑑𝑡
= 𝜏𝑑Δ𝑈 (𝑡) + 𝐿 (𝜏) (𝑈𝑡) + 𝑓 (𝑈𝑡, 𝜏) , (42)

where

𝐿 (𝜏) (𝜑) = 𝜏(
𝑎
11
𝜑
1 (0) + 𝑎12𝜑2 (−1)

𝑎
21
𝜑
1
(−1) + 𝑎

22
𝜑
2
(0)
) ,

𝑓 (𝜑, 𝜏) = 𝜏(

∑

𝑖+𝑗≥2

1

𝑖!𝑗!
𝑓
(1)

𝑖𝑗
𝜑
𝑖

1
(0) 𝜑
𝑗

2
(−1)

∑

𝑖+𝑗≥2

1

𝑖!𝑗!
𝑓
(2)

𝑖𝑗
𝜑
𝑖

1
(−1) 𝜑

𝑗

2
(0)

) .

(43)

In the following, we denote any one of these critical values
by 𝜏
∗
at which the characteristic equation (15) has a pair of

simply purely imaginary roots ±𝑖𝜔
∗
. Let 𝜏 = 𝜏

∗
+ 𝛼, 𝛼 ∈

R, and consider only the case Λ
0
= {−𝑖𝜏

∗
𝜔
∗
, 𝑖𝜏
∗
𝜔
∗
} is the

set of eigenvalues on the imaginary axis of the infinitesimal
generator associated with the flow of

𝑑𝑈 (𝑡)

𝑑𝑡
= 𝜏
∗
𝑑Δ𝑈 (𝑡) + 𝐿 (𝜏

∗
) (𝑈
𝑡
) . (44)

Equation (42) is now written as

𝑑𝑈 (𝑡)

𝑑𝑡
= 𝜏𝑑Δ𝑈 (𝑡) + 𝐿 (𝜏) (𝑈𝑡) + 𝐹 (𝑈𝑡, 𝛼) , (45)

where 𝐹(𝜑, 𝛼) = 𝛼𝑑Δ𝜑(0)+𝐿(𝛼)(𝜑)+𝑓(𝜑, 𝜏
∗
+𝛼), for 𝜑 ∈ C.

The eigenvalues of 𝜏
∗
𝑑Δ on 𝑋 are 𝜇𝑖

𝑘
= −𝑑

𝑖
𝜏
∗
𝑘
2, 𝑖 = 1, 2,
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𝑘 ∈ N
0
, with corresponding normalized eigenfunctions 𝛽𝑖

𝑘
,

where

𝛽
1

𝑘
(𝑥) = (

𝛾
𝑘
(𝑥)

0
) , 𝛽

2

𝑘
(𝑥) = (

0

𝛾
𝑘
(𝑥)
) ,

𝛾
𝑘
(𝑥) =

cos (𝑘𝑥)
‖cos(𝑘𝑥)‖2,2

,

𝑘 ∈ N
0
.

(46)

Let B
𝑘
= span{⟨V(⋅), 𝛽𝑖

𝑘
⟩𝛽
𝑖

𝑘
| V ∈ C, 𝑖 = 1, 2}. Assume that

𝑧
𝑡
(𝜃) ∈ 𝐶 = 𝐶([−1, 0],R2) and

𝑧
𝑇

𝑡
(𝜃)(

𝛽
1

𝑘

𝛽
2

𝑘

) ∈B
𝑘
. (47)

Then linear PFDE (44) restricted to B
𝑘
is equivalent to the

FDE on 𝐶([−1, 0],R2)

̇𝑧 (𝑡) = (
𝜇
1

𝑘
0

0 𝜇
2

𝑘

)𝑧 (𝑡) + 𝐿 (𝜏∗) (𝑧𝑡) (48)

with the characteristic equation given by (15).
Suppose that there exists a 𝑘 ∈ N

0
such that when 𝜏 = 𝜏

∗
,

(15) for fixed 𝑘 has a pair of purely imaginary roots ±𝑖𝜔
∗
and

all other roots of (15) have negative real parts. Define 𝜂(𝜃) ∈
𝐵𝑉([−1, 0]; 𝑅) such that

𝜇
𝑘
𝜓 (0) + 𝐿 (𝜏

∗
) 𝜓 = ∫

0

−1

𝑑𝜂 (𝜃) 𝜓 (𝜃) , 𝜓 ∈ 𝐶, (49)

and the adjoint bilinear form on 𝐶∗ × 𝐶, 𝐶∗ = 𝐶([0, 1],R2∗),

(𝜓 (𝑠) , 𝜙 (𝜃)) = 𝜓 (0) 𝜙 (0) − ∫

0

−1

∫

𝜃

0

𝜓 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉,

for 𝜓 ∈ 𝐶∗, 𝜙 ∈ 𝐶.
(50)

For (48) with fixed 𝑘, choose a basis Ψ
𝑘
for the adjoint space

𝑃
∗ and a basis Φ

𝑘
for its the eigenspace 𝑃 as follows:

Φ
𝑘
= (𝑝𝑒

𝑖𝜔
∗
𝜏
∗
𝜃
, 𝑝𝑒
−𝑖𝜔
∗
𝜏
∗
𝜃
) ,

Ψ
𝑘
= col (𝑞𝑇𝑒−𝑖𝜔∗𝜏∗𝑠, 𝑞𝑇𝑒𝑖𝜔∗𝜏∗𝑠)

(51)

such that (Φ
𝑘
, Φ
𝑘
) = 𝐼
2
, where 𝐼

2
is a 2 × 2 identity matrix.

Then we can easily have

𝑝 = (
𝑝
1

𝑝
2

) = (

1

𝑖𝜔
∗
+ 𝑑
1
𝑘
2
− 𝑎
11

𝑎
12

𝑒
𝑖𝜔
∗
𝜏
∗

) , (52)

𝑞 = (
𝑞
1

𝑞
2

) = 𝑞
1
(

1

𝑖𝜔
∗
+ 𝑑
1
𝑘
2
− 𝑎
11

𝑎
21

𝑒
𝑖𝜔
∗
𝜏
∗

) , (53)

with

𝑞
1
= (1 + 2𝜏

∗
(𝑖𝜔
∗
+ 𝑑
1
𝑘
2
− 𝑎
11
)

+

(𝑖𝜔
∗
+ 𝑑
1
𝑘
2
− 𝑎
11
)
2

𝑒
𝑖𝜔
∗
𝜏
∗

𝑎
12
𝑎
21

)

−1

.

(54)

Following the standard procedure in [12], especially [18],
using the decomposition 𝜑(𝑡) = (Φ

𝑘
𝑧)
𝑇
(
𝛽
1

𝑘

𝛽
2

𝑘

) + 𝑦, 𝑧(𝑡) =

(Ψ
𝑘
, (
⟨𝜑(⋅),𝛽

1

𝑘
⟩

⟨𝜑(⋅),𝛽
2

𝑘
⟩
)) ∈ R2, 𝑦(𝑡) ∈ C1

0
∩ Ker 𝜋 = C1

0
∩ Q := Q1,

we decompose (45) as

̇𝑧 = 𝐵𝑧 + Ψ
𝑘
(0)(

⟨𝐹((Φ
𝑘
𝑧)
𝑇
(

𝛽
1

𝑘

𝛽
2

𝑘

) + 𝑦, 𝛼) , 𝛽
1

𝑘
⟩

⟨𝐹((Φ
𝑘
𝑧)
𝑇
(

𝛽
1

𝑘

𝛽
2

𝑘

) + 𝑦, 𝛼) , 𝛽
2

𝑘
⟩

),

𝑑

𝑑𝑡
𝑦 = 𝐴Q1𝑦 + (𝐼 − 𝜋)𝑋0𝐹((Φ𝑘𝑧)

𝑇
(
𝛽
1

𝑘

𝛽
2

𝑘

) + 𝑦, 𝛼) ,

(55)

where here and throughout this section we refer to [12, 18] for
results and explanations of several notations involved.

Consider the formal Taylor expansion

𝐹 (V, 𝛼) = ∑
𝑗≥2

1

𝑗!
𝐹
𝑗 (V, 𝛼) , (56)

where 𝐹
𝑗
is the 𝑗th Fréchet derivative of 𝐹. Then (55) can be

written as

̇𝑧 = 𝐵𝑧 + ∑

𝑗≥2

1

𝑗!
𝑓
1

𝑗
(𝑧, 𝑦, 𝛼) ,

𝑑

𝑑𝑡
𝑦 = 𝐴Q1𝑦 + ∑

𝑗≥2

1

𝑗!
𝑓
2

𝑗
(𝑧, 𝑦, 𝛼) ,

(57)

where 𝑓1
𝑗
(𝑧, 𝑦, 𝛼) and 𝑓2

𝑗
(𝑧, 𝑦, 𝛼) are given by (4.8) in [18].

Then (45) has a normal form on the center manifold of the
origin at 𝛼 = 0, written as

̇𝑧 = 𝐵𝑧 +
1

2
𝑔
1

2
(𝑧, 0, 𝛼) +

1

3!
𝑔
1

3
(𝑧, 0, 0) + 𝑂 (𝛼

2
|𝑧| + 𝛼|𝑧|

2
) ,

(58)

where 𝐵 = diag{𝑖𝜔
∗
𝜏
∗
, −𝑖𝜔
∗
𝜏
∗
} and 𝑔1

𝑗
, 𝑗 = 2, 3, are given by

(4.9) in [18].The normal form procedure will show that these
terms have the form

1

2
𝑔
1

2
(𝑧, 0, 𝛼) = (

𝐴
𝑘1
𝑧
1
𝛼

𝐴
𝑘1
𝑧
2
𝛼
) , (59)
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where

𝐴
𝑘1
= −𝑘
2
(𝑑
1
𝑞
1
𝑝
1
+ 𝑑
2
𝑞
2
𝑝
2
) + 𝑖𝜔

∗
𝑞
𝑇
𝑝; (60)

𝐴
𝑘1
is the conjugate of 𝐴

𝑘1
. Consider the following:

1

3!
𝑔
1

3
(𝑧, 0, 0) = (

𝐴
𝑘2
𝑧
2

1
𝑧
2

𝐴
𝑘2
𝑧
1
𝑧
2

2

) , (61)

where

𝐴
𝑘2
=

𝑖

2𝜔
∗
𝜏
∗

(𝑎
𝑘20
𝑎
𝑘11
− 2
𝑎𝑘11


2
−
1

3

𝑎𝑘02


2
)

+
1

2
(𝑎
𝑘21
+
1

2
𝑏
𝑘21
)

(62)

with

𝑎
𝑘20
= 𝜏
∗
∫

𝜋

0

𝛾
3

𝑘
(𝑥) 𝑑𝑥 (𝑏1𝑞1)

=
{

{

{

𝜏
∗

√𝜋
(𝑏
1
𝑞
1
) , 𝑘 = 0,

0, 𝑘 ̸=0,

𝑏
1
= 𝑓
(1)

02
𝑝
2

2
𝑒
−2𝑖𝜔
∗
𝜏
∗ ,

𝑎
𝑘11
= 𝜏
∗
∫

𝜋

0

𝛾
3

𝑘
(𝑥) 𝑑𝑥 (𝑏3𝑞1)

=

{{

{{

{

𝜏
∗

√𝜋
(𝑏
3
𝑞
1
) , 𝑘 = 0,

0, 𝑘 ̸=0,

𝑏
3
= 𝑓
(1)

02

𝑝2


2
,

(63)

𝑎
𝑘02
= 𝜏
∗
∫

𝜋

0

𝛾
3

𝑘
(𝑥) 𝑑𝑥 (𝑏

1
𝑞
1
)

=

{{

{{

{

𝜏
∗

√𝜋
(𝑏
1
𝑞
1
) , 𝑘 = 0,

0, 𝑘 ̸=0,

(64)

𝑎
𝑘21
= 𝜏
∗
∫

𝜋

0

𝛾
4

𝑘
(𝑥) 𝑑𝑥 (𝑞

1
𝑓
(1)

03
𝑝
2

𝑝2


2
𝑒
−𝑖𝜔
∗
𝜏
∗)

=

{{{

{{{

{

𝜏
∗

𝜋
(𝑞
1
𝑓
(1)

03
𝑝
2

𝑝2


2
𝑒
−𝑖𝜔
∗
𝜏
∗) , 𝑘 = 0,

3𝜏
∗

2𝜋
(𝑞
1
𝑓
(1)

03
𝑝
2

𝑝2


2
𝑒
−𝑖𝜔
∗
𝜏
∗) , 𝑘 ̸=0,

𝑏
𝑘21
=
{

{

{

𝑀
0
, 𝑘 = 0,

𝑀
0
+
√2

2
𝑀
2𝑘
, 𝑘 ̸= 0,

(65)

where, for 𝑗 = 0, 2𝑘,𝑀
𝑗
= (2𝜏
∗
/√𝜋)𝑞

1
(𝑓
(1)

02
𝑃
2
𝑒
𝑖𝜔
∗
𝜏
∗ℎ
(2)

𝑗11
(−1)+

𝑓
(1)

02
𝑃
2
𝑒
−𝑖𝜔
∗
𝜏
∗ℎ
(2)

𝑗11
(−1)), while ℎ

𝑘20
(𝜃) = ℎ

𝑘02
(𝜃) and ℎ

𝑘20
(𝜃),

ℎ
𝑘11
(𝜃) are determined by the following equations:

ℎ̇
𝑘20 (𝜃) − 2𝑖𝜏∗𝜔∗ℎ𝑘20 (𝜃) = Φ𝑘 (

𝑎
𝑘20

𝑎
𝑘02

) ,

ℎ̇
𝑘20
(0) − 𝐿 (𝜏

∗
) (ℎ
𝑘20
) = 𝜏
∗
𝑐
𝑘𝑗
(
𝑏
1

0
) ,

ℎ̇
𝑘11
(𝜃) = Φ

𝑘
(
2𝑎
𝑘11

2𝑎
𝑘11

) ,

ℎ̇
𝑘11 (0) − 𝐿 (𝜏∗) (ℎ𝑘11) = 𝜏∗𝑐𝑘𝑗 (

𝑏
3

0
) ,

(66)

where

𝑐
𝑘𝑗
= ∫

𝜋

0

𝛾
2

𝑘
(𝑥) 𝛾
𝑗
(𝑥) 𝑑𝑥 =

{{{{{{{{{{{

{{{{{{{{{{{

{

1

√𝜋
, 𝑗 = 𝑘 = 0,

1

√𝜋
, 𝑗 = 0, 𝑘 ̸=0,

1

√2𝜋
, 𝑗 = 2 𝑘 ̸=0,

0. otherwise.

(67)

So the normal form (45) on the center manifold has the form

̇𝑧 = 𝐵𝑧 + (
𝐴
𝑘1
𝑧
1
𝜇

𝐴
𝑘1
𝑧
2
𝜇
) + (

𝐴
𝑘2
𝑧
2

1
𝑧
2

𝐴
𝑘2
𝑧
1
𝑧
2

2

) + 𝑂(|𝑧| 𝛼
2
+

𝑧
4
) .

(68)

Next we will derive the normal form in the real coordinates.
To this end, let 𝑧

1
= 𝑤
1
− 𝑖𝑤
2
, 𝑧
2
= 𝑤
1
+ 𝑖𝑤
2
, and then the

polar coordinates 𝑤
1
= 𝜌 cos 𝜉, 𝑤

2
= 𝜌 sin 𝜉. We finally reach

̇𝜌 = 𝜄
𝑘1
𝛼𝜌 + 𝜄

𝑘2
𝜌
3
+ 𝑂 (𝛼

2
𝜌 +
(𝜌, 𝛼)



4
) ,

̇𝜉 = −𝜔
∗
𝜏
∗
+ 𝑂 (

(𝜌, 𝛼)
) ;

(69)

here 𝜄
𝑘1
= Re𝐴

𝑘1
, 𝜄
𝑘2
= Re𝐴

𝑘2
.Then, from [19], we know that

the number 𝜄
𝑘2
tells the bifurcation direction and the stability

of bifurcating periodic solution.

(i) When 𝜄
𝑘2
< 0, it is a supercritical bifurcation and the

bifurcating periodic solution is stable.
(ii) When 𝜄

𝑘2
> 0, it is a subcritical bifurcation and the

bifurcating periodic solution is unstable.

5. Numerical Simulation and Discussion

In this section, we present some numerical simulations to
system (4).These simulations are used to support our theoret-
ical results. Similar to [6, 7, 20], the values of parameters are
taken from the published experimental and theoretical results
in our simulations where, 𝑛 ∈ [2, 10], 𝑃

0
∈ [40, 100], and

𝜇 ∈ [0.01, 1]. 𝛼 = 33 and 𝑎 = 4.5 are taken as in [10] for
original model (1).
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Figure 1: Numerical simulations of system (4) with 𝑑
1
= 0.002, 𝑑

2
= 0.02, 𝑏 = 𝑐 = 0.03, 𝑛 = 2, 𝑝

0
= 0.4, and 𝜏 = 25 < 𝜏0

0
. The initial values

are 𝑚
0
(𝑥) = 0.2 + 0.1 cos 𝑥; 𝑝

0
(𝑥) = 5.6 − 0.01 cos𝑥. The positive equilibrium 𝐸∗(0.1684, 5.6134) of system (4) is asymptotically stable for

∈ [0, 𝜏
0

0
).
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Figure 2: Numerical simulations system (4) with 𝑑
1
= 0.002, 𝑑

2
= 0.02, 𝑏 = 𝑐 = 0.03, 𝑛 = 2, 𝑝

0
= 0.4, and 𝜏 = 30 > 𝜏0

0
. The initial values are

𝑚
0
(𝑥) = 0.2 + 0.1 cos 𝑥; 𝑝

0
(𝑥) = 5.6 − 0.01 cos𝑥. The positive equilibrium 𝐸∗(0.1684, 5.6134) of system (4) becomes unstable and there exist

stable spatially homogeneous periodic solutions.

Taking 𝑑
1
= 0.002, 𝑑

2
= 0.02, 𝑛 = 2, 𝑏 = 𝑐 = 𝜇 = 0.03,

and 𝑝
0
= 0.4(𝑃

0
= 59.4), then the positive equilibrium

𝐸
∗
(𝑚
∗
, 𝑝
∗
) = (0.1684, 5.6134). From (30) and (32), we

obtain the critical value for time delay, 𝜏0
0
≐ 26.3983. In this

case, the parameters satisfy (𝐻). By Theorem 7, the positive
equilibrium 𝐸∗(0.1684, 5.6134) is asymptotically stable for
𝜏 = 25 < 𝜏

0

0
. Figure 1 is the numerical simulation of system

(4) for 𝜏 = 25.
When the delay increasingly crosses through the critical

value 𝜏0
0
≐ 26.3983, the positive equilibrium 𝐸∗ loses its

stability and theHopf bifurcation occurs. Taking 𝜏 = 30 > 𝜏0
0
,

Figure 2 is the numerical simulation results of system (4). It
is consistent with the theoretical results.

In Figure 2, we fix 𝑥 = 1.5708 and the other parameter
values are the same as Figure 2. Then we get Figure 3 which
shows that the oscillation will sustain when the time delay
𝜏 = 30 is much greater than the critical value 𝜏0

0
≐

26.3983.

Remark 9. Comparing Figure 3 with Figure 3 in [8], we know
that the oscillation is still sustained when 𝜏 is much greater
than its critical value 𝜏0

0
in the presence of diffusion.
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Figure 3: Sustained oscillation when 𝜏 = 30 is much larger than its
critical value 𝜏0

0
≐ 26.3983 with 𝑑

1
= 0.002, 𝑑

2
= 0.02, 𝑏 = 𝑐 = 0.03,

𝑛 = 2, 𝑝
0
= 0.4 and the initial values are𝑚

0
(𝑥) = 0.2 + 0.1 cos𝑥; and

𝑝
0
(𝑥) = 5.6 − 0.01 cos𝑥.
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A delayed SIRS infectious disease model with nonlocal diffusion and nonlinear incidence is investigated. By constructing a pair of
upper-lower solutions and using Schauder’s fixed point theorem, we derive the existence of a traveling wave solution connecting
the disease-free steady state and the endemic steady state.

1. Introduction

Mathematical modeling has been proven to be valuable in
studying the transmission dynamics of infectious diseases in
a host population. We note that in disease progression, the
spatial content of the environment plays a crucial role; the
spread of germs, bacteria, and pathogen in the area is the
main reason which leads to the spread of infectious disease.
Thus, due to the large mobility of people within a country or
even worldwide, spatially uniform models are not sufficient
to give a realistic picture of a disease’s diffusion. Considering
the spatial effects, Gan et al. [1] considered the following SIRS
epidemic model with spatial diffusion and time delay:

𝜕𝑆

𝜕𝑡
= 𝐷
𝑆

𝜕
2
𝑆

𝜕𝑥2
+ 𝐴 − 𝑑𝑆 (𝑥, 𝑡)

− 𝛽𝑆 (𝑥, 𝑡) 𝐼 (𝑥, 𝑡 − 𝜏) + 𝛿𝑅 (𝑥, 𝑡) ,

𝜕𝐼

𝜕𝑡
= 𝐷
𝐼

𝜕
2
𝐼

𝜕𝑥2
+ 𝛽𝑆 (𝑥, 𝑡) 𝐼 (𝑥, 𝑡 − 𝜏) − (𝑑 + 𝛾 + 𝑎) 𝐼 (𝑥, 𝑡) ,

𝜕𝑅

𝜕𝑡
= 𝐷
𝑅

𝜕
2
𝑅

𝜕𝑥2
+ 𝛾𝐼 (𝑥, 𝑡) − (𝑑 + 𝛿) 𝑅 (𝑥, 𝑡) ,

(1)

where 𝑆(𝑡) represents the number of individuals who are sus-
ceptible to the disease, 𝐼(𝑡) represents the number of infected

individuals who are infectious and are able to spread the
disease by contact with susceptible individuals, and 𝑅(𝑡)

represents the number of individuals who have been removed
from the possibility of infection through full immunity. The
parameters 𝐴, 𝑎, 𝑑, 𝛽, 𝛾, 𝛿 are positive constants in which 𝐴
is the recruitment rate of the population, 𝑎 is the death rate
due to disease, 𝑑 is the natural death rate of the population, 𝛽
is the transmission rate, 𝛾 is the recovery rate of the infective
individuals, and 𝛿 is the rate at which recovered individuals
lose immunity and return to the susceptible class. 𝜏 > 0 is a
fixed time during which the infectious agents develop in the
vector and it is only after that time that the infected vector
can infect a susceptible human. 𝐷

𝑆
, 𝐷
𝐼
, and 𝐷

𝑅
denote the

corresponding diffusion rates for the susceptible, infected,
and removed populations, respectively. In [1], by constructing
a pair of upper-lower solutions, the existence of a traveling
wave solution connecting the disease-free steady state and the
endemic steady statewas given. In recent years, there has been
a fair amount of work on epidemiological models with spatial
diffusion (see, e.g., [2–6]).

In system (1), the Laplacian operator 𝜕2/𝜕𝑥2 has been
used tomodel the diffusion of the species, which suggests that
the population at the location 𝑥 can only be influenced by the
variation of the population near the location 𝑥. However, in
dynamics of infectious diseases, dispersal is better described
as a long range process rather than as a local one. At the
same time, studies of disease infections have also shown that
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reaction-diffusion equation does not accurately describe the
spatial and temporal behavior of some diseases, for example,
in the incubation period of SARS patients, who can move
freely and the movement may transmit the disease to other
people. Since the long range effect is taken into account,
nonlocal diffusion equations have received great interest and
have been recently intensively studied to analyze the long
range effects of the dispersal (see, e.g., [7–12]). A basic
nonlocal diffusion equation is of the form [13]

𝜕

𝜕𝑡
𝑢 (𝑥, 𝑡) = 𝐽 ∗ 𝑢 − 𝑢 (𝑥, 𝑡) + 𝑓 (𝑢) , (2)

where the kernel 𝐽 of the convolution (𝐽 ∗ 𝑢)(𝑥, 𝑡) = ∫
R
𝐽(𝑥 −

𝑦)𝑢(𝑦, 𝑡)𝑑𝑦 is a nonnegative function of mass one and 𝑓 a
given nonlinearity. As stated in [9], if 𝑢(𝑥, 𝑡) represents the
density of a species at the point 𝑥 and time 𝑡 and 𝐽(𝑥 − 𝑦)
is regarded as the probability distribution of jumping from
location 𝑦 to location 𝑥, then ∫

R
𝐽(𝑥 − 𝑦)𝑢(𝑦, 𝑡)𝑑𝑦 is the

rate at which individuals arrive at position 𝑥 from all other
places and −𝑢(𝑥, 𝑡) = − ∫

R
𝐽(𝑥 − 𝑦)𝑢(𝑦, 𝑡)𝑑𝑦 is the rate at

which they leave location 𝑥 to travel to all other sites. The
diffusion is modeled by a convolution operator which looks
to be biologically reasonable.

We note that in system (1), Gan et al. used a bilinear inci-
dence rate 𝛽𝑆𝐼 based on the law of mass action. If the number
of susceptible individuals is very large, it is unreasonable to
consider the bilinear incidence within a certain limited time,
because the number of effective contacts between infective
individuals and susceptible individuals may saturate at high
infective levels due to crowding of infective individuals or
due to the protectionmeasures by the susceptible individuals.
After a study of the cholera epidemic spread in Bari in 1973,
Capasso and Serio [14] introduced a saturated incidence rate
𝑔(𝐼)𝑆 into epidemic models, where 𝑔(𝐼) tends to a saturation
level when 𝐼 gets large; that is, 𝑔(𝐼) = 𝛽𝐼/(1 + 𝛼𝐼); here 𝛽𝐼
measures the force of infection of the disease, and 1/(1 + 𝛼𝐼)
measures the inhibition effect from the behavioral change
of the susceptible individuals when their number increases
or from the crowding effect of the susceptible individuals.
This incidence rate seems more reasonable than the bilinear
incidence rate, because it includes the behavioral change
and crowding effect of the infective individuals and prevents
the unboundedness of the contact rate by choosing suitable
parameters [15].

Motivated by the works of Capasso and Serio [14],
Gan et al. [1], and Li et al. [13], in this paper, we study
the following delayed SIRS infectious disease model with
nonlocal diffusion:

𝜕𝑆

𝜕𝑡
= 𝐷 [(𝐽 ∗ 𝑆) (𝑥, 𝑡) − 𝑆 (𝑥, 𝑡)] + 𝐴 − 𝑑𝑆 (𝑥, 𝑡)

−
𝛽𝑆 (𝑥, 𝑡) 𝐼 (𝑥, 𝑡 − 𝜏)

1 + 𝛼𝐼 (𝑥, 𝑡 − 𝜏)
+ 𝛿𝑅 (𝑥, 𝑡) ,

𝜕𝐼

𝜕𝑡
= 𝐷 [(𝐽 ∗ 𝐼) (𝑥, 𝑡) − 𝐼 (𝑥, 𝑡)] +

𝛽𝑆 (𝑥, 𝑡) 𝐼 (𝑥, 𝑡 − 𝜏)

1 + 𝛼𝐼 (𝑥, 𝑡 − 𝜏)

− (𝑑 + 𝛾 + 𝑎) 𝐼 (𝑥, 𝑡) ,

𝜕𝑅

𝜕𝑡
= 𝐷 [(𝐽 ∗ 𝑅) (𝑥, 𝑡) − 𝑅 (𝑥, 𝑡)] + 𝛾𝐼 (𝑥, 𝑡)

− (𝑑 + 𝛿) 𝑅 (𝑥, 𝑡) ,

(3)

where the parameter 𝐷 denotes the corresponding diffusion
rates for the three populations, respectively. Here, for simplic-
ity, we assume 𝐷

𝑆
= 𝐷
𝐼
= 𝐷
𝑅
= 𝐷. 𝐽(𝑧) is a kernel function

which is continuous satisfying

(A1) ∫
R
𝐽(𝑥)𝑑𝑥 = 1, 𝐽(𝑥) ≥ 0 and 𝐽(𝑥) = 𝐽(−𝑥), for 𝑥 ∈ R.

For any fixed 𝜇 > 0, 𝐽
𝜇
:= ∫
+∞

−∞
𝐽(𝑥)𝑒
𝜇|𝑥|
𝑑𝑥 < ∞ and

lim
𝜇→∞

∫

+∞

−∞

𝐽 (𝑥) 𝑒
𝜇|𝑥|
𝑑𝑥 = ∞. (4)

The initial conditions for system (3) take the form

𝑆 (𝑥, 𝑡) = 𝜌
1
(𝑥, 𝑡) , 𝐼 (𝑥, 𝑡) = 𝜌

2
(𝑥, 𝑡) , 𝑅 (𝑥, 𝑡) = 𝜌

3
(𝑥, 𝑡) ,

𝑡 ∈ [−𝜏, 0] .

(5)

In the biological context, it is important to analyse
the epidemic waves which are described by traveling wave
solutions propagating with a certain speed. In this paper, our
focus is on the existence of traveling wave solutions to the
SIRS infectious disease model (3).

The rest of this paper is organized as follows. In Section 2,
by constructing a pair of upper-lower solutions and using
Schauder’s fixed point theorem, the existence of traveling
wave solutions connecting the disease-free steady state and
the endemic steady state of system (3) is established. In
Section 3, a brief concluding remark is given to end this work.

2. Existence of Traveling Waves

In this section, we apply Schauder’s fixed point theorem,
the method of cross-iteration scheme associated with upper-
lower solutions, to study the existence of traveling wave
solutions of system (3) connecting the disease-free steady
state and the endemic steady state.

Denote

R
0
=

𝐴𝛽

𝑑 (𝑑 + 𝛾 + 𝑎)
. (6)

R
0
is called the basic reproduction ratio of system (3),

which describes the average number of newly infected cells
generated from one infected cell at the beginning of the
infectious process. This quantity determines the thresholds
for disease transmissions. It is easy to show that system (3)
always has a disease-free steady state 𝐸0(𝐴/𝑑, 0, 0). Further,
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if R
0
> 1, system (3) has a unique endemic steady state

𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝑅
∗
), where

𝑆
∗
=
(𝑑 + 𝛾 + 𝑎) (1 + 𝛼𝐼

∗
)

𝛽
,

𝐼
∗
=

𝑑 (𝑑 + 𝛿) (𝑑 + 𝛾 + 𝑎) (R
0
− 1)

(𝛼𝑑 + 𝛽) (𝑑 + 𝛿) (𝑑 + 𝛾 + 𝑎) − 𝛽𝛿𝛾
,

𝑅
∗
=

𝛾

𝑑 + 𝛿
𝐼
∗
.

(7)

Denoting𝑁 = 𝑆 + 𝐼 + 𝑅, then system (3) is equivalent to
the following system:

𝜕𝑁

𝜕𝑡
= 𝐷 [(𝐽 ∗ 𝑁) (𝑥, 𝑡) − 𝑁 (𝑥, 𝑡)] + 𝐴 − 𝑑𝑁 (𝑥, 𝑡)

− 𝑎𝐼 (𝑥, 𝑡) ,

𝜕𝐼

𝜕𝑡
= 𝐷 [(𝐽 ∗ 𝐼) (𝑥, 𝑡) − 𝐼 (𝑥, 𝑡)]

+
𝛽 [𝑁 (𝑥, 𝑡) − 𝐼 (𝑥, 𝑡) − 𝑅 (𝑥, 𝑡)] 𝐼 (𝑥, 𝑡 − 𝜏)

1 + 𝛼𝐼 (𝑥, 𝑡 − 𝜏)

− (𝑑 + 𝛾 + 𝑎) 𝐼 (𝑥, 𝑡) ,

𝜕𝑅

𝜕𝑡
= 𝐷 [(𝐽 ∗ 𝑅) (𝑥, 𝑡) − 𝑅 (𝑥, 𝑡)] + 𝛾𝐼 (𝑥, 𝑡)

− (𝑑 + 𝛿) 𝑅 (𝑥, 𝑡) .

(8)

Bymaking a change of variables �̃� = 𝐴/𝑑−𝑁, 𝐼 = 𝐼, �̃� =

𝑅 and dropping the tildes, system (8) becomes

𝜕𝑁

𝜕𝑡
= 𝐷 [(𝐽 ∗ 𝑁) (𝑥, 𝑡) − 𝑁 (𝑥, 𝑡)] − 𝑑𝑁 (𝑥, 𝑡) + 𝑎𝐼 (𝑥, 𝑡) ,

𝜕𝐼

𝜕𝑡
= 𝐷 [(𝐽 ∗ 𝐼) (𝑥, 𝑡) − 𝐼 (𝑥, 𝑡)]

+
𝛽 [𝐴/𝑑 − 𝑁 (𝑥, 𝑡) − 𝐼 (𝑥, 𝑡) − 𝑅 (𝑥, 𝑡)] 𝐼 (𝑥, 𝑡 − 𝜏)

1 + 𝛼𝐼 (𝑥, 𝑡 − 𝜏)

− (𝑑 + 𝛾 + 𝑎) 𝐼 (𝑥, 𝑡) ,

𝜕𝑅

𝜕𝑡
= 𝐷 [(𝐽 ∗ 𝑅) (𝑥, 𝑡) − 𝑅 (𝑥, 𝑡)] + 𝛾𝐼 (𝑥, 𝑡)

− (𝑑 + 𝛿) 𝑅 (𝑥, 𝑡) .

(9)

It is easy to show that if R
0
> 1, system (9) has two steady

states (0, 0, 0) and (𝑘
1
, 𝑘
2
, 𝑘
3
), where 𝑘

1
= 𝐴/𝑑 − 𝑆

∗
− 𝐼
∗
− 𝑅
∗

and 𝑘
2
= 𝐼
∗
, 𝑘
3
= 𝑅
∗.

A traveling wave solution of (9) is a special translation
invariant solution of the form (𝑁(𝑥, 𝑡), 𝐼(𝑥, 𝑡), 𝑅(𝑥, 𝑡)) =

(𝜙(𝑥 + 𝑐𝑡), 𝜑(𝑥 + 𝑐𝑡), 𝜓(𝑥 + 𝑐𝑡)), where (𝜙, 𝜑, 𝜓) ∈ 𝐶(R,R3)
is the profile of the wave that propagates through one-
dimensional spatial domain at a constant speed 𝑐 > 0.
On substituting 𝑁(𝑥, 𝑡) = 𝜙(𝑥 + 𝑐𝑡), 𝐼(𝑥, 𝑡) = 𝜑(𝑥 + 𝑐𝑡),

𝑅(𝑥, 𝑡) = 𝜓(𝑥 + 𝑐𝑡) into (9) and denoting the traveling wave
coordinate 𝑥 + 𝑐𝑡 still by 𝑡, we derive from (9) that

𝑐𝜙

(𝑡) = 𝐷∫

𝑅

𝐽 (𝑡 − 𝑦) 𝜙 (𝑦) 𝑑𝑦 − 𝐷𝜙 (𝑡) + 𝑓𝑐1 (𝜙𝑡, 𝜑𝑡, 𝜓𝑡) ,

𝑐𝜑

(𝑡) = 𝐷∫

𝑅

𝐽 (𝑡 − 𝑦) 𝜑 (𝑦) 𝑑𝑦 − 𝐷𝜙 (𝑡) + 𝑓𝑐2 (𝜙𝑡, 𝜑𝑡, 𝜓𝑡) ,

𝑐𝜓

(𝑡) = 𝐷∫

𝑅

𝐽 (𝑡 − 𝑦) 𝜓 (𝑦) 𝑑𝑦 − 𝐷𝜓 (𝑡) + 𝑓
𝑐3
(𝜙
𝑡
, 𝜑
𝑡
, 𝜓
𝑡
) ,

(10)

where

𝑓
𝑐1
(𝜙
𝑡
, 𝜑
𝑡
, 𝜓
𝑡
) = −𝑑𝜙 (𝑡) + 𝑎𝜑 (𝑡) ,

𝑓
𝑐2
(𝜙
𝑡
, 𝜑
𝑡
, 𝜓
𝑡
)

=
𝛽 [𝐴/𝑑 − 𝜙 (𝑡) − 𝜑 (𝑡) − 𝜓 (𝑡)] 𝜑 (𝑡 − 𝑐𝜏)

1 + 𝛼𝜑 (𝑡 − 𝑐𝜏)

− (𝑑 + 𝛾 + 𝑎) 𝜑 (𝑡) ,

𝑓
𝑐3
(𝜙
𝑡
, 𝜑
𝑡
, 𝜓
𝑡
) = 𝛾𝜑 (𝑡) − (𝑑 + 𝛿) 𝜓 (𝑡) .

(11)

Equation (10)will be solved subject to the following boundary
value conditions:

lim
𝑡→−∞

(𝜙 (𝑡) , 𝜑 (𝑡) , 𝜓 (𝑡)) = (0, 0, 0) ,

lim
𝑡→+∞

(𝜙 (𝑡) , 𝜑 (𝑡) , 𝜓 (𝑡)) = (𝑘
1
, 𝑘
2
, 𝑘
3
) .

(12)

Now, we give the definition of upper and lower solutions
of system (10) as follows.

Definition 1. A pair of continuous functions Φ = (𝜙, 𝜑, 𝜓)

andΦ = (𝜙, 𝜑, 𝜓) are called a pair of upper-lower solutions of
system (10), if there exist constants 𝑇

𝑖
(𝑖 = 1, 2, . . . , 𝑚) such

thatΦ andΦ are twice differential onR \ {𝑇
𝑖
: 𝑖 = 1, 2, . . . , 𝑚}

and satisfy

𝐷∫
𝑅

𝐽 (𝑡 − 𝑦) 𝜙 (𝑦) 𝑑𝑦 − 𝐷𝜙 (𝑡) − 𝑐𝜙


(𝑡)

+ 𝑓
𝑐1
(𝜙
𝑡
, 𝜑
𝑡
, 𝜓
𝑡
) ≤ 0,

𝐷∫
𝑅

𝐽 (𝑡 − 𝑦) 𝜑 (𝑦) 𝑑𝑦 − 𝐷𝜑 (𝑡) − 𝑐𝜑

(𝑡)

+ 𝑓
𝑐2
(𝜙
𝑡
, 𝜑
𝑡
, 𝜓
𝑡
) ≤ 0,

𝐷∫
𝑅

𝐽 (𝑡 − 𝑦) 𝜓 (𝑦) 𝑑𝑦 − 𝐷𝜓 (𝑡) − 𝑐𝜓

(𝑡)

+ 𝑓
𝑐3
(𝜙
𝑡
, 𝜑
𝑡
, 𝜓
𝑡
) ≤ 0,
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𝐷∫
𝑅

𝐽 (𝑡 − 𝑦) 𝜙 (𝑦) 𝑑𝑦 − 𝐷𝜙 (𝑡) − 𝑐𝜙

(𝑡)

+ 𝑓
𝑐1
(𝜙
𝑡
, 𝜑
𝑡
, 𝜓
𝑡
) ≥ 0,

𝐷∫
𝑅

𝐽 (𝑡 − 𝑦) 𝜑 (𝑦) 𝑑𝑦 − 𝐷𝜑 (𝑡) − 𝑐𝜑

(𝑡)

+ 𝑓
𝑐2
(𝜙
𝑡
, 𝜑
𝑡
, 𝜓
𝑡
) ≥ 0,

𝐷∫
𝑅

𝐽 (𝑡 − 𝑦) 𝜓 (𝑦) 𝑑𝑦 − 𝐷𝜓 (𝑡) − 𝑐𝜓

(𝑡)

+ 𝑓
𝑐3
(𝜙
𝑡
, 𝜑
𝑡
, 𝜓
𝑡
) ≥ 0,

(13)

for 𝑡 ∈ R \ {𝑇
𝑖
: 𝑖 = 1, 2, . . . , 𝑚}.

In what follows, we assume that there exist an upper
solution Φ(𝑡) = (𝜙, 𝜑, 𝜓)(𝑡) and a lower solution Φ(𝑡) =

(𝜙, 𝜑, 𝜓)(𝑡) of system (10) satisfying (P1)-(P2):

(P1) 0 ≤ Φ ≤ Φ ≤ 𝑀 = (𝑀
1
,𝑀
2
,𝑀
3
);

(P2) lim
𝑡→−∞

Φ(𝑡) = 0, lim
𝑡→+∞

Φ(𝑡) = lim
𝑡→+∞

Φ(𝑡) =

K = (𝑘
1
, 𝑘
2
, 𝑘
3
).

Let

𝐶
[0,𝑀]

(R,R
3
) = {Φ (𝑡) = (𝜙, 𝜑, 𝜓) (𝑡) ∈ 𝐶 (R,R

3
)

: 0 ≤ Φ (𝑡) ≤ 𝑀, 𝑡 ∈ R} ,

(14)

where𝑀
𝑖
> 𝑘
𝑖
(𝑖 = 1, 2, 3) satisfy

𝐴𝛽

𝑑
− (𝛾 + 𝑎) > 𝑎

𝑀
2

𝑀
1

> 𝑑,

𝐴𝛽

𝑑
− (𝛾 + 𝑎) > 𝛾

𝑀
2

𝑀
3

− 𝛿 > 𝑑,

𝐴

𝑑
≥ 𝑀
1
+𝑀
2
+𝑀
3
.

(15)

We look for traveling wave solutions to system (10) in the
following profile set:

Γ = { (𝜙, 𝜑, 𝜓) (𝑡) ∈ 𝐶
[0,𝑀]

(R,R
3
)

: (𝜙, 𝜑, 𝜓) (𝑡) ≤ (𝜙, 𝜑, 𝜓) (𝑡) ≤ (𝜙, 𝜑, 𝜓) (𝑡) } .

(16)

Obviously, Γ is nonempty, convex, closed, and bounded.
Furthermore, corresponding to (10), we make the follow-

ing hypotheses.
(A2) There exist three positive constants 𝐿

𝑖
> 0 (𝑖 = 1, 2, 3)

such that
𝑓𝑐𝑖 (𝜙1, 𝜑1, 𝜓1) − 𝑓𝑐𝑖 (𝜙2, 𝜑2, 𝜓2)

 ≤ 𝐿 𝑖 ‖Φ (𝑡) − Ψ (𝑡)‖ , (17)

for Φ(𝑡) = (𝜙
1
, 𝜑
1
, 𝜓
1
)(𝑡) and Ψ(𝑡) = (𝜙

2
, 𝜑
2
, 𝜓
2
)(𝑡) ∈

𝐶([−𝜏, 0],R3) with (0, 0, 0) ≤ (𝜙
𝑗
(𝑡), 𝜑
𝑗
(𝑡), 𝜓
𝑗
(𝑡)) ≤

(𝑀
1
,𝑀
2
,𝑀
3
), 𝑗 = 1, 2, 𝑡 ∈ [−𝜏, 0], 𝑀

𝑖
≥ 𝑘
𝑖
, are

positive constants.

For Φ = (𝜙, 𝜑, 𝜓) ∈ 𝐶
[0,𝑀]

(R,R3), we define two
operators 𝐻 = (𝐻

1
, 𝐻
2
, 𝐻
3
) and 𝐹 = (𝐹

1
, 𝐹
2
, 𝐹
3
) from

𝐶
[0,𝑀]

(R,R3) to 𝐶(R,R3) by

𝐻
1
(𝜙, 𝜑, 𝜓) (𝑡) = 𝐷∫

𝑅

𝐽 (𝑡 − 𝑦) 𝜙 (𝑦) 𝑑𝑦 + 𝑎𝜑 (𝑡) ,

𝐻
2
(𝜙, 𝜑, 𝜓) (𝑡)

= 𝐷∫
𝑅

𝐽 (𝑡 − 𝑦) 𝜑 (𝑦) 𝑑𝑦 + 𝛽𝑀
2
𝜑 (𝑡)

+
𝛽 [𝐴/𝑑 − 𝜙 (𝑡) − 𝜑 (𝑡) − 𝜓 (𝑡)] 𝜑 (𝑡 − 𝑐𝜏)

1 + 𝛼𝜑 (𝑡 − 𝑐𝜏)
,

𝐻
3
(𝜙, 𝜑, 𝜓) (𝑡) = 𝐷∫

𝑅

𝐽 (𝑡 − 𝑦) 𝜓 (𝑦) 𝑑𝑦 + 𝛾𝜑 (𝑡) ,

𝐹
𝑖
(𝜙, 𝜑, 𝜓) (𝑡) =

1

𝑐
𝑒
−(𝛽
𝑖
/𝑐)𝑡
∫

𝑡

−∞

𝑒
(𝛽
𝑖
/𝑐)𝑠
𝐻
𝑖
(𝜙, 𝜑, 𝜓) (𝑠) 𝑑𝑠

(𝑖 = 1, 2, 3) .

(18)

Letting 𝛽
1
= 𝐷 + 𝑑, 𝛽

2
= 𝐷 + 𝑑 + 𝛾 + 𝑎, and 𝛽

3
= 𝐷 + 𝑑 + 𝛿,

then system (10) can be rewritten as

𝑐𝜙

(𝑡) = −𝛽

1
𝜙 (𝑡) + 𝐻

1
(𝜙, 𝜑, 𝜓) (𝑡) ,

𝑐𝜑

(𝑡) = −𝛽

2
𝜑 (𝑡) + 𝐻

2
(𝜙, 𝜑, 𝜓) (𝑡) ,

𝑐𝜓

(𝑡) = −𝛽3𝜓 (𝑡) + 𝐻3 (𝜙, 𝜑, 𝜓) (𝑡) ,

(19)

and then 𝐹 is well defined such that

𝑐𝐹


𝑖
(𝜙, 𝜑, 𝜓) (𝑡) = −𝛽𝑖𝐹𝑖 (𝜙, 𝜑, 𝜓) (𝑡) + 𝐻𝑖 (𝜙, 𝜑, 𝜓) (𝑡)

(𝑖 = 1, 2, 3) .

(20)

Hence, a fixed point of 𝐹 is a solution of (10), which is a
traveling wave solution of (9) connecting 0 = (0, 0, 0) with
K = (𝑘

1
, 𝑘
2
, 𝑘
3
) if it satisfies (P2).

In the following, we introduce some lemmas to support
our main results.

For 𝜇 > 0, define

𝐵
𝜇
(R,R

3
) = { (𝜙, 𝜑, 𝜓) ∈ 𝐶 (R,R

3
)

: sup
𝑡∈R

(𝜙, 𝜑, 𝜓) (𝑡)
 𝑒
−𝜇|𝑡|

< ∞} ,

(𝜙, 𝜑, 𝜓) (𝑡)
𝜇
= sup
𝑡∈R

(𝜙, 𝜑, 𝜓) (𝑡)
 𝑒
−𝜇|𝑡|

.

(21)

Then it is easy to check that (𝐵
𝜇
(R,R3), | ⋅ |) is a Banach space.

In view of the definition of𝐻 and 𝐹, we can easily see that
they admit the following properties.
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Lemma 2. Let (𝐴
1
) hold. One has

(i)

𝐻
1
(𝜙, 𝜑, 𝜓) (𝑡) ≥ 0, 𝐻

3
(𝜙, 𝜑, 𝜓) (𝑡) ≥ 0,

𝐻
1
(𝜙
2
, 𝜑
2
, 𝜓
2
) (𝑡) ≤ 𝐻

1
(𝜙
1
, 𝜑
1
, 𝜓
1
) (𝑡) ,

𝐻
2
(𝜙
1
, 𝜑
1
, 𝜓
1
) (𝑡) ≤ 𝐻

2
(𝜙
2
, 𝜑
1
, 𝜓
1
) (𝑡) ,

𝐻
2
(𝜙
1
, 𝜑
2
, 𝜓
1
) (𝑡) ≤ 𝐻2 (𝜙1, 𝜑1, 𝜓1) (𝑡) ,

𝐻
2
(𝜙
1
, 𝜑
1
, 𝜓
1
) (𝑡) ≤ 𝐻

2
(𝜙
1
, 𝜑
1
, 𝜓
2
) (𝑡) ,

𝐻
3
(𝜙
2
, 𝜑
2
, 𝜓
2
) (𝑡) ≤ 𝐻3 (𝜙1, 𝜑1, 𝜓1) (𝑡) ,

(22)

(ii)

𝐹
1
(𝜙
2
, 𝜑
2
, 𝜓
2
) (𝑡) ≤ 𝐹1 (𝜙1, 𝜑1, 𝜓1) (𝑡) ,

𝐹
2
(𝜙
1
, 𝜑
1
, 𝜓
1
) (𝑡) ≤ 𝐹

2
(𝜙
2
, 𝜑
1
, 𝜓
1
) (𝑡) ,

𝐹
2
(𝜙
1
, 𝜑
2
, 𝜓
1
) (𝑡) ≤ 𝐹2 (𝜙1, 𝜑1, 𝜓1) (𝑡) ,

𝐹
2
(𝜙
1
, 𝜑
1
, 𝜓
1
) (𝑡) ≤ 𝐹

2
(𝜙
1
, 𝜑
1
, 𝜓
2
) (𝑡) ,

𝐹
3
(𝜙
2
, 𝜑
2
, 𝜓
2
) (𝑡) ≤ 𝐹

3
(𝜙
1
, 𝜑
1
, 𝜓
1
) (𝑡) ,

(23)

for 𝑡 ∈ R with 0 ≤ 𝜙
2
(𝑡) ≤ 𝜙

1
(𝑡) ≤ 𝑀

1
, 0 ≤ 𝜑

2
(𝑡) ≤ 𝜑

1
(𝑡) ≤

𝑀
2
, 0 ≤ 𝜓

2
(𝑡) ≤ 𝜓

1
(𝑡) ≤ 𝑀

3
.

By using a similar argument as in the proof of Lemmas
3.3–3.6 in [16], one can show the following lemmas.

Lemma 3. Assume that (A2) holds. 𝐹 = (𝐹
1
, 𝐹
2
, 𝐹
3
) is

continuous with respect to the norm | ⋅ |
𝜇
in 𝐵
𝜇
(R,R3).

Lemma 4. 𝐹(Γ((𝜙, 𝜑, 𝜓), (𝜙, 𝜑, 𝜓))) ⊂ Γ((𝜙, 𝜑, 𝜓), (𝜙, 𝜑, 𝜓)),
where 𝐹 = (𝐹

1
, 𝐹
2
, 𝐹
3
).

Lemma 5. 𝐹 : Γ((𝜙, 𝜑, 𝜓), (𝜙, 𝜑, 𝜓)) → Γ((𝜙, 𝜑, 𝜓), (𝜙, 𝜑, 𝜓))

is compact.

We now consider the following equations:

Δ
1 (𝜆, 𝑐) := 𝐷∫

R

𝐽 (𝑦) 𝑒
−𝜆𝑦
𝑑𝑦 − 𝐷 − 𝑐𝜆 − 𝑑 + 𝑎

𝑀
2

𝑀
1

,

Δ
2 (𝜆, 𝑐) := 𝐷∫

R

𝐽 (𝑦) 𝑒
−𝜆𝑦
𝑑𝑦 − 𝐷 − 𝑐𝜆 +

𝐴𝛽

𝑑
− (𝑑 + 𝛾 + 𝑎) ,

Δ
3
(𝜆, 𝑐) := 𝐷∫

R

𝐽 (𝑦) 𝑒
−𝜆𝑦
𝑑𝑦 − 𝐷 − 𝑐𝜆 − (𝑑 + 𝛿) + 𝛾

𝑀
2

𝑀
3

.

(24)

Since (𝐴1) and (15) hold, direct calculations show that

Δ
1
(0, 𝑐) = −𝑑 + 𝑎

𝑀
2

𝑀
1

> 0, Δ
1
(𝜆, +∞) = −∞,

∀𝜆 > 0;

𝜕Δ
1 (𝜆, 𝑐)

𝜕𝑐
= −𝜆 < 0, ∀𝜆 > 0;

𝜕
2
Δ
1 (𝜆, 𝑐)

𝜕𝜆2
= 𝐷∫

R

𝑦
2
𝐽 (𝑦) 𝑒

−𝜆𝑦
𝑑𝑦 > 0.

(25)

Therefore, we obtain that there exist 𝑐∗
1
> 0 and 𝜆

1∗
> 0 such

that 𝜕Δ
1
(𝜆, 𝑐)/𝜕𝜆|

(𝜆
1∗
,𝑐
∗

1
)
= 0 and Δ

1
(𝜆
1∗
, 𝑐
∗

1
) = 0. Further, if

𝑐 > 𝑐
∗

1
, there exist 𝜆

1
(𝑐) > 0 and 𝜆

2
(𝑐) > 0 satisfying

0 < 𝜆
1
(𝑐) < 𝜆

1∗
< 𝜆
2
(𝑐) . (26)

Similarly, we can show that there exist 𝑐∗
𝑖
, 𝜆
𝑖∗
> 0 such that

Δ
𝑖
(𝜆
𝑖∗
, 𝑐
∗

𝑖
) = 0. If 𝑐 > 𝑐

∗

𝑖
, there exist 𝜆

𝑗
(𝑐) > 0 satisfying

0 < 𝜆
3
(𝑐) < 𝜆

2∗
< 𝜆
4
(𝑐) and 0 < 𝜆

5
(𝑐) < 𝜆

3∗
< 𝜆
6
(𝑐) (𝑖 =

2, 3; 𝑗 = 3, 4, 5, 6).

Lemma 6. Let 𝑐∗ = max{𝑐∗
1
, 𝑐
∗

2
, 𝑐
∗

3
}. Assume that R

0
> 1;

then one has 𝜆
1
(𝑐) < 𝜆

3
(𝑐) and 𝜆

5
(𝑐) < 𝜆

3
(𝑐).

Proof. Define

ℎ (𝜆) = 𝐷∫
R

𝐽 (𝑦) 𝑒
−𝜆𝑦
𝑑𝑦,

𝑔
1
(𝜆) = 𝑐𝜆 + 𝐷 + 𝑑 − 𝑎

𝑀
2

𝑀
1

,

𝑔
2
(𝜆) = 𝑐𝜆 + 𝐷 + 𝑑 + 𝛾 + 𝑎 −

𝐴𝛽

𝑑
,

𝑔
3 (𝜆) = 𝑐𝜆 + 𝐷 + 𝑑 + 𝛿 − 𝛾

𝑀
2

𝑀
3

.

(27)

It is easy to show that

ℎ (𝜆
1
) = 𝑔
1
(𝜆
1
) , ℎ (𝜆

3
) = 𝑔
2
(𝜆
3
) ,

ℎ (𝜆
5
) = 𝑔
3
(𝜆
5
) .

(28)

IfR
0
> 1, then by (9), we see that 𝑔

2
(0) < 𝑔

1
(0) and 𝑔

2
(0) <

𝑔
3
(0). Note that ℎ(𝜆) > 0 for all 𝜆; hence, we have 𝜆

1
(𝑐) <

𝜆
3
(𝑐) and 𝜆

5
(𝑐) < 𝜆

3
(𝑐).
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Suppose that R
0
> 1 and 𝑎/𝑑 + 𝛾/(𝑑 + 𝛿) < 1; we can

choose 𝜀
𝑖
> 0 (𝑖 = 1, 2, . . . , 6), and 𝜀

1
, 𝜀
2
∈ (0, 𝑘

1
), 𝜀
3
, 𝜀
4
∈

(0, 𝑘
2
), 𝜀
5
, 𝜀
6
∈ (0, 𝑘

3
) satisfying

𝑎 (𝑘
2
+ 𝜀
3
) − 𝑑 (𝑘

1
+ 𝜀
1
) < 0,

𝛽 (
𝐴

𝑑
− 𝑘
1
+ 𝜀
2
− 𝑘
2
− 𝜀
3
− 𝑘
3
+ 𝜀
6
)

< (𝑑 + 𝛾 + 𝑎) (1 + 𝛼 (𝑘
2
+ 𝜀
3
)) ,

𝛾 (𝑘
2
+ 𝜀
3
) − (𝑑 + 𝛿) (𝑘3 + 𝜀5) < 0,

−𝑑 (𝑘
1
− 𝜀
2
) + 𝑎 (𝑘

2
− 𝜀
4
) > 0,

𝛽 (
𝐴

𝑑
− 𝑘
1
− 𝜀
1
− 𝑘
2
+ 𝜀
4
− 𝑘
3
− 𝜀
5
)

> (𝑑 + 𝛾 + 𝑎) (1 + 𝛼 (𝑘
2
− 𝜀
4
)) ,

𝛾 (𝑘
2
− 𝜀
4
) − (𝑑 + 𝛿) (𝑘

3
− 𝜀
6
) > 0.

(29)

In fact, noting that 𝑑𝑘
1
= 𝑎𝑘
2
, for 𝜀

3
, 𝜀
4
∈ (0, 𝑘

2
), there

exist 𝜀
1
, 𝜀
2
∈ (0, 𝑘

1
) and 𝜀

5
, 𝜀
6
∈ (0, 𝑘

3
) such that

𝑘
1
> 𝜀
1
>
𝑎

𝑑
𝜀
3
=
𝑎

𝑑
𝜀
3
+
𝑎

𝑑
𝑘
2
− 𝑘
1
,

𝑘
1
> 𝜀
2
>
𝑎

𝑑
𝜀
4
=
𝑎

𝑑
𝜀
4
+ 𝑘
1
−
𝑎

𝑑
𝑘
2
,

(30)

which yield

𝑎 (𝑘
2
+ 𝜀
3
) − 𝑑 (𝑘

1
+ 𝜀
1
) < 0,

−𝑑 (𝑘
1
− 𝜀
2
) + 𝑎 (𝑘

2
− 𝜀
4
) > 0.

(31)

Since 𝛾𝑘
2
= (𝑑 + 𝛿)𝑘

3
, for 𝜀

3
, 𝜀
4
∈ (0, 𝑘

2
), we can find

𝜀
1
, 𝜀
2
∈ (0, 𝑘

1
) and 𝜀

5
, 𝜀
6
∈ (0, 𝑘

3
) such that

𝑘
3
> 𝜀
5
>

𝛾

𝑑 + 𝛿
𝜀
3
=

𝛾

𝑑 + 𝛿
𝜀
3
+

𝛾

𝑑 + 𝛿
𝑘
2
− 𝑘
3

⇒ 𝛾 (𝑘
2
+ 𝜀
3
) − (𝑑 + 𝛿) (𝑘

3
+ 𝜀
5
) < 0,

𝑘
3
> 𝜀
6
>

𝛾

𝑑 + 𝛿
𝜀
4
=

𝛾

𝑑 + 𝛿
𝜀
4
+ 𝑘
3
−

𝛾

𝑑 + 𝛿
𝑘
2

⇒ 𝛾 (𝑘
2
− 𝜀
4
) − (𝑑 + 𝛿) (𝑘

3
− 𝜀
6
) > 0.

(32)

If 𝑎/𝑑 + 𝛾/(𝑑 + 𝛿) < 1, then we can choose suitable values
of 𝜀
3
, 𝜀
4
∈ (0, 𝑘

2
) such that

(
𝑎

𝑑
+

𝛾

𝑑 + 𝛿
) 𝜀
3
< 𝜀
4
, (

𝑎

𝑑
+

𝛾

𝑑 + 𝛿
) 𝜀
4
< 𝜀
3
. (33)

Furthermore, we can choose 𝜀
1
, 𝜀
2

∈ (0, 𝑘
1
), 𝜀
3
, 𝜀
4

∈

(0, 𝑘
2
), 𝜀
5
, 𝜀
6
∈ (0, 𝑘

3
) satisfying

𝜀
2
>
𝑎

𝑑
𝜀
4
, 𝜀

6
>

𝛾

𝑑 + 𝛿
𝜀
4
,

𝑎

𝑑
𝜀
4
+

𝛾

𝑑 + 𝛿
𝜀
4
< 𝜀
3
,

𝜀
1
>
𝑎

𝑑
𝜀
3
, 𝜀

5
>

𝛾

𝑑 + 𝛿
𝜀
3
,

𝑎

𝑑
𝜀
3
+

𝛾

𝑑 + 𝛿
𝜀
3
< 𝜀
4
.

(34)

Accordingly, there exist suitable constants 𝜀
𝑖
> 0 (𝑖 =

1, . . . , 6) such that

𝜀
2
+ 𝜀
6
− 𝜀
3
< 0, 𝜀

1
+ 𝜀
5
− 𝜀
4
< 0. (35)

By the second equation of system (10), we have 𝛽(𝐴/𝑑 − 𝑘
1
−

𝑘
2
− 𝑘
3
) − (𝑑 + 𝛾 + 𝑎)(1 + 𝛼𝑘

2
) = 0. It then follows from (35)

that

𝛽(
𝐴

𝑑
− 𝑘
1
+ 𝜀
2
− 𝑘
2
− 𝜀
3
− 𝑘
3
+ 𝜀
6
)

< (𝑑 + 𝛾 + 𝑎) (1 + 𝛼 (𝑘
2
+ 𝜀
3
)) ,

𝛽 (
𝐴

𝑑
− 𝑘
1
− 𝜀
1
− 𝑘
2
+ 𝜀
4
− 𝑘
3
− 𝜀
5
)

> (𝑑 + 𝛾 + 𝑎) (1 + 𝛼 (𝑘
2
− 𝜀
4
)) .

(36)

Now, we define the continuous functions Φ(𝑡) =

(𝜙(𝑡), 𝜑(𝑡), 𝜓(𝑡)) and Φ(𝑡) = (𝜙(𝑡), 𝜑(𝑡), 𝜓(𝑡)) as follows:

𝜙 (𝑡) = {
𝑘
1
𝑒
𝜆
1
𝑡
, 𝑡 ≤ 𝑡

1
,

𝑘
1
+ 𝜀
1
𝑒
−𝜆𝑡
, 𝑡 > 𝑡

1
,

𝜙 (𝑡) = {
0, 𝑡 ≤ 𝑡

2
,

𝑘
1
− 𝜀
2
𝑒
−𝜆𝑡
, 𝑡 > 𝑡

2
,

𝜑 (𝑡) = {
𝑙𝑘
2
𝑒
𝜆
3
𝑡
, 𝑡 ≤ 𝑡

3
,

𝑘
2
+ 𝜀
3
𝑒
−𝜆𝑡
, 𝑡 > 𝑡

3
,

𝜑 (𝑡) = {
0, 𝑡 ≤ 𝑡

4
,

𝑘
2
− 𝜀
4
𝑒
−𝜆𝑡
, 𝑡 > 𝑡

4
,

𝜓 (𝑡) = {
𝑘
3
𝑒
𝜆
5
𝑡
, 𝑡 ≤ 𝑡

5
,

𝑘
3
+ 𝜀
5
𝑒
−𝜆𝑡
, 𝑡 > 𝑡

5
,

𝜓 (𝑡) = {
0, 𝑡 ≤ 𝑡

6
,

𝑘
3
− 𝜀
6
𝑒
−𝜆𝑡
, 𝑡 > 𝑡

6
,

(37)

where 𝑡
1
, 𝑡
3
, 𝑡
5
> 0, 𝑡

2
, 𝑡
4
, 𝑡
6
< 0 and 𝜆 > 0 is a constant

sufficiently small to be chosen later. Then we can choose 𝜆 >
0 to be sufficiently small such that 𝑡

1
> 0, 𝑡

3
> 0, 𝑡

5
> 0

satisfying

𝑘
1
+ 𝜀
1
> 𝑀
1
= sup
𝑡∈R

𝜙 (𝑡) = 𝑘
1
𝑒
𝜆
1
𝑡
1 > 𝑘
1
,

𝑘
2
+ 𝜀
3
> 𝑀
2
= sup
𝑡∈R

𝜑 (𝑡) = 𝑘
2
𝑒
𝜆
3
𝑡
3 > 𝑘
2
,

𝑘
3
+ 𝜀
5
> 𝑀
3
= sup
𝑡∈R

𝜓 (𝑡) = 𝑘3𝑒
𝜆
5
𝑡
5 > 𝑘
3
,

(38)

where𝑀
1
,𝑀
2
,𝑀
3
are defined in (15). Furthermore, we can

choose 𝑙 ∈ (0, 1) such that 𝑡
3
≥ max{𝑡

1
, 𝑡
5
}. If 𝑎/𝑑+𝛾/(𝛿+𝑑) <

1, it is easy to show that 𝑡
4
≤ min{𝑡

2
, 𝑡
6
}. Clearly,Φ(𝑡) andΦ(𝑡)

satisfy (P1) and (P2).

Lemma 7. Φ(𝑡) = (𝜙(𝑡), 𝜑(𝑡), 𝜓(𝑡)) is an upper solution of
system (10).
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Proof. Denote

𝑃
1 (𝑡) = 𝐷∫

R

𝐽 (𝑡 − 𝑦) 𝜙 (𝑦) 𝑑𝑦 − 𝐷𝜙 (𝑡) − 𝑐𝜙


(𝑡)

− 𝑑𝜙 (𝑡) + 𝑎𝜑 (𝑡) ,

𝑃
2 (𝑡) = 𝐷∫

R

𝐽 (𝑡 − 𝑦) 𝜑 (𝑦) 𝑑𝑦 − 𝐷𝜑 (𝑡) − 𝑐𝜑

(𝑡)

+

𝛽 [𝐴/𝑑 − 𝜙 (𝑡) − 𝜑 (𝑡) − 𝜓 (𝑡)] 𝜑 (𝑡 − 𝑐𝜏)

1 + 𝛼𝜑 (𝑡 − 𝑐𝜏)

− (𝑑 + 𝛾 + 𝑎) 𝜑 (𝑡) ,

𝑃
3
(𝑡) = 𝐷∫

R

𝐽 (𝑡 − 𝑦) 𝜓 (𝑦) 𝑑𝑦 − 𝐷𝜓 (𝑡) − 𝑐𝜓

(𝑡)

+ 𝛾𝜑 (𝑡) − (𝑑 + 𝛿) 𝜓 (𝑡) .

(39)

If 𝑡 ≤ 𝑡
1
, 𝜙(𝑡) = 𝑘

1
𝑒
𝜆
1
𝑡 and 𝜑(𝑡) = 𝑙𝑘

2
𝑒
𝜆
3
𝑡. By Lemma 6, it

follows that

𝑃
1
(𝑡) = 𝑘

1
𝑒
𝜆
1
𝑡
[𝐷∫

R

𝐽 (𝑦) 𝑒
−𝜆
1
𝑦
𝑑𝑦 − 𝐷 − 𝑐𝜆

1
− 𝑑

+ 𝑎𝑙
𝑘
2

𝑘
1

𝑒
(𝜆
3
−𝜆
1
)𝑡
]

≤ 𝑘
1
𝑒
𝜆
1
𝑡
[𝐷∫

R

𝐽 (𝑦) 𝑒
−𝜆
1
𝑦
𝑑𝑦 − 𝐷 − 𝑐𝜆

1
− 𝑑

+ 𝑎
𝑀
2

𝑀
1

]

≤ 𝑘
1
𝑒
𝜆
1
𝑡
Δ
1
(𝜆
1
, 𝑐) = 0.

(40)

If 𝑡
1
< 𝑡 ≤ 𝑡

3
, 𝜙(𝑡) = 𝑘

1
+ 𝜀
1
𝑒
−𝜆𝑡 and 𝜑(𝑡) = 𝑙𝑘

2
𝑒
𝜆
3
𝑡. Then,

we have

𝑃
1
(𝑡) = [𝐷𝜀

1
∫
R

𝐽 (𝑦) 𝑒
𝜆𝑦
𝑑𝑦 − 𝐷𝜀

1
+ 𝑐𝜆𝜀
1
] 𝑒
−𝜆𝑡

− 𝑑 (𝑘
1
+ 𝜀
1
𝑒
−𝜆𝑡
) + 𝑎𝑙𝑘

2
𝑒
𝜆
3
𝑡
.

(41)

Note that 𝑙 ∈ (0, 1) and 𝑎𝑘
2
/𝑑 = 𝑘

1
. Hence, for 𝜆 sufficiently

small, there exists 𝜆∗
1
> 0 such that 𝑃

1
(𝑡) < 0 for all 𝜆 ∈

(0, 𝜆
∗

1
).

If 𝑡 > 𝑡
3
, 𝜙(𝑡) = 𝑘

1
+ 𝜀
1
𝑒
−𝜆𝑡 and 𝜑(𝑡) = 𝑘

2
+ 𝜀
3
𝑒
−𝜆𝑡. We

obtain that

𝑃
1
(𝑡) ≤ [𝐷𝜀

1
∫
R

𝐽 (𝑦) 𝑒
𝜆𝑦
𝑑𝑦 − 𝐷𝜀

1
+ 𝑐𝜆𝜀
1
] 𝑒
−𝜆𝑡

− 𝑑 (𝑘
1
+ 𝜀
1
𝑒
−𝜆𝑡
) + 𝑎 (𝑘

2
+ 𝜀
3
𝑒
−𝜆𝑡
) := 𝐼
1
(𝜆) .

(42)

For 𝜆 sufficiently small, 𝑎(𝑘
2
+ 𝜀
3
) < 𝑑(𝑘

1
+ 𝜀
1
) implies that

𝐼
1
(0) < 0, and there exists 𝜆∗

2
> 0 such that 𝑃

1
(𝑡) ≤ 𝐼

1
(𝜆) < 0

for all 𝜆 ∈ (0, 𝜆∗
2
).

If 𝑡 ≤ 𝑡
3
, 𝜑(𝑡) = 𝑙𝑘

2
𝑒
𝜆
3
𝑡 and 𝜑(𝑡 − 𝑐𝜏) = 𝑙𝑘

2
𝑒
𝜆
3
(𝑡−𝑐𝜏). It

follows that

𝑃
2 (𝑡) ≤ 𝑙𝑘2𝑒

𝜆
3
𝑡
[𝐷∫

R

𝐽 (𝑦) 𝑒
−𝜆
3
𝑦
𝑑𝑦 − 𝐷 − 𝑐𝜆

3
+
𝐴𝛽

𝑑

− (𝑑 + 𝛾 + 𝑎) ]

= 𝑙𝑘
2
𝑒
𝜆
3
𝑡
Δ
2
(𝜆
3
, 𝑐) = 0.

(43)

If 𝑡
3
< 𝑡 ≤ 𝑡

3
+𝑐𝜏,𝜑(𝑡) = 𝑘

2
+𝜀
3
𝑒
−𝜆𝑡,𝜑(𝑡−𝑐𝜏) = 𝑙𝑘

2
𝑒
𝜆
3
(𝑡−𝑐𝜏),

𝜙(𝑡) = 𝑘
1
− 𝜀
2
𝑒
−𝜆𝑡, and 𝜓(𝑡) = 𝑘

3
− 𝜀
6
𝑒
−𝜆𝑡. We obtain that

𝑃
2
(𝑡) = 𝜀

3
𝑒
−𝜆𝑡
[𝐷∫

R

𝐽 (𝑦) 𝑒
𝜆𝑦
𝑑𝑦 − 𝐷 + 𝑐𝜆] + 𝐼

2
(𝜆) , (44)

where

𝐼
2
(𝜆) = (𝛽 [

𝐴

𝑑
− (𝑘
1
− 𝜀
2
𝑒
−𝜆𝑡
) − (𝑘

2
+ 𝜀
3
𝑒
−𝜆𝑡
)

− (𝑘
3
− 𝜀
6
𝑒
−𝜆𝑡
) ] 𝑙𝑘
2
𝑒
𝜆
3
(𝑡−𝑐𝜏)

)

× (1 + 𝛼𝑙𝑘
2
𝑒
𝜆
3
(𝑡−𝑐𝜏)

)
−1

− (𝑑 + 𝛾 + 𝑎) (𝑘
2
+ 𝜀
3
𝑒
−𝜆𝜏
) .

(45)

Then by (29), we have

𝐼
2
(0) =

𝛽 (𝐴/𝑑 − 𝑘
1
+ 𝜀
2
− 𝑘
2
− 𝜀
3
− 𝑘
3
+ 𝜀
6
) 𝑙𝑘
2

1 + 𝛼𝑙𝑘
2

− (𝑑 + 𝛾 + 𝑎) (𝑘
2
+ 𝜀
3
)

≤
𝑑 + 𝛾 + 𝑎

1 + 𝛼𝑙𝑘
2

((𝑙 − 1) 𝑘
2
− 𝜀
3
) .

(46)

Since 𝑙 ∈ (0, 1), for 𝜆 sufficiently small, it is easy to show
that 𝐼
2
(0) < 0 and there exists 𝜆∗

3
> 0 such that 𝑃

2
(𝑡) < 0 for

all 𝜆 ∈ (0, 𝜆∗
3
).

If 𝑡 > 𝑡
3
+𝑐𝜏, 𝜑(𝑡) = 𝑘

2
+𝜀
3
𝑒
−𝜆𝑡, 𝜑(𝑡−𝑐𝜏) = 𝑘

2
+𝜀
3
𝑒
−𝜆(𝑡−𝑐𝜏),

𝜙(𝑡) = 𝑘
1
− 𝜀
2
𝑒
−𝜆𝑡, and 𝜓(𝑡) = 𝑘

3
− 𝜀
6
𝑒
−𝜆𝑡. It follows that

𝑃
2
(𝑡) = 𝜀

3
𝑒
−𝜆𝑡
[𝐷∫

R

𝐽 (𝑦) 𝑒
𝜆𝑦
𝑑𝑦 − 𝐷 + 𝑐𝜆] + 𝐼

3
(𝜆) , (47)

where

𝐼
3
(𝜆) = (𝛽 [

𝐴

𝑑
− (𝑘
1
− 𝜀
2
𝑒
−𝜆𝑡
) − (𝑘

2
+ 𝜀
3
𝑒
−𝜆𝑡
)

− (𝑘
3
− 𝜀
6
𝑒
−𝜆𝑡
) ] (𝑘
2
+ 𝜀
3
𝑒
−𝜆(𝑡−𝑐𝜏)

))

× (1 + 𝛼 (𝑘
2
+ 𝜀
3
𝑒
−𝜆(𝑡−𝑐𝜏)

))
−1

− (𝑑 + 𝛾 + 𝑎) (𝑘
2
+ 𝜀
3
𝑒
−𝜆𝑡
) .

(48)

For 𝜆 sufficiently small, by (29), we see that 𝐼
3
(0) < 0 and

there exists 𝜆∗
4
> 0 such that 𝑃

2
(𝑡) ≤ 𝐼

3
(𝜆) < 0 for all 𝜆 ∈

(0, 𝜆
∗

4
).
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If 𝑡 ≤ 𝑡
5
, 𝜓(𝑡) = 𝑘

3
𝑒
𝜆
5
𝑡 and 𝜑(𝑡) = 𝑙𝑘

2
𝑒
𝜆
3
(𝑡). Then, by

Lemma 6, we have

𝑃
3 (𝑡) = 𝑘3𝑒

𝜆
5
𝑡
[𝐷∫

R

𝐽 (𝑦) 𝑒
−𝜆
5
𝑡
𝑑𝑦 − 𝐷 − 𝑐𝜆

5

− (𝑑 + 𝛿) +
𝛾𝑙𝑘
2
𝑒
𝜆
3
𝑡

𝑘
3
𝑒𝜆5𝑡

]

≤ 𝑘
3
𝑒
𝜆
5
𝑡
[𝐷∫

R

𝐽 (𝑦) 𝑒
−𝜆
5
𝑡
𝑑𝑦 − 𝐷 − 𝑐𝜆

5

− (𝑑 + 𝛿) +
𝛾𝑀
2

𝑀
3

]

= 𝑘
3
𝑒
𝜆
5
𝑡
Δ
3
(𝜆
5
, 𝑐) = 0.

(49)

If 𝑡
5
< 𝑡 ≤ 𝑡

3
, 𝜓(𝑡) = 𝑘

3
+ 𝜀
5
𝑒
−𝜆𝑡 and 𝜑(𝑡) = 𝑙𝑘

2
𝑒
𝜆
3
𝑡. We

derive that

𝑃
3 (𝑡) = 𝜀3𝑒

−𝜆𝑡
[𝐷∫

R

𝐽 (𝑦) 𝑒
𝜆𝑦
𝑑𝑦 − 𝐷 + 𝑐𝜆] + 𝛾𝑙𝑘

2
𝑒
𝜆
3
𝑡

− (𝑑 + 𝛿) (𝑘
3
+ 𝜀
5
𝑒
−𝜆𝑡
) := 𝐼
4
(𝜆) .

(50)

Note that 𝑙 ∈ (0, 1); thenwe have 𝑙𝑘
2
𝑒
𝜆
3
𝑡
≤ 𝑘
2
𝑒
𝜆
3
𝑡
3 < 𝑘
2
+𝜀
3
. By

(29), for 𝜆 sufficiently small, it is easy to show that 𝐼
4
(0) < 0

and there exists 𝜆∗
5
> 0 such that 𝑃

3
(𝑡) < 0 for all 𝜆 ∈ (0, 𝜆∗

5
).

If 𝑡 > 𝑡
3
, 𝜓(𝑡) = 𝑘

3
+ 𝜀
5
𝑒
−𝜆𝑡 and 𝜑(𝑡) = 𝑘

2
+ 𝜀
3
𝑒
−𝜆𝑡. We

obtain that

𝑃
3
(𝑡) ≤ 𝜀

5
𝑒
−𝜆𝑡
[𝐷∫

R

𝐽 (𝑦) 𝑒
𝜆𝑦
𝑑𝑦 − 𝐷 + 𝑐𝜆]

+ 𝛾 (𝑘
2
+ 𝜀
3
𝑒
−𝜆𝑡
) − (𝑑 + 𝛿) (𝑘3 + 𝜀5𝑒

−𝜆𝑡
)

:= 𝐼
5
(𝜆) .

(51)

For 𝜆 sufficiently small, by (29), we see that 𝛾(𝑘
2
+ 𝜀
3
) − (𝑑 +

𝛿)(𝑘
3
+ 𝜀
5
) < 0 implies that 𝐼

5
(0) < 0 and there exists 𝜆∗

6
> 0

such that 𝑃
3
(𝑡) ≤ 𝐼

5
(𝜆) < 0 for all 𝜆 ∈ (0, 𝜆∗

6
).

Clearly, for all 𝜆 ∈ (0,min{𝜆∗
𝑖
, 𝑖 = 1, . . . , 6}),𝑃

𝑖
(𝑡) ≤ 0 (𝑖 =

1, 2, 3). This completes the proof.

Lemma 8. Φ(𝑡) = (𝜙(𝑡), 𝜑(𝑡), 𝜓(𝑡)) is a lower solution of
system (10).

Proof. Denote

𝑄
1
(𝑡) = 𝐷∫

R

𝐽 (𝑡 − 𝑦) 𝜙 (𝑦) 𝑑𝑦 − 𝐷𝜙 (𝑡) − 𝑐𝜙

(𝑡) − 𝑑𝜙 (𝑡)

+ 𝑎𝜑 (𝑡) ,

𝑄
2 (𝑡) = 𝐷∫

R

𝐽 (𝑡 − 𝑦) 𝜑 (𝑦) 𝑑𝑦 − 𝐷𝜑 (𝑡) − 𝑐𝜑

(𝑡)

+

𝛽 [𝐴/𝑑 − 𝜙 (𝑡) − 𝜑 (𝑡) − 𝜓 (𝑡)] 𝜑 (𝑡 − 𝑐𝜏)

1 + 𝛼𝜑 (𝑡 − 𝑐𝜏)

− (𝑑 + 𝛾 + 𝑎) 𝜑 (𝑡) ,

𝑄
3 (𝑡) = 𝐷∫

R

𝐽 (𝑡 − 𝑦) 𝜓 (𝑦) 𝑑𝑦 − 𝐷𝜓 (𝑡) − 𝑐𝜓

(𝑡)

+ 𝛾𝜑 (𝑡) − (𝑑 + 𝛿) 𝜓 (𝑡) .

(52)

If 𝑡 ≤ 𝑡
2
, 𝜙(𝑡) = 0. It is easy to see that 𝑄

1
(𝑡) = 𝑎𝜑(𝑡) ≥ 0.

If 𝑡 > 𝑡
2
, 𝜙(𝑡) = 𝑘

1
− 𝜀
2
𝑒
−𝜆𝑡 and 𝜑(𝑡) = 𝑘

2
− 𝜀
4
𝑒
−𝜆𝑡. Then,

we have

𝑄
1
(𝑡) = 𝜀

2
𝑒
−𝜆𝑡
[−𝐷∫

R

𝐽 (𝑦) 𝑒
𝜆𝑦
𝑑𝑦 + 𝐷 − 𝑐𝜆]

− 𝑑 (𝑘
1
− 𝜀
2
𝑒
−𝜆𝑡
) + 𝑎 (𝑘

2
− 𝜀
4
𝑒
−𝜆𝑡
) .

(53)

For 𝜆 sufficiently small, −𝑑(𝑘
1
− 𝜀
2
) + 𝑎(𝑘

2
− 𝜀
4
) > 0 implies

that𝑄
1
(0) > 0 and there exists 𝜆∗

7
> 0 such that𝑄

1
(𝑡) > 0 for

all 𝜆 ∈ (0, 𝜆∗
7
).

If 𝑡 ≤ 𝑡
4
, 𝜑(𝑡) = 0 and 𝜑(𝑡 − 𝑐𝜏) = 0. Hence, 𝑄

2
(𝑡) = 0.

If 𝑡 > 𝑡
4
, 𝜑(𝑡) = 𝑘

2
− 𝜀
4
𝑒
−𝜆𝜏. Noting that 𝜑(𝑡 − 𝑐𝜏) ≥

𝑘
2
− 𝜀
4
𝑒
−𝜆𝑡, 𝜙(𝑡) ≤ 𝑘

1
+ 𝜀
1
𝑒
−𝜆𝜏 and 𝜓(𝑡) ≤ 𝑘

3
+ 𝜀
5
𝑒
−𝜆𝑡. We

obtain that

𝑄
2
(𝑡) ≥ 𝜀

4
𝑒
−𝜆𝑡
[−𝐷∫

R

𝐽 (𝑦) 𝑒
𝜆𝑦
𝑑𝑦 + 𝐷 − 𝑐𝜆] + 𝐼

6
(𝜆) ,

(54)

where

𝐼
6
(𝜆) = (𝛽 [

𝐴

𝑑
− 𝑘
1
− 𝜀
1
𝑒
−𝜆𝑡

− 𝑘
2
+ 𝜀
4
𝑒
−𝜆𝑡

− 𝑘
3

− 𝜀
5
𝑒
−𝜆𝑡
] (𝑘
2
− 𝜀
4
𝑒
−𝜆𝑡
))

× (1 + 𝛼 (𝑘
2
− 𝜀
4
𝑒
−𝜆𝑡
))
−1

− (𝑑 + 𝛾 + 𝑎) (𝑘
2
− 𝜀
4
𝑒
−𝜆𝑡
) .

(55)

By (29), we have 𝐼
6
(0) > 0. Accordingly, for 𝜆 sufficiently

small, there exists 𝜆∗
8
> 0 such that 𝑄

2
(𝑡) ≥ 𝐼

6
(𝜆) > 0 for

all 𝜆 ∈ (0, 𝜆∗
8
).

If 𝑡 ≤ 𝑡
6
, 𝜓(𝑡) = 0. Then, we have 𝑄

3
(𝑡) = 𝛾𝜑(𝑡) ≥ 0.

If 𝑡 > 𝑡
6
, 𝜓(𝑡) = 𝑘

3
− 𝜀
6
𝑒
−𝜆𝑡 and 𝜑(𝑡) = 𝑘

2
− 𝜀
4
𝑒
−𝜆𝑡. We

obtain that

𝑄
3
(𝑡) = 𝜀

6
𝑒
−𝜆𝑡
[−𝐷∫

R

𝐽 (𝑦) 𝑒
𝜆𝑦
𝑑𝑦 + 𝐷 − 𝑐𝜆]

+ 𝛾 (𝑘
2
− 𝜀
4
𝑒
−𝜆𝑡
) − (𝑑 + 𝛿) (𝑘

3
− 𝜀𝑒
−𝜆𝑡
) .

(56)

For 𝜆 sufficiently small, then, by (29), it is readily seen that
𝑄
3
(0) > 0 and there exists 𝜆∗

9
> 0 such that 𝑄

3
(𝑡) > 0 for all

𝜆 ∈ (0, 𝜆
∗

9
).

Obviously, for all 𝜆 ∈ (0,min{𝜆∗
7
, 𝜆
∗

8
, 𝜆
∗

9
}), 𝑄
𝑖
(𝑡) ≥ 0 (𝑖 =

1, 2, 3). This completes the proof.
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Applying Lemmas 2–8 and Schauder’s fixed point theo-
rem, we know that ifR

0
> 1 and 𝑎/𝑑 + 𝛾/(𝑑 + 𝛿) < 1, system

(9) has a travelingwave solutionwith speed 𝑐 > 𝑐∗ connecting
the steady states (0, 0, 0) and (𝑘

1
, 𝑘
2
, 𝑘
3
). Accordingly, we have

the following conclusion.

Theorem 9. LetR
0
> 1. Assume that (A1) and 𝑎/𝑑 + 𝛾/(𝑑 +

𝛿) < 1 hold. For every 𝑐 > 𝑐∗, system (3) always has a traveling
wave solution with speed 𝑐 connecting the disease-free steady
state𝐸0(𝐴/𝑑, 0, 0) and the endemic steady state𝐸∗(𝑆∗, 𝐼∗, 𝑅∗).

3. Concluding Remark

In this paper, we have discussed a delayed SIRS infectious
disease model with nonlocal diffusion and nonlinear inci-
dence. By constructing a pair of upper-lower solutions and
using Schauder’s fixed point theorem, we investigated the
existence of a traveling wave solution connecting the disease-
free steady state 𝐸0 and the endemic steady state 𝐸∗. We
now study the influence of the nonlocal diffusion terms and
time delay describing the incubation period on the spreading
speed 𝑐∗. From the second equation of system (3), we have a
linearized equation at 𝐸0 that takes the form

𝑐𝐼

(𝜉) = 𝐷 [𝐽 ∗ 𝐼 (𝜉) − 𝐼 (𝜉)] +

𝐴𝛽

𝑑
𝐼 (𝜉 − 𝑐𝜏)

− (𝑑 + 𝛾 + 𝑎) 𝐼 (𝜉) .

(57)

Letting 𝐼(𝜉) = 𝑒𝜆𝜉 yields the following characteristic equation:

Δ (𝜆, 𝑐) = 𝐷∫
R

𝐽 (𝑦) [𝑒
−𝜆𝑦

− 1] 𝑑𝑦 − 𝑐𝜆 +
𝐴𝛽

𝑑
𝑒
−𝜆𝑐𝜏

− (𝑑 + 𝛾 + 𝑎) .

(58)

By direct calculations we have

d𝑐∗

d𝐷
=

∫
R
𝐽 (𝑦) [𝑒

−𝜆
∗
𝑦
− 1] 𝑑𝑦

𝜆
∗
(1 + (𝐴𝛽𝜏/𝑑) 𝑒−𝜆∗𝑐

∗
𝜏)
> 0,

d𝑐∗

d𝜏
= −

𝐴𝛽𝑐
∗

𝑑𝑒−𝑐
∗
𝜆
∗
𝜏 + 𝐴𝛽𝜏

< 0.

(59)

It is easy to show that the spreading speed 𝑐∗ is monotonically
increasing for the nonlocal diffusion rate𝐷 and is monoton-
ically decreasing for the time delay 𝜏.
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We consider SIR epidemic model in which population growth is subject to logistic growth in absence of disease. We get the
condition for Hopf bifurcation of a delayed epidemic model with information variable and limited medical resources. By analyzing
the corresponding characteristic equations, the local stability of an endemic equilibrium and a disease-free equilibrium is discussed.
If the basic reproduction ratioR

0
< 1, we discuss the global asymptotical stability of the disease-free equilibrium by constructing

a Lyapunov functional. If R
0
> 1, we obtain sufficient conditions under which the endemic equilibrium 𝐸

∗ of system is locally
asymptotically stable. Andwe also have discussed the stability and direction ofHopf bifurcations. Numerical simulations are carried
out to explain the mathematical conclusions.

1. Introduction

From an epidemiological viewpoint, it is important to inves-
tigate the global dynamics of the disease transmission. In the
literature, many authors have researched various epidemic
models [1, 2], in which the stability analyses have been
carried out extensively. In the recent years, based on SIR
epidemic model, in order to investigate the spread of an
infectious disease transmitted by a vector,Wang et al. [3] have
considered the asymptotic behavior of the following delayed
SIR epidemic model:

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝑟𝑆 (1 −

𝑆

𝑘
) − 𝛽𝑆𝐼 (𝑡 − 𝜏) ,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝛽𝑆𝐼 (𝑡 − 𝜏) − (𝜇

1
+ 𝛾) 𝐼,

𝑑𝑅 (𝑡)

𝑑𝑡
= 𝛾𝐼 − 𝜇

2
𝑅.

(1)

Since nonlinearity in the incidence rates has been
observed in disease transmission dynamics, it has been
suggested that the standard bilinear incidence rate will be
modified into a nonlinear incidence rate bymany authors [4–
6]. In [7], incidence rate 𝛽𝑆𝐼(𝑡 − 𝜏) in (1) was replaced by

a nonlinear incidence rate of the form 𝛽𝑆𝐺(𝐼(𝑡 − 𝜏)) with the
following system:

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝑟𝑆 (1 −

𝑆

𝑘
) − 𝛽𝑆𝐺 (𝐼 (𝑡 − 𝜏)) ,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝛽𝑆𝐺 (𝐼 (𝑡 − 𝜏)) − (𝜇

1
+ 𝛾) 𝐼,

𝑑𝑅 (𝑡)

𝑑𝑡
= 𝛾𝐼 − 𝜇

2
𝑅.

(2)

In order to control the spread of epidemic, we consider
the new variable 𝑍:

𝑍 (𝑡) = ∫

𝑡

−∞

𝑆
1

𝑇
exp(−

1

𝑇
(𝑡 − 𝜏)) 𝑑𝜏, (3)

called information variable which summarizes information
about the current state of the disease, that is, depending
on current values of state variables, and also summarizes
information about past values of state variables.Many authors
have used this variable in their models (see, e.g., [8–10]).

In this paper, we consider the information variable 𝑍(𝑡),
nonlinear incidence rate of the form𝛽𝑆𝐺(𝐼(𝑡−𝜏)), and limited
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medical resources ℎ(𝐼) = 𝑏𝐼/(𝜔 + 𝐼). The model can be
described by the following system of equations:

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝑟𝑆 (1 −

𝑆

𝑘
) − 𝛽𝑆𝐺 (𝐼 (𝑡 − 𝜏)) ,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝛽𝑍𝐺 (𝐼 (𝑡 − 𝜏)) − (𝜇

1
+ 𝛾 + 𝜀) 𝐼 −

𝑏𝐼

𝜔 + 𝐼
,

𝑍 (𝑡) = ∫

𝑡

−∞

𝑆
1

𝑇
exp(−

1

𝑇
(𝑡 − 𝜏)) 𝑑𝜏,

𝑑𝑅 (𝑡)

𝑑𝑡
= 𝛾𝐼 − 𝜇

2
𝑅 +

𝑏𝐼

𝜔 + 𝐼
,

(4)

where 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡) > 0 and 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡) denote the
numbers of susceptible, infective, and recovered individuals
at time 𝑡, respectively. 𝑟 is the intrinsic growth rate of
susceptibles, 𝑘 is the carrying capacity of susceptibles, 𝛼 is
the saturation factor that measures the inhibitory effect, 𝛽 is
the transmission or contact rate, 𝜇

1
, 𝜇

2
are the natural death

rate of the infective and recovered individuals, 𝛾 is the natural
recovery rate, 𝜀 is the disease-related mortality, 𝑏 ≥ 0 is the
maximal medical resources supplied per unit time, and𝜔 > 0

is half-saturation constant. 𝑟, 𝑏, 𝜇
1
, 𝜇

2
, 𝛾, 𝛼, 𝛽, 𝑘, 𝜔 are all

positive.
We further assume that the function 𝐺 is continuous on

[0, +∞) and continuously differentiable on (0, +∞) satisfying
the following hypotheses:

(1) 𝐺(𝐼) is strictly monotone increasing on [0, +∞) with
𝐺(0) = 0;

(2) 𝐼/𝐺(𝐼) is monotone increasing on (0, +∞) with
lim

𝐼→0+
(𝐼/𝐺(𝐼)) = 1.

The organization of this paper is as follows. In Section 2,
we explore the existence of disease-free equilibria point
and the unique existence of the endemic equilibrium point.
In Section 3, we analyze the stability of the disease-free
equilibria. In Section 4, we obtain sufficient conditions under
which the endemic equilibrium 𝐸

∗ of system is locally
asymptotically stable. In Section 5, we also have discussed
the stability and direction of Hopf bifurcations. A numerical
analysis and a simple discussion are given to conclude this
paper in Section 6.

2. The Existence of Equilibria

The nonlinear integrodifferential system (4) can be trans-
formed into the following set of nonlinear ordinary differen-
tial questions:

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝑟𝑆 (1 −

𝑆

𝑘
) − 𝛽𝑆𝐺 (𝐼 (𝑡 − 𝜏)) ,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝛽𝑍𝐺 (𝐼 (𝑡 − 𝜏)) − (𝜇

1
+ 𝛾 + 𝜀) 𝐼 −

𝑏𝐼

𝜔 + 𝐼
,

𝑑𝑍 (𝑡)

𝑑𝑡
=

1

𝑇
(𝑆 − 𝑍) ,

𝑑𝑅 (𝑡)

𝑑𝑡
= 𝛾𝐼 − 𝜇

2
𝑅 +

𝑏𝐼

𝜔 + 𝐼
.

(5)

Since the dynamical behavior of the last equation of
the system (5), that is, the dynamics of 𝑅, depends only
the dynamics of 𝐼, we do not consider that equation in
our discussion. Here we will study the following nonlinear
ordination differential equations:

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝑟𝑆 (1 −

𝑆

𝑘
) − 𝛽𝑆𝐺 (𝐼 (𝑡 − 𝜏)) ,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝛽𝑍𝐺 (𝐼 (𝑡 − 𝜏)) − (𝜇

1
+ 𝛾 + 𝜀) 𝐼 −

𝑏𝐼

𝜔 + 𝐼
,

𝑑𝑍 (𝑡)

𝑑𝑡
=

1

𝑇
(𝑆 − 𝑍) .

(6)

For simplicity, we nondimensionalize system (6) by defining

𝑆 (�̃�) =
𝑆 (𝑡)

𝑘
, 𝐼 (�̃�) =

𝐼 (𝑡)

𝑘
, 𝑍 (�̃�) =

𝑍 (𝑡)

𝑘
,

�̃� = 𝛽𝑘𝑡, �̃� = 𝛽𝑘𝑇, �̃� =
𝜔

𝑘
, 𝑟 =

𝑟

𝛽𝑘
,

𝐺 (𝐼 (�̃�)) =
𝐺 (𝐼 (𝑡))

𝑘
, 𝜇

1
=

𝜇
1

𝛽𝑘
, 𝜇

2
=

𝜇
2

𝛽𝑘
,

𝛾 =
𝛾

𝛽𝑘
, 𝜀 =

𝜀

𝛽𝑘
, �̃� =

𝑏

𝛽𝑘2
.

(7)

We note that 𝐺 also satisfies the hypotheses (1) and (2).
Dropping the ̃ for convenience of readers, system (6) can be
written in the following form:

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝑟𝑆 (1 − 𝑆) − 𝑆𝐺 (𝐼 (𝑡 − 𝜏)) ,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝑍𝐺 (𝐼 (𝑡 − 𝜏)) − (𝜇

1
+ 𝛾 + 𝜀) 𝐼 −

𝑏𝐼

𝜔 + 𝐼
,

𝑑𝑍 (𝑡)

𝑑𝑡
=

1

𝑇
(𝑆 − 𝑍) .

(8)

The basic reproduction isR
0
= 1/(𝜇

1
+ 𝛾 + 𝜀 + 𝑏/𝜔).

Theorem 1. (1) The system (8) has a trivial equilibrium 𝐸
0
=

(0, 0, 0) and the disease-free equilibrium 𝐸
1
= (1, 0, 1).

(2) IfR
0
> 1, the system (8) has one endemic equilibrium

𝐸
∗
= (𝑆

∗
, 𝐼

∗
, 𝑍

∗
) except the disease-free equilibria 𝐸

0
and 𝐸

1
.

Proof. (1) Let 𝐼 = 0; we have 𝑆 = 𝑍 = 0, or 𝑆 = 𝑍 = 1; it is
not easy to find that the system has a trivial equilibrium and
the disease-free equilibria 𝐸

0
= (0, 0, 0) and 𝐸

1
= (1, 0, 1).

(2) If R
0

> 1, from the third question of (8), we have
𝑍
∗
= 𝑆

∗; from the second question of (8), we have

𝑆
∗
= 𝑍

∗
=

(𝜇
1
+ 𝛾 + 𝜀 + 𝑏/ (𝜔 + 𝐼

∗
)) 𝐼

∗

𝐺 (𝐼
∗
)

. (9)

Then substituting them into the first question of (8) yields

𝑟 [1 −
(𝜇

1
+ 𝛾 + 𝜀 + 𝑏/ (𝜔 + 𝐼

∗
)) 𝐼

∗

𝐺 (𝐼
∗
)

] − 𝐺 (𝐼
∗
) = 0. (10)
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Let 𝐹(𝐼) = 𝑟[1 − (𝜇
1
+ 𝛾 + 𝜀 + 𝑏/(𝜔 + 𝐼

∗
))𝐼/𝐺(𝐼)] − 𝐺(𝐼). By

hypothesis (2), we obtain

lim
𝐼→+0

𝐹 (𝐼) = 𝑟 [1 − (𝜇
1
+ 𝛾 + 𝜀 +

𝑏

𝜔 + 𝐼∗
)]

> 𝑟 [1 − (𝜇
1
+ 𝛾 + 𝜀 +

𝑏

𝜔
)] = 𝑟(1 −

1

𝑅
0

) > 0.

(11)

Since 𝐹(𝐼) is strictly monotone decreasing function on
(0, +∞), it suffices to show that 𝐹(𝐼) < 0 holds for 𝐼

sufficiently large. From (1), 𝐺(𝐼) is either unbounded above
or bounded above on [0, +∞).

First, we suppose that 𝐺(𝐼) is unbounded above. Then
there exists an 𝐼

1
> 0 such that 𝐺(𝐼

1
) = 𝑟, from which

we have 𝐹(𝐼) < 0 for all 𝐼 ≥ 𝐼
1
. Second we suppose that

𝐺(𝐼) is bounded above. Then, from (2), 𝐼/𝐺(𝐼) is unbounded
above on [0, +∞); that is, there exists an 𝐼

2
> 0 such that

𝜇
1
+ 𝛾 + 𝜀 + 𝑏/(𝜔 + 𝐼

2
) = 𝐺(𝐼

2
)/𝐼

2
. This yields 𝐹(𝐼) < 0 for

all 𝐼 > 𝐼
2
. Therefore, for the both cases, there exists a unique

endemic 𝐼∗ > 0 such that 𝐹(𝐼∗) = 0. By the second and third
equations of (8), there exists a unique endemic equilibrium
𝐸
∗ of system (8) ifR

0
> 1.

Second, we assumeR
0
≤ 1; then it is obvious that system

(8) has no equilibria. Hence the proof is complete.

3. The Stability Analysis of Disease-Free
Equilibrium Point

In this section, we will examine the local stability of the equi-
libria by analyzing the eigenvalues of the Jacobianmatrices of
(8) at the equilibria and using Routh-Hurwitz criterion.

Let 𝐸 = (𝑆, 𝐼, 𝑅) be the arbitrarily equilibrium point of
system (8); then the Jacobian matrix of (8) at 𝐸 is

𝐽 (𝑆, 𝐼, 𝑍) = (

(

𝑟(1 − 2𝑆) − 𝐺 (𝐼) −𝑆𝐺

(𝐼) 𝑒

−𝜆𝜏
0

0 𝑍𝐺

(𝐼) 𝑒

−𝜆𝜏
− (𝜇

1
+ 𝛾 + 𝜀 +

𝑏𝜔

(𝜔 + 𝐼)
2
) 𝐺(𝐼)

1

𝑇
0 −

1

𝑇

)

)

. (12)

Then the characteristic equation of the system (8) at equilib-
rium 𝐸 is


𝜆𝐸 − 𝐽 (𝐸)



= (𝜆 +
1

𝑇
) [𝜆 + 𝐺 (𝐼) − 𝑟 (1 − 2𝑆)]

× [

[

𝜆 + 𝜇
1
+ 𝛾 + 𝜀 +

𝑏𝜔

(𝜔 + 𝐼)
2

]

]

− [(𝜆 +
1

𝑇
) (𝜆 + 𝐺 (𝐼) − 𝑟 (1 − 2𝑆)) −

1

𝑇
𝐺 (𝐼)]

× 𝑍𝐺

(𝐼) 𝑒

−𝜆𝜏
= 0.

(13)

Theorem 2. The trivial equilibrium 𝐸
0
of system (8) is always

unstable.

Proof. The characteristic equation (13) at 𝐸
0

= (0, 0, 0)

becomes as follows:

(𝜆 +
1

𝑇
) (𝜆 − 𝑟) (𝜆 + 𝜇

1
+ 𝛾 + 𝜀 +

𝑏

𝜔
) = 0. (14)

Since (14) has a positive root 𝜆 = 𝑟 > 0, 𝐸
0
is unstable.

Theorem 3. The disease-free equilibrium 𝐸
1
of system (8) is

locally asymptotically stable if R
0

< 1 and it is unstable if
R

0
> 1.

Proof. For 𝐸
1
= (1, 0, 1), the characteristic equation (13) at 𝐸

1

becomes as follows:

(𝜆 +
1

𝑇
) (𝜆 + 𝑟) [𝜆 + (𝜇

1
+ 𝛾 + 𝜀 +

𝑏

𝜔
) − 𝑒

−𝜆𝜏
] = 0. (15)

It is clear that both 𝜆 = −1/𝑇 and 𝜆 = −𝑟 are all the negative
root of (15). Then the other root of (15) is determined as the
following equation:

𝜆 + (𝜇
1
+ 𝛾 + 𝜀 +

𝑏

𝜔
) − 𝑒

−𝜆𝜏
= 0. (16)

For the case R
0
< 1, we suppose on the contrary that 𝐸

1
is

not locally asymptotically stable; that is, Re �̃� > 0.Then, there
exists a root 𝜆 = �̃�, such that Re �̃� ≥ 0. However, from (16),
we obtain

Re �̃� = (𝜇
1
+ 𝛾 + 𝜀 +

𝑏

𝜔
) (R

0
𝑒
−Re �̃�𝜏 cos (Im �̃�𝜏) − 1)

≤ (𝜇
1
+ 𝛾 + 𝜀 +

𝑏

𝜔
) (R

0
− 1) < 0,

(17)

which is a contradiction. Hence, if R
0
< 1, the disease-free

equilibrium 𝐸
1
of system (8) is locally asymptotically stable.

Now, we put

𝑃 (𝜆) = 𝜆 + (𝜇
1
+ 𝛾 + 𝜀 +

𝑏

𝜔
) − 𝑒

−𝜆𝜏
= 0. (18)

For the caseR
0
> 1, we have𝑃(0) = 𝜇

1
+𝛾+𝜀+𝑏/𝜔−1 < 0

and lim
𝜆→+∞

𝑃(𝜆) = +∞; then 𝑃(𝜆) = 0 has at least one
positive root. Hence, 𝐸

1
is unstable if and only ifR

0
> 1. The

proof is complete.



4 Abstract and Applied Analysis

4. The Stability Analysis of the Endemic
Equilibrium Point

Theorem 4. If 𝜏 = 0, R
0

> 1, and 𝑟 − 𝐺

(𝐼
∗
) >

𝑟𝑇𝐺(𝐼
∗
), then the positive equilibrium 𝐸

∗ of system (8) is
locally asymptotically stable.

Proof. The characteristic equation of (13) at 𝐸∗ becomes as
follows:

(𝜆 +
1

𝑇
) (𝜆 + 𝑟𝑆

∗
) [𝜆 + 𝜇

1
+ 𝛾 + 𝜀 +

𝑏𝜔

(𝜔 + 𝐼∗)
2
]

− [(𝜆 +
1

𝑇
) (𝜆 + 𝑟𝑆

∗
) −

1

𝑇
𝐺 (𝐼

∗
)]𝑍

∗
𝐺

(𝐼

∗
) 𝑒

−𝜆𝜏
= 0.

(19)

The above equation can be rewritten as

𝑃 (𝜆) + 𝑄 (𝜆) 𝑒
−𝜆𝜏

= 0, (20)

where 𝑃(𝜆) = 𝜆
3
+𝑏

1
𝜆
2
+𝑏

2
𝜆+𝑏

3
,𝑄(𝜆) = 𝑏

4
𝜆
2
+𝑏

5
𝜆+𝑏

6
, and

𝑏
1
=

1

𝑇
+ 𝑟𝑆

∗
+ 𝜇

1
+ 𝛾 + 𝜀 +

𝑏𝜔

(𝜔 + 𝐼∗)
2
,

𝑏
2
=

1

𝑇
𝑟𝑆

∗
+

1

𝑇
(𝜇

1
+ 𝛾 + 𝜀 +

𝑏𝜔

(𝜔 + 𝐼∗)
2
)

+ 𝑟𝑆
∗
(𝜇

1
+ 𝛾 + 𝜀 +

𝑏𝜔

(𝜔 + 𝐼∗)
2
) ,

𝑏
3
=

1

𝑇
𝑟𝑆

∗
(𝜇

1
+ 𝛾 + 𝜀 +

𝑏𝜔

(𝜔 + 𝐼∗)
2
) ,

𝑏
4
= −𝑆

∗
𝐺

(𝐼

∗
) ,

𝑏
5
= − 𝑆

∗
𝐺

(𝐼

∗
) [

1

𝑇
+ 𝑟𝑆

∗
] ,

𝑏
6
= −

1

𝑇
𝑆
∗
𝐺

(𝐼

∗
) (𝑟𝑆

∗
− 𝐺 (𝐼

∗
)) .

(21)

Let 𝐶 = 𝜇
1
+ 𝛾 + 𝜀 + 𝑏𝜔/(𝜔 + 𝐼

∗
)
2
− 𝑆

∗
𝐺

(𝐼
∗
).

Then if 𝜏 = 0, (20) becomes 𝑃(𝜆) + 𝑄(𝜆) = 0; that is,

𝜆
3
+ 𝑎

1
𝜆
2
+ 𝑎

2
𝜆 + 𝑎

3
= 0, (22)

where

𝑎
1
= 𝑏

1
+ 𝑏

4
=

1

𝑇
+ 𝑟𝑆

∗
+ 𝐶,

𝑎
2
= 𝑏

2
+ 𝑏

5
=

1

𝑇
(𝑟𝑆

∗
+ 𝐶) + 𝑟𝑆

∗
𝐶,

𝑎
3
= 𝑏

3
+ 𝑏

6
=

1

𝑇
[𝑟𝑆

∗
𝐶 + 𝑆

∗
𝐺 (𝐼

∗
) 𝐺


(𝐼

∗
)] .

(23)

Let 𝑟 − 𝐺

(𝐼
∗
) > 𝑟𝑇𝐺(𝐼

∗
); we have 𝑎

1
> 0, 𝑎

3
> 0, and

𝑎
1
𝑎
2
− 𝑎

3
= (

1

𝑇
+ 𝑟𝑆

∗
+ 𝐶) [

1

𝑇
(𝑟𝑆

∗
+ 𝐶) + 𝑟𝑆

∗
𝐶]

−
1

𝑇
[𝑟𝑆

∗
𝐶 + 𝑆

∗
𝐺 (𝐼

∗
) 𝐺


(𝐼

∗
)]

=
1

𝑇
(𝑟𝑆

∗
+ 𝐶) (

1

𝑇
+ 𝑟𝑆

∗
+ 𝐶)

+ (𝑟𝑆
∗
+ 𝐶) 𝑟𝑆

∗
𝐶 −

1

𝑇
𝑆
∗
𝐺 (𝐼

∗
) 𝐺


(𝐼

∗
)

>
1

𝑇
(𝑟𝑆

∗
+ 𝐶) (

1

𝑇
+ 𝑟𝑆

∗
+ 𝐶)

+ (𝑟𝑆
∗
+ 𝐶) 𝑟𝑆

∗
𝐶 −

1

𝑇
𝑟𝑆

∗
𝐺 (𝐼

∗
)

=
1

𝑇2
(𝑟𝑆

∗
+ 𝐶)

+
1

𝑇
(𝑟𝑆

∗
+ 𝐶) (𝑟𝑆

∗
+ 𝐶 + 𝑟𝑇𝑆

∗
𝐶)

−
1

𝑇
𝑟𝑆

∗
𝐺 (𝐼

∗
)

=
1

𝑇2
(𝜇

1
+ 𝛾 + 𝜀 +

𝑏𝜔

(𝜔 + 𝐼∗)
2
)

+
1

𝑇
(𝑟𝑆

∗
+ 𝐶) (𝑟𝑆

∗
+ 𝐶 + 𝑟𝑇𝑆

∗
𝐶)

+
1

𝑇2
𝑆
∗
(𝑟 − 𝐺


(𝐼

∗
)) −

1

𝑇
𝑟𝑆

∗
𝐺 (𝐼

∗
) > 0.

(24)

By using the Routh-Hurwitz theorem, 𝜆 has negative real
part for 𝜏 = 0. So the positive equilibrium 𝐸

∗ is locally
asymptotically stable.

In the following, we investigate the existence of purely
imaginary roots 𝜆 = 𝑖𝜔 (𝜔 > 0) to (19). Equation (19) takes
the form of a third-degree exponential polynomial in 𝜆, with
all the coefficients of 𝑃 and 𝑄 depending on 𝜏. Beretta and
Kuang [11] established a geometrical criterion which gives the
existence of purely imaginary root of a characteristic equation
with delay dependent coefficients.

Now we let 𝜆 = 𝑖𝜔 (𝜔 > 0) be a root of (20) from which
we have that

𝑃 (𝜆) + 𝑄 (𝜆) 𝑒
−𝜆𝜏

= −𝑖𝜔
3
− 𝑏

1
𝜔
2
+ 𝑏

2
𝜔𝑖 + 𝑏

3

+ (−𝑏
4
𝜔
2
+ 𝑏

5
𝜔𝑖 + 𝑏

6
) (cos (𝜔𝜏) − 𝑖 sin (𝜔𝜏))

= −𝑏
1
𝜔
2
+ 𝑏

3

− [𝑏
4
𝜔
2 cos (𝜔𝜏) − 𝑏

5
𝜔 sin (𝜔𝜏) − 𝑏

6
cos (𝜔𝜏)]

+ 𝑖 [−𝜔
3
+ 𝑏

2
𝜔 + 𝑏

4
𝜔
2 sin (𝜔𝜏)

+𝑏
5
𝜔 cos (𝜔𝜏) − 𝑏

6
sin (𝜔𝜏) ] = 0.

(25)

Hence, we have that

−𝑏
1
𝜔
2
+ 𝑏

3
= 𝑏

4
𝜔
2 cos (𝜔𝜏) − 𝑏

5
𝜔 sin (𝜔𝜏) − 𝑏

6
cos (𝜔𝜏)

= (𝑏
4
𝜔
2
− 𝑏

6
) cos (𝜔𝜏) − 𝑏

5
𝜔 sin (𝜔𝜏) ,
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𝜔
3
− 𝑏

2
𝜔 = 𝑏

4
𝜔
2 sin (𝜔𝜏) + 𝑏

5
𝜔 cos (𝜔𝜏) − 𝑏

6
sin (𝜔𝜏)

= (𝑏
4
𝜔
2
− 𝑏

6
) sin𝜔𝜏 + 𝑏

5
𝜔 cos (𝜔𝜏) .

(26)

From (26), it follows that

cos (𝜔𝜏) =
𝑏
5
𝜔 (𝜔

3
− 𝑏

2
𝜔) + (𝑏

3
− 𝑏

1
𝜔
2
) (𝑏

4
𝜔
2
− 𝑏

6
)

(𝑏
4
𝜔2 − 𝑏

6
)
2
+ (𝑏

5
𝜔)

2
,

(27a)

sin (𝜔𝜏) =

(𝜔
3
− 𝑏

2
𝜔) (𝑏

4
𝜔
2
− 𝑏

6
) − 𝑏

5
𝜔 (𝑏

3
− 𝑏

1
𝜔
2
)

(𝑏
4
𝜔2 − 𝑏

6
)
2
+ (𝑏

5
𝜔)

2
.

(27b)

By the definitions of 𝑃(𝜆),𝑄(𝜆) is as in (20), and applying the
property (1), (27a) and (27b) can be written as

sin (𝜔𝜏) = Im 𝑃 (𝑖𝜔)

𝑄 (𝑖𝜔)
, cos (𝜔𝜏) = −Re 𝑃 (𝑖𝜔)

𝑄 (𝑖𝜔)
, (28)

which yields |𝑃(𝑖𝜔)|2 = |𝑄(𝑖𝜔)|
2.

Assume that𝐷 ∈ 𝑅
0
+ is the set where 𝜔𝜏 is a positive root

of

𝐹 (𝜔) = |𝑃 (𝑖𝜔)|
2
− |𝑄 (𝑖𝜔)|

2
. (29)

From

|𝑃 (𝑖𝜔)|
2

=

−𝑖𝜔

3
− 𝑏

1
𝜔
2
+ 𝑏

2
𝜔𝑖 + 𝑏

3



2

=

(𝑏

3
− 𝑏

1
𝜔
2
) + (𝑏

2
𝜔 − 𝜔

3
)


2

= 𝜔
6
+ (𝑏

2

1
− 2𝑏

2
) 𝜔

4
+ (𝑏

2

2
− 2𝑏

1
𝑏
3
) 𝜔

2
+ 𝑏

2

3
,

|𝑄 (𝑖𝜔)|
2

=

(−𝑏

4
𝜔
2
+ 𝑏

5
𝜔𝑖 + 𝑏

6
) (cos (𝜔𝜏) − sin (𝜔𝜏))



2

= (𝑏
6
− 𝑏

4
𝜔
2
)
2

+ (𝑏
5
𝜔)

2

= 𝑏
2

4
𝜔
4
+ (𝑏

2

5
− 2𝑏

4
𝑏
6
) 𝜔

2
+ 𝑏

2

6
,

(30)

we have 𝐹(𝜔) = 𝜔
6
+𝑎

1
𝜔
4
+𝑎

2
𝜔
2
+𝑎

3
, where 𝑎

1
= 𝑏

2

1
−2𝑏

2
−𝑏

2

4
,

𝑎
2
= 𝑏

2

2
− 2𝑏

1
𝑏
3
− 𝑏

2

5
+ 2𝑏

4
𝑏
6
, 𝑎

3
= 𝑏

2

3
− 𝑏

2

6
, and, for 𝜏 ∈ 𝐷, 𝜔𝜏

is not defined. Then, for all 𝜏 in𝐷, 𝜔𝜏 satisfied 𝐹(𝜔) = 0.
Let 𝜔2

= ℎ; then we have that

𝐹 (ℎ) = ℎ
3
+ 𝑎

1
ℎ
2
+ 𝑎

2
ℎ + 𝑎

3
= 0. (31)

Assume that 𝐹(𝜔) has only one positive real root; we
denote by ℎ

+ this positive real root. Thus, (29) has only one
positive real root 𝜔 = √ℎ+. And the critical values of 𝜏

and 𝜔(𝜏) are impossible to solve explicitly, so we will use
the procedure described in Beretta and Kuang [11] and Song
et al. [12]. According to this procedure, we define 𝜃(𝜏) ∈

[0, 2𝜋) such that sin 𝜃(𝜏) and cos 𝜃(𝜏) are given by the right-
hand sides of (27a) and (27b), respectively, with 𝜃(𝜏) given by
(19).

And the relation between the argument 𝜃 and𝜔(𝜏) in (28)
for 𝜏 > 0must be

𝜔 (𝜏) = 𝜃 + 2𝑛𝜋, 𝑛 = 0, 1, 2, . . . . (32)

Hence we can define the maps 𝜏
𝑛
: 𝐷 → 𝑅

+0
given by

𝜏
𝑛
=

𝜃 (𝜏) + 2𝑛𝜋

𝜔 (𝜏)
, 𝜏

𝑛
> 0, 𝑛 = 1, 2, . . . , (33)

where a positive root𝜔(𝜏) of (31) exists in𝐷. Let us introduce
the functions

𝑆
𝑛 (𝜏) : 𝐷 → 𝑅, 𝑆

𝑛 (𝜏) = 𝜏 −
𝜃 (𝜏) + 2𝑛𝜋

𝜔 (𝜏)
,

𝑛 = 0, 1, 2, . . . ,

(34)

which are continuous and differentiable in 𝜏. Thus, we give
the following theoremwhich is due to Beretta and Kuang [11].

Theorem 5. Assume that𝜔(𝜏) is a positive root of (19) defined
for 𝜏 ∈ 𝐷, 𝐷 ⊆ 𝑅

+0
, and, at some 𝜏∗ ∈ 𝐷, 𝑆

𝑛
(𝜏

∗
) = 0 for some

𝑛 ∈ 𝑁
0
. Then a pair of simple conjugate pure imaginary roots

𝜆 = ±𝑖𝜔 exists at 𝜏 = 𝜏
∗ which crosses the imaginary axis from

left to right if

𝛿 (𝜏
∗
) = sign {𝐹



𝜔
(𝜔𝜏

∗
, 𝜏

∗
)} sign{

d𝑆
𝑛
(𝜏)

d𝜏

𝜏=𝜏∗
} . (35)

Applying Theorems 2 and 3 and the Hopf bifurcation
theorem for functional differential equation [13], we can
conjecture the existence of a Hopf bifurcation as stated in
Theorem 6.

Theorem6 (a conjecture). For system (2), there exists 𝜏∗ ∈ 𝐷,
such that the equilibrium 𝐸

∗ is asymptotically stable for 0 ≤

𝜏 < 𝜏
∗, and it becomes unstable for 𝜏 staying in some tight

neighborhood of 𝜏∗, with a Hopf bifurcation occurring when
𝜏 = 𝜏

∗.

5. Stability and Direction of Hopf Bifurcations

In this section, we will study the direction of the Hopf
bifurcation and stability of bifurcating periodic solutions by
using the normal theory and center manifold theorem due to
Hassard et al. [14]. Letting 𝑢

1
= 𝑆−𝑆

∗, 𝑢
2
= 𝐼−𝐼

∗, 𝑢
3
= 𝑍−𝑍

∗,
�̃�
𝑖
(𝑡) = 𝑢

𝑖
(𝜏𝑡) (𝑖 = 1, 2, 3), 𝜏 = ] + 𝜏

∗, and dropping the bars
for simplification of notations, system (8) becomes functional
differential equations in 𝐶 = 𝐶([−1, 0],R3

) as

𝑢


1
(𝑡) = (𝜏

∗
+ ])

× [𝑟 (1 − 2𝑆
∗
) 𝑢

1
(𝑡) − 𝐺 (𝐼

∗
) 𝑢

1
(𝑡)

−𝑆
∗
𝐺

(𝐼

∗
) 𝑢

2
(𝑡 − 1) − 𝐺


(𝐼

∗
) 𝑢

1
(𝑡) 𝑢

2
(𝑡 − 1)] ,

𝑢


2
(𝑡) = (𝜏

∗
+ ])

× [𝐺

(𝐼

∗
) 𝑢

3
(𝑡) 𝑢

2
(𝑡 − 1) + 𝐺 (𝐼

∗
) 𝑢

3
(𝑡)
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Figure 1: (a)–(d) showed that the equilibrium 𝐸
1
of system (8) with initial condition 𝑆(0) = 3; 𝐼(0) = 1;𝑍(0) = 1; 𝑅

0
= 0.3745 < 1; and 𝑇 = 4

is locally asymptotically stable.

+ 𝑍
∗
𝐺

(𝐼

∗
) 𝑢

2 (𝑡 − 1) − (𝜇
1
+ 𝛾 + 𝜀) 𝑢

2 (𝑡)

−
𝑏𝜔

(𝜔 + 𝐼∗)
2
𝑢
2
(𝑡) +

𝑏𝜔

(𝜔 + 𝐼∗)
3
𝑢
2

2
(𝑡) − ⋅ ⋅ ⋅ ] ,

𝑢


3
(𝑡) =

1

𝑇
(𝜏

∗
+ ]) (𝑢

1 (𝑡) − 𝑢
3 (𝑡)) .

(36)

Then system (36) is equivalent to

𝑢

(𝑡) = 𝐿]𝑢 (𝑡) + 𝑓 (], 𝑢 (𝑡)) , (37)

where 𝑢(𝑡) = (𝑢
1
(𝑡), 𝑢

2
(𝑡), 𝑢

3
(𝑡))

𝑇
∈ R3 and 𝐿] : 𝐶 → R3,

𝑓 : R × 𝐶 → R3 are given, respectively, by

𝐿] (𝜙)

= (𝜏
∗
+ ])

×(

𝑟 (1 − 2𝑆
∗
) − 𝐺 (𝐼

∗
) 0 0

0 − (𝜇
1
+ 𝛾 + 𝜀) −

𝑏𝜔

(𝜔 + 𝐼∗)
2

𝐺 (𝐼
∗
)

1

𝑇
0 −

1

𝑇

)
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Figure 2: (a)–(d) showed that equilibrium 𝐸
∗ of system (8) with initial condition 𝑆(0) = 2; 𝐼(0) = 2; 𝑍(0) = 4.5; 𝑅

0
= 3.0303 > 1; and

𝜏 = 1.56 < 𝜏
∗ is locally asymptotically stable; that is, the trajectory converges to the positive equilibrium at 𝜏 = 1.56.

×(

𝜙
1 (0)

𝜙
2
(0)

𝜙
3
(0)

) + (𝜏
∗
+ ])(

0 −𝑆
∗
𝐺

(𝐼

∗
) 0

0 𝑆
∗
𝐺

(𝐼

∗
) 0

0 0 0

)(

𝜙
1 (−1)

𝜙
2
(−1)

𝜙
3
(−1)

) ,

(38)

𝑓 (], 𝜙)

= (𝜏
∗
+ ])

×

{{{

{{{

{

(

−𝐺

(𝐼

∗
) 𝜙

1
(0) 𝜙

2
(−1)

𝐺

(𝐼

∗
) 𝜙

3
(0) 𝜙

2
(−1)

0

) + (

0

𝑏𝜔

(𝜔 + 𝐼∗)
3
𝜙
2

2
(0)

0

) + ⋅ ⋅ ⋅

}}}

}}}

}

.

(39)

By the Riesz representation theorem, there exists a function
𝜂(𝜃, ]) of bounded variation for 𝜃 ∈ [−1, 0], such that

𝐿] (𝜙) = ∫

0

−1

𝑑𝜂 (𝜃, ]) 𝜙 (𝜃) , for 𝜃 ∈ 𝐶. (40)

In fact, we can choose

𝜂 (𝜃, ])

= (𝜏
∗
+ ])

×(

𝑟 (1 − 2𝑆
∗
) − 𝐺(𝐼

∗
) 0 0

0 − (𝜇1 + 𝛾 + 𝜀) −
𝑏𝜔

(𝜔 + 𝐼
∗
)
2

𝐺(𝐼
∗
)

1

𝑇
0 −

1

𝑇

)

×𝛿 (𝜃) − (𝜏
∗
+ ])(

0 −𝑆
∗
𝐺

(𝐼
∗
) 0

0 𝑆
∗
𝐺

(𝐼
∗
) 0

0 0 0

)𝛿 (𝜃 + 1) ,

(41)

where 𝛿 denote the Dirac delta function. For 𝜙 ∈ 𝐶([−1, 0],

R3
), define
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𝐴 (]) 𝜙 =

{{{{

{{{{

{

𝑑𝜙 (𝜃)

𝑑𝜃
, 𝜃 ∈ [−1, 0) ,

∫

0

−1

𝑑𝜂 (𝜃, ]) 𝜙 (𝜃) , 𝜃 = 0,

𝑅 (]) (𝜙) = {
0, 𝜃 ∈ [−1, 0) ,

𝑓 (], 𝜙) , 𝜃 = 0.

(42)

Then system (37) is equivalent to

̇𝑢(𝑡) = 𝐴 (]) 𝑢
𝑡
+ 𝑅 (]) 𝑢

𝑡
, (43)

where 𝑢
𝑡
= 𝑢(𝑡 + 𝜃) for 𝜃 ∈ [−1, 0].

For 𝜓 ∈ 𝐶([0, 1], (R3
)
∗
), define

𝐴
∗
𝜓 (𝑠) =

{{

{{

{

−
𝑑𝜓 (𝑠)

𝑑𝑠
, 𝑠 ∈ (0, 1] ,

∫

0

−1

𝜓 (−𝑡) 𝑑𝜂 (𝑡, 0) , 𝑠 = 0,

(44)

and a bilinear inner product

⟨𝜓 (𝑠) , 𝜙 (𝜃)⟩

= 𝜓 (0) 𝜙 (0) − ∫

0

−1

∫

𝜃

𝜎=0

𝜓 (𝜎 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜎) 𝑑𝜎,

(45)

where 𝜂(𝜃) = 𝜂(𝜃, 0). Then 𝐴(0) and 𝐴
∗ are adjoint

operators. By the discussion in (20), we know that ±𝑖𝜔∗
𝜏
∗

are eigenvalues of 𝐴(0). Hence, they are also eigenvalues of
𝐴
∗. We first need to compute the eigenvectors of 𝐴(0) and

𝐴
∗ corresponding to 𝑖𝜔

∗
𝜏
∗ and −𝑖𝜔

∗
𝜏
∗, respectively.

Suppose that 𝑞(𝜃) = (1, 𝑞
1
, 𝑞

2
)
𝑇
𝑒
𝑖𝜔
∗
𝜏
∗
𝜃 is the eigenvectors

of 𝐴(0) corresponding to 𝑖𝜔
∗
𝜏
∗; then 𝐴(0)𝑞(𝜃) = 𝑖𝜔

∗
𝜏
∗
𝑞(𝜃).

Then, from the definition of 𝐴(0) and (38), (40), (41), and
𝑞(−1) = 𝑞(0)𝑒

−𝑖𝜔
∗
𝜏
∗

, we have

(

𝑟(1 − 2𝑆
∗
) − 𝐺(𝐼

∗
) −𝑆

∗
𝐺

(𝐼
∗
) 0

0 𝑆
∗
𝐺

(𝐼
∗
) − (𝜇

1
+ 𝛾 + 𝜀) −

𝑏𝜔

(𝜔 + 𝐼
∗
)
2

𝐺(𝐼
∗
)

1

𝑇
0 −

1

𝑇

)

×(

1

𝑞
1
(0)

𝑞
2
(0)

) = 𝑖𝜔
∗
(

1

𝑞
1
(0)

𝑞
2
(0)

) .

(46)

We obtain

𝑞
1
=

𝑟 − 2𝑟𝑆
∗
− 𝐺 (𝐼

∗
) − 𝑖𝜔

∗

𝑆∗𝐺
(𝐼
∗
)

, 𝑞
2
=

1

1 + 𝑇𝑖𝜔∗
. (47)

Similarly, we can obtain the eigenvector 𝑞
∗
(𝑠) =

𝐷(1, 𝑞
∗

1
, 𝑞

∗

2
)
𝑇
𝑒
𝑖𝜔
∗
𝜏
∗

of 𝐴∗ corresponding to −𝑖𝜔
∗
𝜏
∗, where

𝑞
∗

1
=

𝑆
∗
𝐺

(𝐼

∗
)

𝑆∗𝐺
(𝐼
∗
) − (𝜇

1
+ 𝛾 + 𝜀) − 𝑏𝜔/(𝜔 + 𝐼∗)

2
+ 𝑖𝜔∗

,

𝑞
∗

2
= 𝑇 [−𝑖𝜔 − 𝑟 (1 − 2𝑆

∗
) + 𝐺 (𝐼

∗
)] .

(48)

In order to assure that ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 1, ⟨𝑞∗(𝑠), ̄𝑞(𝜃)⟩ = 0, we
need to determine the value of𝐷. By (45), we have

⟨𝑞
∗
(𝑠) , 𝑞 (𝜃)⟩

= 𝐷 (1, 𝑞
∗

1
, 𝑞

∗

2
) (1, 𝑞

1
, 𝑞

2
)
𝑇

− ∫

0

−1

∫

𝜃

𝜎=0

𝐷(1, 𝑞
∗

1
, 𝑞

∗

2
) 𝑒

−𝑖𝜔
∗
𝜏
∗
(𝜎−𝜃)

𝑑𝜂

× (𝜃) (1, 𝑞
1
, 𝑞

2
)
𝑇
𝑒
𝑖𝜔
∗
𝜏
∗
𝜎
𝑑𝜎

= 𝐷{1 + 𝑞
1
𝑞
∗

1
+ 𝑞

2
𝑞
∗

2

−∫

0

−1

(1, 𝑞
∗

1
, 𝑞

∗

2
) 𝜃𝑒

𝑖𝜔
∗
𝜏
∗
𝜃
𝑑𝜂 (𝜃) (1, 𝑞

1
, 𝑞

2
)
𝑇
}

= 𝐷{1 + 𝑞
1
𝑞
∗

1
+ 𝑞

2
𝑞
∗

2
+ 𝜏

∗
𝑞
1
𝑆
∗
𝐺

(𝐼

∗
) (−1 + 𝑞

∗

1
) 𝑒

−𝑖𝜔
∗
𝜏
∗

} .

(49)

Therefore, we can choose𝐷 as

𝐷 =
1

1 + 𝑞
1
𝑞
∗

1
+ 𝑞

2
𝑞
∗

2
+ 𝜏∗𝑞

1
𝑆∗𝐺

(𝐼
∗
) (−1 + 𝑞

∗

1
) 𝑒−𝑖𝜔

∗
𝜏
∗
.

(50)

We use the way of [14] and similarly way of [3]; we obtain that
the coefficients are

𝑔
20

= 2𝜏
∗
𝐷(𝑞

∗

1
− 1)𝐺


(𝐼

∗
) 𝑞

1
+ 2𝜏

∗
𝐷𝑞

∗

1

𝑏𝜔

(𝜔 + 𝐼∗)
3
𝑞
2

1
,

𝑔
11

= 2𝜏
∗
𝐷(𝑞

∗

1
− 1)𝐺


(𝐼

∗
)Re {𝑞

1
}

+ 2𝜏
∗
𝐷𝑞

∗

1

𝑏𝜔

(𝜔 + 𝐼∗)
3

𝑞1


2
;

𝑔
02

= 2𝜏
∗
𝐷(𝑞

∗

1
− 1)𝐺


(𝐼

∗
) 𝑞

1
+ 2𝜏

∗
𝐷𝑞

∗

1

𝑏𝜔

(𝜔 + 𝐼∗)
3
𝑞
2

1
;

𝑔
21

= 𝜏
∗
𝐷(𝑞

∗

1
− 1)𝐺


(𝐼

∗
)

+ [𝑊
(1)

20
(0) 𝑞

1
+ 2𝑞

1
𝑊

(1)

11
(0) + 𝑊

(2)

20
(0) + 2𝑊

(2)

11
(0)]

+ 2𝜏
∗
𝐷𝑞

∗

1

𝑏𝜔

(𝜔 + 𝐼∗)
3
[𝑞

1
𝑊

(2)

20
(0) + 2𝑞

1
𝑊

(2)

11
(0)] ,

(51)

where

𝑊
20

(𝜃) =
𝑖𝑔
20

𝜔∗𝜏∗
𝑞 (0) 𝑒

𝑖𝜔
∗
𝜏
∗
𝜃

+
𝑖𝑔

02

3𝜔∗𝜏∗
𝑞 (0) 𝑒

−𝑖𝜔
∗
𝜏
∗
𝜃

+ [𝑊
20

(0) +
𝑔
20

𝑖𝜔∗𝜏∗
𝑞 (0) +

𝑔
02

3𝑖𝜔∗𝜏∗
𝑞 (0)] 𝑒

2𝑖𝜔
∗
𝜏
∗
𝜃
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Figure 3: (a)–(d) showed that equilibrium 𝐸
∗ of system (8) with initial condition 𝑆(0) = 2; 𝐼(0) = 2; 𝑍(0) = 4.5; 𝑅

0
= 3.0303 > 1; and

𝜏 = 2.56 > 𝜏
∗ is unstable, that is, a periodic behavior at 𝜏 = 2.56.

≜
𝑖𝑔
20

𝜔∗𝜏∗
𝑞 (0) 𝑒

𝑖𝜔
∗
𝜏
∗
𝜃
+

𝑖𝑔
02

3𝜔∗𝜏∗
𝑞 (0) 𝑒

−𝑖𝜔
∗
𝜏
∗
𝜃

+ 𝐸
1
𝑒
2𝑖𝜔
∗
𝜏
∗
𝜃
,

𝑊
11

(𝜃) =
𝑖𝑔
11

𝜔∗𝜏∗
𝑞 (0) 𝑒

−𝑖𝜔
∗
𝜏
∗
𝜃
+ 𝐸

2
.

(52)

Besides, 𝐸
1
, 𝐸

2
are satisfied with the following equation:

(

2𝑖𝜔
∗
− 𝑟 (1 − 2𝑆

∗
) + 𝐺 (𝐼

∗
) 𝑆

∗
𝐺

(𝐼

∗
) 0

0 2𝑖𝜔
∗
− 𝑆

∗
𝐺

(𝐼

∗
) + (𝜇

1
+ 𝛾 + 𝜀) +

𝑏𝜔

(𝜔 + 𝐼∗)
2

−𝐺 (𝐼
∗
)

−
1

𝑇
0 2𝑖𝜔

∗
+

1

𝑇

)𝐸
1

= 2𝜏
∗
𝐺

(𝐼

∗
) 𝑞

1
(−1, 1, 0)

𝑇
+ 2𝜏

∗ 𝑏𝜔

(𝜔 + 𝐼∗)
3
𝑞
2

1
(0, 1, 0)

𝑇
,
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(

−𝑟 (1 − 2𝑆
∗
) + 𝐺 (𝐼

∗
) 𝑆

∗
𝐺

(𝐼

∗
) 0

0 −𝑆
∗
𝐺

(𝐼

∗
) + (𝜇

1
+ 𝛾 + 𝜀) +

𝑏𝜔

(𝜔 + 𝐼∗)
2

−𝐺 (𝐼
∗
)

−
1

𝑇
0

1

𝑇

)𝐸
2

= 2𝜏
∗
𝐺

(𝐼

∗
) 𝑞

1
(−1, 1, 0)

𝑇
+ 2𝜏

∗ 𝑏𝜔

(𝜔 + 𝐼∗)
3
𝑞
2

1
(0, 1, 0)

𝑇
.

(53)

Thus, we can determine 𝑊
20
(𝜃) and 𝑊

11
(𝜃) from (52).

Furthermore, we can compute 𝑔
21

by (51). Thus we can
compute the following values:

𝑐
1
(0) =

𝑖

2𝜔∗𝜏∗
(𝑔

20
𝑔
11

− 2
𝑔11



2
−

𝑔02


3
) +

𝑔
21

2
,

]
2
= −

Re {𝑐
1
(0)}

Re {𝑑𝜆 (𝜏
∗
) /𝑑𝜏}

,

𝛽
2
= 2Re {𝑐

1
(0)} ,

𝑇
2
= −

Re {𝑐
1
(0)} + ]

2
Re {𝑑𝜆 (𝜏

∗
) /𝑑𝜏}

𝜔∗𝜏∗
.

(54)

By the result of Hassard et al. [14], we have the following.

Theorem 7. In (54), the following results hold:

(i) the sign of ]
2
determines the directions of the Hopf

bifurcation: if ]
2

> 0 (]
2

< 0), then the Hopf bifur-
cation is supercritical (subcritical) and the bifurcating
periodic solutions exist for 𝜏 > 𝜏

∗
(𝜏 < 𝜏

∗
);

(ii) the sign of 𝛽
2
determines the stability of the bifurcating

periodic solutions: the bifurcating periodic solutions are
stable (unstable) if 𝛽

2
< 0 (𝛽

2
> 0);

(iii) the sign of 𝑇
2
determines the period of the bifurcating

periodic solutions: the period is increasing (decreasing)
if 𝛽

2
> 0 (𝛽

2
< 0).

6. Numerical Simulations

To demonstrate the theoretical results obtained from this
paper, letting𝐺(𝐼(𝑡−𝜏)) = 𝐼(𝑡−𝜏)/(1+𝛼𝐼(𝑡−𝜏)), we will give
some numerical simulations. We consider the hypothetical
set of parameter values as follows.

(1) Consider 𝜇
1
= 0.1; 𝑟 = 3; 𝑏 = 1; 𝛾 = 0.05; 𝑇 = 4;

𝜀 = 0.02; 𝛼 = 0.2; 𝜔 = 0.4. By directly computing, we
obtain 𝑅

0
= 0.1786 < 1. According to Theorem 4, we

know that the disease-free equilibriumof system (8) is
locally asymptotically stable for this case (see Figures
1(a)–1(d)).

(2) Consider 𝜇
1
= 0.01; 𝑟 = 3; 𝑏 = 0.1; 𝛾 = 0.05; 𝑇 = 10;

𝜀 = 0.02; 𝛼 = 0.2; 𝜔 = 0.4; 𝜏 = 1.56. By directly
computing, we obtain 𝑅

0
= 3.0303 > 1. According to

Theorem 4,we know that the disease-free equilibrium

of system (8) is locally asymptotically stable for this
case (see Figures 2(a)–2(d)).

(3) Consider 𝜇
1

= 0.01; 𝑟 = 3; 𝑏 = 0.1; 𝛾 = 0.05;
𝑇 = 10; 𝜀 = 0.02; 𝛼 = 0.2; 𝜔 = 0.4, 𝜏 = 2.56.
By directly computing, we obtain 𝑅

0
= 3.0303 > 1.

According to Theorem 6, we know that the disease-
free equilibrium of system (8) is unstable for this case
(see Figures 3(a)–3(d)).

7. Conclusion

In this paper, we formulate and analyze a new delayed epi-
demic model with information variable and limited medical
resources, the conditions for Hopf bifurcation to occur are
derived. By analyzing the model, we have found the existence
of disease-free equilibria𝐸

0
and𝐸

1
andhave a unique positive

equilibrium 𝐸
∗. The basic reproduction numberR

0
changes

the stability of the disease-free equilibrium. When R
0

<

1, we discuss the stability of the disease-free equilibrium
by analyzing the corresponding characteristic equations and
constructing a Lyapunov functional, respectively. The con-
clusion reveals that the disease dies out and when R

0
> 1,

we also get the sufficient criteria of stability switch at the
positive equilibrium. Using the time delay (i.e., incubation
time) as a bifurcation parameter, the local stability of the
endemic equilibrium is investigated, and the conditions for
Hopf bifurcation to occur are derived. Using the normal
form theory and the center manifold theorem introduced by
Hassard et al., we have studied the direction and stability
of the bifurcating periodic solutions. Our theoretical results
show that the time delay 𝜏 must be responsible for the
observed regular cycles of disease incidence.

Lastly, a numerical simulation provided that whenR
0
is

less than 1, the disease-free equilibrium is stable andwhileR
0

ismore than 1, the disease-free equilibrium is unstable; that is,
the endemic equilibrium exists (see Figure 1). Further, for 𝜏 >

0, there will exist 𝜏∗ ∈ 𝐼, such that the endemic equilibrium
is asymptotically stable for 0 < 𝜏 < 𝜏

∗ (see Figure 2) and
becomes unstable for 𝜏 staying in some right neighborhood of
𝜏
∗, with a Hopf bifurcation occurring when 𝜏 = 𝜏

∗. If 𝜏 > 𝜏
∗,

the endemic equilibrium is unstable (see Figure 3).
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We establish the interactionmodel of two cell populations following the concept of the random-walk, and assume the cellmovement
is constrained by space limitation primarily. Furthermore, we analyze the model to obtain the behavior of two cell populations as
time is closed to initial state and far into the future.

1. Introduction

In the 1980s, the movement of isolated single cells was
researched and wasmodelled by a range of authors (Oster [1];
Oster and Perelson [2]; Bottino and Fauci [3]; and Bottino, et
al. [4]). In mathematics and biomedicine, not only of one-cell
population but of multiple cell populations, there are many
researches on the movement.

A consequential early paper written by Keller and Segel
[5] modelled a partial differential equation to study the bio-
chemical regulation of bacteria movement; their research has
been the basis for models of the movement of diversified cell
populations, such as slime mould aggregation (Höfer et al.
[6]), tumor angiogenesis (Chaplain and Stuart [7]), primitive
streak formation (Painter et al. [8]), and wound repair (Pettet
et al. [9]).

In the recent years, most of the researches on cell move-
ment focused on the interaction of multiple cell popula-
tions, precise cell behavior, and the development of the
mathematics modelling. In this study we follow the contour
of two-cell interaction developed by Painter and Sherratt
[10]. The modelling of interaction of tumor- and healthy-
cell populations was developed with the concept of random-
walk (space-jump). Assuming the movement is according
to space limitation and the diffusion coefficients of two cell
populations are the same, we develop a system of partial

differential equations (PDEs). Through some calculations,
the system of PDEs is simplified to a system of ordinary dif-
ferential equations (o.d.es.). Analyzing the system of o.d.es.,
it is obtained that the number of two cell populations per unit
area in a unit amount of time is finite nomatter when; namely,
the density of each cell population does not blow up.

To model the motion of biological organisms, there are
three major concepts which would be used:

(a) the space-jump process inwhich the individual jumps
between sites on a lattice,

(b) the velocity-jump process in which discontinuous
changes in the speed or direction of an individual are
generated by a Poisson process,

(c) the flux motion in which the movement of cells are
treated as the flux motion.

In this work we adopt space-jump concept to establish
our model and from it we show how a PDE of cell movement
could be deduced.Then we use the same concept and expand
the PDE which has been deduced to reason a system of PDEs
describing the interaction of two cell population.

2. Movement of One-Cell Population

Wewill deduce an equation of cellmovement on a lattice from
the space-jump concept; moreover, we translate that equation
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into a PDE of cell movement through changing variables.
First, we list the functions and variables that will be used in
this content and call the considering cell population by 𝑢-cell
as follows:

𝑢(𝑥
𝑖
, 𝑡) ≡ 𝑢

𝑖
number of 𝑢-cell at site 𝑥

𝑖
at time 𝑡 per

unit area in a unit amount of time (the density of 𝑢-
cell at site 𝑥

𝑖
at time 𝑡),

𝐸(𝑥
𝑖
, 𝑡) ≡ 𝐸

𝑖
the information of 𝑢-cell at site 𝑥

𝑖
at time

𝑡,
𝑔(𝐸
𝑖+1
) the probability of 𝑢-cell moving from 𝑥

𝑖
to

𝑥
𝑖+1

(to right),
𝑔(𝐸
𝑖−1
) the probability of 𝑢-cell moving from 𝑥

𝑖
to

𝑥
𝑖−1

(to left).

Moreover, the meaning of 𝑔(𝐸
𝑖+1
) is that the probability

of the cell moving to the target would be influenced by the
information of the cell’s jumping target.

For example, we choose that the cell density on position
𝑥
𝑖+1

at time 𝑡 is the information of cells on 𝑥
𝑖+1

at 𝑡; then
the probability of cells moving from 𝑥

𝑖
to 𝑥
𝑖+1

would be
influenced by 𝐸

𝑖+1
, which is the density of cell population

on position 𝑥
𝑖+1

at time 𝑡. Reasonably, a decreasing function
𝑔(𝐸
𝑖+1
) with respect to 𝐸

𝑖+1
implies that a lower probability

results from the more crowded target.
Supposing that cells move continuously in time on a

lattice (discrete space), a PDE of 𝑢-cell movement would be
modelled.

In the lattice space, the 𝑢-cells’ movement at time 𝑡 can be
modelled as

𝜕𝑢
𝑖

𝜕𝑡
= 𝑔 (𝐸

𝑖
) (𝐷
𝑢
(𝑥
𝑖−1
, 𝑡) 𝑢 (𝑥

𝑖−1
, 𝑡) + 𝐷

𝑢
(𝑥
𝑖+1
, 𝑡) 𝑢 (𝑥

𝑖+1
, 𝑡))

− 𝐷
𝑢
(𝑥
𝑖
, 𝑡) 𝑢 (𝑥

𝑖
, 𝑡) (𝑔 (𝐸

𝑖−1
) + 𝑔 (𝐸

𝑖+1
)) .

(1)

We explain our idea as shown in Figure 1.
Figure 1 shows the movement of cells; the function on

the figure is the moving probability. The changing of the 𝑢-
cell density at site 𝑥

𝑖
at time 𝑡 is equal to that of the 𝑢-cell

number jumping from site 𝑥
𝑖−1

and site 𝑥
𝑖+1

minus the 𝑢-
cell number jumping to site 𝑥

𝑖−1
and site 𝑥

𝑖+1
. 𝜕𝑢
𝑖
/𝜕𝑡 means

the changing of 𝑢-cell density at site 𝑥
𝑖
and time 𝑡. The

function 𝑔(𝐸
𝑖
)𝐷
𝑢
(𝑥
𝑖−1
, 𝑡)𝑢(𝑥

𝑖−1
, 𝑡)+𝑔(𝐸

𝑖
)𝐷
𝑢
(𝑥
𝑖+1
, 𝑡)𝑢(𝑥

𝑖+1
, 𝑡)

is the increase of 𝑢-cell density at site 𝑥
𝑖
at time 𝑡 with cells

moving from site 𝑥
𝑖−1

and site 𝑥
𝑖+1

to site 𝑥
𝑖
, where 𝐷

𝑢
(𝑥
𝑖
, 𝑡)

is the jumping (diffusion) coefficient of 𝑢-cell at site 𝑥
𝑖
at time

𝑡. And −𝐷
𝑢
(𝑥
𝑖
, 𝑡)𝑢(𝑥

𝑖
, 𝑡)(𝑔(𝐸

𝑖−1
) + 𝑔(𝐸

𝑖+1
)) is the decrease of

𝑢-cell density at site 𝑥
𝑖
at time 𝑡 with cells moving to site 𝑥

𝑖−1

and site 𝑥
𝑖+1

from site 𝑥
𝑖
. Thus, (1) is obtained.

Themodel of 𝑢-cellmovement in continuous space can be
deduce from (1) in a lattice space through changing variables.
Let 𝑥
𝑖+𝑘
= 𝑥 + 𝑘ℎ, 𝑘 ∈ Z. 𝑥

𝑖
= 𝑥, 𝑥

𝑖+1
= 𝑥 + ℎ, 𝑥

𝑖−1
= 𝑥 − ℎ,

and 𝐸
𝑖
= 𝐸(𝑥, 𝑡); hence, (1) becomes

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
= 𝑔 (𝐸 (𝑥, 𝑡)) (𝐷

𝑢
(𝑥 − ℎ, 𝑡) 𝑢 (𝑥 − ℎ, 𝑡)

+ 𝐷
𝑢
(𝑥 + ℎ, 𝑡) 𝑢 (𝑥 + ℎ, 𝑡))

g(Ei) g(Ei)

g(Ei−1)

xi−1 xi xi+1

g(Ei+1)

Figure 1: The movement of cells.

− (𝑔 (𝐸 (𝑥 − ℎ, 𝑡)) + 𝑔 (𝐸 (𝑥 + ℎ, 𝑡))

× 𝐷
𝑢
(𝑥, 𝑡) 𝑢 (𝑥, 𝑡)) .

(2)

For a continuum flow we consider that the jumping
coefficient 𝐷

𝑢
(𝑥, 𝑡) = 𝐷

𝑢
is a constant. Denote 𝑢(𝑥 − ℎ, 𝑡)

and 𝑢(𝑥 + ℎ, 𝑡) by Taylor’s series

𝑢 (𝑥 − ℎ, 𝑡) = 𝑢 (𝑥, 𝑡) +
𝜕𝑢

𝜕𝑥
(𝑥 − ℎ − 𝑥)

+
1

2!

𝜕
2
𝑢

𝜕𝑥2
(𝑥 − ℎ − 𝑥)

2
+ ⋅ ⋅ ⋅ ,

𝑢 (𝑥 + ℎ, 𝑡) = 𝑢 (𝑥, 𝑡) +
𝜕𝑢

𝜕𝑥
(𝑥 + ℎ − 𝑥)

+
1

2!

𝜕
2
𝑢

𝜕𝑥2
(𝑥 + ℎ − 𝑥)

2
+ ⋅ ⋅ ⋅ .

(3)

In consequence, 𝑢(𝑥 − ℎ, 𝑡) + 𝑢(𝑥 + ℎ, 𝑡) = 2𝑢(𝑥, 𝑡) +

(𝜕
2
𝑢/𝜕𝑥
2
)ℎ
2
+ 𝑂(ℎ

4
); similarly,

𝑔 (𝐸 (𝑥 − ℎ, 𝑡)) + 𝑔 (𝐸 (𝑥 + ℎ, 𝑡)) = 2𝑔 (𝐸 (𝑥, 𝑡))

+
𝜕
2
𝑔

𝜕𝑥2
ℎ
2
+ 𝑂 (ℎ

4
) .

(4)

Consequently,

𝜕𝑢

𝜕𝑡
(𝑥, 𝑡) = 𝑔 (𝐸)𝐷

𝑢

𝜕
2
𝑢

𝜕𝑥2
ℎ
2
+ 𝑂 (ℎ

4
) 𝑔 (𝐸)

− 𝐷
𝑢
𝑢
𝜕
2
𝑔

𝜕𝑥2
ℎ
2
− 𝐷
𝑢
𝑢𝑂 (ℎ

4
) ,

(5)

and then we get

𝜕𝑢

𝜕𝑡
= 𝐷
𝑢

𝜕

𝜕𝑥
(𝑔 (𝐸)

𝜕𝑢

𝜕𝑥
− 𝑢
𝜕𝑔 (𝐸)

𝜕𝑥
) ℎ
2
+ 𝑂 (ℎ

4
) . (6)

Therefore, we consider (1) as the following.
The 𝑢-cell movement can be modelled as

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
= 𝐷
𝑢

𝜕

𝜕𝑥
(𝑔 (𝐸)

𝜕𝑢

𝜕𝑥
− 𝑢
𝜕𝑔 (𝐸)

𝜕𝑥
) , (7)

where𝐷
𝑢
is a diffusion coefficient and𝐸(𝑥, 𝑡) ≡ 𝐸 is the infor-

mation of 𝑢-cell on position 𝑥 at time 𝑡.
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3. Interaction of Two Cell Populations

Now we show how to deduce a system of PDEs which
describes the interaction of two cell populations. Here the
two considered cell populations are called by 𝑢-cell and V-cell.
What the variables and functions (𝐸(𝑥, 𝑡) and 𝑔(𝐸)) mean
is as above; moreover, denote the density of 𝑢-cell and V-
cell populations on position 𝑥 at time 𝑡 by 𝑢(𝑥, 𝑡) and V(𝑥, 𝑡),
respectively. On the other hand, we write 𝑤(𝑥, 𝑡) := 𝑢(𝑥, 𝑡) +
V(𝑥, 𝑡) to describe the total cell density. There is also another
vague function, 𝑔(𝐸), which needs to be defined clearly.

Given that space limitation influences the movement of
cells, the probability of cells moving to position 𝑥 decreases
with how the position is crowded with cells. We choose
𝑤(𝑥, 𝑡), the total cell density, to express the information of
cells on position 𝑥, namely, 𝐸(𝑥, 𝑡) = 𝑤(𝑥, 𝑡). Hence 𝑔(𝐸) =
𝑔(𝑤) = 1 − (𝑤/𝑇) shows that the probability of cells moving
to position 𝑥 decreases with the total cell density on position
𝑥, where 𝑇 ≫ 𝑤 initially and 𝑇 is a constant. Here the
assumption on 𝑔(𝐸) follows the paper written by Painter and
Sherratt (2003) [10].

After defining those variables, the model of interaction
of two cell populations (𝑢-cell and V-cell) can be deduced.
According to (7), replacing 𝑔(𝐸) by 1 − (𝑤(𝑥, 𝑡)/𝑇) ≡ 1 −
(𝑤/𝑇), then

𝜕𝑢

𝜕𝑡
= 𝐷
𝑢

𝜕

𝜕𝑥
((1 −

𝑤

𝑇
)
𝜕𝑢

𝜕𝑥
+ 𝑢

𝜕

𝜕𝑥
(1 −

𝑤

𝑇
))

= 𝐷
𝑢

𝜕

𝜕𝑥
(
𝜕𝑢

𝜕𝑥
−
𝑤

𝑇

𝜕𝑢

𝜕𝑥
+
𝑢

𝑇

𝜕𝑤

𝜕𝑥
)

= 𝐷
𝑢

𝜕

𝜕𝑥
(
𝜕𝑢

𝜕𝑥
−

V
𝑇

𝜕𝑢

𝜕𝑥
+
𝑢

𝑇

𝜕V
𝜕𝑥
)

= 𝐷
𝑢
(
𝜕
2
𝑢

𝜕𝑥2
−

V
𝑇

𝜕
2
𝑢

𝜕𝑥2
+
𝑢

𝑇

𝜕
2V
𝜕𝑥2

) ,

(8)

where 𝐷
𝑢
is a constant. Similarly, the same processes are

applied to V. We obtain the following equation:

𝜕V
𝜕𝑡
= 𝐷V (

𝜕
2V
𝜕𝑥2

−
𝑢

𝑇

𝜕
2V
𝜕𝑥2

+
V
𝑇

𝜕
2
𝑢

𝜕𝑥2
) . (9)

Consequently, we get the interaction of two cell populations.
Following space limitation, the interaction of two cell

populations can be modelled as

𝜕𝑢

𝜕𝑡
= 𝐷
𝑢
((1 −

V
𝑇
)
𝜕
2
𝑢

𝜕𝑥2
+
𝑢

𝑇

𝜕
2V
𝜕𝑥2

) ,

𝜕V
𝜕𝑡
= 𝐷V ((1 −

𝑢

𝑇
)
𝜕
2V
𝜕𝑥2

+
V
𝑇

𝜕
2
𝑢

𝜕𝑥2
) ,

(10)

where𝐷
𝑢
and𝐷V are diffusion coefficients with respect to 𝑢-

cell and V-cell (𝐷
𝑢
and𝐷V are constants), respectively.

Furthermore, through changing variables,

𝜇 ≡ 𝜇 (𝑥, 𝑡) =
𝑢 (𝑥, 𝑡)

𝑇
, ] ≡ ] (𝑥, 𝑡) =

V (𝑥, 𝑡)
𝑇

, (11)

with the consequence that

𝜕𝑢

𝜕𝑡
= 𝑇

𝜕𝜇

𝜕𝑡
,
𝜕V
𝜕𝑡
= 𝑇

𝜕]
𝜕𝑡
,
𝜕
2
𝑢

𝜕𝑥2
= 𝑇

𝜕
2
𝜇

𝜕𝑥2
,

𝜕
2V
𝜕𝑥2

= 𝑇
𝜕
2]
𝜕𝑥2

.

(12)

Rewriting system (10) as

𝑇
𝜕𝜇

𝜕𝑡
= 𝐷
𝜇
((1 − ])

𝜕
2
𝜇

𝜕𝑥2
+ 𝜇

𝜕
2]
𝜕𝑥2

)𝑇,

𝑇
𝜕]
𝜕𝑡
= 𝐷] ((1 − 𝜇)

𝜕
2]
𝜕𝑥2

+ ]
𝜕
2
𝜇

𝜕𝑥2
)𝑇,

(13)

the system of P.D.Es (10) can be simplified as

𝜕𝜇

𝜕𝑡
= 𝐷
𝜇
((1 − ])

𝜕
2
𝜇

𝜕𝑥2
+ 𝜇

𝜕
2]
𝜕𝑥2

) ,

𝜕]
𝜕𝑡
= 𝐷] ((1 − 𝜇)

𝜕
2]
𝜕𝑥2

+ ]
𝜕
2
𝜇

𝜕𝑥2
) ,

(14)

where𝐷
𝜇
and𝐷] are diffusion coefficients.

Now, the interaction of 𝑢-cell and V-cell has been mod-
elled. Model (14) will be used frequently in the following
context, and some properties of two cell populations can be
deduced from analyzing model (14). We show the analyzing
procedures and some results in the next section.

4. The Behavior and the Meaning of
](𝑥, 𝑡) = ](𝑧) as 𝑧 → 0

We have got the system of PDEs (14) which shows the
interaction of two cell populations. In this section, model (14)
will be transformed to a system of o.d.es. and then analyzed
to obtain some properties of ](𝑥, 𝑡) = ](𝑧) as 𝑧 approaches
to zero and infinite; furthermore, the properties of 𝜇(𝑥, 𝑡) =
𝜇(𝑧) will be deduced from the properties of ](𝑧) and 𝜔(𝑧),
where 𝜔(𝑧) is 𝜇(𝑧) + ](𝑧).

Our purpose is to obtain a simpler form of (14) in
order to analyze the model conveniently. Supposing that 𝑢-
cell and V-cell have the same diffusion coefficient (𝐷

𝜇
is

equal to 𝐷]), 𝑘 denotes the diffusion coefficients 𝐷
𝜇
and 𝐷].

Through changing variables, the system of PDEs (14) could
be transformed to a system of o.d.es.

Lemma 1. Given two cell populations with the same diffusion
coefficient, the system of PDEs (14) can be shown as a system of
o.d.es. as follows:

−
1

2
𝑧𝜇

(𝑧) = 𝑘 ((1 − ]) 𝜇 (𝑧) + 𝜇] (𝑧)) ,

−
1

2
𝑧] (𝑧) = 𝑘 ((1 − 𝜇) ] (𝑧) + ]𝜇 (𝑧)) ,

(15)

where 𝑧 = 𝑥/√𝑡, 𝑘 ≡ 𝐷
𝜇
= 𝐷].
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Proof. According to the system of PDEs (14), we could obtain

𝜕𝜇

𝜕𝑡
= 𝑘((1 − ])

𝜕
2
𝜇

𝜕𝑥2
+ 𝜇

𝜕
2]
𝜕𝑥2

) ,

𝜕]
𝜕𝑡
= 𝑘((1 − 𝜇)

𝜕
2]
𝜕𝑥2

+ ]
𝜕
2
𝜇

𝜕𝑥2
) .

(16)

Let 𝜇(𝑧) = 𝜇(𝑥/√𝑡) ≡ 𝜇(𝑥, 𝑡) and ](𝑧) = ](𝑥/√𝑡) ≡
](𝑥, 𝑡), with the consequence that

𝜕𝜇 (𝑥, 𝑡)

𝜕𝑡
≡ −

1

2
𝑥𝑡
−3/2
𝜇

(
𝑥

√𝑡
) ,

𝜕] (𝑥, 𝑡)
𝜕𝑡

≡ −
1

2
𝑥𝑡
−3/2] (

𝑥

√𝑡
) ,

𝜕
2
𝜇 (𝑥, 𝑡)

𝜕𝑥2
≡ 𝑡
−1
𝜇

(
𝑥

√𝑡
) ,

𝜕
2] (𝑥, 𝑡)
𝜕𝑥2

≡ 𝑡
−1] (

𝑥

√𝑡
) .

(17)

The system of PDEs (16) can be written asmodel (15).

In that case, the simpler form (model (15)) will be ana-
lyzed in the following subsections in order to obtain some
properties of ](𝑧).

Before deducing that ](𝑥, 𝑡) = ](𝑧) is bounded for 𝑧 in
[0, 𝛿] (𝛿 is very small), we must know the behavior of total
cells.

Lemma 2. The movement of total cells (𝑢-cell and V-cell)
can be modelled as a classical diffusion equation 𝜔(𝑧) +
(𝑧/2𝑘)𝜔


(𝑧) = 0.

Proof. Adding the two equations in the system (15), we obtain

𝜇

(𝑧) +

𝑧

2𝑘
𝜇

(𝑧) + ](𝑧) +

𝑧

2𝑘
](𝑧) = 0. (18)

Imposing𝜔(𝑧)upon (18), equation (18) could be rewritten
as follows:

𝜔

(𝑧) +

𝑧

2𝑘
𝜔

(𝑧) = 0. (19)

In consequence,

𝜔 (𝑧) = 𝜔 (𝑧
0
) + 𝜔

(𝑧
0
) ∫

𝑧

𝑧
0

𝑒
−𝑟
2
/4𝑘
𝑑𝑟, (20)

where 𝑧
0
= 𝑥
0
/√𝑡0 , for some site 𝑥

0
at initial time 𝑡

0
.

According to above assumptions, 𝜔(𝑥, 𝑡) ≡ 𝜔(𝑧) = 𝜇(𝑧) +
](𝑧) and 𝜇(𝑧) = 𝑢(𝑧)/𝑇 and ](𝑧) = V(𝑧)/𝑇, 𝜔(𝑧) can be
restored to (𝑢(𝑧)/𝑇) + (V(𝑧)/𝑇), where 𝑇 is a constant. In that
case, equation (20) can be transformed into the form

(
𝑢 + V
𝑇
) (𝑧) = (

𝑢 + V
𝑇
) (𝑧
0
) + (

𝑢 + V
𝑇
)



(𝑧) ∫

𝑧

𝑧
0

𝑒
−𝑟
2
/4𝑘
𝑑𝑟

(21)

and then written as

(𝑢 + V) (𝑧) = (𝑢 + V) (𝑧
0
) + (𝑢 + V) (𝑧

0
) ∫

𝑧

𝑧
0

𝑒
−𝑟
2
/4𝑘
𝑑𝑟, (22)

where 𝑧 is 𝑥/√𝑡 and 𝑘 is a constant. The last equation shows
the behavior of total cells; moreover, that is the classical
representation of the solution of the fundamental diffusion
equation.

After describing the behavior of total cells, following (15),
we replace 𝜇 by 𝜔 − ] in the equation

−
1

2
𝑧𝜇

(𝑧) = 𝑘 ((1 − ]) 𝜇 (𝑧) + 𝜇] (𝑧)) . (23)

Hence,

−
1

2
𝑧(𝜔 − ]) (𝑧) = 𝑘 ((1 − ]) (𝜔 − ]) (𝑧) + (𝜔 − ]) ] (𝑧)) .

(24)

Given that −(𝑧/2𝑘)𝜔 = 𝜔, the equation (24) is simpli-
fied as

(𝜔 (𝑧) − 1) ] (𝑧) −
𝑧

2𝑘
] (𝑧) − 𝜔 (𝑧) ] (𝑧) = 0, (25)

where 𝜔(𝑧) is as (20), with the consequence that

] (𝑧) +
(−𝑧)

2𝑘 (𝜔 (𝑧) − 1)
] (𝑧) +

(−𝜔

(𝑧))

𝜔 (𝑧) − 1
] (𝑧) = 0. (26)

Lemma 3. Equation (26) can be transformed to

] (𝑧) + 𝑎 (𝑧) ] (𝑧) = 0, (27)

where

𝑎 (𝑧) =
1 + 2𝜔


(𝑧
0
) 𝑧𝑒
−𝑧
2
/4𝑘

4𝑘 (𝜔 (𝑧) − 1)
−
4𝑘𝜔

(𝑧
0
) 𝑧𝑒
−𝑧
2
/4𝑘
+ 𝑧
2

16𝑘2(𝜔 (𝑧) − 1)
2

.

(28)

Proof. Assuming that ](𝑧) = ](𝑧) exp((1/2) ∫𝑧 𝑝(𝑟)𝑑𝑟), equa-
tion (26) is transformed as follows:

] (𝑧) + (𝑞 (𝑧) −
1

2
𝑝

(𝑧) −

1

4
𝑝
2
(𝑧)) ] (𝑧) = 0, (29)

where 𝑝(𝑧) = −𝑧/2𝑘(𝜔(𝑧)−1) and 𝑞(𝑧) = −𝜔(𝑧)/(𝜔(𝑧)−1).
Hence we denote 𝑎(𝑧) as 𝑞(𝑧) − (1/2)𝑝(𝑧) − (1/4)𝑝2(𝑧).

Therefore,

𝑎 (𝑧) =
−𝜔

(𝑧)

𝜔 (𝑧) − 1
−
1

2

−2𝑘 (𝜔 (𝑧) − 1) + 𝑧2𝑘𝜔

(𝑧)

4𝑘2(𝜔 (𝑧) − 1)
2

−
1

4

(−𝑧)
2

4𝑘2(𝜔 (𝑧) − 1)
2

=
𝜔

(𝑧
0
) 𝑧𝑒
−𝑧
2
/4𝑘

2𝑘 (𝜔 (𝑧) − 1)

+
4𝑘 (𝜔 (𝑧) − 1) − 4𝑘𝜔


(𝑧
0
) 𝑧𝑒
−𝑧
2
/4𝑘
− 𝑧
2

16𝑘2(𝜔 (𝑧) − 1)
2

.

(30)

Hence, ](𝑧) + 𝑎(𝑧)](𝑧) = 0, where ](𝑧) =

](𝑧)𝑒(1/2) ∫
𝑧

𝑝(𝑟)𝑑𝑟.
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In order to simplify the representation of the following
equations, we let

𝑎
1
(𝑧) =

𝜔

(𝑧
0
) 𝑧𝑒
−𝑧
2
/4𝑘

2𝑘 (𝜔 (𝑧) − 1)
,

𝑎
2
(𝑧) =

1

4𝑘 (𝜔 (𝑧) − 1)
,

𝑎
3 (𝑧) = −

𝜔

(𝑧
0
) 𝑧𝑒
−𝑧
2
/4𝑘

4𝑘(𝜔 (𝑧) − 1)
2
,

(31)

𝑎
4
(𝑧) = −

𝑧
2

16𝑘2(𝜔 (𝑧) − 1)
2
. (32)

The following theorem would show that ](𝑧) and ](𝑧) are
bounded on [0, 𝛿] for some small 𝛿.

Before wemake the following theorem complete, the sub-
stantiation of the next lemma must be finished.

Theorem 4. The solution of ](𝑧) + (−𝑀2
0
+ 𝑏(𝑧))](𝑧) = 0 is

bounded where𝑀
0
is a constant and 𝑏(𝑧) is closed to zero as

𝑧 ≪ 1 if the solution of ](𝑧) + (−𝑀2
0
)](𝑧) = 0 is bounded as

𝑧 ≪ 1.

Proof. Assume 𝑧 ≪ 1; the solution of ](𝑧) + (−𝑀2
0
)](𝑧) = 0

is given by

] (𝑧) = 𝑐1𝑒
𝑀
0
𝑧
+ 𝑐
2
𝑒
−𝑀
0
𝑧
, (33)

where 𝑐
1
and 𝑐
2
are constants.

We say that ]
1
(𝑧) is the solution of ](𝑧)+ (−𝑀2

0
)](𝑧) = 0

and ]
2
(𝑧) is the solution of ](𝑧) + (−𝑀2

0
+ 𝑏(𝑧))](𝑧) = 0.

Then we have
]1
 =

𝑐
1
𝑒
𝑀
0
𝑧
+ 𝑐
2
𝑒
−𝑀
0
𝑧

≤
𝑐1
 𝑒
𝑀
0
𝑧
+
𝑐2
 𝑒
−𝑀
0
𝑧

≤
𝑐1
 𝑒
𝑀
0
𝛿
+
𝑐2
 , ∀𝑧 ∈ [0, 𝛿] , 𝛿 < 1.

(34)

Let ]
21
(𝑧) = ]

2
(𝑧), ]
22
(𝑧) = ]

2
(𝑧), and

𝑉 (𝑧) = [
]
21
(𝑧)

]
22
(𝑧)
] , 𝐴 = [

0 1

𝑀
2

0
0
] ,

𝐵 (𝑧) = [
0 0

−𝑏 (𝑧) 0
] .

(35)

The equation ](𝑧)+(−𝑀2
0
+𝑏(𝑧))](𝑧) = 0 can be written

as
𝑑

𝑑𝑧
𝑉 (𝑧) = 𝐴𝑉 (𝑧) + 𝐵 (𝑧)𝑉. (36)

Let Φ(𝑧) be a fundamental solution matrix of Φ(𝑧) =
𝐴Φ(𝑧). Then

𝑉 = Φ (𝑧)Φ
−1
(𝑧
0
) 𝑉 (𝑧

0
)

+ Φ (𝑧) ∫

𝑧

𝑧
0

Φ
−1
(𝑟) 𝐵 (𝑟) 𝑉 (𝑟) 𝑑𝑟,


𝑉

≤

Φ (𝑧)Φ

−1
(𝑧
0
) 𝑉 (𝑧

0
)


+ ∫

𝑧

𝑧
0


Φ (𝑧 − 𝑟 + 𝑧

0
)Φ
−1
(𝑧
0
) 𝐵 (𝑟) 𝑉 (𝑟)


𝑑𝑟

≤ 𝑀
1
𝑀
2
+ ∫

𝑧

𝑧
0

𝑀
1 ‖𝐵 (𝑟)‖


𝑉

𝑑𝑟,

(37)

where ‖ ⋅ ‖ is the super norm and𝑀
1
= ‖Φ(𝑧)Φ

−1
(𝑧
0
)‖,𝑀
2
=

‖𝑉(𝑧
0
)‖.

By Granwall’s inequality and ∫
𝑧

𝑧
0

𝑀
1
‖𝐵(𝑟)‖𝑑𝑟 ≤

𝑀
1
‖𝐵(𝑧)‖𝛿 for all 𝑧 in [0, 𝛿], then


𝑉

≤ 𝑀
1
𝑀
2
exp(∫

𝑧

𝑧
0

𝑀
1 ‖𝐵 (𝑟)‖ 𝑑𝑟)

≤ 𝑀
1
𝑀
2
exp (𝑀

1 ‖𝐵 (𝑧)‖ 𝛿) < ∞,

(38)

for all 𝑧 in [0, 𝛿].
Hence, the solution of ](𝑧) + (−𝑀2

0
+ 𝑏(𝑧))](𝑧) = 0 is

bounded as 𝑧 ≪ 1.

Theorem 5. ](𝑧) is bounded on [0, 𝛿] for some small 𝛿; more-
over, ](𝑧) is bounded on [0, 𝛿].

Proof. Supposing that 𝜔(𝑧) = 𝜔(𝑧
0
) + 𝜔

(𝑧
0
) ∫
𝑧

𝑧
0

𝑒
−𝑟
2
/4𝑘
𝑑𝑟 is

closed to 𝜔(𝑧
0
) as 𝑧 → 0

+ and 𝜔(𝑧
0
) < 1, then 𝜔(𝑧) − 1 < 0

when 𝑧 → 0
+.

According to the above assumptions, we have

𝑎
1
(𝑧) =

𝜔

(𝑧) 𝑧𝑒

−𝑧
2
/4𝑘

2𝑘 (𝜔 (𝑧)) − 1
∼ 0 as 𝑧 ∼ 0,

𝑎
2
(𝑧) =

1

4𝑘 (𝜔 (𝑧) − 1)
∼ −𝑀

2

0
as 𝑧 ∼ 0,

𝑎
3 (𝑧) =

−𝜔

(𝑧
0
) 𝑧𝑒
−𝑧
2
/4𝑘

4𝑘(𝜔 (𝑧) − 1)
2
∼ 0 as 𝑧 ∼ 0,

𝑎
4
(𝑧) =

−𝑧
2

16𝑘2(𝜔 (𝑧) − 1)
2
∼ 0 as 𝑧 ∼ 0.

(39)

For 𝑧 ≪ 1, 𝑎
1
(𝑧)+𝑎

3
(𝑧)+𝑎

4
(𝑧) = 𝑏(𝑧), 𝑎(𝑧) = −𝑀2

0
+𝑏(𝑧)

can be estimated immediately.
Thus the equation ](𝑧) + 𝑎(𝑧)](𝑧) = 0 can be written as

] (𝑧) + (−𝑀2
0
+ 𝑏 (𝑧)) ] (𝑧) = 0 (40)

for all 𝑧 ≪ 1.
Because the solution of ](𝑧)+(−𝑀2

0
)](𝑧) = 0 is bounded

as 𝑧 → 0, the solution of ](𝑧) + (−𝑀2
0
+ 𝑏(𝑧))](𝑧) = 0 is

also bounded as 𝑧 → 0. Consequently, ](𝑧), the solution of
](𝑧) + (−𝑀2

0
+ 𝑏(𝑧))](𝑧) = 0 for all 𝑧 ≪ 1, is bounded on

[0, 𝛿] for some small 𝛿, saying that |](𝑧)| ≤ 𝑀 and 𝑀 is a
constant.
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Hence,

] (𝑧) = ] (𝑧) exp(−1
2
∫

𝑧

𝑝 (𝑟) 𝑑𝑟)

≤ 𝑀 exp(−1
2
∫

𝑧

𝑝 (𝑟) 𝑑𝑟) ,

(41)

where 𝑝(𝑧) = (−𝑧)/(2𝑘(𝜔(𝑧) − 1)) > 0 for some 𝑘 > 0;
moreover, since 𝑝(𝑧) > 0, 𝑒((−1)/2) ∫

𝑧

𝑝(𝑟)𝑑𝑟
≤ 1 for all 𝑧 in

[0, 𝛿] and for some 𝑘 > 0. In consequence, ](𝑧) is bounded by
𝑀 exp((−1/2) ∫𝑧 𝑝(𝑟)𝑑𝑟) where𝑀 is a constant and 𝑝(𝑧) =
−𝑧/2𝑘(𝜔(𝑧) − 1) on [0, 𝛿] for some 𝑘 > 0.

It is verified that ](𝑧) is bounded by
𝑀 exp((−1/2) ∫𝑧 𝑝(𝑟)𝑑𝑟) where 𝑀 is a constant and
𝑝(𝑧) = −𝑧/2𝑘(𝜔(𝑧) − 1) on [0, 𝛿], where 𝑧 is 𝑥/√𝑡 and 𝛿
is very small. Furthermore, we restore ](𝑧) to V(𝑥/√𝑡)/𝑇,
where 𝑇 is a positive constant. 𝑧 → 0 expresses that time
𝑡 approximates infinite. Therefore, Theorem 5 indicates that
the density of V-cell population approximates finite number
as time approaches infinite. Through writing 𝑢(𝑥/√𝑡) as
𝑤(𝑥/√𝑡) − V(𝑥/√𝑡), it could be deduced immediately that
the density of 𝑢-cell population is finite no matter how long
time passes.

5. The Behavior and the Meaning of
](𝑥, 𝑡) = ](𝑧) as 𝑧 → ∞

Near 𝑧 = 0 (namely, 𝑥/√𝑡 approaches zero), the boundedness
of ](𝑧) has been shown. Hence, we obtain that the density of
𝑢-cell and V-cell populations would not blow up when time
approached infinity. In this section, through justifying that
](𝑧) is bounded by 𝑒𝑧

2
/8𝑘𝛿 first, we will show that ](𝑧) is also

bounded when 𝑧 approaches∞.

Theorem 6. The solution of ](𝑧) + 𝑎(𝑧)](𝑧) = 0, got by
Lemma 3, is bounded by 𝑒𝑧

2
/8𝑘𝛿 as 𝑧 approaches ∞, where

𝛿 > 0.

Proof. Supposing 𝜔(𝑧) = 𝜔(𝑧
0
) + 𝜔


(𝑧
0
) ∫
𝑧 exp(−𝑟2/4𝑘)𝑑𝑟

approaches 1−, there is a 𝛿 > 0 such that 𝜔 − 1 approaches
−𝛿 as 𝑧 → ∞. As 𝑧 tends to infinity, 𝑎(𝑧) could be rewritten
as the following asymptotic form:

𝑎 (𝑧) =
2𝜔

(𝑧
0
) 𝑧𝑒
−𝑧
2
/4𝑘
+ 1

4𝑘 (𝜔 (𝑧) − 1)
−
4𝑘𝜔

(𝑧
0
) 𝑧𝑒
−𝑧
2
/4𝑘
+ 𝑧
2

16𝑘2(𝜔 (𝑧) − 1)
2

∼
−1

4𝑘𝛿
− (

𝑧

4𝑘𝛿
)

2

, as 𝑧 → ∞.

(42)

Consider

] (𝑧) + (
−1

4𝑘𝛿
− (

𝑧

4𝑘𝛿
)

2

) ] (𝑧) = 0 (43)

and let ]
1
(𝑧) = 𝑒

𝑓(𝑧) be a solution of (43). Immediately,

𝑓

(𝑧) + (𝑓


(𝑧))
2

=
1

4𝑘𝛿
+ (

𝑧

4𝑘𝛿
)

2

(44)

is obtained. Assume 𝑓(𝑧) = 𝑏
0
𝑧
2
+ 𝑏
1
𝑧 + 𝑏
2
, where 𝑏

0
, 𝑏
1
, and

𝑏
2
are constants; then

4𝑏
2

0
𝑧
2
+ 4𝑏
0
𝑏
1
𝑧 + 𝑏
2

1
+ 2𝑏
0
=
1

4𝑘𝛿
+ (

1

4𝑘𝛿
)

2

𝑧
2
. (45)

Consequently, 𝑏
0
= 1/8𝑘𝛿 and 𝑏

1
= 0; then 𝑓(𝑧) =

(𝑧
2
/8𝑘𝛿) + 𝑏

2
. Hence, we get ]

1
(𝑧) = 𝑏𝑒

𝑧
2
/8𝑘𝛿, where 𝑏 ∈ R.

Now let ]
2
be another solution of (43). Assume that ]

2
=

𝑔(𝑧)𝑒
𝑧
2
/8𝑘𝛿, 𝑔(𝑧) + (𝑧/2𝑘𝛿)𝑔(𝑧) = 0, with the consequence

that 𝑔(𝑧) = 𝑔(𝑧
0
) + 𝑔

(𝑧
0
) ∫
𝑧

𝑧
0

𝑒
(−𝑟
2
)/4𝑘𝛿

𝑑𝑟. We get

]
2 (𝑧) = 𝑔 (𝑧0) 𝑒

𝑧
2
/8𝑘𝛿

+ 𝑔

(𝑧
0
) ∫

𝑧

𝑧
0

𝑒
((𝑧
2
/8𝑘𝛿)+(−𝑟

2
/4𝑘𝛿))

𝑑𝑟,

(46)

Moreover, ∫
𝑧

𝑒
((𝑧
2
/8𝑘𝛿)+(−𝑟

2
/4𝑘𝛿))

𝑑𝑟 is convergent since
(𝑧
2
/8𝑘𝛿) + (−𝑟

2
/4𝑘𝛿) = (𝑧

2
− 2𝑟
2
)/8𝑘𝛿 < 0, as 𝑟 > 𝑧/√2.

Therefore, the solution of ](𝑧) + 𝑎(𝑧)](𝑧) = 0 is

𝑏𝑒
𝑧
2
/8𝑘𝛿

+ (𝑔 (𝑧
0
) exp( 𝑧

2

8𝑘𝛿
) + 𝑔


(𝑧
0
)

× ∫

𝑧

𝑧
0

exp( 𝑧
2

8𝑘𝛿
+
−𝑟
2

4𝑘𝛿
)𝑑𝑟) ,

(47)

and then

] (𝑧) ≤ (𝑏 + 𝑔 (𝑧
0
)) 𝑒
𝑧
2
/8𝑘𝛿

+𝑀, (48)

where 𝑏 is a constant and 𝑀 is defined as
𝑔

(𝑧
0
)(∫
𝑧

𝑧
0

exp((𝑧2/8𝑘𝛿) + (−𝑟2/4𝑘𝛿))𝑑𝑟).

After substantiating that ](𝑧) is bounded by 𝑒𝑧
2
/8𝑘𝛿 as 𝑧

approaches∞, where 𝛿 > 0, it is not difficult to verify that
](𝑧) is also bounded as 𝑧 approaches∞.

Theorem 7. ](𝑧) is bounded when 𝑧 approaches∞.

Proof. Given 𝑧 ≫ 1, in above Theorem 6, we have trans-
formed

] (𝑧) +
(−𝑧)

2𝑘 (𝜔 (𝑧) − 1)
] (𝑧) +

(−𝜔

(𝑧))

𝜔 (𝑧) − 1
] (𝑧) = 0 (49)

to ](𝑧) + 𝑎(𝑧)](𝑧) = 0 through changing ](𝑧) to
](𝑧)𝑒(−1/2) ∫

𝑧

(−𝑧/2𝑘(𝜔(𝑧)−1))𝑑𝑟, and

] (𝑧) exp(−1
2
∫

𝑧
−𝑧

2𝑘 (𝜔 (𝑧) − 1)
𝑑𝑟)

≤ ((𝑏 + 𝑔 (𝑧
0
)) 𝑒
𝑧
2
/8𝑘𝛿

+𝑀) exp(−1
2
∫

𝑧
𝑟

2𝑘𝛿
𝑑𝑟) .

(50)

In consequence,

] (𝑧) ≤ ((𝑏 + 𝑔 (𝑧0)) 𝑒
𝑧
2
/8𝑘𝛿

+𝑀) 𝑒
−𝑧
2
/8𝑘𝛿

= (𝑏 + 𝑔 (𝑧
0
)) + 𝑀𝑒

−𝑧
2
/8𝑘𝛿
,

(51)
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where 𝑏 ∈ R and𝑀 ≡ 𝑔

(𝑧
0
)(∫
𝑧

𝑒
((𝑧
2
/8𝑘𝛿)+(−𝑟

2
/4𝑘𝛿))

𝑑𝑟). Hence,
](𝑧) is bounded by

(𝑏 + 𝑔 (𝑧
0
)) + 𝑀𝑒

−𝑧
2
/8𝑘𝛿 (52)

as 𝑧 → ∞.

Restoring 𝑧 to 𝑥/√𝑡, according to Theorem 7, we know
that ](𝑥/√𝑡) is bounded by (𝑏 + 𝑔(𝑧

0
)) +𝑀 exp(−𝑥2/(8𝑘𝛿𝑡))

as 𝑥/√𝑡 approaches∞; namely, 𝑡 approaches initial time. In
consequence, it is obtained immediately that the density of
V-cell population which is denoted by ](𝑥/√𝑡)/𝑇 tends to a
finite number as V-cell population has begun moving for a
fleeting time. Furthermore, the density of 𝑢-cell population
would also approximate a finite number for the same time.

If it is possible, we hope the solutions of (10) could be
obtained by using our methods that were analytically used in
[11–18] or numerically used in [19, 20].

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

Thanks are due to Professor Long-Yi Tsai, Professor Tai-Ping
Liu, Professor Ton Yang, and Professor Shih-Shien Yu for
their continuous encouragement and discussions over this
work, toMetta Education, Grand Hall, and Auria Solarfor for
their financial assistance, and to the referee for his interest
and helpful comments on this paper.

References

[1] G. F. Oster, “On the crawling of cells,” Journal of Embryology and
Experimental Morphology, vol. 83, pp. 329–364, 1984.

[2] G. F. Oster and A. S. Perelson, “Cell spreading and motility: a
model lamellipod,” Journal of Mathematical Biology, vol. 21, no.
3, pp. 383–388, 1985.

[3] D. C. Bottino and L. J. Fauci, “A computational model of
ameboid deformation and locomotion,” European Biophysics
Journal, vol. 27, no. 5, pp. 532–539, 1998.

[4] D. Bottino, A. Mogilner, T. Roberts, M. Stewart, and G. Oster,
“How nematode sperm crawl,” Journal of Cell Science, vol. 115,
no. 2, pp. 367–384, 2002.

[5] E. F. Keller and L. A. Segel, “Initiation of slimemold aggregation
viewed as an instability,” Journal of Theoretical Biology, vol. 26,
no. 3, pp. 399–415, 1970.
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Two virus infection models with antibody immune response and chronically infected cells are proposed and analyzed. Bilinear
incidence rate is considered in the first model, while the incidence rate is given by a saturated functional response in the second
one.Onemain feature of thesemodels is that it includes both short-lived infected cells and chronically infected cells.The chronically
infected cells produce much smaller amounts of virus than the short-lived infected cells and die at a much slower rate. Our
mathematical analysis establishes that the global dynamics of the two models are determined by two threshold parameters 𝑅

0

and 𝑅
1
. By constructing Lyapunov functions and using LaSalle’s invariance principle, we have established the global asymptotic

stability of all steady states of the models. We have proven that, the uninfected steady state is globally asymptotically stable (GAS)
if 𝑅
0
< 1, the infected steady state without antibody immune response exists and it is GAS if 𝑅

1
< 1 < 𝑅

0
, and the infected steady

state with antibody immune response exists and it is GAS if 𝑅
1
> 1. We check our theorems with numerical simulation in the end.

1. Introduction

In recent years, many mathematical models have been pro-
posed to study the dynamics of viral infections such as the
human immunodeficiency virus (HIV), the hepatitis C virus
(HCV), and the hepatitis B virus (HBV) (see, e.g., [1–17]).
Such virus infection models can be very useful in the control
of epidemic diseases and provide insights into the dynamics
of viral load in vivo. Therefore, mathematical analysis of
the virus infection models can play a significant role in
the development of a better understanding of diseases and
various drug therapy strategies. Most of the mathematical
models of viral infection presented in the literature did not
differentiate between the short-lived infected cells and chron-
ically infected cells. The chronically infected cells produce
much smaller amounts of virus than the short-lived infected
cells and die at a much slower rate [18]. The virus dynamics
model with chronically infected cells and under the effect of
antiviral drug therapy was introduced in [18] as

̇𝑇 = 𝜆 − 𝑑𝑇 − (1 − 𝜀) 𝑘𝑇𝑉,

̇𝑇
∗
= (1 − 𝛼) (1 − 𝜀) 𝑘𝑇𝑉 − 𝛿𝑇

∗
,

̇𝐶
∗
= 𝛼 (1 − 𝜀) 𝑘𝑇𝑉 − 𝑎𝐶

∗
,

𝑉 = 𝑁
𝑇
𝛿𝑇
∗
+ 𝑁
𝐶
𝑎𝐶
∗
− 𝑐𝑉,

(1)

where 𝑇, 𝑇∗, 𝐶∗, and 𝑉 are the concentration of the unin-
fected cells, short-lived infected cells, chronically infected
cells, and free virus particles, respectively. The constant 𝜆
is the rate at which new uninfected cells are generated and
𝑑 is the natural death rate constant of uninfected cells. 𝑘
is the infection rate constant. The fractions (1 − 𝛼) and 𝛼

with 0 < 𝛼 < 1 are the probabilities that, upon infection,
an uninfected cell will become either short-lived infected or
chronically infected. 𝛿 and 𝑎 are the death rate constants
of the short-lived infected cells and chronically infected
cells, respectively. 𝑁

𝑇
and 𝑁

𝐶
are the average number of

virions produced in the lifetime of the short-lived infected
and chronically infected cells, respectively. The chronically
infected cells produce much smaller amounts of virus than
the short-lived infected cells and die at a much slower rate
(i.e., 𝑁

𝑇
> 𝑁
𝐶
and 𝛿 > 𝑎). The free viruses are cleared

with rate constant 𝑐. The drug efficacy is denoted by 𝜀 and
0 ≤ 𝜀 ≤ 1.
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2 Abstract and Applied Analysis

It is observed that the basic and global properties ofmodel
(1) are not studied in the literature. Moreover, model (1) did
not take into consideration the immune response. During
viral infections, the host immune system reacts with antigen-
specific immune response. The immune system is described
as having two “arms”: the cellular arm, which depends on
T cells to mediate attacks on virally infected or cancerous
cells, and the humoral arm, which depends on B cells. The
B cell is a type of blood cell which belongs to a group of
white blood cells (WBCs) called lymphocytes. WBCs protect
the body from infection. The main job of B cells is to fight
infection. B cells get activated when an infection occurs and
they produce molecules called antibodies that attach to the
surface of the infectious agent.These antibodies either kill the
infection causing organismormake it prone to attack by other
WBCs. They play a major role in the immune system, which
guards the body against infection. Virus infection models
with antibody immune response have been analyzed bymany
researchers (see [19–28]). However, in all of these works, the
chronically infected cells have been neglected.

In this paper, we propose two virus infectionmodels with
antibody immune response and chronically infected cells.
In the first model, bilinear incidence rate which is based
on the law of mass-action is considered. The second model
generalizes the first one where the incidence rate is given by
a saturation functional response. The global stability of all
equilibria of the models is established using the method of
Lyapunov function.We prove that the global dynamics of the
models are determined by two threshold parameters 𝑅

0
and

𝑅
1
. If 𝑅
0
≤ 1, then the infection-free equilibrium is globally

asymptotically stable (GAS), if 𝑅
1
≤ 1 < 𝑅

0
, then the infected

equilibrium without antibody immune response exists and
it is GAS, and if 𝑅

1
> 1 then the infected equilibrium with

antibody immune response exists and it is GAS.

2. Model with Bilinear Incidence Rate

In this section we propose a viral dynamics model with
antibody immune response, taking into consideration the
chronically infected cells. Based on themass-action principle,
we assume that the incidence rate of infection is bilinear;
that is, the infection rate per virus and per uninfected cell is
constant:

̇𝑇 = 𝜆 − 𝑑𝑇 − (1 − 𝜀) 𝑘𝑇𝑉, (2)

̇𝑇
∗
= (1 − 𝛼) (1 − 𝜀) 𝑘𝑇𝑉 − 𝛿𝑇

∗
, (3)

̇𝐶
∗
= 𝛼 (1 − 𝜀) 𝑘𝑇𝑉 − 𝑎𝐶

∗
, (4)

𝑉 = 𝑁
𝑇
𝛿𝑇
∗
+ 𝑁
𝐶
𝑎𝐶
∗
− 𝑐𝑉 − 𝑟𝑉𝑍, (5)

̇𝑍 = 𝑔𝑉𝑍 − 𝜇𝑍, (6)

where 𝑍 is the concentration of antibody immune cells. The
viruses are attacked by the antibodies with rate 𝑟𝑉𝑍. The
antibody immune cells are proliferated at rate 𝑔𝑉𝑍 and die at
rate 𝜇𝑍. All the other variables and parameters of the model
have the same meanings as given in (1).

2.1. Positive Invariance. We note that model (2)–(6) are
biologically acceptable in the sense that no population goes
negative. It is straightforward to check the positive invariance
of the nonnegative orthant R5

+
by model (2)–(6) (see, e.g.,

[6]). In the following, we show the boundedness of the
solution of model (2)–(6).

Proposition 1. There exist positive numbers 𝐿
𝑖
, 𝑖 = 1, 2, 3,

such that the compact set

Ω = {(𝑇, 𝑇
∗
, 𝐶
∗
, 𝑉, 𝑍) ∈ R

4

+
: 0 ≤ 𝑇, 𝑇

∗
, 𝐶
∗
≤ 𝐿
1
,

0 ≤ 𝑉 ≤ 𝐿
2
, 0 ≤ 𝑍 ≤ 𝐿

3
}

(7)

is positively invariant.

Proof. To show the boundedness of the solutions we let
𝐺
1
(𝑡) = 𝑇(𝑡) + 𝑇

∗
(𝑡) + 𝐶

∗
(𝑡); then

̇𝐺
1 (𝑡) = 𝜆 − 𝑑𝑇 (𝑡) − (1 − 𝜀) 𝑘𝑇 (𝑡) 𝑉 (𝑡)

+ (1 − 𝛼) (1 − 𝜀) 𝑘𝑇 (𝑡) 𝑉 (𝑡) − 𝛿𝑇
∗

+ 𝛼 (1 − 𝜀) 𝑘𝑇 (𝑡) 𝑉 (𝑡) − 𝑎𝐶
∗
(𝑡)

≤ 𝜆 − 𝑠
1
𝐺
1 (𝑡) ,

(8)

where 𝑠
1
= min{𝑑, 𝑎, 𝛿}. Hence 𝐺

1
(𝑡) ≤ 𝐿

1
, if 𝐺
1
(0) ≤ 𝐿

1

where 𝐿
1
= 𝜆/𝑠

1
. Since 𝑇(𝑡) > 0, 𝑇∗(𝑡) ≥ 0, and 𝐶∗(𝑡) ≥ 0,

then 0 ≤ 𝑇(𝑡),𝑇∗(𝑡),𝐶∗(𝑡) ≤ 𝐿
1
if 0 ≤ 𝑇(0)+𝑇∗(0)+𝐶∗(0) ≤

𝐿
1
. Let 𝐺

2
(𝑡) = 𝑉(𝑡) + (𝑟/𝑔)𝑍(𝑡); then

̇𝐺
2
(𝑡) = 𝑁

𝑇
𝛿𝑇
∗
(𝑡) + 𝑁

𝐶
𝑎𝐶
∗
(𝑡) − 𝑐𝑉 (𝑡) −

𝑟𝜇

𝑔
𝑍 (𝑡)

≤ (𝑁
𝑇
𝛿 + 𝑁

𝐶
𝑎) 𝐿
1
− 𝑠
2
(𝑉 (𝑡) +

𝑟

𝑔
𝑍 (𝑡))

= (𝑁
𝑇
𝛿 + 𝑁

𝐶
𝑎) 𝐿
1
− 𝑠
2
𝐺
2
(𝑡) ,

(9)

where 𝑠
2
= min{𝑐, 𝜇}. Hence𝐺

2
(𝑡) ≤ 𝐿

2
, if𝐺
2
(0) ≤ 𝐿

2
, where

𝐿
2
= (𝑁
𝑇
𝛿 + 𝑁

𝐶
𝑎)𝐿
1
/𝑠
2
. Since 𝑉(𝑡) ≥ 0 and 𝑍(𝑡) ≥ 0 then

0 ≤ 𝑉(𝑡) ≤ 𝐿
2
and 0 ≤ 𝑍(𝑡) ≤ 𝐿

3
if 0 ≤ 𝑉(0) + (𝑟/𝑔)𝑍(0) ≤

𝐿
2
, where 𝐿

3
= 𝑔𝐿
2
/𝑟.

2.2. Equilibria. System (2)–(6) always admits an infection-
free equilibrium 𝐸

0
= (𝑇
0
, 0, 0, 0, 0), where 𝑇

0
= 𝜆/𝑑. In

addition to 𝐸
0
, the system can have an infected equilibrium

without antibody immune response 𝐸
1
(𝑇
1
, 𝑇
∗

1
, 𝐶
∗

1
, 𝑉
1
, 0) and

an infected equilibrium with antibody immune response
𝐸
2
(𝑇
2
, 𝑇
∗

2
, 𝐶
∗

2
, 𝑉
2
, 𝑍
2
) where

𝑇
1
=

𝑐

(1 − 𝜀) 𝑘 [(1 − 𝛼)𝑁
𝑇
+ 𝛼𝑁
𝐶
]
,

𝑇
∗

1
=
(1 − 𝛼) 𝜆 {(1 − 𝜀) 𝑘𝑇

0
[(1 − 𝛼)𝑁

𝑇
+ 𝛼𝑁
𝐶
] − 𝑐}

𝛿 (1 − 𝜀) 𝑘𝑇0 [(1 − 𝛼)𝑁𝑇 + 𝛼𝑁𝐶]
,

𝐶
∗

1
=
𝛼𝜆 {(1 − 𝜀) 𝑘𝑇

0
[(1 − 𝛼)𝑁

𝑇
+ 𝛼𝑁
𝐶
] − 𝑐}

𝑎 (1 − 𝜀) 𝑘𝑇
0
[(1 − 𝛼)𝑁

𝑇
+ 𝛼𝑁
𝐶
]

,

𝑉
1
=
𝑑 {(1 − 𝜀) 𝑘𝑇0 [(1 − 𝛼)𝑁𝑇 + 𝛼𝑁𝐶] − 𝑐}

(1 − 𝜀) 𝑘𝑐
,
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𝑇
2
=

𝜆𝑔

𝑔𝑑 + (1 − 𝜀) 𝑘𝜇
, 𝑇

∗

2
=
(1 − 𝛼) (1 − 𝜀) 𝑘𝜆𝜇

𝛿 (𝑑𝑔 + (1 − 𝜀) 𝑘𝜇)
,

𝐶
∗

2
=

𝛼 (1 − 𝜀) 𝑘𝜆𝜇

𝑎 (𝑑𝑔 + (1 − 𝜀) 𝑘𝜇)
, 𝑉

2
=
𝜇

𝑔
,

𝑍
2
=
𝑐

𝑟
(
𝑑𝑔 (1 − 𝜀) 𝑘𝑇0 [(1 − 𝛼)𝑁𝑇 + 𝛼𝑁𝐶]

𝑐 (𝑑𝑔 + (1 − 𝜀) 𝑘𝜇)
− 1) .

(10)

We discuss the local stability of the infection-free equilibrium
𝐸
0
. At the infection-free equilibrium 𝐸

0
(𝑇
0
, 0, 0, 0, 0), the

system has the Jacobian matrix given by

𝐽
𝐸
0

=

[
[
[
[
[

[

−𝑑 0 0 − (1 − 𝜀) 𝑘𝑇
0

0

0 −𝛿 0 (1 − 𝛼) (1 − 𝜀) 𝑘𝑇
0

0

0 0 −𝑎 𝛼 (1 − 𝜀) 𝑘𝑇
0

0

0 𝛿𝑁
𝑇
𝑎𝑁
𝐶

−𝑐 0

0 0 0 0 −𝜇

]
]
]
]
]

]

. (11)

The characteristic equation of the Jacobian matrix evaluated
at 𝐸
0
is

(𝑠 + 𝑑) (𝑠 + 𝜇) (𝑠
3
+ 𝑎
1
𝑠
2
+ 𝑎
2
𝑠 + 𝑎
3
) = 0, (12)

where
𝑎
1
= 𝑎 + 𝑐 + 𝛿,

𝑎
2
= 𝑎𝑐 + 𝑎𝛿 + 𝑐𝛿 − (1 − 𝛼) (1 − 𝜀) 𝑘𝑇

0
𝑁
𝑇
𝛿

− 𝛼 (1 − 𝜀) 𝑘𝑇
0
𝑁
𝐶
𝑎,

𝑎
3
= 𝑎𝑐𝛿(1 −

(1 − 𝜀) 𝑘𝑇0 [(1 − 𝛼)𝑁𝑇 + 𝛼𝑁𝐶]

𝑐
) .

(13)

Weobserve that (12) has twonegative eigenvalues 𝑠
1
= −𝑑 and

𝑠
2
= −𝜇. By the Routh-Hurwitz criterion, the remaining three

eigenvalues of (12) have negative real parts if 𝑎
1
> 0, 𝑎

3
> 0,

and 𝑎
1
𝑎
2
−𝑎
3
> 0.We have 𝑎

1
> 0 and if (1−𝜀)𝑘𝑇

0
[(1−𝛼)𝑁

𝑇
+

𝛼𝑁
𝐶
]/𝑐 < 1, then 𝑎

3
> 0 and

𝑎
1
𝑎
2
− 𝑎
3
= 𝑎𝛿
2
+ 𝑎
2
𝛿 + 2𝑎𝑐𝛿

+ 𝑎 (𝑎 + 𝑐) [𝑐 − 𝛼 (1 − 𝜀) 𝑘𝑇
0
𝑁
𝐶
]

+ 𝛿 (𝛿 + 𝑐) [𝑐 − (1 − 𝛼) (1 − 𝜀) 𝑘𝑇
0
𝑁
𝑇
]

> 0.

(14)

Now we define the basic reproduction number for system
(2)–(6) as

𝑅
0
=
(1 − 𝜀) 𝑘𝑇

0
[(1 − 𝛼)𝑁

𝑇
+ 𝛼𝑁
𝐶
]

𝑐
. (15)

It follows that the equilibria 𝐸
1
and 𝐸

2
can be written as

𝑇
1
=
𝑇
0

𝑅
0

, 𝑇
∗

1
=
(1 − 𝛼) 𝜆

𝛿

(𝑅
0
− 1)

R
0

,

𝐶
∗

1
=
𝛼𝜆

𝑎

(𝑅
0
− 1)

𝑅
0

, 𝑉
1
=

𝑑

(1 − 𝜀) 𝑘
(𝑅
0
− 1) ,

𝑇
2
=

𝜆𝑔

𝑔𝑑 + (1 − 𝜀) 𝑘𝜇
, 𝑇

∗

2
=
(1 − 𝛼) (1 − 𝜀) 𝑘𝜆𝜇

𝛿 (𝑑𝑔 + (1 − 𝜀) 𝑘𝜇)
,

𝐶
∗

2
=

𝛼 (1 − 𝜀) 𝑘𝜆𝜇

𝑎 (𝑑𝑔 + (1 − 𝜀) 𝑘𝜇)
, 𝑉

2
=
𝜇

𝑔
,

𝑍
2
=
𝑐

𝑟
(

𝑑𝑔𝑅
0

𝑑𝑔 + (1 − 𝜀) 𝑘𝜇
− 1) .

(16)

We note that 𝑇
1
, 𝑇∗
1
, 𝐶∗
1
, and𝑉

1
are positive when 𝑅

0
> 1 and

that 𝑍
2
> 0 when 𝑑𝑔𝑅

0
/(𝑑𝑔 + (1 − 𝜀)𝑘𝜇) > 1. Now we define

another threshold parameter 𝑅
1
as

𝑅
1
=

𝑅
0

1 + ((1 − 𝜀) 𝑘𝜇/𝑑𝑔)
. (17)

Clearly 𝑅
1
< 𝑅
0
.

From (2.2) we have the following statements:
(i) if 𝑅

0
≤ 1, then there exists only positive equilibrium

𝐸
0
;

(ii) if 𝑅
1
≤ 1 < 𝑅

0
, then there exist two positive equilibria

𝐸
0
and 𝐸

1
;

(iii) if 𝑅
1
> 1, then there exist three positive equilibria 𝐸

0
,

𝐸
1
, and 𝐸

2
.

2.3. Global Stability Analysis. In this section, we study the
global stability of all the equilibria of system (2)–(6) employ-
ing the method of Lyapunov function.

Theorem 2. For system (2)–(6), if 𝑅
0
≤ 1, then 𝐸

0
is GAS.

Proof. Define a Lyapunov function 𝑈
0
as follows:

𝑈
0
= 𝑇
0
(
𝑇

𝑇
0

− 1 − ln( 𝑇

𝑇
0

)) + 𝜂
1
𝑇
∗
+ 𝜂
2
𝐶
∗
+ 𝜂
3
𝑉 + 𝜂
4
𝑍,

(18)

where 𝜂
𝑖
, 𝑖 = 1, . . . , 4, are positive constants to be determined

below. Calculating the derivative of 𝑈
0
along the solutions of

the system (2)–(6) and applying 𝜆 = 𝑇
0
𝑑, we obtain

𝑑𝑈
0

𝑑𝑡
= (1 −

𝑇
0

𝑇
) (𝜆 − 𝑑𝑇 − (1 − 𝜀) 𝑘𝑇𝑉)

+ 𝜂
1
((1 − 𝛼) (1 − 𝜀) 𝑘𝑇𝑉 − 𝛿𝑇

∗
)

+ 𝜂
2
(𝛼 (1 − 𝜀) 𝑘𝑇𝑉 − 𝑎𝐶

∗
)

+ 𝜂
3
(𝑁
𝑇
𝛿𝑇
∗
+ 𝑁
𝐶
𝑎𝐶
∗
− 𝑐𝑉 − 𝑟𝑉𝑍)

+ 𝜂
4
(𝑔𝑉𝑍 − 𝜇𝑍) .

(19)

Let 𝜂
𝑖
, 𝑖 = 1, . . . , 4, be chosen such as

(1 − 𝛼) 𝜂
1
+ 𝛼𝜂
2
= 1, 𝜂

1
− 𝑁
𝑇
𝜂
3
= 0,

𝜂
2
− 𝑁
𝐶
𝜂
3
= 0, 𝑔𝜂

4
− 𝑟𝜂
3
= 0.

(20)

The solution of (20) is given by

𝜂
1
=

𝑁
𝑇

(1 − 𝛼)𝑁
𝑇
+ 𝛼𝑁
𝐶

, 𝜂
2
=

𝑁
𝐶

(1 − 𝛼)𝑁
𝑇
+ 𝛼𝑁
𝐶

,

𝜂
3
=

1

(1 − 𝛼)𝑁
𝑇
+ 𝛼𝑁
𝐶

, 𝜂
4
=

𝑟

𝑔 [(1 − 𝛼)𝑁
𝑇
+ 𝛼𝑁
𝐶
]
.

(21)
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The values of 𝜂
𝑖
, 𝑖 = 1, . . . , 4, given by (21) will be used

throughout the paper. Then

𝑑𝑈
0

𝑑𝑡
= (1 −

𝑇
0

𝑇
) (𝜆 − 𝑑𝑇) + (1 − 𝜀) 𝑘𝑇0𝑉 − 𝜂

3
𝑐𝑉 − 𝜂

4
𝜇𝑍

= −𝑑
(𝑇 − 𝑇

0
)
2

𝑇
+ 𝜂
3
𝑐 (𝑅
0
− 1)𝑉 − 𝜂

4
𝜇𝑍.

(22)

If 𝑅
0
≤ 1 then 𝑑𝑈

0
/𝑑𝑡 ≤ 0 for all 𝑇,𝑉, 𝑍 > 0. Thus the

solutions of system (2)–(6) limit to 𝑀, the largest invariant
subset of {𝑑𝑈

0
/𝑑𝑡 = 0}. Clearly, it follows from (22) that

𝑑𝑈
0
/𝑑𝑡 = 0 if and only if 𝑇 = 𝑇

0
, 𝑉 = 0, and 𝑍 = 0. Noting

that𝑀 is invariant, for each element of𝑀we have𝑉 = 0 and
𝑍 = 0, and then 𝑉 = 0. From (5) we derive that

0 = 𝑉 = 𝑁
𝑇
𝛿𝑇
∗
+ 𝑁
𝐶
𝑎𝐶
∗
. (23)

Since 𝑇∗, 𝐶∗ ≥ 0, then 𝑇∗ = 𝐶
∗
= 0. Hence 𝑑𝑈

0
/𝑑𝑡 = 0 if

and only if 𝑇 = 𝑇
0
, 𝑇∗ = 0, 𝐶∗ = 0, 𝑉 = 0, and 𝑍 = 0. It

follows from LaSalle’s invariance principle that the infection-
free equilibrium 𝐸

0
is GAS when 𝑅

0
≤ 1.

Theorem 3. For system (2)–(6), if 𝑅
1
≤ 1 < 𝑅

0
, then 𝐸

1
is

GAS.

Proof. Define the following Lyapunov function:

𝑈
1
= 𝑇
1
(
𝑇

𝑇
1

− 1 − ln( 𝑇

𝑇
1

)) + 𝜂
1
𝑇
∗

1
(
𝑇
∗

𝑇
∗

1

− 1 − ln(𝑇
∗

𝑇
∗

1

))

+ 𝜂
2
𝐶
∗

1
(
𝐶
∗

𝐶
∗

1

− 1 − ln(𝐶
∗

𝐶
∗

1

))

+ 𝜂
3
𝑉
1
(
𝑉

𝑉
1

− 1 − ln( 𝑉
𝑉
1

)) + 𝜂
4
𝑍.

(24)

The time derivative of 𝑈
1
along the trajectories of (2)–(6) is

given by

𝑑𝑈
1

𝑑𝑡
= (1 −

𝑇
1

𝑇
) (𝜆 − 𝑑𝑇 − (1 − 𝜀) 𝑘𝑇𝑉)

+ 𝜂
1
(1 −

𝑇
∗

1

𝑇∗
) ((1 − 𝛼) (1 − 𝜀) 𝑘𝑇𝑉 − 𝛿𝑇

∗
)

+ 𝜂
2
(1 −

𝐶
∗

1

𝐶∗
) (𝛼 (1 − 𝜀) 𝑘𝑇𝑉 − 𝑎𝐶

∗
)

+ 𝜂
3
(1 −

𝑉
1

𝑉
) (𝑁
𝑇
𝛿𝑇
∗
+ 𝑁
𝐶
𝑎𝐶
∗
− 𝑐𝑉 − 𝑟𝑉𝑍)

+ 𝜂
4
(𝑔𝑉𝑍 − 𝜇𝑍) .

(25)

Applying 𝜆 = 𝑑𝑇
1
+ (1 − 𝜀)𝑘𝑇

1
𝑉
1
we get

𝑑𝑈
1

𝑑𝑡
= (1 −

𝑇
1

𝑇
) (𝑑𝑇

1
− 𝑑𝑇) + (1 − 𝜀) 𝑘𝑇

1
𝑉
1
(1 −

𝑇
1

𝑇
)

+ (1 − 𝜀) 𝑘𝑇
1
𝑉 − 𝜂
1
(1 − 𝛼) (1 − 𝜀) 𝑘𝑇𝑉

𝑇
∗

1

𝑇∗
+ 𝜂
1
𝛿𝑇
∗

1

− 𝜂
2
𝛼 (1 − 𝜀) 𝑘𝑇𝑉

𝐶
∗

1

𝐶∗
+ 𝜂
2
𝑎𝐶
∗

1
− 𝛿𝜂
1

𝑉
1
𝑇
∗

𝑉

− 𝑎𝜂
2

𝑉
1
𝐶
∗

𝑉
− 𝑐𝜂
3
𝑉 + 𝑐𝜂

3
𝑉
1
+ 𝑟𝜂
3
𝑉
1
𝑍 − 𝜇𝜂

4
𝑍.

(26)

Using the following equilibrium conditions for 𝐸
1
,

(1 − 𝛼) (1 − 𝜀) 𝑘𝑇
1
𝑉
1
= 𝛿𝑇
∗

1
,

𝛼 (1 − 𝜀) 𝑘𝑇
1
𝑉
1
= 𝑎𝐶
∗

1
,

𝑐𝑉
1
= 𝑁
𝑇
𝛿𝑇
∗

1
+ 𝑁
𝐶
𝑎𝐶
∗

1
,

(27)

then we have (1 − 𝜀)𝑘𝑇
1
𝑉
1
= 𝜂
1
𝛿𝑇
∗

1
+ 𝜂
2
𝑎𝐶
∗

1
and

𝑑𝑈
1

𝑑𝑡
= −𝑑

(𝑇 − 𝑇
1
)
2

𝑇
+ 𝜂
1
𝛿𝑇
∗

1
(1 −

𝑇
1

𝑇
) + 𝜂
2
𝑎𝐶
∗

1
(1 −

𝑇
1

𝑇
)

− 𝜂
1
𝛿𝑇
∗

1

𝑇𝑉𝑇
∗

1

𝑇
1
𝑉
1
𝑇∗

+ 𝜂
1
𝛿𝑇
∗

1
− 𝜂
2
𝑎𝐶
∗

1

𝑇𝑉𝐶
∗

1

𝑇
1
𝑉
1
𝐶∗

+ 𝜂
2
𝑎𝐶
∗

1
− 𝜂
1
𝛿𝑇
∗

1

𝑉
1
𝑇
∗

𝑉𝑇
∗

1

− 𝜂
2
𝑎𝐶
∗

1

𝑉
1
𝐶
∗

𝑉𝐶
∗

1

+ 𝜂
1
𝛿𝑇
∗

1
+ 𝜂
2
𝑎𝐶
∗

1
+ 𝑟𝜂
3
(𝑉
1
−
𝜇

𝑔
)𝑍

= −𝑑
(𝑇 − 𝑇

1
)
2

𝑇
+ 𝜂
1
𝛿𝑇
∗

1
[3 −

𝑇
1

𝑇
−

𝑇
∗

1
𝑇𝑉

𝑇∗𝑇
1
𝑉
1

−
𝑉
1
𝑇
∗

𝑉𝑇
∗

1

]

+ 𝜂
2
𝑎𝐶
∗

1
[3 −

𝑇
1

𝑇
−

𝐶
∗

1
𝑇𝑉

𝐶∗𝑇
1
𝑉
1

−
𝐶
∗
𝑉
1

𝐶
∗

1
𝑉
]

+ 𝑟𝜂
3
(
𝑑𝑔 + (1 − 𝜀) 𝑘𝜇

𝑔 (1 − 𝜀) 𝑘
) (𝑅
1
− 1)𝑍.

(28)

We have that if 𝑅
0
> 1, then 𝑇

1
, 𝑇
∗

1
, 𝐶
∗

1
, 𝑉
1
> 0. Since the

arithmetical mean is greater than or equal to the geometrical
mean, then if 𝑅

1
≤ 1 then 𝑑𝑈

1
/𝑑𝑡 ≤ 0 for all 𝑇, 𝑇∗, 𝐶∗, 𝑉, 𝑍 >

0. It can be seen that 𝑑𝑈
1
/𝑑𝑡 = 0 if and only if 𝑇 = 𝑇

1
,

𝑇
∗
= 𝑇
∗

1
, 𝐶∗ = 𝐶

∗

1
, 𝑉 = 𝑉

1
, and 𝑍 = 0. LaSalle’s invariance

principle implies global stability of 𝐸
1
.

Theorem 4. For system (2)–(6), if 𝑅
0
≤ 1, then 𝐸

0
is GAS.

Proof. We consider a Lyapunov function

𝑈
2
= 𝑇
2
(
𝑇

𝑇
2

− 1 − ln( 𝑇

𝑇
2

)) + 𝜂
1
𝑇
∗

2
(
𝑇
∗

𝑇
∗

2

− 1 − ln(𝑇
∗

𝑇
∗

2

))

+ 𝜂
2
𝐶
∗

2
(
𝐶
∗

𝐶
∗

2

− 1 − ln(𝐶
∗

𝐶
∗

2

))

+ 𝜂
3
𝑉
2
(
𝑉

𝑉
2

− 1 − ln( 𝑉
𝑉
2

))

+ 𝜂
4
𝑍
2
(
𝑍

𝑍
2

− 1 − ln( 𝑍

𝑍
2

)) .

(29)
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Further, function 𝑈
2
along the trajectories of system (2)–(6)

satisfies

𝑑𝑈
2

𝑑𝑡
= (1 −

𝑇
2

𝑇
) (𝜆 − 𝑑𝑇 − (1 − 𝜀) 𝑘𝑇𝑉)

+ 𝜂
1
(1 −

𝑇
∗

2

𝑇∗
) ((1 − 𝛼) (1 − 𝜀) 𝑘𝑇𝑉 − 𝛿𝑇

∗
)

+ 𝜂
2
(1 −

𝐶
∗

2

𝐶∗
) (𝛼 (1 − 𝜀) 𝑘𝑇𝑉 − 𝑎𝐶

∗
)

+ 𝜂
3
(1 −

𝑉
2

𝑉
) (𝑁
𝑇
𝛿𝑇
∗
+ 𝑁
𝐶
𝑎𝐶
∗
− 𝑐𝑉 − 𝑟𝑉𝑍)

+ 𝜂
4
(1 −

𝑍
2

𝑍
) (𝑔𝑉𝑍 − 𝜇𝑍) .

(30)

Using the following equilibrium conditions for 𝐸
2
,

𝜆 = 𝑑𝑇
2
+ (1 − 𝜀) 𝑘𝑇

2
𝑉
2
, (1 − 𝛼) (1 − 𝜀) 𝑘𝑇

2
𝑉
2
= 𝛿𝑇
∗

2
,

𝛼 (1 − 𝜀) 𝑘𝑇
2
𝑉
2
= 𝑎𝐶
∗

2
,

𝑐𝑉
2
+ 𝑟𝑉
2
𝑍
2
= 𝑁
𝑇
𝛿𝑇
∗

2
+ 𝑁
𝐶
𝑎𝐶
∗

2
,

(31)

we get

𝑑𝑈
2

𝑑𝑡
= −𝑑

(𝑇 − 𝑇
2
)
2

𝑇
+ (1 − 𝜀) 𝑘𝑇2𝑉2 (1 −

𝑇
2

𝑇
)

+ (1 − 𝜀) 𝑘𝑇2𝑉 − 𝜂
1 (1 − 𝛼) (1 − 𝜀) 𝑘𝑇𝑉

𝑇
∗

2

𝑇∗

+ 𝛿𝜂
1
𝑇
∗

2
− 𝜂
2
𝛼 (1 − 𝜀) 𝑘𝑇𝑉

𝐶
∗

2

𝐶∗
+ 𝑎𝜂
2
𝐶
∗

2

− 𝛿𝜂
1

𝑉
2
𝑇
∗

𝑉
− 𝑎𝜂
2

𝑉
2
𝐶
∗

𝑉
− 𝑐𝜂
3
𝑉 + 𝑐𝜂

3
𝑉
2

+ 𝑟𝜂
4
𝑉
2
𝑍 − 𝑟𝜂

4
𝑍
2
𝑉 + 𝜇𝜂

4
𝑍
2
− 𝜇𝜂
4
𝑍

= −𝑑
(𝑇 − 𝑇

2
)
2

𝑇
+ 𝜂
1
𝛿𝑇
∗

2
(1 −

𝑇
2

𝑇
)

+ 𝜂
2
𝑎𝐶
∗

2
(1 −

𝑇
2

𝑇
) − 𝜂
1
𝛿𝑇
∗

2

𝑇𝑉𝑇
∗

2

𝑇
2
𝑉
2
𝑇∗

+ 𝜂
1
𝛿𝑇
∗

2

− 𝜂
2
𝑎𝐶
∗

2

𝑇𝑉𝐶
∗

2

𝑇
2
𝑉
2
𝐶∗

+ 𝜂
2
𝑎𝐶
∗

2
− 𝜂
1
𝛿𝑇
∗

2

𝑉
2
𝑇
∗

𝑉𝑇
∗

2

− 𝜂
2
𝑎𝐶
∗

2

𝑉
2
𝐶
∗

𝑉𝐶
∗

2

+ 𝜂
1
𝛿𝑇
∗

2
+ 𝜂
2
𝑎𝐶
∗

2

= −𝑑
(𝑇 − 𝑇

2
)
2

𝑇
+ 𝜂
1
𝛿𝑇
∗

2
[3 −

𝑇
2

𝑇
−

𝑇
∗

2
𝑇𝑉

𝑇∗𝑇
2
𝑉
2

−
𝑉
2
𝑇
∗

𝑉𝑇
∗

2

]

+ 𝜂
2
𝑎𝐶
∗

2
[3 −

𝑇
2

𝑇
−

𝐶
∗

2
𝑇𝑉

𝐶∗𝑇
2
𝑉
2

−
𝐶
∗
𝑉
2

𝐶
∗

2
𝑉
] .

(32)

Thus, if 𝑅
1
> 1, then 𝑇

2
, 𝑇
∗

2
, 𝐶
∗

2
, 𝑉
2
and 𝑍

2
> 0. Since the

arithmetical mean is greater than or equal to the geometrical
mean, then 𝑑𝑈

2
/𝑑𝑡 ≤ 0. It can be seen that 𝑑𝑈

2
/𝑑𝑡 = 0 if and

only if 𝑇 = 𝑇
2
, 𝑇∗ = 𝑇

∗

2
, 𝐶∗ = 𝐶

∗

2
, and 𝑉 = 𝑉

2
. From (5), if

𝑉 = 𝑉
2
, then𝑉 = 0 and 0 = 𝑁

𝑇
𝛿𝑇
∗

2
+𝑁
𝐶
𝑎𝐶
∗

2
−𝑐𝑉−𝑟𝑉

2
𝑍 = 0,

so 𝑍 = 𝑍
2
and hence 𝑑𝑈

2
/𝑑𝑡 is equal to zero at 𝐸

2
. So, the

global stability of the equilibrium 𝐸
2
follows from LaSalle’s

invariance principle.

3. Model with Saturation Incidence Rate

In model (2)–(6), the infection process is characterized by
bilinear incidence rate (1 − 𝜀)𝑘𝑥V. However, there are a num-
ber of reasons why this bilinear incidence can be insufficient
to describe infection process in detail (see, e.g., [29–31]).
For example, a less than linear response in V could occur
when the concentration of viruses becomes higher, where
the infectious fraction is high so that exposure is very likely
[29]. Experiments reported in [32] strongly suggested that
the infection rate of microparasitic infections is an increasing
function of the parasite dose and is usually sigmoidal in shape
(see, e.g., [33]). In [33], to place the model on more sound
biological grounds, Regoes et al. replaced the mass-action
infection rate with a dose-dependent infection rates. In this
section, the incidence rate is given by a saturation functional
response:

̇𝑇 = 𝜆 − 𝑑𝑇 −
(1 − 𝜀) 𝑘𝑇𝑉

1 + 𝛽𝑉
, (33)

̇𝑇
∗
=
(1 − 𝛼) (1 − 𝜀) 𝑘𝑇𝑉

1 + 𝛽𝑉
− 𝛿𝑇
∗
, (34)

̇𝐶
∗
=
𝛼 (1 − 𝜀) 𝑘𝑇𝑉

1 + 𝛽𝑉
− 𝑎𝐶
∗
, (35)

𝑉 = 𝑁
𝑇
𝛿𝑇
∗
+ 𝑁
𝐶
𝑎𝐶
∗
− 𝑐𝑉 − 𝑟𝑉𝑍, (36)

̇𝑍 = 𝑔𝑉𝑍 − 𝜇𝑍, (37)

where 𝛽 > 0 is a constant, which represents the saturation
infection rate constant.

All the variables and parameters have the same meanings
as given in model (2)–(6).

3.1. Equilibria. Similar to the previous section, we can define
two threshold parameters 𝑅

0
and 𝑅

1
for system (33)–(37) as

𝑅
0
=
(1 − 𝜀) 𝑘𝑇

0
[(1 − 𝛼)𝑁

𝑇
+ 𝛼𝑁
𝐶
]

𝑐
,

𝑅
1
=

𝑅
0

1 + (𝑑𝛽𝜇 + (1 − 𝜀) 𝑘𝜇/𝑑𝑔)
.

(38)

Clearly 𝑅
1

< 𝑅
0
. It is clear that system (33)–(37) has

an infection-free equilibrium 𝐸
0

= (𝑇
0
, 0, 0, 0, 0), where

𝑇
0

= 𝜆/𝑑. In addition to 𝐸
0
, the system can have an
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infected equilibrium without antibody immune response
𝐸
1
(𝑇
1
, 𝑇
∗

1
, 𝐶
∗

1
, 𝑉
1
, 0), where

𝑇
1
=

𝛽𝜆 [(1 − 𝛼)𝑁
𝑇
+ 𝛼𝑁
𝐶
] + 𝑐

((1 − 𝜀) 𝑘 + 𝑑𝛽) [(1 − 𝛼)𝑁
𝑇
+ 𝛼𝑁
𝐶
]
,

𝑇
∗

1
=

(1 − 𝛼) 𝑐𝑑

𝛿 ((1 − 𝜀) 𝑘 + 𝑑𝛽) [(1 − 𝛼)𝑁𝑇 + 𝛼𝑁𝐶]
(𝑅
0
− 1) ,

𝐶
∗

1
=

𝛼𝑐𝑑

𝑎 ((1 − 𝜀) 𝑘 + 𝑑𝛽) [(1 − 𝛼)𝑁
𝑇
+ 𝛼𝑁
𝐶
]
(𝑅
0
− 1) ,

𝑉
1
=

𝑑

(1 − 𝜀) 𝑘 + 𝑑𝛽
(𝑅
0
− 1) ,

(39)

and infected equilibrium with antibody immune response
𝐸
2
(𝑇
2
, 𝑇
∗

2
, 𝐶
∗

2
, 𝑉
2
, 𝑍
2
), where

𝑇
2
=

𝜆 (𝑔 + 𝛽𝜇)

𝑔𝑑 + (1 − 𝜀) 𝑘𝜇 + 𝑑𝛽𝜇
,

𝑇
∗

2
=

(1 − 𝛼) (1 − 𝜀) 𝑘𝜆𝜇

𝛿 (𝑑𝑔 + (1 − 𝜀) 𝑘𝜇 + 𝑑𝛽𝜇)
,

𝐶
∗

2
=

𝛼 (1 − 𝜀) 𝑘𝜆𝜇

𝑎 (𝑑𝑔 + (1 − 𝜀) 𝑘𝜇 + 𝑑𝛽𝜇)
, 𝑉

2
=
𝜇

𝑔
,

𝑍
2
=
𝑐

𝑟
(𝑅
1
− 1) .

(40)

It is clear from (39) and (40) that

(i) if 𝑅
0
≤ 1, then there exists only positive equilibrium

𝐸
0
;

(ii) if 𝑅
1
≤ 1 < 𝑅

0
, then there exist two positive equilibria

𝐸
0
and 𝐸

1
;

(iii) if 𝑅
1
> 1, then there exist three positive equilibria 𝐸

0
,

𝐸
1
, and 𝐸

2
.

3.2. Global Stability Analysis. In this section, we study the
global stability of all the equilibria of system (33)–(37)
employing the method of Lyapunov function and LaSalle’s
invariance principle.

Theorem 5. For system (33)–(37), if 𝑅
0
≤ 1, then 𝐸

0
is GAS.

Proof. Define a Lyapunov function 𝑈
0
as follows:

𝑈
0
= 𝑇
0
(
𝑇

𝑇
0

− 1 − ln( 𝑇

𝑇
0

)) + 𝜂
1
𝑇
∗
+ 𝜂
2
𝐶
∗
+ 𝜂
3
𝑉 + 𝜂
4
𝑍.

(41)

Calculating the derivative of𝑈
0
along the solutions of system

(33)–(37) and applying 𝜆 = 𝑇
0
𝑑, we obtain

𝑑𝑈
0

𝑑𝑡
= (1 −

𝑇
0

𝑇
)(𝜆 − 𝑑𝑇 −

(1 − 𝜀) 𝑘𝑇𝑉

1 + 𝛽𝑉
)

+ 𝜂
1
(
(1 − 𝛼) (1 − 𝜀) 𝑘𝑇𝑉

1 + 𝛽𝑉
− 𝛿𝑇
∗
)

+ 𝜂
2
(
𝛼 (1 − 𝜀) 𝑘𝑇𝑉

1 + 𝛽𝑉
− 𝑎𝐶
∗
)

+ 𝜂
3
(𝑁
𝑇
𝛿𝑇
∗
+ 𝑁
𝐶
𝑎𝐶
∗
− 𝑐𝑉 − 𝑟𝑉𝑍)

+ 𝜂
4
(𝑔𝑉𝑍 − 𝜇𝑍)

= (1 −
𝑇
0

𝑇
) (𝜆 − 𝑑𝑇) +

(1 − 𝜀) 𝑘𝑇0𝑉

1 + 𝛽𝑉

− 𝑐𝜂
3
𝑉 − 𝜇𝜂

4
𝑍

= −[𝑑
(𝑇 − 𝑇

0
)
2

𝑇
+ 𝜂
3

𝑐𝛽𝑅
0
𝑉
2

(1 + 𝛽𝑉)
+ 𝜇𝜂
4
𝑍]

+ 𝑐𝜂
3
(𝑅
0
− 1)𝑉.

(42)

Similar to the proof of Theorem 2, one can easily show that
𝐸
0
is GAS when 𝑅

0
≤ 1.

Theorem 6. For system (33)–(37), if 𝑅
1
≤ 1 < 𝑅

0
, then 𝐸

1
is

GAS.

Proof. Construct a Lyapunov function as follows:

𝑈
1
= 𝑇
1
(
𝑇

𝑇
1

− 1 − ln( 𝑇

𝑇
1

))

+ 𝜂
1
𝑇
∗

1
(
𝑇
∗

𝑇
∗

1

− 1 − ln(𝑇
∗

𝑇
∗

1

))

+ 𝜂
2
𝐶
∗

1
(
𝐶
∗

𝐶
∗

1

− 1 − ln(𝐶
∗

𝐶
∗

1

))

+ 𝜂
3
𝑉
1
(
𝑉

𝑉
1

− 1 − ln( 𝑉
𝑉
1

)) + 𝜂
4
𝑍.

(43)

The derivative of𝑈
1
along the trajectories of system (33)–(37)

is given by

𝑑𝑈
1

𝑑𝑡
= (1 −

𝑇
1

𝑇
)(𝜆 − 𝑑𝑇 −

(1 − 𝜀) 𝑘𝑇𝑉

1 + 𝛽𝑉
)

+ 𝜂
1
(1 −

𝑇
∗

1

𝑇∗
)(

(1 − 𝛼) (1 − 𝜀) 𝑘𝑇𝑉

1 + 𝛽𝑉
− 𝛿𝑇
∗
)

+ 𝜂
2
(1 −

𝐶
∗

1

𝐶∗
)(

𝛼 (1 − 𝜀) 𝑘𝑇𝑉

1 + 𝛽𝑉
− 𝑎𝐶
∗
)

+ 𝜂
3
(1 −

𝑉
1

𝑉
) (𝑁
𝑇
𝛿𝑇
∗
+ 𝑁
𝐶
𝑎𝐶
∗
− 𝑐𝑉 − 𝑟𝑉𝑍)

+ 𝜂
4
(𝑔𝑉𝑍 − 𝜇𝑍) .

(44)

Applying 𝜆 = 𝑑𝑇
1
+ ((1 − 𝜀)𝑘𝑇

1
𝑉
1
/(1 + 𝛽𝑉

1
)) we get

𝑑𝑈
1

𝑑𝑡
= (1 −

𝑇
1

𝑇
) (𝑑𝑇

1
− 𝑑𝑇)

+
(1 − 𝜀) 𝑘𝑇1𝑉1

1 + 𝛽𝑉
1

(1 −
𝑇
1

𝑇
) +

(1 − 𝜀) 𝑘𝑇1𝑉

1 + 𝛽𝑉
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− 𝜂
1
(1 − 𝛼)

(1 − 𝜀) 𝑘𝑇𝑉

1 + 𝛽𝑉

𝑇
∗

1

𝑇∗
+ 𝜂
1
𝛿𝑇
∗

1

− 𝜂
2
𝛼
(1 − 𝜀) 𝑘𝑇𝑉

1 + 𝛽𝑉

𝐶
∗

1

𝐶∗
+ 𝜂
2
𝑎𝐶
∗

1

− 𝜂
1
𝛿
𝑉
1
𝑇
∗

𝑉
− 𝜂
2
𝑎
𝑉
1
𝐶
∗

𝑉
− 𝑐𝜂
3
𝑉

+ 𝑐𝜂
3
𝑉
1
+ 𝑟𝜂
3
𝑉
1
𝑍 − 𝜇𝜂

4
𝑍.

(45)

Using the following equilibrium conditions for 𝐸
1
,

(1 − 𝛼) (1 − 𝜀) 𝑘𝑇
1
𝑉
1

1 + 𝛽𝑉
1

= 𝛿𝑇
∗

1
,

𝛼 (1 − 𝜀) 𝑘𝑇
1
𝑉
1

1 + 𝛽𝑉
1

= 𝑎𝐶
∗

1
, 𝑐𝑉

1
= 𝑁
𝑇
𝛿𝑇
∗

1
+ 𝑁
𝐶
𝑎𝐶
∗

1
,

(46)

we get

𝑑𝑈
1

𝑑𝑡
= −𝑑

(𝑇 − 𝑇
1
)
2

𝑇
+ 𝜂
1
𝛿𝑇
∗

1
(1 −

𝑇
1

𝑇
) + 𝜂
2
𝑎𝐶
∗

1
(1 −

𝑇
1

𝑇
)

+
(1 − 𝜀) 𝑘𝑇

1
𝑉
1

1 + 𝛽𝑉
1

[
𝑉 (1 + 𝛽𝑉

1
)

𝑉
1
(1 + 𝛽𝑉)

−
𝑉

𝑉
1

]

− 𝜂
1
𝛿𝑇
∗

1

𝑇𝑉𝑇
∗

1
(1 + 𝛽𝑉

1
)

𝑇
1
𝑉
1
𝑇∗ (1 + 𝛽𝑉)

+ 𝜂
1
𝛿𝑇
∗

1

− 𝜂
2
𝑎𝐶
∗

1

𝑇𝑉𝐶
∗

1
(1 + 𝛽𝑉

1
)

𝑇
1
𝑉
1
𝐶∗ (1 + 𝛽𝑉)

+ 𝜂
2
𝑎𝐶
∗

1

− 𝜂
1
𝛿𝑇
∗

1

𝑉
1
𝑇
∗

𝑉𝑇
∗

1

− 𝜂
2
𝑎𝐶
∗

1

𝑉
1
𝐶
∗

𝑉𝐶
∗

1

+ 𝜂
1
𝛿𝑇
∗

1
+ 𝜂
2
𝑎𝐶
∗

1
+ 𝑟𝜂
3
(𝑉
1
−
𝜇

𝑔
)𝑍

= −𝑑
(𝑇 − 𝑇

1
)
2

𝑇

+
(1 − 𝜀) 𝑘𝑇

1
𝑉
1

1 + 𝛽𝑉
1

[−1+
𝑉 (1 + 𝛽𝑉

1
)

𝑉
1
(1 + 𝛽𝑉)

−
𝑉

𝑉
1

+
1 + 𝛽𝑉

1 + 𝛽𝑉
1

]

+ 𝜂
1
𝛿𝑇
∗

1
[4 −

𝑇
1

𝑇
−
𝑇𝑉𝑇
∗

1
(1 + 𝛽𝑉

1
)

𝑇
1
𝑉
1
𝑇∗ (1 + 𝛽𝑉)

−
𝑉
1
𝑇
∗

𝑉𝑇
∗

1

−
1 + 𝛽𝑉

1 + 𝛽𝑉
1

]

+ 𝜂
2
𝑎𝐶
∗

1
[4 −

𝑇
1

𝑇
−
𝑇𝑉𝐶
∗

1
(1 + 𝛽𝑉

1
)

𝑇
1
𝑉
1
𝐶∗ (1 + 𝛽𝑉)

−
𝐶
∗
𝑉
1

𝐶
∗

1
𝑉

−
1 + 𝛽𝑉

1 + 𝛽𝑉
1

] + 𝑟𝜂
3
(𝑉
1
−
𝜇

𝑔
)𝑍

= −𝑑
(𝑇 − 𝑇

1
)
2

𝑇

−
(1 − 𝜀) 𝑘𝑇

1
𝑉
1

1 + 𝛽𝑉
1

[
𝛽(𝑉 − 𝑉

1
)
2

𝑉
1
(1 + 𝛽𝑉) (1 + 𝛽𝑉

1
)
]

+ 𝜂
1
𝛿𝑇
∗

1
[4 −

𝑇
1

𝑇
−
𝑇𝑉𝑇
∗

1
(1 + 𝛽𝑉

1
)

𝑇
1
𝑉
1
𝑇∗ (1 + 𝛽𝑉)

−
𝑉
1
𝑇
∗

𝑉𝑇
∗

1

−
1 + 𝛽𝑉

1 + 𝛽𝑉
1

]

+ 𝜂
2
𝑎𝐶
∗

1
[4 −

𝑇
1

𝑇
−
𝑇𝑉𝐶
∗

1
(1 + 𝛽𝑉

1
)

𝑇
1
𝑉
1
𝐶∗ (1 + 𝛽𝑉)

−
𝐶
∗
𝑉
1

𝐶
∗

1
𝑉

−
1 + 𝛽𝑉

1 + 𝛽𝑉
1

]

+ 𝑟𝜂
3
(
𝑑𝑔 + (1 − 𝜀) 𝑘𝜇 + 𝑑𝛽𝜇

𝑔 (1 − 𝜀) 𝑘 + 𝑑𝑔𝛽
) (𝑅
1
− 1)𝑍.

(47)

We have that if 𝑅
1
≤ 1 < 𝑅

0
, then 𝑑𝑈

1
/𝑑𝑡 ≤ 0 where

equality occurs at 𝐸
1
. LaSalle’s invariance principle implies

global stability of 𝐸
1
.

Theorem 7. For system (33)–(37), if 𝑅
1
> 1, then 𝐸

2
is GAS.

Proof. We consider a Lyapunov function as follows:

𝑈
2
= 𝑇
2
(
𝑇

𝑇
2

− 1 − ln( 𝑇

𝑇
2

)) + 𝜂
1
𝑇
∗

2
(
𝑇
∗

𝑇
∗

2

− 1 − ln(𝑇
∗

𝑇
∗

2

))

+ 𝜂
2
𝐶
∗

2
(
𝐶
∗

𝐶
∗

2

− 1 − ln(𝐶
∗

𝐶
∗

2

))

+ 𝜂
3
𝑉
2
(
𝑉

𝑉
2

− 1 − ln( 𝑉
𝑉
2

))

+ 𝜂
4
𝑍
2
(
𝑍

𝑍
2

− 1 − ln( 𝑍

𝑍
2

)) .

(48)

Further, function𝑈
2
along the trajectories of system (33)–(37)

satisfies
𝑑𝑈
2

𝑑𝑡
= (1 −

𝑇
2

𝑇
)(𝜆 − 𝑑𝑇 −

(1 − 𝜀) 𝑘𝑇𝑉

1 + 𝛽𝑉
)

+ 𝜂
1
(1 −

𝑇
∗

2

𝑇∗
)(

(1 − 𝛼) (1 − 𝜀) 𝑘𝑇𝑉

1 + 𝛽𝑉
− 𝛿𝑇
∗
)

+ 𝜂
2
(1 −

𝐶
∗

2

𝐶∗
)(

𝛼 (1 − 𝜀) 𝑘𝑇𝑉

1 + 𝛽𝑉
− 𝑎𝐶
∗
)

+ 𝜂
3
(1 −

𝑉
2

𝑉
) (𝑁
𝑇
𝛿𝑇
∗
+ 𝑁
𝐶
𝑎𝐶
∗
− 𝑐𝑉 − 𝑟𝑉𝑍)

+ 𝜂
4
(1 −

𝑍
2

𝑍
) (𝑔𝑉𝑍 − 𝜇𝑍) .

(49)
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Using the following equilibrium conditions for 𝐸
2
,

𝜆 = 𝑑𝑇
2
+
(1 − 𝜀) 𝑘𝑇2𝑉2

1 + 𝛽𝑉
2

,

𝛿𝑇
∗

2
=
(1 − 𝛼) (1 − 𝜀) 𝑘𝑇2𝑉2

1 + 𝛽𝑉
2

,

𝑎𝐶
∗

2
=
𝛼 (1 − 𝜀) 𝑘𝑇2𝑉2

1 + 𝛽𝑉
2

,

𝑐𝑉
2
+ 𝑟𝑉
2
𝑍
2
= 𝑁
𝑇
𝛿𝑇
∗

2
+ 𝑁
𝐶
𝑎𝐶
∗

2
,

(50)

we get

𝑑𝑈
2

𝑑𝑡
= −𝑑

(𝑇 − 𝑇
2
)
2

𝑇
+
(1 − 𝜀) 𝑘𝑇2𝑉2

1 + 𝛽𝑉
2

(1 −
𝑇
2

𝑇
)

+
(1 − 𝜀) 𝑘𝑇2𝑉

1 + 𝛽𝑉
− 𝜂
1
(1 − 𝛼)

(1 − 𝜀) 𝑘𝑇𝑉

1 + 𝛽𝑉

𝑇
∗

2

𝑇∗

+ 𝜂
1
𝛿𝑇
∗

2
− 𝜂
2
𝛼
(1 − 𝜀) 𝑘𝑇𝑉

1 + 𝛽𝑉

𝐶
∗

2

𝐶∗
+ 𝜂
2
𝑎𝐶
∗

2

− 𝜂
1
𝛿
𝑉
2
𝑇
∗

𝑉
− 𝜂
2
𝑎
𝑉
2
𝐶
∗

𝑉
− 𝜂
3
𝑐𝑉 + 𝜂

3
𝑐𝑉
2

+ 𝜂
3
𝑟𝑉
2
𝑍 − 𝜂
4
𝑔𝑍
2
𝑉 + 𝜇𝜂

4
𝑍
2
− 𝜇𝜂
4
𝑍

= −𝑑
(𝑇 − 𝑇

2
)
2

𝑇
+ 𝜂
1
𝛿𝑇
∗

2
(1 −

𝑇
2

𝑇
) + 𝜂
2
𝑎𝐶
∗

2
(1 −

𝑇
2

𝑇
)

+
(1 − 𝜀) 𝑘𝑇2𝑉2

1 + 𝛽𝑉
2

[
𝑉 (1 + 𝛽𝑉

2
)

𝑉
2
(1 + 𝛽𝑉)

−
𝑉

𝑉
2

]

− 𝜂
1
𝛿𝑇
∗

2

𝑇𝑉𝑇
∗

2
(1 + 𝛽𝑉

2
)

𝑇
2
𝑉
2
𝑇∗ (1 + 𝛽𝑉)

+ 𝜂
1
𝛿𝑇
∗

2

− 𝜂
2
𝑎𝐶
∗

2

𝑇𝑉𝐶
∗

2
(1 + 𝛽𝑉

2
)

𝑇
2
𝑉
2
𝐶∗ (1 + 𝛽𝑉)

+ 𝜂
2
𝑎𝐶
∗

2

− 𝜂
1
𝛿𝑇
∗

2

𝑉
2
𝑇
∗

𝑉𝑇
∗

2

− 𝜂
2
𝑎𝐶
∗

2

𝑉
2
𝐶
∗

𝑉𝐶
∗

2

+ 𝜂
1
𝛿𝑇
∗

2
+ 𝜂
2
𝑎𝐶
∗

2

= −𝑑
(𝑇 − 𝑇

2
)
2

𝑇

−
(1 − 𝜀) 𝑘𝑇

2
𝑉
2

1 + 𝛽𝑉
2

[
𝛽(𝑉 − 𝑉

2
)
2

𝑉
2
(1 + 𝛽𝑉) (1 + 𝛽𝑉

2
)
]

+ 𝜂
1
𝛿𝑇
∗

2
[4 −

𝑇
2

𝑇
−
𝑇𝑉𝑇
∗

2
(1 + 𝛽𝑉

2
)

𝑇
2
𝑉
2
𝑇∗ (1 + 𝛽𝑉)

−
𝑉
2
𝑇
∗

𝑉𝑇
∗

2

−
1 + 𝛽𝑉

1 + 𝛽𝑉
2

]

+ 𝜂
2
𝑎𝐶
∗

2
[4 −

𝑇
2

𝑇
−
𝑇𝑉𝐶
∗

2
(1 + 𝛽𝑉

2
)

𝑇
2
𝑉
2
𝐶∗ (1 + 𝛽𝑉)

−
𝐶
∗
𝑉
2

𝐶
∗

2
𝑉

−
1 + 𝛽𝑉

1 + 𝛽𝑉
2

] .

(51)

Similar to the proof of Theorem 4, one can show that 𝐸
2
is

GAS.

4. Numerical Simulations

We now use simple numerical simulations to illustrate our
theoretical results for the twomodels. In both models we will
fix the following data: 𝜆 = 10mm−3 day−1, 𝑑 = 0.01 day−1,
𝑘 = 0.001mm3 day−1, 𝛿 = 0.5 day−1, 𝛼 = 0.5, 𝑎 = 0.1 day −1,
𝑐 = 3 day−1, 𝑁

𝑇
= 10, 𝑁

𝐶
= 5, 𝑟 = 0.01mm3 day−1, and

𝜇 = 0.1 day−1.The other parameters will be chosen below. All
computations were carried out by MATLAB.

4.1. Model with Bilinear Incidence Rate. In this section, we
perform simulation results for model (2)–(6) to check our
theoretical results given in Theorems 2–4. We have the
following cases.

(i) 𝑅
0
≤ 1. We choose 𝜀 = 0.63 and 𝑔 = 0.01mm3 day−1.

Using these data we compute 𝑅
0
= 0.92 and 𝑅

1
=

0.672. Figures 1, 2, 3, 4, and 5 show that the numerical
results are consistent with Theorem 2. We can see
that, the concentration of uninfected cells is increased
and converges to its normal value 𝜆/𝑑 = 1000mm−3,
while the concentrations of short-lived infected cells,
chronically infected cells, free viruses, and antibody
immune cells are decaying and tend to zero.

(ii) 𝑅
1
≤ 1 < 𝑅

0
.We take 𝜀 = 0 and 𝑔 = 0.005mm3 day−1.

In this case, 𝑅
0
= 2.5 and 𝑅

1
= 0.833. Figures

1–5 show that the numerical results are consistent
with Theorem 3. We can see that the trajectory of the
system will tend to the infected equilibrium without
antibody immune response 𝐸

1
(400, 6, 27.77, 15, 0). In

this case, the infection becomes chronic but with no
persistent antibody immune response.

(iii) 𝑅
1
> 1. We choose 𝜀 = 0 and 𝑔 = 0.01mm3 day−1.

Then we compute 𝑅
0
= 2.5 and 𝑅

1
= 1.25. From

Figures 1–5 we can see that our simulation results are
consistent with the theoretical results of Theorem 4.
We observe that the trajectory of the system will tend
to the infected equilibrium with antibody immune
response 𝐸

2
(500.04, 5, 23.15, 10, 57.03). In this case,

the infection becomes chronic but with persistent
antibody immune response.

We note that the values of the parameters 𝑔, 𝑟, and 𝜇 have
no impact on the value of𝑅

0
, since𝑅

0
is independent of those

parameters. This fact seems to suggest that antibodies do not
play a role in eliminating the viruses. From the definition of
𝑅
1
, we can see that 𝑅

1
can be increased by increasing 𝑔 or

decreasing 𝜇.
Figures 1 and 4 show that the presence of antibody

immune response (i.e., 𝑅
1
> 1) reduces the concentration

of free viruses and increases the concentration of uninfected
cells.This can be seen by comparing the virus and uninfected
cell components in the equilibria 𝐸

1
and 𝐸

2
under the
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Figure 1: The evolution of uninfected cells for model (2)–(6).
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Figure 2: The evolution of short-lived infected cells for model (2)–
(6).

condition 𝑅
1
> 1. For model (2)–(6), simple calculation

shows that

𝑉
1
− 𝑉
2
= (

𝑑𝑔 + (1 − 𝜀) 𝑘𝜇

𝑔 (1 − 𝜀) 𝑘
) (𝑅
1
− 1) . (52)

It follows that if 𝑅
1
> 1, then 𝑉

2
< 𝑉
1
. From (2) and at any

equilibrium point 𝐸(𝑇, 𝑇
∗

, 𝐶
∗

, 𝑉, 𝑍) we have

𝑇 =
𝜆

𝑑 + (1 − 𝜀) 𝑘𝑉

. (53)
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Figure 3: The evolution of chronically infected cells for model (2)–
(6).
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Figure 4: The evolution of free viruses for model (2)–(6).

Clearly,𝑇 is a decreasing function of𝑉.This yields that if𝑅
1
>

1, then 𝑉
2
< 𝑉
1
and 𝑇

2
> 𝑇
1
.

4.2. Model with Saturation Functional Response. In this sec-
tion, we perform simulation results to check Theorems 5–7.
The parameter 𝛽 is chosen as 𝛼 = 0.2mm3. We have the
following cases.

(i) 𝑅
0
≤ 1. We take 𝜀 = 0.63 and 𝑔 = 0.01mm3 day−1.

Using these data, we compute 𝑅
0
= 0.92 and 𝑅

1
=

0.273. The simulation results of this case are shown in
Figures 6, 7, 8, 9, and 10.We can see that the numerical
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Figure 5:The evolution of antibody immune cells formodel (2)–(6).
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Figure 6: The evolution of uninfected cells for model (33)–(37).

results are consistent with Theorem 5. It is observed
that the viruseswill be cleared and the uninfected cells
will return to their normal value.

(ii) 𝑅
1
≤ 1 < 𝑅

0
. To satisfy this condition, we take 𝜀 = 0

and 𝑔 = 0.005mm3 day−1. This will give 𝑅
0
= 2.5

and𝑅
1
= 0.833. Figures 6–10 show that the numerical

results are consistent withTheorem 6.We see that the
infected equilibrium 𝐸

1
(800, 2, 9.25, 5, 0) is GAS, and

the infection becomes chronic but with no persistent
antibody immune response.
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Figure 7:The evolution of short-lived infected cells for model (33)–
(37).
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Figure 8:The evolution of chronically infected cells for model (33)–
(37).

(iii) 𝑅
1
> 1. This condition is satisfied by choosing 𝜀 =

0 and 𝑔 = 0.01mm3 day−1. This yields 𝑅
0
= 2.5

and 𝑅
1
= 1.25. Figures 6–10 demonstrate the global

stability of 𝐸
2
(832.58, 1.67, 7.71, 3.34, 74.55). Then,

the infection becomes chronic but with persistent
antibody immune response.

From the definition of the parameter 𝑅
0
, we can see that

the value of the saturation infection rate constant 𝛽 has no
impact on the value of 𝑅

0
. This means that saturation does

not play a role in eliminating the virus. From the definition
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Figure 9: The evolution of free viruses for model (33)–(37).

of 𝑅
1
, we can see that 𝑅

1
can be increased by increasing 𝑔 or

decreasing 𝜇 and 𝛽.
Figures 6 and 9 show that if 𝑅

1
> 1 the antibody

immune response reduces the concentration of free viruses
and increases the concentration of uninfected cells. For
model (33)–(37), simple calculation shows that

𝑉
1
− 𝑉
2
= (

𝑑𝑔 + (1 − 𝜀) 𝑘𝜇 + 𝑑𝛽𝜇

𝑔 (1 − 𝜀) 𝑘 + 𝑑𝑔𝛽
) (𝑅
1
− 1) . (54)

As a result, if 𝑅
1
> 1, then 𝑉

2
< 𝑉
1
. From (33) and at any

equilibrium point 𝐸(𝑇, 𝑇
∗

, 𝐶
∗

, 𝑉, 𝑍) we have

𝑇 =

(1 + 𝛽𝑉) 𝜆

𝑑 + (1 − 𝜀) 𝑘𝑉 + 𝑑𝑉𝛽

,

𝑑𝑇

𝑑𝑉

=
− (1 − 𝜀) 𝑘𝜆

(𝑑 + (1 − 𝜀) 𝑘𝑉 + 𝑑𝑉𝛽)
2
.

(55)

Then, 𝑇 is a decreasing function of𝑉. It follows that if 𝑅
1
> 1

then 𝑉
2
< 𝑉
1
and 𝑇

2
> 𝑇
1
.

5. Conclusions

In this paper, we have proposed two virus infection models
with antibody immune response taking into account the
chronically infected cells. In the first model we have assumed
that the incidence rate of infection is bilinear while in the sec-
ondmodel the incidence rate is given by saturation functional
response. We have shown that the dynamics of the models
are fully determined by two threshold parameters 𝑅

0
and 𝑅

1
.

The parameter 𝑅
0
determines whether a chronic infection

can be established while 𝑅
1
determines whether a persis-

tent antibody response can be established. By constructing
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Figure 10: The evolution of antibody immune cells for model (33)–
(37).

Lyapunov function and using LaSalle’s invariance principle,
we have investigated the global stability of all equilibria of
the two models. We have proven that if 𝑅

0
≤ 1 then the

infection-free equilibrium 𝐸
0
is GAS, and the viruses are

cleared. If𝑅
1
≤ 1 < 𝑅

0
, then the infected equilibriumwithout

antibody immune response 𝐸
1
exists and it is GAS, and the

infection becomes chronic but with no persistent antibody
immune response. If 𝑅

1
> 1, then the infected equilibrium

with antibody immune response 𝐸
2
exists and it is GAS, and

the infection is chronic with persistent antibody immune
response. Numerical simulations have been performed for
the two models. Our simulation results confirm the analytic
results given inTheorems 2–7.
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A class of neural networks described by nonlinear impulsive neutral nonautonomous differential equations with delays is
considered. By means of Lyapunov functionals and differential inequality technique, criteria on global exponential stability of this
model are derived. Many adjustable parameters are introduced in criteria to provide flexibility for the design and analysis of the
system.The results of this paper are new and they supplement previously known results. An example is given to illustrate the results.

1. Introduction

Many evolution processes in nature exhibit abrupt changes of
states at certain moments. That was the reason for the devel-
opment of the theory of impulsive differential equations and
impulsive delay differential equations; see themonographs [1,
2]. But the theory of impulsive neutral differential equations
is not well developed due to some theoretical and technical
difficulties. For impulsive neutral differential equations, some
existence results and oscillation criteria are obtained in [3–5]
and some stability conditions are derived in [6]; for neural
networks described by impulsive neutral differential equa-
tionswith delays, the exponential stability results are obtained
in [7–11], but their work focuses on the autonomous system.
So in this paper, the exponential stability for neural networks
described by nonlinear impulsive neutral nonautonomous
differential equations with delays is considered.

The purpose of this paper is to study the stability of
the following impulsive neural networks with variable coef-
ficients and several time-varying delays:

̇𝑥
𝑖
(𝑡) = −𝑏

𝑖
(𝑡) 𝑥
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) 𝑓
𝑖𝑗
(𝑥
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡) 𝑔
𝑖𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
(𝑡) ℎ
𝑖𝑗
(𝑥


𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))

+ 𝑘
𝑖
(𝑡) , a.e. 𝑡 > 0, 𝑡 ̸= 𝑡

𝑘
,

(1a)
𝑥
𝑖
(𝑡
+
) = 𝐼
𝑖𝑘

(𝑥
𝑖
(𝑡)) + 𝐽

𝑖𝑘
(𝑥
𝑖
(𝑡 − 𝜍
𝑖
(𝑡))) + 𝐾

𝑖𝑘
(𝑡) ,

𝑡 = 𝑡
𝑘
, 𝑖 = 1, 2, . . . , 𝑛; 𝑘 = 1, 2, . . . ,

(1b)

where 𝑛 corresponds to the number of units in a neural
network; for 𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑥

𝑖
(𝑡) denotes the potential of

cell 𝑖 at time 𝑡; 0 ≤ 𝜏
𝑖𝑗
(𝑡), 𝜏
𝑖𝑗
(𝑡), 𝜍
𝑖
(𝑡) ≤ 𝜏 correspond to the

transmission delays. (1a) (called continuous part) describes
the continuous evolution processes of the neural networks.
For 𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑎

𝑖𝑗
(𝑡), 𝑐
𝑖𝑗
(𝑡), and 𝑑

𝑖𝑗
(𝑡) denote the

strengths of connectivity between cells 𝑖 and 𝑗 at time 𝑡,
respectively; 𝑓

𝑖𝑗
, 𝑔
𝑖𝑗
, ℎ
𝑖𝑗
show how the 𝑖th neuron reacts to

the input; 𝑘
𝑖
(𝑡) is the external bias on the 𝑖th at time 𝑡. (1b)

(called discrete part) describes that the evolution processes
experience abrupt change of states at the moments of 𝑡

𝑘

(called impulsive moments); for 𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . .,
the fixed moment 𝑡

𝑘
satisfies 𝑡

1
< 𝑡
2

< ⋅ ⋅ ⋅ < 𝑡
𝑘

< ⋅ ⋅ ⋅ , and
lim
𝑘→∞

𝑡
𝑘
= ∞; 𝐼

𝑖𝑘
represents impulsive perturbations of 𝑖th

unit at time 𝑡
𝑘
; 𝐽
𝑖𝑘
represents impulsive perturbations of 𝑖th

unit at time 𝑡
𝑘
, which is caused by the transmission delays;

𝐾
𝑖𝑘
(𝑡
𝑘
) represents the external impulsive input at time 𝑡

𝑘
.
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The theory on linear matrix inequality (LMI) or 𝑀-
Matrix provides effective methods for the analysis of expo-
nential stability of autonomous neural networks. See [7, 9, 10]
and the reference therein. But for nonautonomous neural
networks, it is invalid. Differential inequalities are important
tools for investigating the stability of impulsive differential
equations. See [7, 8, 12, 13] and the reference therein. The
method in this paper is partially motivated by the work in
[7].

In this paper, we will investigate the global exponential
stability of the nonautonomous neural networks and focus on
the effect of impulse on the dynamic behavior of (1a) and (1b).
The results do not require the boundedness of {𝑡

𝑘
− 𝑡
𝑘−1

} and
the differentiability of 𝜏

𝑖𝑗
. So they are new and complement

previously known results.
For a continuous function 𝑎(𝑡), we denote

𝑎
+
(𝑡) = max {0, 𝑎 (𝑡)} , 𝑎

−
(𝑡) = min {0, 𝑎 (𝑡)} ,

𝑎 (𝑡
+
) = lim
𝑠→ 𝑡
+

𝑎 (𝑠) , 𝑎 (𝑡
−
) = lim
𝑠→ 𝑡
−

𝑎 (𝑠) .

(2)

Define

𝑅
+

= [0,∞) , 𝑁 = {1, 2, . . . , 𝑛} , 𝑁
∗

= {1, 2, . . .} ,

𝐶 (Ω, 𝑅) = {𝜓 : Ω → 𝑅 | 𝜓 is continous, Ω ⊂ 𝑅} ,

𝐶𝐵 (Ω, 𝑅) = {𝜓 ∈ 𝐶 (Ω, 𝑅) | 𝜓 is bounded} ,

𝑃𝐶 ([−𝜏, 0] , 𝑅)

= {𝜓 : [−𝜏, 0] → 𝑅

| 𝜓 (𝑡
−
) = 𝜓 (𝑡) , for 𝑡 ∈ [−𝜏, 0] , 𝜓 (𝑡

+
)

exists on 𝑅 and𝜓 (𝑡
+
) = 𝜓 (𝑡)

for all but atmost a finite

number of points on [−𝜏, 0] .} ,

𝑃𝐶
1
([−𝜏, 0] , 𝑅)

= {𝜓 ∈ 𝑃𝐶 ([−𝜏, 0] , 𝑅)

| 𝜓

(𝑡
+
) and 𝜓


(𝑡
−
) exist, 𝜓 (𝑡) = 𝜓


(𝑡
−
)

for 𝑡 ∈ [−𝜏, 0] and𝜓

(𝑡
+
) = 𝜓

(𝑡)

for all but atmost a finite

number of points on [−𝜏, 0] .} ,

𝑃𝐶 ([−𝜏, 0] , 𝑅
𝑛
)

= {�̂� = (𝜓
1
, 𝜓
2
, . . . , 𝜓

𝑛
)
𝑇

| 𝜓
𝑖
∈ 𝑃𝐶 ([−𝜏, 0] , 𝑅) , 𝑖 ∈ 𝑁.} ,

𝑃𝐶
1
([−𝜏, 0] , 𝑅

𝑛
)

= {�̂� = (𝜓
1
, 𝜓
2
, . . . , 𝜓

𝑛
)
𝑇

| 𝜓
𝑖
∈ 𝑃𝐶
1
([−𝜏, 0] , 𝑅) , 𝑖 ∈ 𝑁.} .

(3)

For any 𝜙 ∈ 𝑃𝐶([−𝜏, 0], 𝑅), 𝜙 ∈ 𝑃𝐶
1
([−𝜏, 0], 𝑅), 𝜓 = (𝜓

1
,

𝜓
2
, . . . , 𝜓

𝑛
)
𝑇

∈ 𝑃𝐶([−𝜏, 0], 𝑅
𝑛
), and �̂� = (�̂�

1
, �̂�
2
, . . . , �̂�

𝑛
)
𝑇

∈

𝑃𝐶
1
([−𝜏, 0], 𝑅

𝑛
), define ‖ ⋅ ‖

𝜏
, ‖ ⋅ ‖
1𝜏
, ‖ ⋅ ‖
𝑛

𝜏
, and ‖ ⋅ ‖

𝑛

1𝜏
as

𝜙
𝜏

= sup
−𝜏≤𝑠≤0

𝜙 (𝑠)
 ,


𝜙
1𝜏

= max {

𝜙
𝜏

,

𝜙
𝜏

} ,

𝜓


𝑛

𝜏
= max
1≤𝑖≤𝑛

𝜓𝑖
𝜏

,
�̂�



𝑛

1𝜏
= max
1≤𝑖≤𝑛

�̂�𝑖
1𝜏

,

(4)

respectively.
For convenience, the following conditions are listed.

(H
1
) For 𝑖, 𝑗 ∈ 𝑁, 𝑏

𝑖
∈ 𝐶(𝑅

+
, 𝑅
+
), 𝑎
𝑖𝑗

∈ 𝐶(𝑅
+
, 𝑅), and

𝑐
𝑖𝑗
, 𝑑
𝑖𝑗

∈ 𝐶𝐵(𝑅
+
, 𝑅),𝑓

𝑖𝑗
, 𝑔
𝑖𝑗
, ℎ
𝑖𝑗

∈ 𝐶(𝑅, 𝑅).
(H
2
) There are positive constants 𝐹

𝑖𝑗
, 𝐺
𝑖𝑗
, 𝐻
𝑖𝑗
, 𝑖, 𝑗 ∈ 𝑁,

such that

𝑓
𝑖𝑗
(𝑢) − 𝑓

𝑖𝑗
(V)


≤ 𝐹
𝑖𝑗 |𝑢 − V| ,


𝑔
𝑖𝑗
(𝑢) − 𝑔

𝑖𝑗
(V)


≤ 𝐺
𝑖𝑗 |𝑢 − V| ,


ℎ
𝑖𝑗 (𝑢) − ℎ

𝑖𝑗 (V)

≤ 𝐻
𝑖𝑗 |𝑢 − V| ,

(5)

for all 𝑢, V ∈ 𝑅.
(H
3
) There exist positive constants 𝐼

∗

𝑖𝑘
and 𝐽
∗

𝑖𝑘
, 𝑖 ∈ 𝑁, 𝑘 ∈

𝑁
∗, such that

𝐼𝑖𝑘 (𝑢) − 𝐼
𝑖𝑘

(V) ≤ 𝐼
∗

𝑖𝑘
|𝑢 − V| ,

𝐽𝑖𝑘 (𝑢) − 𝐽
𝑖𝑘 (V)

 ≤ 𝐽
∗

𝑖𝑘
|𝑢 − V| ,

max
𝑖∈𝑁,𝑘∈𝑁

∗

𝐼
∗

𝑖𝑘
+ max
𝑖∈𝑁,𝑘∈𝑁

∗

𝐽
∗

𝑖𝑘
< 1,

(6)

for all 𝑢, V ∈ 𝑅.

(H
4
) There exist positive constants 𝑝

𝑖
, 𝑞
𝑖
, 𝑖 ∈ 𝑁 and 𝜎 such

that

𝑝
𝑖
𝑏
𝑖
(𝑡) −

𝑛

∑

𝑗=1

𝑝
𝑗
𝐹
𝑖𝑗
𝑎
+

𝑖𝑗
(𝑡)

−

𝑛

∑

𝑗=1

(𝑝
𝑗
𝐺
𝑖𝑗
𝑐
+

𝑖𝑗
(𝑡) + 𝑞

𝑗
𝐻
𝑖𝑗
𝑑
+

𝑖𝑗
(𝑡)) ≥ 𝜎 > 0,

𝑞
𝑖
− 𝑝
𝑖
𝑏
𝑖 (𝑡) −

𝑛

∑

𝑗=1

𝑝
𝑗
𝐹
𝑖𝑗
𝑎
+

𝑖𝑗
(𝑡)

−

𝑛

∑

𝑗=1

(𝑝
𝑗
𝐺
𝑖𝑗
𝑐
+

𝑖𝑗
(𝑡) + 𝑞

𝑗
𝐻
𝑖𝑗
𝑑
+

𝑖𝑗
(𝑡)) ≥ 𝜎 > 0,

(7)

for 𝑡 ∈ [0,∞), 𝑖 ∈ 𝑁.
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We assume that (1a) and (1b) are with the following initial
conditions:

𝑥 (𝑠) = 𝜙 (𝑠) , 𝑠 ∈ [−𝜏, 0] , (8)

where 𝜙 ∈ 𝑃𝐶([−𝜏, 0], 𝑅
𝑛
). According to [13], the initial value

problems (1a), (1b), and (8) have the unique solution 𝑥(𝑡, 𝜙)

under assumptions (H
2
) and (H

3
).

Definition 1. A function 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇 is

said to be a solution of (1a) and (1b) on [−𝜏,∞) if for 𝑖 ∈ 𝑁,

(i) 𝑥
𝑖
(𝑡) is absolutely continuous on each interval (0, 𝑡

1
)

and (𝑡
𝑘
, 𝑡
𝑘+1

), 𝑘 ∈ 𝑁
∗;

(ii) for any 𝑡
𝑘
, 𝑘 ∈ 𝑁

∗, 𝑥
𝑖
(𝑡
+

𝑘
) and 𝑥

𝑖
(𝑡
−

𝑘
) exist and 𝑥

𝑖
(𝑡
−

𝑘
) =

𝑥
𝑖
(𝑡
𝑘
);

(iii) 𝑥(𝑡) satisfies (1a) for almost everywhere in [0,∞) and
satisfies (1b) for every 𝑡 = 𝑡

𝑘
, 𝑘 ∈ 𝑁

∗.

Obviously, a solution 𝑋(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇

of (1a) and (1b) is continuous at 𝑡 ̸= 𝑡
𝑘
and discontinuous

at 𝑡 = 𝑡
𝑘
. Furthermore, 𝑋


(𝑡) = (𝑥



1
(𝑡), 𝑥


2
(𝑡), . . . , 𝑥



𝑛
(𝑡))
𝑇

has discontinuities of the first kind at the fixed impulsive
moments 𝑡

𝑘
and some moments 𝑡 ∈ (𝑡

𝑘
, 𝑡
𝑘+1

), 𝑘 ∈ 𝑁
∗.

Denote 𝑋

(𝑡
𝑘
) = 𝑋


(𝑡
−

𝑘
), 𝑋(𝑡) = 𝑋


(𝑡
−

).

Definition 2. Let 𝑋(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇 and 𝑌(𝑡) =

(𝑦
1
(𝑡), 𝑦
2
(𝑡), . . . , 𝑦

𝑛
(𝑡))
𝑇 be two solutions of (1a), (1b), and

(8) with 𝜙 = 𝜑 and 𝜙 = 𝜓, respectively, where 𝜑 and 𝜓 ∈

𝑃𝐶([−𝜏, 0], 𝑅
𝑛
). If there exist 𝛼 > 0 and 𝑀 > 1 such that

𝑥𝑖 (𝑡) − 𝑦
𝑖
(𝑡)

 ≤ 𝑀
𝜑 − 𝜓



𝑛

1𝜏
𝑒
−𝛼𝑡

, ∀𝑡 > 0, 𝑖 ∈ 𝑁, (9)

then (1a) and (1b) are said to be globally exponentially stable.

2. The Main Result

To study the exponential stability of (1a) and (1b), we need the
following lemma.

Lemma 3. Assume that (H
1
) and (H

4
) hold and there exist

nonnegative vector functions (𝑉
1
(𝑡), 𝑉
2
(𝑡), . . . , 𝑉

𝑛
(𝑡))
𝑇and

(𝑊
1
(𝑡),𝑊

2
(𝑡), . . . ,𝑊

𝑛
(𝑡))
𝑇

∈ 𝑃𝐶([−𝜏, 0], 𝑅
𝑛
), where 𝑉

𝑖
(𝑡) is

continuous at 𝑡 ̸= 𝑡
𝑘
(𝑘 ∈ 𝑁

∗), such that

𝐷
−
𝑉
𝑖
(𝑡
−
) ≤ −𝑏

𝑖
(𝑡) 𝑉
𝑖
(𝑡
−
) +

𝑛

∑

𝑗=1

𝑎
+

𝑖𝑗
(𝑡) 𝐹
𝑖𝑗
𝑉
𝑗
(𝑡
−
)

+

𝑛

∑

𝑗=1

𝑐
+

𝑖𝑗
(𝑡) 𝐺
𝑖𝑗


𝑉
𝑗𝑡
−

𝜏
+

𝑛

∑

𝑗=1

𝑑
+

𝑖𝑗
(𝑡)𝐻
𝑖𝑗


𝑊
𝑗𝑡
−

𝜏
,

(10a)

𝑊
𝑖
(𝑡
+
) ≤ 𝑏
𝑖
(𝑡) 𝑉
𝑖
(𝑡
+
) +

𝑛

∑

𝑗=1

𝑎
+

𝑖𝑗
(𝑡) 𝐹
𝑖𝑗
𝑉
𝑗
(𝑡
+
)

+

𝑛

∑

𝑗=1

𝑐
+

𝑖𝑗
(𝑡) 𝐺
𝑖𝑗


𝑉
𝑗𝑡
+

𝜏
+

𝑛

∑

𝑗=1

𝑑
+

𝑖𝑗
(𝑡)𝐻
𝑖𝑗


𝑊
𝑗𝑡
+

𝜏
,

(10b)

𝑉
𝑖
(𝑡
+

𝑘
) ≤ 𝐼
∗

𝑖𝑘
𝑉
𝑖
(𝑡
𝑘
) + 𝐽
∗

𝑖𝑘
𝑉
𝑖
(𝑡
𝑘
− 𝜍
𝑖
(𝑡
𝑘
)) , (10c)

for 𝑡 > 0, 𝑖 ∈ 𝑁, 𝑘 ∈ 𝑁
∗. Then for all 𝑡 ≥ 0 and 𝑖 ∈ 𝑁, there

exists a positive constant 𝐿 such that

𝑉
𝑖 (𝑡) ≤ 𝐿

𝑛

∑

𝑙=1

max {
𝑉𝑙0

𝜏
,
𝑊𝑙0

𝜏
} 𝑒
−(𝜆
∗
−𝜇)𝑡

, (11)

where 𝜆
∗ and 𝜇 are defined, respectively, as

𝜆
∗

= min {𝜆
∗

𝑖
, �̂�
∗

𝑖
| 𝑖 ∈ 𝑁} ,

𝜆
∗
+

1

𝜏
ln

max
𝑖∈𝑁,𝑘∈𝑁

∗𝐽
∗

𝑖𝑘

1 − max
𝑖∈𝑁,𝑘∈𝑁

∗𝐼
∗

𝑖𝑘

≤ 𝜇 ≤ 𝜆
∗
,

(12)

𝜆
∗

𝑖
= inf
𝑡≥0

{𝜆 (𝑡) > 0, 𝜆 (𝑡)

− [

[

𝑏
𝑖
(𝑡) −

1

𝑝
𝑖

𝑛

∑

𝑗=1

𝑝
𝑗
𝐹
𝑖𝑗
𝑎
+

𝑖𝑗
(𝑡)]

]

+
1

𝑝
𝑖

𝑛

∑

𝑗=1

(𝑝
𝑗
𝐺
𝑖𝑗
𝑐
+

𝑖𝑗
(𝑡) + 𝑞

𝑗
𝐻
𝑖𝑗
𝑑
+

𝑖𝑗
(𝑡))

× 𝑒
𝜆(𝑡)𝜏

= 0} > 0,

�̂�
∗

𝑖
= inf
𝑡≥0

{𝜆 (𝑡) > 0,

− [

[

1 −
𝑝
𝑖

𝑞
𝑖

𝑏
𝑖 (𝑡) −

1

𝑞
𝑖

𝑛

∑

𝑗=1

𝑝
𝑗
𝐹
𝑖𝑗
𝑎
+

𝑖𝑗
(𝑡)]

]

+
1

𝑞
𝑖

𝑛

∑

𝑗=1

(𝑝
𝑗
𝐺
𝑖𝑗
𝑐
+

𝑖𝑗
(𝑡) + 𝑞

𝑗
𝐻
𝑖𝑗
𝑑
+

𝑖𝑗
(𝑡))

× 𝑒
𝜆(𝑡)𝜏

= 0} > 0.

(13)

Proof. By the similar analysis in [14, Lemma 4.1], we can
deduce that 𝜆

∗

𝑖
and �̂�

∗

𝑖
exist uniquely and 𝜆

∗

𝑖
> 0, �̂�∗

𝑖
> 0

under the assumption of (H
1
) and (H

4
). Consequently, 𝜆∗ >
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0. Choose a positive constant 𝜃 such that min{𝑝
𝑖
, 𝑞
𝑖

| 𝑖 ∈

𝑁}𝜃 > 1. Let

Φ
𝑖
(𝑡) = max{

1

𝑝
𝑖

𝑉
𝑖
(𝑡) ,

1

𝑞
𝑖

𝑊
𝑖
(𝑡)} ,

Ψ (𝑡) = 𝜃

𝑛

∑

𝑙=1

max {
𝑉𝑙0

𝜏
,
𝑊𝑙0

𝜏
} 𝑒
−(𝜆
∗
−𝜇)𝑡

,

𝑖 ∈ 𝑁.

(14)

Then for all 𝑡 ∈ [−𝜏, 0] and 𝛾 > 1, we have

𝛾Ψ (𝑡) = 𝛾𝜃

𝑛

∑

𝑙=1

max {
𝑉𝑙0

𝜏
,
𝑊𝑙0

𝜏
} 𝑒
−(𝜆
∗
−𝜇)𝑡

> Φ
𝑖 (𝑡) . (15)

Then

Φ
𝑖
(𝑡) < 𝛾Ψ (𝑡) , ∀𝑡 ∈ [0,∞) , 𝑖 ∈ 𝑁. (16)

For the sake of contradiction, assume that there exist 𝑖 ∈ 𝑁

and 𝑡 > 0 such that

Φ
𝑖
(𝑡
+

) ≥ 𝛾Ψ (𝑡) , Φ
𝑗
(𝑡) < 𝛾Ψ (𝑡) ,

for 𝑡 ∈ [0, 𝑡) , 𝑗 ∈ 𝑁.

(17)

From (17), we have


𝑉
𝑗𝑡

𝜏
= 𝑝
𝑗
sup
−𝜏≤𝜃≤0

1

𝑝
𝑗

𝑉
𝑗
(𝑡 + 𝜃)

≤ 𝑝
𝑗
sup
−𝜏≤𝜃≤0

𝛾Ψ (𝑡 + 𝜃) ≤ 𝛾𝑝
𝑗
Ψ (𝑡 − 𝜏) ;

(18)

similarly,

𝑊
𝑗𝑡

𝜏
≤ 𝛾𝑞
𝑗
Ψ (𝑡 − 𝜏) . (19)

Then we have the following cases.

(I) (1/𝑝
𝑖
)𝑉
𝑖
(𝑡
+

) ≥ 𝛾Ψ(𝑡); then we have the following
subcases.

(i) 𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ 𝑁

∗. So 𝑉
𝑖
(𝑡) is continuous at 𝑡. By (17), we

have
1

𝑝
𝑖

𝑉
𝑖
(𝑡) = 𝛾Ψ (𝑡) ,

1

𝑝
𝑖

𝐷
−
𝑉
𝑖
(𝑡) > 𝛾Ψ


(𝑡) . (20)

From (H
4
), (17)–(19), and the definition of 𝜆∗, we have

1

𝑝
𝑖

𝐷
−
𝑉
𝑖
(𝑡) − 𝛾Ψ


(𝑡)

≤ −𝛾𝑏
𝑖
(𝑡) Ψ (𝑡) +

𝑛

∑

𝑗=1

𝑝
𝑗

𝑝
𝑖

𝛾𝑎
+

𝑖𝑗
(𝑡) 𝐹
𝑖𝑗
Ψ (𝑡)

+

𝑛

∑

𝑗=1

𝛾(

𝑝
𝑗

𝑝
𝑖

𝑐
+

𝑖𝑗
(𝑡) 𝐺
𝑖𝑗
+

𝑞
𝑗

𝑝
𝑖

𝑑
+

𝑖𝑗
(𝑡)𝐻
𝑖𝑗
)

× Ψ (𝑡 − 𝜏) + 𝛾𝜆
∗
Ψ (𝑡) < 0,

(21)

which is a contradiction with (20).

(ii) There exists a 𝑘
0

∈ 𝑁
∗ such that 𝑡 = 𝑡

𝑘
0

. By (17), we
have

1

𝑝
𝑖

𝑉
𝑖
(𝑡) ≤ 𝛾Ψ (𝑡) ≤

1

𝑝
𝑖

𝑉
𝑖
(𝑡
+

) . (22)

Noting (1/𝑝
𝑖
)𝑉
𝑖
(𝑡
+

) ̸= (1/𝑝
𝑖
)𝑉
𝑖
(𝑡
−

), we have (1/𝑝
𝑖
)𝑉
𝑖
(𝑡
−

) <

𝛾Ψ(𝑡) or 𝛾Ψ(𝑡) < (1/𝑝
𝑖
)𝑉
𝑖
(𝑡
+

). Without loss of generality, we
assume that 𝛾Ψ(𝑡) < (1/𝑝

𝑖
)𝑉
𝑖
(𝑡
+

). From (10c) and (22), we get
that

𝛾Ψ (𝑡) <
1

𝑝
𝑖

𝑉
𝑖
(𝑡
+

) ≤ 𝛾 (𝐼
∗

𝑖𝑘
0

+ 𝐽
∗

𝑖𝑘
0

𝑒
(𝜆
∗
−𝜇)𝜏

)Ψ (𝑡) . (23)

Simplifying (23), we obtain 𝜇 < 𝜆
∗
+ (1/𝜏) ln(𝐽∗

𝑖𝑘
0

/(1 − 𝐼
∗

𝑖𝑘
0

)),
which contradict (12).

If (I) does not hold, then
(II)

1

𝑞
𝑖

𝑊
𝑖
(𝑡
+

) ≥ 𝛾Ψ (𝑡) ,
1

𝑞
𝑗

𝑊
𝑗
(𝑡) < 𝛾Ψ (𝑡) ,

1

𝑝
𝑗

𝑉
𝑗
(𝑡) < 𝛾Ψ (𝑡)

for 𝑡 ∈ [0, 𝑡) , 𝑗 ∈ 𝑁.

(24)

Then from (10b) and (17)–(19), we have

0 ≤ −𝑊
𝑖
(𝑡
+

) + 𝑏
𝑖
(𝑡) 𝑉
𝑖
(𝑡
+

) +

𝑛

∑

𝑗=1

𝑎
+

𝑖𝑗
(𝑡) 𝐹
𝑖𝑗
𝑉
𝑗
(𝑡
+

)

+

𝑛

∑

𝑗=1

𝑐
+

𝑖𝑗
(𝑡) 𝐺
𝑖𝑗


𝑉
𝑗𝑡
+

𝜏
+

𝑛

∑

𝑗=1

𝑑
+

𝑖𝑗
(𝑡)𝐻
𝑖𝑗


𝑊
𝑗𝑡
+

𝜏
,

≤ 𝛾Ψ (𝑡) [

[

−𝑞
𝑖
+ 𝑝
𝑖
𝑏
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑝
𝑗
𝑎
+

𝑖𝑗
(𝑡) 𝐹
𝑖𝑗

+

𝑛

∑

𝑗=1

(𝑝
𝑗
𝑐
+

𝑖𝑗
(𝑡) 𝐺
𝑖𝑗
+ 𝑞
𝑗
𝑑
+

𝑖𝑗
(𝑡)𝐻
𝑖𝑗
) 𝑒
𝜆
∗
𝜏]

]

< 0,

(25)

which is a contradiction.
From (I) and (II), (16) holds. Letting 𝛾 → 1

+ in (16), we
have

Φ
𝑖
(𝑡) ≤ Ψ (𝑡) , ∀𝑡 ∈ [0,∞) , 𝑖 ∈ 𝑁. (26)

So (1/𝑝
𝑖
)𝑉
𝑖
(𝑡) ≤ Ψ(𝑡) for all 𝑡 ∈ [0,∞), 𝑖 ∈ 𝑁. Let 𝐿 =

max
𝑖∈𝑁

{𝜃𝑝
𝑖
}; then for 𝑡 ≥ 0 and 𝑖 ∈ 𝑁, we have

𝑉
𝑖 (𝑡) ≤ 𝐿

𝑛

∑

𝑙=1

max {
𝑉𝑙0

𝜏
,
𝑊𝑙0

𝜏
} 𝑒
−(𝜆
∗
−𝜇)𝑡

. (27)

The proof of Lemma 3 is complete.

Theorem 4. Assume that (H
1
)–(H
4
) hold. Then systems (1a)

and (1b) are globally exponentially stable.
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Proof. Let 𝑋(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇 and 𝑌(𝑡) =

(𝑦
1
(𝑡), 𝑦
2
(𝑡), . . . , 𝑦

𝑛
(𝑡))
𝑇 be solutions of (1a), (1b), and (8)with

𝜙 = 𝜑 and 𝜙 = 𝜓, respectively. Let

𝑉
𝑖
(𝑡) =

𝑥𝑖 (𝑡) − 𝑦
𝑖
(𝑡)

 , 𝑊
𝑖
(𝑡) =


𝑥


𝑖
(𝑡) − 𝑦



𝑖
(𝑡)


,

𝑡 ∈ 𝑅
+
, 𝑖 ∈ 𝑁.

(28)

By (1a) and (1b), for 𝑖 ∈ 𝑁, we have

𝐷
−
𝑉
𝑖
(𝑡
−
) ≤ −𝑏

𝑖
(𝑡) 𝑉
𝑖
(𝑡
−
) +

𝑛

∑

𝑗=1

𝑎
+

𝑖𝑗
(𝑡) 𝐹
𝑖𝑗
𝑉
𝑗
(𝑡
−
)

+

𝑛

∑

𝑗=1

𝑐
+

𝑖𝑗
(𝑡) 𝐺𝑖𝑗


𝑉
𝑗𝑡
−

𝜏

+

𝑛

∑

𝑗=1

𝑑
+

𝑖𝑗
(𝑡)𝐻
𝑖𝑗


𝑊
𝑗𝑡
−

𝜏
, 𝑡 > 0,

(29)

𝑊
𝑖
(𝑡
+
) ≤ 𝑏
𝑖 (𝑡) 𝑉𝑖 (𝑡

+
)

+

𝑛

∑

𝑗=1

𝑎
+

𝑖𝑗
(𝑡) 𝐹
𝑖𝑗
𝑉
𝑗
(𝑡
+
) +

𝑛

∑

𝑗=1

𝑐
+

𝑖𝑗
(𝑡) 𝐺
𝑖𝑗


𝑉
𝑗𝑡
+

𝜏

+

𝑛

∑

𝑗=1

𝑑
+

𝑖𝑗
(𝑡)𝐻
𝑖𝑗


𝑊
𝑗𝑡
+

𝜏
, 𝑡 > 0.

(30)

By (1b) and (H
3
), we have

𝑉
𝑖
(𝑡
+

𝑘
) =

𝑥𝑖 (𝑡
+

𝑘
) − 𝑦
𝑖
(𝑡
+

𝑘
)
 ≤ 𝐼
∗

𝑖𝑘
𝑉
𝑖
(𝑡
𝑘
) + 𝐽
∗

𝑖𝑘
𝑉
𝑖
(𝑡
𝑘
− 𝜍
𝑖
(𝑡
𝑘
)) .

(31)

By (29)–(31) and Lemma 3, there exists a positive constant
𝑀 such that

𝑉
𝑖 (𝑡) ≤ 𝑀

𝑛

∑

𝑙=1

max {
𝑉𝑙0

𝜏
,
𝑊𝑙0

𝜏
} 𝑒
−(𝜆
∗
−𝜇)𝑡

≤ 𝑀𝑛
𝜙 − 𝜓



𝑛

1𝜏
𝑒
−(𝜆
∗
−𝜇)𝑡

,

(32)

where 𝜆
∗ and 𝜇 are defined in (12).

Remark 5. For autonomous system, the exponential stability
of the zero solution of (1a) with 𝑥

𝑖
(𝑡
+

𝑘
) = 𝐼

𝑖𝑘
(𝑥
1
(𝑡
𝑘
),

. . . , 𝑥
𝑛
(𝑡
𝑘
)), 𝑘 ∈ 𝑁

∗, is considered in [7]. But the results
require that {𝑡

𝑘
− 𝑡
𝑘−1

} is bounded.
When there is no impulse in systems (1a) and (1b), (1a)

and (1b) reduce to the following model which has been
studied in [9, 10]:

̇𝑥
𝑖
(𝑡) = −𝑏

𝑖
(𝑡) 𝑥i (𝑡) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) 𝑓
𝑖𝑗
(𝑥
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡) 𝑔
𝑖𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗 (𝑡) ℎ𝑖𝑗 (𝑥



𝑗
(𝑡 − 𝜏
𝑖𝑗 (𝑡)))

+ 𝑘
𝑖
(𝑡) , 𝑡 > 0, 𝑖 ∈ 𝑁.

(33)

Corollary 6. Assume that (𝐻
1
), (𝐻
2
), and (𝐻

4
) hold. (33) is

globally exponentially stable.

Remark 7. For autonomous system, the stability of (33) with
ℎ
𝑖𝑗
(𝑥) = 𝑥, 𝑓

𝑖𝑗
= 𝑔
𝑖𝑗
, is considered in [10]. However, the

authors assume that 𝑓
𝑖𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝑛, are monotonic,

bounded and 𝜏ij, 𝑖, 𝑗 = 1, 2, . . . , 𝑛, are constants.

Remark 8. The stability results about the zero solution of
𝑥

(𝑡) = −𝑏(𝑡)𝑥(𝑡)+𝑐(𝑡)𝑥(𝑡−𝜏(𝑡))+𝑑(𝑡)𝑥


(𝑡−𝜏(𝑡)) are obtained

by the fixed-point theory in [15]. But the differentiability of 𝜏
is needed.

3. An Illustrative Example

To show the effectiveness of Theorem 4, consider the follow-
ing nonautonomous neural networks with impulse:

̇𝑥
𝑖
(𝑡) = −𝑏

𝑖
(𝑡) 𝑥
𝑖
(𝑡) +

2

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) 𝑓
𝑖𝑗
(𝑥
𝑗
(𝑡))

+

2

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡) 𝑔
𝑖𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))

+

2

∑

𝑗=1

𝑑
𝑖𝑗 (𝑡) ℎ𝑖𝑗 (𝑥



𝑗
(𝑡 − 𝜏
𝑖𝑗 (𝑡)))

+ 𝑘
𝑖
(𝑡) , a.e. 𝑡 > 0,

(34a)

𝑥
𝑖
(𝑡
+

𝑘
) = 𝑔
𝑖
𝑥
𝑖
(𝑡
𝑘
) + 𝐼
𝑖
,

𝑡
𝑘
= 5𝑘, 𝑖 = 1, 2; 𝑘 = 1, 2, . . . ,

(34b)

where

(
𝑏
1 (𝑡)

𝑏
2 (𝑡)

) = (
7 + sin 𝑡

5 − cos 𝑡) , (
𝑘
1 (𝑡)

𝑘
2 (𝑡)

) = (
𝑒
−𝑡

𝑒
−2𝑡) ,

(
𝑔
1

𝑔
2

) = (
0.6

0.3
) , (

𝐼
1

𝐼
2

) = (
0.3

−0.1
) ,

(𝑎
𝑖𝑗
(𝑡))
2×2

= (

0,
1

3
cos 3𝑡

cos 2𝑡
2

, 0

) ,

(𝑐
𝑖𝑗
(𝑡))
2×2

= (

sin 2𝑡, 0

0,
cos 𝑡
2

) ,

(𝑑
𝑖𝑗
(𝑡))
2×2

= (

1

6
sin 3𝑡,

1

8
sin 𝑡

1

9
cos 𝑡, 1

10
cos 2𝑡

) ,
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Figure 1: (a) Time response of state variables 𝑥
1
, 𝑢
1
without impulsive effects. (b) Time response of state variables 𝑥

1
,𝑢
1
with impulsive effects.
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Figure 2: (a) Time response of state variables 𝑥
2
, 𝑢
2
without impulsive effects. (b) Time response of state variables 𝑥

2
, 𝑢
2
with impulsive

effects.

(𝑓
𝑖𝑗
(𝑥))
2×2

= (

0,
|𝑥 + 1| − |𝑥 − 1|

2
|𝑥 + 1| + |𝑥 − 1|

2
, 0

) ,

(𝑔
𝑖𝑗
(𝑥))
2×2

= (

|𝑥 + 1| + |𝑥 − 1|

3
, 0

0,
|𝑥 + 1| − |𝑥 − 1|

3

) ,

(ℎ
𝑖𝑗
(𝑥))
2×2

= (
sin𝑥, cos𝑥
cos𝑥, sin𝑥

) ,

(𝜏
𝑖𝑗 (𝑡))
2×2

= (
2sin2𝑡, 0

0, 2 |cos 𝑡|) ,

(𝜏
𝑖𝑗 (𝑡))
2×2

= (

0,
1 − sin 𝑡

2
1 + cos 𝑡

2
, 0

) .

(35)

Obviously, (𝐹
𝑖𝑗
)
2×2

= (
0, 1

1, 0
), (𝐺
𝑖𝑗
)
2×2

= (
2/3, 0

0, 2/3
), and

(𝐻
𝑖𝑗
)
2×2

= (
1, 1

1, 1
).

Let 𝑝
1

= 𝑝
2

= 1 and 𝑞
1

= 18, 𝑞
2

= 10. From the
above assumption, the conditions of Theorem 4 are satisfied.
Therefore, (34a) and (34b) are globally exponentially stable.
(𝑥
1
(𝑡), 𝑥
2
(𝑡))
𝑇 and (𝑢

1
(𝑡), 𝑢
2
(𝑡))
𝑇 are the solutions of (34a)

and (34b) with 𝑥
1
(0) = 0.5, 𝑥

2
(0) = −0.8 and 𝑢

1
(0) =

−0.5, 𝑢
2
(0) = 0.8, respectively. Figures 1(a) and 1(b) depict
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Figure 3: (a) Phase plot in space (𝑡, 𝑥
1
, 𝑥
2
), (𝑡, 𝑢

1
, 𝑢
2
) without impulsive effects. (b) Phase plot in space (𝑡, 𝑥

1
, 𝑥
2
), (𝑡, 𝑢

1
, 𝑢
2
) with impulsive

effects.

time response of state variables 𝑥
1
, 𝑢
1
without and with

impulse effects; Figures 2(a) and 2(b) depict time response
of state variables 𝑥

2
, 𝑢
2
without and with impulse effects;

Figures 3(a) and 3(b) depict the phase plot in the space
(𝑡, 𝑥
1
, 𝑥
2
), (𝑡, 𝑢

1
, 𝑢
2
) without and with impulse effects.
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By considering bacterium death and general functional response we develop previous model of bacterial colony which focused on
the traveling speed of bacteria. The minimal wave speed for our model is expressed by parameters and the necessary and sufficient
conditions for traveling wave solutions (TWSs) are given. To prove the existence of TWSs, an auxiliary system is introduced and
the existence of TWSs for this auxiliary system is proved by Schauder’s fixed point theorem.The limit arguments show the existence
of TWSs for original system. By introducing negative one-sided Laplace transform, we prove the nonexistence of TWSs.

1. Introduction

Experiments show that bacterial colonies on agar plates with
nutrients exhibit a variety of sizes and shapes [1–7]. Accord-
ing to the substrate softness and nutrient concentration, the
colony patterns are divided into five types [6, 8]. Why were
so many rich diffusive patterns observed in bacterial experi-
ments? To answer this question, lots of diffusivemathematical
models have been proposed and studied [4, 7, 9–16]. In
these mathematical models, the colony patterns are proved
or simulated on bounded domains. For bacterial colony,
the colony speed is one of the most important focuses and
traveling wave solution (TWS) can foresee such speed. Thus
many researches studied the bacterial colony speeds through
TWSs [17–24].

Tomore exactly anticipate the traveling speed of bacterial
colony, we develop above TWS models to a more accurate
bacterial colony model with bacterium death and general
functional response, which is more complex compared with
above TWS models. Let 𝑁(𝑡, 𝑥) and 𝐵(𝑡, 𝑥) denote the
concentrations of nutrients and bacteria at time 𝑡 andposition
𝑥, respectively. Then our model is as follows:

𝑁
𝑡
= 𝑑
𝑁
𝑁
𝑥𝑥

− 𝑓 (𝑁) 𝐵,

𝐵
𝑡
= 𝑑
𝐵
𝐵
𝑥𝑥

+ 𝜅𝑓 (𝑁) 𝐵 − 𝑑𝐵,

(1)

where parameters 𝑑
𝑁

and 𝑑
𝐵
denote the motility of the

nutrients and bacteria. 𝜅 is the conversion rate of nutrients
to bacteria and 𝑑 is the death rate of bacteria. Function 𝑓(𝑁)

is the functional response to nutrients. For simplicity, we
assume 𝑓(𝑁) = 𝑘

1
𝑁/(1 + 𝑘

2
𝑁) with 𝑘

1
> 0 and 𝑘

2
> 0.

Actually, in the following proof we only use the monotonicity
and boundedness of 𝑓(𝑁).

In this paper, the minimal wave speed 𝑐
∗ is given and

the necessary and sufficient conditions for the existence of
TWSs are obtained. To arrive at such aim, the existence
of TWSs is proved by Schauder’s fixed point theorem and
the nonexistence is finished by negative one-sided Laplace
transform proposed firstly by us. To apply Schauder’s fixed
point theorem, a bounded invariant cone is needed. Such
cone is constructed generally by a pair of upper and lower
solutions. However, it is difficult for us to construct such
solutions for model (1). Consequently, an auxiliary system is
introduced, for which the upper and lower solutions can be
easily constructed and are very simple. Such type of upper
and lower solutions is motivated by Diekmann [25]. Then
limit arguments give the existence of TWSs ofmodel (1). Two-
sided Laplace transform was firstly introduced by Carr and
Chmaj [26] to prove nonexistence of TWSs and was further
applied by [27–29]. However, the introduction of negative
one-sided Laplace transform simplifies the proof.
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2 Abstract and Applied Analysis

This paper is organized as follows. In the next section,
an auxiliary system is firstly introduced and the existence of
TWSs is proved by Schauder’s fixed point theorem.Then limit
arguments give the existence of TWSs for original system. In
Section 3, the negative one-sided Laplace transform is defined
and then the nonexistence of TWSs is obtained.

2. Existence of Traveling Wave Solution

A traveling wave solution of system (1) is a nonnegative
nontrivial solution of the form

𝑁(𝑡, 𝑥) = 𝑈 (𝜉) , 𝐵 (𝑡, 𝑥) = 𝑉 (𝜉) , 𝜉 = 𝑥 + 𝑐𝑡, (2)

satisfying boundary condition

(𝑈 (−∞) , 𝑉 (−∞)) = (𝑁
0
, 0) ,

(𝑈 (+∞) , 𝑉 (+∞)) = (𝑁
1
, 0) ,

(3)

where 𝑁
0
> 0 is initial density of nutrients. It is obvious that

𝑁
0
> 𝑁
1
≥ 0.

Define 𝑐
∗

= 2√𝑑
𝐵
[𝜅𝑓(𝑁0) − 𝑑]. The existence of travel-

ing wave solutions is given as follows.

Theorem 1. Suppose 𝑓(𝑁
0
) > 𝑑/𝜅. For any 𝑐 ≥ 𝑐

∗ system (1)
has a traveling wave solution (𝑈(𝑥 + 𝑐𝑡), 𝑉(𝑥 + 𝑐𝑡)) satisfying
boundary conditions (3) such that 𝑈(𝜉) is nonincreasing in R

and 𝑓(𝑁
1
) < 𝑑/𝜅. Furthermore, one has that

∫

+∞

−∞

𝑉 (𝜂) 𝑑𝜂 =
𝜅𝑐

𝑑
(𝑁
0
− 𝑁
1
) , 0 ≤ 𝑉 (𝜉) ≤ 𝜅 (𝑁

0
− 𝑁
1
) ,

(4)

for any 𝜉 ∈ R.

Substituting wave profile 𝑁(𝑡, 𝑥) = 𝑈(𝜉), 𝐵(𝑡, 𝑥) =

𝑉(𝜉), 𝜉 = 𝑥+𝑐𝑡 into system (1) yields the following equations:

𝑐𝑈

= 𝑑
𝑁
𝑈

− 𝑓 (𝑈)𝑉,

𝑐𝑉

= 𝑑
𝐵
𝑉

+ 𝜅𝑓 (𝑈)𝑉 − 𝑑𝑉,

(5)

where  denotes the derivative with respect to 𝜉.
To prove the existence of solutions of (5) satisfying (3), we

construct an auxiliary system:

𝑐𝑈

= 𝑑
𝑁
𝑈

− 𝑓 (𝑈)𝑉,

𝑐𝑉

= 𝑑
𝐵
𝑉

+ 𝜅𝑓 (𝑈)𝑉 − 𝑑𝑉 − 𝛾𝑉

2
,

(6)

where 𝛾 is a positive constant and can be supposed to be small
enough according to what we will need. Next, an invariant
cone will be constructed and Schauder’s fixed point theorem
will be used to prove the existence of traveling wave solutions.
We firstly linearize the second equation of (6) at (𝑁0, 0) and
obtain

𝑐𝜙

= 𝑑
𝐵
𝜙

+ 𝜅𝑓 (𝑁

0
) 𝜙 − 𝑑𝜙. (7)

Obviously, the characteristic equation is

𝐻(𝜆) = 𝑑
𝐵
𝜆
2
− 𝑐𝜆 + 𝜅𝑓 (𝑁

0
) − 𝑑 = 0. (8)

Denote 𝜆
1

= (𝑐 − √𝑐2 − 𝑐∗
2
)/(2𝑑
𝐵
) and 𝜆

2
= (𝑐 +

√𝑐2 − 𝑐∗
2
)/(2𝑑
𝐵
). In the remainder of this section, we always

suppose 𝜅𝑓(𝑁
0
) > 𝑑 and 𝑐 > 𝑐

∗ hold unless other conditions
are specified. Define

𝑈 (𝜉) = max {𝑁0 − 𝜎𝑒
𝛼𝜉
, 0} ,

𝑉 (𝜉) = min {𝑒
𝜆
1
𝜉
, 𝑉
0
} ,

𝑉 (𝜉) = max {𝑒𝜆1𝜉 (1 − 𝑀𝑒
𝜀𝜉
) , 0} ,

(9)

where 𝑉
0
= (𝜅𝑓(𝑁

0
) − 𝑑)/𝛾 and 𝛾 < 𝜅𝑓(𝑁

0
) − 𝑑.

Lemma 2. The function 𝑉(𝜉) satisfies inequality

𝑐𝑉


≥ 𝑑
𝐵
𝑉


+ 𝜅𝑓 (𝑁
0
)𝑉 − 𝑑𝑉 − 𝛾𝑉

2

, (10)

for any 𝜉 ̸= ln𝑉
0
/𝜆
1
.

Proof. Firstly, assume 𝜉 < ln𝑉
0
/𝜆
1
and, therefore, 𝑉(𝜉) =

𝑒
𝜆
1
𝜉. Since 𝑉(𝜉) satisfies (7), we have

𝑐𝑉


− 𝑑
𝐵
𝑉


− 𝜅𝑓 (𝑁
0
)𝑉 + 𝑑𝑉 + 𝛾𝑉

2

= 𝛾𝑉
2

≥ 0. (11)

Secondly, let 𝜉 > ln𝑉
0
/𝜆
1
, which implies𝑉(𝜉) = 𝑉

0. We have
that

𝑐𝑉


− 𝑑
𝐵
𝑉


− 𝜅𝑓 (𝑁
0
)𝑉 + 𝑑𝑉 + 𝛾𝑉

2

= −𝜅𝑓 (𝑁
0
)𝑉
0
+ 𝑑𝑉
0
+ 𝛾𝑉
02

= 0.

(12)

The proof is completed.

Lemma 3. For 0 < 𝛼 < min{𝑐/𝑑
𝑁
, 𝜆
1
} and 𝜎 >

max{𝑁0, 𝑓(𝑁
0
)/(𝑐 − 𝑑

𝑁
𝛼)}, the function 𝑈(𝜉) satisfies

𝑐𝑈

≤ 𝑑
𝑁
𝑈

− 𝑓 (𝑈 (𝜉)) 𝑉 (𝜉) , (13)

for any 𝜉 ̸= 1/𝛼 ln(𝑁0/𝜎).

Proof. It is easy to show that 1/𝛼 ln(𝑁0/𝜎) < 0 ≤

min{0, ln𝑉
0
/𝜆
1
}.When 𝜉 > 1/𝛼 ln(𝑁0/𝜎), then𝑈(𝜉) = 0 and

the lemma is obviously true. Now, suppose 𝜉 < 1/𝛼 ln(𝑁0/𝜎).
Then 𝑈(𝜉) = 𝑁

0
− 𝜎𝑒
𝛼𝜉 and

− 𝑐𝑈

+ 𝑑
𝑁
𝑈

− 𝑓 (𝑈 (𝜉)) 𝑉 (𝜉)

= 𝑐𝜎𝛼𝑒
𝛼𝜉

− 𝑑
𝑁
𝜎𝛼
2
𝑒
𝛼𝜉

− 𝑓 (𝑁
0
− 𝜎𝑒
𝛼𝜉
) 𝑒
𝜆
1
𝜉

= [𝑐𝜎𝛼 − 𝑑
𝑁
𝜎𝛼
2
− 𝑓 (𝑁

0
− 𝜎𝑒
𝛼𝜉
) 𝑒
(𝜆
1
−𝛼)𝜉

] 𝑒
𝛼𝜉

≥ [(𝑐 − 𝑑
𝑁
𝛼) 𝛼𝜎 − 𝑓 (𝑁

0
)] 𝑒
𝛼𝜉

≥ 0.

(14)

Thus the proof is completed.
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Lemma 4. Let 𝜀 < 𝛼 < min{𝜆
1
, 𝜆
2
− 𝜆
1
}/2. Then for 𝑀 > 0

large enough, the function 𝑉(𝜉) satisfies

𝑐𝑉

≤ 𝑑
𝐵
𝑉

+ 𝜅𝑓 (𝑈)𝑉 − 𝑑𝑉 − 𝛾𝑉

2
, (15)

for any 𝜉 ̸= 1/𝜀 ln(1/𝑀).

Proof. It is clear that𝑈(𝜉) = 0 if and only if 𝜉 = 1/𝛼 ln(𝑁0/𝜎),
that 𝑉(𝜉) = 0 if and only if 𝜉 = 1/𝜀 ln(1/𝑀), and that
1/𝜀 ln(1/𝑀) < 1/𝛼 ln(𝑁0/𝜎) if and only if 𝑀 > (𝜎/𝑁

0
)
(𝜀/𝛼).

Assume 𝑀 > (𝜎/𝑁
0
)
(𝜀/𝛼). When 𝜉 > 1/𝜀 ln(1/𝑀), then

𝑒
𝜆
1
𝜉
(1 − 𝑀𝑒

𝜀𝜉
) < 0, 𝑉(𝜉) = 0, and Lemma 4 holds.

In this paragraph, assume 𝜉 < 1/𝜀 ln(1/𝑀). Then 𝜉 <

1/𝛼 ln(𝑁0/𝜎), 𝑈(𝜉) = 𝑁
0
− 𝜎𝑒
𝛼𝜉

> 0, and 𝑉(𝜉) = 𝑒
𝜆
1
𝜉
(1 −

𝑀𝑒
𝜀𝜉
) > 0. To prove this lemma, it is enough to show

0 ≤ 𝑒
−𝜆
1
𝜉
[𝑑
𝐵
𝑉

− 𝑐𝑉

+ 𝜅𝑓 (𝑈)𝑉 − 𝑑𝑉 − 𝛾𝑉

2
]

= 𝑑
𝐵
𝜆
2

1
− 𝑑
𝐵
𝑀(𝜆
1
+ 𝜀)
2
𝑒
𝜀𝜉

− 𝑐𝜆
1
+ 𝑐𝑀(𝜆

1
+ 𝜀) 𝑒
𝜀𝜉

− 𝑑 + 𝑑𝑀𝑒
𝜀𝜉

+ 𝜅 [𝑓 (𝑁
0
) − 𝑓

(𝑈
0
) 𝜎𝑒
𝛼𝜉
] (1 − 𝑀𝑒

𝜀𝜉
)

− 𝛾𝑒
𝜆
1
𝜉
(1 − 𝑀𝑒

𝜀𝜉
)
2

= 𝑑
𝐵
𝜆
2

1
− 𝑐𝜆
1
+ 𝜅𝑓 (𝑁

0
) − 𝑑

+ 𝑀[−𝑑
𝐵
(𝜆
1
+ 𝜀)
2
+ 𝑐 (𝜆

1
+ 𝜀) − 𝜅𝑓 (𝑁

0
) + 𝑑] 𝑒

𝜀𝜉

− 𝜅𝑓

(𝑈
0
) 𝜎𝑒
𝛼𝜉

−𝛾𝑒
𝜆
1
𝜉
(1 − 𝑀𝑒

𝜀𝜉
)
2

+𝑀𝜅𝑓

(𝑈
0
) 𝜎𝑒
𝛼𝜉
𝑒
𝜀𝜉

= [ − 𝑀𝐻(𝜆
1
+ 𝜀) − 𝜅𝑓


(𝑈
0
) 𝜎𝑒
(𝛼−𝜀)𝜉

−𝛾(1 − 𝑀𝑒
𝜀𝜉
)
2

𝑒
(𝜆
1
−𝜀)𝜉

] 𝑒
𝜀𝜉

+ 𝑀𝜅𝑓

(𝑈
0
) 𝜎𝑒
𝛼𝜉
𝑒
𝜀𝜉
,

(16)

where 𝑈(𝜉) < 𝑈
0
< 𝑁
0. Since 𝑓


(𝑈
0
) > 0, we only need to

show

−𝑀𝐻(𝜆
1
+ 𝜀) ≥ 𝜅𝑓


(𝑈
0
) 𝜎𝑒
(𝛼−𝜀)𝜉

+ 𝛾(1 − 𝑀𝑒
𝜀𝜉
)
2

𝑒
(𝜆
1
−𝜀)𝜉

.

(17)

Since 𝜉 < 1/𝛼 ln(𝑁0/𝜎) < 0 by 𝜎 > 𝑁
0 and 0 < 𝑓


(𝑁) < 𝑘

1

for any𝑁 ≥ 0, we have

𝜅𝑘
1
𝜎 > 𝜅𝑓


(𝑈
0
) 𝜎𝑒
(𝛼−𝜀)𝜉

,

𝛾 ≥ 𝛾(1 − 𝑀𝑒
𝜀𝜉
)
2

𝑒
(𝜆
1
−𝜀)𝜉

.

(18)

Since𝐻(𝜆
1
+ 𝜀) < 0, inequality (17) is satisfied if

𝑀 > −
𝜅𝑘
1
𝜎 + 𝛾

𝐻 (𝜆
1
+ 𝜀)

. (19)

The proof is completed.

To apply Schauder’s fixed point theorem, we will intro-
duce a topology in 𝐶(R,R2). Let Λ

11
< 0 < Λ

12
be the roots

of

𝑑
𝑁
Λ
2
− 𝑐Λ − 𝛽

1
= 0 (20)

and Λ
21

< 0 < Λ
22
the roots of

𝑑
𝐵
Λ
2
− 𝑐Λ − 𝛽

2
= 0, (21)

where𝛽
1
and𝛽
2
are positive constants thatwill be determined

later. Let 𝜇 be a positive constant which can be small enough.
ForΦ(𝜉) = (𝜙

1
(𝜉), 𝜙
2
(𝜉)), define

|Φ (⋅)|𝜇 = max{sup
𝜉∈R

𝜙1 (𝜉)
 𝑒
−𝜇|𝜉|

, sup
𝜉∈R

𝜙2 (𝜉)
 𝑒
−𝜇|𝜉|

} ,

𝐵
𝜇
(R,R

2
) = {Φ (⋅) ∈ 𝐶 (R,R

2
) : |Φ (⋅)|𝜇 < +∞} .

(22)

We will find the traveling wave solution in the following
profile set:

Γ = {(𝑈 (⋅) , 𝑉 (⋅)) ∈ 𝐶 (R,R
2
) : 𝑈 (𝜉) ≤ 𝑈 (𝜉) ≤ 𝑁

0
,

𝑉 (𝜉) ≤ 𝑉 (𝜉) ≤ 𝑉 (𝜉) for any 𝜉 ∈ R} .

(23)

Obviously, Γ is closed and convex in 𝐶(R,R2). Firstly, we
change system (6) into the following form:

−𝑑
𝑁
𝑈

+ 𝑐𝑈

+ 𝛽
1
𝑈 = 𝐻

1 (𝑈, 𝑉) (𝜉) ,

−𝑑
𝐵
𝑉

+ 𝑐𝑉

+ 𝛽
2
𝑉 = 𝐻

2
(𝑈, 𝑉) (𝜉) ,

(24)

where 𝛽
1
≥ 𝑉
0, 𝛽
2
≥ 2𝛾𝑉

0
+ 𝑑 = 2[𝜅𝑓(𝑁

0
) − 𝑑] + 𝑑, and

𝐻
1 (𝑈, 𝑉) (𝜉) = 𝛽

1
𝑈 (𝜉) − 𝑓 (𝑈 (𝜉)) 𝑉 (𝜉) ,

𝐻
2
(𝑈, 𝑉) (𝜉) = [𝛽

2
− 𝑑 + 𝜅𝑓 (𝑈 (𝜉)) − 𝛾𝑉 (𝜉)] 𝑉 (𝜉) .

(25)

Furthermore, define 𝐹 = (𝐹
1
, 𝐹
2
) : Γ → 𝐶(R,R2) by

𝐹
1 (𝑈 (⋅) , 𝑉 (⋅)) (𝜉)

=
1

𝑑
𝑁
Λ
1

[∫

𝜉

−∞

𝑒
Λ
11
(𝜉−𝑡)

𝐻
1 (𝑈, 𝑉) (𝑡) 𝑑𝑡

+ ∫

+∞

𝜉

𝑒
Λ
12
(𝜉−𝑡)

𝐻
1 (𝑈, 𝑉) (𝑡) 𝑑𝑡] ,

𝐹
2 (𝑈 (⋅) , 𝑉 (⋅)) (𝜉)

=
1

𝑑
𝐵
Λ
2

[∫

𝜉

−∞

𝑒
Λ
21
(𝜉−𝑡)

𝐻
2 (𝑈, 𝑉) (𝑡) 𝑑𝑡

+∫

+∞

𝜉

𝑒
Λ
22
(𝜉−𝑡)

𝐻
2
(𝑈, 𝑉) (𝑡) 𝑑𝑡] ,

(26)

where Λ
1
= Λ
12

− Λ
11
, Λ
2
= Λ
22

− Λ
21
.

Lemma 5. Consider 𝐹(Γ) ⊂ Γ.
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Proof. Suppose (𝑈(⋅), 𝑉(⋅)) ∈ Γ; that is, 𝑈(𝜉) ≤ 𝑈(𝜉) ≤

𝑁
0
, 𝑉(𝜉) ≤ 𝑉(𝜉) ≤ 𝑉(𝜉) for any 𝜉 ∈ R. Then we will prove

that

𝑈 (𝜉) ≤ 𝐹
1 (𝑈 (⋅) , 𝑉 (⋅)) (𝜉) ≤ 𝑁

0
,

𝑉 (𝜉) ≤ 𝐹
2
(𝑈 (⋅) , 𝑉 (⋅)) (𝜉) ≤ 𝑉 (𝜉) ,

(27)

for any 𝜉 ∈ R.
If 𝜉 ≥ 𝜉

0
≜ 1/𝜀 ln(1/𝑀), then 𝑉(𝜉) = 0, which implies

that 𝐹
2
(𝑈(⋅), 𝑉(⋅))(𝜉) ≥ 𝑉(𝜉) since 𝑈(𝜉) ≥ 𝑈(𝜉) ≥ 0, 𝑉(𝜉) ≥

𝑉(𝜉) ≥ 0. Assume 𝜉 < 𝜉
0
. From Lemma 4 and 𝛽

2
≥ 2𝛾𝑉

0
+𝑑,

it is clear that

− 𝑑
𝐵
𝑉

+ 𝑐𝑉

+ 𝛽
2
𝑉 (𝜉)

≤ [𝛽
2
− 𝑑 + 𝜅𝑓 (𝑈 (𝜉)) − 𝛾𝑉 (𝜉)] 𝑉 (𝜉)

≤ [𝛽
2
− 𝑑 + 𝜅𝑓 (𝑈 (𝜉)) − 𝛾𝑉 (𝜉)] 𝑉 (𝜉)

= 𝐻
2 (𝑈, 𝑉) (𝜉) ,

(28)

which implies that

𝐹
2
(𝑈 (⋅) , 𝑉 (⋅)) (𝜉)

=
1

𝑑
𝐵
Λ
2

[∫

𝜉

−∞

𝑒
Λ
21
(𝜉−𝑡)

𝐻
2
(𝑈, 𝑉) (𝑡) 𝑑𝑡

+∫

+∞

𝜉

𝑒
Λ
22
(𝜉−𝑡)

𝐻
2 (𝑈, 𝑉) (𝑡) 𝑑𝑡]

≥
1

𝑑
𝐵
Λ
2

∫

𝜉

−∞

𝑒
Λ
21
(𝜉−𝑡)

[−𝑑
𝐵
𝑉

(𝑡) + 𝑐𝑉


(𝑡) + 𝛽

2
𝑉 (𝑡)] 𝑑𝑡

+
1

𝑑
𝐵
Λ
2

∫

𝜉
0

𝜉

𝑒
Λ
22
(𝜉−𝑡)

[−𝑑
𝐵
𝑉

(𝑡) + 𝑐𝑉


(𝑡) + 𝛽

2
𝑉 (𝑡)] 𝑑𝑡

+
1

𝑑
𝐵
Λ
2

∫

+∞

𝜉
0

𝑒
Λ
22
(𝜉−𝑡)

[−𝑑
𝐵
𝑉

(𝑡) + 𝑐𝑉


(𝑡) + 𝛽

2
𝑉 (𝑡)] 𝑑𝑡

= 𝑉 (𝜉) +
1

Λ
2

𝑒
Λ
22
(𝜉−𝜉
0
)
[𝑉

(𝜉
0
+ 0) − 𝑉


(𝜉
0
− 0)]

≥ 𝑉 (𝜉) ,

(29)

where the final inequality is due to𝑉

(𝜉
0
+0) = 0 and𝑉


(𝜉
0
−

0) < 0. In conclusion, 𝐹
2
(𝑈(⋅), 𝑉(⋅))(𝜉) ≥ 𝑉(𝜉) for any 𝜉 ∈ R.

Similarly, it can be proved that

𝑈 (𝜉) ≤ 𝐹
1
(𝑈 (⋅) , 𝑉 (⋅)) (𝜉) ≤ 𝑁

0
,

𝐹
2 (𝑈 (⋅) , 𝑉 (⋅)) (𝜉) ≤ 𝑉 (𝜉) ,

(30)

for any 𝜉 ∈ R. The proof is completed.

Lemma 6. For 𝜇 small enough, map 𝐹 = (𝐹
1
, 𝐹
2
) : Γ →

𝐶(R,R2) is continuous with respect to the norm | ⋅ |
𝜇
in

𝐵
𝜇
(R,R2).

Proof. SupposeΦ
𝑖
(⋅) = (𝑈

𝑖
(⋅), 𝑉
𝑖
(⋅)) ∈ Γ, which implies

0 ≤ 𝑈
𝑖
(𝜉) ≤ 𝑁

0
, 0 ≤ 𝑉

𝑖
(𝜉) ≤ 𝑉

0
, (31)

for any 𝜉 ∈ R, where 𝑖 = 1, 2. Then we have

𝐻2 (Φ1) (𝜉) − 𝐻
2
(Φ
2
) (𝜉)

 𝑒
−𝜇|𝜉|

=
(𝛽2 − 𝑑) [𝑉

1 (𝜉) − 𝑉
2 (𝜉)] − 𝛾 [𝑉

1 (𝜉) + 𝑉
2 (𝜉)]

× [𝑉
1 (𝜉) − 𝑉

2 (𝜉)] + 𝜅𝑓 (𝑈
1 (𝜉)) [𝑉1 (𝜉) − 𝑉

2 (𝜉)]

+ 𝜅𝑉
2
(𝜉) [𝑓 (𝑈

1
(𝜉)) − 𝑓 (𝑈

2
(𝜉))]

 𝑒
−𝜇|𝜉|

≤ [𝛽
2
− 𝑑 + 2𝛾𝑉

0
+ 𝜅𝑓 (𝑁

0
)]

Φ1 (⋅) − Φ
2
(⋅)

𝜇

+ 𝜅𝑉
2 (𝜉) 𝑓


(𝑈
∗
)
𝑈1 (𝜉) − 𝑈

2 (𝜉)
 𝑒
−𝜇|𝜉|

≤ [𝛽
2
− 𝑑 + 2𝛾𝑉

0
+ 𝜅𝑓 (𝑁

0
) + 𝜅𝑉

0
𝑓

(0)]

Φ1 (⋅) − Φ
2
(⋅)

𝜇

= 𝑀
1

Φ1 (⋅) − Φ
2
(⋅)

𝜇
,

(32)

where 𝑈
∗ is between 𝑈

1
(𝜉) and 𝑈

2
(𝜉) and

𝑀
1
= 𝛽
2
− 𝑑 + 2𝛾𝑉

0
+ 𝜅𝑓 (𝑁

0
) + 𝜅𝑉

0
𝑓

(0) > 0. (33)

Therefore,

𝐹2 (Φ1 (⋅)) (𝜉) − 𝐹
2
(Φ
2 (⋅)) (𝜉)

 𝑒
−𝜇|𝜉|

≤
𝑒
−𝜇|𝜉|

𝑑
𝐵
Λ
2

[∫

𝜉

−∞

𝑒
Λ
21
(𝜉−𝑡) 𝐻2 (Φ1) (𝑡) − 𝐻

2
(Φ
2
) (𝑡)

 𝑑𝑡

+ ∫

+∞

𝜉

𝑒
Λ
22
(𝜉−𝑡) 𝐻2 (Φ1) (𝑡) − 𝐻

2
(Φ
2
) (𝑡)

 𝑑𝑡]

≤
𝑀
1
𝑒
−𝜇|𝜉|

𝑑
𝐵
Λ
2

[∫

𝜉

−∞

𝑒
Λ
21
(𝜉−𝑡)+𝜇|𝑡|

𝑑𝑡

+∫

+∞

𝜉

𝑒
Λ
22
(𝜉−𝑡)+𝜇|𝑡|

𝑑𝑡]
Φ1 (⋅) − Φ

2
(⋅)

𝜇
.

(34)
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Set 𝜇 < min{−Λ
21
, Λ
22
}. If 𝜉 < 0, it holds that

𝐹2 (Φ1 (⋅)) (𝜉) − 𝐹
2
(Φ
2 (⋅)) (𝜉)

 𝑒
−𝜇|𝜉|

≤
𝑀
1
𝑒
𝜇𝜉

𝑑
𝐵
Λ
2

[𝑒
Λ
21
𝜉
∫

𝜉

−∞

𝑒
−(Λ
21
+𝜇)𝑡

𝑑𝑡 + 𝑒
Λ
22
𝜉
∫

0

𝜉

𝑒
−(Λ
22
+𝜇)𝑡

𝑑𝑡

+ 𝑒
Λ
22
𝜉
∫

+∞

0

𝑒
(𝜇−Λ

22
)𝑡
𝑑𝑡]

Φ1 (⋅) − Φ
2 (⋅)

𝜇

=
𝑀
1

𝑑
𝐵
Λ
2

[
1

−Λ
21

− 𝜇
+

1 − 𝑒
(Λ
22
+𝜇)𝜉

Λ
22

+ 𝜇
+

𝑒
(Λ
22
+𝜇)𝜉

Λ
22

− 𝜇
]

×
Φ1 (⋅) − Φ

2
(⋅)

𝜇

≤
𝑀
1

𝑑
𝐵
Λ
2

(
1

−Λ
21

− 𝜇
+

1

Λ
22

+ 𝜇
+

1

Λ
22

− 𝜇
)

×
Φ1 (⋅) − Φ

2 (⋅)
𝜇
.

(35)

If 𝜉 ≥ 0, we have

𝐹2 (Φ1 (⋅)) (𝜉) − 𝐹
2
(Φ
2 (⋅)) (𝜉)

 𝑒
−𝜇|𝜉|

≤
𝑀
1
𝑒
−𝜇𝜉

𝑑
𝐵
Λ
2

[𝑒
Λ
21
𝜉
∫

0

−∞

𝑒
−(Λ
21
+𝜇)𝑡

𝑑𝑡 + 𝑒
Λ
21
𝜉
∫

𝜉

0

𝑒
(𝜇−Λ

21
)𝑡
𝑑𝑡

+ 𝑒
Λ
22
𝜉
∫

+∞

𝜉

𝑒
(𝜇−Λ

22
)𝑡
𝑑𝑡]

Φ1 (⋅) − Φ
2 (⋅)

𝜇

=
𝑀
1

𝑑
𝐵
Λ
2

[
𝑒
(Λ
21
−𝜇)𝜉

−Λ
21

− 𝜇
+

1 − 𝑒
(Λ
21
−𝜇)𝜉

𝜇 − Λ
21

+
1

Λ
22

− 𝜇
]

×
Φ1 (⋅) − Φ

2
(⋅)

𝜇

≤
𝑀
1

𝑑
𝐵
Λ
2

(
1

−Λ
21

− 𝜇
+

1

𝜇 − Λ
21

+
1

Λ
22

− 𝜇
)

×
Φ1 (⋅) − Φ

2 (⋅)
𝜇
.

(36)

Consequently, we conclude that
𝐹2 (Φ1 (⋅)) (⋅) − 𝐹

2
(Φ
2 (⋅)) (⋅)

𝜇
≤ 𝑀
2

Φ1 (⋅) − Φ
2 (⋅)

𝜇
,

(37)

where

𝑀
2
=

𝑀
1

𝑑
𝐵
Λ
2

max {
1

−Λ
21

− 𝜇
+

1

Λ
22

+ 𝜇
+

1

Λ
22

− 𝜇
,

1

−Λ
21

− 𝜇
+

1

𝜇 − Λ
21

+
1

Λ
22

− 𝜇
} .

(38)

Thus 𝐹
2

: Γ → 𝐶(R,R) is continuous with respect to the
norm | ⋅ |

𝜇
in 𝐵
𝜇
(R,R). Similarly, it can be proved that 𝐹

1
:

Γ → 𝐶(R,R) is also continuous with respect to the norm
| ⋅ |
𝜇
in 𝐵
𝜇
(R,R). The proof is completed.

Lemma 7. Map 𝐹 = (𝐹
1
, 𝐹
2
) : Γ → Γ is compact with respect

to the norm | ⋅ |
𝜇
in 𝐵
𝜇
(R,R2).

Proof. Assume Φ(⋅) = (𝑈(⋅), 𝑉(⋅)) ∈ Γ. Then we have

𝐻2 (Φ) (𝜉)
 =

[𝛽2 − 𝑑 + 𝜅𝑓 (𝑈 (𝜉)) − 𝛾𝑉 (𝜉)] 𝑉 (𝜉)
 ≤ 𝑀

3
,

(39)

where

𝑀
3
= (𝛽
2
+ 𝑑 +

𝜅𝑘
1

𝑘
2

+ 𝛾𝑉
0
)𝑉
0
. (40)

Then


𝑑

𝑑𝜉
𝐹
2
(Φ (⋅)) (𝜉)



=
1

𝑑
𝐵
Λ
2



Λ
21

∫

𝜉

−∞

𝑒
Λ
21
(𝜉−𝑡)

𝐻
2
(Φ) (𝑡) 𝑑𝑡

+Λ
22

∫

+∞

𝜉

𝑒
Λ
22
(𝜉−𝑡)

𝐻
2
(Φ) (𝑡) 𝑑𝑡



≤
𝑀
3

𝑑
𝐵
Λ
2

[
Λ 21

 ∫

𝜉

−∞

𝑒
Λ
21
(𝜉−𝑡)

𝑑𝑡 + Λ
22

∫

+∞

𝜉

𝑒
Λ
22
(𝜉−𝑡)

𝑑𝑡]

=
2𝑀
3

𝑑
𝐵
Λ
2

,

(41)

which implies



𝑑

𝑑𝜉
𝐹
2 (Φ (⋅)) (⋅)

𝜇

<
2𝑀
3

𝑑
𝐵
Λ
2

. (42)

Consequently, |(𝑑/𝑑𝜉)𝐹
2
(Φ(⋅))(⋅)|

𝜇
is bounded. Similarly,

|(𝑑/𝑑𝜉)𝐹
1
(Φ(⋅))(⋅)|

𝜇
is also bounded, which shows that 𝐹(Γ)

is uniformly bounded and equicontinuous with respect to the
norm | ⋅ |

𝜇
.

Furthermore, for any positive integer 𝑛, we define

𝐹
𝑛
(Φ (⋅)) (𝜉) =

{{

{{

{

𝐹 (Φ (⋅)) (𝜉) , 𝜉 ∈ [−𝑛, 𝑛] ,

𝐹 (Φ (⋅)) (−𝑛) , 𝜉 ∈ (−∞, −𝑛] ,

𝐹 (Φ (⋅)) (𝑛) , 𝜉 ∈ [𝑛, +∞) .

(43)

Obviously, for fixed 𝑛, 𝐹
𝑛
(Γ) is uniformly bounded and

equicontinuous with respect to the norm | ⋅ |
𝜇
in 𝐵
𝜇
(R,R2),

implying that 𝐹𝑛 : Γ → Γ is a compact operator. Since

𝐹2 (Φ (⋅)) (𝜉)


≤
𝑀
3

𝑑
𝐵
Λ
2

[∫

𝜉

−∞

𝑒
Λ
21
(𝜉−𝑡)

𝑑𝑡 + ∫

+∞

𝜉

𝑒
Λ
22
(𝜉−𝑡)

𝑑𝑡]

=
𝑀
3

𝑑
𝐵

Λ 21
 Λ 22

,

(44)
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we have
𝐹
𝑛

2
(Φ (⋅)) (⋅) − 𝐹

2
(Φ (⋅)) (⋅)

𝜇

= sup
𝜉∈R

𝐹
𝑛

2
(Φ (⋅)) (𝜉) − 𝐹

2
(Φ (⋅)) (𝜉)

 𝑒
−𝜇|𝜉|

= sup
𝜉∈(−∞,−𝑛]∪[𝑛,+∞)

𝐹
𝑛

2
(Φ (⋅)) (𝜉) − 𝐹

2
(Φ (⋅)) (𝜉)

 𝑒
−𝜇|𝜉|

≤
2𝑀
3

𝑑
𝐵

Λ 21
 Λ 22

𝑒
−𝜇𝑛

→ 0, as 𝑛 → +∞.

(45)

Similarly, we can prove that
𝐹
𝑛

1
(Φ (⋅)) (⋅) − 𝐹

1 (Φ (⋅)) (⋅)
𝜇

→ 0, (46)

when 𝑛 → +∞. Thus, |𝐹𝑛(Φ(⋅))(⋅) − 𝐹(Φ(⋅))(⋅)|
𝜇

→ 0

when 𝑛 → +∞. By Proposition 2.1 in Zeidler [30] we see
that 𝐹𝑛 converges to 𝐹 in Γ with respect to the norm | ⋅ |

𝜇
.

Consequently, 𝐹 : Γ → Γ is compact with respect to the
norm | ⋅ |

𝜇
. The proof is completed.

Lemma 8. Let 𝑐 > 𝑐
∗; then (6) has a solution (𝑈(𝜉), 𝑉(𝜉))

satisfying (3):

∫

+∞

−∞

[𝑑𝑉 (𝜂) + 𝛾𝑉
2
(𝜂)] 𝑑𝜂 = 𝜅𝑐 (𝑁

0
− 𝑁
1
) ,

0 ≤ 𝑉 (𝜉) ≤ 𝜅 (𝑁
0
− 𝑁
1
) ,

(47)

for any 𝜉 ∈ R.

Proof. Combination of Schauder’s fixed point theorem, Lem-
mas 5, 6, and 7 shows that there exists a nonnegative traveling
wave solution (𝑈

𝑐
(⋅), 𝑉
𝑐
(⋅)) ∈ Γ such that (𝑈

𝑐
(𝜉), 𝑉
𝑐
(𝜉)) →

(𝑁
0
, 0) when 𝜉 → −∞. Since (𝑈

𝑐
(⋅), 𝑉
𝑐
(⋅)) is the fixed point

of 𝐹, L’Hospital principal shows that 𝑈(−∞) = 0, 𝑉

(−∞) =

0. Then from (6) we have that 𝑈(−∞) = 0, 𝑉

(−∞) = 0.

Since (𝑈
𝑐
(𝜉), 𝑉
𝑐
(𝜉)) is the solution of (6), thus

𝑐𝑈


𝑐
= 𝑑
𝑁
𝑈


𝑐
− 𝑓 (𝑈

𝑐
) 𝑉
𝑐
,

𝑐𝑉


𝑐
= 𝑑
𝐵
𝑉


𝑐
+ 𝜅𝑓 (𝑈

𝑐
) 𝑉
𝑐
− 𝑑𝑉
𝑐
− 𝛾𝑉
2

𝑐
.

(48)

The first equation of (48) can be changed into

𝑐

𝑑
𝑁

𝑈


𝑐
− 𝑈


𝑐
= −

1

𝑑
𝑁

𝑓 (𝑈
𝑐
) 𝑉
𝑐
. (49)

Multiplying this equation by 𝑒
−𝑐/𝑑
𝑁
𝜉 yields

−[𝑒
−𝑐/𝑑
𝑁
𝜉
𝑈


𝑐
(𝜉)]


= −
1

𝑑
𝑁

𝑓 (𝑈
𝑐
) 𝑉
𝑐
𝑒
−𝑐/𝑑
𝑁
𝜉
. (50)

From the proof of Lemma 7, we have 𝑈


𝑐
(𝜉) =

𝐹


1
(𝑈
𝑐
(⋅), 𝑉
𝑐
(⋅)) (𝜉) is bounded in R. Then integrating

above equality from 𝜉 to +∞, we have

𝑈


𝑐
(𝜉) = −

1

𝑑
𝑁

𝑒
𝑐/𝑑
𝑁
𝜉
∫

+∞

𝜉

𝑓 (𝑈
𝑐
(𝜂)) 𝑉

𝑐
(𝜂) 𝑒
−𝑐/𝑑
𝑁
𝜂
𝑑𝜂 ≤ 0,

(51)

which implies that 𝑈
𝑐
(𝜉) is nonincreasing in R and has limit

𝑁
1 as 𝜉 → +∞. By the definition of 𝑈(𝜉) and 𝑉(𝜉) there

is a 𝜉
0
< 0 such that 𝑈(𝜉) > 0 and 𝑉(𝜉) > 0 when 𝜉 < 𝜉

0
.

Therefore, if 𝜉 < 𝜉
0
, we have that 𝑈

𝑐
(𝜉) < 0 which implies

that𝑁0 > 𝑁
1
≥ 0.

Integrating the first equation of (48) from −∞ to 𝜉 gives

∫

𝜉

−∞

𝑓 (𝑈
𝑐
(𝜂)) 𝑉

𝑐
(𝜂) 𝑑𝜂 = 𝑑

𝑁
𝑈


𝑐
(𝜉) − 𝑐 [𝑈

𝑐
(𝜉) − 𝑁

0
] ,

(52)

which implies that ∫+∞
−∞

𝑓(𝑈
𝑐
(𝜂))𝑉
𝑐
(𝜂)𝑑𝜂 < +∞. Integrating

the second equation of (48) from −∞ to 𝜉 gives

𝑐𝑉
𝑐
(𝜉) = 𝑑

𝐵
𝑉


𝑐
(𝜉) + ∫

𝜉

−∞

𝜅𝑓 (𝑈
𝑐
(𝜂)) 𝑉

𝑐
(𝜂) 𝑑𝜂

− 𝑑∫

𝜉

−∞

𝑉
𝑐
(𝜂) 𝑑𝜂 − 𝛾∫

𝜉

−∞

𝑉
2

𝑐
(𝜂) 𝑑𝜂.

(53)

Thus ∫+∞
−∞

𝑉
𝑐
(𝜂)𝑑𝜂 < +∞ and lim

𝜉→+∞
𝑉
𝑐
(𝜉) = 0 since 𝑉



𝑐
(𝜉)

is bounded in R. By (51) and L’Hospital principal, it follows
𝑈


𝑐
(+∞) = 0. Then using (52) and (53) shows that

∫

+∞

−∞

[𝑑𝑉
𝑐
(𝜂) + 𝛾𝑉

2

𝑐
(𝜂)] 𝑑𝜂 = 𝜅𝑐 (𝑁

0
− 𝑁
1
) . (54)

Next, we prove that 0 ≤ 𝑉
𝑐
(𝜉) ≤ 𝑑(𝑁

0
−𝑁
1
)/(𝑑 − 𝛼

2
). Let

𝑅 (𝜉) =
1

𝑐
∫

𝜉

−∞

[𝑑𝑉
𝑐
(𝜂) + 𝛾𝑉

2

𝑐
(𝜂)] 𝑑𝜂

+
1

𝑐
∫

+∞

𝜉

𝑒
𝑐(𝜉−𝜂)/𝑑

𝐵 [𝑑𝑉
𝑐
(𝜂) + 𝛾𝑉

2

𝑐
(𝜂)] 𝑑𝜂.

(55)

It is clear that 𝑅(−∞) = 0 and 𝑅(+∞) = 𝜅(𝑁
0
− 𝑁
1
). Define

𝑆(𝜉) = 𝑉
𝑐
(𝜉) + 𝑅(𝜉). Calculations show that

𝑐𝑆

(𝜉) − 𝑑

𝐵
𝑆

(𝜉) = 𝜅𝑓 (𝑈

𝑐
(𝜉)) 𝑉

𝑐
(𝜉) . (56)

Multiplying this equality by 𝑒
−𝑐𝜉/𝑑

𝐵 and then integrating from
𝜉 to +∞ show that

𝑆

(𝜉) =

𝜅

𝑑
𝐵

∫

+∞

𝜉

𝑒
𝑐(𝜉−𝜁)/𝑑

𝐵 [𝑓 (𝑈
𝑐
(𝜁)) 𝑉

𝑐
(𝜁) 𝑑𝜂] 𝑑𝜁 ≥ 0 (57)

for any 𝜉 ∈ R. Consequently, 𝑆(𝜉) is nondecreasing in R.
Since

𝑆 (+∞) = 𝑅 (+∞) = 𝜅 (𝑁
0
− 𝑁
1
) , (58)

we have that 0 ≤ 𝑉
𝑐
(𝜉) ≤ 𝜅(𝑁

0
−𝑁
1
) for any 𝜉 ∈ R.The proof

is completed.

Proof of Theorem 1. Firstly, we consider the case 𝑐 > 𝑐
∗. Let

{𝜀
𝑛
} be a sequence such that 0 < 𝜀

𝑖+1
< 𝜀
𝑖

< 1 and
𝜀
𝑛

→ 0. By Lemma 8, there exists a traveling wave solution
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Φ
𝑛
(𝜉) = (𝑈

𝑛
(𝜉), 𝑉
𝑛
(𝜉)) of system (6) for 𝛾 = 𝜀

𝑛
satisfying the

conclusion of Theorem 1. From (51), we have


𝑈


𝑛
(𝜉)


=

1

𝑑
𝑁

𝑒
𝑐/𝑑
𝑁
𝜉
∫

+∞

𝜉

𝑓 (𝑈
𝑛
(𝜂)) 𝑉

𝑛
(𝜂) 𝑒
−𝑐/𝑑
𝑁
𝜂
𝑑𝜂 ≤ 0

≤

𝑓 (𝑁
0
) 𝜅 (𝑁

0
− 𝑁
1
)

𝑑
𝑁

𝑒
𝑐/𝑑
𝑁
𝜉
∫

+∞

𝜉

𝑒
−𝑐/𝑑
𝑁
𝜂
𝑑𝜂

=

𝑓 (𝑁
0
) 𝜅 (𝑁

0
− 𝑁
1
)

𝑐
.

(59)

Similarly, it can be shown that |𝑉
𝑛
(𝜉)| ≤ 𝑀

0
, where 𝑀

0
is

independent of 𝜀
𝑛
due to 𝜀

𝑛
< 1. By (6), there is a positive

constant 𝑀
4
independent of 𝜀

𝑛
such that |𝑈



𝑛
(𝜉)|, |𝑉

𝑛
(𝜉)|,

|𝑈


𝑛
(𝜉)|, and |𝑉



𝑛
(𝜉)| are bounded in 𝜉 ∈ R by𝑀

4
.

Therefore, {Φ
𝑛
(𝜉)}, {Φ

𝑛
(𝜉)}, {Φ

𝑛
(𝜉)} are equicontinuous

and uniformly bounded in R. Then Arzela-Ascoli’s theorem
implies that there exists a subsequence {𝜀

𝑛
𝑘

} such that

Φ
𝑛
𝑘

(𝜉) → Ψ (𝜉) , Φ


𝑛
𝑘

(𝜉) → Ψ

(𝜉) ,

Φ


𝑛
𝑘

(𝜉) → Ψ

(𝜉)

(60)

uniformly in any bounded closed interval when 𝑘 → ∞ and
pointwise on R, where Ψ(𝜉) = (𝜓

1
(𝜉), 𝜓
2
(𝜉)). Since Φ

𝑛
𝑘

(𝜉) is
the solution of (6) and 𝜀

𝑛
→ 0, we get

𝑐𝜓


1
(𝜉) = 𝑑

𝑁
𝜓


1
(𝜉) − 𝑓 (𝜓

1 (𝜉)) 𝜓2 (𝜉) ,

𝑐𝜓


2
(𝜉) = 𝑑

𝐵
𝜓


2
(𝜉) + 𝜅𝑓 (𝜓

1
(𝜉)) 𝜓

2
(𝜉) − 𝑑𝜓

2
(𝜉) .

(61)

That is, Ψ(𝜉) is a solution of (5) satisfying (3):

∫

+∞

−∞

𝜓
2
(𝜂) 𝑑𝜂 =

𝜅𝑐

𝑑
(𝑁
0
− 𝑁
1
) ,

0 ≤ 𝜓
2
(𝜉) ≤ 𝜅 (𝑁

0
− 𝑁
1
) .

(62)

To complete the proof of case 𝑐 > 𝑐
∗, we need to prove

𝑓(𝑁
1
) < 𝑑/𝜅. Integrating the second equation of system (5)

from −∞ to +∞ and noting that 𝑈(𝜉) is decreasing from𝑁
0

to𝑁
1, we have

𝑑∫

+∞

−∞

𝑉 (𝜉) 𝑑𝜉

= 𝜅∫

+∞

−∞

𝑓 (𝑈 (𝜉)) 𝑉 (𝜉) 𝑑𝜉 > 𝜅𝑓 (𝑁
1
)∫

+∞

−∞

𝑉 (𝜉) 𝑑𝜉,

(63)

which implies 𝑓(𝑁
1
) < 𝑑/𝜅.

To prove case 𝑐 = 𝑐
∗, let the parameter 𝑐 = 𝑐

𝑛
in system

(5), 𝑐∗ < 𝑐
𝑛
< 𝑐
∗
+ 1, and 𝑐

𝑛
→ 𝑐
∗. Similar to above proof

about case 𝑐 > 𝑐
∗, we can finish the proof.

3. Nonexistence of Traveling Wave Solution

In this section, we give the conditions onwhich system (1) has
no traveling wave solutions.

Theorem 9. (I) Assume 𝑓(𝑁
0
) > 𝑑/𝜅. Then for any 0 <

𝑐 < 𝑐
∗, system (1) has no nonnegative traveling wave solutions

(𝑈(𝑥 + 𝑐𝑡), 𝑉(𝑥 + 𝑐𝑡)) satisfying boundary condition (3).
(II) Suppose 𝑓(𝑁

0
) ≤ 𝑑/𝜅. Then for any 𝑐 > 0, system (1)

has no traveling wave solutions (𝑈(𝑥+𝑐𝑡), 𝑉(𝑥+𝑐𝑡)) satisfying
boundary condition (3).

Proof of Theorem 9(I). Suppose (I) fails. That is, system
(5) has a nonnegative nontrivial traveling wave solu-
tion (𝑈(𝜉), 𝑉(𝜉)) satisfying boundary condition (3). Since
𝑈(−∞) = 𝑁

0 and 𝑓(𝑁
0
) > 𝑑/𝜅, there exists a 𝜉

0
< 0 such

that 𝑓(𝑈(𝜉)) ≥ [𝑓(𝑁
0
) + 𝑑/𝜅]/2 for any 𝜉 < 𝜉

0
. Thus, we get

𝑐𝑉

(𝜉) = 𝑑

𝐵
𝑉

(𝜉) + 𝜅𝑓 (𝑈 (𝜉)) 𝑉 (𝜉) − 𝑑𝑉 (𝜉)

≥ 𝑑
𝐵
𝑉

(𝜉) +

𝜅𝑓 (𝑁
0
) + 𝑑

2
𝑉 (𝜉) − 𝑑𝑉 (𝜉)

= 𝑑
𝐵
𝑉

(𝜉) +

𝜅𝑓 (𝑁
0
) − 𝑑

2
𝑉 (𝜉) ,

(64)

for any 𝜉 ≤ 𝜉
0
. That is,

𝜅𝑓 (𝑁
0
) − 𝑑

2
𝑉 (𝜉) ≤ 𝑐𝑉


(𝜉) − 𝑑

𝐵
𝑉

(𝜉) , (65)

for any 𝜉 < 𝜉
0
. Now we show 𝑉


(−∞) = 0. Denote 𝑊(𝜉) ≜

𝑉

(𝜉). From the second equation of (5), we have

𝑑
𝐵
𝑊

(𝜉) = 𝑐𝑊 (𝜉) + 𝐺 (𝜉) , (66)

where 𝐺(𝜉) = 𝑑𝑉(𝜉) − 𝜅𝑓(𝑈(𝜉))𝑉(𝜉). Since (𝑈(𝜉), 𝑉(𝜉))

satisfies boundary condition (3), it follows 𝐺(−∞) = 0.
If 𝑊(−∞) ̸=0, then 𝑊(−∞) = +∞ or 𝑊(−∞) = −∞,
which imply 𝑉(−∞) = −∞ or 𝑉(−∞) = +∞ contradicting
𝑉(−∞) = 0.

Defining 𝐽(𝜉) = ∫
𝜉

−∞
𝑉(𝜂)𝑑𝜂 and integrating (65) from

−∞ to 𝜉, we have that

𝜅𝑓 (𝑁
0
) − 𝑑

2
𝐽 (𝜉) ≤ 𝑐𝑉 (𝜉) − 𝑑

𝐵
𝑉

(𝜉) . (67)

Integrating (67) from −∞ to 𝜉 with 𝜉 ≤ 𝜉
0
yields

𝜅𝑓 (𝑁
0
) − 𝑑

2
∫

𝜉

−∞

𝐽 (𝜂) 𝑑𝜂 + 𝑑
𝐵
𝑉 (𝜉) ≤ 𝑐𝐽 (𝜉) . (68)

Therefore, we get

𝜅𝑓 (𝑁
0
) − 𝑑

2
∫

0

−∞

𝐽 (𝜉 + 𝜂) 𝑑𝜂 ≤ 𝑐𝐽 (𝜉) , (69)

for any 𝜉 ≤ 𝜉
0
. Since 𝐽(𝜂) is increasing in R, it is clear that

𝜅𝑓 (𝑁
0
) − 𝑑

2
𝜂𝐽 (𝜉 − 𝜂) ≤ 𝑐𝐽 (𝜉) , (70)

for any 𝜉 ≤ 𝜉
0
and 𝜂 > 0. Therefore, there is 𝜂

0
> 0 large

enough such that

𝐽 (𝜉 − 𝜂
0
) ≤

1

2
𝐽 (𝜉) , (71)
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for any 𝜉 ≤ 𝜉
0
. Let 𝑝(𝜉) = 𝐽(𝜉)𝑒

−𝜇
0
𝜉 and 𝜇

0
= (1/𝜂

0
) ln 2. We

get that

𝑝 (𝜉 − 𝜂
0
) = 𝐽 (𝜉 − 𝜂

0
) 𝑒
−𝜇
0
(𝜉−𝜂
0
)
≤

1

2
𝐽 (𝜉) 𝑒

−𝜇
0
(𝜉−𝜂
0
)
= 𝑝 (𝜉) ,

(72)

for any 𝜉 ≤ 𝜉
0
. Since 𝐽(𝜉) is bounded in R, thus 𝑝(𝜉) → 0 as

𝜉 → +∞, which implies that there exists 𝑝
0
> 0 such that

𝑝(𝜉) ≤ 𝑝
0
for any 𝜉 ∈ R. Hence, we have that

𝐽 (𝜉) ≤ 𝑝
0
𝑒
𝜇
0
𝜉
, (73)

for 𝜉 ∈ R and that there exists 𝑞
0
> 0 such that ∫𝜉

−∞
𝐽(𝜂)𝑑𝜂 ≤

𝑞
0
𝑒
𝜇
0
𝜉. In addition, inequalities (65)–(68) imply that

sup
𝜉∈R

{𝑉 (𝜉) 𝑒
−𝜇
0
𝜉
} < +∞,

sup
𝜉∈R

{

𝑉

(𝜉)


𝑒
−𝜇
0
𝜉
} < +∞,

sup
𝜉∈R

{

𝑉

(𝜉)


𝑒
−𝜇
0
𝜉
} < +∞.

(74)

To complete the proof, we define negative one-sided
Laplace transform as follows:

V (𝜆) = N [𝑉 (⋅)] (𝜆) := ∫

0

−∞

𝑒
−𝜆𝜉

𝑉 (𝜉) 𝑑𝜉, (75)

for 𝜆 ≥ 0. Obviously V(𝜆) is increasing in [0, 𝜆
∗
) such that

𝜆
∗

< +∞ satisfying lim
𝜆→𝜆

∗−V(𝜆) = +∞ or 𝜆
∗

= +∞.
Since sup

𝜉∈R{𝑉(𝜉)𝑒
−𝜇
0
𝜉
} < +∞, we have 𝜆

∗
≥ 𝜇
0
. Trivial

calculations show thatN[⋅] satisfies

N [𝑉

(⋅)] (𝜆) = 𝜆V (𝜆) + 𝑉 (0) ,

N [𝑉

(⋅)] (𝜆) = 𝜆

2
V (𝜆) + 𝜆𝑉 (0) + 𝑉


(0) .

(76)

The second equation of (5) can be rewritten as

𝐿 [𝑉 (⋅)] (𝜉) = 𝜅 [𝑓 (𝑁
0
) − 𝑓 (𝑈 (𝜉))] 𝑉 (𝜉) , (77)

where

𝐿 [𝑉 (⋅)] (𝜉) = 𝑑
𝐵
𝑉

(𝜉) − 𝑐𝑉


(𝜉) + [𝜅𝑓 (𝑁

0
) − 𝑑]𝑉 (𝜉) .

(78)

Define 𝜌 = min{𝐻(𝜆) : 𝜆 ≥ 0}. Noticing 0 < 𝑐 < 𝑐
∗

yields 𝜌 > 0. Since (5) is autonomous, then for any 𝑎 ∈

R, (𝑈(𝜉 − 𝑎), 𝑉(𝜉 − 𝑎)) is also a solution of (5) satisfying
boundary condition (3) and 𝑈(𝜉 − 𝑎) → 𝑁

0 as 𝑎 → +∞.
Hence, without losing generality we can assume

𝜅 [𝑓 (𝑁
0
) − 𝑓 (𝑈 (𝜉))] <

𝜌

2
, (79)

for all 𝜉 ≤ 0. That is,

𝐿 [𝑉 (⋅)] (𝜉) ≤
𝜌

2
𝑉 (𝜉) . (80)

Applying the operator N[⋅] to this inequality and using the
properties ofN[⋅] concluded above yield that

𝜌

2
V (𝜆) ≥ N [𝐿 [𝑉 (⋅)] (⋅)] (𝜆) ≥ 𝐻 (𝜆)V (𝜆) + 𝑞 (𝜆) , (81)

where𝐻(𝜆) is the characteristic function of (7) and

𝑞 (𝜆) = 𝑑
𝐵
𝑉

(0) + (𝑑

𝐵
𝜆 − 𝑐)𝑉 (0) . (82)

Consequently, we have

H (𝜆) := [𝐻 (𝜆) −
𝜌

2
]V (𝜆) + 𝑞 (𝜆) ≤ 0. (83)

If 𝜆
∗

< +∞, then lim
𝜆→𝜆

∗−V(𝜆) = +∞ and, therefore,
lim
𝜆→𝜆

∗−H(𝜆) = +∞, which is a contradiction. If 𝜆∗ = +∞,
we have that lim

𝜆→+∞
H(𝜆) = +∞ by the monotonicity of

V(𝜆) and the definitions of 𝐻(𝜆) and 𝑞(𝜆), which is still a
contradiction. The proof of Theorem 9(I) is completed.

Proof of Theorem 9(II). Suppose (𝑈(𝜉), 𝑉(𝜉)) is a nontrivial
solution of system (5) satisfying boundary condition (3).
Similar to the arguments about (66), it is easy to show that
𝑉

(±∞) = 0. Then integrating the second equation of (5)

from −∞ to +∞ yields

𝑑∫

+∞

−∞

𝑉 (𝜉) 𝑑𝜉

= 𝜅∫

+∞

−∞

𝑓 (𝑈 (𝜉)) 𝑉 (𝜉) 𝑑𝜉 < 𝜅𝑓 (𝑁
0
)∫

+∞

−∞

𝑉 (𝜉) 𝑑𝜉

≤ 𝑑∫

+∞

−∞

𝑉 (𝜉) 𝑑𝜉,

(84)

which is a contradiction. The proof is completed.
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A mathematical model is proposed to consider the effects of saturated diagnosis and vaccination on HIV/AIDS infection. By
employing center manifold theory, we prove that there exists a backward bifurcation which suggests that the disease cannot be
eradicated even if the basic reproduction number is less than unity. Global stability of the disease-free equilibrium is investigated
for appropriate conditions. When the basic reproduction number is greater than unity, the system is uniformly persistent. The
proposed model is applied to describe HIV infection among injecting drug users (IDUs) in Yunnan province, China. Numerical
studies indicate that new cases and prevalence are sensitive to transmission rate, vaccination rate, and vaccine efficacy.The findings
suggest that increasing vaccination rate and vaccine efficacy and enhancing interventions like reducing share injectors can greatly
reduce the transmission of HIV among IDUs in Yunnan province, China.

1. Introduction

Acquired immunodeficiency syndrome (AIDS) is spreading
rapidly in the world ever since it was firstly detected in 1981
and continues to threaten the health of human seriously,
especially among sex workers and injecting drug users.
Furthermore, AIDS also influences the economy of many
countries which has attracted great attention of governments.
For such a severe scenario, the governments have taken
intervention measures to reduce HIV transmission.

Mathematical models play a vital role in gaining a quanti-
tative insight intoHIV transmission dynamics and suggesting
the effective control strategies. In order to study the effect of
various intervention strategies on HIV transmission, exten-
sive mathematical models have been formulated. Tradition-
ally, models of HIV/AIDS dynamics often incorporate staged
progression (see, e.g., [1–3]), but these did not include any
control measures. Hyman et al. [4] extended these models to
consider screening and contact tracing and discussed which
strategy would slow infectiousness. Compartmental mod-
els with staged progression that incorporate the imperfect
vaccine were constructed in [5] to predict HIV epidemic,
but they did not consider diagnosis. Elbasha and Gumel [6]
considered that a proportion of new recruits are vaccinated

and upon becoming infected with HIV, susceptible and vac-
cinated individuals enter the classes of infected and vaccine
infected people, separately. They showed the existence of
backward bifurcation via numerical simulations. Sharomi et
al. [7] explored the role of the choice of incidence function
in HIV models formulated in [6] and obtained that the
phenomenon of backward bifurcation can be removed by
substituting the standard incidence function with a mass
action incidence. In South Africa, testing and screening
campaignwas launched forHIV;Nyabadza andMukandavire
[8] analyzed their effects by developing HIV models. More
recently, a model of HIV/AIDS with diagnosis was presented
in [9]. The authors estimated parameter values and predicted
its transmission in China in the next few years.

The majority of mathematical models consider only one
control strategy, vaccination or diagnosis, for instance [5,
9]; however, curbing HIV/AIDS infection needs compre-
hensive strategies, since, under the serious threat of HIV,
it may be more rational to adopt various measures for
different high risk groups. These motivate us to consider two
combined intervention measures, vaccination and diagnosis.
Furthermore, due to the limited resources, we then choose a
nonlinear function which can be used to describe saturation
effect. We use a parameter ℎ, representing the half saturation
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constant, in the diagnosis function to measure the effect
of HIV individuals being late for diagnosis [10]. When the
number of infected individuals 𝐼 is low, the number of actual
per capita diagnosed individuals is proportional to 𝐼, whereas
when the number of infected individuals 𝐼 is sufficiently
large, there is a saturation effect which makes the number
of diagnosed individuals approach to be constant due to the
limitation of human and economic power. The number of
new diagnosed cases per unit time is saturated with the total
infected population.

The paper is organized as follows. The model is formu-
lated in Section 2. The existence of backward bifurcation and
the stability of the disease-free equilibrium are discussed in
Section 3. In Section 4, uniform persistence of the model is
investigated. Numerical simulation results are concluded in
Section 5. In Section 6, we give a brief summary.

2. The Model

The model describes the spread of HIV/AIDS in a high risk
population. The total high risk population size at time 𝑡,
denoted by (𝑁(𝑡)), is subdivided into susceptible individuals
(𝑆(𝑡)), vaccinated susceptible individuals (𝑉(𝑡)),HIV infected
but not yet diagnosed individuals (𝐼(𝑡)), diagnosed HIV-
positive individuals (𝐷(𝑡)), and those who have developed
AIDS (𝐴(𝑡)), so that𝑁(𝑡) = 𝑆(𝑡) + 𝑉(𝑡) + 𝐼(t) + 𝐷(𝑡) + 𝐴(𝑡).

The equations of the model are

𝑆

= Π + 𝜔𝑉 − 𝜆 (𝑡) 𝑆 − 𝜉𝑆 − 𝜇𝑆,

𝑉

= 𝜉𝑆 − (1 − 𝜖) 𝜆 (𝑡) 𝑉 − 𝜔𝑉 − 𝜇𝑉,

𝐼

= 𝜆 (𝑡) (𝑆 + (1 − 𝜖)𝑉) − 𝜎

1
𝐼 −

𝑞𝐼

1 + ℎ𝐼
− 𝜇𝐼,

𝐷

=

𝑞𝐼

1 + ℎ𝐼
− 𝜎
2
𝐷 − 𝜇𝐷,

𝐴

= 𝜎
1
𝐼 + 𝜎
2
𝐷 − (𝜇 + 𝜓)𝐴,

(1)

where the incidence rate 𝜆(𝑡) = 𝛽((𝐼(𝑡) + 𝜂
1
𝐷(𝑡) +

𝜂
2
𝐴(𝑡))/𝑁(𝑡)), 𝛽 denotes the transmission rate, and 𝜂

1
and

𝜂
2
illustrate the modification factors in the transmission

coefficient of diagnosed HIV-positive individuals and AIDS
patients, respectively. People enter into the susceptible class
at a rate Π, become infected at a rate 𝜆(𝑡)𝑆, and become
vaccinated at a rate 𝜉. Also 𝜇 is the natural death rate; 𝜔
denotes the waning rate of vaccine; 𝜖 represents the vaccine
efficacy; 𝑞 is the diagnosis rate; 𝜎

1
and 𝜎

2
are the progression

rate to diagnose HIV-positive individuals and AIDS patients,
respectively; 𝜓 is the disease-induced death rate.

Since the model monitors change in the human pop-
ulation, the variables and parameters are assumed to be
nonnegative for all 𝑡 ≥ 0. The system will be analyzed in a
suitable feasible region Ω ⊆ 𝑅

5

+
, where Ω = {(𝑆, 𝑉, 𝐼, 𝐷, 𝐴) ∈

𝑅
5

+
| 𝑆 + 𝑉 + 𝐼 + 𝐷 + 𝐴 ≤ Π/𝜇}. We can easily prove that

the solutions of system (1) with nonnegative initial conditions
remain nonnegative, and the feasible region Ω is positively
invariant and attractingwith respect to system (1) for all 𝑡 > 0.

3. Model Analysis

3.1. Disease-Free Equilibrium and the Basic Reproduction
Number. Model (1) has a disease-free equilibrium (DFE),
obtained by setting the right-hand sides of system (1) to zero,
represented as

𝐸
0
: (𝑆, 𝑉, 𝐼, 𝐷, 𝐴)=(

Π (𝜇 + 𝜔)

𝜇 (𝜇 + 𝜉 + 𝜔)
,

Π𝜉

𝜇 (𝜇 + 𝜉 + 𝜔)
, 0, 0, 0) ,

𝑁 = 𝑆 + 𝑉 + 𝐼 + 𝐷 + 𝐴 =
Π

𝜇
.

(2)

Following [11], the reproduction number can be established
by using the next generation operator approach.Thematrices
for new infection and transition terms, respectively, given by
𝐹 and 𝑉, are

𝐹 = (

𝛽𝑚 𝜂
1
𝛽𝑚 𝜂

2
𝛽𝑚

0 0 0

0 0 0

) ,

𝑉 = (

𝜎
1
+ 𝑞 + 𝜇 0 0

−𝑞 𝜎
2
+ 𝜇 0

−𝜎
1

−𝜎
2

𝜇 + 𝜓

) ,

(3)

where𝑚 = (𝑆 + (1 − 𝜖)𝑉)/𝑁 = (𝜇 + 𝜔 + (1 − 𝜖)𝜉)/(𝜇 + 𝜔 + 𝜉).
Denote by 𝑅

0
the basic reproduction number as

𝑅
0
= 𝜌 (𝐹𝑉

−1
)

=
𝛽𝑚

𝜎
1
+ 𝑞 + 𝜇

(1 +
𝜂
1
𝑞

𝜎
2
+ 𝜇

+
𝜂
2

𝜇 + 𝜓
(
𝜎
2
𝑞

𝜎
2
+ 𝜇

+ 𝜎
1
)) ,

(4)

that is, the spectral radius of the next generation matrix
𝐹𝑉
−1. Biologically speaking, 𝑅

0
is the average number of

new secondary infections generated by a single HIV infected
individual, introduced into a susceptible population in which
some individuals have been vaccinated.

3.2. Existence of Backward Bifurcation. Employing the center
manifold theory as described in [12], we investigate the
existence of backward bifurcation. In order to apply the center
manifold theory, we make the following changes of variables:

𝑆 = 𝑥
1
, 𝑉 = 𝑥

2
, 𝐼 = 𝑥

3
, 𝐷 = 𝑥

4
, 𝐴 = 𝑥

5
,

(5)

so that 𝑁 = ∑
5

𝑛=1
𝑥
𝑛
. We now use the vector notation 𝑋 =

(𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
)
𝑇, where (⋅)𝑇 denotes a matrix transpose.

System (1) can then bewritten as𝑋 = 𝐹 = (𝑓
1
, 𝑓
2
, 𝑓
3
, 𝑓
4
, 𝑓
5
)
𝑇,

so that

̇𝑥
1
(𝑡) = 𝑓

1
= Π + 𝜔𝑥

2
− 𝜆𝑥
1
− 𝜉𝑥
1
− 𝜇𝑥
1
,

̇𝑥
2
(𝑡) = 𝑓

2
= 𝜉𝑥
1
− (1 − 𝜖) 𝜆𝑥

2
− 𝜔𝑥
2
− 𝜇𝑥
2
,
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̇𝑥
3 (𝑡) = 𝑓3 = 𝜆 (𝑥1 + (1 − 𝜖) 𝑥2) − (𝜎1 +

𝑞

1 + ℎ𝑥
3

+ 𝜇)𝑥
3
,

̇𝑥
4 (𝑡) = 𝑓4 =

𝑞𝑥
3

1 + ℎ𝑥
3

− (𝜎
2
+ 𝜇) 𝑥

4
,

̇𝑥
5
(𝑡) = 𝑓

5
= 𝜎
1
𝑥
3
+ 𝜎
2
𝑥
4
− (𝜓 + 𝜇) 𝑥

5
,

(6)

where 𝜆 = 𝛽((𝑥
3
+ 𝜂
1
𝑥
4
+ 𝜂
2
𝑥
5
)/𝑁).

If 𝛽 is taken as the bifurcation parameter and we consider
the case 𝑅

0
= 1, solving for 𝛽 gives 𝛽 = 𝛽∗; that is,

𝛽
∗
𝑚(1 +

𝜂
1
𝑞

𝜎
2
+ 𝜇

+
𝜂
2

𝜇 + 𝜓
(
𝜎
2
𝑞

𝜎
2
+ 𝜇

+ 𝜎
1
)) = 𝜎

1
+ 𝑞 + 𝜇.

(7)

First of all, observe that the eigenvalues of the Jacobianmatrix
𝐽(𝐸
0
) at 𝛽 = 𝛽∗ [13], that is, 𝐽(𝐸

0
)|
𝛽=𝛽
∗ ,

𝐽 (𝐸
0
)
𝛽=𝛽∗

=
(
(
(

(

−𝜇 − 𝜉 𝜔 −𝛽
∗ 𝑆

𝑁

−𝜂
1
𝛽
∗ 𝑆

𝑁

−𝜂
2
𝛽
∗ 𝑆

𝑁

𝜉 −𝜇 − 𝜔 −𝛽
∗
(1 − 𝜖)

𝑉

𝑁

−𝜂
1
𝛽
∗
(1 − 𝜖)

𝑉

𝑁

−𝜂
2
𝛽
∗
(1 − 𝜖)

𝑉

𝑁
0 0 𝛽

∗
𝑚 − 𝜎

1
− 𝑞 − 𝜇 𝜂

1
𝛽
∗
𝑚 𝜂

2
𝛽
∗
𝑚

0 0 𝑞 −𝜎
2
− 𝜇 0

0 0 𝜎
1

𝜎
2

−𝜇 − 𝜓

)
)
)

)

, (8)

are given by

𝜆
1
= −𝜇, 𝜆

2
= − (𝜇 + 𝜔 + 𝜉) , 𝜆

3
= 0. (9)

The other two eigenvalues satisfy the following equation:

𝜆
2
+ 𝑏𝜆 + 𝑐 = 0, (10)

where

𝑏 = (𝜎
2
+ 𝜇) + (𝜇 + 𝜓) + (𝜎

1
+ 𝑞 + 𝜇) − 𝛽

∗
𝑚,

𝑐 = (𝜎
2
+ 𝜇) (𝜇 + 𝜓) + (𝜎

2
+ 𝜇) (𝜎

1
+ 𝑞 + 𝜇 − 𝛽

∗
𝑚)

+ (𝜇 + 𝜓) (𝜎
1
+ 𝑞 + 𝜇 − 𝛽

∗
𝑚) − 𝜂

1
𝑞𝛽
∗
𝑚 − 𝜎

1
𝜂
2
𝛽
∗
𝑚.

(11)

Substituting (7) into 𝑏 and 𝑐, we find

𝑏 = (𝜎
2
+ 𝜇) + (𝜇 + 𝜓)

+ 𝛽
∗
𝑚[

𝜂
1
𝑞

𝜎
2
+ 𝜇

+
𝜂
2

𝜇 + 𝜓
(
𝜎
2
𝑞

𝜎
2
+ 𝜇

+ 𝜎
1
)] ,

𝑐 = (𝜎
2
+ 𝜇) (𝜇 + 𝜓)

× {1 +
𝛽
∗
𝑚

𝜇 + 𝜓
[
𝜂
1
𝑞

𝜎
2
+ 𝜇

+
𝜂
2

𝜇 + 𝜓
(
𝜎
2
𝑞

𝜎
2
+ 𝜇

+ 𝜎
1
)]

+
𝛽
∗
𝑚

𝜎
2
+ 𝜇

[
𝜂
1
𝑞

𝜎
2
+ 𝜇

+
𝜂
2

𝜇 + 𝜓
(
𝜎
2
𝑞

𝜎
2
+ 𝜇

+ 𝜎
1
)]

−𝛽
∗
𝑚

𝜂
1
𝑞 + 𝜎
1
𝜂
2

(𝜎
2
+ 𝜇) (𝜇 + 𝜓)

}

= (𝜎
2
+ 𝜇) (𝜇 + 𝜓)

× {1 + 𝛽
∗
𝑚[

𝜂
2

(𝜇 + 𝜓)
2
(
𝜎
2
𝑞

𝜎
2
+ 𝜇

+ 𝜎
1
)

+
𝜂
1
𝑞

(𝜎
2
+ 𝜇)
2
+

𝜂
2
𝜎
2
𝑞

(𝜇 + 𝜓) (𝜎
2
+ 𝜇)
2
]} .

(12)

Clearly, 𝑏 and 𝑐 are positive. Equation (10) has two roots
with negative real parts. Hence, 𝜆

3
= 0 is a simple zero

eigenvalue and all other eigenvalues have negative real parts.
The assumptions in [12] are satisfied. Therefore, the center
manifold theory can be used to analyze the dynamics of
system (1) near 𝛽 = 𝛽∗(or, equivalently,𝑅

0
= 1).The Jacobian

matrix of system (1) at 𝛽 = 𝛽∗ has a right eigenvector𝑤, given
by 𝑤 = (𝑤

1
, 𝑤
2
, 𝑤
3
, 𝑤
4
, 𝑤
5
)
𝑇. And it can be computed from

the system (𝐽(𝐸
0
)|
𝛽=𝛽
∗) ⋅ 𝑤 = 0; that is,

0 = − (𝜇 + 𝜉)𝑤
1
+ 𝜔𝑤
2
− 𝛽
∗ 𝑥1

𝑁

𝑤
3
− 𝜂
1
𝛽
∗ 𝑥1

𝑁

𝑤
4

− 𝜂
2
𝛽
∗ 𝑥1

𝑁

𝑤
5
,

0 = 𝜉𝑤
1
− (𝜇 + 𝜔)𝑤

2
− (1 − 𝜖) 𝛽

∗ 𝑥2

𝑁

𝑤
3

− (1 − 𝜖) 𝜂1𝛽
∗ 𝑥2

𝑁

𝑤
4
− (1 − 𝜖) 𝜂2𝛽

∗ 𝑥2

𝑁

𝑤
5
,

0 = (𝛽
∗
𝑚 − 𝜎

1
− 𝑞 − 𝜇)𝑤

3
+ 𝜂
1
𝛽
∗
𝑚𝑤
4
+ 𝜂
2
𝛽
∗
𝑚𝑤
5
,

0 = 𝑞𝑤
3
− (𝜎
2
+ 𝜇)𝑤

4
,

0 = 𝜎
1
𝑤
3
+ 𝜎
2
𝑤
4
− (𝜇 + 𝜓)𝑤

5
;

(13)
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from (13), we derive the following solutions:

𝑤
1
= −

(𝜇 + 𝑤)
2
+ (1 − 𝜖)𝑤𝜉

𝜇(𝜇 + 𝑤 + 𝜉)
2

𝛽
∗
(𝑤
3
+ 𝜂
1
𝑤
4
+ 𝜂
2
𝑤
5
) < 0,

𝑤
2
= −

𝜉 (𝜇 + 𝑤 + (1 − 𝜖) (𝜇 + 𝜉))

𝜇(𝜇 + 𝑤 + 𝜉)
2

𝛽
∗
(𝑤
3
+ 𝜂
1
𝑤
4
+ 𝜂
2
𝑤
5
)

< 0,

𝑤
3
= 𝑤
3
> 0, 𝑤

4
=

𝑞

𝜎
2
+ 𝜇

𝑤
3
> 0,

𝑤
5
=
𝜎
1
𝑤
3
+ 𝜎
2
𝑤
4

𝜇 + 𝜓
> 0.

(14)

The left eigenvector of 𝐽(𝐸
0
)|
𝛽=𝛽
∗ is V, denoted by V =

(V
1
, V
2
, V
3
, V
4
, V
5
). And it can be computed from the system

(𝐽(𝐸
0
)|
𝛽=𝛽
∗)
𝑇
⋅ V = 0; that is,

0 = − (𝜇 + 𝜉) V
1
+ 𝜉V
2
,

0 = 𝜔V
1
− (𝜇 + 𝜔) V

2
,

0 = − 𝛽
∗ 𝑥1

𝑁

V
1
− (1 − 𝜖) 𝛽

∗ 𝑥2

𝑁

V
2
+ (𝛽
∗
𝑚 − 𝜎

1
− 𝑞 − 𝜇) V

3

+ 𝑞V
4
+ 𝜎
1
V
5
,

0 = − 𝜂
1
𝛽
∗ 𝑥1

𝑁

V
1
− (1 − 𝜖) 𝜂1𝛽

∗ 𝑥2

𝑁

V
2
+ 𝜂
1
𝛽
∗
𝑚V
3

− (𝜎
2
+ 𝜇) V

4
+ 𝜎
2
V
5
,

0 = − 𝜂
2
𝛽
∗ 𝑥1

𝑁

V
1
− (1 − 𝜖) 𝜂

2
𝛽
∗ 𝑥2

𝑁

V
2
+ 𝜂
2
𝛽
∗
𝑚V
3

− (𝜇 + 𝜓) V
5
,

(15)

with the following solutions:

V
1
= 0, V

2
= 0, V

3
= V
3
> 0,

V
4
=
𝛽
∗
𝑚

𝜎
2
+ 𝜇

(𝜂
1
+
𝜎
2
𝜂
2

𝜇 + 𝜓
) V
3
> 0, V

5
=
𝜂
2
𝛽
∗
𝑚

𝜇 + 𝜓
V
3
> 0.

(16)

The local bifurcation analysis near 𝛽 = 𝛽∗(𝑅
0
= 1) is then

determined by the signs of two associated constants, denoted
by 𝑎 and 𝑏, respectively, as

𝑎 =

5

∑

𝑘,𝑖,𝑗=1

V
𝑘
𝑤
𝑖
𝑤
𝑗

𝜕
2
𝑓
𝑘

𝜕𝑥
𝑖
𝜕𝑥
𝑗

(0, 0) ,

𝑏 =

5

∑

𝑘,𝑖=1

V
𝑘
𝑤
𝑖

𝜕
2
𝑓
𝑘

𝜕𝑥
𝑖
𝜕𝛽∗

(0, 0) .

(17)

The computations of 𝑎 and 𝑏 are done as follows: for system
(6) the associated nonzero partial derivatives of 𝐹 at the
disease-free equilibrium are

𝜕
2
𝑓
3

𝜕𝑥
1
𝜕𝑥
3

=
𝛽
∗

𝑁
(1 − 𝑚) ,

𝜕
2
𝑓
3

𝜕𝑥
1
𝜕𝑥
4

=
𝜂
1
𝛽
∗

𝑁
(1 − 𝑚) ,

𝜕
2
𝑓
3

𝜕𝑥
1
𝜕𝑥
5

=
𝜂
2
𝛽
∗

𝑁
(1 − 𝑚) ,

𝜕
2
𝑓
3

𝜕𝑥
2
𝜕𝑥
3

=
𝛽
∗

𝑁
(1 − 𝜖 − 𝑚) ,

𝜕
2
𝑓
3

𝜕𝑥
2
𝜕𝑥
4

=
𝜂
1
𝛽
∗

𝑁
(1 − 𝜖 − 𝑚) ,

𝜕
2
𝑓
3

𝜕𝑥
2
𝜕𝑥
5

=
𝜂
2
𝛽
∗

𝑁
(1 − 𝜖 − 𝑚) ,

𝜕
2
𝑓
3

𝜕𝑥
3
𝜕𝑥
3

= −
2𝛽
∗

𝑁

𝑚 + 2𝑞ℎ,
𝜕
2
𝑓
3

𝜕𝑥
3
𝜕𝑥
4

= −
𝛽
∗
(1 + 𝜂

1
)

𝑁

𝑚,

𝜕
2
𝑓
3

𝜕𝑥
3
𝜕𝑥
5

= −
𝛽
∗
(1 + 𝜂

2
)

𝑁

𝑚,
𝜕
2
𝑓
3

𝜕𝑥
4
𝜕𝑥
4

= −
2𝜂
1
𝛽
∗

𝑁

𝑚,

𝜕
2
𝑓
3

𝜕𝑥
4
𝜕𝑥
5

= −
(𝜂
1
+ 𝜂
2
) 𝛽
∗

𝑁

𝑚,
𝜕
2
𝑓
3

𝜕𝑥
5
𝜕𝑥
5

= −
2𝜂
2
𝛽
∗

𝑁

𝑚,

𝜕
2
𝑓
4

𝜕𝑥
3
𝜕𝑥
3

= −2𝑞ℎ,

𝜕
2
𝑓
3

𝜕𝑥
3
𝜕𝛽∗

= 𝑚,
𝜕
2
𝑓
3

𝜕𝑥
4
𝜕𝛽∗

= 𝜂
1
𝑚,

𝜕
2
𝑓
3

𝜕𝑥
5
𝜕𝛽∗

= 𝜂
2
𝑚.

(18)

Substituting (18) into (17), we get

𝑎 =
2𝛽
∗

𝑁

V
3
{ (𝑤
3
+ 𝜂
1
𝑤
4
+ 𝜂
2
𝑤
5
)

× (𝛽
∗
(𝑤
3
+ 𝜂
1
𝑤
4
+ 𝜂
2
𝑤
5
)
(1 − 𝜖) 𝜖𝜉

(𝜇 + 𝑤 + 𝜉)
2

−𝑚 (𝑤
3
+ 𝑤
4
+ 𝑤
5
))}

+ 2𝑞ℎ𝑤
2

3
V
3
(1 −

𝛽
∗
𝑚

𝜎
2
+ 𝜇

(𝜂
1
+
𝜎
2
𝜂
2

𝜇 + 𝜓
)) ,

𝑏 = V
3
(𝑤
3
+ 𝜂
1
𝑤
4
+ 𝜂
2
𝑤
5
)𝑚.

(19)

From [14, 15], we know that if 𝑎 > 0, 𝑏 > 0, there exists
a backward bifurcation. Since the bifurcation coefficient, 𝑏, is
always positive, then we establish the following result.

Theorem 1. If 𝑎 > 0, system (1) exhibits a backward bifurca-
tion when 𝑅

0
= 1.

Due to existence of backward bifurcation we know that,
for positive 𝑎, there exists another critical value 𝑅

𝑐
, which is

less than unity, for model (1). Moreover, there is no endemic
equilibrium for 𝑅

0
< 𝑅
𝑐
; there are two distinct endemic
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Figure 1: (a) Plot of the function 𝐹(𝐼)with different values of the transmission coefficient 𝛽. (b) Backward bifurcation when the transmission
coefficient 𝛽 varies. Other parameters: Π = 100, 𝜇 = 1/45, 𝑤 = 1/20, 𝜖 = 0.4, 𝜉 = 0.6, 𝜎

1
= 0.7, 𝜎

2
= 0.4, 𝜓 = 0.5, 𝑞 = 1, ℎ = 1, 𝜂

1
= 0.4, and

𝜂
2
= 0.7.

equilibria for𝑅
𝑐
< 𝑅
0
< 1, and a unique endemic equilibrium

exists for 𝑅
0
= 𝑅
𝑐
< 1 or 𝑅

0
> 1. Numerical studies will

confirm this in the end of this subsection.
We now analyze the endemic equilibrium of model (1).

The equilibrium of model (1) can be obtained as follows:

𝑆
∗
=

Π ((1 − 𝜖) 𝜆
∗
+ 𝜇 + 𝜔)

((1 − 𝜖) 𝜆
∗ + 𝜇 + 𝜔) (𝜆∗ + 𝜇 + 𝜉) − 𝜔𝜉

,

𝑉
∗
=

Π𝜉

((1 − 𝜖) 𝜆
∗ + 𝜇 + 𝜔) (𝜆∗ + 𝜇 + 𝜉) − 𝜔𝜉

,

𝐷
∗
=

1

𝜎
2
+ 𝜇

𝑞𝐼
∗

1 + ℎ𝐼∗
,

𝐴
∗
=

𝜎
1

𝜇 + 𝜓
𝐼
∗
+

𝜎
2

𝜇 + 𝜓

1

𝜎
2
+ 𝜇

𝑞𝐼
∗

1 + ℎ𝐼∗
,

𝑁
∗
=
Π − 𝜓𝐴

∗

𝜇
,

(20)

where

𝜆
∗
= 𝜆 (𝐼

∗
) = 𝛽

𝐼
∗
+ 𝜂
1
𝐷
∗
+ 𝜂
2
𝐴
∗

𝑁∗

= 𝛽
𝐼
∗

𝑁∗
{1 +

𝜂
1

𝜎
2
+ 𝜇

𝑞

1 + ℎ𝐼∗

+𝜂
2
(

𝜎
1

𝜇 + 𝜓
+

𝜎
2

𝜇 + 𝜓

1

𝜎
2
+ 𝜇

𝑞

1 + ℎ𝐼∗
)} .

(21)

Substituting (20) into the third equation of system (1), it is
easy to derive the following equation:

𝑓 (𝐼) = 𝑔 (𝐼) , (22)

where

𝑓 (𝐼) = (𝑆 + (1 − 𝜖)𝑉)
𝛽

𝑁

× {1 +
𝜂
1

𝜎
2
+ 𝜇

𝑞

1 + ℎ𝐼

+𝜂
2
(

𝜎
1

𝜇 + 𝜓
+

𝜎
2

𝜇 + 𝜓

1

𝜎
2
+ 𝜇

𝑞

1 + ℎ𝐼
)} ,

(23)

𝑔 (𝐼) = 𝜎
1
+ 𝜇 +

𝑞

1 + ℎ𝐼
. (24)

Clearly, 𝐼∗ = 0 is a fixed point, which corresponds to the
disease-free equilibrium 𝐸

0
. For 𝐼 = 0, we can obtain

𝑔 (0) = 𝜎
1
+ 𝑞 + 𝜇,

𝑓 (0) = 𝛽𝑚{1 +
𝜂
1
𝑞

𝜎
2
+ 𝜇

+
𝜎
2

𝜇 + 𝜓
(𝜎
1
+

𝜎
2
𝑞

𝜎
2
+ 𝜇

)} ,

𝑅
0
=
𝑓 (0)

𝑔 (0)
.

(25)

Define

𝐹 (𝐼) =
𝑓 (𝐼)

𝑔 (𝐼)
. (26)

Frommodel (1), it can be shown that if 𝐼∗ is a positive solution
of 𝐹(𝐼) = 1, then 𝑆∗, 𝑉∗, 𝐷∗, and 𝐴∗ are positive. Thus, the
equilibrium is biologically relevant. Unfortunately, it is hard
to solve the equation 𝐹(𝐼) = 1 analytically; in the following
we numerically show that this equation can have two positive
roots, which confirms the existence of backward bifurcation.
In Figure 1(a), 𝐹(𝐼) is plotted versus 𝐼 for different values of
𝛽 and all other parameters are fixed. Figure 1(a) shows that
an increase in 𝛽 would lead to curve 𝐹(𝐼) becoming tangent
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to line 1 and defining a critical value 𝐹(𝐼∗)|
𝛽=𝛽
𝑐

= 1 and
𝐹

(𝐼
∗
)|
𝛽=𝛽
𝑐

= 0 hold true. Figure 1(b) shows the occurrence
of the backward bifurcation as parameter 𝛽 varies. We write
𝑅
0
(𝛽) as the threshold value to indicate 𝛽 as the bifurcation

parameter while all other parameters are fixed. Define [16]

𝑅
𝑐
= 𝑅
0
(𝛽
𝑐
) , (27)

below which the disease-free equilibrium is unique equilib-
rium.

3.3. Stability Analysis of Equilibria. First, we have the follow-
ing result on the local stability of 𝐸

0
.

Theorem 2. The disease-free equilibrium 𝐸
0
of system (1) is

locally asymptotically stable if 𝑅
0
< 1 and unstable otherwise.

Proof. By checking the Jacobian matrix of system (1) evalu-
ated at 𝐸

0
, we know that the characteristic equation for 𝐽(𝐸

0
)

has two eigenvalues as

𝜆
1
= −𝜇, 𝜆

2
= − (𝜇 + 𝜔 + 𝜉) , (28)

and the others satisfy the following equation:

ℎ (𝜆) =
𝛽𝑚

𝜆 + 𝜎
1
+ 𝑞 + 𝜇

+
𝜂
1
𝛽𝑚𝑞

(𝜆 + 𝜎
1
+ 𝑞 + 𝜇) (𝜆 + 𝜎

2
+ 𝜇)

+
𝜂
2
𝛽𝑚𝑞𝜎

2

(𝜆 + 𝜎
1
+ 𝑞 + 𝜇) (𝜆 + 𝜎

2
+ 𝜇) (𝜆 + 𝜇 + 𝜓)

+
𝜂
2
𝛽𝑚𝜎
1

(𝜆 + 𝜎
1
+ 𝑞 + 𝜇) (𝜆 + 𝜇 + 𝜓)

= 1.

(29)

If the real parts of the roots of the equation ℎ(𝜆) = 1 are
nonnegative, that is,R(𝜆) ≥ 0, then [17]

|ℎ (𝜆)| ≤ ℎ (0) = 𝑅0. (30)

Hence, if𝑅
0
< 1,∀𝜆 such thatR(𝜆) ≥ 0, then |ℎ(𝜆)| ≤ 𝑅

0
< 1,

showing that there are no solutions to ℎ(𝜆) = 1 with positive
real part. Hence, 𝐸

0
is locally asymptotically stable if 𝑅

0
< 1.

This proof is completed.

Then, using Lyapunov function we can get global stability
of 𝐸
0
.

Theorem 3. The disease-free equilibrium 𝐸
0
of system (1) is

globally asymptotically stable if 𝑅
0
< min{𝑅

𝑐
, (𝜎
1
+ 𝜇)𝑚/(𝜎

1
+

𝑞 + 𝜇)}.

Proof. We note that no endemic equilibrium exists for 𝑅
0
<

𝑅
𝑐
. Then, 𝐸

0
is a unique equilibrium of system (1). We now

consider a Lyapunov function:

𝑉 = 𝐼 +
𝛽

𝜎
2
+ 𝜇

(𝜂
1
+
𝜎
2
𝜂
2

𝜇 + 𝜓
)𝐷 +

𝜂
2
𝛽

𝜇 + 𝜓
𝐴. (31)

The time derivative of 𝑉 is given by

𝑉 = ̇𝐼 +
𝛽

𝜎
2
+ 𝜇

(𝜂
1
+
𝜎
2
𝜂
2

𝜇 + 𝜓
) ̇𝐷 +

𝜂
2
𝛽

𝜇 + 𝜓

̇𝐴

= {𝛽 (𝐼 + 𝜂
1
𝐷 + 𝜂

2
𝐴)

𝑆 + (1 − 𝜖)𝑉

𝑁
− 𝜎
1
𝐼 −

𝑞𝐼

1 + ℎ𝐼
− 𝜇𝐼}

+
𝛽

𝜎
2
+ 𝜇

(𝜂
1
+
𝜎
2
𝜂
2

𝜇 + 𝜓
)(

𝑞𝐼

1 + ℎ𝐼
− 𝜎
2
𝐷 − 𝜇𝐷)

+
𝜂
2
𝛽

𝜇 + 𝜓
(𝜎
1
𝐼 + 𝜎
2
𝐷 − (𝜇 + 𝜓)𝐴)

≤ {𝛽 (𝐼 + 𝜂
1
𝐷 + 𝜂

2
𝐴) − 𝜎

1
𝐼 −

𝑞𝐼

1 + ℎ𝐼
− 𝜇𝐼}

+
𝛽

𝜎
2
+ 𝜇

(𝜂
1
+
𝜎
2
𝜂
2

𝜇 + 𝜓
) (𝑞𝐼 − 𝜎

2
𝐷 − 𝜇𝐷)

+
𝜂
2
𝛽

𝜇 + 𝜓
(𝜎
1
𝐼 + 𝜎
2
𝐷 − (𝜇 + 𝜓)𝐴)

= 𝐼 {𝛽 − 𝜎
1
−

𝑞

1 + ℎ𝐼
− 𝜇 +

𝛽

𝜎
2
+ 𝜇

(𝜂
1
+
𝜎
2
𝜂
2

𝜇 + 𝜓
) 𝑞

+
𝜂
2
𝛽

𝜇 + 𝜓
𝜎
1
}

≤ 𝐼 {𝑅
0

𝜎
1
+ 𝑞 + 𝜇

𝑚
− (𝜎
1
+ 𝜇)}

=
(𝜎
1
+ 𝑞 + 𝜇) 𝐼

𝑚
{𝑅
0
−
(𝜎
1
+ 𝜇)𝑚

𝜎
1
+ 𝑞 + 𝜇

} .

(32)

Note that 𝑉 ≤ 0 if 𝑅
0
< (𝜎
1
+ 𝜇)𝑚/(𝜎

1
+ 𝑞 + 𝜇).

Furthermore,𝑉 = 0 if and only if 𝐼 = 0. Therefore, the largest
compact invariant set in Ω: 𝑉 = 0, when 𝑅

0
< min{𝑅

𝑐
, (𝜎
1
+

𝜇)𝑚/(𝜎
1
+ 𝑞 + 𝜇)}, is the singleton 𝐸

0
. Thus, 𝐸

0
is globally

asymptotically stable if 𝑅
0
< min{𝑅

𝑐
, (𝜎
1
+𝜇)𝑚/(𝜎

1
+ 𝑞+𝜇)}.

This completes the proof.

4. Persistence of the Model

In this section, we will prove that system (1) is uniformly
persistent. First, we present the following definition that is
similar to that in [18, 19].

Definition 4. Model (1) is said to be uniformly persistent
if there exists a positive constant 𝜀 > 0 (independent of
initial data) such that every solution with positive initial
conditions satisfies lim inf

𝑡→∞
𝑆(𝑡) ≥ 𝜀, lim inf

𝑡→∞
𝑉(𝑡) ≥

𝜀, lim inf
𝑡→∞

𝐼(𝑡) ≥ 𝜀, lim inf
𝑡→∞

𝐷(𝑡) ≥ 𝜀, and
lim inf

𝑡→∞
𝐴(𝑡) ≥ 𝜀.

Theorem 5. If 𝑅
0
> 1, system (1) is uniformly persistent; that

is, there exists a positive constant 𝜀, such that, for all initial
values

(𝑆 (0) , 𝑉 (0) , 𝐼 (0) , 𝐷 (0) , 𝐴 (0)) ∈ 𝑅
2

+
× 𝐼𝑛𝑡 (𝑅

3

+
) , (33)
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the solutions of system (1) satisfy. lim inf
𝑡→∞

𝑆(𝑡) ≥ 𝜀,
lim inf

𝑡→∞
𝑉(𝑡) ≥ 𝜀, lim inf

𝑡→∞
𝐼(𝑡) ≥ 𝜀, lim inf

𝑡→∞
𝐷(𝑡) ≥

𝜀, and lim inf
𝑡→∞

𝐴(𝑡) ≥ 𝜀.

Proof. Define

𝑋 = {(𝑆, 𝑉, 𝐼, 𝐷, 𝐴) | 𝑆 ≥ 0, 𝑉 ≥ 0, 𝐼 ≥ 0,𝐷 ≥ 0, 𝐴 ≥ 0} ,

𝑋
0
= {(𝑆, 𝑉, 𝐼, 𝐷, 𝐴) | 𝑆 ≥ 0, 𝑉 ≥ 0, 𝐼 > 0,𝐷 > 0, 𝐴 > 0} ,

𝜕𝑋
0
= 𝑋 \ 𝑋

0
.

(34)

It then suffices to show that system (1) is uniformly persistent
with respect to (𝑋

0
, 𝜕𝑋
0
). First, by the form of (1), it is easy

to see that both 𝑋 and 𝑋
0
are positively invariant. Clearly,

𝜕𝑋
0
is relatively closed in𝑋. Furthermore, system (1) is point

dissipative. Set

𝑀
𝜕
= {(𝑆 (0) , 𝑉 (0) , 𝐼 (0) , 𝐷 (0) , 𝐴 (0)) :

(𝑆 (𝑡) , 𝑉 (𝑡) , 𝐼 (𝑡) , 𝐷 (𝑡) , 𝐴 (𝑡)) satisfies (1) ,

(𝑆 (𝑡) , 𝑉 (𝑡) , 𝐼 (𝑡) , 𝐷 (𝑡) , 𝐴 (𝑡)) ∈ 𝜕𝑋
0
, ∀𝑡 ≥ 0} .

(35)

We now prove that

𝑀
𝜕
= {(𝑆, 𝑉, 0, 0, 0) : 𝑆 ≥ 0, 𝑉 ≥ 0} . (36)

Assume that (𝑆(0), 𝑉(0), 𝐼(0), 𝐷(0), 𝐴(0)) ∈ 𝑀
𝜕
. It suffices to

show that

𝐼 (𝑡) = 0, 𝐷 (𝑡) = 0, 𝐴 (𝑡) = 0, ∀𝑡 ≥ 0. (37)

If this is not true, then there exists a 𝑡
0
≥ 0 such that

𝐼 (𝑡
0
) > 0, 𝐷 (𝑡

0
) = 0, 𝐴 (𝑡

0
) = 0, (38)

or

𝐼 (𝑡
0
) > 0, 𝐷 (𝑡

0
) > 0, 𝐴 (𝑡

0
) = 0, (39)

or

𝐼 (𝑡
0
) > 0, 𝐷 (𝑡

0
) = 0, 𝐴 (𝑡

0
) > 0, (40)

or

𝐼 (𝑡
0
) = 0, 𝐷 (𝑡

0
) > 0, 𝐴 (𝑡

0
) = 0, (41)

or

𝐼 (𝑡
0
) = 0, 𝐷 (𝑡

0
) = 0, 𝐴 (𝑡

0
) > 0, (42)

or

𝐼 (𝑡
0
) = 0, 𝐷 (𝑡

0
) > 0, 𝐴 (𝑡

0
) > 0. (43)

For 𝐼(𝑡
0
) > 0,𝐷(𝑡

0
) = 0, and 𝐴(𝑡

0
) = 0, we get

𝐷

(𝑡
0
) =

𝑞𝐼 (𝑡
0
)

1 + ℎ𝐼 (𝑡
0
)
> 0, 𝐴


(𝑡
0
) = 𝜎
1
𝐼 (𝑡
0
) > 0.

(44)

It follows that there is an 𝜀
0
> 0 such that 𝐷(𝑡) > 0, 𝐴(𝑡) > 0,

for 𝑡
0
< 𝑡 < 𝑡

0
+ 𝜀
0
. This proves that

(𝑆 (𝑡) , 𝑉 (𝑡) , 𝐼 (𝑡) , 𝐷 (𝑡) , 𝐴 (𝑡)) ∉ 𝜕𝑋
0

for 𝑡
0
< 𝑡 < 𝑡

0
+ 𝜀
0
,

(45)

which contradicts the assumption that (𝑆(0), 𝑉(0), 𝐼(0),
𝐷(0), 𝐴(0)) ∈ 𝑀

𝜕
. Similarly, we can obtain contradictions for

other cases. This proves that

𝑀
𝜕
= {(𝑆, 𝑉, 0, 0, 0) : 𝑆 ≥ 0, 𝑉 ≥ 0} . (46)

Note that 𝐸
0
is globally asymptotically stable in 𝐼𝑛𝑡𝑀

𝜕
,

and𝐸
0
is an isolated invariant set in𝑋.That is to say,𝑊𝑠(𝐸

0
)∩

𝑋
0
= 0. Every orbit in𝑀

𝜕
converges to 𝐸

0
, and 𝐸

0
is acyclic

in𝑀
𝜕
. We claim that𝑊𝑠(𝐸

0
) ∩ 𝑋
0
= 0 for 𝑅

0
> 1. If this is

false, then we have𝑊𝑠(𝐸
0
)∩𝑋
0
̸=0.The system has a positive

solution

(𝑆 (𝑡) , 𝑉 (𝑡) , 𝐼 (𝑡) , 𝐷 (𝑡) , 𝐴 (𝑡)) , (47)

where (𝑆(0), 𝑉(0), 𝐼(0), 𝐷(0), 𝐴(0)) ∈ 𝑋
0
. Then

(𝑆 (𝑡) , 𝑉 (𝑡) , 𝐼 (𝑡) , 𝐷 (𝑡) , 𝐴 (𝑡)) → 𝐸
0

as 𝑡 → ∞ for 𝑅
0
> 1.

(48)

For 𝑅
0
> 1, we can choose an 𝜂 > 0 small enough such that

𝑅
0
(1 − 𝜂) > 1. Then, when 𝑡 is sufficiently large, we have

𝑚 − 𝜂𝑚 ≤
𝑆 (𝑡) + (1 − 𝜖)𝑉 (𝑡)

𝑁 (𝑡)
≤ 𝑚 + 𝜂𝑚, (49)

𝐼

≥ 𝛽𝑚 (1 − 𝜂) (𝐼 + 𝜂

1
𝐷 + 𝜂

2
𝐴) − 𝜎

1
𝐼 −

𝑞𝐼

1 + ℎ𝐼
− 𝜇𝐼,

𝐷

≥

𝑞𝐼

1 + ℎ𝐼
− 𝜎
2
𝐷 − 𝜇𝐷,

𝐴

≥ 𝜎
1
𝐼 + 𝜎
2
𝐷 − (𝜇 + 𝜓)𝐴.

(50)

Define

𝑀

= (

𝛽𝑚(1 − 𝜂) − 𝜎
1
− 𝑞 − 𝜇 𝜂

1
𝛽𝑚 (1 − 𝜂) 𝜂

2
𝛽𝑚 (1 − 𝜂)

𝑞 −𝜎
2
− 𝜇 0

𝜎
1

𝜎
2

−𝜇 − 𝜓

) .

(51)

Recall that the stabilitymodulus of an 𝑛×𝑛matrix𝑀, denoted
by 𝑠(𝑀), is defined as

𝑠 (𝑀) = max {Re 𝜆 : 𝜆 is an eigenvalue of 𝑀} . (52)

Note that 𝑀 is irreducible and has nonnegative off-
diagonal elements. It then follows that 𝑠(𝑀) is a simple eigen-
value of 𝑀 with a (componentwise) positive eigenvector.
Thus,

|𝜆𝐼 −𝑀| = 𝜆
3
+ 𝑎
1
𝜆
2
+ 𝑎
2
𝜆 + 𝑎
3
, (53)
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Table 1: Parameter description and values.

Parameters Description Estimated values Source
Π Recruitment rate 4348 [21]
𝛽 Transmission coefficient 0.304 [26]
𝑤 Per capita waning rate of vaccine 1/20 [5]
𝜉 Per capita vaccination rate 0.4 Variable
𝜀 Vaccine efficacy 0.4 Variable
𝜇 Natural death rate 0.0246 [27]
𝜓 Disease-induced death rate 0.7114 [21]
𝜎
1

Progression rate to AIDS stage for the infection stage 0.0413 [9]
𝜎
2

Progression rate to AIDS stage for the diagnosed stage 0.116 [9]
𝑞 Diagnosis rate 0.304 [9]
𝜂
1

Modification factor in transmission coefficient of diagnosed HIV-positive individuals 0.491 [9]
𝜂
2

Modification factor in transmission coefficient of AIDS patients 0.1 Variable

where

𝑎
1
= (𝜎
1
+ 𝑞 + 𝜇) + (𝜎

2
+ 𝜇) + (𝜇 + 𝜓) − 𝛽𝑚,

𝑎
2
= (𝜎
1
+ 𝑞 + 𝜇 − 𝛽𝑚) (𝜎

2
+ 𝜇) + (𝜎

2
+ 𝜇) (𝜇 + 𝜓)

+ (𝜎
1
+ 𝑞 + 𝜇 − 𝛽𝑚) (𝜇 + 𝜓) − 𝜂

1
𝛽𝑚𝑞 − 𝜂

2
𝛽𝑚𝜎
1
,

𝑎
3
= (𝜎
1
+ 𝑞 + 𝜇) (𝜎

2
+ 𝜇) (𝜇 + 𝜓) (1 − 𝑅

0
(1 − 𝜂)) .

(54)

For 𝑅
0
(1 − 𝜂) > 1, we obtain 𝑎

3
< 0. Thus, 𝑠(𝑀) is a simple

positive eigenvalue of 𝑀 with a (componentwise) positive
eigenvector. By comparison theorem, we get

𝐼 (𝑡) → ∞, 𝐷 (𝑡) → ∞, 𝐴 (𝑡) → ∞,

as 𝑡 → ∞,

(55)

which contradicts the assumption that

(𝑆 (𝑡) , 𝑉 (𝑡) , 𝐼 (𝑡) , 𝐷 (𝑡) , 𝐴 (𝑡)) → 𝐸
0

as 𝑡 → ∞.

(56)

This proves that𝑊𝑠(𝐸
0
) ∩ 𝑋
0
= 0 for 𝑅

0
> 1. By [20], system

(1) is uniformly persistent. Thus, the proof of the theorem is
completed.

5. Numerical Simulations

5.1. Numerical Results. We initially investigate variation in
𝑅
0
with different vaccine efficacy, vaccination rate, and

diagnosis rate to compare the impact of these intervention
measures on HIV transmission. The parameter values in
Table 1 are chosen based on HIV/AIDS transmission among
IDUs in Yunnan province, China. For simplicity, we choose

ℎ = 1. Differentiating partially 𝑅
0
with respect to 𝜉 and 𝜖,

respectively, we obtain

𝜕𝑅
0

𝜕𝜉
= −

𝛽

𝜎
1
+ 𝑞 + 𝜇

𝜖 (𝜇 + 𝜔)

(𝜇 + 𝜔 + 𝜉)
2

× (1 +
𝜂
1
𝑞

𝜎
2
+ 𝜇

+
𝜂
2

𝜇 + 𝜓
(
𝜎
2
𝑞

𝜎
2
+ 𝜇

+ 𝜎
1
)) < 0,

𝜕𝑅
0

𝜕𝜖
= −

𝛽

𝜎
1
+ 𝑞 + 𝜇

𝜉

𝜇 + 𝜔 + 𝜉

× (1 +
𝜂
1
𝑞

𝜎
2
+ 𝜇

+
𝜂
2

𝜇 + 𝜓
(
𝜎
2
𝑞

𝜎
2
+ 𝜇

+ 𝜎
1
)) < 0,

(57)

which implies that an increase of vaccination rate and vaccine
efficacy leads to the basic reproduction number decline, as
shown in Figure 2(a), in which the contour plots of 𝑅

0
versus

vaccine efficacy 𝜖 and vaccination rate 𝜉 were plotted. It also
shows that the basic reproduction number is more sensitive
to vaccine efficacy than vaccination rate. Figure 2(b) shows
the contour plot of 𝑅

0
with diagnosis rate and vaccination

rate, which implies a decrease in 𝑅
0
with increasing diagnosis

rate 𝑞 and vaccination rate 𝜉. Furthermore, when 50%of HIV
individuals are diagnosed, vaccination level of at least 60%
would be needed to achieve 𝑅

0
< 1. This suggests that the

strategies of diagnosis and vaccination should be stringent
enough to reduce 𝑅

0
.

Next, we consider the effect of different transmission
rate, vaccination rate, vaccine efficacy, and recruitment rate
on transmission of HIV/AIDS. We take the year 2004 as
starting time; since then the policy of diagnosis is consistent.
In [21], we get that the number of diagnosed HIV-positive
individuals and AIDS patients in Yunnan province was 27168
and 1223 in year 2004, respectively. Besides, 22.6% of these
HIV individuals were transmitted by share injectors [22].
Hence,𝐷(0) = 27168×22.6% = 6140,𝐴(0) = 1223×22.6% =

276. Note that the diagnosis rate is estimated to be 0.304
[9]; then we have 𝐼(0) = 𝐷(0)/0.304 = 20197. We have no
reliable data on the number of susceptible individuals, that
is, number of IDUs in Yunnan province. However, we know
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Figure 2: Contour plots of 𝑅

0
versus (a) vaccine efficacy 𝜖 and vaccination rate 𝜉 and (b) diagnosis rate 𝑞 and vaccination rate 𝜉.

that 3.2 million blood samples were tested in Yunnan in [23].
We then assume that in these blood samples the fraction of
share injectors is the same as fraction of transmission via
share injectors (i.e., 22.6%). Then the number of susceptible
individuals who share injectors is 𝑆(0) + 𝑉(0) = 3.2 × 106 ×
22.6% = 723200. If the vaccination rate is assumed to be 0.4,
then 𝑉(0) = 𝑆(0) × 0.4. We obtain the initial values

𝑆 (0) = 516571, 𝑉 (0) = 206628, 𝐼 (0) = 20197,

𝐷 (0) = 6140, 𝐴 (0) = 276.

(58)

Figure 3 shows the variation in the number of HIV infected
individuals with different transmission rates, vaccination
rates, vaccine efficacy, and recruitment rates. It follows from
Figure 3(a) that decreasing transmission rate could lead to
the number of HIV-positive individuals decline. The effect
of increasing vaccination rate on HIV transmission is shown
in Figure 3(b) and it is seen that the number of HIV-
positive individuals becomesmuch smaller if vaccination rate
increases more. Figure 3(c) illustrates that, with increasing
vaccine efficacy, the number of HIV-positive individuals
decreases. Figure 3(d) shows that if the inflow of susceptible
individuals into the community is restricted due to education,
the disease spread will slow down.

5.2. Sensitivity Analysis. In this section, we use sensitivity
analysis method [24] to investigate the impact of vari-
ous intervention measures on HIV transmission in Yun-
nan province, China. We hope that these results obtained
here could improve the knowledge of the effects of different
interventions.

Figures 4(a) and 4(b) show the comparison of sensitivity
coefficients of new cases and prevalence against parameters𝛽,
𝜖, 𝜉, 𝑞, andΠ, separately. Note that the sensitivity coefficient of
new cases and prevalence can be interpreted as the percentage
change in the number of new cases and prevalence for 1%
decline in the parameters𝛽 andΠ or 1% increase in 𝜖, 𝜉, and 𝑞,

respectively [25]. In particular, let function 𝑓 be new cases or
prevalence; the sensitivity coefficients (SC) of new cases and
prevalence are given by

SC =
𝑓 (perturbed variables)−𝑓 (original variable)

𝑓 (original variable)
×100%.

(59)

It follows from Figure 4 that a decrease in transmis-
sion coefficient 𝛽 causes new cases and prevalence decline
substantially. Besides, an increase in vaccine efficacy 𝜖 and
vaccination rate 𝜉 can lead to a decrease in new cases and
prevalence, whereas the change of both diagnosis rate 𝑞
and recruitment rate Π slightly affects the new cases or
prevalence. Thus, new cases and prevalence are sensitive
to transmission coefficient, vaccine efficacy, and vaccination
rate.Then, reducing the transmission coefficient and increas-
ing the vaccine efficacy and vaccination rate can greatly
reduce new cases and prevalence.

6. Conclusion

In this paper, we established an epidemic model to investi-
gate effects of saturated diagnosis and vaccination on HIV
transmission. It proved that backward bifurcation occurs by
employing center manifold theory, which causes the disease-
free equilibrium to be locally asymptotically stable instead of
globally asymptotically stable for 𝑅

0
< 1. Thus, making the

basic reproduction number less than unity is not enough to
eliminate theHIV infection.Wenote that𝑅

0
< 1 is equivalent

to

𝜉 > ((𝜇 + 𝜔) [𝛽(1 +
𝜂
1
𝑞

𝜎
2
+ 𝜇

+
𝜂
2

𝜇 + 𝜓
(
𝜎
2
𝑞

𝜎
2
+ 𝜇

+ 𝜎
1
))

− (𝜎
1
+ 𝑞 + 𝜇) ])
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Figure 3: Variation in the number of HIV-positive individuals with different (a) transmission coefficient, (b) vaccination rate, (c) vaccine
efficacy, and (d) recruitment rate.

× ( (𝜎
1
+ 𝑞 + 𝜇)

−𝛽 (1 − 𝜖) (1+
𝜂
1
𝑞

𝜎
2
+ 𝜇

+
𝜂
2

𝜇 + 𝜓
(
𝜎
2
𝑞

𝜎
2
+ 𝜇

+ 𝜎
1
)))

−1

:= 𝜉
𝑐
,

(60)

which means that only the vaccination rate is greater than
𝜉
𝑐
; HIV infection might be eliminated, depending on initial

data. There exists the critical threshold 𝑅
𝑐
, which cannot

be explicitly expressed due to nonlinearity, such that when
𝑅
0
< min{𝑅

𝑐
, (𝜎
1
+ 𝜇)𝑚/(𝜎

1
+ 𝑞 + 𝜇)} < 1, the disease-

free equilibrium is globally asymptotically stable. However,
if 𝑅
0
> 1, the disease uniformly persists.

It is interesting to note that if the diagnosis is described
linearly backward bifurcation does not happen. This implies
that nonlinear diagnosis due to limited medical resources
leads to backward bifurcation, and consequently complete
elimination of HIV infection becomes difficult. That is, HIV
infection might be extinct only by improving integrated
interventions, which ensures that 𝑅

0
is less than 𝑅

𝑐
and (𝜎

1
+

𝜇)𝑚/(𝜎
1
+ 𝑞 + 𝜇).
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Figure 4: Sensitivity coefficients of new cases (a) and prevalence (b) on 𝛽, 𝜖, 𝜉, 𝑞, andΠ over time 𝑡. All other parameters are shown in Table 1.

Since several candidate HIV vaccines are in develop-
ment, it is useful to study the effectiveness. Moreover,
the detection of HIV-positive individuals is limited due to
medical resources. We then applied the proposed model
with nonlinear diagnosis and vaccination to examine HIV
infection among IDUs in Yunnan province, China. Sen-
sitivity analysis shows that new cases and prevalence are
sensitive to transmission rate, vaccine efficacy, and vacci-
nation rate, whereas diagnosis rate and recruitment rate
slightly affect both of them. Therefore, enlarging vaccina-
tion rate, improving vaccine efficacy, and lowering trans-
mission rate by reducing sterile injecting equipment are
beneficial to reduce transmission of HIV infection. In
order to efficiently reduce HIV transmission, combined
intervention strategies are suggested to be implemented
simultaneously.

Effective antiretroviral therapy (ART) is an important
strategy to slow down the progression to AIDS due to great
reduction in viral loads and is not included in our model.
Note that when HIV infected individuals are diagnosed
and CD4 T cell counts decrease to 350 copies/𝜇L, they
will accept treatment. We will include treatment strategy to
construct HIV/AIDS models to investigate the transmission
of HIV/AIDS in the future work and provide policy makers
with effective suggestions.
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In this paper we established a mathematical model for national fitness in China. Based on a questionnaire and data of the General
Administration of Sport of China and the National Bureau of Statistics of China, the dynamics for three classes of people are
expressed by a system of three-dimensional ordinary equations.Model parameters are estimated from the data.This study indicated
that national fitness put out by the Chinese government is reasonable. By finding the key parameter, the best measure to promote
national fitness is put forward. In order to increase the number of people who frequently participate in sport exercise in a short
period of time, if only one measure can be chosen, guiding people who never take part in physical exercise will be the best measure.

1. Introduction

To promote the development of mass sports in the new era
of reform and opening-up in China and to improve national
physical quality,the State Council launched a national fitness
program on June 20, 1995 [1]. Now national fitness has got
remarkable achievement. The survey shows that the number
of people who often participate in sports activities in 2004
is more than 5.7% the number in 1997 and the country has
28.2% of population who often take part in physical exercise
in 2007 [1].

To better implement the national fitness program, the
government takes some measures mainly on three aspects.
The first one is conducting propaganda work, to make
people aware of the importance of sports fitness and the
implementation of the national fitness program and to arouse
enthusiasm of the masses to participate in fitness [1]. The
second one is guidance, that is, generally establishing insti-
tutions responsible for mass sports management work, such
as social sports guidance center, national fitness guidance
center, and social sports instructors [1]. The purpose is to
help guide people to exercise. The last one is improvement of
sports facilities. China has built and renovated various sports

stadiums and actively promoted open stadiums. These have
greatly improved material conditions of national fitness [1].

In [1] General Administration of Sport of China (GASC)
also pointed out that, although we have got many achieve-
ments and experience, themass sports in our country’s overall
development level is not high and the proportion of the
population participating in regular physical exercise is not
high. We still face many challenges [1].

According to the report of GASC [2], population can be
separated into three classes.The first one is people who never
take part in physical exercise. We call it as never exercise for
short.The second one is people who occasionally take part in
physical exercise. We call it as occasionally exercise for short.
This class of people does weekly exercise activities of 1 to 2
times.The third one is people who often take part in physical
exercise. We call it as frequently exercise for short. This class
of people does weekly exercise activities of not less than 3
times, each time not less than 30 minutes and the exercise
intensity above the average of person. Of course, the social
sports instructors are included in the third-class of people.

So far, China has carried out three investigations of the
current situation of mass sports in 1997, 2001, and 2008.
According to the three surveys and the data of National
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Bureau of Statistics of China [3], the proportion of the three
classes of people is listed in Table 1. Based on these data, we
can see that the proportion of the third-class of people is not
high. In the national fitness program (2011–2015), Chinese
government put forward the target that the proportion of the
third-class of people should be more than 32% [2]. It is a
natural question whether the goal can be attained. This is the
first problem that we want to prove.

In addition, all of these programs cost an enormous
sum of money every year, for example, over one year a
total investment of sports funds 191,450,000,000 RMB on
construction of site [1]. It is natural to ask how we can
economically and quickly increase the number of frequently
exercise people. Based on the national fitness program [1],
there are some measures including propagation, guidance,
and sports facilities.There is no doubt that the threemeasures
together can promote national fitness. However, in order to
save manpower and wealth of the country, we want to know
whichmeasure should be the best one if only onemeasure can
be chosen. This is the second problem that we want to prove.

Currently, although some literatures reported the impor-
tance of national fitness, they only state or compare the
achievement after the implementation of the national fitness
program [4, 5, 8, 9]. There are few literatures discussing
the best strategy to improve the national fitness program.
There are not any mathematical models to study how to
improve the national fitness program. In this paper, based
on a questionnaire and the data of GASC and the National
Bureau of Statistics of China, we established a mathematical
model and incorporated three measures and three classes of
parameters. By numerical simulation and analysis, the key
parameters are found and used to develop the best measure.
Hopefully, it could provide the theory reference for the mass
sports policy basis.

The paper is organized as follows. In Section 2 we estab-
lish a mathematical model based on a questionnaire and the
data of the General Administration of Sport of China and the
National Bureau of Statistics of China. Section 3 is devoted to
parameter estimation, numerical simulations, and analysis of
the system. The goal is to find the key parameter. We end the
paper with a brief discussion.

2. Modeling

Based on the surveys, the population can be separated into
three classes 𝑥, 𝑦, and 𝑧 [4–6]. 𝑥, 𝑦, and 𝑧 present the number
of individuals who never, occasionally, and frequently partic-
ipate in physical exercise at time 𝑡, respectively. Each class can
be transformed to other classes. In order to better understand
how to do transformation between the three-class groups and
in order to get real data, we conducted a questionnaire survey.
According to the questionnaire, by contacting the people who
occasionally participate in exercise, that is, 𝑦, there is 10.57%
of the first-class of people 𝑥 who become the second-class of
people𝑦. By contacting the people who frequently participate
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Figure 1: The diagram of class transformation. The red line repre-
sents transformation by contact, the blue line represents automati-
cally transformation, and the green line represents reduction of the
times of exercise.
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Figure 2: The fitting between the real number of three classes of
people and the solution of the system. The red is real number and
the blue line is the solution.

in exercise, that is, 𝑧, there are 8.89% and 11.2% of the first-
class of people 𝑥 who become the second-class of people 𝑦
and the third-class of people 𝑧, respectively; and there is also
17.6% of the second-class of people 𝑦 who become the third-
class of people 𝑧. Because of propaganda, there are 26.03%
and 21.2% of the first-class of people 𝑥 who automatically
become the second-class of people 𝑦 and the third-class of
people 𝑧, respectively. At the same time, some people reduced
the times of exercise because of the lack of sport facilities. For
the third-class of people 𝑧, there are 24.52%and 15.93%of the
class of people who become the second-class of people 𝑦 and
the first-class of people 𝑥, respectively. And there is 15.04%
of the second-class of people 𝑦 who become the first-class of
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Table 1: Data of survey for the proportion of the three classes of people.

Year First-class (%) Second-class (%) Third-class (%) The total number of
populations (million) References

1996 65.65 18.85 15.5 1223.89 [3–5]
2000 65 16.7 18.3 1267.43 [3–5]
2007 61.5 10.3 28.2 1321.29 [3, 6]

Table 2: Parameters.

Parameters Description
𝑟 Intrinsic rate of increase of human
𝐾 Carrying capacity of population
𝛼
1 Automatic transformation rate of individual from the class 𝑥 to the class 𝑦 because of propaganda
𝛼
2 Automatic transformation rate of individual from the class 𝑥 to the class 𝑧 because of propaganda
𝛽
1 Transformation rate of individual from the class 𝑥 to the class 𝑦 by contacting individuals at the class 𝑦
𝛽
2 Transformation rate of individual from the class 𝑥 to the class 𝑦 by contacting individuals at the class 𝑧
𝛽
3 Transformation rate of individual from the class 𝑥 to the class 𝑧 by contacting individuals at the class 𝑧
𝛽
4 Transformation rate of individual from the class 𝑦 to the class 𝑧 by contacting individuals at the class 𝑧
𝛾
1 Automatic transformation rate of individual from the class 𝑧 to the class 𝑦 because of the lack of sports facilities
𝛾
2 Automatic transformation rate of individual from the class 𝑧 to the class 𝑥 because of the lack of sports facilities
𝛾
3 Automatic transformation rate of individual from the class 𝑦 to the class 𝑥 because of the lack of sports facilities
𝜇 Death rate of human

Table 3: Birth rate and death rate.

Year Birth rate (per year) Death rate (per year)
1996 0.01698 0.00656

2000 0.01403 0.00645

2007 0.0121 0.00693

Mean 0.01437 0.00665

Table 4: Value of parameters.

Parameters Values (per year) Reference
𝑟 0.00772 [3]
𝐾 1.6 ∗ 10

9 [7]
𝛼 0.02614 Estimated
𝛽 0.0089 Estimated
𝛾 0.01512 Estimated
𝜇 0.00665 [3]

people 𝑥. The diagram of class transformation is in Figure 1.
Then we obtain the following system:
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Figure 3: The system approaches a stable positive equilibrium
state. The number of people who frequently participate in physical
exercise is increased.

All the parameters are listed in Table 2. The aim is to study
the impact of lead/guidance, conduct propaganda, and sports
facilities on national fitness development. In detail, it is
to study the effect of these parameters 𝛼, 𝛽, and 𝛾 on the
dynamics of the national fitness model and to find the key
parameter.

3. Simulation and Analysis

Since the system is very complex, theoretical analysis is
very difficult and we use numerical simulation to analyze
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(b) Changing the value of 𝛽
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(c) Changing the value of 𝛾

Figure 4: Increasing the value of 𝛼 and 𝛽 and reducing the value of 𝛾 can all increase the number of 𝑧. The impact of 𝛽 on the system is the
biggest. The impact of 𝛾 on the system is little bigger than the impact of 𝛼.

the dynamical behaviors based on the real data. According
to the data of the National Bureau of Statistics of China [3],
the birth rate and the death rate of population in China are
listed in the Table 3. In 1991, China Academy of Sciences
published a report about the productivity and population
carrying capacity of the land resource in China.The carrying
capacity is 1600000000 [7]. To obtain the value of other
parameters, we performed some estimations based on the
data of GASC and the National Bureau of Statistics of China.
For convenience, we assume that 𝛼

1
= 𝛼
2
= 𝛼, 𝛽

1
=

𝛽
2
= 𝛽
3
= 𝛽
4
= 𝛽, and 𝛾

1
= 𝛾
2
= 𝛾
3
= 𝛾. Then,

we estimate the three parameters based on the minimal
error method and obtain the fitting figure (Figure 2). Finally,

the value of all parameters is listed in Table 4. Based on these
values of parameters, the system approaches a stable positive
equilibrium state (Figure 3). From Figure 3, we can see that
the number of people who frequently participate in exercise
will increase. Hence, the goal of Chinese government in the
national fitness program (2011–2015) can be attained.

Now we want to solve the second question. By changing
the value of three parameters 𝛼, 𝛽, and 𝛾, we investigate the
impact of these threemeasures on the number of three classes
of people 𝑥, 𝑦, and 𝑧 (Figure 4). From Figure 4(a), we can
see that 𝛼 cannot infect the dynamics of the system. This
means that intensifying propaganda is not obvious to increase
the number of people who frequently participate in sport
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Figure 5: The impact of four different 𝛽 on the system.

exercise. However, Figure 4(b) displays the fact that 𝛽 can
strongly infect the dynamics of the system. In other words, by
providing guidance for the first- and second-class of people,
more and more people will frequently participate in sport
exercises. At last, improving sport facility can increase the
number of the people who frequently participate in sport
exercise, which can be seen from Figure 4(c).

Now we want to know which class of people provided
guidance that can lead to the best effect. By changing the four
different parameters 𝛽

1
, 𝛽
2
, 𝛽
3
, and 𝛽

4
in the original system

(1), we find that 𝛽
3
and 𝛽

4
have stronger effect in the system

(Figure 5). This means that only the third- class of people 𝑧

guiding the other classes of people 𝑥 and 𝑦 can lead to better
effect.

Next, by changing the values of 𝛽
3
and 𝛽

4
, we compare

the effect of guiding between the first- and the second-class
of people (Figure 6) and we can obtain the following results.
First, from the black line we can see that guiding both the
first- and second-class of people will increase the number of
the third-class of people quickly, which means the effect by
guiding the first two classes of people is the best one. Second,
if we want to increase the number of people who frequently
participate in sport exercise in a short period of time, guiding
the first-class of people will be the best measure. Lastly, if we
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Figure 6: Comparing the effect of guiding for different classes of
people.

want to increase the number of the third-class of people over
a long period of time, guiding the second-class of people will
be the best measure.

4. Discussion

As we know, national fitness can improve national physical
quality. National fitness is promoted all over the world.
Furthermore, Chinese government put forward the target
that the proportion of the third-class of people should be
more than 32% [2]. It is needed to consider whether the
goal can be attained and how to better and faster achieve
the anticipated goal. In previous literatures and reports, all
conclusions are from reports or experiences. However, there
are not any results based on mathematical theory. In this
paper, based on a questionnaire and the data of the General
Administration of Sport of China and the National Bureau
of Statistics of China, we established a mathematical model
for three classes of people and represented three measures
by three classes of parameters. By numerical simulation and
analysis, the key parameter 𝛽 is found. Furthermore, the two
previous problems can be answered.

By simulation and analysis based on our mathematical
model, the following conclusions can be obtained. First,
the number of people who frequently participate in sport
exercises will increase definitely and then the goal can be
attained. Second, we found that conducting propaganda
cannot increase obviously the number of people who fre-
quently participate in sport exercises. In reality, people can
be impressed by much propaganda. However, it is always
difficult to act due to various reasons. Third, sports facilities
are not so important as people imagine. From the figures we
can see that the effect of reducing the value of 𝛾 is not stronger.

In fact, there aremany ways to participate in physical exercise
without sports facilities.

Lastly, it is very important to provide guidance for
all people.From the simulation of the model, we can see
that the effect of parameter 𝛽 is the biggest. Furthermore,
increasing the value of 𝛽 by five times can obtain better
effect than increasing the value by ten times. Hence, proper
guidance will enable more people to participate in physical
exercise frequently. Currently, there aremanyways to provide
guidance, for example, establishing national fitness guidance
center and providing social sports instructor. The report of
the General Administration of Sport of China in 2009 [10]
also fully affirmed that social sports instructors play a very
important role in national fitness. In addition, by comparing
the effect between 𝛽

3
and 𝛽

4
, we found some different results.

If we want to increase the number of people who frequently
participate in sport exercise in a short period of time, guiding
the first-class of people will be the best measure. If we want
to increase the number of the third-class of people in a long
period of time, guiding the second- class of people will be the
best measure. Hence, we can provide more and more social
sports instructors only for the first- and the second-class of
people in the future.

In summary, these conclusions are also consistent with
the actual situation. Furthermore, based on themathematical
modeling and the real data, we think that guidance is the best
measure for national fitness. Hopefully, these conclusions
could provide the theory reference for the mass sports policy
basis.
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We apply the Krasnoselskii fixed-point theorem to investigate the existence of multiple positive periodic solutions for a class of
impulsive functional differential equations with a parameter; some verifiable sufficient results are established easily. In particular,
our results extend and improve some previous results.

1. Introduction

It is well known that impulsive differential equations arise
naturally from a wide variety of applications such as aircraft
control, the inspection processes in operations research, drug
administration, and threshold theory in biology. Therefore,
the impulsive differential equations represent a more natural
framework for the mathematical model of many real world
phenomena than differential equations (see [1–7]). In recent
years, many researchers have obtained some properties of
impulsive differential equations, such as oscillation, asymp-
totic behavior, stability and existence of solutions (see [8–16]).
However, there are a little work discussing the existence of
multiple positive periodic solutions for the high-dimensional
functional differential equations with impulse and parame-
ters. Motivated by this, in this paper, we mainly consider the
following impulsive functional differential equations with a
parameter:

𝑥

(𝑡) = 𝐴 (𝑡, 𝑥 (𝑡)) 𝑥 (𝑡) + 𝜆𝐵 (𝑡, 𝑥 (𝑡)) 𝑓 (𝑡, 𝑥𝑡) ,

𝑡 ∈ 𝑅, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑥 (𝑡
𝑘
) = 𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
)) , 𝑘 ∈ 𝑍

+
,

(1)

where 𝜆 > 0 is a parameter, 𝐴(𝑡, 𝑥(𝑡)) = diag[𝑎
1
(𝑡, 𝑥(𝑡)),

𝑎
2
(𝑡, 𝑥(𝑡)), . . . , 𝑎

𝑛
(𝑡, 𝑥(𝑡))], 𝐵(𝑡, 𝑥(𝑡)) = diag[𝑏

1
(𝑡, 𝑥(𝑡)),

𝑏
2
(𝑡, 𝑥(𝑡)), . . . , 𝑏

𝑛
(𝑡, 𝑥(𝑡))], 𝑎

𝑗
, 𝑏
𝑗
∈ 𝐶(𝑅×𝑅

+
, 𝑅
+
) (𝑗 = 1, . . . , 𝑛)

are 𝜔-periodic. 𝑓 = (𝑓
1
, . . . , 𝑓

𝑛
)
𝑇, 𝑓(𝑡, 𝑥

𝑡
) is an operator on

𝑅 × 𝐵𝐶(𝑅, 𝑅
𝑛
) (here 𝐵𝐶(𝑅, 𝑅𝑛) denoting the Banach space

of bounded continuous operator 𝜑 : 𝑅 → 𝑅
𝑛 with the

norm ‖𝜑‖ = ∑𝑛
𝑖+1

sup
𝜃∈𝑅
|𝜑(𝜃)|, where 𝜑 = (𝜑

1
, . . . , 𝜑

𝑛
)
𝑇
));

𝑓
𝑖
(𝑡 +𝜔, 𝑥

𝑡
) = 𝑓
𝑖
(𝑡, 𝑥
𝑡
). If 𝑥 ∈ 𝐵𝐶(𝑅, 𝑅𝑛), then 𝑥

𝑡
∈ 𝐵𝐶(𝑅, 𝑅

𝑛
)

for any 𝑡 ∈ 𝑅, where 𝑥
𝑡
is defined by 𝑥

𝑡
(𝜃) = 𝑥(𝑡 + 𝜃) for

𝜃 ∈ 𝑅 and Δ𝑥(𝑡
𝑘
) = 𝑥(𝑡

+

𝑘
) − 𝑥(𝑡

𝑘
) (here 𝑥(𝑡+

𝑘
) representing

the right limit of 𝑥(𝑡) at the point 𝑡
𝑘
). Consider that 𝐼

𝑘
=

(𝐼
1

𝑘
, 𝐼
2

𝑘
, . . . , 𝐼

𝑛

𝑘
) ∈ 𝐶(𝑅

𝑛

+
, 𝑅
𝑛

−
); that is, 𝑥 changes decreasingly

suddenly at times 𝑡
𝑘
. 𝜔 > 0 is a constant, 𝑍

+
= {1, 2, 3, . . .},

𝑅 = (−∞, +∞),𝑅
+
= [0, +∞), and𝑅

−
= (−∞, 0].We assume

that there exists an integer 𝑞 > 0 such that 𝑡
𝑘+𝑞

= 𝑡
𝑘
+ 𝜔,

𝐼
𝑘+𝑞
= 𝐼
𝑘
, where 0 < 𝑡

1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑞
< 𝜔.

It is well known that the functional differential system (1)
includes many mathematical ecological models for example:

in the case (a), 𝐵(𝑡, 𝑥(𝑡)) ≡ 1, 𝐼
𝑘
(𝑡
𝑘
, 𝑥(𝑡
𝑘
)) ≡ 0 in [17],

Zeng et al. studied the existence of multiple positive
periodic solutions of (1) by applying the Krasnoselskii
fixed-point theorem.
in the case (b), 𝐴(𝑡, 𝑥(𝑡)) = 𝐴(𝑡), 𝜆𝐵(𝑡, 𝑥(𝑡)) ≡
1; in [18], Zhang et al. established the existence of
positive periodic solutions of (1) by using the fixed-
point theorem in cones.
in the case (c), 𝐴(𝑡, 𝑥(𝑡)) = 𝐴(𝑡), 𝐵(𝑡, 𝑥(𝑡)) ≡ 1, and
𝐼
𝑘
(𝑡
𝑘
, 𝑥(𝑡
𝑘
)) ≡ 0; in [19], Jiang et al. investigated the

existence, multiplicity, and nonexistence of positive
periodic solutions of (1).
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In this paper, we will study the existence of positive periodic
solutions inmore cases than the previouslymentioned papers
and obtain some easily verifiable sufficient criteria.

Throughout the paper, we make the following assump-
tions:

(𝐻
1
) 𝑎
𝑖
, 𝑏
𝑖
: 𝑅 × 𝑅

+
→ 𝑅

+
satisfy Caratheodory con-

ditions; that is, 𝑎
𝑖
(𝑡, 𝑥), 𝑏

𝑖
(𝑡, 𝑥) are locally Lebesgue

measurable in 𝑡 for each fixed 𝑥, are continuous in
𝑥 for each fixed 𝑡, and are 𝜔-periodic functions in 𝑡.
Moreover, there exist𝜔-periodic functions 𝑎

1𝑖
, 𝑎
2𝑖
, 𝑏
1𝑖
,

𝑏
2𝑖
: 𝑅 → 𝑅

+
which are locally bounded Lebesgue

measurable such that 𝑎
1𝑖
(𝑡) ≤ 𝑎

𝑖
(𝑡, 𝑥(𝑡)) ≤ 𝑎

2𝑖
(𝑡),

𝑏
1𝑖
(𝑡) ≤ 𝑏

1𝑖
(𝑡, 𝑥(𝑡)) ≤ 𝑏

2𝑖
(𝑡) and ∫𝜔

0
𝑎
1𝑖
(𝑡)𝑑𝑡 > 0,

∫
𝜔

0
𝑏
1𝑖
(𝑡)𝑑𝑡 > 0;

(𝐻
2
) 𝑓(𝑡, 𝜑

𝑡
) ≤ 0 for all (𝑡, 𝜑) ∈ 𝑅×𝐵𝐶(𝑅, 𝑅𝑛

+
), and 𝑓

𝑖
(𝑡, 𝜑
𝑡
)

is a continuous function of 𝑡 for each 𝜑 ∈ 𝐵𝐶(𝑅, 𝑅𝑛
+
),

𝑖 = 1, 2, . . . , 𝑛;
(𝐻
3
) for any 𝐿 > 0 and 𝜖 > 0, there exists 𝛿 > 0 such that
for 𝜙, 𝜓 ∈ 𝐵𝐶(𝑅, 𝑅𝑛

+
), |𝜙| ≤ 𝐿, |𝜓| ≤ 𝐿, and |𝜙−𝜓| < 𝛿

imply that |𝑓
𝑖
(𝑠, 𝜙
𝑠
) − 𝑓
𝑖
(𝑠, 𝜓
𝑠
)| < 𝜖, 𝑠 ∈ [0, 𝜔] (𝑖 =

1, 2, . . . , 𝑛);
(𝐻
4
) {𝑡
𝑘
}, 𝑘 ∈ 𝑍

+
satisfies 0 < 𝑡

1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑘
<

⋅ ⋅ ⋅ and lim
𝑘→+∞

𝑡
𝑘
= +∞; 𝐼

𝑘
: 𝑅 × 𝑅

+
→ 𝑅,

𝑘 ∈ 𝑍
+
, satisfy Caratheodory conditions and are 𝜔-

periodic functions in 𝑡 and, moreover, 𝐼
𝑘
(𝑡, 0) = 0 for

all 𝑘 ∈ 𝑍+. There exists a positive constant 𝑞 such that
𝑡
𝑘+𝑞
= 𝑡
𝑘
+𝜔, 𝐼
𝑘+𝑞
(𝑡
𝑘+𝑞
, 𝑥(𝑡
𝑘+𝑞
)) = 𝐼
𝑘
(𝑡
𝑘
, 𝑥(𝑡
𝑘
)), 𝑘 ∈ 𝑍

+
.

Without loss of generality, we can assume that 𝑡
𝑘
̸= 0

and [0, 𝜔] ∩ {𝑡
𝑘
, 𝑘 ∈ 𝑍

+
} = {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑞
}.

In addition, the parameters in this paper are assumed to be
not identically equal to zero.

Furthermore, we will use the following notation. Let 𝐽 ⊂
𝑅 denote by 𝑃𝐶(𝐽, 𝑅𝑛) the set of operators 𝜑 : 𝐽 → 𝑅

𝑛 which
are continuous for 𝑡 ∈ 𝐽, 𝑡 ̸= 𝑡

𝑘
and have discontinuities of the

first kind at the points 𝑡
𝑘
∈ 𝐽(𝑘 ∈ 𝑍

+
) but are continuous from

the left at these points. For each 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇
∈ 𝑅
𝑛,

the norm of 𝑥 is defined as |𝑥| = ∑𝑛
𝑖=1
|𝑥
𝑖
|. The matrix 𝐴 >

𝐵 (𝐴 ≤ 𝐵)means that each pair of corresponding elements of
𝐴 and 𝐵 satisfies the inequality “>” (“≤”). In particular, 𝐴 is
called a positive matrix if 𝐴 > 0.

The paper is organized as follows. In Section 2, we give
some definitions and lemmas to prove the main results of
this paper. In Section 3, existence theorems for one or two
positive periodic solutions of (1) are established by using the
Krasnoselskii fixed-point theorem under some conditions.

2. Preliminaries

In this section, we make some preparations for the following
sections. For (𝑡, 𝑠) ∈ 𝑅2, 1 ≤ 𝑖 ≤ 𝑛, we define

𝐺
𝑖 (𝑡, 𝑠) =

𝑒
−∫
𝑠

𝑡
𝑎
𝑖
(𝜉,𝑥(𝜉))

𝑑𝜉

𝑒
−∫
𝜔

0
𝑎
𝑖
(𝜉,𝑥(𝜉))

𝑑𝜉 − 1

,

𝐺 (𝑡, 𝑠) = diag [𝐺
1
(𝑡, 𝑠) , 𝐺

2
(𝑡, 𝑠) , . . . , 𝐺

𝑛
(𝑡, 𝑠)] .

(2)

It is clear that 𝐺
𝑖
(𝑡 + 𝜔, 𝑠 + 𝜔) = 𝐺

𝑖
(𝑡, 𝑠), 𝜕𝐺

𝑖
(𝑡, 𝑠)/𝜕𝑡 =

𝑎
𝑖
(𝑡, 𝑥(𝑡))𝐺

𝑖
(𝑡, 𝑠), 𝐺

𝑖
(𝑡, 𝑡 + 𝜔) − 𝐺

𝑖
(𝑡, 𝑡) = 1. For all (𝑡, 𝑠) ∈ 𝑅2

and by (𝐻
2
), we have

𝐺
𝑖 (𝑡, 𝑠) 𝑓𝑖 (𝑠, 𝜑𝑠) ≥ 0, for any (𝑡, 𝑠) ∈ 𝑅2,

(𝑠, 𝜑
𝑠
) ∈ 𝑅 × 𝐵𝐶 (𝑅, 𝑅

𝑛

+
) .

(3)

In view of (𝐻
1
), we also define for 1 ≤ 𝑖 ≤ 𝑛 the following:

𝛼
𝑖
:= min
0≤𝑡≤𝑠≤𝜔

𝐺𝑖 (𝑡, 𝑠)
 =

𝑒
−∫
𝜔

0
𝑎
2𝑖
(𝜉,𝑥(𝜉))𝑑𝜉

1 − 𝑒
−∫
𝜔

0
𝑎
2𝑖
(𝜉,𝑥(𝜉))𝑑𝜉

,

𝛽
𝑖
:= max
0≤𝑡≤𝑠≤𝜔

𝐺𝑖 (𝑡, 𝑠)
 =

𝑒
−∫
𝜔

0
𝑎
1𝑖
(𝜉,𝑥(𝜉))𝑑𝜉

1 − 𝑒
−∫
𝜔

0
𝑎
1𝑖
(𝜉,𝑥(𝜉))𝑑𝜉

,

𝛼 = min
1≤𝑖≤𝑛

𝛼
𝑖
, 𝛽 = max

1≤𝑖≤𝑛

𝛽
𝑖
, 𝜎 =

𝛼

𝛽
∈ (0, 1) ,

𝐵
𝑖
(𝑡) = max {𝑏1𝑖 (𝑡)

 ,
𝑏2𝑖 (𝑡)

} ,

𝐵


𝑖
(𝑡) = min {𝑏1𝑖 (𝑡)

 ,
𝑏2𝑖 (𝑡)

} ,

𝐵 (𝑡) = max
1≤𝑖≤𝑛

{𝐵
𝑖 (𝑡)} , 𝐵


(𝑡) = min
1≤𝑖≤𝑛

{𝐵


𝑖
(𝑡)} .

(4)

Let 𝑋 = {𝑥 = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇
∈ 𝑃𝐶(𝑅, 𝑅

𝑛
) |

𝑥(𝑡 + 𝜔) = 𝑥(𝑡)} with the norm ‖𝑥‖ = ∑𝑛
𝑖=1
|𝑥
𝑖
|
0
, |𝑥
𝑖
|
0
=

sup
𝑡∈[0,𝜔]

|𝑥
𝑖
(𝑡)|. It is easy to verify that (𝑋, ‖ ⋅ ‖) is a Banach

space. Define 𝐸 as a cone in𝑋 by

𝐸 = {𝑥 = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇
∈ 𝑋 : 𝑥

𝑖 (𝑡)

≥ 𝜎
𝑥𝑖
0
, 𝑡 ∈ [0, 𝜔]} .

(5)

We easily verify that 𝐸 is a cone in 𝑋. We define an operator
𝑇 : 𝑋 → 𝑋 as follows:

(𝑇𝑥) (𝑡) = ((𝑇1𝑥) (𝑡) , (𝑇2𝑥) (𝑡) , . . . , (𝑇𝑛𝑥) (𝑡))
𝑇
, (6)

where

(𝑇
𝑖
𝑥) (𝑡) = 𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
) 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
)) .

(7)

The proofs of the main results in this paper are based on an
application of theKrasnoselskii fixed-point theorem in cones.
To make use of the fixed-point theorem in cones, firstly, we
need to introduce some definitions and lemmas.

Definition 1 (see [20]). A function 𝑥 : 𝑅 → (0, +∞) is said
to be a positive solution of (1), if the following conditions are
satisfied:

(a) 𝑥(𝑡) is absolutely continuous on each (𝑡
𝑘
, 𝑡
𝑘+1
);

(b) for each 𝑘 ∈ 𝑍
+
, 𝑥(𝑡
+

𝑘
) and 𝑥(𝑡−

𝑘
) exist, and 𝑥(𝑡−

𝑘
) =

𝑥(𝑡
𝑘
);

(c) 𝑥(𝑡) satisfies the first equation of (1) for almost every-
where in 𝑅 and 𝑥(𝑡

𝑘
) satisfies the second equation of

(1) at impulsive point 𝑡
𝑘
, 𝑘 ∈ 𝑍

+
.
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Definition 2 (see [21]). Let 𝑋 be a real Banach space; 𝐸 is a
cone of 𝑋. The semiorder induced by the cone 𝐸 is denoted
by “≤”; that is, 𝑥 ≤ 𝑦 if and only if 𝑦 − 𝑥 ∈ 𝑃 for any 𝑥, 𝑦 ∈ 𝐸.

Secondly, let us introduce the Krasnoselskii point theo-
rem in cones which will be used in this paper.

Lemma3 (for theKrasnoselskii fixed-point theorem; see [22–
24]). Let𝐸 be a cone in a real Banach space𝑋. Assume thatΩ

1

and Ω
2
are open subsets of 𝑋 with 0 ∈ Ω

1
⊂ Ω
1
⊂ Ω
2
, where

Ω
𝑖
= {𝑥 ∈ 𝑋 : ‖𝑥‖ < 𝑟

𝑖
} (𝑖 = 1, 2). Let 𝑇 : 𝐸 ∩ (Ω

2
\ Ω
1
) → 𝐸

be a completely continuous operator and satisfy either

(1) ‖𝑇𝑥‖ ≥ ‖𝑥‖, for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
1
and ‖𝑇𝑥‖ ≤ ‖𝑥‖, for

any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
2
, or

(2) ‖𝑇𝑥‖ ≤ ‖𝑥‖, for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
1
and ‖𝑇𝑥‖ ≥ ‖𝑥‖, for

any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
2
.

Then 𝑇 has a fixed point in 𝐸 ∩ (Ω
2
\ Ω
1
).

Lemma 4 (see [25]). Assume that 𝑓(𝑡) and 𝑔(𝑡) are continu-
ous nonnegative functions defined on the interval [𝛼, 𝛽]; then
there exists 𝜉 ∈ [𝛼, 𝛽] such that

∫

𝛽

𝛼

𝑓 (𝑡) 𝑔 (𝑡) 𝑑𝑡 = 𝑓 (𝜉) ∫

𝛽

𝛼

𝑔 (𝑡) 𝑑𝑡. (8)

Lemma 5. Assume that (𝐻
1
)–(𝐻
4
) hold. The existence of

positive 𝜔-periodic solution of (1) is equivalent to that of
nonzero fixed point of 𝑇 in 𝐸.

Proof. Assume that 𝑥 = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇
∈ 𝑋 is a

periodic solution of (1). Then, we have

[𝑥
𝑖
(𝑡) 𝑒
−∫
𝑡

0
𝑎
𝑖
(𝑠,𝑥(𝑠))𝑑𝑠

]



= 𝜆𝑒
−∫
𝑡

0
𝑎
𝑖
(𝑠,𝑥(𝑠))𝑑𝑠

𝑏
𝑖
(𝑡, 𝑥 (𝑡)) 𝑓

𝑖
(𝑡, 𝑥
𝑡
) ,

𝑡 ̸= 𝑡
𝑘
, 𝑖 = 1, 2, . . . , 𝑛.

(9)

Integrating the above equation over [𝑡, 𝑡 + 𝜔], we can have

𝑥
𝑖 (𝑢) 𝑒
−∫
𝑢

0
𝑎
𝑖
(𝑠,𝑥(𝑠))𝑑𝑠



𝑡
𝑚
1
+𝑛𝜔

𝑡

+𝑥
𝑖 (𝑢) 𝑒
−∫
𝑢

0
𝑎
𝑖
(𝑠,𝑥(𝑠))𝑑𝑠



𝑡
𝑚
2
+𝑛𝜔

𝑡
𝑚
1
+𝑛𝜔

+ ⋅ ⋅ ⋅

+𝑥
𝑖
(𝑢) 𝑒
−∫
𝑢

0
𝑎
𝑖
(𝑠,𝑥(𝑠))𝑑𝑠



𝑡+𝜔

𝑡
𝑚𝑞
+𝑛𝜔

= 𝜆∫

𝑡+𝜔

𝑡

𝑒
−∫
𝑢

0
𝑎
𝑖
(𝑠,𝑥(𝑠))𝑑𝑠

𝑏
𝑖
(𝑢, 𝑥 (𝑢)) 𝑓

𝑖
(𝑢, 𝑥
𝑢
) 𝑑𝑢,

(10)

where 𝑡
𝑚
𝑘

+ 𝑛𝜔 ∈ (𝑡, 𝑡 + 𝜔),𝑚
𝑘
∈ {1, 2, . . . , 𝑞}, 𝑘 = 1, 2, . . . , 𝑞,

and 𝑛 ∈ 𝑍
+
. Therefore,

𝑥
𝑖 (𝑡) 𝑒
−∫
𝑡

0
𝑎
𝑖
(𝑠,𝑥(𝑠))𝑑𝑠

[𝑒
−∫
𝑡+𝜔

𝑡
𝑎
𝑖
(𝑠,𝑥(𝑠))𝑑𝑠

− 1]

− ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

Δ𝑥
𝑖
(𝑡
𝑚
𝑘

) 𝑒
−∫
𝑡𝑚
𝑘
+𝑛𝜔

0
𝑎
𝑖
(𝑠,𝑥(𝑠))𝑑𝑠

= 𝜆∫

𝑡+𝜔

𝑡

𝑒
−∫
𝑢

0
𝑎
𝑖
(𝑠,𝑥(𝑠))𝑑𝑠

𝑏
𝑖 (𝑢, 𝑥 (𝑢)) 𝑓𝑖 (𝑢, 𝑥𝑢) 𝑑𝑢,

(11)

which can be transformed into

𝑥
𝑖 (𝑡) = 𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑖 (𝑡, 𝑠) 𝑏𝑖 (𝑠, 𝑥 (𝑠)) 𝑓𝑖 (𝑠, 𝑥𝑠) 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
)) = (𝑇

𝑖
𝑥) (𝑡) .

(12)

Thus, 𝑥
𝑖
is a periodic solution for (7).

If 𝑥 = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇
∈ 𝐸 and 𝑇𝑥 =

(𝑇
1
𝑥, 𝑇
2
𝑥, . . . , 𝑇

𝑛
𝑥)
𝑇
= 𝑥 with 𝑥 ̸= 0, then, for any 𝑡 = 𝑡

𝑘
we

can get the derivation of (7) about 𝑡,

(𝑇
𝑖
𝑥)


(𝑡) =
𝑑

𝑑𝑡
[𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
) 𝑑𝑠]

= 𝜆 [𝐺
𝑖 (𝑡, 𝑡 + 𝜔) 𝑏𝑖 (𝑡 + 𝜔, 𝑥 (𝑡 + 𝜔))

× 𝑓
𝑖
(𝑡 + 𝜔, 𝑥

𝑡+𝜔
) − 𝐺
𝑖
(𝑡, 𝑡)

× 𝑏
𝑖 (𝑡, 𝑥 (𝑡)) 𝑓𝑖 (𝑡, 𝑥𝑡)] + 𝑎𝑖 (𝑡, 𝑥 (𝑡)) 𝑥𝑖 (𝑡)

= 𝑎
𝑖
(𝑡, 𝑥 (𝑡)) 𝑥

𝑖
(𝑡) + 𝜆𝑏

𝑖
(𝑡, 𝑥 (𝑡)) 𝑓

𝑖
(𝑡, 𝑥
𝑡
) = 𝑥


𝑖
(𝑡) .

(13)

For any 𝑡 = 𝑡
𝑗
, 𝑗 ∈ 𝑍

+
, we have from (7) that

𝑥
𝑖
(𝑡
+

𝑗
) − 𝑥
𝑖
(𝑡
𝑗
)

= 𝜆∫

𝑡
𝑗
+𝜔

𝑡
𝑗

[𝐺
𝑖
(𝑡
+

𝑗
, 𝑠) − 𝐺

𝑖
(𝑡
𝑗
, 𝑠)]

× 𝑏
𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
) 𝑑𝑠

+ ∑

𝑡
+

𝑗
≤𝑡
𝑘
<𝑡
𝑗
+𝜔

𝐺
𝑖
(𝑡
+

𝑗
, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))

− ∑

𝑡
𝑗
≤𝑡
𝑘
<𝑡
𝑗
+𝜔

𝐺
𝑖
(𝑡
𝑗
, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))

= 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
)) .

(14)

Hence𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇 is a positive𝜔-periodic

solution of (1). Thus we complete the proof of Lemma 5.

Lemma 6. Assume that (𝐻
1
)–(𝐻
4
) hold. Then 𝑇 : 𝐸 → 𝐸 is

well defined.
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Proof. From (7), it is easy to verify that (𝑇𝑥)(𝑡) is continuous
in (𝑡
𝑘
, 𝑡
𝑘+1
), (𝑇𝑥)(𝑡+

𝑘
) and (𝑇𝑥)(𝑡−

𝑘
) exist, and (𝑇𝑥)(𝑡−

𝑘
) =

(𝑇𝑥)(𝑡
𝑘
) for each 𝑘 ∈ 𝑍

+
. Moreover, for any 𝑥 ∈ 𝐸,

(𝑇𝑥) (𝑡 + 𝜔) = 𝜆∫

𝑡+2𝜔

𝑡+𝜔

𝐺 (𝑡 + 𝜔, 𝑠) 𝑏 (𝑠, 𝑥 (𝑠)) 𝑓 (𝑠, 𝑥
𝑠
) 𝑑𝑠

+ ∑

𝑡+𝜔≤𝑡
𝑘
<𝑡+2𝜔

𝐺 (𝑡 + 𝜔, 𝑡
𝑘
) 𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))

= 𝜆∫

𝑡+𝜔

𝑡

𝐺 (𝑡 + 𝜔, 𝑢 + 𝜔)

× 𝑏 (𝑢 + 𝜔, 𝑥 (𝑢 + 𝜔))

× 𝑓 (𝑢 + 𝜔, 𝑥
𝑢+𝜔
) 𝑑𝑢

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐺 (𝑡, 𝑡
𝑘
) 𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))

= 𝜆∫

𝑡+𝜔

𝑡

𝐺 (𝑡, 𝑠) 𝑏 (𝑠, 𝑥 (𝑠)) 𝑓 (𝑠, 𝑥
𝑠
) 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐺 (𝑡, 𝑡
𝑘
) 𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
)) = (𝑇𝑥) (𝑡) .

(15)

Therefore, (𝑇𝑥) ∈ 𝑋. From (7), we have

𝑇𝑖𝑥
0
≤ 𝛽
𝑖
[𝜆∫

𝜔

0

𝑏𝑖 (𝑠, 𝑥 (𝑠)) 𝑓𝑖 (𝑠, 𝑥𝑠)
 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))] .

(16)

Noticing that 𝐺
𝑖
(𝑡, 𝑠)𝑓

𝑖
(𝑠, 𝑥
𝑠
) ≥ 0, we obtain

(𝑇
𝑖
𝑥) (𝑡) ≥ 𝛼

𝑖
[𝜆∫

𝜔

0

𝑏𝑖 (𝑠, 𝑥 (𝑠)) 𝑓𝑖 (𝑠, 𝑥𝑠)
 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))]

≥
𝛼
𝑖

𝛽
𝑖

𝑇𝑖𝑥
0
≥ 𝜎

𝑇
𝑖
𝑥
0
.

(17)

Therefore,𝑇𝑥 ∈ 𝐸.This completes the proof of Lemma 6.

Lemma 7. Assume that (𝐻
1
)–(𝐻
4
) hold. Then 𝑇 : 𝐸 → 𝐸 is

completely continuous.

Proof. We first show that 𝑇 is continuous. By (𝐻
3
)-(𝐻
4
), 𝑓

and 𝐼
𝑘
are continuous in 𝑥; it follows that, for any 𝜖 > 0, let

𝛿 > 0 be small enough to satisfy that, if 𝑥, 𝑦 ∈ 𝐸, with |𝑥−𝑦| <
𝛿,

𝑓 (𝑠, 𝑥𝑠) − 𝑓 (𝑠, 𝑦𝑠)
 <

𝜖

2𝐵𝜆𝛽𝜔

, 𝑠 ∈ 𝑅;

𝐼𝑘 (𝑡𝑘, 𝑥 (𝑡𝑘)) − 𝐼𝑘 (𝑡𝑘, 𝑦 (𝑡𝑘))
 <

𝜖

2𝛽𝑞
, 𝑘 ∈ 𝑍

+
.

(18)

Therefore,

(𝑇𝑥) (𝑡) − (𝑇𝑦) (𝑡)


=

𝑛

∑

𝑖=1

𝑇𝑖𝑥 − 𝑇𝑖𝑦
0

≤ 𝛽

𝑛

∑

𝑖=1

𝜆∫

𝑡+𝜔

𝑡

𝑏𝑖 (𝑠, 𝑥 (𝑠)) 𝑓𝑖 (𝑠, 𝑥𝑠)

− 𝑏
𝑖
(𝑠, 𝑦 (𝑠)) 𝑓

𝑖
(𝑠, 𝑦
𝑠
)
 𝑑𝑠

+ 𝛽

𝑛

∑

𝑖=1

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔


𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))

− 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑦 (𝑡
𝑘
))


< 𝛽𝜆𝐵𝜔
𝜖

2𝐵𝜆𝛽𝜔

+ 𝛽𝑞
𝜖

2𝛽𝑞
= 𝜖,

(19)

which implies that 𝑇 is continuous on 𝐸.
Next we show that 𝑇maps a bounded set into a bounded

set. Indeed, let 𝐶 ⊂ 𝐸 be a bounded set. For any 𝑡 ∈ 𝑅 and
𝑥 ∈ 𝐶, by (7), we have

‖(𝑇𝑥) (𝑡)‖ =

𝑛

∑

𝑖=1

𝑇𝑖𝑥
0

≤ 𝛽[𝜆

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡

𝑏𝑖 (𝑠, 𝑥 (𝑠)) 𝑓𝑖 (𝑠, 𝑥𝑠)
 𝑑𝑠

+

𝑛

∑

𝑖=1

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔


𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))

]

= 𝛽[∫

𝜔

0

𝑏
2𝑖 (𝑠) 𝑓 (𝑠, 𝑥𝑠) 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑥 (𝑡𝑘))
] .

(20)

Since 𝐶 is bounded, in view of the continuity of 𝑇, it follows
from (19) that 𝑇𝑥 is bounded and {𝑇𝑥 : 𝑥 ∈ 𝐶} is uniformly
bounded. Finally, we show that the family of functions {𝑇𝑥 :
𝑥 ∈ 𝐶} is equicontinuous on [0, 𝜔]. Let 𝜃

1
, 𝜃
2
∈ [0, 𝜔] with

𝜃
1
< 𝜃
2
. From (7), for any 𝑥 ∈ 𝐶, we have

(𝑇𝑥) (𝜃2) − (𝑇𝑥) (𝜃1)


≤ 𝜆

𝑛

∑

𝑖=1

[∫

𝜃
2

𝜃
1

(𝐺
𝑖
(𝜃
2
, 𝑠) − 𝐺

𝑖
(𝜃
1
, 𝑠))

× 𝑏
𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
) 𝑑𝑠

+ ∫

𝜃
1
+𝜔

𝜃
2

(𝐺
𝑖
(𝜃
2
, 𝑠) − 𝐺

𝑖
(𝜃
1
, 𝑠))
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× 𝑏
𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
) 𝑑𝑠

+ ∑

𝜃
1
≤𝑡
𝑘
<𝜃
2

(𝐺
𝑖
(𝜃
2
, 𝑡
𝑘
) − 𝐺
𝑖
(𝜃
1
, 𝑡
𝑘
))

×

𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))


+ ∑

𝜃
2
≤𝑡
𝑘
<𝜃
1
+𝜔

(𝐺
𝑖
(𝜃
2
, 𝑡
𝑘
) − 𝐺
𝑖
(𝜃
1
, 𝑡
𝑘
))

×

𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))

] .

(21)

Since for 𝑥 ∈ 𝐶, 𝑡 ∈ [0, 𝜔], 0 ≤ 𝑘 ≤ 𝑞, 𝑏
𝑖
(𝑡, 𝑥(𝑡)),

𝑓
𝑖
(𝑡, 𝑥(𝑡 − 𝜏

1
(𝑡, 𝑥(𝑡))), . . . , 𝑥(𝑡 − 𝜏

𝑚
(𝑡, 𝑥(𝑡)))), and 𝐼𝑖

𝑘
(𝑡
𝑘
, 𝑥(𝑡
𝑘
))

are uniformly bounded in 𝑋; in view of (21), it is easy to see
that when 𝜃

2
− 𝜃
1
tends to zero, |(𝑇𝑥)(𝜃

2
) − (𝑇𝑥)(𝜃

1
)| tends

uniformly to zero in 𝑋. Hence, {𝑇𝑥 : 𝑥 ∈ 𝐶} is a family
of uniformly bounded and equicontinuous functions on
[0, 𝜔]. By Ascoli-Arzelà theorem, the operator𝑇 is completely
continuous. The proof of Lemma 7 is complete.

For convenience in the following discussion, we intro-
duce the following notations:

𝑓
𝑎
= lim sup
𝑥∈𝑃,‖𝑥‖→𝑎

max
𝑡∈[0,𝜔]

∫
𝜔

0

𝑓 (𝑡, 𝑥𝑡)
 𝑑𝑡

‖𝑥‖
,

𝑓
𝑎
= lim inf
𝑥∈𝑃,‖𝑥‖→𝑎

min
𝑡∈[0,𝜔]

∫
𝜔

0

𝑓 (𝑡, 𝑥𝑡)
 𝑑𝑡

‖𝑥‖
,

𝑓
𝑟
= max
0<𝑥≤𝑟

max
𝑡∈[0,𝜔]

∫
𝜔

0

𝑓 (𝑡, 𝑥𝑡)
 𝑑𝑡

‖𝑥‖
,

𝑓
𝑟
= min
0<𝑥≤𝑟

min
𝑡∈[0,𝜔]

∫
𝜔

0

𝑓 (𝑡, 𝑥𝑡)
 𝑑𝑡

‖𝑥‖
,

𝐼
𝑎
= lim sup
𝑥∈𝑃,‖𝑥‖→𝑎

max
𝑡∈[0,𝜔]

∑
𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼𝑘 (𝑡, 𝑥)


‖𝑥‖
,

𝐼
𝑎
= lim inf
𝑥∈𝑃,‖𝑥‖→𝑎

min
𝑡∈[0,𝜔]

∑
𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼𝑘 (𝑡, 𝑥)


‖𝑥‖
,

𝐼
𝑟
= max
0<𝑥≤𝑟

max
𝑡∈[0,𝜔],𝑘∈[1,𝑞]

∑
𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼𝑘 (𝑡, 𝑥)


‖𝑥‖
,

𝐼
𝑟
= min
0<𝑥≤𝑟

min
𝑡∈[0,𝜔],𝑘∈[1,𝑞]

∑
𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼𝑘 (𝑡, 𝑥)


‖𝑥‖
,

(22)

where 𝑎 denotes either 0 or∞, 𝑟 denotes a positive number,
and ‖𝑥‖ = max{|𝑥

1
|, |𝑥
2
|, . . . , |𝑥

𝑚
|}.

3. Main Results

Our main results of this paper are as follows.

Theorem 8. Assume that (𝐻
1
)–(𝐻
4
) and the following condi-

tions:

(𝐻
5
) 𝛼𝜎(𝜆𝐵


(𝜉)𝑓
𝑟
+ 𝐼
𝑟
) > 1, 𝜉 ∈ [0, 𝜔];

(𝐻
6
) 𝑓
0
= 𝐼
0
= 𝑓
∞
= 𝐼
∞
= 0

hold. Then (1) has two positive 𝜔-periodic solutions.

Proof. First, we define Ω
𝑟
= {𝑥 ∈ 𝑋 : ‖𝑥‖ < 𝑟}; then Ω

𝑟
is

an open subset of 𝑋. From (7), (𝐻
5
), and Lemma 4, for any

𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟
, we have

‖(𝑇𝑥) (𝑡)‖ =

𝑛

∑

𝑖=1

𝑇𝑖𝑥
0

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡

𝐺𝑖 (𝑡, 𝑠) 𝑏𝑖 (𝑠, 𝑥 (𝑠)) 𝑓𝑖 (𝑠, 𝑥𝑠)
 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔


𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))

]

≥ 𝜆𝐵

(𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡

𝐺𝑖 (𝑡, 𝑠) 𝑓𝑖 (𝑠, 𝑥𝑠)
 𝑑𝑠

+

𝑛

∑

𝑖=1

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔


𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))


= 𝛼 [𝜆𝐵

(𝜉) ∫

𝜔

0

𝑓 (𝑠, 𝑥𝑠)
 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑥 (𝑡𝑘))
]

≥ 𝛼 (𝜆𝐵

(𝜉) 𝑓
𝑟
+ 𝐼
𝑟
) ‖𝑥‖ > ‖𝑥‖ .

(23)

This yields

‖(𝑇𝑥) (𝑡)‖ > ‖𝑥‖ , for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟
. (24)

On the other hand, if 𝑓0 = 𝐼
0
= 0 holds, then we can

choose 0 < 𝑟
1
< 𝑟, such that ∫𝜔

0
|𝑓(𝑡, 𝑥

𝑡
)|𝑑𝑡 ≤ 𝜖‖𝑥‖ and

∑
𝑡≤𝑡
𝑘
<𝑡+𝜔

|𝐼
𝑘
(𝑡
𝑘
, 𝑥(𝑡
𝑘
))| ≤ 𝜖‖𝑥‖ for 𝑥 ∈ [0, 𝑟

1
], 𝑡 ∈ [0, 𝜔], and

1 ≤ 𝑘 < 𝑞, where constant 𝜖 > 0 satisfies 𝜖𝛽(𝜆𝐵(𝜉) + 1) ≤ 1.
By (7) and Lemma 4, we can obtain

(𝑇𝑥) (𝑡) =

𝑛

∑

𝑖=1

(𝑇
𝑖
𝑥)

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
) 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))]
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≤ 𝜆𝐵 (𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡

𝐺𝑖 (𝑡, 𝑠) 𝑓𝑖 (𝑠, 𝑥𝑠)
 𝑑𝑠

+

𝑛

∑

𝑖=1

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔


𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))


= 𝛽[𝜆𝐵 (𝜉) ∫

𝜔

0

𝑓 (𝑠, 𝑥𝑠)
 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑥 (𝑡𝑘))
]

≤ 𝜖𝛽 (𝜆𝐵 (𝜉) + 1) ‖𝑥‖ ≤ ‖𝑥‖ .

(25)

This yields

‖(𝑇𝑥) (𝑡)‖ ≤ ‖𝑥‖ , for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟
1

. (26)

In view of (24) and (26), by Lemma 3, it follows that 𝑇 has a
fixed point 𝑥

1
∈ 𝐸 ∩ (Ω

𝑟
\ Ω
𝑟1
) with 𝑟

1
< ‖𝑥
1
‖ < 𝑟, which is a

positive 𝜔-periodic solution of (1).
Likewise, if 𝑓∞ = 𝐼∞ = 0 holds, then there is𝑁 > 0 such

that ∫𝜔
0
|𝑓(𝑡, 𝑥

𝑡
)|𝑑𝑡 ≤ 𝜖‖𝑥‖ and ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

|𝐼
𝑘
(𝑡
𝑘
, 𝑥(𝑡
𝑘
))| ≤ 𝜖‖𝑥‖

for 𝑥 ≥ 𝑁, 𝑡 ∈ [0, 𝜔], and 1 ≤ 𝑘 < 𝑞, where constant 𝜖 > 0
satisfies 𝜖𝛽(𝜆𝐵(𝜉) + 1) ≤ 1. Let 𝑟

2
= max{2𝑟,𝑁/𝜎} and it

follows that 𝑥(𝑡) ≥ 𝜎‖𝑥‖ > 𝑁 for 𝑥 ∈ Ω
𝑟
2

, 𝑡 ∈ [0, 𝜔], and
0 < 𝑘 < 𝑞. Thus

∫

𝜔

0

𝑓 (𝑡, 𝑥𝑡)
 𝑑𝑡 ≤ 𝜖 ‖𝑥‖ ;

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑥 (𝑡𝑘))
 ≤ 𝜖 ‖𝑥‖ ,

for 𝑥 ∈ Ω
𝑟
2

, 𝑡 ∈ [0, 𝜔] , 1 ≤ 𝑘 < 𝑞.

(27)

By (7) and Lemma 4, we have

(𝑇𝑥) (𝑡) ≤ 𝜖𝛽 (𝜆𝐵 (𝜉) + 1) ‖𝑥‖ ≤ ‖𝑥‖ ; (28)

this yields

‖(𝑇𝑥) (𝑡)‖ ≤ ‖𝑥‖ , for any , 𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟
2

. (29)

In view of (24) and (29), by Lemma 3, it follows that 𝑇 has a
fixed point 𝑥

2
∈ 𝐸 ∩ (Ω

𝑟
2

\ Ω
𝑟
) with 𝑟 < ‖𝑥

2
‖ < 𝑟
2
, which

is a positive 𝜔-periodic solution of (1). Therefore (1) has at
least two positive periodic solutions; that is, 𝑟

1
< ‖𝑥
1
‖ < 𝑟 <

‖𝑥
2
‖ < 𝑟
2
. This proves Theorem 8.

Remark 9. Assume that (𝐻
1
)–(𝐻
4
) and the following condi-

tions:

(𝐻
5
) 𝛼𝜎(𝜆𝐵


(𝜉)𝑓
𝑟
+ 𝐼
𝑟
) > 1;

(𝐻
7
) 𝑓
0
= 𝐼
0
= 0, or𝑓∞ = 𝐼∞ = 0

hold. Then (1) has a positive 𝜔-periodic solution.

Corollary 10. Assume that (𝐻
1
)–(𝐻
3
) and 𝜆 > 1/𝛼𝜎𝐵(𝜉)𝑓

𝑟

hold.

(𝐻
6
) is satisfied; then (1) has two positive 𝜔-periodic solu-
tions;

(𝐻
7
) is satisfied; then (1) has a positive 𝜔-periodic solution.

Theorem 11. Assume that (𝐻
1
)–(𝐻
4
) and the following condi-

tions:

(𝐻
8
) 𝛽(𝜆𝐵(𝜉)𝑓

𝑟
+ 𝐼
𝑟
) < 1;

(𝐻
9
) 𝑓
0
= 𝐼
0
= 𝑓
∞
= 𝐼
∞
= ∞

hold. Then (1) has two positive 𝜔-periodic solutions.

Proof. We define Ω
𝑟
= {𝑥 ∈ 𝑋 : ‖𝑥‖ < 𝑟}, for a positive

number 𝑟. ThenΩ
𝑟
is an open subset of𝑋 and 0 ∈ Ω

𝑟
. By (7),

(𝐻
8
), and Lemma 4, for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω

𝑟
, we have

‖(𝑇𝑥) (𝑡)‖ =

𝑛

∑

𝑖=1

𝑇𝑖𝑥
0

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡

𝐺𝑖 (𝑡, 𝑠) 𝑏𝑖 (𝑠, 𝑥 (𝑠)) 𝑓𝑖 (𝑠, 𝑥𝑠)
 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔


𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))

]

≤ 𝜆𝐵 (𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡

𝐺𝑖 (𝑡, 𝑠) 𝑓𝑖 (𝑠, 𝑥𝑠)
 𝑑𝑠

+

𝑛

∑

𝑖=1

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔


𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))


= 𝛽[𝜆𝐵 (𝜉) ∫

𝜔

0

𝑓 (𝑠, 𝑥𝑠)
 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑥 (𝑡𝑘))
]

≤ 𝛽 (𝜆𝐵 (𝜉) 𝑓
𝑟
+ 𝐼
𝑟
) ‖𝑥‖ < ‖𝑥‖ .

(30)

This implies that for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟

‖(𝑇𝑥) (𝑡)‖ < ‖𝑥‖ . (31)

On the one hand, since 𝑓
0
= 𝐼
0
= ∞, there exists 0 < 𝑟

1
< 𝑟

and small enough 0 < 𝜖 satisfies 𝛼𝛿[𝜆𝐵(𝜉)(𝑓
0
−𝜖)+(𝐼

0
−𝜖)] >

1 such that, for any 𝑥 with ‖𝑥‖ ∈ [0, 𝑟
1
],

∫

𝜔

0

𝑓 (𝑡, 𝑥𝑡)
 𝑑𝑡 ≥ (𝑓0 − 𝜀) ‖𝑥‖ ;

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑥 (𝑡𝑘))
 ≥ (𝐼0 − 𝜀) ‖𝑥‖ .

(32)
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Define Ω
𝑟
2

= {𝑥 ∈ 𝑋 : ‖𝑥‖ < 𝑟
2
}; then Ω

𝑟
1

is an open subset
of𝑋. For any 𝑥 ∈ 𝐸 ∩ 𝜕Ω

𝑟
1

, by (7) and Lemma 4, we have

‖(𝑇𝑥) (𝑡)‖ =

𝑛

∑

𝑖=1

(𝑇𝑖𝑥)
0

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡

𝐺𝑖 (𝑡, 𝑠) 𝑏𝑖 (𝑠, 𝑥 (𝑠)) 𝑓𝑖 (𝑠, 𝑥𝑠)
 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔


𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))

]

≥ 𝜆𝐵

(𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡

𝐺𝑖 (𝑡, 𝑠) 𝑓𝑖 (𝑠, 𝑥𝑠)
 𝑑𝑠

+

𝑛

∑

𝑖=1

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔


𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))


= 𝛼 [𝜆𝐵

(𝜉) ∫

𝜔

0

𝑓 (𝑠, 𝑥𝑠)
 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑥 (𝑡𝑘))
]

≥ 𝛼𝛿 [𝜆𝐵

(𝜉) (𝑓
0
− 𝜖) + (𝐼

0
− 𝜖)] ‖𝑥‖ ≥ ‖𝑥‖ .

(33)

This yields

‖(𝑇𝑥) (𝑡)‖ ≥ ‖𝑥‖ , for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟
1

. (34)

In view of (31) and (34), by Lemma 3, it follows that 𝑇 has a
fixed point 𝑥

1
∈ 𝐸 ∩ (Ω

𝑟
\ Ω
𝑟1
) with 𝑟

1
< ‖𝑥
1
‖ < 𝑟, which

is a positive 𝜔-periodic solution of (1). On the other hand, if
𝑓
∞
= 𝐼
∞
= ∞, we can find small enough 0 < 𝜖 that satisfies

𝛼𝛿[𝜆𝐵

(𝜉)(𝑓
∞
−𝜖)+(𝐼

∞
−𝜖)] > 1 and large enough 𝜂 > 𝑟 > 0,

such that ‖𝑥‖ ≥ 𝜂,

∫

𝜔

0

𝑓 (𝑡, 𝑥𝑡)
 𝑑𝑡 ≥ (𝑓∞ − 𝜖) ‖𝑥‖ ;

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑥 (𝑡𝑘))
 ≥ (𝐼∞ − 𝜖) ‖𝑥‖ .

(35)

Define 𝑟
2
= 𝜂/𝜎 > 𝑟 and Ω

𝑟
2

= {𝑥 ∈ 𝑋 : ‖𝑥‖ < 𝑟
2
}; then Ω

𝑟
2

is an open subset of 𝑋. For any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟
2

, from (7) and
Lemma 3, we have

‖(𝑇𝑥) (𝑡)‖ =

𝑛

∑

𝑖=1

(𝑇𝑖𝑥)
0

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡

𝐺𝑖 (𝑡, 𝑠) 𝑏𝑖 (𝑠, 𝑥 (𝑠)) 𝑓𝑖 (𝑠, 𝑥𝑠)
 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔


𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))

]

≥ 𝜆𝐵

(𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡

𝐺𝑖 (𝑡, 𝑠) 𝑓𝑖 (𝑠, 𝑥𝑠)
 𝑑𝑠

+

𝑛

∑

𝑖=1

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔


𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))


= 𝛼 [𝜆𝐵

(𝜉) ∫

𝜔

0

𝑓 (𝑠, 𝑥𝑠)
 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑥 (𝑡𝑘))
]

≥ 𝛼𝛿 [𝜆𝐵

(𝜉) (𝑓
∞
− 𝜖) + (𝐼

∞
− 𝜖)] ‖𝑥‖ ≥ ‖𝑥‖ .

(36)

This yields

‖(𝑇𝑥) (𝑡)‖ ≥ ‖𝑥‖ , for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟
2

. (37)

In view of (31) and (37), by Lemma 3, it follows that 𝑇 has a
fixed point 𝑥

2
∈ 𝐸 ∩ (Ω

𝑟
2

\ Ω
𝑟
) with 𝑟 < ‖𝑥

2
‖ < 𝑟
2
, which

is a positive 𝜔-periodic solution of (1). Therefore, (1) has at
least two positive periodic solutions; that is, 𝑟

1
< ‖𝑥
1
‖ < 𝑟 <

‖𝑥
2
‖ < 𝑟
2
. This proves Theorem 11.

Remark 12. Assume that (𝐻
1
)–(𝐻
4
) and the following condi-

tions:

(𝐻
8
) 𝛽(𝜆𝐵(𝜉)𝑓

𝑟
+ 𝐼
𝑟
) < 1;

(𝐻
10
) 𝑓
0
= 𝐼
0
= ∞, or 𝑓

∞
= 𝐼
∞
= ∞

hold. Then (1) has a positive 𝜔-periodic solution.

Corollary 13. Assume that (𝐻
1
)–(𝐻
3
) and 𝜆 < 1/𝛽𝐵(𝜉)𝑓

𝑟

hold.

(𝐻
9
) is satisfied; then (1) has two positive 𝜔-periodic solu-
tions;

(𝐻
10
) is satisfied; then (1) has a positive 𝜔-periodic solution.

Theorem 14. Assume that (𝐻
1
)–(𝐻
4
) and

(𝐻
11
) 𝛽(𝜆𝐵(𝜉)𝑓

0
+ 𝐼
0
) < 1;

(𝐻
12
) 𝛼𝜎(𝜆𝐵


(𝜉)𝑓
∞
+ 𝐼
∞
) > 1

hold.Then (1) has a positive𝜔-periodic solution, where𝑓0,𝑓
∞
,

𝐼
0, and 𝐼

∞
are positive constants.

Proof. From (𝐻
11
), we can choose 𝜖 > 0 such that

𝛽(𝜆𝐵(𝑥𝑖)(𝑓
0
+ 𝜖) + (𝐼

0
+ 𝜖)) < 1. Thus there exists 𝑟 > 0

such that, for 𝑥 ∈ [0, 𝑟], 𝑡 ∈ [0, 𝜔] and 1 ≤ 𝑘 < 𝑞,

∫

𝜔

0

𝑓 (𝑡, 𝑥
𝑡
) 𝑑𝑡 ≤ (𝑓

0
+ 𝜖) ‖𝑥‖ ;

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
)) ≤ (𝐼

0
+ 𝜖) ‖𝑥‖ ,

(38)
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by (7), (𝐻
11
), and Lemma 4, we have

‖(𝑇𝑥) (𝑡)‖ =

𝑛

∑

𝑖=1

𝑇𝑖𝑥
0

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡

𝐺𝑖 (𝑡, 𝑠) 𝑏𝑖 (𝑠, 𝑥 (𝑠)) 𝑓𝑖 (𝑠, 𝑥𝑠)


+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔


𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))

]

≤ 𝜆𝐵 (𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡

𝐺𝑖 (𝑡, 𝑠) 𝑓𝑖 (𝑠, 𝑥𝑠)
 𝑑𝑠

+

𝑛

∑

𝑖=1

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔


𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))


= 𝛽[𝜆𝐵 (𝜉) ∫

𝜔

0

𝑓 (𝑠, 𝑥𝑠)
 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑥 (𝑡𝑘))
]

≤ 𝛽 (𝜆𝐵 (𝜉) (𝑓
0
+ 𝜖) + (𝐼

0
+ 𝜖)) ‖𝑥‖ < ‖𝑥‖ .

(39)

This implies that for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟

‖(𝑇𝑥) (𝑡)‖ < ‖𝑥‖ . (40)

On the other hand, choose 𝜀 > 0 such that 𝑓
∞
− 𝜖 > 0 and

𝐼
∞
− 𝜖 > 0, and from (𝐻

12
), we can obtain

𝛼𝜎 [𝜆𝐵

(𝜉) (𝑓
∞
− 𝜖) + (𝐼

∞
− 𝜖)] > 1. (41)

It is easy to see that there exists large enough 𝜂 > 𝑟 > 0, such
that ‖𝑥‖ ≥ 𝜂,

∫

𝜔

0

𝑓 (𝑡, 𝑥𝑡)
 𝑑𝑡 ≥ (𝑓∞ − 𝜖) ‖𝑥‖ ;

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑥 (𝑡𝑘))
 ≥ (𝐼∞ − 𝜖) ‖𝑥‖ .

(42)

Define 𝑅 = 𝜂/𝜎 > 𝑟 and Ω
𝑅
= {𝑥 ∈ 𝑋 : ‖𝑥‖ < 𝑅}; then Ω

𝑅
is

an open subset of 𝑋. From (7), (𝐻
12
), and Lemma 4, for any

𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑅
, we have

‖(𝑇𝑥) (𝑡)‖ =

𝑛

∑

𝑖=1

𝑇𝑖𝑥
0

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡

𝐺𝑖 (𝑡, 𝑠) 𝑏𝑖 (𝑠, 𝑥 (𝑠)) 𝑓𝑖 (𝑠, 𝑥𝑠)
 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔


𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))

]

≥ 𝜆𝐵

(𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡

𝐺𝑖 (𝑡, 𝑠) 𝑓𝑖 (𝑠, 𝑥𝑠)
 𝑑𝑠

+

𝑛

∑

𝑖=1

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔


𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))


= 𝛼 [𝜆𝐵

(𝜉) ∫

𝜔

0

𝑓 (𝑠, 𝑥𝑠)
 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑥 (𝑡𝑘))
]

≥ 𝛼𝜎 [𝜆𝐵

(𝜉) (𝑓
∞
− 𝜖) + (𝐼

∞
− 𝜖)] ‖𝑥‖ > ‖𝑥‖ .

(43)

This yields

‖𝑇𝑥‖ > ‖𝑥‖ , for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑅
. (44)

In view of (40) and (44), by Lemma 3, it follows that 𝑇 has a
fixed point 𝑥∗ ∈ 𝐸 ∩ (Ω

𝑅
\ Ω
𝑟
) with 𝑟 < ‖𝑥∗‖ < 𝑅, which is

a positive 𝜔-periodic solution of (1).This provesTheorem 14.

Corollary 15. Assume that (𝐻
1
)–(𝐻
3
) and the following

condition:

(𝐻
13
) 1/𝛼𝜎𝐵


(𝜉)𝑓
∞
< 𝜆 < 1/𝛽𝐵(𝜉)𝑓

0

hold. Then (1) has a positive 𝜔-periodic solution.

Similarly, we can prove the following theorem and corol-
lary.

Theorem 16. Assume that (𝐻
1
)–(𝐻
4
) and the following con-

ditions:

(𝐻
14
) 𝛽(𝜆𝐵(𝜉)𝑓

∞
+ 𝐼
∞
) < 1;

(𝐻
15
) 𝛼𝜎(𝜆𝐵


(𝜉)𝑓
0
+ 𝐼
0
) > 1

hold.Then (1) has a positive𝜔-periodic solution, where𝑓
0
,𝑓∞,

𝐼
0
, and 𝐼∞ are positive constants.

Corollary 17. Assume that (𝐻
1
)–(𝐻
3
) and the following

condition:

(𝐻
16
) 1/𝛼𝜎𝐵


(𝜉)𝑓
0
< 𝜆 < 1/𝛽𝐵(𝜉)𝑓

∞

hold. Then (1) has a positive 𝜔-periodic solution.

Theorem 18. Assume that (𝐻
1
)–(𝐻
4
), (𝐻
5
), and the following

condition:

(𝐻
17
) 0 < 𝑓

0
< 1/2𝜆𝛽𝐵(𝜉), 0 < 𝐼0 < 1/2𝛽 and 0 < 𝑓∞ <

1/2𝜆𝛽𝐵(𝜉), 0 < 𝐼∞ < 1/2𝛽,

hold. Then (1) has two positive 𝜔-periodic solutions.
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Proof. First, we define Ω
𝑟
= {𝑥 ∈ 𝑋 : ‖𝑥‖ < 𝑟}; then Ω

𝑟
is

an open subset of 𝑋. From (7), (𝐻
5
), and Lemma 4, for any

𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟
, we have

‖(𝑇𝑥) (𝑡)‖ =

𝑛

∑

𝑖=1

𝑇𝑖𝑥
0

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡

𝐺𝑖 (𝑡, 𝑠) 𝑏𝑖 (𝑠, 𝑥 (𝑠)) 𝑓𝑖 (𝑠, 𝑥𝑠)
 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔


𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))

]

≥ 𝜆𝐵

(𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡

𝐺𝑖 (𝑡, 𝑠) 𝑓𝑖 (𝑠, 𝑥𝑠)
 𝑑𝑠

+

𝑛

∑

𝑖=1

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔


𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))


= 𝛼 [𝜆𝐵

(𝜉) ∫

𝜔

0

𝑓 (𝑠, 𝑥𝑠)
 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑥 (𝑡𝑘))
]

≥ 𝛼 (𝜆𝐵

(𝜉) 𝑓
𝑟
+ 𝐼
𝑟
) ‖𝑥‖ > ‖𝑥‖ .

(45)

This yields

‖(𝑇𝑥) (𝑡)‖ > ‖𝑥‖ , for any𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟
. (46)

On the one hand, since 0 < 𝑓0 < 1/2𝜆𝛽𝐵(𝜉) and 0 < 𝐼0 <
1/2𝛽, there exists 0 < 𝑟

1
< 𝑟 such that for 0 < ‖𝑥‖ < 𝑟

1

∫

𝜔

0

𝑓 (𝑡, 𝑥𝑡)
 𝑑𝑡 ≤

𝑟
1

2𝜆𝛽𝐵 (𝜉)
;

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑥 (𝑡𝑘))
 ≤
𝑟
1

2𝛽
.

(47)

Set Ω
𝑟
1

= {𝑥 ∈ 𝑋 : ‖𝑥‖ < 𝑟
1
}; then Ω

𝑟
1

is an open subset
of 𝑋. From (7), (𝐻

17
), and Lemma 4, for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω

𝑟
1

,
𝑡 ∈ [0, 𝜔], and 1 ≤ 𝑘 < 𝑞, we have

(𝑇𝑥) (𝑡) =

𝑛

∑

𝑖=1

(𝑇
𝑖
𝑥)

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
) 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))]

≤ 𝜆𝐵 (𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡

𝐺𝑖 (𝑡, 𝑠) 𝑓𝑖 (𝑠, 𝑥𝑠)
 𝑑𝑠

+

𝑛

∑

𝑖=1

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔


𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))


= 𝛽[𝜆𝐵 (𝜉) ∫

𝜔

0

𝑓 (𝑠, 𝑥𝑠)
 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑥 (𝑡𝑘))
]

≤ 𝛽 [𝜆𝐵 (𝜉)
1

2𝜆𝛽𝐵 (𝜉)
+
𝑟
1

2𝛽
] ‖𝑥‖ = ‖𝑥‖ .

(48)

This yields

‖(𝑇𝑥) (𝑡)‖ ≤ ‖𝑥‖ , for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟
1

. (49)

In view of (46) and (49), by Lemma 3, it follows that 𝑇 has a
fixed point 𝑥

1
∈ 𝐸 ∩ (Ω

𝑟
\ Ω
𝑟1
) with 𝑟

1
< ‖𝑥
1
‖ < 𝑟, which is a

positive 𝜔-periodic solution of (1).
On the other hand, if 0 < 𝑓∞ < 1/2𝜆𝛽𝐵(𝜉), and 0 < 𝐼∞ <

1/2𝛽 hold, then there is𝑁 > 0 such that

∫

𝜔

0

𝑓 (𝑡, 𝑥𝑡)
 𝑑𝑡 ≤

𝑁

2𝜆𝛽𝐵 (𝜉)
;

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑥 (𝑡𝑘))
 ≤
𝑁

2𝛽
,

(50)

for 𝑥 ≥ 𝑁, 𝑡 ∈ [0, 𝜔], 1 ≤ 𝑘 < 𝑞. Let 𝑟
2
= max{2𝑟,𝑁/𝜎} and

it follows that 𝑥(𝑡) ≥ 𝜎‖𝑥‖ > 𝑁 for 𝑥 ∈ Ω
𝑟
2

, 𝑡 ∈ [0, 𝜔], and
0 < 𝑘 < 𝑞. Thus

∫

𝜔

0

𝑓 (𝑡, 𝑥𝑡)
 𝑑𝑡 ≤

1

2𝜆𝛽𝐵 (𝜉)
‖𝑥‖ ;

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑥 (𝑡𝑘))
 ≤

1

2𝛽
‖𝑥‖ ,

for 𝑥 ∈ Ω
𝑟
2

, 𝑡 ∈ [0, 𝜔] , 1 ≤ 𝑘 < 𝑞.

(51)

By (7), (𝐻
17
), and Lemma 4, we have

(𝑇𝑥) (𝑡) =

𝑛

∑

𝑖=1

(𝑇
𝑖
𝑥)

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
) 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))]
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≤ 𝜆𝐵 (𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡

𝐺𝑖 (𝑡, 𝑠) 𝑓𝑖 (𝑠, 𝑥𝑠)
 𝑑𝑠

+

𝑛

∑

𝑖=1

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔


𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))


= 𝛽[𝜆𝐵 (𝜉) ∫

𝜔

0

𝑓 (𝑠, 𝑥𝑠)
 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑥 (𝑡𝑘))
]

≤ 𝛽 [𝜆𝐵 (𝜉)
1

2𝜆𝛽𝐵 (𝜉)
+
𝑟
1

2𝛽
] ‖𝑥‖ = ‖𝑥‖ .

(52)

This yields

‖(𝑇𝑥) (𝑡)‖ ≤ ‖𝑥‖ , for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟
2

. (53)

In view of (46) and (53), by Lemma 3, it follows that 𝑇 has a
fixed point 𝑥

2
∈ 𝐸 ∩ (Ω

𝑟
2

\ Ω
𝑟
) with 𝑟 < ‖𝑥

2
‖ < 𝑟
2
, which

is a positive 𝜔-periodic solution of (1). Therefore (1) has at
least two positive periodic solutions; that is, 𝑟

1
< ‖𝑥
1
‖ < 𝑟 <

‖𝑥
2
‖ < 𝑟
2
. This proves Theorem 18.

Remark 19. Assume that (𝐻
1
)–(𝐻
4
), (𝐻
5
), and the following

condition:

(𝐻
18
) 0 < 𝑓

0
< 1/2𝜆𝛽𝐵(𝜉), 0 < 𝐼0 < 1/2𝛽 or 0 < 𝑓∞ <

1/2𝜆𝛽𝐵(𝜉), 0 < 𝐼∞ < 1/2𝛽

hold. Then (1) has a positive 𝜔-periodic solution.

Corollary 20. Assume that (𝐻
1
)–(𝐻
3
) and 𝜆 > 1/𝛼𝜎𝐵(𝜉)𝑓

𝑟

hold.

(𝐻
17
) is satisfied; then (1) has two positive 𝜔-periodic solu-
tions.

(𝐻
18
) is satisfied; then (1) has a positive 𝜔-periodic solution.

From the arguments in the previous proof, we have the
following consequences immediately.

Theorem 21. Assume that (𝐻
1
)–(𝐻
4
), (𝐻
8
), and the following

condition:

(𝐻
19
) ∞ > 𝑓

0
> 1/2𝜆𝛼𝜎𝐵


(𝜉),∞ > 𝐼

0
> 1/2𝛼𝜎 and∞ >

𝑓
∞
> 1/2𝜆𝛼𝜎𝐵


(𝜉),∞ > 𝐼

∞
> 1/2𝛼𝜎

hold. Then (1) has two positive 𝜔-periodic solutions.

Remark 22. Assume that (𝐻
1
)–(𝐻
4
), (𝐻
8
), and the following

condition:

(𝐻
20
) ∞ > 𝑓

0
> 1/2𝜆𝛼𝜎𝐵


(𝜉),∞ > 𝐼

0
> 1/2𝛼𝜎 or∞ >

𝑓
∞
> 1/2𝜆𝛼𝜎𝐵


(𝜉),∞ > 𝐼

∞
> 1/2𝛼𝜎

hold. Then (1) has a positive 𝜔-periodic solution.

Corollary 23. Assume that (𝐻
1
)–(𝐻
3
) and 𝜆 < 1/𝛽𝐵(𝜉)𝑓

𝑟

hold.

(𝐻
19
) is satisfied; then (1) has two positive 𝜔-periodic solu-
tions.

(𝐻
20
) is satisfied; then (1) has a positive 𝜔-periodic solution.

Theorem 24. Assume that (𝐻
1
)–(𝐻
4
), (𝐻
5
), and one of the

following conditions

(𝐻
21
) 𝑓
0
= 𝐼
0
= 0 and 0 < 𝑓∞ < 1/2𝜆𝛽𝐵(𝜉), 0 < 𝐼∞ <

1/2𝛽,

(𝐻
22
) 0 < 𝑓

0
< 1/2𝜆𝛽𝐵(𝜉), 0 < 𝐼0 < 1/2𝛽 and 𝑓∞ = 𝐼∞ =

0

hold. Then (1) has two positive 𝜔-periodic solutions.

Proof. We only consider the case (𝐻
21
). When the case (𝐻

22
)

holds, the conclusion remains true by a similar proof and we
will omit it. We define Ω

𝑟
= {𝑥 ∈ 𝑋 : ‖𝑥‖ < 𝑟}; then Ω

𝑟
is

an open subset of 𝑋. From (7), (𝐻
5
), and Lemma 4, for any

𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟
, we have

‖(𝑇𝑥) (𝑡)‖ =

𝑛

∑

𝑖=1

𝑇𝑖𝑥
0

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡

𝐺𝑖 (𝑡, 𝑠) 𝑏𝑖 (𝑠, 𝑥 (𝑠)) 𝑓𝑖 (𝑠, 𝑥𝑠)
 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔


𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))

]

≥ 𝜆𝐵

(𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡

𝐺𝑖 (𝑡, 𝑠) 𝑓𝑖 (𝑠, 𝑥𝑠)
 𝑑𝑠

+

𝑛

∑

𝑖=1

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔


𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))


= 𝛼 [𝜆𝐵

(𝜉) ∫

𝜔

0

𝑓 (𝑠, 𝑥𝑠)
 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑥 (𝑡𝑘))
]

≥ 𝛼 (𝜆𝐵

(𝜉) 𝑓
𝑟
+ 𝐼
𝑟
) ‖𝑥‖ > ‖𝑥‖ .

(54)

This yields

‖(𝑇𝑥) (𝑡)‖ > ‖𝑥‖ , for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟
. (55)

On the one hand, if 𝑓0 = 𝐼
0
= 0 holds, then we can

choose 0 < 𝑟
1
< 𝑟, such that ∫𝜔

0
|𝑓(𝑡, 𝑥

𝑡
)|𝑑𝑡 ≤ 𝜖‖𝑥‖ and

∑
𝑡≤𝑡
𝑘
<𝑡+𝜔

|𝐼
𝑘
(𝑡
𝑘
, 𝑥(𝑡
𝑘
))| ≤ 𝜖‖𝑥‖ for 𝑥 ∈ [0, 𝑟

1
], 𝑡 ∈ [0, 𝜔], and
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1 ≤ 𝑘 < 𝑞, where constant 𝜖 > 0 satisfies 𝜖𝛽(𝜆𝐵(𝜉) + 1) ≤ 1.
By (7), (𝐻

21
), and Lemma 4, we can obtain

(𝑇𝑥) (𝑡) =

𝑛

∑

𝑖=1

(𝑇
𝑖
𝑥)

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
) 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))]

≤ 𝜆𝐵 (𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡

𝐺𝑖 (𝑡, 𝑠) 𝑓𝑖 (𝑠, 𝑥𝑠)
 𝑑𝑠

+

𝑛

∑

𝑖=1

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔


𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))


= 𝛽[𝜆𝐵 (𝜉) ∫

𝜔

0

𝑓 (𝑠, 𝑥𝑠)
 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑥 (𝑡𝑘))
]

≤ 𝜖𝛽 (𝜆𝐵 (𝜉) + 1) ‖𝑥‖ ≤ ‖𝑥‖ .

(56)

This yields

‖(𝑇𝑥) (𝑡)‖ ≤ ‖𝑥‖ , for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟
1

. (57)

In view of (55) and (57), by Lemma 3, it follows that 𝑇 has a
fixed point 𝑥

1
∈ 𝐸 ∩ (Ω

𝑟
\ Ω
𝑟1
) with 𝑟

1
< ‖𝑥
1
‖ < 𝑟, which is a

positive 𝜔-periodic solution of (1).
On the other hand, if 0 < 𝑓∞ < 1/2𝜆𝛽𝐵(𝜉) and 0 < 𝐼∞ <

1/2𝛽 hold, then there is𝑁 > 0 such that

∫

𝜔

0

𝑓 (𝑡, 𝑥𝑡)
 𝑑𝑡 ≤

𝑁

2𝜆𝛽𝐵 (𝜉)
;

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑥 (𝑡𝑘))
 ≤
𝑁

2𝛽
,

(58)

for 𝑥 ≥ 𝑁, 𝑡 ∈ [0, 𝜔], and 1 ≤ 𝑘 < 𝑞; let 𝑟
2
= max{2𝑟,𝑁/𝜎}

and it follows that 𝑥(𝑡) ≥ 𝜎‖𝑥‖ > 𝑁 for 𝑥 ∈ Ω
𝑟
2

, 𝑡 ∈ [0, 𝜔],
and 0 < 𝑘 < 𝑞. Thus

∫

𝜔

0

𝑓 (𝑡, 𝑥𝑡)
 𝑑𝑡 ≤

1

2𝜆𝛽𝐵 (𝜉)
‖𝑥‖ ;

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑥 (𝑡𝑘))
 ≤

1

2𝛽
‖𝑥‖ ,

for𝑥 ∈ Ω
𝑟
2

, 𝑡 ∈ [0, 𝜔] , 1 ≤ 𝑘 < 𝑞.

(59)

By (7), (𝐻
21
), and Lemma 4, we have

(𝑇𝑥) (𝑡) =

𝑛

∑

𝑖=1

(𝑇
𝑖
𝑥)

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑖 (𝑡, 𝑠) 𝑏𝑖 (𝑠, 𝑥 (𝑠)) 𝑓𝑖 (𝑠, 𝑥𝑠) 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))]

≤ 𝜆𝐵 (𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡

𝐺𝑖 (𝑡, 𝑠) 𝑓𝑖 (𝑠, 𝑥𝑠)
 𝑑𝑠

+

𝑛

∑

𝑖=1

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔


𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))


= 𝛽[𝜆𝐵 (𝜉) ∫

𝜔

0

𝑓 (𝑠, 𝑥𝑠)
 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑥 (𝑡𝑘))
]

≤ 𝛽 [𝜆𝐵 (𝜉)
1

2𝜆𝛽𝐵 (𝜉)
+
𝑟
1

2𝛽
] ‖𝑥‖ = ‖𝑥‖ .

(60)

This yields

‖(𝑇𝑥) (𝑡)‖ ≤ ‖𝑥‖ , for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟
2

. (61)

In view of (55) and (61), by Lemma 3, it follows that 𝑇 has a
fixed point 𝑥

2
∈ 𝐸 ∩ (Ω

𝑟
2

\ Ω
𝑟
) with 𝑟 < ‖𝑥

2
‖ < 𝑟
2
, which

is a positive 𝜔-periodic solution of (1). Therefore (1) has at
least two positive periodic solutions; that is, 𝑟

1
< ‖𝑥
1
‖ < 𝑟 <

‖𝑥
2
‖ < 𝑟
2
. This proves Theorem 24.

Remark 25. Assume that (𝐻
1
)–(𝐻
4
), (𝐻
5
), and one of the

following conditions:

(𝐻
23
) 𝑓
0
= 𝐼
0
= 0 or 0 < 𝑓∞ < 1/2𝜆𝛽𝐵(𝜉), 0 < 𝐼∞ < 1/2𝛽,

(𝐻
24
) 0 < 𝑓

0
< 1/2𝜆𝛽𝐵(𝜉), 0 < 𝐼0 < 1/2𝛽 or 𝑓∞ = 𝐼∞ = 0

hold. Then (1) has a positive 𝜔-periodic solution.

Corollary 26. Assume that (𝐻
1
)–(𝐻
3
) and 𝜆 > 1/𝛼𝜎𝐵(𝜉)𝑓

𝑟

hold.

Either (𝐻
21
) or (𝐻

22
) is satisfied; then (1) has two

positive 𝜔-periodic solutions.
Either (𝐻

23
) or (𝐻

24
) is satisfied; then (1) has a positive

𝜔-periodic solution.

From the arguments in the previous proof, we have the
following consequences immediately.

Theorem 27. Assume that (𝐻
1
)–(𝐻
4
), (𝐻
8
), and one of the

following conditions:
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(𝐻
25
) 𝑓
0
= 𝐼
0
= 0 and∞ > 𝑓

∞
> 1/2𝜆𝛼𝜎𝐵


(𝜉),∞ > 𝐼

∞
>

1/2𝛼𝜎,
(𝐻
26
) ∞ > 𝑓

0
> 1/2𝜆𝛼𝜎𝐵


(𝜉),∞ > 𝐼

0
> 1/2𝛼𝜎 and 𝑓

∞
=

𝐼
∞
= 0

hold. Then (1) has two positive 𝜔-periodic solutions.

Remark 28. Assume that (𝐻
1
)–(𝐻
4
), (𝐻
8
), and one of the

following conditions

(𝐻
27
) 𝑓
0
= 𝐼
0
= 0 or∞ > 𝑓

∞
> 1/2𝜆𝛼𝜎𝐵


(𝜉),∞ > 𝐼

∞
>

1/2𝛼𝜎,
(𝐻
28
) ∞ > 𝑓

0
> 1/2𝜆𝛼𝜎𝐵


(𝜉),∞ > 𝐼

0
> 1/2𝛼𝜎 or 𝑓

∞
=

𝐼
∞
= 0

hold. Then (1) has a positive 𝜔-periodic solution.

Corollary 29. Assume that (𝐻
1
)–(𝐻
3
) and 𝜆 < 1/𝛽𝐵(𝜉)𝑓

𝑟

hold.

Either (𝐻
25
) or (𝐻

26
) is satisfied; then (1) has two

positive 𝜔-periodic solutions.
Either (𝐻

27
) or (𝐻

28
) is satisfied; then (1) has a positive

𝜔-periodic solution.

Remark 30. Suppose that 𝐵(𝑡, 𝑥(𝑡)) = 1 and 𝐼
𝑘
(𝑡
𝑘
, 𝑥(𝑡
𝑘
)) =

0, under some conditions; we can obtain the corresponding
results of [17]. Hence, our results generalize and improve the
corresponding results of [17].

Remark 31. Assume that 𝐴(𝑡, 𝑥(𝑡)) = 𝐴(𝑡), 𝐵(𝑡, 𝑥(𝑡)) = 1, 𝜆 =
1 under some conditions; we can obtain the corresponding
results of [18]. Hence, our results generalize and improve the
corresponding results of [18].
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To investigate the spreading speed of cholera, Codeço’s cholera model (2001) is developed by a reaction-diffusion model that
incorporates both indirect environment-to-human and direct human-to-human transmissions and the pathogen diffusion. The
two transmission incidences are supposed to be saturated with infective density and pathogen density. The basic reproduction
number 𝑅

0
is defined and the formula for minimal wave speed 𝑐

∗ is given. It is proved by shooting method that there exists a
traveling wave solution with speed 𝑐 for cholera model if and only if 𝑐 ≥ 𝑐

∗.

1. Introduction

Cholera has been a serious threat to human health in the
past and at present, which is an acute, diarrheal illness
caused by infection of the intestine with the bacteriumVibrio
cholera. An estimated 3–5 million cases and over 100,000
deaths occur each year around the world [1]. The cholera
bacterium is usually found in water or food sources that
have been contaminated by feces from a person infected with
cholera. Cholera is most likely to be found and to spread
in places with inadequate water treatment, poor sanitation,
and inadequate hygiene. Therefore, cholera outbreaks have
occurred in developing countries, for example, Iraq (2007-
2008), Guinea Bissau (2008), Zimbabwe (2008-2009), Haiti
(2010), Democratic Republic of Congo (2011-2012), and Sierra
Leone (2012) [2].

To understand the propagation mechanism of cholera,
manymathematicalmodels were proposed, whose earlier one
was established by Capasso and Paveri-Fontana [3] to study
the 1973 cholera epidemic in the Mediterranean region as
follows:

𝑑𝐼

𝑑𝑡
= 𝑔 (𝐵) − 𝑎

22
𝐼,

𝑑𝐵

𝑑𝑡
= −𝑎
11
𝐵 + 𝑎
12
𝐼, (1)

where𝐵(𝑡) and 𝐼(𝑡)denote the concentrations of the pathogen
and the infective populations, respectively. In addition,
Codeço [4] investigated the role of the aquatic pathogen

in dynamics of cholera through the following susceptible-
infective-pathogen model:

𝑑𝑆

𝑑𝑡
= 𝑛 (𝐻 − 𝑆) − 𝑎

𝑆𝐵

𝐾 + 𝐵
,

𝑑𝐼

𝑑𝑡
= 𝑎

𝑆𝐵

𝐾 + 𝐵
− 𝑟𝐼,

𝑑𝐵

𝑑𝑡
= 𝑒𝐼 − (𝑚𝑏 − 𝑛𝑏) 𝐵,

(2)

where 𝑆(𝑡) is the susceptible individuals. In this model,
human is divided into two groups: the susceptible group and
the infective group. As pointed out in [4–8], bacteriumVibrio
cholera can spread by direct human-to-human and indirect
environment-to-human modes. To understand the complex
dynamics of cholera, model (2) is extended by [8–15] and so
forth.

In all previousmodels the influences of space distribution
of human on the transmission of cholera are omitted. Cholera
usually spreads in spatial wave [16]. Cholera bacteria live
in rivers and interact with the plankton on the surface of
the water [17]. When individuals drink contaminated water
and are infected, they will release cholera bacteria through
excretion [18]. Capasso et al. [19–23] developed model (1)
by incorporating the bacterium diffusion in a bounded
area and studied the existence and stability of solutions. To
deeply investigate the interaction of transmission modes and
bacterium diffusion, Bertuzzo et al. [24, 25] incorporated
patchy structure into model (2) and supposed that pathogen
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in water could diffuse among these patches. Furthermore,
Mari et al. [26] studied the influence of diffusion of both
human and pathogen on cholera dynamics through a patchy
model.

Infectious case is usually found firstly at some location
and then spreads to other areas. Consequently, the most
important question for cholera is what the spreading speed
of cholera is. However, the above spatial models mainly focus
on the stability of solutions not the spreading speed. Traveling
wave solution is an important tool used to study the spreading
speed of infectious diseases [27–29]. Based on Capasso’s
model (1), Zhao and Wang [30], Xu and Zhao [31], Jin and
Zhao [32], and Hsu and Yang [33] studied the influences of
pathogen diffusion on the spread speed of cholera.

The studies of travelingwave solutions of Capasso’smodel
(1) incorporating pathogen diffusion provide insight into the
spreading speed of cholera.However, some pieces of informa-
tion are omitted, such as the interaction of direct human-to-
human and indirect environment-to-human transmissions.
In this paper, a reaction-diffusionmodel with pathogen diffu-
sion and both transmission paths is proposed by developing
Codeço’s model (2). Based on model (2) and ignoring the
disease-related death, a general diffusive cholera model can
be formulated as the following reaction-diffusion system:

𝜕𝑆

𝜕𝑡
= 𝑏 (𝑁 − 𝑆) − 𝑓 (𝐼) 𝑆 − 𝑔 (𝐵) 𝑆,

𝜕𝐼

𝜕𝑡
= 𝑓 (𝐼) 𝑆 + 𝑔 (𝐵) 𝑆 − 𝑏𝐼,

𝜕𝐵

𝜕𝑡
= 𝑑

𝜕
2
𝐵

𝜕𝑥2
+ 𝑒𝐼 − 𝑚𝐵,

(3)

where 𝑆 = 𝑆(𝑥, 𝑡) and 𝐼 = 𝐼(𝑥, 𝑡) denote the concentrations
of susceptible and infected individuals, respectively, and 𝐵 =

𝐵(𝑥, 𝑡) is the concentration of the infectious agents. 𝑁 is
the total human population, 𝑏 stands for the natural birth
and death rate, 𝑒 denotes the contribution of each infected
person to the concentration of cholera, and 𝑚 is the net
death rate of vibrio cholera. 𝑓(𝐼) and 𝑔(𝐵) are the human-to-
human and environment-to-human transmission incidences,
respectively. Similar to [10], we assume that 𝑓(𝐼) and 𝑔(𝐵)

satisfy

(A1) 𝑓(0) = 0, 𝑓(𝐼) ≥ 0, 𝑓(𝐼) ≤ 0;
(A2) 𝑔(0) = 0, 𝑔(0) > 0, 𝑔(𝐵) ≥ 0, 𝑔(𝐵) ≤ 0, and 𝑔(𝐵) is

strictly monotonously increasing in [0, +∞).

It is easy to conclude that 𝑓(𝐼) ≤ 𝑓

(0)𝐼, 𝑔(𝐵) ≤ 𝑔


(0)𝐵, and

𝑓(𝐼)/𝐼 and 𝑔(𝐵)/𝐵 are nonincreasing. Obviously, hypotheses
(A1) and (A2) imply that the two transmission paths are
saturated. In Tian and Wang [10], 𝑓(𝐼) and 𝑔(𝐵) have the
following expressions:

𝑓 (𝐼) = 𝛽
1
𝐼, 𝑔 (𝐵) =

𝛽
2
𝐵

𝐾 + 𝐵
. (4)

Obviously, as a special case, such selections satisfy (A1) and
(A2).

Shooting method is very important in proving the exis-
tence of traveling wave solutions, which was proposed by

Dunbar [34, 35] and was applied to many models (e.g., [36–
40]). In this paper, the existence of traveling wave solutions
of system (3) will be proved by shooting method and the
formula for minimal wave speed will be given.

This paper is organized as follows. In next section, the
main theorem and the formula for minimal wave speed will
be given. In Section 3, the nonexistence of the traveling wave
solutions for 𝑐 < 𝑐

∗ is proved by geometric method. Section 4
is devoted to shooting arguments and the construction of
Wazewski set. In Section 5, we prove the existence of traveling
wave solutions for 𝑐 > 𝑐

∗ and then give the existence of
traveling wave solution for 𝑐 = 𝑐

∗ by limit arguments. The
final section is devoted to the simulations.

2. Main Results

For convenience, we introduce dimensionless variables and
parameters. By setting

𝑢
1
=

𝑆

𝑏𝑁
, 𝑢

2
=

𝐼

𝑏𝑁
, 𝑢

3
=

𝑚

𝑒𝑏𝑁
𝐵, 𝑦 =

𝑥

√𝑑

,

(5)

model (3) has the form

𝑢
1,𝑡

= 1 − 𝑏𝑢
1
− 𝑓
1
(𝑢
2
) 𝑢
1
− 𝑔
1
(𝑢
3
) 𝑢
1
,

𝑢
2,𝑡

= 𝑓
1
(𝑢
2
) 𝑢
1
+ 𝑔
1
(𝑢
3
) 𝑢
1
− 𝑏𝑢
2
,

𝑢
3,𝑡

= 𝑢
3,𝑦𝑦

+ 𝑚 (𝑢
2
− 𝑢
3
) ,

(6)

where 𝑓
1
(𝑢
2
) = 𝑓(𝑏𝑁𝑢

2
) and 𝑔

1
(𝑢
3
) = 𝑔(𝑒𝑏𝑁𝑢

3
/𝑚).

Denote 𝑅
0
= [𝑓


1
(0) + 𝑔



1
(0)]/𝑏

2, which is the basic repro-
duction number of (6). Then hypotheses (A1) and (A2)
imply that system (6) has two nonnegative constant solutions
𝑃
1
(1/𝑏, 0, 0) and 𝑃

2
(1/𝑏 − 𝑢

∗
, 𝑢
∗
, 𝑢
∗
) if and only if 𝑅

0
> 1,

where 𝑢
∗ is the only one positive root of equation

[𝑓
1
(𝑢
∗
) + 𝑔
1
(𝑢
∗
)] (

1

𝑏
− 𝑢
∗
) = 𝑏𝑢

∗ (7)

and 0 < 𝑢
∗

< 1/𝑏. Biologically,𝑃
1
corresponds to disease-free

equilibrium and 𝑃
2
corresponds to endemic equilibrium. To

study the spreading wave of cholera, it is assumed that 𝑅
0
> 1

holds in this paper; that is

𝑓


1
(0) + 𝑔



1
(0) > 𝑏

2
. (8)

A traveling wave solution of system (6) with speed 𝑐 is a
nonnegative solution of the form

𝑢
1
(𝑦, 𝑡) = 𝑢

1
(𝑠) , 𝑢

2
(𝑦, 𝑡) = 𝑢

2
(𝑠) ,

𝑢
3
(𝑦, 𝑡) = 𝑢

3 (𝑠) , 𝑠 = 𝑦 + 𝑐𝑡.

(9)

Substituting traveling profile (𝑢
1
(𝑠), 𝑢
2
(𝑠), 𝑢
3
(𝑠)) into sys-

tem (6) yields the following equations:

𝑐𝑢


1
= 1 − 𝑏𝑢

1
− 𝑓
1
(𝑢
2
) 𝑢
1
− 𝑔
1
(𝑢
3
) 𝑢
1
,

𝑐𝑢


2
= 𝑓
1
(𝑢
2
) 𝑢
1
+ 𝑔
1
(𝑢
3
) 𝑢
1
− 𝑏𝑢
2
,

𝑐𝑢


3
= 𝑢


3
+ 𝑚 (𝑢

2
− 𝑢
3
) ,

(10)
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where  denotes 𝑑/𝑑𝑠. To investigate invasion question by
cholera, we will study the positive solutions of (10) such that

(𝑢
1
(+∞) , 𝑢

2
(+∞) , 𝑢

3
(+∞)) = (

1

𝑏
− 𝑢
∗
, 𝑢
∗
, 𝑢
∗
) ,

(𝑢
1
(−∞) , 𝑢

2
(−∞) , 𝑢

3
(−∞)) = (

1

𝑏
, 0, 0) .

(11)

Before giving the main theorem, we introduce the equa-
tion for minimal wave speed

Δ (𝑐) := 𝑏
3
𝑐
6
+ 𝑏
2
𝑐
4
+ 𝑏
1
𝑐
2
+ 𝑏
0
= 0, (12)

where
𝜖 = 𝑓


1
(0) − 𝑏

2
,

𝑏
3
= 𝑏
2
𝜖
2
+ 2𝑏
3
𝑚(𝑓


1
(0) + 𝑔



1
(0) − 𝑏

2
)

+ 2𝑏
3
𝑚𝑔


1
+ 𝑏
4
𝑚
2
,

𝑏
2
= −2𝑏𝜖

3
+ 2𝑏
2
𝑚𝜖
2
+ (8𝑏
3
𝑚
2
− 6𝑏
2
𝑚𝑔


1
) 𝜖

+ 4𝑚
3
𝑏
4
+ 18𝑏
3
𝑚
2
𝑔


1
(0) ,

𝑏
1
= 𝜖
4
− 8𝑚𝑏𝜖

3
− (8𝑏
2
𝑚
2
+ 6𝑏𝑚𝑔



1
) 𝜖
2

− 36𝑏
2
𝑚
2
𝑔


1
(0) 𝜖 − 27𝑚

2
𝑏
2
𝑔


1
(0)
2
,

𝑏
0
= 4𝑚(𝑏

2
− 𝑓


1
(0))
3

(𝑏
2
− 𝑓


1
(0) − 𝑔



1
(0)) .

(13)

Theorem 1. There exists a constant 𝑐∗ > 0which is the greatest
positive root of (12). When 𝑐 ≥ 𝑐

∗, system (6) has a traveling
wave solution satisfying boundary condition (11). When 0 <

𝑐 < 𝑐
∗, system (6) has no traveling wave solutions satisfying

boundary condition (11).

3. Nonexistence of Traveling Wave
Solutions for 𝑐 < 𝑐

∗

From (10), we have

[𝑢
1 (𝑠) + 𝑢

2 (𝑠)]

=

[1 − 𝑏 (𝑢
1
(𝑠) + 𝑢

2
(𝑠))]

𝑐
. (14)

Consequently, if 𝑢
1
(0) + 𝑢

2
(0) ̸= 1/𝑏, then

𝑢1 (𝑠) + 𝑢
2
(𝑠)

 → ∞ when 𝑠 → −∞. (15)

Hence, the traveling profile (𝑢
1
(𝑠), 𝑢
2
(𝑠), 𝑢
3
(𝑠)) with

boundary condition (11) must satisfy

𝑢
1 (𝑠) + 𝑢

2 (𝑠) =
1

𝑏
for any 𝑠 ∈ 𝑅. (16)

Therefore, to study traveling wave solutions we assume
(16) satisfies. Setting 𝑢



3
= 𝑧 in system (10) and noticing (16),

it follows

𝑢


2
=

[(𝑓
1
(𝑢
2
) + 𝑔
1
(𝑢
3
)) ((1/𝑏) − 𝑢

2
) − 𝑏𝑢

2
]

𝑐
,

𝑢


3
= 𝑧,

𝑧

= 𝑐𝑧 + 𝑚 (𝑢

3
− 𝑢
2
) .

(17)

If 𝑢
1
(𝑠) = 0, then 𝑢



1
(𝑠) = 1/𝑐 > 0 by system (10).

Therefore, we suppose 𝑢
1
(𝑠) = 1/𝑏 − 𝑢

2
(𝑠) > 0 for any 𝑠; that

is, 𝑢
2
(𝑠) < 1/𝑏.

Obviously, system (17) has two equilibria 𝐸
1
(0, 0, 0)

and 𝐸
2
(𝑢
∗
, 𝑢
∗
, 0). A profile solution of (10) which satisfies

boundary condition (11) corresponds to the positive solution
(𝑢
2
(𝑠), 𝑢
3
(𝑠), 𝑧(𝑠)) of system (17) which satisfies

𝑢 (+∞) = (𝑢
∗

2
, 𝑢
∗

2
, 0) , 𝑢 (−∞) = (0, 0, 0) , (18)

where 𝑢(𝑠) = (𝑢
2
(𝑠), 𝑢
3
(𝑠), 𝑧(𝑠)). Therefore, to study the

solutions of (10), it is sufficient to study those of system (17)
satisfying boundary condition (18).

Firstly, we investigate the dynamics near 𝐸
1
. Simple

calculations show that the characteristic equation of the
linearization of system (17) at 𝐸

1
is

𝐻(𝜆) = 𝜆
3
+ 𝑎
2
𝜆
2
+ 𝑎
1
𝜆 + 𝑎
0
= 0, (19)

where

𝑎
0
=

𝑚(𝑓


1
(0) + 𝑔



1
(0) − 𝑏

2
)

𝑏𝑐
, 𝑎

1
=

𝑓


1
(0) − 𝑏

2
− 𝑚𝑏

𝑏
,

𝑎
2
=

𝑏
2
− 𝑓


1
(0) − 𝑏𝑐

2

𝑏𝑐
.

(20)

Because 𝑎
0

> 0 (19) has a negative real root, which is
denoted by 𝜆

3
. Let 𝜆

1
and 𝜆

2
be the other two eigenvalues

of (19) and suppose that Re 𝜆
1

≥ Re 𝜆
2
. To investigate the

distribution of roots of (19), denote

𝑝 = 𝑎
1
−

𝑎
2

2

3
, 𝑞 =

2𝑎
3

2

27
−

𝑎
1
𝑎
2

3
+ 𝑎
0
, Δ

0
=

𝑞
2

4
+

𝑝
3

27

(21)

and introduce the following lemma [41].

Lemma 2. (a) If Δ
0

> 0, (19) has one real root and two
nonreal complex conjugate roots.

(b) If Δ
0
= 0, (19) has a multiple root and all its roots are

real.
(c) If Δ

0
< 0, (19) has three distinct real roots.

Direct calculations show that Δ
0

= −Δ/(108𝑏
4
𝑐
4
), where

Δ is defined by (12).

Lemma 3. (a) The real parts of 𝜆
1
and 𝜆

2
are positive.

(b) Assume 𝑓


1
(0) ≤ 𝑏

2. Then, there exists 𝑐∗ > 0 which is
the only positive root of Δ(𝑐) = 0. When 𝑐 ≥ 𝑐

∗, 𝜆
1
, and 𝜆

2
are

real. When 0 < 𝑐 < 𝑐
∗, 𝜆
1
, and 𝜆

2
are complex and nonreal.

(c) Assume that 𝑓
1
(0) > 𝑏

2. Then, there exist two positive
constants 𝑐

∗

1
< 𝑐
∗ which are all positive roots of Δ(𝑐) = 0. 𝜆

1

and 𝜆
2
are complex and nonreal if and only if 𝑐∗

1
< 𝑐 < 𝑐

∗. If
𝑐 > 𝑐
∗, then 𝜆

∗
< 𝜆
2
< 𝜆
1
; if 0 < 𝑐 ≤ 𝑐

∗

1
, then 𝜆

2
≤ 𝜆
1
< 𝜆
∗,

where 𝜆
∗

= (𝑓


1
(0) − 𝑏

2
)/(𝑏𝑐).

(d) 𝜆
1
= 𝜆
2
if and only if 𝑐 = 𝑐

∗ or 𝑐
∗

1
.

Proof. Suppose 𝜆 = 𝛽𝑖 ̸= 0 is the root of (19). Substituting
𝜆 = 𝛽𝑖 into (19) and comparing real and imaginary parts
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show that 𝑎
1

= 𝛽
2

> 0 and 𝑎
0

= 𝑎
1
𝑎
2
. Since 𝑎

0
> 0, then

𝑎
2

> 0. However, it is impossible that 𝑎
1

> 0 and 𝑎
2

> 0 by
the expressions of 𝑎

1
and 𝑎

2
. Therefore, the real parts of 𝜆

1

and 𝜆
2
are not zero. Furthermore, since it is impossible that

𝑎
1
> 0 and 𝑎

2
> 0, Routh-Hurwitz theorem implies that it is

impossible that the real parts of both 𝜆
1
and 𝜆

2
are negative.

Consequently, there are two cases: (i) 𝜆
1
and 𝜆

2
are complex

conjugate roots with positive real parts; (ii) 𝜆
1
and 𝜆

2
are real

and at least one is positive. However, Descartes’ rule of signs
shows that the number of positive roots of (19) is zero or two.
Thus, if case (ii) is true, both of 𝜆

1
and𝜆

2
are real and positive.

Therefore, (a) is proved.
In this paragraph, we consider the case𝑓



1
(0) ≤ 𝑏

2. Firstly,
suppose that 𝑓

1
(0) < 𝑏

2. Obviously, 𝑏
0
< 0 and 𝑏

3
> 0. By the

expression of 𝑏
2
, we have

𝑏
2
= −2𝑏𝜖

3
+ 2𝑏
2
𝑚𝜖
2
− 6𝑏
2
𝑚𝑔


1
𝜖

+ 8𝑏
3
𝑚
2
(𝑓


1
(0) + 𝑔



1
(0) − 𝑏

2
) + 4𝑚

3
𝑏
4
+ 10𝑏
3
𝑚
2
𝑔


1
(0)

> 0

(22)

since 𝜖 = 𝑓


1
(0) − 𝑏

2
< 0. Now, assume 𝑓



1
(0) = 𝑏

2; that is,
𝜖 = 0. Then. 𝑏

3
> 0, 𝑏

2
> 0, 𝑏

1
< 0, and 𝑏

0
= 0. Then, if

𝑓


1
(0) ≤ 𝑏

2, Descartes’ rule of signs shows that there exists
𝑐
∗

> 0 which is the only positive root of Δ(𝑐) = 0, where
Δ(𝑐) < 0 for 0 < 𝑐 < 𝑐

∗ and Δ(𝑐) > 0 for 𝑐 > 𝑐
∗. Using

Lemma 2 completes the proof of (b).
Suppose that𝑓

1
(0) > 𝑏

2 in this paragraph and, thus, 𝜖 > 0.
Calculations show that

𝐻(𝜆
∗
) =

𝑚𝑔


1

𝑏𝑐
> 0,

𝐻

(𝜆
∗
) =

𝜖
2
− 𝑏𝑐
2
𝜖 − 𝑚𝑏

2
𝑐
2

𝑏2𝑐2

(23)

and that 𝐻(𝜆) = 0 has two roots 𝜆
∗

1
and 𝜆

∗

2
, where

𝜆
∗

1
=

𝑏𝑐
2
+ 𝜖 + √𝑏2𝑐4 + (3𝑚𝑏2 − 𝑏𝜖) 𝑐2 + 𝜖2

3𝑏𝑐
,

𝜆
∗

2
=

𝑏𝑐
2
+ 𝜖 − √𝑏2𝑐4 + (3𝑚𝑏2 − 𝑏𝜖) 𝑐2 + 𝜀2

3𝑏𝑐
,

(24)

and 𝜆
∗

1
> 𝜆
∗

2
. By letting 𝑐

0
≜ 𝜖/√𝑏𝜖 + 𝑚𝑏2 and using trivial

calculations, we get (see Figure 1)

𝜆
∗

= 𝜆
∗

1
⇐⇒ 𝑐 = 𝑐

0
⇐⇒ 𝐻


(𝜆
∗
) = 0,

𝜆
∗

> 𝜆
∗

1
⇐⇒ 𝑐 < 𝑐

0
⇐⇒ 𝐻


(𝜆
∗
) > 0,

𝜆
∗

< 𝜆
∗

1
⇐⇒ 𝑐 > 𝑐

0
⇐⇒ 𝐻


(𝜆
∗
) < 0.

(25)

Therefore, if 𝑐 = 𝑐
0
, then 𝐻(𝜆

∗

1
) = 𝐻(𝜆

∗
) > 0. Since 𝜆

∗

1
is

the only minimum-value point of 𝐻(𝜆), and then 𝐻(𝜆) > 0

for any 𝜆 > 0 and both of 𝜆
1
and 𝜆

2
are not real. Lemma 2

shows that Δ(𝑐
0
) < 0. Thus, since 𝑏

0
> 0 and 𝑏

3
> 0, there

exist two positive roots 𝑐
∗

1
< 𝑐
∗ for equation Δ(𝑐) = 0 such

that 𝑐∗
1

< 𝑐
0

< 𝑐
∗. Then, using (25) and Lemma 2 completes

the proof of (c) and (d).

Direct calculations show that corresponding eigenvectors
of eigenvalue 𝜆

𝑖
are

𝑒
𝑖
= (1 −

𝜆
𝑖
(𝜆
𝑖
− 𝑐)

𝑚
, 1, 𝜆
𝑖
) , (26)

where 𝑖 = 1, 2, 3. Since

𝐻(𝜆
𝑖
) = −𝑚[1 −

𝜆
𝑖
(𝜆
𝑖
− 𝑐)

𝑚
][𝜆
𝑖
−

𝑓


1
(0) − 𝑏

2

𝑏𝑐
] +

𝑚𝑔


1

𝑏𝑐

= 0,

(27)

and thus

1 −
𝜆
𝑖
(𝜆
𝑖
− 𝑐)

𝑚
=

𝑔


1
(0)

𝑏𝑐𝜆
𝑖
+ 𝑏2 − 𝑓



1
(0)

=
𝑔


1
(0)

𝑏𝑐 (𝜆
𝑖
− 𝜆∗)

.

(28)

Then, we have the following lemma.

Lemma 4. If 0 < 𝑐 < 𝑐
∗, there exist no traveling wave

solutions which satisfy boundary condition (11).

Proof. Assume that 𝑓


1
(0) ≤ 𝑏

2 and 0 < 𝑐 < 𝑐
∗. Then, (b)

of Lemma 3 implies that 𝜆
1
and 𝜆

2
are complex conjugate

eigenvalues and there exits locally unstable manifoldW𝑢 and
locally stable manifold W𝑠. If a solution of (17) tends to 𝐸

1

when 𝑠 → −∞, then it will be spiral onW𝑢. By the structures
of 𝑒
1
and 𝑒
2
, 𝑢
2
(𝑠) < 0 at some time 𝑠 < 0, which shows that

there exist no traveling wave solutions departing from 𝐸
1
.

Suppose that 𝑓
1
(0) > 𝑏

2. If 𝑐∗
1

< 𝑐 < 𝑐
∗, (c) of Lemma 3

shows that 𝜆
1
and 𝜆

2
are complex conjugate eigenvalues and

similar arguments to that of previous paragraph finish the
proof. If 0 < 𝑐 ≤ 𝑐

∗

1
, (c) of Lemma 3 shows that 𝜆

1
and 𝜆

2

are real; however, 𝜆
2
≤ 𝜆
1
< 𝜆
∗. If a solution of (17) tends to

𝐸
1
when 𝑠 → −∞, structures of 𝑒

1
and 𝑒
2
indicate that there

is an 𝑠 < 0 such that 𝑢
2
(𝑠) < 0. The proof is completed.

From Section 4 to Section 5.2, we suppose that 𝑐 > 𝑐
∗,

which implies 𝜆
∗

< 𝜆
2
< 𝜆
1
.

4. Shooting Method and Wazewski Set

To prove the existence of traveling wave, shooting method
developed by Dunbar [34] is used. Firstly, we give the
shooting arguments.

Consider the differential equation

𝑑𝑦

𝑑𝑠
= 𝑓 (𝑦) , (29)

where 𝑓(𝑦) from 𝑅
𝑛 to 𝑅

𝑛 satisfies Lipschitz condition about
𝑦. Let 𝑦(𝑠; 𝑦

0
) denote the unique solution of (29) with initial
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H(𝜆)

𝜆3 𝜆2 𝜆1

𝜆𝜆
∗
2 𝜆

∗
1𝜆

∗

(a)

H(𝜆)

𝜆3 𝜆2 𝜆1

𝜆𝜆
∗
2

𝜆
∗
1 𝜆

∗

(b)

Figure 1: Distribution of eigenvalues of (19) when 𝑓


1
(0) > 𝑏

2, (a) for 𝑐 > 𝑐
∗ and (b) for 𝑐 < 𝑐

∗

1
.

value 𝑦(0) = 𝑦
0
. It is convenient to give the notations 𝑦

0
⋅ 𝑠 ≜

𝑦(𝑠; 𝑦
0
) and 𝑦

0
⋅ 𝑆 ≜ {𝑦

0
⋅ 𝑠 | 𝑠 ∈ 𝑆 ⊂ 𝑅}. To describe the

shooting method (or Wazewski theorem), some definitions
are necessary.

Definition 5. (a) For 𝑊 ⊆ 𝑅
𝑛, define immediate exit set 𝑊−

of 𝑊 as

𝑊
−

≜ {𝑦
0
∈ 𝑊 | ∀𝑠 > 0, 𝑦

0
⋅ [0, 𝑠) ̸⊆ 𝑊} . (30)

(b) For Σ ⊆ 𝑊, let Σ0 ≜ {𝑦
0
∈ Σ | ∃𝑠

0
> 0 such that 𝑦

0
⋅

𝑠
0
∉ 𝑊}.
(c) Given 𝑦

0
∈ Σ
0, define exit time 𝑇(𝑦

0
) of 𝑦
0
by

𝑇 (𝑦
0
) ≜ sup {𝑠 | 𝑦

0
⋅ [0, 𝑠) ⊆ 𝑊} . (31)

Then, Wazewski theorem is formulated as follows.

Lemma 6 (see [34]). Suppose that

(1) if 𝑦
0
∈ Σ and 𝑦

0
⋅ [0, 𝑠] ⊆ cl(𝑊), then 𝑦

0
⋅ [0, 𝑠] ⊆ 𝑊.

(2) If 𝑦
0
∈ Σ, 𝑦

0
⋅ 𝑠 ∈ 𝑊 and 𝑦

0
⋅ 𝑠 ∉ 𝑊

−, then there exists
an open set 𝑉

𝑠
about 𝑦

0
⋅ 𝑠 disjoint from 𝑊

−.
(3) If Σ = Σ

0, Σ is compact and Σ intersects a trajectory of
(29) only once.

Then, themapping𝐻(𝑦
0
) = 𝑦
0
⋅𝑇(𝑦
0
) is a homeomorphism

from Σ to its image on 𝑊
−.

A set 𝑊 ⊆ 𝑅
𝑛 satisfying conditions (1) and (2) of

Lemma 6 is called a Wazewski set. In the following, we
first construct the Wazewski set 𝑊. Fundamental idea to
construct a Wazewski set is that the characteristic vectors
corresponding eigenvalues with positive real parts should
be removed from 𝑊 and that those characteristic vectors
corresponding eigenvalues with negative real parts should be
included. Therefore, we set

𝑊 = R
3
\ (𝑃 ∪ 𝑄) , (32)

where

𝑃 = {(𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑧) : 𝑢

3
> 𝑢
2
> 𝑢
∗
, 𝑧 > 0} ,

𝑄 = {(𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑧) : 0 < 𝑢

3
< 𝑢
2
< 𝑢
∗
, 𝑧 < 0} .

(33)

z

O

Q

P

J

u2

u3

Figure 2: The construction of 𝑊 and 𝑊
−.

It is obvious that 𝜕𝑊 = 𝜕𝑃 ∪ 𝜕𝑄. Firstly, we give the
construction of 𝑊−, which is described in Figure 2.

Lemma 7. The construction of 𝑊− is as follows:

𝑊
−

= 𝜕𝑊 \ (𝐽 ∪ 𝐸
2
) , (34)

where 𝐽 = {(𝑢
2
, 𝑢
3
, 𝑧) : 0 ≤ 𝑢

2
≤ 𝑢
∗
, 𝑢
3
= 0, 𝑧 ≤ 0}.

Proof. It is enough to analyze the behavior of solution on
𝜕𝑃∪𝜕𝑄. We only study 𝜕𝑄 and omit the proof of 𝜕𝑃 since the
analysis of 𝜕𝑃 is similar to that of 𝜕𝑄 and is simpler. In the
process of this proof, we use some notations to simplify the
proof. Set

𝑢


𝑖
=

𝑑𝑢
𝑖

𝑑𝑠

(𝑢
2
,𝑢
3
,𝑧)∈𝜕𝑄

, 𝑧

=

𝑑𝑧

𝑑𝑠

(𝑢
2
,𝑢
3
,𝑧)∈𝜕𝑄

, 𝑖 = 2, 3,

ℎ (𝑢
2
) = [

𝑓
1
(𝑢
2
)

𝑢
2

+
𝑔
1
(𝑢
2
)

𝑢
2

](
1

𝑏
− 𝑢
2
) − 𝑏.

(35)

From hypotheses (A1) and (A2), we find that 𝑓
1
(𝑢
2
)/𝑢
2

and 𝑔
1
(𝑢
2
)/𝑢
2
are monotonously decreasing, ℎ(𝑢

2
) is strictly

monotonously decreasing for 𝑢
2
∈ (0, 1/𝑏), and 𝑢

∗ is the only
positive root of ℎ(𝑢

2
) = 0. The set 𝜕𝑄 is classified into two

cases according to variable 𝑧.
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(a) Case 𝑧 < 0. This case is classified as follows.

(1) Case 0 = 𝑢
3
< 𝑢
2
< 𝑢
∗. Then 𝑢



3
= 𝑧 < 0 and the

solution of (17) will enter int(𝑊).
(2) Case 0 < 𝑢

3
= 𝑢
2
< 𝑢
∗. Then

(𝑢
3
− 𝑢
2
)

=

𝑧 − ℎ (𝑢
2
) 𝑢
2

𝑐
< 0. (36)

The solution of (17) will enter 𝑄.
(3) Case 0 < 𝑢

3
< 𝑢
2
= 𝑢
∗. Then

𝑢


2
=

[(𝑓
1
(𝑢
∗
) /𝑢
∗
+ 𝑔
1
(𝑢
3
) /𝑢
∗
) (1/𝑏 − 𝑢

∗
) − 𝑏] 𝑢

∗

𝑐

<
ℎ (𝑢
∗
) 𝑢
∗

𝑐
= 0.

(37)

The solution of (17) will enter 𝑄.
(4) Case 0 = 𝑢

3
= 𝑢
2
< 𝑢
∗. Then 𝑢



3
= 𝑧 < 0 and the

solution of (17) will enter int(𝑊).
(5) Case 0 = 𝑢

3
and 𝑢

2
= 𝑢
∗. The solution of (17)

will enter int(𝑊).
(6) Case 𝑢

3
= 𝑢
2
= 𝑢
∗. Then 𝑢



2
= 0,

𝑢


2
= [(𝑓



1
(0) (𝑢

∗
) 𝑢


2
+ 𝑔


1
(0) (𝑢

∗
) 𝑧) (

1

𝑏
− 𝑢
∗
)

− (𝑓
1
(𝑢
∗
) + 𝑔
1
(𝑢
∗
)) 𝑢


2
− 𝑏] × (𝑐)

−1

=

[𝑔


1
(0) (𝑢

∗
) 𝑧 ((1/𝑏) − 𝑢

∗
) − 𝑏]

𝑐
< 0,

(38)

and (𝑢
3
− 𝑢
2
)

= 𝑧 < 0. Therefore, the solution of (17)

will enter 𝑄.
(b) Case 𝑧 = 0. This case is classified as follows.

(1) Case 0 < 𝑢
3
< 𝑢
2
< 𝑢
∗.Then 𝑧


= 𝑚(𝑢

3
−𝑢
2
) < 0

and the solution of (17) will enter 𝑄.
(2) Case 0 = 𝑢

3
< 𝑢
2

< 𝑢
∗. Then 𝑢



3
= 𝑧 = 0,

𝑢


3
= 𝑧

= −𝑚𝑢

2
< 0. The solution of (17) will

enter int(𝑊).
(3) Case 0 < 𝑢

3
= 𝑢
2

< 𝑢
∗. Then (𝑢

3
− 𝑢
2
)


=

−ℎ(𝑢
2
)𝑢
2
/𝑐 < 0, 𝑧


= 0, and 𝑧


= 𝑐𝑧

+

𝑚(𝑢
3
− 𝑢
2
)

< 0. The solution of (17) will enter

𝑄.
(4) Case 0 < 𝑢

3
< 𝑢
2

= 𝑢
∗. Then 𝑢



2
< 0 and 𝑧


=

𝑚(𝑢
3
− 𝑢
2
) < 0. The solution of (17) will enter

𝑄.
(5) Case 0 = 𝑢

3
= 𝑢
2

< 𝑢
∗. In this case, (0, 0, 0) is

equilibrium and is constant.
(6) Case 0 = 𝑢

3
and 𝑢

2
= 𝑢
∗. Then 𝑢



3
= 𝑧 = 0 and

𝑢


3
= 𝑧

= −𝑚𝑢

2
< 0. The solution of (17) will

enter int(𝑊).
(7) Case 𝑢

3
= 𝑢
2

= 𝑢
∗. Then (𝑢

∗
, 𝑢
∗
, 0) is equilib-

rium and is constant.

The proof is completed.

5. Existence of Traveling Wave
Solution for 𝑐 ≥ 𝑐

∗

In this section, we prove the existence of traveling wave
solution for 𝑐 ≥ 𝑐

∗. Firstly, we study the behaviors of solutions
near 𝐸

1
.

5.1. Behaviors of Solutions Near 𝐸
1

Lemma 8. Suppose (𝑢
2
(𝑠), 𝑢
3
(𝑠), 𝑧(𝑠)) is a solution of (17)

satisfying initial conditions

𝑧 (0) > 𝑘𝑢
3 (0) , 𝑢

3 (0) >
𝑏𝑐𝑘 + 𝑏

2
− 𝑓


1
(0)

𝑔


1
(0)

𝑢
2 (0) > 0,

(39)
where 𝑘 = (𝜆

1
+ 𝜆
2
)/2. Then, for every 𝑠 > 0, we have

𝑧 (𝑠) > 𝑘𝑢
3 (𝑠) , 𝑢

3 (𝑠) >
𝑏𝑐𝑘 + 𝑏

2
− 𝑓


1
(0)

𝑔


1
(0)

𝑢
2 (𝑠) > 0.

(40)

Proof. From Lemma 3, we have (𝑏𝑐𝑘 + 𝑏
2
− 𝑓


1
(0))/𝑔



1
(0) > 0.

To finish the proof, it is sufficient to prove that the set

Ψ = {(𝑢
2
, 𝑢
3
, 𝑧) : 𝑧 > 𝑘𝑢

3
, 𝑢
3
>

𝑏𝑐𝑘 + 𝑏
2
− 𝑓


1
(0)

𝑔


1
(0)

𝑢
2
> 0}

(41)
is positively invariant. It is obvious that

𝜕Ψ = 𝜕Ψ
1
∪ 𝜕Ψ
2
∪ 𝜕Ψ
3
∪ 𝐸
1
, (42)

where

𝜕Ψ
1
= {(𝑢

2
, 𝑢
3
, 𝑧) : 𝑧 = 𝑘𝑢

3
, 𝑢
3
≥

𝑏𝑐𝑘 + 𝑏
2
− 𝑓


1
(0)

𝑔


1
(0)

𝑢
2
> 0} ,

𝜕Ψ
2
= {(𝑢

2
, 𝑢
3
, 𝑧) : 𝑧 > 𝑘𝑢

3
, 𝑢
3
=

𝑏𝑐𝑘 + 𝑏
2
− 𝑓


1
(0)

𝑔


1
(0)

𝑢
2
≥ 0} ,

𝜕Ψ
3
= {(𝑢
2
, 𝑢
3
, 𝑧) : 𝑧 ≥ 𝑘𝑢

3
, 𝑢
3
> 𝑢
2
= 0} .

(43)
Suppose that (𝑢

2
(𝑠
0
), 𝑢
3
(𝑠
0
), 𝑧(𝑠
0
)) ∈ 𝜕Ψ

1
. Then, 𝑧(𝑠

0
) =

𝑘𝑢
3
(𝑠
0
) and

𝑑

𝑑𝑠
[𝑧 (𝑠) − 𝑘𝑢

3
(𝑠)]
𝑠=𝑠
0

= 𝑐𝑧 (𝑠
0
) + 𝑚 [𝑢

3
(𝑠
0
) − 𝑢
2
(𝑠
0
)] − 𝑘𝑧 (𝑠

0
)

= (𝑐 − 𝑘) 𝑧 (𝑠
0
) + 𝑚 [𝑢

3
(𝑠
0
) − 𝑢
2
(𝑠
0
)]

= (𝑐 − 𝑘) 𝑘𝑢
3
(𝑠
0
) + 𝑚 [𝑢

3
(𝑠
0
) − 𝑢
2
(𝑠
0
)]

= [(𝑐 − 𝑘) 𝑘 + 𝑚] 𝑢3 (𝑠0) − 𝑚𝑢
2
(𝑠
0
)

≥ {[(𝑐 − 𝑘) 𝑘 + 𝑚]
𝑏𝑐𝑘 + 𝑏

2
− 𝑓


1
(0)

𝑔


1
(0)

− 𝑚}𝑢
2
(𝑠
0
)

= −
𝑏𝑐

𝑔


1
(0)

𝐻 (𝑘) 𝑢
2
(𝑠
0
) > 0.

(44)
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The last inequality is given since 𝜆
2

< 𝑘 < 𝜆
1
. Suppose

that (𝑢
2
(𝑠
0
), 𝑢
3
(𝑠
0
), 𝑧(𝑠
0
)) ∈ 𝜕Ψ

2
. If 𝑢
2
(𝑠
0
) > 0, then

𝑑

𝑑𝑠
[𝑢
3
(𝑠) −

𝑏𝑐𝑘 + 𝑏
2
− 𝑓


1
(0)

𝑔


1
(0)

𝑢
2
(𝑠)]

𝑠=𝑠
0

= {𝑧 −
𝑏𝑐𝑘 + 𝑏

2
− 𝑓


1
(0)

𝑔


1
(0)

⋅
1

𝑐

× [(𝑓
1
(𝑢
2
) + 𝑔
1
(𝑢
3
)) (

1

𝑏
− 𝑢
2
) − 𝑏𝑢

2
]}

𝑠=𝑠
0

> {𝑘𝑢
3
−

𝑏𝑐𝑘 + 𝑏
2
− 𝑓


1
(0)

𝑐𝑔


1

× [
𝑓


1
(0) 𝑢2 + 𝑔



1
(0) 𝑢3

𝑏
− 𝑏𝑢
2
]}

𝑠=𝑠
0

= {
𝑏
2
− 𝑓


1
(0)

𝑏𝑐𝑔


1

[(𝑏𝑐𝑘 + 𝑏
2
− 𝑓


1
(0)) 𝑢

2
− 𝑔


1
(0) 𝑢3]}

𝑠=𝑠
0

= 0.

(45)

If 𝑢
2
(𝑠
0
) = 0, we have

𝑑

𝑑𝑠
[𝑢
3
(𝑠) −

𝑏𝑐𝑘 + 𝑏
2
− 𝑓


1
(0)

𝑔


1
(0)

𝑢
2
(𝑠)]

𝑠=𝑠
0

= 𝑧 (𝑠
0
) > 0.

(46)

Consequently, the solution of system (17) departing from Ψ

cannot intersect 𝜕Ψ
1
∪ 𝜕Ψ
2
. If (𝑢

2
(𝑠
0
), 𝑢
3
(𝑠
0
), 𝑧(𝑠
0
)) ∈ 𝜕Ψ

3
,

then 𝑢


2
(𝑠
0
) = 𝑔
1
(𝑢
3
(𝑠
0
))/(𝑏𝑐) > 0. Since 𝐸

1
is equilibrium, in

summary, Ψ is positive invariant.

Since 𝜆
1
> 𝜆
2
> 0, stable manifold theorem implies that

there exists a one-dimensional strong unstable manifoldW
1

tangent to 𝑒
1
at 𝐸
1
such that the point onW

1
near 𝐸

1
can be

expressed by

𝐺
1
(𝜀) = 𝜀𝑒

1
+ 𝑜 (𝜀) . (47)

Furthermore, there is a two-dimensional unstable manifold
W
2
tangent to span {𝑒

1
, 𝑒
2
} at 𝐸
1
such thatW

2
near 𝐸

1
can be

expressed by

𝐺
2
(𝜀
1
, 𝜀
2
) = 𝜀
1
𝑒
1
+ 𝜀
2
𝑒
2
+ 𝑜 (√𝜀

2

1
+ 𝜀
2

2
) . (48)

Lemma9. Suppose that 𝑢(𝑠) ≜ (𝑢
2
(𝑠), 𝑢
3
(𝑠), 𝑧(𝑠)) is a solution

of (17) such that 𝑢(0) ∈ W
1
for small 𝜀 > 0. Then, 𝑢(𝑠) will

leave 𝑊 and enter 𝑃.

Proof. Obviously, 𝑢(𝑠) satisfies initial condition (39) by the
structure of 𝑒

1
, and Lemma 8 implies 𝑢(𝑠) > 0 (𝑢(𝑠) > 0

means that 𝑢
𝑖
(𝑠) > 0 and 𝑧(𝑠) > 0, 𝑖 = 2, 3) for every 𝑠 > 0.

Furthermore, Lemma 8 shows that 𝑢
3
(𝑠) = 𝑧(𝑠) > 𝑘𝑢

3
(𝑠),

implying lim
𝑠→+∞

𝑢
3
(𝑠) = +∞. Since 𝑢

2
(𝑠) < 1/𝑏, it follows

lim
𝑠→+∞

𝑧(𝑠) = +∞. Suppose that 𝑢
2
(𝑠) < 𝑢

∗ for every 𝑠 > 0.
Then

𝑢


2
>

[((𝑓
1
(𝑢
∗
) /𝑢
∗
) + (𝑔

1
(𝑢
3
) /𝑢
∗
)) ((1/𝑏) − 𝑢

∗
) − 𝑏] 𝑢

2

𝑐

>
[((𝑓
1
(𝑢
∗
) /𝑢
∗
) + (𝑔

1
(2𝑢
∗
) /𝑢
∗
)) ((1/𝑏) − 𝑢

∗
) − 𝑏] 𝑢

2

𝑐

=
𝑀𝑢
2

𝑐
> 0

(49)

for large 𝑠 since 𝑢
3
(𝑠) and 𝑔

1
(𝑢
3
) are strictly monotonous

increasingwith respect to 𝑠 and𝑢
3
, respectively.Thus, we have

that lim
𝑠→+∞

𝑢
2
(𝑠) = +∞, contradicting 𝑢

2
(𝑠) < 1/𝑏 for any

𝑠 ∈ 𝑅. Therefore, there exists 𝑠
1

> 0 such that 𝑢
2
(𝑠
1
) = 𝑢

∗.
Without losing generality, let 𝑠

1
= inf{𝑠 > 0 : 𝑢

2
(𝑠) = 𝑢

∗
}.

Obviously, we have 𝑢


2
(𝑠
1
) ≥ 0. If 𝑢

3
(𝑠
1
) < 𝑢
∗, then

𝑢


2
(𝑠
1
)

=
[((𝑓
1
(𝑢
∗
) /𝑢
∗
) + (𝑔

1
(𝑢
3
(𝑠
1
)) /𝑢
∗
)) ((1/𝑏) − 𝑢

∗
) − 𝑏] 𝑢

∗

𝑐

< 0,

(50)

which is a contradiction. Therefore, 𝑢
3
(𝑠
1
) ≥ 𝑢
∗ and 𝑢(𝑠

1
) ∈

𝜕𝑃. Then, the construction of 𝑊− shows that 𝑢(𝑠) will leave
𝑊 and enter 𝑃.

Let𝐶 be a small circle onW
2
centered at 𝐸

1
.Then, points

on 𝐶 can be expressed in terms of local coordinate by

𝐹 (𝜃) ≜ 𝐺
2
(𝜀 cos 𝜃, 𝜀 sin 𝜃) = 𝜀 [𝑒

1
cos 𝜃 + 𝑒

2
sin 𝜃 + 𝑂 (𝜀)] ,

(51)

where 𝜃 ∈ [𝜃
1
, 2𝜋 + 𝜃

1
), 𝜀 > 0, and 𝜃

1
is chosen such

that 𝐹(𝜃
1
) lies on W

1
with 𝑧 > 0. Then, stable manifold

theorem shows that 𝜃
1

→ 0 when 𝜀 → 0. Denote 𝐹(𝜃) ≜

(𝑢
2
(𝜃), 𝑢
3
(𝜃), 𝑧(𝜃)).

Lemma 10. There exists a 𝜃
2
∈ (𝜋/2, 3𝜋/4) such that

𝑧 (𝜃
2
) = 0, 0 < 𝑢

3
(𝜃
2
) < 𝑢
2
(𝜃
2
) < 𝑢
∗
, (52)

and that

𝑧 (𝜃) > 0, 0 < 𝑢
2
(𝜃
2
) < 𝑢
∗
, 0 < 𝑢

3
(𝜃) < 𝑢

∗ (53)

for 𝜃 ∈ [𝜃
1
, 𝜃
2
).

Proof. From (51), we have

𝑧 (𝜃) = 𝜀 [𝜆
1
cos 𝜃 + 𝜆

2
sin 𝜃 + 𝑂 (𝜀)]

= 𝜀√𝜆
2

1
+ 𝜆
2

2

×
[
[

[

𝜆
1

√𝜆
2

1
+ 𝜆
2

2

cos 𝜃 +
𝜆
2

√𝜆
2

1
+ 𝜆
2

2

sin 𝜃 + 𝑂 (𝜀)
]
]

]

= 𝜀√𝜆
2

1
+ 𝜆
2

2
[sin (𝜑

0
+ 𝜃) + 𝑂 (𝜀)] ,

(54)
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where sin(𝜑
0
) = 𝜆

1
/√𝜆
2

1
+ 𝜆
2

2
, cos(𝜑

0
) = 𝜆

2
/√𝜆
2

1
+ 𝜆
2

2
, and

𝜑
0
∈ (𝜋/4, 𝜋/2) since 𝜆

1
> 𝜆
2
. Therefore, 𝑧(𝜃

2
) = 0 and 𝜃

2
∈

[0, 𝜋] imply that 𝜃
2
= 𝜋−𝜑

0
+𝑂(𝜀) ∈ (𝜋/2, 3𝜋/4). Obviously,

𝑧(𝜃) > 0 for any 𝜃 ∈ [𝜃
1
, 𝜃
2
). However,

𝑢
2
(𝜃) =

𝜀𝑔


1
(0)

𝑏𝑐
[

cos 𝜃
𝜆
1
− 𝜆∗

+
sin 𝜃

𝜆
2
− 𝜆∗

+ 𝑂 (𝜀)]

=
𝜀

𝑚
[(−𝜆
2

1
+ 𝜆
1
𝑐 + 𝑚) cos 𝜃

+ (−𝜆
2

2
+ 𝜆
2
𝑐 + 𝑚) sin 𝜃 + 𝑂 (𝜀)] ,

𝑢
3
(𝜃) = 𝜀 [cos 𝜃 + sin 𝜃 + 𝑂 (𝜀)] ,

𝑢
2
(𝜃)−𝑢

3
(𝜃) =

𝜀

𝑚
[𝜆
1
(𝑐−𝜆
1
) cos 𝜃+𝜆

2
(𝑐−𝜆
2
) sin 𝜃+𝑂 (𝜀)] .

(55)

Then, equality 𝑧(𝜃
2
) = 𝜀[𝜆

1
cos 𝜃
2
+ 𝜆
2
sin 𝜃
2
+𝑂(𝜀)] = 0,

together with the last of (55), reveals 𝑢
2
(𝜃
2
)−𝑢
3
(𝜃
2
) = 𝜀[(𝜆

1
−

𝜆
2
)𝜆
2
sin 𝜃
2
+ 𝑂(𝜀)]/𝑚 > 0; that is, 𝑢

2
(𝜃
2
) > 𝑢
3
(𝜃
2
). For 𝜃 ∈

[𝜃
1
, 𝜃
2
], the first and second equalities of (55) imply that 0 <

𝑢
𝑖
(𝜃) < 𝑢

∗ where 𝑖 = 2, 3 since 𝜆
1
> 𝜆
2
and 0 < 𝜀 ≪ 1.

Let

Σ = {𝐹 (𝜃) | 𝜃 ∈ [𝜃
1
, 𝜃
2
] , 𝜀 is small enough} . (56)

By Lemma 10,Σ is an arc of circle,Σ ⊆ 𝑊, and the solution
of (17) with initial value being the endpoint𝐹(𝜃

2
)will enter𝑄

since 𝐹(𝜃
2
) ∈ 𝑊

−
∩ 𝜕𝑄. From Lemma 9, the solution of (17)

with initial value being the endpoint 𝐹(𝜃
1
) will enter 𝑃.

5.2. Traveling Wave Solution for 𝑐 > 𝑐
∗

Lemma 11. Let 𝑢(𝑠) = (𝑢
2
(𝑠), 𝑢
3
(𝑠), 𝑧(𝑠)) be a solution of (17)

such that 𝑢(0) ∈ Λ. If 𝑢(𝑠) ∈ 𝑊 for any 𝑠 ≥ 0, then 𝑢(𝑠) ∈ Λ

for any 𝑠 > 0, where

Λ = {(𝑢
2
, 𝑢
3
, 𝑧) : 0 < 𝑢

2
< 𝑢
∗
, 𝑢
3
> 0, 0 < 𝑧 < 𝑘𝑢

3
} (57)

and 𝑘 = 𝑐 + √𝑐2 + 4𝑚.

Proof. Set 𝑠
0
= inf{𝑠 : 𝑢(𝑠) ∉ Λ, 𝑠 ≥ 0}. Suppose the conclu-

sion is false; that is, 𝑠
0

< +∞. Obviously, 𝑠
0

> 0 and 𝑢(𝑠
0
) ∈

𝜕Λ where

𝜕Λ = (∪
7

𝑖=1
𝜕Λ
𝑖
) ∪ 𝐸
2
,

𝜕Λ
1
= {(𝑢

2
, 𝑢
3
, 𝑧) : 𝑢

2
= 𝑢
∗
, 𝑢
3
≥ 𝑢
∗
, 0 ≤ 𝑧 ≤ 𝑘𝑢

3
} \ 𝐸
2
,

𝜕Λ
2
= {(𝑢

2
, 𝑢
3
, 𝑧) : 0 < 𝑢

3
≤ 𝑢
2
≤ 𝑢
∗
, 𝑧 = 0} \ 𝐸

2
,

𝜕Λ
3
= {(𝑢

2
, 𝑢
3
, 𝑧) : 𝑢

2
= 0, 𝑢

3
> 0, 0 ≤ 𝑧 ≤ 𝑘𝑢

3
} ,

𝜕Λ
4
= {(𝑢

2
, 𝑢
3
, 𝑧) : 𝑢

2
= 𝑢
∗
, 0 < 𝑢

3
< 𝑢
∗
, 0 < 𝑧 ≤ 𝑘𝑢

3
} ,

𝜕Λ
5
= {(𝑢

2
, 𝑢
3
, 𝑧) : 0 ≤ 𝑢

2
≤ 𝑢
∗
, 𝑢
3
> 0, 𝑧 = 𝑘𝑢

3
} ,

𝜕Λ
6
= {(𝑢

2
, 𝑢
3
, 𝑧) : 𝑢

3
> 𝑢
2
, 0 ≤ 𝑢

2
< 𝑢
∗
, 𝑢
3
> 0, 𝑧 = 0} ,

𝜕Λ
7
= {(𝑢

2
, 𝑢
3
, 𝑧) : 0 ≤ 𝑢

2
≤ 𝑢
∗
, 𝑢
3
= 𝑧 = 0} .

(58)

z

O

A B

u2

E2

D

E

u3

C

Figure 3: The construction of 𝜕Λ.

In Figure 3, we find 𝜕Λ
1

= {unbounded area 𝐵𝐸
2
𝐶𝐷},

𝜕Λ
2

= {triangle 𝑂𝐴𝐸
2
𝑂}, 𝜕Λ

3
= {unbounded cone

𝑢
3
𝑂𝐸}, 𝜕Λ

4
= {triangle 𝐴𝐸

2
𝐶𝐴}, 𝜕Λ

5
= {unbounded area

𝐷𝐶𝐴𝑂𝐸}, 𝜕Λ
6

= {unbounded area 𝐵𝐸
2
𝑂𝑢
3
}, and 𝜕Λ

7
=

{segment 𝑂𝐴}.
Since 𝜕Λ

1
∪𝜕Λ
2
⊂ 𝑊
−, thus 𝑢(𝑠

0
) ∉ 𝜕Λ

1
∪𝜕Λ
2
. If 𝑢(𝑠

0
) ∈

𝜕Λ
3
, we have 𝑢



2
(𝑠
0
) ≤ 0 because 𝑢

2
(𝑠) > 0 for 0 < 𝑠 < 𝑠

0
and

𝑢
2
(𝑠
0
) = 0. However, 𝑢

2
(𝑠
0
) = 𝑔
1
(𝑢
3
(𝑠
0
))/(𝑏𝑐) > 0 which is a

contradiction. Therefore, 𝑢(𝑠
0
) ∉ 𝜕Λ

3
. If 𝑢(𝑠

0
) ∈ 𝜕Λ

4
, then

𝑢


2
(𝑠
0
)

=
[((𝑓
1
(𝑢
∗
) /𝑢
∗
) + (𝑔

1
(𝑢
3
(𝑠
0
)) /𝑢
∗
)) ((1/𝑏) − 𝑢

∗
) − 𝑏] 𝑢

∗

𝑐

< 0,

(59)

contradicting 𝑢


2
(𝑠
0
) ≥ 0. If 𝑢(𝑠

0
) ∈ 𝜕Λ

5
, then

[𝑧 (𝑠) − 𝑘𝑢
3
(𝑠)]


𝑠=𝑠
0

= (𝑐 − 𝑘) 𝑧 (𝑠
0
) + 𝑚 [𝑢

3
(𝑠
0
) − 𝑢
2
(𝑠
0
)]

= [(𝑐 − 𝑘) 𝑘 + 𝑚] 𝑢3 (𝑠0) − 𝑚𝑢
2
(𝑠
0
) < 0

(60)

since (𝑐 − 𝑘)𝑘 + 𝑚 < 0, contradicting [𝑧(𝑠) − 𝑘𝑢
3
(𝑠)]


𝑠=𝑠
0

≥ 0.
If 𝑢(𝑠
0
) ∈ 𝜕Λ

6
, then 𝑧


(𝑠
0
) = 𝑚[𝑢

3
(𝑠
0
) − 𝑢
2
(𝑠
0
)] > 0 which

is a contradiction. In conclusion, 𝑢(𝑠
0
) ∉ 𝜕Λ

4
∪ 𝜕Λ
5
∪ 𝜕Λ
6
.

If 𝑢(𝑠
0
) ∈ 𝜕Λ

7
, then 𝑢

3
(𝑠) > 0 and 𝑧(𝑠) > 0 for any 0 <

𝑠 < 𝑠
0
. Hence, 𝑢

3
(𝑠) = 𝑧(𝑠) > 0 for any 0 < 𝑠 < 𝑠

0
, which

implies that 𝑢
3
(𝑠
0
) > 𝑢
3
(0) > 0. From this contradiction we

find 𝑢(𝑠
0
) ∉ 𝜕Λ

7
. Because 𝐸

2
is a constant solution, we get

𝑢(𝑠
0
) ̸=𝐸
2
. In summary, 𝑢(𝑠

0
) ∉ 𝜕Λ and 𝑠

0
= +∞. The proof

is completed.

Lemma 12. There exists a point 𝑢
0

= (𝑢
20
, 𝑢
30
, 𝑧
0
) ∈ Σ such

that the solution 𝑢(𝑠; 𝑢
0
) = (𝑢

2
(𝑠), 𝑢
3
(𝑠), 𝑧(𝑠)) of (17) with

initial value being 𝑢
0
will stay in 𝑊 for any 𝑠 > 0.

Proof. It is sufficient to prove Σ ̸=Σ
0
. Suppose that Σ =

Σ
0
. Firstly, we verify Conditions (1) and (2) of Lemma 6.

Condition (1) of Lemma 6 is valid since 𝑊 is closed.
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Suppose 𝑢
0
= (𝑢
20
, 𝑢
30
, 𝑧
0
) ∈ Σ, 𝑠 < 𝑇(𝑢

0
) and 𝑢(𝑠; 𝑢

0
) ∈

𝑊 \ 𝑊
−. Then, 𝑢(𝑠; 𝑢

0
) ∈ int𝑊 ∪ 𝐽 and 𝑢

0
̸=𝐹(𝜃
2
) since

𝐹(𝜃
2
) ∈ 𝑊

−. The structure of Σ implies that 𝑢
20

> 0, 𝑢
30

> 0,
and 𝑧
0
> 0. By the proof of Lemma 11, we have that 𝑢(𝑠; 𝑢

0
) >

0 for 𝑠 < 𝑇(𝑢
0
). Therefore, 𝑢(𝑠; 𝑢

0
) ∉ 𝐽 and 𝑢(𝑠; 𝑢

0
) ∈ int𝑊.

Condition (2) of Lemma 6 holds.
Lemma 6 shows that Σ is homeomorphic to 𝐻(Σ). Since

𝐻(𝐹 (𝜃
1
)) ∈ 𝜕𝑃 ∩ 𝑊

−
, 𝐻 (𝐹 (𝜃

2
)) ∈ 𝜕𝑄 ∩ 𝑊

−
, (61)

and 𝑊
− is disconnected, we have that 𝐻(Σ) is disconnected,

contradicting the connection of Σ.Thus, Σ ̸=Σ
0
and the proof

is completed.

Lemma 13. Let 𝑐 > 𝑐
∗. Then, there exists a positive solution

𝑢(𝑠) = (𝑢
2
(𝑠), 𝑢
3
(𝑠), 𝑧(𝑠)) of (17) such that

𝑢 (+∞) = 𝐸
2
, 𝑢 (−∞) = 𝐸

1
. (62)

Proof. By Lemma 12 there exists a point 𝑢
0
= (𝑢
20
, 𝑢
30
, 𝑧
0
) ∈

Σ such that the solution 𝑢(𝑠; 𝑢
0
) = (𝑢

2
(𝑠), 𝑢
3
(𝑠), 𝑧(𝑠)) of (17)

with initial value being 𝑢
0
will stay in 𝑊 for any 𝑠 > 0.

Furthermore, Lemma 11 shows 𝑢(𝑠; 𝑢
0
) > 0 for any 𝑠 ≥ 0.

Stable manifold theorem implies that 𝑢(𝑠; 𝑢
0
) > 0 for any

𝑠 ≤ 0 and lim
𝑠→−∞

𝑢(𝑠; 𝑢
0
) = 𝐸

1
. Therefore, 𝑢(𝑠; 𝑢

0
) is a

positive solution.
To complete the proof, it is sufficient to show that

lim
𝑠→+∞

𝑢(𝑠; 𝑢
0
) = 𝐸

2
. By Lemma 11, we know that 𝑢

2
(𝑠) <

𝑢
∗ for any 𝑠 > 0 since 𝑢(𝑠; 𝑢

0
) remains in 𝑊 for all 𝑠. Because

𝑢


3
(𝑠) = 𝑧(𝑠) > 0, then the limit of 𝑢

3
(𝑠) exists; that is,

lim
𝑠→+∞

𝑢
3
(𝑠) = 𝑢

∗

3
and 0 < 𝑢

∗

3
≤ +∞. Suppose that

𝑢
∗

< 𝑢
∗

3
≤ +∞. The first equation of (17) shows that

𝑢


2
>

[((𝑓
1
(𝑢
∗
) /𝑢
∗
)+(𝑔
1
(𝑢
3
) /𝑢
∗
)) ((1/𝑏) − 𝑢

∗
) − 𝑏] 𝑢

2

𝑐

> ([(
𝑓
1
(𝑢
∗
)

𝑢∗
+

𝑔
1
((𝑢
∗

3
+ 𝑢
∗
) /2)

𝑢∗
)(

1

𝑏
−𝑢
∗
)−𝑏] 𝑢

2
)×(𝑐)

−1

=
𝑀𝑢
2

𝑐
> 0

(63)

for large 𝑠, which implies that there is an 𝑠
∗

> 0 such that
𝑢
2
(𝑠
∗
) > 𝑢

∗. This is a contradiction, and thus 0 < 𝑢
∗

3
≤ 𝑢
∗.

From the first equation of (17), we have lim
𝑠→+∞

𝑢
2
(𝑠) = 𝑢

∗

2

where 𝑢
∗

2
is the only positive root of algebra equation

[𝑓
1
(𝑢
2
) + 𝑔
1
(𝑢
∗

3
)] (

1

𝑏
− 𝑢
2
) − 𝑏𝑢

2
= 0. (64)

At the same time, the third equation of (17) implies
lim
𝑠→+∞

𝑧(𝑠) = 𝑧
∗ and 𝑧

∗
= 𝑚(𝑢

∗

2
− 𝑢
∗

3
)/𝑐 or ±∞. It is

impossible that 𝑧∗ = ±∞ due to the boundedness of 𝑢
3
(𝑠). In

conclusion, the limit lim
𝑠→+∞

𝑢(𝑠) = (𝑢
∗

2
, 𝑢
∗

3
, 𝑧
∗
) exists and is

finite. By [42], (𝑢∗
2
, 𝑢
∗

3
, 𝑧
∗
)must be equilibrium. Since 𝑢

∗

3
> 0,

then (𝑢
∗

2
, 𝑢
∗

3
, 𝑧
∗
) = 𝐸
2
.

Noticing the relation of systems (17) and (10) completes
the proof of Theorem 1 for case 𝑐 > 𝑐

∗.

5.3. Traveling Wave Solution for 𝑐 = 𝑐
∗. Firstly, suppose 𝑐 >

𝑐
∗ and let 𝑢(𝑠; 𝑢

0
) = (𝑢

2
(𝑠), 𝑢
3
(𝑠), 𝑧(𝑠)) be the traveling wave

solution of (17). Then, Lemma 11 implies that 𝑢(𝑠; 𝑢
0
) ∈ Λ

for all 𝑠. From the proof of Lemma 13, we find 𝑢
3
(𝑠) ≤ 𝑢

∗.
Therefore, for all 𝑠, we have 𝑢(𝑠; 𝑢

0
) ∈ Π where

Π = {(𝑢
2
, 𝑢
3
, 𝑧) : 0 < 𝑢

2
< 𝑢
∗
, 0 < 𝑢

3
≤ 𝑢
∗
, 0 < 𝑧 < 𝑘𝑢

3
} .

(65)

Let {𝑐
𝑛
} be a sequence such that 𝑐∗ < 𝑐

𝑛
< 𝑐
𝑛+1

for any 𝑛

and lim
𝑛→∞

𝑐
𝑛
= 𝑐
∗. Set 𝑘

𝑛
= 𝑐
𝑛
+ √𝑐2
𝑛
+ 4𝑚 and

Π
𝑛
= {(𝑢
2
, 𝑢
3
, 𝑧) : 0 < 𝑢

2
≤ 𝑢
∗
, 0 < 𝑢

3
≤ 𝑢
∗
, 0 < 𝑧 ≤ 𝑘

𝑛
𝑢
3
} .

(66)

Then, Π
𝑛
⊆ Π
1
for any 𝑛.

Lemma 13 shows that there is a positive solution 𝑤
𝑛
(𝑠) =

(𝑢
2,𝑛

(𝑠), 𝑢
3,𝑛

(𝑠), 𝑧
𝑛
(𝑠)) for system

𝑢


2
=

[(𝑓
1
(𝑢
2
) + 𝑔
1
(𝑢
3
)) ((1/𝑏) − 𝑢

2
) − 𝑏𝑢

2
]

𝑐
𝑛

,

𝑢


3
= 𝑧,

𝑧

= 𝑐
𝑛
𝑧 + 𝑚 (𝑢

3
− 𝑢
2
) ,

(67)

satisfying boundary condition (62) such that 𝑤
𝑛
(𝑠) ∈ Π

𝑛
⊆

Π
1
for any 𝑠.

Lemma 14. Let 𝑐 = 𝑐
∗. Then, there exists a traveling wave

solution for system (6) satisfying boundary condition (11).

Proof. It is sufficient to prove that there exists a positive
solution 𝑢(𝑠) = (𝑢

2
(𝑠), 𝑢
3
(𝑠), 𝑧(𝑠)) of (17) satisfying boundary

condition (62).
Firstly, we show that sequences {𝑢

2,𝑛
}, {𝑢
3,𝑛

}, {𝑧
𝑛
}, {𝑢
2,𝑛

},
{𝑢


3,𝑛
}, and {𝑧



𝑛
} are uniformly bounded and equicontinuous.

The idea of Lemma 11 in [34] is used. Obviously, {𝑢
2,𝑛

}, {𝑢
3,𝑛

},
and {𝑧

𝑛
} are uniformly bounded since 𝑤

𝑛
(𝑠) ⊆ Π

1
for any

𝑠. Because 𝑤
𝑛
(𝑠) = (𝑢

2,𝑛
(𝑠), 𝑢
3,𝑛

(𝑠), 𝑧
𝑛
(𝑠)) is the solution of

(67), {𝑢
2,𝑛

}, {𝑢
3,𝑛

}, and {𝑧


𝑛
} are also uniformly bounded. Since

|𝑧
𝑛
(𝑠
1
) − 𝑧
𝑛
(𝑠
2
)| = 𝑧



𝑛
(𝑠
3
)|𝑠
1
− 𝑠
2
| where 𝑠

1
< 𝑠
3

< 𝑠
2
, then

{𝑧
𝑛
} is equicontinuous. Similarly, {𝑢

2,𝑛
} and {𝑢

3,𝑛
} are also

equicontinuous. By differentiating the equations of (67) and
using the previous bounds, we can get that {𝑢

2,𝑛
}, {𝑢
3,𝑛

}, and
{𝑧


𝑛
} are uniformly bounded, and hence {𝑢



2,𝑛
}, {𝑢
3,𝑛

}, and {𝑧


𝑛
}

are equicontinuous.
The previous paragraph andArzelà-Ascoli theorem imply

that there exist subsequences, again denoted by {𝑢
2,𝑛

}, {𝑢
3,𝑛

},
and {𝑧

𝑛
} and functions 𝑢

2
, 𝑢
3
, and 𝑧 such that

𝑢
2,𝑛

→ 𝑢
2
, 𝑢

3,𝑛
→ 𝑢
3
, 𝑧

𝑛
→ 𝑧 (68)

uniformly on compact subsets of R, thus pointwise on R.
Same arguments imply that {𝑢



2,𝑛
}, {𝑢
3,𝑛

}, and {𝑧


𝑛
} are also

uniformly convergent on compact subsets ofR and pointwise
convergent on R. Consequently, we get

𝑢


2,𝑛
→ 𝑢


2
, 𝑢



3,𝑛
→ 𝑢


3
, 𝑧



𝑛
→ 𝑧

. (69)
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Figure 4: The wave profiles for 𝑆 and 𝐼 and their movements.

Since (𝑢
2,𝑛

, 𝑢
3,𝑛

, 𝑧
𝑛
) is the solution of (67), then 𝑢(𝑠) =

(𝑢
2
(𝑠), 𝑢
3
(𝑠), 𝑧(𝑠)) is the solution of (17) for 𝑐 = 𝑐

∗ and 𝑢(𝑠) ∈

cl(Π
1
), where cl(Π

1
) is the closer ofΠ

1
. Because system (67) is

autonomous and (𝑢
2,𝑛

, 𝑢
3,𝑛

, 𝑧
𝑛
) satisfies boundary condition

(62), we can assume that 𝑢
3,𝑛

(0) = 𝑢
∗
/2 for all 𝑛; thus, 𝑢

3
(0) >

0. Then, similar to the proof of Lemma 13, we have that the
solution 𝑢(𝑠) satisfies boundary condition (62).

6. Simulations

In this section, we present some simulations to confirm the
theoretical results. Set

𝑓 (𝐼) =
𝛽
1
𝐼

𝐾
ℎ
+ 𝐼

, 𝑔 (𝐵) =
𝛽
2
𝐵

𝐾
𝑒
+ 𝐵

, (70)

and assign numerical values to parameters as follows:

𝑏 = 0.01, 𝑒 = 1, 𝑚 = 0.5, 𝐾
𝑒
= 6, 𝐾

ℎ
= 2,

𝛽
1
= 0.62, 𝛽

2
= 0.001, 𝑁 = 200, 𝑑 = 2.

(71)

Obviously, such selection for 𝑓(𝐼) and 𝑔(𝐵) satisfies (A1)
and (A2). Then, the traveling wave solution is described in
Figure 4.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors are supported by the Fundamental Research
Funds for the Central Universities (Grants nos.
XDJK2012C042 and SWU113048) and NSFC (Grant no.
11201380).

References

[1] Centers for Disease Control and Prevention, USA, http://www
.cdc.gov/cholera/general/.

[2] World Health Organization, http://www.who.int/csr/don/
archive/disease/cholera/en/.

[3] V. Capasso and S. L. Paveri-Fontana, “Mathematical model
for the 1973 cholera epidemic in the European Mediterranean
region,” Revue d’Epidemiologie et de Sante Publique, vol. 27, no.
2, pp. 121–132, 1979.

[4] C. T. Codeço, “Endemic and epidemic dynamics of cholera: the
role of the aquatic reservoir,” BMC Infectious Diseases, vol. 1, no.
1, article 1, 2001.

[5] J. R. Andrews and S. Basu, “Transmission dynamics and control
of cholera in Haiti: an epidemic model,”The Lancet, vol. 377, no.
9773, pp. 1248–1255, 2011.

[6] K. T. Goh, S. H. Teo, S. Lam, andM. K. Ling, “Person-to-person
transmission of cholera in a psychiatric hospital,” Journal of
Infection, vol. 20, no. 3, pp. 193–200, 1990.

[7] A. A. Weil, A. I. Khan, F. Chowdhury et al., “Clinical outcomes
in household contacts of patients with cholera in Bangladesh,”
Clinical Infectious Diseases, vol. 49, no. 10, pp. 1473–1479, 2009.

[8] J. H. Tien and D. J. D. Earn, “Multiple transmission pathways
and disease dynamics in a waterborne pathogen model,” Bul-
letin of Mathematical Biology, vol. 72, no. 6, pp. 1506–1533, 2010.

[9] Z. Mukandavire, S. Liao, J. Wang, H. Gaff, D. L. Smith, and
J. G. Morris Jr., “Estimating the reproductive numbers for the
2008-2009 cholera outbreaks in Zimbabwe,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 108, no. 21, pp. 8767–8772, 2011.

[10] J. P. Tian and J. Wang, “Global stability for cholera epidemic
models,” Mathematical Biosciences, vol. 232, no. 1, pp. 31–41,
2011.

[11] D. M. Hartley, J. G. Morris Jr., and D. L. Smith, “Hyperinfec-
tivity: a critical element in the ability of V. cholerae to cause
epidemics?” PLoS Medicine, vol. 3, no. 1, pp. 63–69, 2006.

[12] Z. Shuai and P. van den Driessche, “Global dynamics of cholera
models with differential infectivity,” Mathematical Biosciences,
vol. 234, no. 2, pp. 118–126, 2011.

[13] Z. Shuai, J. H. Tien, and P. van den Driessche, “Cholera models
with hyperinfectivity and temporary immunity,” Bulletin of
Mathematical Biology, vol. 74, no. 10, pp. 2423–2445, 2012.



Abstract and Applied Analysis 11

[14] M. A. Jensen, S. M. Faruque, J. J. Mekalanos, and B. R. Levin,
“Modeling the role of bacteriophage in the control of cholera
outbreaks,” Proceedings of the National Academy of Sciences of
the United States of America, vol. 103, no. 12, pp. 4652–4657,
2006.

[15] R. P. Sanches, C. P. Ferreira, and R. A. Kraenkel, “The role
of immunity and seasonality in cholera epidemics,” Bulletin of
Mathematical Biology, vol. 73, no. 12, pp. 2916–2931, 2011.

[16] A. Mutreja, D. W. Kim, N. R. Thomson et al., “Evidence for
several waves of global transmission in the seventh cholera
pandemic,” Nature, vol. 477, no. 7365, pp. 462–465, 2011.

[17] R. R.Colwell, “Global climate and infectious disease: the cholera
paradigm,” Science, vol. 274, no. 5295, pp. 2025–2031, 1996.

[18] S. M. Faruque, M. J. Islam, Q. S. Ahmad et al., “Self-limiting
nature of seasonal cholera epidemics: role of host-mediated
amplification of phage,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 102, no. 17, pp. 6119–
6124, 2005.
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The dynamics of a delayed stochastic model simulating wastewater treatment process are studied. We assume that there are
stochastic fluctuations in the concentrations of the nutrient and microbes around a steady state, and introduce two distributed
delays to the model describing, respectively, the times involved in nutrient recycling and the bacterial reproduction response to
nutrient uptake. By constructing Lyapunov functionals, sufficient conditions for the stochastic stability of its positive equilibrium
are obtained. The combined effects of the stochastic fluctuations and delays are displayed.

1. Introduction

In the last few years, the use of mathematical models
describing wastewater treatment is gaining attention as a
promisingmethod [1–6]. A basic chemostatmodel describing
substrate-microbe interaction in an activated sludge process
is as follows:

𝑑𝑆

𝑑𝑡
=

𝑄 (𝑆
0

− 𝑆)

𝑉
−

𝑘𝑥𝑆

𝐾
𝑆

+ 𝑆

𝐷O
𝐾O + 𝐷O

,

𝑑𝑥

𝑑𝑡
= 𝑥 (

𝑘𝑌𝑆

𝐾
𝑆

+ 𝑆
− 𝐾
𝑑
)

𝐷O
𝐾O + 𝐷O

−
𝑄
𝑤

𝑥

𝑉
,

(1)

where 𝑆(𝑡) and 𝑥(𝑡) represent the concentrations of the
substrate (biochemical oxygen demand) and microbes in an
aeration tank at time 𝑡, respectively.𝑄 is thewashout rate, 𝑆0 is
the input concentration of the substrate, and𝑉 is the effective
volume of the aeration tank; 𝑘 is the maximum uptake rate of
the substrate; 𝐾

𝑆
and 𝐾O are the half-saturation constants of

the substrate and oxygen; respectively, 𝐾
𝑑
is the decay rate

of microbes and 𝑄
𝑤
is the emission rate of the sludge; 𝐷O is

the concentration of the dissolved oxygen and𝐷O/(𝐾O+𝐷O)

is a switching function describing the effect of 𝐷O on the
uptake rate 𝑘 and the decay rate 𝐾

𝑑
; 𝑌 ∈ (0, 1) is the ratio

of the concentration of mixed liquor suspended solids to the

substrate. Some extensions and generalizations of the model
have been proposed by many researchers (see [7–27], etc.).

Even though deterministic model (1) has a stable positive
equilibrium (𝑆

∗
, 𝑥
∗
) under certain conditions, oscillations

have been observed frequently in the growth ofmicrobes dur-
ing the experiments [28, 29], which have also been confirmed
by many mathematical works for some extended chemostat
models incorporating factors such as time delay [15–18, 30–
32], periodic nutrient input [19–21, 33–35], feedback control
[22–24], and stochastic environmental perturbations [25–
27]. For a better understanding of microbial population
dynamics in the activated sludge process, we take two steps
towards developing model (1).

On the one hand, we take into account time delays
that may exist in the process of wastewater treatment. By
the death regeneration theory of Dold and Marais [36], the
active biomass dies at a certain rate; of the biomass lost,
the biodegradable portion adds to the slowly biodegradable
organic matter which passes through the various stages to
be utilised for active biomass synthesis, which requires some
time for the completion of the regeneration. Also there
is a time delay that accounts for the time lapse between
the uptakes of substrates and the incorporation of these
substrates, which has ever been observed from chemostat
experiments with microalgae Chlamidomonas Reinhardii
even when the limiting nutrient is at undetectable small
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concentration (see [37, 38], etc.). In the recent years, chemo-
stat models with such time delays have been given much
attention (see, e.g., [9, 14, 16–18, 39], etc.). In this paper, we
will use distributed delays to describe the nutrient recycling
and the time lapse between the uptakes of nutrient and the
incorporation of this nutrient with delay kernels 𝑓(𝑠) and
𝑔(𝑠), respectively.

On the other hand, in a real process of wastewater
treatment there will be fluctuations in concentration of the
substrate and microbe population due to stochastic pertur-
bations from external sources such as temperature, light, and
the like, or inherent sources in the chemical-physical and
biological processes [40]. So we assume that model (1) is
exposed by stochastic perturbations which are of white noise
type and are proportional to the distances 𝑆(𝑡), 𝑥(𝑡) from
values of the positive equilibrium 𝑆

∗
, 𝑥
∗, influence on the ̇𝑆(𝑡)

and ̇𝑥(𝑡), respectively. By this way, model (1) becomes in the
following form:

𝑑S = [

𝑄 (𝑆
0

− 𝑆)

𝑉
− 𝑘𝑈 (𝑆)

𝐷O
𝐾O + 𝐷O

+𝜇𝐾
𝑑

𝐷O
𝐾O + 𝐷O

∫

∞

0

𝑓 (𝑠) 𝑥 (𝑡 − 𝑠) 𝑑𝑠] 𝑑𝑡

+ 𝜎
1

(𝑆 − 𝑆
∗
) 𝑑𝐵
1

(𝑡) ,

𝑑𝑥 = [𝑥 (𝑌𝑘 ∫

∞

0

𝑔 (𝑠) 𝑈 (𝑆 (𝑡 − 𝑠)) 𝑑𝑠 − 𝐾
𝑑
)

×
𝐷O

𝐾O + 𝐷O
−

𝑄
𝑤

𝑥

𝑉
] 𝑑𝑡 + 𝜎

2
(𝑥 − 𝑥

∗
) 𝑑𝐵
2

(𝑡) ,

(2)

where 𝐵
𝑖
(𝑡) (𝑖 = 1, 2) are standard independent Wiener

processes and 𝜎
𝑖
≥ 0 (𝑖 = 1, 2) represent the intensities of the

noises. 𝜇 ∈ (0, 1) is the fraction of the substrate regenerated
from the dead biomass; 𝑈(𝑆) is a general specific growth
function.

Recently, stochastic biological systems and stochastic
epidemic models have been studied by many authors; see, for
example,Mao et al. [41, 42], Jiang et al. [43, 44], Liu andWang
[45, 46], and the references cited therein. But, as far as we
know, there are few works on model (2). In this paper, our
main purpose is to study the combined effect of the noises
and delays on the dynamics of model (2), that is, whether
and how the noises and delays affect the stability of 𝐸

∗. By
the construction of appropriate Lyapunov functionals, we
will show that the positive equilibrium keeps stochastically
stable if the noises and delays are small. Furthermore, the
sensitivities of the stability of 𝐸

∗ with respect to the delays
and noises are also discussed.

The paper is organized as follows. We first establish some
preliminary results in Section 2. By constructing Lyapunov
function(al)s, sufficient conditions for the stochastic stabil-
ity of the positive equilibrium of the model without and
with delays are obtained, respectively, in Sections 3 and 4.
Numerical simulations and discussions are finally presented
in Section 5.

2. Some Preliminaries

Define 𝑄/𝑉 = 𝐷, 𝑄
𝑤

/𝑉 = 𝐷
𝑤
, 𝑘(𝐷O/(𝐾O + 𝐷O)) = 𝑚,

𝐾
𝑑
(𝐷O/(𝐾O + 𝐷O)) = 𝐷

1
, and 𝑌 = 𝛾. Then model (2) can

be simplified as follows:

𝑑𝑆 = [𝐷 (𝑆
0

− 𝑆) − 𝑚𝑈 (𝑆) 𝑥

+𝜇𝐷
1

∫

∞

0

𝑓 (𝑠) 𝑥 (𝑡 − 𝑠) 𝑑𝑠] 𝑑𝑡

+ 𝜎
1

(𝑆 − 𝑆
∗
) 𝑑𝐵
1
,

𝑑𝑥 = 𝑥 [− (𝐷
𝑤

+ 𝐷
1
) + 𝛾𝑚 ∫

∞

0

𝑔 (𝑠) 𝑈 (𝑆 (𝑡 − 𝑠)) 𝑑𝑠] 𝑑𝑡

+ 𝜎
2

(𝑥 − 𝑥
∗
) 𝑑𝐵
2

(3)

with initial value conditions

𝑆 (𝜃, 𝜔) = 𝜑
1

(𝜃) ≥ 0, 𝑥 (𝜃, 𝜔) = 𝜑
2

(𝜃) ≥ 0,

𝜃 ∈ (−∞, 0] ,

(4)

where 𝜑
1
(𝜃), 𝜑

2
(𝜃) ∈ BC((−∞, 0],R

+
), the families of

bounded continuous functions from (−∞, 0] to R
+
.

The corresponding deterministic model of (3) is

̇𝑆 = 𝐷 (𝑆
0

− 𝑆) − 𝑚𝑈 (𝑆) 𝑥 + 𝜇𝐷
1

∫

∞

0

𝑓 (𝑠) 𝑥 (𝑡 − 𝑠) 𝑑𝑠,

̇𝑥 = − (𝐷
𝑤

+ 𝐷
1
) 𝑥 + 𝛾𝑚𝑥 ∫

∞

0

𝑔 (𝑠) 𝑈 (𝑆 (𝑡 − 𝑠)) 𝑑𝑠,

(5)

the special case of which when 𝐷 = 𝐷
𝑤
has ever been

investigated by He et al. [18]. It is easy to see that model (5)
has a positive equilibrium 𝐸

∗
(𝑆
∗
, 𝑥
∗
) provided that

𝐷
𝑤

+ 𝐷
1

< 𝛾𝑚, 𝑆
0

> 𝑆
∗
, (6)

where

𝑆
∗

= 𝑈
−1

(
𝐷
𝑤

+ 𝐷
1

𝛾𝑚
) , 𝑥

∗
=

𝐷 (𝑆
0

− 𝑆
∗
)

𝑚𝑈 (𝑆
∗
) − 𝜇𝐷

1

. (7)

𝐸
∗
(𝑆
∗
, 𝑥
∗
) is globally asymptotically stable provided that the

average delays are sufficiently small. Obviously, 𝐸
∗ is still an

equilibrium of stochastic model (3) if condition (6) holds.
We assume that function 𝑈(𝑆) is nonnegative satisfying

𝑈 (0) = 0, 𝑈

(𝑆) > 0,

𝑈


(𝑆) < 0 for 𝑆 > 0, lim
𝑆→∞

𝑈 (𝑆) = 1.

(8)

And we extend the function 𝑈(𝑆) by defining

𝑈 (𝑆) = 𝑈

(0) 𝑆 +

1

2
𝑈


(0) 𝑆
2 for 𝑆 ≤ 0, (9)

so that𝑈 is well defined inR and is still of classC2 inR.Thus
one can write

𝑈 (𝑆) = 𝑎 + 𝑏 (𝑆 − 𝑆
∗
) + 𝐹 (𝑆 − 𝑆

∗
) , (10)
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where 𝐹 represents terms of order ≥ 2 in 𝑆 − 𝑆
∗. Noting also

that 𝑎 = 𝑈(𝑆
∗
) and 𝑏 = 𝑈


(𝑆
∗
), by condition (6), it follows

that 𝑚𝑎 > 𝜇𝐷
1
.

Introduce new variables 𝑢
1

= 𝑆 − 𝑆
∗, 𝑢
2

= 𝑥 − 𝑥
∗; then

model (3) can be rewritten as follows:

𝑑𝑢
1

= [− (𝐷 + 𝑚𝑏𝑥
∗
) 𝑢
1

+ 𝜇𝐷
1

∫

∞

0

𝑓 (𝑠) 𝑢
2 (𝑡 − 𝑠) 𝑑𝑠

− 𝑚𝑎𝑢
2

+ 𝐹
1

(𝑢
1
, 𝑢
2
) ] 𝑑𝑡 + 𝜎

1
𝑢
1
𝑑𝐵
1
,

𝑑𝑢
2

= [𝛾𝑚𝑏𝑥
∗

∫

∞

0

𝑔 (𝑠) 𝑢
1 (𝑡 − 𝑠) 𝑑𝑠

+ 𝐹
2

(𝑢
1
, 𝑢
2
) ] 𝑑𝑡 + 𝜎

2
𝑢
2
𝑑𝐵
2
,

(11)

where

𝐹
1

= −𝑚𝑏𝑢
1
𝑢
2

− 𝑚𝐹 (𝑢
1
) 𝑢
2

− 𝑚𝑥
∗
𝐹 (𝑢
1
) ,

𝐹
2

= 𝛾𝑚𝑏𝑢
2

∫

∞

0

𝑔 (𝑠) 𝑢
1 (𝑡 − 𝑠) 𝑑𝑠

+ (𝑢
2

+ 𝑥
∗
) 𝛾𝑚 ∫

∞

0

𝑔 (𝑠) 𝐹 (𝑢
1

(𝑡 − 𝑠)) 𝑑𝑠.

(12)

Note that if 𝑓(𝑠) = 𝑔(𝑠) = 𝛿(0), then model (11) has the form

𝑑𝑢
1

= [− (𝐷 + 𝑚𝑏𝑥
∗
) 𝑢
1

+ (𝜇𝐷
1

− 𝑚𝑎) 𝑢
2

+𝐹
1

(𝑢
1
, 𝑢
2
)] 𝑑𝑡 + 𝜎

1
𝑢
1
𝑑𝐵
1
,

𝑑𝑢
2

= [𝛾𝑚𝑏𝑥
∗
𝑢
1

+ 𝐹
2

(𝑢
1
, 𝑢
2
)] 𝑑𝑡 + 𝜎

2
𝑢
2
𝑑𝐵
2
,

(13)

where

𝐹
2

= 𝛾𝑚𝑏𝑢
1
𝑢
2

+ (𝑢
2

+ 𝑥
∗
) 𝛾𝑚𝐹 (𝑢

1
) . (14)

Obviously, model (13) has the same equilibrium (0, 0) as
model (11), and the stochastic stability of the positive equi-
librium 𝐸

∗ of model (3) is equivalent to the zero solution of
model (11). We wonder how the stochastic perturbations and
delays affect the dynamics of model (3) or (11).

Before starting our analysis, we first give some basic the-
ories in stochastic differential equations and stochastic func-
tional differential equations [47–49]. Let (Ω,F, {F

𝑡
}
𝑡≥0

, 𝑃)

be a complete probability space with a filtration {F
𝑡
}
𝑡≥0

satisfying the usual conditions (i.e., it is right continuous
and F

0
contains all 𝑃-null sets). Let 𝐵

𝑖
(𝑖 = 1, 2, . . . , 𝑛)

be the Brownian motions defined on this probability space.
Consider the following 𝑛-dimensional stochastic differential
equation:

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑡) 𝑑𝑡 + 𝑔 (𝑥 (𝑡) , 𝑡) 𝑑𝐵 (𝑡) , 𝑡 ≥ 𝑡
0
. (15)

Definition 1. The trivial solution of system (15) is said to be as
follows:

(i) stochastically stable or stable in probability if for every
pair of 𝜀 ∈ (0, 1) and 𝑟 > 1, there exists a 𝛿 =

𝛿(𝜀, 𝑟, 𝑡
0
) > 0 such that

𝑃 {
𝑥 (𝑡; 𝑡

0
, 𝑥
0
)
 < 𝑟 ∀𝑡 ≥ 𝑡

0
} ≥ 1 − 𝜀, (16)

whenever |𝑥
0
| < 𝛿. Otherwise, it is said to be

stochastically unstable,
(ii) stochastically asymptotically stable if it is stochasti-

cally stable and, moreover, for every 𝜀 ∈ (0, 1), there
exists a 𝛿

0
= 𝛿
0
(𝜀, 𝑡
0
) > 0 such that

𝑃 { lim
𝑡→∞

𝑥 (𝑡; 𝑡
0
, 𝑥
0
) = 0} ≥ 1 − 𝜀, (17)

whenever |𝑥
0
| < 𝛿
0
,

(iii) globally asymptotically stable in probability if it is
stochastically asymptotically stable and,moreover, for
all 𝑥
0

∈ R𝑛

𝑃 { lim
𝑡→∞

𝑥 (𝑡; 𝑡
0
, 𝑥
0
) = 0} = 1. (18)

Lemma 2. If there exists a nonnegative function 𝑉(𝑥, 𝑡) ∈

𝐶
2,1

(R𝑛 × [𝑡
0
, ∞];R

+
), two continuous functions 𝜓

1
, 𝜓
2

:

R0
+

→ R0
+
, and a positive constant 𝐾 such that, for |𝑥| < 𝐾,

𝜓
1

(|𝑥|) ≤ 𝑉 (𝑥, 𝑡) ≤ 𝜓
2

(|𝑥|) (19)

hold.

(i) If

𝐿𝑉 ≤ 0, for |𝑥| ∈ [0, 𝐾] , (20)

then the trivial solution of system (A.1) is stochastically
stable.

(ii) If there exists a continuous function 𝜓
3

: R0
+

→ R0
+

such that

𝐿𝑉 ≤ −𝜓
3

(|𝑥|) (21)

holds, then the trivial solution of system (15) is stochas-
tically asymptotically stable.

(iii) If (ii) holds and moreover

lim
𝑟→∞

𝜓
1

(𝑟) = +∞, (22)

then the trivial solution of system (15) is globally
asymptotically stable in probability.

For the stability of the equilibrium of a nonlinear stochas-
tic system, it can be reduced to problems concerning stability
of solutions of the linear associated system. The linear form
of (15) is defined as follows:

𝑑𝑥 (𝑡) = 𝐹 (𝑡) ⋅ 𝑥 (𝑡) 𝑑𝑡 + 𝐺 (𝑡) ⋅ 𝑥 (𝑡) 𝑑𝐵 (𝑡) , 𝑡 ≥ 𝑡
0
. (23)

Lemma 3. If the trivial solution is stochastically stable for
the linear system (23) with constant coefficients (𝐹(𝑡) = 𝐹,
𝐺(𝑡) = 𝐺) and the coefficients of systems (15) and (23) satisfy
the following inequality:

𝑓 (𝑥, 𝑡) − 𝐹 ⋅ 𝑥
 +

𝑔 (𝑥, 𝑡) − 𝐺 ⋅ 𝑥
 < 𝜌 |𝑥| (24)

in a sufficiently small neighborhood of 𝑥 = 0, with a sufficiently
small constant 𝜌, then the trivial solution of system (15) is
asymptotically stable in probability.
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Consider the following 𝑛-dimensional stochastic func-
tional differential equation

𝑑𝑥 = 𝑓 (𝑡, 𝑥
𝑡
) 𝑑𝑡 + 𝑔 (𝑡, 𝑥

𝑡
) 𝑑𝐵 (𝑡) (25)

with initial condition 𝑥
0

= 𝜑 ∈ H, where H is the space of
F
0
-adapted random variables 𝜑, with 𝜑(𝑠) ∈ R𝑛 for 𝑠 ≤ 0,

and
𝜑

 = sup
𝑠≤0

𝜑 (𝑠)
 ,

𝜑


2

1
= sup𝐸 (

𝜑 (𝑠)


2
) . (26)

Definition 4. The trivial solution of system (25) is said to be

(i) mean square stable if, for each 𝜀 > 0, there exists
𝛿(𝜀) > 0 such that for any initial process 𝜑(𝜃),

𝐸 (
𝑥 (𝑡, 𝜑 (𝜃))



2
) < 𝜀, (27)

for any 𝑡 ≥ 0 provided that sup
𝜃≤0

𝐸(|𝜑(𝜃)|
2
) < 𝛿(𝜀),

(ii) asymptotically mean square stable if it is mean square
stable and

lim
𝑡→∞

𝐸 (
𝑥 (𝑡, 𝜑)



2
) = 0, (28)

(iii) stochastically stable if for any 𝜀
1

> 0 and 𝜀
2

> 0, there
exists a 𝛿 > 0 such that

𝑃 {sup
𝑡≥0

𝑥 (𝑡, 𝜑)
 ≤ 𝜀
1
} ≥ 1 − 𝜀

2
(29)

provided that 𝑃{‖𝜑‖ ≤ 𝛿} = 1.

3. Dynamical Behavior of the System
without Delays

We first study the stochastic stability of the equilibria (0, 0) of
model (13). Throughout the paper, we assume that the basic
hypotheses given in the Section 2 are satisfied.The linearized
system of model (13) is

𝑑𝑢
1

= [− (𝐷 + 𝑚𝑏𝑥
∗
) 𝑢
1

+ (𝜇𝐷
1

− 𝑚𝑎) 𝑢
2
] 𝑑𝑡

+ 𝜎
1
𝑢
1
𝑑𝐵
1
,

𝑑𝑢
2

= 𝛾𝑚𝑏𝑥
∗
𝑢
1
𝑑𝑡 + 𝜎

2
𝑢
2
𝑑𝐵
2
.

(30)

For convenience, let

𝑝 =
𝛾𝑚𝑏𝑥

∗

2 (𝑚𝑎 − 𝜇𝐷
1
)
, 𝑞 =

𝛾𝑚𝑏𝑥
∗

− 𝑝 (𝑚𝑎 − 𝜇𝐷
1
)

𝛾2 (𝑚𝑎 − 𝜇𝐷
1
) + 𝛾𝐷

. (31)

For linearized system (30), we have the following theorem.

Theorem 5. Let condition (6) hold. If

𝜎
2

1
< 2𝐷 + 2𝑚𝑏𝑥

∗
, 𝜎

2

2
<

2𝑞

1 + 𝑞
𝛾 (𝑚𝑎 − 𝜇𝐷

1
) , (32)

then the trivial solution of system (30) is globally asymptotically
stable in probability.

Proof. Define a smooth function 𝑉 : R2 → R
+
by

𝑉 (𝑢
1
, 𝑢
2
) = 𝑝𝑢

2

1
+ 𝑢
2

2
+ 𝑞(𝛾𝑢

1
+ 𝑢
2
)
2
. (33)

Then using Itô’s formula, for all (𝑢
1
, 𝑢
2
) ̸= (0, 0), we have

𝑑𝑉 (𝑢
1
, 𝑢
2
) = 2𝑝𝑢

1
𝑑𝑢
1

+ 𝑝(𝑑𝑢
1
)
2

+ 2𝑢
2
𝑑𝑢
2

+ (𝑑𝑢
2
)
2

+ 2𝑞 (𝛾𝑢
1

+ 𝑢
2
) 𝑑 (𝛾𝑢

1
+ 𝑢
2
)

+ 𝑞(𝑑 (𝛾𝑢
1

+ 𝑢
2
))
2

= 𝐿𝑉 (𝑢
1
, 𝑢
2
) 𝑑𝑡 + 2𝑝𝜎

1
𝑢
2

1
𝑑𝐵
1

+ 2𝜎
2
𝑢
2

2
𝑑𝐵
2

+ 2𝑞 (𝛾𝑢
1

+ 𝑢
2
) (𝛾𝜎
1
𝑢
1
𝑑𝐵
1

+ 𝜎
2
𝑢
2
𝑑𝐵
2
) ,

(34)

where

𝐿𝑉 (𝑢
1
, 𝑢
2
) = 2𝑝𝑢

1
[− (𝐷 + 𝑚𝑏𝑥

∗
) 𝑢
1

+ (𝜇𝐷
1

− 𝑚𝑎) 𝑢
2
]

+ 𝑝𝜎
2

1
𝑢
2

1
+ 2𝛾𝑚𝑏𝑥

∗
𝑢
1
𝑢
2

+ 𝜎
2

2
𝑢
2

2

+ 2𝑞 (𝛾𝑢
1

+ 𝑢
2
)

× [−𝛾𝐷𝑢
1

+ 𝛾 (𝜇𝐷
1

− 𝑚𝑎) 𝑢
2
]

+ 𝑞 (𝛾
2
𝜎
2

1
𝑢
2

1
+ 𝜎
2

2
𝑢
2

2
)

= − [2𝑝 (𝐷 + 𝑚𝑏𝑥
∗
) − 𝑝𝜎

2

1

+ 2𝑞𝛾
2
𝐷 − 𝑞𝛾

2
𝜎
2

1
] 𝑢
2

1

− [2𝑞𝛾 (𝑚𝑎 − 𝜇𝐷
1
) − (1 + 𝑞) 𝜎

2

2
] 𝑢
2

2

− 2 [𝑝 (𝑚𝑎 − 𝜇𝐷
1
) − 𝛾𝑚𝑏𝑥

∗

+ 𝑞𝛾
2

(𝑚𝑎 − 𝜇𝐷
1
) + 𝑞𝛾𝐷] 𝑢

1
𝑢
2
.

(35)

By (31), we obtain

𝐿𝑉 (𝑢
1
, 𝑢
2
)

= − [2𝑝 (𝐷 + 𝑚𝑏𝑥
∗
) − 𝑝𝜎

2

1
+ 2𝑞𝛾

2
𝐷 − 𝑞𝛾

2
𝜎
2

1
] 𝑢
2

1

− [2𝑞𝛾 (𝑚𝑎 − 𝜇𝐷
1
) − (1 + 𝑞) 𝜎

2

2
] 𝑢
2

2
.

(36)

We take 𝜓
𝑖
: 𝑅
0

+
→ 𝑅
0

+
(𝑖 = 1, 2, 3) by

𝜓
1 (|𝑢|) = min {𝑝, 1, 𝑞} |𝑢|

2
,

𝜓
2

(|𝑢|) = max {𝑝, 1, 𝑞} |𝑢|
2
,

𝜓
3

(|𝑢|) = min {2𝑝 (𝐷 + 𝑚𝑏𝑥
∗
) − 𝑝𝜎

2

1
+ 2𝑞𝛾

2
𝐷

− 𝑞𝛾
2
𝜎
2

1
, 2𝑞𝛾 (𝑚𝑎 − 𝜇𝐷

1
) − (1 + 𝑞) 𝜎

2

2
} |𝑢|
2
;

(37)

thus the thesis follows by Lemma 2.This completes the proof
of Theorem 5.
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Now, we are in a position to prove the stability of the
trivial solution (0, 0) of model (13).

Theorem6. Let condition (6) hold. If the conditions in (32) are
satisfied, then the trivial solution of model (13) is stochastically
asymptotically stable.

Proof. For a sufficiently small constant 𝜖 > 0, (𝑢
1
, 𝑢
2
) ∈

(−𝜖, 𝜖) × (−𝜖, 𝜖), we have

𝑓 (𝑡, 𝑋) − 𝐹 ⋅ 𝑋
 +

𝑔 (𝑡, 𝑋) − 𝐺 ⋅ 𝑋


= √𝐹
2

1
(𝑢
1
, 𝑢
2
) + 𝐹
2

2
(𝑢
1
, 𝑢
2
).

(38)

Note that 𝐹
1
, 𝐹
2
are the terms of order ≥ 2 in 𝑢

1
and 𝑢

2
; then

we have

lim
𝑢
2

1
+𝑢
2

2
→0

𝐹
2

1
(𝑢
1
, 𝑢
2
) + 𝐹
2

2
(𝑢
1
, 𝑢
2
)

𝑢
2

1
+ 𝑢
2

2

= 0. (39)

Thus for a sufficiently small constant 𝜌 > 0, we have

𝐹
2

1
(𝑢
1
, 𝑢
2
) + 𝐹
2

2
(𝑢
1
, 𝑢
2
) < 𝜌
2

(𝑢
2

1
+ 𝑢
2

2
) (40)

provided 𝑢
2

1
+ 𝑢
2

2
< 𝜖
2. Therefore,

𝑓 (𝑡, 𝑋) − 𝐹 ⋅ 𝑋
 +

𝑔 (𝑡, 𝑋) − 𝐺 ⋅ 𝑋
 < 𝜌 |𝑢| . (41)

Applying Lemma 3 andTheorem 5, we obtain the conclusion.

4. Dynamical Behavior of the System
with Delays

We now study the stability in probability of the equilibria
(0, 0) of system (11). Its corresponding linearized system is

𝑑𝑢
1

= [− (𝐷 + 𝑚𝑏𝑥
∗
) 𝑢
1

+𝜇𝐷
1

∫

∞

0

𝑓 (𝑠) 𝑢
2 (𝑡 − 𝑠) 𝑑𝑠 − 𝑚𝑎𝑢

2
] 𝑑𝑡

+ 𝜎
1
𝑢
1
𝑑𝐵
1
,

𝑑𝑢
2

= 𝛾𝑚𝑏𝑥
∗

∫

∞

0

𝑔 (𝑠) 𝑢
1 (𝑡 − 𝑠) 𝑑𝑠𝑑𝑡 + 𝜎

2
𝑢
2
𝑑𝐵
2
.

(42)

Define the average time lags as

𝑇
𝑓

= ∫

∞

0

𝑠𝑓 (𝑠) 𝑑𝑠, 𝑇
𝑔

= ∫

∞

0

𝑠𝑔 (𝑠) 𝑑𝑠, (43)

and let 𝑞, 𝑝 be defined in (31). For linearized system (42) we
have the following theorem.

Theorem 7. Let condition (6) hold. If

𝜎
2

1
+ 2𝜇𝐷

1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓

+
1 + 𝑞

𝑝 + 𝑞𝛾2
(𝐷 + 𝑚𝑏𝑥

∗
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

< 2𝐷 +
2𝑝𝑚𝑏𝑥

∗

𝑝 + 𝑞𝛾2
,

𝜎
2

2
+ (𝐷 + 𝑚𝑏𝑥

∗
+ 2𝑚𝑎 + 2𝜇𝐷

1
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

<
2𝑞

1 + 𝑞
𝛾 (𝑚𝑎 − 𝜇𝐷

1
) ,

(44)

then the trivial solution of system (42) is asymptotically mean
square stable.

Proof. Consider the function 𝑉
1
(𝑢
1
, 𝑢
2
) defined in (33). It

follows from (42) and Itô’s formula that

𝑑𝑉
1

(𝑢
1
, 𝑢
2
) = 2𝑝𝑢

1
𝑑𝑢
1

+ 𝑝(𝑑𝑢
1
)
2

+ 2𝑢
2
𝑑𝑢
2

+ (𝑑𝑢
2
)
2

+ 2𝑞 (𝛾𝑢
1

+ 𝑢
2
) 𝑑 (𝛾𝑢

1
+ 𝑢
2
)

+ 𝑞(𝑑 (𝛾𝑢
1

+ 𝑢
2
))
2

= {2𝑝𝑢
1

[ − (𝐷 + 𝑚𝑏𝑥
∗
) 𝑢
1

+ 𝜇𝐷
1

∫

∞

0

𝑓 (𝑠) 𝑢
2

(𝑡 − 𝑠) 𝑑𝑠

−𝑚𝑎𝑢
2
]

+ 𝑝𝜎
2

1
𝑢
2

1
+ 2𝛾𝑚𝑏𝑥

∗
𝑢
2

∫

∞

0

𝑔 (𝑠) 𝑢
1

(𝑡 − 𝑠) 𝑑𝑠

+ 𝜎
2

2
𝑢
2

2
+ 2𝑞 (𝛾𝑢

1
+ 𝑢
2
)

× [ − 𝛾 (𝐷 + 𝑚𝑏𝑥
∗
) 𝑢
1

+ 𝛾𝜇𝐷
1

∫

∞

0

𝑓 (𝑠) 𝑢
2 (𝑡 − 𝑠) 𝑑𝑠 − 𝛾𝑚𝑎𝑢

2

+ 𝛾𝑚𝑏𝑥
∗

∫

∞

0

𝑔 (𝑠) 𝑢
1

(𝑡 − 𝑠) 𝑑𝑠]

+ 𝑞 (𝛾
2
𝜎
2

1
𝑢
2

1
+ 𝜎
2

2
𝑢
2

2
) } 𝑑𝑡

+ 2𝜎
2
𝑢
2

2
𝑑𝐵
2

+ 2𝑞 (𝛾𝑢
1

+ 𝑢
2
)

× (𝛾𝜎
1
𝑢
1
𝑑𝐵
1

+ 𝜎
2
𝑢
2
𝑑𝐵
2
) + 2𝑝𝜎

1
𝑢
2

1
𝑑𝐵
1
.

(45)
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Straightforward computations lead to

𝐿𝑉
1

(𝑢
1
, 𝑢
2
) = − [2𝑝 (𝐷 + 𝑚𝑏𝑥

∗
) − 𝑝𝜎

2

1

+ 2𝑞𝛾
2

(𝐷 + 𝑚𝑏𝑥
∗
) − 𝑞𝛾

2
𝜎
2

1
] 𝑢
2

1

− [2𝑞𝛾𝑚𝑎 − (1 + 𝑞) 𝜎
2

2
] 𝑢
2

2

− 2 [𝑝𝑚𝑎 + 𝑞𝛾
2
𝑚𝑎 + 𝑞𝛾 (𝐷 + 𝑚𝑏𝑥

∗
)] 𝑢
1
𝑢
2

+ 2 (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗
𝑢
2

∫

∞

0

𝑔 (𝑠) 𝑢
1

(𝑡 − 𝑠) 𝑑𝑠

+ 2𝑞𝛾
2
𝑚𝑏𝑥
∗
𝑢
1

∫

∞

0

𝑔 (𝑠) 𝑢
1

(𝑡 − 𝑠) 𝑑𝑠

+ 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝑢
1

∫

∞

0

𝑓 (𝑠) 𝑢
2 (𝑡 − 𝑠) 𝑑𝑠

+ 2𝑞𝛾𝜇𝐷
1
𝑢
2

∫

∞

0

𝑓 (𝑠) 𝑢
2

(𝑡 − 𝑠) 𝑑𝑠.

(46)

From the terms of the right-hand side of (46), we have

𝑢
1

∫

∞

0

𝑔 (𝑠) 𝑢
1

(𝑡 − 𝑠) 𝑑𝑠 ≤
1

2
(𝑢
2

1
+ ∫

∞

0

𝑔 (𝑠) 𝑢
2

1
(𝑡 − 𝑠) 𝑑𝑠) ,

𝑢
2

∫

∞

0

𝑓 (𝑠) 𝑢
2

(𝑡 − 𝑠) 𝑑𝑠 ≤
1

2
(𝑢
2

2
+ ∫

∞

0

𝑓 (𝑠) 𝑢
2

2
(𝑡 − 𝑠) 𝑑𝑠) .

(47)

For the term 𝑢
1

∫
∞

0
𝑓(𝑠)𝑢

2
(𝑡 − 𝑠)𝑑𝑠, it is clear that

𝑢
1

∫

∞

0

𝑓 (𝑠) 𝑢
2

(𝑡 − 𝑠) 𝑑𝑠

= 𝑢
1
𝑢
2

− 𝑢
1

∫

𝑡

0

𝑓 (𝑠) ∫

𝑡

𝑡−𝑠

𝑑𝑢
2 (𝜏) 𝑑𝑠 + ℎ

1 (𝑡)

= 𝑢
1
𝑢
2

− 𝛾𝑚𝑏𝑥
∗
𝐻
1

(𝑢
1
, 𝑢
2
) + ℎ
1 (𝑡)

− 𝑢
1

∫

𝑡

0

𝑓 (𝑠) ∫

𝑡

𝑡−𝑠

𝜎
2
𝑢
2 (𝜏) 𝑑𝐵

2 (𝜏) 𝑑𝑠,

(48)

where

ℎ
1 (𝑡) = −𝑢

1
∫

∞

𝑡

𝑓 (𝑠) (𝑢
2 (𝑡) − 𝑢

2 (𝑡 − 𝑠)) 𝑑𝑠, (49)

𝐻
1

(𝑢
1
, 𝑢
2
) = 𝑢
1

∫

𝑡

0

𝑓 (𝑠) ∫

𝑡

𝑡−𝑠

∫

∞

0

𝑔 (V) 𝑢
1

(𝜏 − V) 𝑑V 𝑑𝜏 𝑑𝑠

≤
1

2
∫

∞

0

𝑓 (𝑠)

× ∫

𝑡

𝑡−𝑠

∫

∞

0

𝑔 (V)

× (𝑢
2

1
(𝑡) + 𝑢

2

1
(𝜏 − V)) 𝑑V 𝑑𝜏 𝑑𝑠

=
1

2
𝑇
𝑓
𝑢
2

1
+

1

2
∫

∞

0

𝑓 (𝑠)

× ∫

𝑡

𝑡−𝑠

∫

∞

0

𝑔 (V)

× 𝑢
2

1
(𝜏 − V) 𝑑V 𝑑𝜏 𝑑𝑠.

(50)

For the term 𝑢
2

∫
∞

0
𝑔(𝑠)𝑢
1
(𝑡 − 𝑠)𝑑𝑠, we have that

𝑢
2

∫

∞

0

𝑔 (𝑠) 𝑢
1

(𝑡 − 𝑠) 𝑑𝑠

= 𝑢
1
𝑢
2

− 𝑢
2

∫

𝑡

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝑑𝑢
1

(𝜏) 𝑑𝑠 + ℎ
2

(𝑡)

= 𝑢
1
𝑢
2

+ (𝐷 + 𝑚𝑏𝑥
∗
) 𝐻
2

(𝑢
1
, 𝑢
2
)

+ 𝑚𝑎𝐻
3

(𝑢
1
, 𝑢
2
) − 𝜇𝐷

1
𝐻
4

(𝑢
1
, 𝑢
2
)

+ 𝑢
2

∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝜎
2
𝑢
2

(𝜏) 𝑑𝐵
2

(𝜏) 𝑑𝑠 + ℎ
2

(𝑡) ,

(51)

where

ℎ
2

(𝑡) = −𝑢
2

∫

∞

𝑡

𝑔 (𝑠) (𝑢
1

(𝑡) − 𝑢
1

(𝑡 − 𝑠)) 𝑑𝑠, (52)

𝐻
2

(𝑢
1
, 𝑢
2
) = 𝑢
2

∫

𝑡

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝑢
1 (𝜏) 𝑑𝜏 𝑑𝑠

≤
1

2
𝑇
𝑔
𝑢
2

2
+

1

2
∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝑢
2

1
(𝜏) 𝑑𝜏 𝑑𝑠,

𝐻
3

(𝑢
1
, 𝑢
2
) = 𝑢
2

∫

𝑡

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝑢
2

(𝜏) 𝑑𝜏 𝑑𝑠

≤
1

2
𝑇
𝑔
𝑢
2

2
+

1

2
∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝑢
2

2
(𝜏) 𝑑𝜏 𝑑𝑠,

𝐻
4

(𝑢
1
, 𝑢
2
) = 𝑢
2

∫

𝑡

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

∫

∞

0

𝑓 (V) 𝑢
2 (𝜏 − V) 𝑑V 𝑑𝜏 𝑑𝑠

≤
1

2
𝑇
𝑔
𝑢
2

2
+

1

2
∫

∞

0

𝑔 (𝑠)

× ∫

𝑡

𝑡−𝑠

∫

∞

0

𝑓 (V)

× 𝑢
2

2
(𝜏 − V) 𝑑V 𝑑𝜏 𝑑𝑠.

(53)

Substituting (47)–(48) together with (51) into (46), we obtain

𝐿𝑉
1

(𝑢
1
, 𝑢
2
) ≤ − [2𝑝 (𝐷 + 𝑚𝑏𝑥

∗
) − 𝑝𝜎

2

1

+ 2𝑞𝛾
2

(𝐷 + 𝑚𝑏𝑥
∗
) − 𝑞𝛾

2
𝜎
2

1
− 𝑞𝛾
2
𝑚𝑏𝑥
∗

− (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓
] 𝑢
2

1

− [2𝑞𝛾𝑚𝑎 − (1 + 𝑞) 𝜎
2

2
− (1 + 𝑞)
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× (𝐷 + 𝑚𝑏𝑥
∗

+ 𝑚𝑎 + 𝜇𝐷
1
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

− 𝑞𝛾𝜇𝐷
1
] 𝑢
2

2

− 2 [𝑝𝑚𝑎 + 𝑞𝛾
2
𝑚𝑎 + 𝑞𝛾 (𝐷 + 𝑚𝑏𝑥

∗
)

− (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

− (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
] 𝑢
1
𝑢
2

+ (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

× [𝜇𝐷
1

∫

∞

0

𝑔 (𝑠)

× ∫

𝑡

𝑡−𝑠

∫

∞

0

𝑓 (V) 𝑢
2

2
(𝜏 − V) 𝑑V 𝑑𝜏 𝑑𝑠

+ (𝐷 + 𝑚𝑏𝑥
∗
) ∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝑢
2

1
(𝜏) 𝑑𝜏 𝑑𝑠

+ 𝑚𝑎 ∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝑢
2

2
(𝜏) 𝑑𝜏 𝑑𝑠]

+ 𝑞𝛾
2
𝑚𝑏𝑥
∗

∫

∞

0

𝑔 (𝑠) 𝑢
2

1
(𝑡 − 𝑠) 𝑑𝑠

+ 𝑞𝛾𝜇𝐷
1

∫

∞

0

𝑓 (𝑠) 𝑢
2

2
(𝑡 − 𝑠) 𝑑𝑠

+ (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗

× ∫

∞

0

𝑓 (𝑠) ∫

𝑡

𝑡−𝑠

∫

∞

0

𝑔 (V) 𝑢
2

1
(𝜏 − V) 𝑑V 𝑑𝜏 𝑑𝑠

+ 2 (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗
ℎ
2

(𝑡)

+ 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
ℎ
1

(𝑡) .

(54)

For technical reasons, we assume that ∫
∞

0
𝑠
2
𝑓(𝑠)𝑑𝑠 < ∞ and

∫
∞

0
𝑠
2
𝑔(𝑠)𝑑𝑠 < ∞. Then the function

𝑉
2

(𝑢
1
, 𝑢
2
)

= (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

× [𝜇𝐷
1

∫

∞

0

𝑔 (𝑠)

× ∫

𝑡

𝑡−𝑠

∫

𝑡

𝑟

∫

∞

0

𝑓 (V) 𝑢
2

2
(𝜏 − V) 𝑑V 𝑑𝜏 𝑑𝑟 𝑑𝑠

+ (𝐷 + 𝑚𝑏𝑥
∗
)

× ∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

∫

𝑡

𝑟

𝑢
2

1
(𝜏) 𝑑𝜏 𝑑𝑟 𝑑𝑠

+ 𝑚𝑎 ∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

∫

𝑡

𝑟

𝑢
2

2
(𝜏) 𝑑𝜏 𝑑𝑟 𝑑𝑠]

+ 𝑞𝛾
2
𝑚𝑏𝑥
∗

∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝑢
2

1
(𝜏) 𝑑𝜏 𝑑𝑠

+ 𝑞𝛾𝜇𝐷
1

∫

∞

0

𝑓 (𝑠) ∫

𝑡

𝑡−𝑠

𝑢
2

2
(𝜏) 𝑑𝜏 𝑑𝑠

+ (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗

× ∫

∞

0

𝑓 (𝑠)

× ∫

𝑡

𝑡−𝑠

∫

𝑡

𝑟

∫

∞

0

𝑔 (V) 𝑢
2

1
(𝜏 − V) 𝑑V 𝑑𝜏 𝑑𝑟 𝑑𝑠

(55)

is well defined. Using Itô’s formula, we have

𝐿 (𝑉
1

+ 𝑉
2
) ≤ − [2𝑝 (𝐷 + 𝑚𝑏𝑥

∗
) − 𝑝𝜎

2

1

+ 2𝑞𝛾
2

(𝐷 + 𝑚𝑏𝑥
∗
) − 𝑞𝛾

2
𝜎
2

1
− 2𝑞𝛾

2
𝑚𝑏𝑥
∗

− (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓

− (1 + 𝑞) (𝐷 + 𝑚𝑏𝑥
∗
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔
] 𝑢
2

1

− [2𝑞𝛾𝑚𝑎 − (1 + 𝑞) 𝜎
2

2
− (1 + 𝑞)

× (𝐷 + 𝑚𝑏𝑥
∗

+ 2𝑚𝑎 + 𝜇𝐷
1
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

− 2𝑞𝛾𝜇𝐷
1
] 𝑢
2

2

− 2 [𝑝𝑚𝑎 + 𝑞𝛾
2
𝑚𝑎 + 𝑞𝛾 (𝐷 + 𝑚𝑏𝑥

∗
)

− (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

− (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
] 𝑢
1
𝑢
2

+ (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗
𝜇𝐷
1
𝑇
𝑔

× ∫

∞

0

𝑓 (𝑠) 𝑢
2

2
(𝑡 − 𝑠) 𝑑𝑠

+ (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓

× ∫

∞

0

𝑔 (𝑠) 𝑢
2

1
(𝑡 − 𝑠) 𝑑𝑠

+ 2 (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗
ℎ
2

(𝑡)

+ 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
ℎ
1

(𝑡) .

(56)

We now consider the function

𝑉
3

(𝑢
1
, 𝑢
2
) = (1 + 𝑞) 𝛾𝑚𝑏𝑥

∗
𝜇𝐷
1
𝑇
𝑔

× ∫

∞

0

𝑓 (𝑠) ∫

𝑡

𝑡−𝑠

𝑢
2

2
(𝜏) 𝑑𝜏 𝑑𝑠

+ (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓

× ∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝑢
2

1
(𝜏) 𝑑𝜏 𝑑𝑠.

(57)
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It follows from (56) and (57) that

𝐿 (𝑉
1

+ 𝑉
2

+ 𝑉
3
)

≤ − [2𝑝 (𝐷 + 𝑚𝑏𝑥
∗
) − 𝑝𝜎

2

1

+ 2𝑞𝛾
2

(𝐷 + 𝑚𝑏𝑥
∗
) − 𝑞𝛾

2
𝜎
2

1
− 2𝑞𝛾

2
𝑚𝑏𝑥
∗

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓

− (1 + 𝑞) (𝐷 + 𝑚𝑏𝑥
∗
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

∫

∞

𝑡

𝑓 (𝑠) 𝑑𝑠

− (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

∫

∞

𝑡

𝑔 (𝑠) 𝑑𝑠] 𝑢
2

1

− [2𝑞𝛾𝑚𝑎 − (1 + 𝑞) 𝜎
2

2
− (1 + 𝑞)

× (𝐷 + 𝑚𝑏𝑥
∗

+ 2𝑚𝑎 + 2𝜇𝐷
1
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

− 2𝑞𝛾𝜇𝐷
1

− (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

∫

∞

𝑡

𝑓 (𝑠) 𝑑𝑠

−2 (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

∫

∞

𝑡

𝑔 (𝑠) 𝑑𝑠] 𝑢
2

2

− 2 [𝑝𝑚𝑎 + 𝑞𝛾
2
𝑚𝑎 + 𝑞𝛾 (𝐷 + 𝑚𝑏𝑥

∗
)

− (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

− (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
] 𝑢
1
𝑢
2

+ (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

∫

∞

𝑡

𝑓 (𝑠) 𝑢
2

2
(𝑡 − 𝑠) 𝑑𝑠

+ (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

∫

∞

𝑡

𝑔 (𝑠) 𝑢
2

1
(𝑡 − 𝑠) 𝑑𝑠.

(58)

Therefore, for the function

𝑉 (𝑢
1
, 𝑢
2
) = 𝑉
1

(𝑢
1
, 𝑢
2
) + 𝑉
2

(𝑢
1
, 𝑢
2
) + 𝑉
3

(𝑢
1
, 𝑢
2
) , (59)

we have

𝐿𝑉 ≤ − [2𝑝 (𝐷 + 𝑚𝑏𝑥
∗
) − 𝑝𝜎

2

1

+ 2𝑞𝛾
2

(𝐷 + 𝑚𝑏𝑥
∗
) − 𝑞𝛾

2
𝜎
2

1
− 2𝑞𝛾

2
𝑚𝑏𝑥
∗

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓

− (1 + 𝑞) (𝐷 + 𝑚𝑏𝑥
∗
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

∫

∞

𝑡

𝑓 (𝑠) 𝑑𝑠

− (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

∫

∞

𝑡

𝑔 (𝑠) 𝑑𝑠] 𝑢
2

1

− [2𝑞𝛾𝑚𝑎 − (1 + 𝑞) 𝜎
2

2
− (1 + 𝑞)

× (𝐷 + 𝑚𝑏𝑥
∗

+ 2𝑚𝑎 + 2𝜇𝐷
1
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

− 2𝑞𝛾𝜇𝐷
1

− (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

∫

∞

𝑡

𝑓 (𝑠) 𝑑𝑠

−2 (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

∫

∞

𝑡

𝑔 (𝑠) 𝑑𝑠] 𝑢
2

2

+ (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

∫

∞

𝑡

𝑓 (𝑠) 𝑢
2

2
(𝑡 − 𝑠) 𝑑𝑠

+ (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

∫

∞

𝑡

𝑔 (𝑠) 𝑢
2

1
(𝑡 − 𝑠) 𝑑𝑠.

(60)

By (44), we choose 𝜀 > 0 such that

2𝑝 (𝐷 + 𝑚𝑏𝑥
∗
) + 2𝑞𝛾

2
𝐷

> (𝑝 + 𝑞𝛾
2
) 𝜎
2

1
+ 2 (𝑝 + 𝑞𝛾

2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓

+ (1 + 𝑞) (𝐷 + 𝑚𝑏𝑥
∗
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

+ 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝜀 + (1 + 𝑞) 𝛾𝑚𝑏𝑥

∗
𝜀,

2𝑞

1 + 𝑞
𝛾 (𝑚𝑎 − 𝜇𝐷

1
)

> 𝜎
2

2
+ (𝐷 + 𝑚𝑏𝑥

∗
+ 2𝑚𝑎 + 2𝜇𝐷

1
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

+ (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝜀 + 2 (1 + 𝑞) 𝛾𝑚𝑏𝑥

∗
𝜖.

(61)

Let 𝑇 = 𝑇(𝜀) such that ∫
∞

𝑡
𝑓(𝑠)𝑑𝑠 < 𝜀 and ∫

∞

𝑡
𝑔(𝑠)𝑑𝑠 < 𝜀 for

all 𝑡 ≥ 𝑇. Then for all 𝑡 ≥ 𝑇, one has

𝐿𝑉 ≤ − [2𝑝 (𝐷 + 𝑚𝑏𝑥
∗
) − 𝑝𝜎

2

1
+ 2𝑞𝛾

2
(𝐷 + 𝑚𝑏𝑥

∗
)

− 𝑞𝛾
2
𝜎
2

1
− 2𝑞𝛾

2
𝑚𝑏𝑥
∗

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓

− (1 + 𝑞)

× (𝐷 + 𝑚𝑏𝑥
∗
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝜀 − (1 + 𝑞) 𝛾𝑚𝑏𝑥

∗
𝜀] 𝑢
2

1

− [2𝑞𝛾𝑚𝑎 − (1 + 𝑞) 𝜎
2

2
− (1 + 𝑞)

× (𝐷 + 𝑚𝑏𝑥
∗

+ 2𝑚𝑎 + 2𝜇𝐷
1
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

− 2𝑞𝛾𝜇𝐷
1

− (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝜀

− 2 (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗
𝜀] 𝑢
2

2

+ (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

𝜑
2



2
∫

∞

𝑡

𝑓 (𝑠) 𝑑𝑠

+ (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗𝜑
1



2
∫

∞

𝑡

𝑔 (𝑠) 𝑑𝑠.

(62)
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For convenience, let

𝑄 = min {2𝑝 (𝐷 + 𝑚𝑏𝑥
∗
) − 𝑝𝜎

2

1

+ 2𝑞𝛾
2

(𝐷 + 𝑚𝑏𝑥
∗
) − 𝑞𝛾

2
𝜎
2

1
− 2𝑞𝛾

2
𝑚𝑏𝑥
∗

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓

− (1 + 𝑞)

× (𝐷 + 𝑚𝑏𝑥
∗
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝜀 − (1 + 𝑞) 𝛾𝑚𝑏𝑥

∗
𝜀,

2𝑞𝛾𝑚𝑎 − (1 + 𝑞) 𝜎
2

2
− (1 + 𝑞)

× (𝐷 + 𝑚𝑏𝑥
∗

+ 2𝑚𝑎 + 2𝜇𝐷
1
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

− 2𝑞𝛾𝜇𝐷
1

− (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝜀

− 2 (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗
𝜀} .

(63)

Integrating both sides of (62) from 𝑇 to 𝑡 ≥ 𝑇, we have

𝐸 (𝑉 (𝑡)) + 𝑄 ∫

𝑡

𝑇

𝐸 (𝑢
2

1
(𝑠) + 𝑢

2

2
(𝑠)) 𝑑𝑠

≤ 𝑉 (𝑇) + (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

𝜑
2



2
∫

𝑡

𝑇

∫

∞

𝑠

𝑓 (𝑢) 𝑑𝑢 𝑑𝑠

+ (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗𝜑
1



2
∫

𝑡

𝑇

∫

∞

𝑡

𝑔 (𝑢) 𝑑𝑢 𝑑𝑠

≤ 𝑉 (𝑇) + (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

𝜑
2



2
∫

∞

0

𝑠𝑓 (𝑠) 𝑑𝑠

+ (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗𝜑
1



2
∫

∞

0

𝑠𝑔 (𝑠) 𝑑𝑠

= 𝑉 (𝑇) + (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

𝜑
2



2
𝑇
𝑓

+ (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗𝜑
1



2
𝑇
𝑔

< ∞.

(64)

Discussing as that in He et al. [18], by the Barbălat lemma,
we conclude 𝐸(𝑢

2

1
(𝑡) + 𝑢

2

2
(𝑡)) → 0 as 𝑡 → ∞. Applying

Definition 4, we obtain the conclusion.

Now, we are in a position to prove the stability of the
trivial solution (0, 0) of nonlinear system (11) using the
Lyapunov functionals constructed above.

Theorem 8. Let condition (6) hold. If conditions (44) are
satisfied, then the trivial solution (0, 0) of the system (11) or the
equilibrium (𝑆

∗
, 𝑥
∗
) of system (6) is stochastically stable.

Proof. Consider the Lyapunov function 𝑉
1
(𝑢
1
, 𝑢
2
) defined in

(33). It follows from (11) and Itô’s formula that

𝑑𝑉
1

(𝑢
1
, 𝑢
2
) = 2𝑝𝑢

1
𝑑𝑢
1

+ 𝑝(𝑑𝑢
1
)
2

+ 2𝑢
2
𝑑𝑢
2

+ (𝑑𝑢
2
)
2

+ 2𝑞 (𝛾𝑢
1

+ 𝑢
2
) 𝑑 (𝛾𝑢

1
+ 𝑢
2
)

+ 𝑞(𝑑 (𝛾𝑢
1

+ 𝑢
2
))
2

= {2𝑝𝑢
1

[ − (𝐷 + 𝑚𝑏𝑥
∗
) 𝑢
1

+ 𝜇𝐷
1

∫

∞

0

𝑓 (𝑠) 𝑢
2

(𝑡 − 𝑠) 𝑑𝑠

− 𝑚𝑎𝑢
2

+ 𝐹
1
] + 𝑝𝜎

2

1
𝑢
2

1

+ 2𝛾𝑚𝑏𝑥
∗
𝑢
2

∫

∞

0

𝑔 (𝑠) 𝑢
1

(𝑡 − 𝑠) 𝑑𝑠

+ 2𝑢
2
𝐹
2

+ 𝜎
2

2
𝑢
2

2
+ 2𝑞 (𝛾𝑢

1
+ 𝑢
2
)

× [ − 𝛾 (𝐷 + 𝑚𝑏𝑥
∗
) 𝑢
1

+ 𝛾𝜇𝐷
1

∫

∞

0

𝑓 (𝑠) 𝑢
2

(𝑡 − 𝑠) 𝑑𝑠

− 𝛾𝑚𝑎𝑢
2

+ 𝛾𝐹
1

+ 𝛾𝑚𝑏𝑥
∗

∫

∞

0

𝑔 (𝑠) 𝑢
1

(𝑡 − 𝑠) 𝑑𝑠 + 𝐹
2
]

+ 𝑞 (𝛾
2
𝜎
2

1
𝑢
2

1
+ 𝜎
2

2
𝑢
2

2
) } 𝑑𝑡

+ 2𝜎
2
𝑢
2

2
𝑑𝐵
2

+ 2𝑞 (𝛾𝑢
1

+ 𝑢
2
) (𝛾𝜎
1
𝑢
1
𝑑𝐵
1

+ 𝜎
2
𝑢
2
𝑑𝐵
2
)

+ 2𝑝𝜎
1
𝑢
2

1
𝑑𝐵
1

= 𝐿𝑉
1

(𝑢
1
, 𝑢
2
) 𝑑𝑡 + 2𝜎

2
𝑢
2

2
𝑑𝐵
2

+ 2𝑞 (𝛾𝑢
1

+ 𝑢
2
) (𝛾𝜎
1
𝑢
1
𝑑𝐵
1

+ 𝜎
2
𝑢
2
𝑑𝐵
2
)

+ 2𝑝𝜎
1
𝑢
2

1
𝑑𝐵
1
,

(65)

where

𝐿𝑉
1

(𝑢
1
, 𝑢
2
) = − [2𝑝 (𝐷 + 𝑚𝑏𝑥

∗
) − 𝑝𝜎

2

1

+ 2𝑞𝛾
2

(𝐷 + 𝑚𝑏𝑥
∗
) − 𝑞𝛾

2
𝜎
2

1
] 𝑢
2

1

− [2𝑞𝛾𝑚𝑎 − (1 + 𝑞) 𝜎
2

2
] 𝑢
2

2

− 2 [𝑝𝑚𝑎 + 𝑞𝛾
2
𝑚𝑎 + 𝑞𝛾 (𝐷 + 𝑚𝑏𝑥

∗
)] 𝑢
1
𝑢
2

+ 2 (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗
𝑢
2

∫

∞

0

𝑔 (𝑠) 𝑢
1

(𝑡 − 𝑠) 𝑑𝑠

+ 2𝑞𝛾
2
𝑚𝑏𝑥
∗
𝑢
1

∫

∞

0

𝑔 (𝑠) 𝑢
1 (𝑡 − 𝑠) 𝑑𝑠

+ 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝑢
1

∫

∞

0

𝑓 (𝑠) 𝑢
2

(𝑡 − 𝑠) 𝑑𝑠

+ 2𝑞𝛾𝜇𝐷
1
𝑢
2

∫

∞

0

𝑓 (𝑠) 𝑢
2

(𝑡 − 𝑠) 𝑑𝑠
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+ 2𝑝𝑢
1
𝐹
1

+ 2𝑢
2
𝐹
2

+ 2𝑞 (𝛾𝑢
1

+ 𝑢
2
) (𝛾𝐹
1

+ 𝐹
2
) .

(66)

From the terms of the right-hand side of (66), we observe that

𝑢
1

∫

∞

0

𝑓 (𝑠) 𝑢
2

(𝑡 − 𝑠) 𝑑𝑠

= 𝑢
1
𝑢
2

− 𝑢
1

∫

𝑡

0

𝑓 (𝑠) ∫

𝑡

𝑡−𝑠

𝑑𝑢
2 (𝜏) 𝑑𝑠 + ℎ

1 (𝑡)

= 𝑢
1
𝑢
2

− 𝛾𝑚𝑏𝑥
∗
𝐻
1

(𝑢
1
, 𝑢
2
) − 𝑢
1

∫

𝑡

0

𝑓 (𝑠) ∫

𝑡

𝑡−𝑠

𝐹
2
𝑑𝜏 𝑑𝑠

− 𝑢
1

∫

𝑡

0

𝑓 (𝑠) ∫

𝑡

𝑡−𝑠

𝜎
2
𝑢
2

(𝜏) 𝑑𝐵
2

(𝜏) 𝑑𝑠 + ℎ
1

(𝑡) ,

(67)

where ℎ
1
(𝑡) is defined in (49), and

𝑢
2

∫

∞

0

𝑔 (𝑠) 𝑢
1

(𝑡 − 𝑠) 𝑑𝑠

= 𝑢
1
𝑢
2

− 𝑢
2

∫

𝑡

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝑑𝑢
1 (𝜏) 𝑑𝑠 + ℎ

2 (𝑡)

= 𝑢
1
𝑢
2

+ (𝐷 + 𝑚𝑏𝑥
∗
) 𝐻
2

(𝑢
1
, 𝑢
2
)

+ 𝑚𝑎𝐻
3

(𝑢
1
, 𝑢
2
) − 𝜇𝐷

1
𝐻
4

(𝑢
1
, 𝑢
2
)

− 𝑢
2

∫

𝑡

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝐹
1
𝑑𝜏 𝑑𝑠

+ 𝑢
2

∫

𝑡

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝜎
2
𝑢
2

(𝜏) 𝑑𝐵
2

(𝜏) 𝑑𝑠 + ℎ
2

(𝑡) ,

(68)

where ℎ
2
(𝑡) is defined in (52). Substituting (67) and (68) into

(46), we get

𝐿𝑉
1

(𝑢
1
, 𝑢
2
)

≤ − [2𝑝 (𝐷 + 𝑚𝑏𝑥
∗
) − 𝑝𝜎

2

1

+ 2𝑞𝛾
2

(𝐷 + 𝑚𝑏𝑥
∗
) − 𝑞𝛾

2
𝜎
2

1
− 𝑞𝛾
2
𝑚𝑏𝑥
∗

− (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓
] 𝑢
2

1

− [2𝑞𝛾𝑚𝑎 − (1 + 𝑞) 𝜎
2

2
− (1 + 𝑞)

× (𝐷 + 𝑚𝑏𝑥
∗

+ 𝑚𝑎 + 𝜇𝐷
1
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

− 𝑞𝛾𝜇𝐷
1
] 𝑢
2

2

− 2 [𝑝𝑚𝑎 + 𝑞𝛾
2
𝑚𝑎

+ 𝑞𝛾 (𝐷 + 𝑚𝑏𝑥
∗
) − (1 + 𝑞) 𝛾𝑚𝑏𝑥

∗

− (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
] 𝑢
1
𝑢
2

+ (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

× [𝜇𝐷
1

∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

∫

∞

0

𝑓 (V) 𝑢
2

2
(𝜏 − V) 𝑑V 𝑑𝜏 𝑑𝑠

+ (𝐷 + 𝑚𝑏𝑥
∗
) ∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝑢
2

1
(𝜏) 𝑑𝜏 𝑑𝑠

+ 𝑚𝑎 ∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝑢
2

2
(𝜏) 𝑑𝜏 𝑑𝑠]

+ 𝑞𝛾
2
𝑚𝑏𝑥
∗

∫

∞

0

𝑔 (𝑠) 𝑢
2

1
(𝑡 − 𝑠) 𝑑𝑠

+ 𝑞𝛾𝜇𝐷
1

∫

∞

0

𝑓 (𝑠) 𝑢
2

2
(𝑡 − 𝑠) 𝑑𝑠

+ (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗

× ∫

∞

0

𝑓 (𝑠) ∫

𝑡

𝑡−𝑠

∫

∞

0

𝑔 (V) 𝑢
2

1
(𝜏 − V) 𝑑V 𝑑𝜏 𝑑𝑠

+ 2𝑝𝑢
1
𝐹
1

+ 2𝑢
2
𝐹
2

+ 2𝑞 (𝛾𝑢
1

+ 𝑢
2
) (𝛾𝐹
1

+ 𝐹
2
)

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝑢
1

∫

∞

0

𝑓 (𝑠) ∫

𝑡

𝑡−𝑠

𝐹
2
𝑑𝜏 𝑑𝑠

+ 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
ℎ
1 (𝑡)

− 2 (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗
𝑢
2

∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝐹
1
𝑑𝜏 𝑑𝑠

+ 2 (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗
ℎ
2

(𝑡) .

(69)

For the functions𝑉
2
(𝑢
1
, 𝑢
2
) and𝑉

3
(𝑢
1
, 𝑢
2
) defined in (55) and

(57), one has

𝐿 (𝑉
1

+ 𝑉
2

+ 𝑉
3
)

≤ − [2𝑝 (𝐷 + 𝑚𝑏𝑥
∗
) − 𝑝𝜎

2

1
+ 2𝑞𝛾

2
(𝐷 + 𝑚𝑏𝑥

∗
)

− 𝑞𝛾
2
𝜎
2

1
− 2𝑞𝛾

2
𝑚𝑏𝑥
∗

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓

− (1 + 𝑞)

× (𝐷 + 𝑚𝑏𝑥
∗
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔
] 𝑢
2

1

− [2𝑞𝛾𝑚𝑎 − (1 + 𝑞) 𝜎
2

2
− (1 + 𝑞)

× (𝐷 + 𝑚𝑏𝑥
∗

+ 2𝑚𝑎 + 2𝜇𝐷
1
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

−2𝑞𝛾𝜇𝐷
1
] 𝑢
2

2

− 2 [𝑝𝑚𝑎 + 𝑞𝛾
2
𝑚𝑎 + 𝑞𝛾 (𝐷 + 𝑚𝑏𝑥

∗
)

− (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

− (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
] 𝑢
1
𝑢
2

+ 2𝑝𝑢
1
𝐹
1

+ 2𝑢
2
𝐹
2

+ 2𝑞 (𝛾𝑢
1

+ 𝑢
2
) (𝛾𝐹
1

+ 𝐹
2
)

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝑢
1

∫

∞

0

𝑓 (𝑠) ∫

𝑡

𝑡−𝑠

𝐹
2
𝑑𝜏 𝑑𝑠

+ 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
ℎ
1

(𝑡)
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− 2 (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗
𝑢
2

∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝐹
1
𝑑𝜏 𝑑𝑠

+ 2 (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗
ℎ
2

(𝑡) .

(70)

It follows from the expression of ℎ
1
(𝑡) and ℎ

2
(𝑡) that

ℎ
1

(𝑡) ≤ 2𝑢
2

1
∫

∞

𝑡

𝑓 (𝑠) 𝑑𝑠 + (𝑢
2

2
+

𝜑
2



2
) ∫

∞

𝑡

𝑓 (𝑠) 𝑑𝑠,

ℎ
2 (𝑡) ≤ 2𝑢

2

2
∫

∞

𝑡

𝑔 (𝑠) 𝑑𝑠 + (𝑢
2

1
+

𝜑
1



2
) ∫

∞

𝑡

𝑔 (𝑠) 𝑑𝑠.

(71)

For 𝑉(𝑢
1
, 𝑢
2
) = 𝑉
1
(𝑢
1
, 𝑢
2
) + 𝑉
2
(𝑢
1
, 𝑢
2
) + 𝑉
3
(𝑢
1
, 𝑢
2
), one has

𝐿𝑉 (𝑢
1
, 𝑢
2
)

≤ − [2𝑝 (𝐷 + 𝑚𝑏𝑥
∗
) − 𝑝𝜎

2

1

+ 2𝑞𝛾
2

(𝐷 + 𝑚𝑏𝑥
∗
) − 𝑞𝛾

2
𝜎
2

1
− 2𝑞𝛾

2
𝑚𝑏𝑥
∗

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓

− (1 + 𝑞)

× (𝐷 + 𝑚𝑏𝑥
∗
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

∫

∞

𝑡

𝑓 (𝑠) 𝑑𝑠

− (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

∫

∞

𝑡

𝑔 (𝑠) 𝑑𝑠] 𝑢
2

1

− [2𝑞𝛾𝑚𝑎 − (1 + 𝑞) 𝜎
2

2
− (1 + 𝑞)

× (𝐷 + 𝑚𝑏𝑥
∗

+ 2𝑚𝑎 + 2𝜇𝐷
1
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

− 2𝑞𝛾𝜇𝐷
1

− (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

∫

∞

𝑡

𝑓 (𝑠) 𝑑𝑠

−2 (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

∫

∞

𝑡

𝑔 (𝑠) 𝑑𝑠] 𝑢
2

2

+ (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

𝜑
2



2
∫

∞

𝑡

𝑓 (𝑠) 𝑑𝑠

+ (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗𝜑
1



2
∫

∞

𝑡

𝑔 (𝑠) 𝑑𝑠

+ 2𝑝𝑢
1
𝐹
1

+ 2𝑢
2
𝐹
2

+ 2𝑞 (𝛾𝑢
1

+ 𝑢
2
) (𝛾𝐹
1

+ 𝐹
2
)

− 2 (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗
𝑢
2

∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝐹
1
𝑑𝜏 𝑑𝑠

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝑢
1

∫

∞

0

𝑓 (𝑠) ∫

𝑡

𝑡−𝑠

𝐹
2
𝑑𝜏 𝑑𝑠.

(72)

Since 𝐹
1
and 𝐹
2
are terms of order ≥ 2 in 𝑢

1
, 𝑢
2
, then we have

lim
𝑢
1
,𝑢
2
→0

𝐹
1

(𝑢
1
, 𝑢
2
)

√𝑢
2

1
+ 𝑢
2

2

= lim
𝑢
1
,𝑢
2
→0

𝐹
2

(𝑢
1
, 𝑢
2
)

√𝑢
2

1
+ 𝑢
2

2

= 0. (73)

For 𝜀 > 0, we can find a constant 𝜁 ∈ (0, 1) such that

𝐹
1

(𝑢
1
, 𝑢
2
) ≤

𝜀

√2

√𝑢
2

1
+ 𝑢
2

2
, 𝐹

2
(𝑢
1
, 𝑢
2
) ≤

𝜀

√2

√𝑢
2

1
+ 𝑢
2

2

(74)

provided that 𝑢
2

1
+ 𝑢
2

2
≤ 2𝜁

2. Now consider the class of
processes

Ψ = {𝜑 ∈ H | 𝑃 { sup
−∞≤𝑠≤0

𝜑 (𝑠)
 < 𝜁} = 1} . (75)

Notice that for 𝑢
𝑡

∈ Ψ,



∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝐹
1

(𝜏) 𝑑𝜏 𝑑𝑠



≤ 𝜀𝑇
𝑔
𝜁,



∫

∞

0

𝑓 (𝑠) ∫

𝑡

𝑡−𝑠

𝐹
2

(𝜏) 𝑑𝜏 𝑑𝑠



≤ 𝜀𝑇
𝑓
𝜁

(76)

are valid. Substituting (74)-(76) into (72), we obtain

𝐿𝑉 (𝑢
1
, 𝑢
2
)

≤ − [2𝑝 (𝐷 + 𝑚𝑏𝑥
∗
) − 𝑝𝜎

2

1

+ 2𝑞𝛾
2

(𝐷 + 𝑚𝑏𝑥
∗
) − 𝑞𝛾

2
𝜎
2

1
− 2𝑞𝛾

2
𝑚𝑏𝑥
∗

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓

− (1 + 𝑞) (𝐷 + 𝑚𝑏𝑥
∗
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

∫

∞

𝑡

𝑓 (𝑠) 𝑑𝑠

− (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

∫

∞

𝑡

𝑔 (𝑠) 𝑑𝑠] 𝑢
2

1

− [2𝑞𝛾𝑚𝑎 − (1 + 𝑞) 𝜎
2

2
− (1 + 𝑞)

× (𝐷 + 𝑚𝑏𝑥
∗

+ 2𝑚𝑎 + 2𝜇𝐷
1
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

− 2𝑞𝛾𝜇𝐷
1

− (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

∫

∞

𝑡

𝑓 (𝑠) 𝑑𝑠

− 2 (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

∫

∞

𝑡

𝑔 (𝑠) 𝑑𝑠] 𝑢
2

2

+ (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

𝜑
2



2
∫

∞

𝑡

𝑓 (𝑠) 𝑑𝑠

+ (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗𝜑
1



2
∫

∞

𝑡

𝑔 (𝑠) 𝑑𝑠

+ 2𝜀 [𝑝 + 1 + 𝑞(𝛾 + 1)
2

+ (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗
𝑇
𝑔

+ (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝑇
𝑓
] 𝜁
2
.

(77)
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Integrating both sides of the above formula from 𝑇 to 𝑡 ∧ 𝑇
𝜀
1

yields

𝐸 (𝑉 (𝑡 ∧ 𝑇
𝜀
1

)) ≤ 𝑉 (𝑇) + (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

𝜑
2



2

× ∫

𝑡∧𝑇
𝜀
1

0

∫

∞

𝑠

𝑓 (𝜏) 𝑑𝜏 𝑑𝑠

+ (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗𝜑
1



2

× ∫

𝑡∧𝑇
𝜀
1

0

∫

∞

𝑠

𝑔 (𝜏) 𝑑𝜏 𝑑𝑠 + 2𝜀𝑘
1
𝜁
2

≤ 𝑉 (𝑇) + (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

𝜑
2



2
∫

∞

0

𝑠𝑓 (𝑠) 𝑑𝑠

+ (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗𝜑
1



2

× ∫

∞

0

𝑠𝑔 (𝑠) 𝑑𝑠 + 2𝜀𝑘
1
𝜁
2
,

(78)
where

𝑘
1

= 𝑝 + 1 + 𝑞(𝛾 + 1)
2

+ (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗
𝑇
𝑔

+ (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝑇
𝑓
.

(79)

By the definition of function𝑉(𝑢
1
, 𝑢
2
), we can find a constant

𝑘
2

> 0 such that

𝑉 (𝑇) ≤ 𝑘
2

(
𝜑
1



2
+

𝜑
2



2
) . (80)

Obviously,

𝐸 (𝑉 (𝑡 ∧ 𝑇
𝜀
1

)) ≤ 𝑘
3

(
𝜑
1



2
+

𝜑
2



2
) + 2𝜀𝑘

1
𝜁
2
, (81)

where 𝑘
3

= max{𝑘
2

+ (1 + 𝑞)𝛾𝑚𝑏𝑥
∗
, 𝑘
2

+ (𝑝 + 𝑞𝛾
2
)𝜇𝐷
1
}. Now

for 𝜀
1
, 𝜀
2

∈ (0, 1), let

𝛿 = min{(
1 ∧ 𝑝

2𝜀𝑘
1

+ 𝑘
3

𝜀
2
)

1/2

𝜀
1
,
𝜀
1

2
,
𝜁

2
} (82)

and ‖𝜑
1
‖
2

+ ‖𝜑
2
‖
2

< 𝛿
2. Then it follows that

𝐸 (𝑉 (𝑡 ∧ 𝑇
𝜀
1

)) ≤ (2𝜀𝑘
1

+ 𝑘
3
) 𝛿
2

≤ (1 ∧ 𝑝) 𝜀
2

1
𝜀
2
. (83)

On the other hand, we have

𝐸 (𝑉 (𝑡 ∧ 𝑇
𝜀
1

)) ≥ 𝐸 [1
{𝑇
𝜀
1
≤𝑡}

𝑉 (𝑡 ∧ 𝑇
𝜀
1

)]

= 𝐸 [1
{𝑇
𝜀
1
≤𝑡}

𝑉 (𝑇
𝜀
1

)]

= 𝑃 {𝑇
𝜀
1

≤ 𝑡} 𝑉 (𝑇
𝜀
1

)

≥ (1 ∧ 𝑝) 𝜀
2

1
𝑃 {𝑇
𝜀
1

≤ 𝑡} .

(84)

Hence, we have 𝑃{𝑇
𝜀
1

≤ 𝑡} ≤ 𝜀
2
. Let 𝑡 → ∞; then

𝑃 {𝑇
𝜀
1

< ∞} ≤ 𝜀
2
. (85)

Equivalently,

𝑃 {𝑢
2

1
+ 𝑢
2

2
< 𝜀
2

1
} ≥ 1 − 𝜀

2
. (86)

Applying Definition 4, we obtain the conclusion.

5. Simulations and Discussions

In this paper, we have considered a stochastic chemostat
model simulating the process of wastewater treatment. The
model incorporates a general nutrient uptake function and
two distributed delays. The first delay models the fact that
nutrient is partially recycled after the death of the biomass
by bacterial decomposition and the second indicates that the
growth of the species depends on the past concentration of
the nutrient. Furthermore, we consider the stochastic pertur-
bations which are of white noise type and are proportional
to the distances of 𝑆(𝑡), 𝑥(𝑡) from the values of the positive
equilibrium 𝑆

∗, 𝑥
∗. By constructing appropriate Liapunov-

like functionals, some sufficient conditions for the stochastic
stability of the positive equilibrium have been obtained.

For model (3), we have first analyzed the stochastic
stability of the positive equilibrium 𝐸

∗ in the case when the
delays are ignored, that is, the average delays 𝑇

𝑓
= 𝑇
𝑔

= 0.
Our findings in Theorem 6 reveal that 𝐸

∗ is stochastically
stable provided that the intensities of noises are small. When
at least one of the average delays 𝑇

𝑓
and 𝑇

𝑔
is not equal to

zero, our results in Theorem 8 reveal that 𝐸
∗ is stochastically

stable provided that the average delays 𝑇
𝑓
and 𝑇

𝑔
are both

small. Obviously, Theorem 8 reduces to Theorem 6 when
𝑇
𝑓

= 𝑇
𝑔

= 0, which indicates that if the average delays are
sufficiently small, 𝐸

∗ is still stochastically stable; and in the
case of 𝜎

𝑖
= 0 (𝑖 = 1, 2), Theorem 8 reduces to He et al. [18,

Theorem 3.1]; that is to say, the equilibrium 𝐸
∗ of model (3)

is still stable if 𝜎
1
and 𝜎

2
are sufficient small, which preserves

the dynamics of its corresponding deterministic counterpart
(5).

To illustrate the results obtained above, some numerical
simulations are carried out by using Milstein scheme [50].
Here we assume that the specific growth function 𝑈(𝑆) is of
Michaelis-Menten type

𝑈 (𝑆) =
𝑆

𝑎
1

+ 𝑆
, (87)

where 𝑎
1
is the half-saturation constant. For the kernel

functions 𝑓(𝑠) and 𝑔(𝑠), we consider two special cases: (1)
𝑓(𝑠) = 𝑔(𝑠) = 𝛿(0); (2) 𝑓(𝑠) = 𝛼𝑒

−𝛼𝑠 and 𝑔(𝑠) =

𝛽𝑒
−𝛽𝑠. For case (1), the discretization of model (3) for 𝑡 =

0, Δ𝑡, 2Δ𝑡, . . . , 𝑛Δ𝑡 takes the form

𝑆
𝑖+1

= 𝑆
𝑖
+ [𝐷 (𝑆

0
− 𝑆
𝑖
) − 𝑚𝑈 (𝑆

𝑖
) 𝑥
𝑖
+ 𝜇𝐷
1
𝑥
𝑖
] Δ𝑡

+ 𝜎
1

(𝑆
𝑖
− 𝑆
∗
) √Δ𝑡𝜉

𝑖
,

𝑥
𝑖+1

= 𝑥
𝑖
+ 𝑥
𝑖
[− (𝐷

𝑤
+ 𝐷
1
) + 𝛾𝑚𝑈 (𝑆

𝑖
)] Δ𝑡

+ 𝜎
2

(𝑥
𝑖
− 𝑥
∗
) √Δ𝑡𝜉

𝑖
,

(88)

where time increment Δ𝑡 > 0 and 𝜉
𝑖
is 𝑁(0, 1)-distributed

independent random variables which can be generated
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Figure 1: The dynamics of stochastic model compared with deterministic model with 𝜎
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numerically by pseudorandom number generators. For case
(2), define

𝑦 (𝑡) = ∫

∞

0

𝛼𝑒
−𝛼𝑠

𝑥 (𝑡 − 𝑠) 𝑑𝑠,

𝑧 (𝑡) = ∫

∞

0

𝛽𝑒
−𝛽𝑠

𝑈 (𝑆 (𝑡 − 𝑠)) 𝑑𝑠,

(89)

then the discretization of model (3) for 𝑡 = 0,Δ𝑡, 2Δ𝑡, . . . , 𝑛Δ𝑡

takes the form

𝑆
𝑖+1

= 𝑆
𝑖
+ [𝐷 (𝑆

0
− 𝑆
𝑖
) − 𝑚𝑈 (𝑆

𝑖
) 𝑥
𝑖
+ 𝜇𝐷
1
𝑦
𝑖
] Δ𝑡

+ 𝜎
1

(𝑆
𝑖
− 𝑆
∗
) √Δ𝑡𝜉

𝑖
,

𝑥
𝑖+1

= 𝑥
𝑖
+ 𝑥
𝑖
[− (𝐷

𝑤
+ 𝐷
1
) + 𝛾𝑚𝑧

𝑖
] Δ𝑡

+ 𝜎
2

(𝑥
𝑖
− 𝑥
∗
) √Δ𝑡𝜉

𝑖
,

𝑦
𝑖+1

= 𝑦
𝑖
+ (−𝛼𝑦

𝑖
+ 𝛼𝑥
𝑖
) Δ𝑡,

𝑧
𝑖+1

= 𝑧
𝑖
+ (−𝛽𝑧

𝑖
+ 𝛽𝑈 (𝑆

𝑖
)) Δ𝑡.

(90)

Let in model (3) 𝐷 = 𝐷
𝑤

= 0.3, 𝐷
1

= 0.1, 𝑆
0

= 5, 𝑚 =

0.7, 𝑎
1

= 0.4, 𝜇 = 0.3, 𝛾 = 0.8. It is easy to compute that
𝑎 ≐ 0.7143, 𝑏 ≐ 0.2041, 𝑝 ≐ 0.3100, 𝑞 ≐ 0.2694, and 𝐸

∗
=

(1, 2.55).
The first two examples given below concern case (1) when

the delays are ignored; that is to say, it is assumed that the
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Figure 4: The dynamics of stochastic functional model with different 𝜎
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and 𝛼, 𝛽. Here 𝑆(0) = 0.3, 𝑥(0) = 0.5, 𝑦(0) = 0.3, 𝑧(0) = 0.5.

process of nutrient recycling and the growth response of the
species are immediate and, therefore, 𝑇

𝑓
= 𝑇
𝑔

= 0. Example 1
verifies the results obtained inTheorem 6.
Example 1. Let 𝜎

1
= 0.1 and 𝜎

2
= 0.08, then by

straightforward computations, we have that 0.01 = 𝜎
2

1
<

2𝐷 + 2𝑚𝑏𝑥
∗

̇=1.3285, 0.0064 = 𝜎
2

2
< (2𝑞/(1 + 𝑞))𝛾(𝑚𝑎 −

𝜇𝐷
1
) ̇= 0.1596. In view of Theorem 6, the equilibrium 𝐸

∗ of
(3) is stochastically asymptotically stable, which is consistent
with the simulation results as shown in Figure 1.

To further study the combined effects of 𝜎
𝑖
, 𝑖 = 1, 2 when

𝑇
𝑓

= 𝑇
𝑔

= 0, we need to consider four situations: (a) 𝜎
1

increases, 𝜎
2
increases; (b) 𝜎

1
increases, 𝜎

2
decreases; (c) 𝜎

1

decreases, 𝜎
2
increases; (d) 𝜎

1
decreases, 𝜎

2
decreases. Here

we only give one example about situation (a); other situations
can be considered similarly.

Example 2. Let the intensities 𝜎
𝑖
, 𝑖 = 1, 2 increase from

𝜎
1

= 0.1, 𝜎
2

= 0.08 to 𝜎
1

= 1, 𝜎
2

= 0.12, respectively.
Simulations show that the trajectories of model (3) still
approach ultimately to the positive equilibrium 𝐸

∗, but they
need to go throughmore oscillations andmore time to return
to 𝐸
∗ (see Figure 2).

The next two examples concern case (2) when 𝑓(𝑠) and
𝑔(𝑠) take weak kernels; that is, 𝑓(𝑠) = 𝛼𝑒

−𝛼𝑠 and 𝑔(𝑠) = 𝛽𝑒
−𝛽𝑠,
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which means that 𝑇
𝑓

= 1/𝛼 and 𝑇
𝑔

= 1/𝛽. Example 3 verifies
the results obtained inTheorem 8.

Example 3. Let 𝜎
1

= 0.1, 𝜎
2

= 0.08, 𝛼 = 1 and 𝛽 = 5. It is easy
to compute that (𝑝 + 𝑞𝛾

2
)𝜎
2

1
+ 2(𝑝 + 𝑞𝛾

2
)𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓

+ (1 +

𝑞)(𝐷 + 𝑚𝑏𝑥
∗
)𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

≐ 0.0624, 2𝑝(𝐷 + 𝑚𝑏𝑥
∗
)+2𝑞𝛾

2
𝐷 ≐

0.5154 and 𝜎
2

2
+(𝐷+𝑚𝑏𝑥

∗
+2𝑚𝑎+2𝜇𝐷

1
)𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

≐ 0.1069,
(2𝑞/(1 + 𝑞))𝛾(𝑚𝑎 − 𝜇𝐷

1
) ≐ 0.1596; thus conditions (44) are

satisfied. By Theorem 8, the equilibrium 𝐸
∗ of model (3) is

stochastically stable. Our simulation supports this result as
shown in Figure 3.

To examine the combined effects of the noise intensities
and the delays on the dynamics ofmodel (3), we first consider
the case when the values of 𝜎

𝑖
, 𝑖 = 1, 2 in Example 3 are fixed

and the values of 𝛼 and 𝛽 are reduced from 1 and 5 to 0.1

and 0.1, respectively. That is to say, the average delays 𝑇
𝑓

and 𝑇
𝑔
increase from 1 and 0.2 to 10 and 10, respectively.

Simulation results show that the solution of (3) will suffer
more oscillations andmore time to approach the equilibrium
𝐸
∗ when delays increase (see Figure 3).When both the values

of the noise intensities and the delays vary, the dynamics
of model (3) may become more complicated. Here we only
consider the case when 𝜎

𝑖
(𝑖 = 1, 2), 𝑇

𝑓
and 𝑇

𝑔
(i.e., 1/𝛼 and

1/𝛽) all increase. See the following Example.

Example 4. Let 𝜎
𝑖
(𝑖 = 1, 2), 𝑇

𝑓
and 𝑇

𝑔
(i.e., 1/𝛼 and 1/𝛽)

increase from 0.1, 0.08, 1, and 0.2 (i.e., 𝛼 = 1 and 𝛽 = 5) to
1, 0.8, 10, and 10 (i.e., 𝛼 = 0.1 and 𝛽 = 0.1), respectively. It is
found that the trajectories of model (3) fluctuate wildly and
suffer more oscillations and need more time to approach the
equilibrium 𝐸

∗; please see Figure 4.

Notice also that conditions (44) in Theorem 8 are only
sufficient conditions to insure the stochastic stability of 𝐸

∗,
which are dependent on parameters 𝜎

1
, 𝜎
2
,𝑇
𝑓
, and𝑇

𝑔
. Define

𝑀
0

= ((𝑝 + 𝑞𝛾
2
) 𝜎
2

1
+ 2 (𝑝 + 𝑞𝛾

2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓

+ (1 + 𝑞) (𝐷 + 𝑚𝑏𝑥
∗
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔
)

× (2𝑝 (𝐷 + 𝑚𝑏𝑥
∗
) + 2𝑞𝛾

2
𝐷)
−1

,

𝑀
1

=

𝜎
2

2
+ (𝐷 + 𝑚𝑏𝑥

∗
+ 2𝑚𝑎 + 2𝜇𝐷

1
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

(2𝑞/ (1 + 𝑞)) 𝛾 (𝑚𝑎 − 𝜇𝐷
1
)

.

(91)

Thus, conditions (44) are equivalent to those when parame-
ters 𝜎

1
, 𝜎
2
, 𝑇
𝑓
, and 𝑇

𝑔
are seated in the following parameter

set:

Ω = {(𝜎
1
, 𝜎
2
, 𝑇
𝑓
, 𝑇
𝑔
) | max {𝑀

0
, 𝑀
1
} < 1,

𝜎
𝑖
≥ 0, 𝑇

𝑓
≥ 0, 𝑇

𝑔
≥ 0} ,

(92)

from which we can further perform some approximate
sensitivity analysis of the stochastic stability of 𝐸

∗ with
respect to these parameters. To do this, we can let two of the
parameters (e.g., 𝜎

1
and 𝑇

𝑓
) vary and the other two (𝜎

2
and

𝑇
𝑔
) be fixed, which have six cases in all.

Let us first consider the case when 𝜎
2

= 0.08 and𝑇
𝑔

= 0.2;
then 𝑀

0
and 𝑀

1
are both functions of 𝜎

1
and 𝑇

𝑓
. Then Ω

defined in (92) is equivalent to

Ω
𝜎
1
,𝑇
𝑓

= {(𝜎
1
, 𝑇
𝑓
) | (𝜎
1
, 0.08, 𝑇

𝑓
, 0.2) ∈ Ω} , (93)

which is the projection of surfaces 𝑀
0

= 𝑀
0
(𝜎
1
, 𝑇
𝑓
) and

𝑀
1

= 𝑀
1
(𝜎
1
, 𝑇
𝑓
) in the first octant such that max{𝑀

0
, 𝑀
1
} <

1 (see Figure 5). The positive equilibrium 𝐸
∗ is stochastically

stable provided that (𝜎
1
, 𝑇
𝑓
) ∈ Ω
𝜎
1
,𝑇
𝑓

.
To better observe the dependence of the stochastic stabil-

ity of 𝐸
∗ on all parameters, we further consider another two

cases when 𝜎
1

= 0.1 and 𝑇
𝑔

= 0.2 are fixed and 𝜎
1

= 0.1

and 𝜎
2

= 0.08 are fixed. Accordingly, Ω defined in (92) is
equivalent, respectively, to

Ω
𝜎
2
,𝑇
𝑓

= {(𝜎
2
, 𝑇
𝑓
) | (0.1, 𝜎

2
, 𝑇
𝑓
, 0.2) ∈ Ω} ,

Ω
𝑇
𝑓
,𝑇
𝑔

= {(𝑇
𝑓
, 𝑇
𝑔
) | (0.1, 0.08, 𝑇

𝑓
, 𝑇
𝑔
) ∈ Ω} ,

(94)

which are plotted, respectively, in Figures 6 and 7 (other three
cases can be considered similarly). From Figures 5–7, we find
that the stochastic stability of 𝐸

∗ is greatly affected by 𝜎
1
, 𝜎
2
,

and 𝑇
𝑔
and less affected by 𝑇

𝑓
(which is consistent with the

results observed in [13, 17]). We would like to point out here
that 𝐸

∗ may also be stable when the parameters are seated
outside of the set Ω, since (44) are only sufficient conditions
ensuring the stochastic stability of 𝐸

∗.
In conclusion, this paper presents an investigation on the

combined effect of the noises and delays on a bottom-microbe
model. Our findings are useful for better understanding of
the dynamics of microbial population in the activated sludge
process. We should point out that there are still some other
interesting topics about the wastewater treatment deserving
further investigation, for example, membrane reactor, and so
forth. We leave these for future considerations.
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We investigate the spatiotemporal dynamics of a bacterial colony model. Based on the stability analysis, we derive the conditions
for Hopf and Turing bifurcations. Furthermore, we present novel numerical evidence of time evolution of patterns controlled by
parameters in the model and find that the model dynamics exhibit a diffusion controlled formation growth to spots, holes and
stripes pattern replication, which show that the bacterial colony model is useful in revealing the spatial predation dynamics in the
real world.

1. Introduction

Spatial patterns which are formed by some kinds of bacterial
colonies present an interesting structure during their growth
conditions. In particular, colonies of bacterium bacillus sub-
tilis can present a rich variety of structures [1–13]. The nature
of the pattern exhibited depends on the particular bacterial
species used and the environmental conditions imposed.
Ohgiwari et al. [11] have shown that for a nutrient-poor solid
agar, the bacterium colonies exhibit fractal morphogenesis
similar to diffusion-limited aggregation (DLA). For softer
agar medium, the colonies tend to show a dense-branching
morphology (DBM) [7]. If both the nutrient concentration
and the agar’s softness further increase, simple circular
colonies grow almost homogeneously in space [14].

There are manymathematical models for explaining each
characteristic colony pattern. Kawasaki et al. [7] have devel-
oped a reaction-diffusionmodel and have shown the patterns
by using the computer simulations. Since in Kawasaki et al.’s
model, all the nutrientsmust be consumed; L. Braverman and
E. Braverman [4] have introduced a model of prey-predator
type with Holling-II functional response under the situation
of a renewable nutrient. In the present paper, motivated by
the work of L. Braverman and E. Braverman, we consider

the model with the consumption termof nutrient in aHolling
III functional response.

Let us denote by 𝑢(𝑡, 𝑥, 𝑦) and V(𝑡, 𝑥, 𝑦) the nutrient
concentration and the density of the bacterial cells at point
(𝑥, 𝑦), respectively. We consider the following system:

𝜕𝑢

𝜕𝑡
= 𝐷
𝑢
∇
2
𝑢 −

𝜅𝑢
2V

V2 + 𝛾2
0
𝑢2
+ 𝑟𝑢 (1 −

𝑢

𝑀
) ,

𝜕V
𝜕𝑡
= ∇ ⋅ (𝐷V∇V) + 𝜃

𝜅𝑢
2V

V2 + 𝛾2
0
𝑢2
− 𝛾V,

(1)

where 𝑟 is the intrinsic nutrient growth rate,𝑀 is the carrying
capacity of the environment for the nutrient (prey), 𝛾 is the
bacteria (predator) mortality rate, 𝜅, 𝜃, and 𝛾

0
are parameters

of the Holling Type III functional response, and 𝐷V is the
nutrient diffusion coefficient. Following [4, 7], we assumed
that the diffusion coefficient is proportional to both nutrient
and bacteria densities

𝐷V = 𝜎𝑢V. (2)

Here we try to model the situation of a renewable
nutrient. Then the system involves two reaction-diffusion
equations of a predator-prey type with a Holling Type III
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functional response. Diffusive predator-prey systems were
extensively studied; we mention here the recent papers [15–
19], the monograph [20], and the references therein. In the
present paper, it is to investigate the spatial pattern formation
of system (1) which means the convergence of solutions to
some stable spatially-in-homogeneous pattern as time tends
to infinity. And in natural science, the pattern formation can
reveal the evolution process of the species; it is, perhaps, the
most challenging in modern ecology, biology, chemistry, and
many other fields of science [21–38]. Thus, our basic concern
is to find, if any, a spatially inhomogeneous equilibrium and
periodic solutions that are stable in a certain sense. From
the pioneer work by Turing [12], it is widely known that
a reaction-diffusion system exhibits Turing instability if the
homogenous steady state is stable to small perturbations
in the absence of diffusion but unstable to small spatial
perturbations when diffusion is present which implies the
existence of spatially in-homogenous solutions. From the
Hopf bifurcation analysis and the phrase transition theory
developed by Ma and Wang [39–42], it is shown that the
periodic solutions exist [43].

The paper is organized as follows. In Section 2, we give the
analysis of the model and mathematical setup. In Section 3,
we analyze the spatial model, we derive the conditions of
the Turing bifurcation and Hopf bifurcation, and we give
the existence of periodic solution. We give some computer
simulations to illustrate the emergence of pattern formation
in Section 4. Finally, some conclusions are given.

2. Modeling Analysis and Mathematical Setup

To obtain the dimensionless form of the system (1), we intro-
duce the following:

𝑢 = 𝑀𝑢

, V = 𝑀𝛾

0
V, 𝑡 =

1

𝑟
𝑡

, 𝑥 = (

1

𝑟
)

1/2

𝑥

,

𝑦 = (
1

𝑟
)

1/2

𝑦

, 𝛾 =

1

𝑟
𝛾

, 𝜎 =

1

𝛾
0
𝑀2
𝜎

.

(3)

Omitting the primes, we obtain the following nondimen-
sional form of (1):

𝜕𝑢

𝜕𝑡
= 𝐷
𝑢
∇
2
𝑢 − 𝛼

𝑢
2V

V2 + 𝑢2
+ 𝑢 (1 − 𝑢) ,

𝜕V
𝜕𝑡
= 𝜎∇ ⋅ (𝑢V∇V) + 𝛽

𝑢
2V

V2 + 𝑢2
− 𝛾V,

(4)

with 𝛼 = 𝜅/𝑟𝛾
0
, 𝛽 = 𝜃𝜅/𝑟𝛾

0
.

Model (4) is to be analyzed under the following nonzero
initial conditions:

𝑢 (𝑡, 𝑥, 𝑦) > 0, V (𝑡, 𝑥, 𝑦) > 0,

(𝑥, 𝑦) ∈ Ω = (0, 𝐿
𝑥
) × (0, 𝐿

𝑦
)

(5)

and Neumann boundary conditions:

𝜕𝑢

𝜕]

𝜕Ω

=
𝜕V
𝜕]

𝜕Ω

= 0. (6)

In the above, 𝐿
𝑥
and 𝐿

𝑦
denote the size of the system in

square domain and ] is the outward unit normal vector of the
boundary 𝜕Ω. The main reason for choosing such boundary
conditions is that we are interested in the self-organization of
the pattern and the Neumann conditions imply no external
input [22].

It is known that only nonnegative solutions of (4) have
biological significance. System (4) has two spatially homoge-
neous stationary solutions:

(1) the bacteria-free equilibrium 𝑈
0
= (1, 0) which

implies that the nutrient is at the carrying capacity
level;

(2) coexistence equilibrium 𝑈∗ = (𝑢∗, V∗) which repre-
sents a uniform distribution of bacteria, where

𝑢
∗
=
𝛽 − 𝑆𝛼

𝛽
, V∗ =

𝑆 (𝛽 − 𝑆𝛼)

𝛽𝛾
, (7)

and 𝑆 = √𝛾(𝛽 − 𝛾) with 𝛽 > 𝛾 and 𝛽2 − 𝛼2𝛾𝛽 + 𝛼2𝛾2 > 0.
To consider the pattern formation of (4) from (𝑢∗, V∗)we

make the translation

𝑢 → 𝑢
1
+ 𝑢
∗
, V → 𝑢

2
+ V∗. (8)

Then, (4) are rewritten as

𝜕𝑢
1

𝜕𝑡
= 𝐷
𝑢
∇
2
𝑢
1
+ 𝑎
11
𝑢
1
+ 𝑎
12
𝑢
2
+ 𝐺
1
(𝑢
1
, 𝑢
2
) ,

𝜕𝑢
2

𝜕𝑡
= 𝜇∇
2
𝑢
2
+ 𝑎
21
𝑢
1
+ 𝑎
22
𝑢
2
+ 𝑔 (𝑢

1
, 𝑢
2
) + 𝐺
2
(𝑢
1
, 𝑢
2
) ,

(9)

where

𝑎
11
=
−𝛽
2
+ 2𝑆𝛼𝛾

𝛽2
, 𝑎

12
= −
(2𝛾 − 𝛽) 𝛾𝛼

𝛽2
,

𝑎
21
= −2

(𝛾 − 𝛽) 𝑆𝛼

𝛼𝛽
, 𝑎

22
= 2
𝛾 (𝛾 − 𝛽)

𝛽
,

(10)

and 𝜇 = 𝑢∗V∗𝜎, 𝑔(𝑢
1
, 𝑢
2
) = 𝜎[∇ ⋅ (𝑢

1
𝑢
2
∇𝑢
2
)+ V∗∇ ⋅ (𝑢

1
∇𝑢
2
)+

𝑢
∗
∇ ⋅ (𝑢

2
∇𝑢
2
)], 𝐺
1
(𝑢
1
, 𝑢
2
), and 𝐺

2
(𝑢
1
, 𝑢
2
) are terms of high

order.
Define two Hilbert spaces

𝑋 = 𝐻
2
(Ω) ,

𝑋
1
= {𝑢 ∈ 𝐻

2
(Ω, 𝑅)



𝜕𝑢

𝜕]
on 𝜕Ω} .

(11)

Then𝑋
1
→ 𝑋 is dense and compact inclusion.

𝐿
𝜆
:= −𝐵

𝜆
+ 𝐴, (12)

where

−𝐵
𝜆
𝑢 = (𝐷

𝑢
Δ𝑢
1
, 𝜇Δ𝑢
2
)
𝑇
,

𝐴𝑢 = (
𝑎
11
𝑎
12

𝑎
21
𝑎
22

)(
𝑢
1

𝑢
2

)

(13)

for 𝑢 = (𝑢
1
, 𝑢
2
)
𝑇
∈ 𝑋
1
.
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Furthermore, denote that

𝐺 (𝑢, 𝜆)

= (𝐺
2

1
(𝑢, 𝜆) + 𝐺

3

1
(𝑢, 𝜆) + 𝑔

1
(𝑢
1
, 𝑢
2
) ,

𝐺
2

2
(𝑢, 𝜆) + 𝐺

3

2
(𝑢, 𝜆) + 𝑔 (𝑢

1
, 𝑢
2
) + 𝑔
2
(𝑢
1
, 𝑢
2
) )

𝑇

(14)

with

(

𝐺
2

1
(𝑢, 𝜆)

𝐺
2

2
(𝑢, 𝜆)

) = (

𝑎
20
𝑢
2

1
+ 𝑎
11
𝑢
1
𝑢
2
+ 𝑎
02
𝑢
2

2

𝑏
20
𝑢
2

1
+ 𝑏
11
𝑢
1
𝑢
2
+ 𝑏
02
𝑢
2

2

) ,

(
𝐺
3

1
(𝑢, 𝜆)

𝐺
3

2
(𝑢, 𝜆)

) = (

𝑎
30
𝑢
3

1
+ 𝑎
21
𝑢
2

1
𝑢
2
+ 𝑎
12
𝑢
1
𝑢
2

2
+ 𝑎
03
𝑢
3

2

𝑏
30
𝑢
3

1
+ 𝑏
21
𝑢
2

1
𝑢
2
+ 𝑏
12
𝑢
1
𝑢
2

2
+ 𝑏
03
𝑢
3

2

) ,

(15)

where

𝑎
20
= −
−𝛽
3
− 4𝑆𝛼𝛾

2
+ 5𝑆𝛼𝛽𝛾

𝛽2 (−𝛽 + 𝑆𝛼)
,

𝑎
11
= −2

𝛼𝛾 (−𝛾 + 𝛽) (𝛽 − 4𝛾)

𝛽2 (−𝛽 + 𝑆𝛼)
,

𝑎
02
=
(𝛽 − 4𝛾) 𝑆𝛼𝛾

𝛽2 (−𝛽 + 𝑆𝛼)
,

𝑎
30
= 4
(𝛽 − 2𝛾) (𝛽 − 𝛾) 𝑆𝛼𝛾

𝛽2(−𝛽 + 𝑆𝛼)
2
,

𝑎
21
=

𝛼𝛾 (𝛽 − 𝛾) (24𝛾
2
− 16𝛾𝛽 + 𝛽

2
)

𝛽2(−𝛽 + 𝑆𝛼)
2

,

𝑎
12
= −2

(−10𝛾𝛽 + 𝛽
2
+ 12𝛾

2
) 𝑆𝛼𝛾

𝛽2(−𝛽 + 𝑆𝛼)
2

,

𝑎
03
=

𝛼𝛾
2
(−8𝛾𝛽 + 𝛽

2
+ 8𝛾
2
)

𝛽2(−𝛽 + 𝑆𝛼)
2

,

𝑏
20
= −
𝑆𝛼 (𝛽 − 𝛾) (𝛽 − 4𝛾)

𝛼𝛽 (−𝛽 + 𝑆𝛼)
,

𝑏
11
=
2𝛾 (𝛽 − 𝛾) (𝛽 − 4𝛾)

𝛽 (−𝛽 + 𝑆𝛼)
,

𝑏
02
= −
(𝛽 − 4𝛾) 𝑆𝛾

𝛽 (−𝛽 + 𝑆𝛼)
,

𝑏
30
= −
4 (𝛽 − 2𝛾) (𝛽 − 𝛾) 𝑆𝛾

𝛽(−𝛽 + 𝑆𝛼)
2

,

𝑏
21
= −

𝛾 (𝛽 − 𝛾) (24𝛾
2
− 16𝛾𝛽 + 𝛽

2
)

𝛽(−𝛽 + 𝑆𝛼)
2

,

𝑏
12
=

2 (−10𝛾𝛽 + 𝛽
2
+ 12𝛾

2
) 𝑆𝛾

𝛽(−𝛽 + 𝑆𝛼)
2

,

𝑏
03
= −

𝛾
2
(−8𝛾𝛽 + 𝛽

2
+ 8𝛾
2
)

𝛽(−𝛽 + 𝑆𝛼)
2

.

(16)

Here 𝑔
1
(𝑢
1
, 𝑢
2
) and 𝑔

2
(𝑢
1
, 𝑢
2
) are terms of high order.

Then𝐺(⋅, 𝜆) : 𝑋
1
→ 𝑋 are a family of parameterizedC∞

bounded operators continuously depending on the parame-
ter 𝜆 such that 𝐺(𝑢, 𝜆) = 𝑜(‖ 𝑢 ‖).

Then (9) can be written in the following operator form:

𝑑𝑢

𝑑𝑡
= 𝐹 (𝑢) = 𝐿𝜆𝑢 + 𝐺 (𝑢, 𝜆) . (17)

3. Bifurcation Analysis

Unless otherwise specified, in this section, we require that
𝑈
∗
= (𝑢
∗
, V∗) always exist; that is, 𝛽 > 𝛾 and 𝛽2 − 𝛼2𝛾𝛽 +

𝛼
2
𝛾
2
> 0.

Consider the following eigenvalue problem of system (9):

𝐿
𝜆
𝜑 = 𝜆𝜑, 𝜑 ∈ 𝐻

1 (18)

with the Neumann boundary condition (6).
Let 𝜌
𝑘
and 𝑒
𝑘
be the 𝑘th eigenvalue and eigenvector of the

Laplacian ∇2 with Neumann boundary condition and

−∇
2
𝑒
𝑘
= 𝜌
𝑘
𝑒
𝑘
,

𝜕𝑒
𝑘

𝜕]

𝜕Ω

= 0

(19)

with 𝜌
0
= 0, 𝑒

0
= (1, 1)

𝑇.
Denote by𝑀

𝑘
the matrix given by

𝑀
𝑘
= (
𝑎
11
− 𝐷
𝑢
𝜌
𝑘

𝑎
12

𝑎
21

𝑎
22
− 𝜇𝜌
𝑘

) , 𝑘 = 0, 1, 2, . . . . (20)

Thus, all eigenvalues 𝜆 = 𝛽±
𝑘
of (18) satisfy

𝑀
𝑘
𝜉
±

𝑘
= 𝛽
𝑘
𝜉
±

𝑘
, 𝑘 = 0, 1, 2, . . . , (21)

where 𝜉±
𝑘
∈ R2 is the eigenvector of𝑀

𝑘
corresponding to 𝛽±

𝑘

and 𝛽±
𝑘
is expressed as

𝛽
±

𝑘
=
1

2
(tr (𝑀

𝑘
) ± √tr (𝑀

𝑘
)
2
− 4 det (𝑀

𝑘
)) (22)

with

tr (𝑀
𝑘
) = (𝐷

𝑢
𝜌
𝑘
− 𝑎
11
) + (𝜇𝜌

𝑘
− 𝑎
22
) ,

det (𝑀
𝑘
) = (𝐷

𝑢
𝜌
𝑘
− 𝑎
11
) (𝜇𝜌
𝑘
− 𝑎
22
) − 𝑎
12
𝑎
21
.

(23)

Hence, the eigenvector 𝜙±
𝑘
of (18) corresponding to 𝛽±

𝑘
is

𝜙
±

𝑘
= 𝜉
±

𝑘
𝑒
𝑘
, (24)

where 𝑒
𝑘
is as in (19).
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3.1. Hopf Bifurcation Analysis. It is clear that 𝛽±
𝑘
(𝛼) = ±𝑖𝜎

𝑘
(𝛼)

with 𝜎
𝑘
̸=0 if and only if

tr (𝑀
𝑘
) = (𝑎

11
− 𝐷
𝑢
𝜌
𝑘
) + (𝑎

22
− 𝜇𝜌
𝑘
) = 0,

det (𝑀
𝑘
) = (𝐷

𝑢
𝜌
𝑘
− 𝑎
11
) (𝜇𝜌
𝑘
− 𝑎
22
) − 𝑎
12
𝑎
21
> 0.

(25)

Thus, we introduce one critical number

𝛼
0
=

𝛽 (𝛽 − 2𝛾
2
+ 2𝛾𝛽)

2𝑆𝛾
, (26)

where 𝜌
𝑘
= 𝜌
0
= 0 such that 𝜒(𝛼) attains its minimum values.

Consider

𝜒 (𝛼) = min
𝜌
𝑘

{(𝐷
𝑢
𝜌
𝑘
+ 𝑎
11
) (𝜇𝜌
𝑘
+ 𝑎
22
) − 𝑎
12
𝑎
21
}

= 𝑎
11
𝑎
22
− 𝑎
12
𝑎
21
.

(27)

Theorem 1. Let 𝛼
0
be the number given in (26) such that (27)

is satisfied. Then 𝛽+
0
(𝜆) and 𝛽−

0
(𝜆) are a pair of first complex

eigenvalues of (18) near 𝜆 = 𝛼
0
, and

Re 𝛽+
0
(𝜆) = Re 𝛽−

0
(𝜆)

{{

{{

{

< 0, 𝜆 < 𝛼
0
,

= 0, 𝜆 = 𝛼
0
,

> 0, 𝜆 > 𝛼
0
,

Im 𝛽±
0
(𝛼
0
) ̸= 0,

Re 𝛽±
𝑘
(𝛼
0
) < 0, ∀𝑘 > 0.

(28)

3.2. Periodic Solution from Hopf Bifurcation. By Theorem 1,
problem (4) undergoes a dynamic transition to a periodic
solution from 𝛼 = 𝛼

0
. To determine the types of transition

we introduced a parameter as follows:

𝑏 =
𝐹
1

𝐹
2

, (29)

where

𝐹
1
= 𝜋 (𝛼

2
𝛾𝑆𝛽 − 𝛼

2
𝑆𝛾
2
− 2𝛽𝛾

2
𝛼 + 2𝛼𝛾𝛽

2
+ 𝑆𝛽
2
)

× (−8𝛽
5
𝛾
4
𝛼
4
− 20𝛽

9
𝛾
2
+ 512𝛽

2
𝛾
7
𝛼
4

− 416𝛽𝛾
8
𝛼
4
− 66𝛽

8
𝛾
3
𝜔
2
+ 80𝛽

7
𝛾
4
𝜔
2

− 32𝛽
6
𝜔
2
𝛾
5
+ 66𝛽

8
𝛾
3
+ 20𝛽

9
𝛾
2
𝜔
2

− 2𝛽
10
𝛾𝜔
2
+ 464𝛽

5
𝛼
2
𝛾
5
− 88𝛽

6
𝛾
5
𝛼
2

+ 8𝛽
7
𝛾
4
𝛼
2
− 456𝛽

4
𝛼
2
𝛾
6
+ 160𝛽

3
𝛼
2
𝛾
7

+ 128𝛼
4
𝛾
9
− 296𝛽

3
𝛾
6
𝛼
4
+ 80𝛽

4
𝛾
5
𝛼
4

− 202𝛽
6
𝛼
2
𝛾
4
+ 2𝛽
10
𝛾 − 16𝛾

5
𝛽
5
𝜔𝛼

− 2𝛾𝛽
9
𝜔𝛼 + 16𝛾

2
𝛽
8
𝜔𝛼 − 42𝛾

3
𝛽
7
𝜔𝛼

+ 44𝛾
4
𝛽
6
𝜔𝛼 − 64𝛼

3
𝛽
2
𝛾
6
𝜔
2
𝑆 + 18𝛼

3
𝛽
5
𝛾
3
𝜔
2
𝑆

+ 120𝛼
3
𝛽
3
𝛾
5
𝜔
2
𝑆 − 76𝛼

3
𝛽
4
𝛾
4
𝜔
2
𝑆

− 𝛼
3
𝛽
6
𝛾
2
𝜔
2
𝑆 + 252𝛼

2
𝛽
5
𝛾
4
𝜔𝑆 − 304𝛼

2
𝛽
4
𝛾
5
𝜔𝑆

+ 128𝛼
2
𝛽
3
𝛾
6
𝜔𝑆 − 86𝛼

2
𝛽
6
𝛾
3
𝜔𝑆 + 10𝛼

2
𝛽
7
𝛾
2
𝜔𝑆

− 16𝛼𝛽
7
𝛾
2
𝜔
2
𝑆 + 44𝛼𝛽

6
𝛾
3
𝜔
2
𝑆 − 32𝛼𝛽

5
𝛾
4
𝜔
2
𝑆

+ 𝛼𝛽
8
𝛾𝜔
2
𝑆 − 2𝛽

8
𝛼
2
𝛾
2
+ 2𝛽
10
𝜔𝑆

− 128𝛼
2
𝛽
2
𝛾
9
− 584𝛼

2
𝛽
4
𝛾
7
+ 344𝛼

2
𝛽
5
𝛾
6

+ 448𝛼
2
𝛽
3
𝛾
8
+ 36𝛽

7
𝛾
3
𝛼
2
− 80𝛽

7
𝛾
4

+ 32𝛽
6
𝛾
5
− 22𝛽

9
𝛾𝜔𝑆 + 84𝛽

8
𝛾
2
𝜔𝑆

− 128𝛽
7
𝛾
3
𝜔𝑆 + 64𝛽

6
𝛾
4
𝜔𝑆 + 340𝛼

3
𝛽
4
𝛾
5
𝑆

+ 4𝛼
3
𝛽
6
𝑆𝛾
3
− 760𝛼

3
𝛽
3
𝛾
6
𝑆 − 72𝛼

3
𝛽
3
𝛾
5
𝑆

+ 2𝛼
3
𝛽
6
𝑆𝛾
2
− 256𝛼

3
𝛽𝛾
8
𝑆 + 56𝛼

3
𝛽
4
𝑆𝛾
4

− 18𝛼
3
𝛽
5
𝑆𝛾
3
− 64𝛼

3
𝛽
5
𝑆𝛾
4
+ 32𝛼

3
𝛽
2
𝛾
6
𝑆

+ 736𝛼
3
𝛽
2
𝛾
7
𝑆 − 64𝛼

2
𝛽
3
𝜔
2
𝛾
7
− 120𝛼

2
𝛽
5
𝜔
2
𝛾
5

+ 152𝛼
2
𝛽
4
𝜔
2
𝛾
6
+ 34𝛼

2
𝛽
6
𝛾
4
𝜔
2

− 2𝛼
2
𝛽
7
𝛾
3
𝜔
2
− 4𝛼𝛽

9
𝜔𝛾
2
+ 48𝛼𝛽

8
𝛾
3
𝜔

− 212𝛼𝛽
7
𝜔𝛾
4
+ 424𝛼𝛽

6
𝛾
5
𝜔

− 384𝛼𝛾
6
𝜔𝛽
5
+ 128𝛼𝛾

7
𝜔𝛽
4

− 10𝛼𝛽
8
𝛾
2
𝜔
3
+ 46𝛼𝛽

7
𝛾
3
𝜔
3

− 68𝛼𝛽
6
𝛾
4
𝜔
3
+ 32𝛼𝛽

5
𝛾
5
𝜔
3
− 28𝛼𝛽

6
𝑆𝛾
3

+ 14𝛼𝛽
7
𝑆𝛾
2
− 8𝛼𝛽

8
𝛾
2
𝑆 + 80𝛼𝛽

7
𝛾
3
𝑆

− 264𝛼𝛽
6
𝛾
4
𝑆 + 320𝛼𝛽

5
𝛾
5
𝑆 − 128𝛼𝛽

4
𝛾
6
𝑆

+16𝛼𝛽
5
𝑆𝛾
4
− 2𝛼𝛽

8
𝑆𝛾) ,

𝐹
2
= 4𝜔
2
(−2𝛾 + 𝛽)

2
(−𝛼
2
𝛾
2
− 𝛽
2
+ 𝛼
2
𝛾𝛽)
2

× 𝛽
3
𝛼
2
𝛾
2
(−𝛾 + 𝛽) .

(30)

Theorem 2. Let 𝑏 be the number given by (29), then the
problem undergoes a transition to periodic solutions at 𝜆 = 𝜆

0
,

and the following assertions hold true.

(1) When 𝑏 < 0, the transition is continuous and the
system bifurcates to a periodic solution on𝛼 < 𝛼

0
which

is an attractor.
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(2) When 𝑏 > 0, the transition is jump and the system
bifurcates to a periodic solution on 𝛼 > 𝛼

0
which is a

repeller.

Proof. We will verify this theorem by using Theorem A.3 in
[44]. The eigenvalues 𝛽±

1
at 𝜆 = 𝛼

0
in are given by 𝛽+

1
= 𝛽
−

1
=

𝑖𝜔. The eigenvectors 𝜉 and 𝜂 corresponding to 𝛽±
1
(𝛼
0
) satisfy

𝐴𝜉 = 𝜔𝜂,

𝐴𝜂 = −𝜔𝜉.

(31)

It is easy to see that

𝜉 = (𝜉
1
, 𝜉
2
) = (𝑎

11
, 𝑎
12
) ,

𝜂 = (𝜂
1
, 𝜂
2
) = (−𝜔, 0) .

(32)

The conjugate eigenvectors 𝜉∗ and 𝜂∗ satisfy

𝐴𝜉
∗
= 𝜔𝜂
∗
,

𝐴𝜂
∗
= −𝜔𝜉

∗
.

(33)

It is easy to check that

𝜉
∗
= (𝜉
∗

1
, 𝜉
2
) = (𝑎

11
, 𝑎
21
) ,

𝜂
∗
= (𝜂
∗

1
, 𝜂
∗

2
) = (−𝜔, 0) .

(34)

It is known that functions 𝜓∗
1
and 𝜓∗

2
are given by

𝜓
∗

1
=

1

(𝜉, 𝜉
∗
)
[(𝜉, 𝜉
∗
) 𝜉
∗
+ (𝜉, 𝜂

∗
) 𝜂
∗
] = (0, 𝑎

21
) ,

𝜓
∗

2
=

1

(𝜂, 𝜂∗)
[(𝜂, 𝜉
∗
) 𝜉
∗
+ (𝜂, 𝜂

∗
) 𝜂
∗
]

= (
𝑎
12
𝑎
21

𝜔
, −
𝑎
11
𝑎
21

𝜔
) .

(35)

Because the first eigenvector space 𝐸 = span{𝜉, 𝜂} of (18)
with (6) is invariant for the equations (4) with (6), the center
manifold functionΦ vanishes; that is,

Φ(𝑥, 𝑦) ≡ 0. (36)

Therefore, we derive from (32) to (35) that

𝐺 (𝑥𝜉 + 𝑦𝜂 + Φ) , 𝜓
∗

1

(𝜉, 𝜓
∗

1
)

= 𝑎
20
𝑥
2
+ 𝑎
11
𝑥𝑦 + 𝑎

02
𝑦
2

+ 𝑎
30
𝑥
3
+ 𝑎
21
𝑥
2
𝑦 + 𝑎
12
𝑥𝑦
2
+ 𝑎
03
𝑦
3
,

𝐺 (𝑥𝜉 + 𝑦𝜂 + Φ) , 𝜓
∗

2

(𝜂, 𝜓
∗

2
)

= 𝑏
20
𝑥
2
+ 𝑏
11
𝑥𝑦 + 𝑏

02
𝑦
2
+ 𝑏
30
𝑥
3

+ 𝑏
21
𝑥
2
𝑦 + 𝑏
12
𝑥𝑦
2
+ 𝑏
03
𝑦
3
,

(37)

where

𝑎
20
=
1

𝑎
12

(𝑏
11
𝑎
11
𝑎
12
+ 𝑏
02
𝑎
2

12
+ 𝑏
20
𝑎
2

11
) ,

𝑎
11
=
𝜔

𝑎
12

(2𝑏
20
𝑎
11
+ 𝑏
11
𝑎
12
) 𝑎
02
=
𝑏
20
𝜔
2

𝑎
12

,

𝑎
30
=
1

𝑎
12

(𝑏
21
𝑎
2

11
𝑎
12
+ 𝑏
30
𝑎
3

11

+𝑏
12
𝑎
11
𝑎
2

12
+ 𝑏
03
𝑎
3

12
) ,

𝑎
12
=
𝜔
2

𝑎
12

(𝑏
21
𝑎
12
+ 3𝑏
30
𝑎
11
) ,

𝑎
21
= −
𝜔

𝑎
12

(3𝑏
30
𝑎
2

11
+ 𝑏
12
𝑎
2

12
+ 2𝑏
21
𝑎
11
𝑎
12
) ,

𝑎
03
= −

𝑏
30
𝜔
3

𝑎
12

,

𝑏
11
= −
𝑎
11

𝑎
12

(−2𝑎
12
𝑎
20
− 𝑎
2

12
+ 2𝑏
20
𝑎
11
+ 𝑏
11
𝑎
12
) ,

𝑏
02
=
𝜔

𝑎
12

(−𝑎
12
𝑎
20
+ 𝑏
20
𝑎
11
) ,

𝑏
20
= −

1

𝑎
12
𝜔
(𝑎
2

11
𝑎
2

12
+ 𝑎
02
𝑎
3

12
+ 𝑎
12
𝑎
20
𝑎
2

11

−𝑏
11
𝑎
2

11
𝑎
12
− 𝑎
11
𝑏
02
𝑎
2

12
− 𝑏
20
𝑎
3

11
) ,

𝑏
30
= −

1

𝑎
12
𝜔
(𝑎
2

11
𝑎
2

12
𝑎
21
+ 𝑎
12
𝑎
30
𝑎
3

11
+ 𝑎
4

12
𝑎
11

+ 𝑎
03
𝑎
4

12
− 𝑏
21
𝑎
3

11
𝑎
12
− 𝑏
30
𝑎
4

11

−𝑏
12
𝑎
2

11
𝑎
2

12
− 𝑎
11
𝑏
03
𝑎
3

12
) ,

𝑏
21
= −

1

𝑎
12

(−3𝑎
12
𝑎
30
𝑎
2

11
− 𝑎
4

12

− 2𝑎
21
𝑎
11
𝑎
2

12
+ 3𝑏
30
𝑎
3

11

+𝑏
12
𝑎
11
𝑎
2

12
+ 2𝑏
21
𝑎
2

11
𝑎
12
) ,

𝑏
12
=
𝜔

𝑎
12

(−𝑎
2

12
𝑎
21
− 3𝑎
12
𝑎
30
𝑎
11

+𝑏
21
𝑎
11
𝑎
12
+ 3𝑏
30
𝑎
2

11
) ,

𝑏
03
= −
𝜔
2

𝑎
12

(−𝑎
12
𝑎
30
+ 𝑏
30
𝑎
11
) .

(38)

From the focus values in [39, 40, 43], we have that

𝑏 =
3𝜋

4
(𝑎
30
+ 𝑏
03
) +
𝜋

4
(𝑎
12
+ 𝑏
21
)
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+
𝜋

2𝜔
(𝑎
02
𝑏
02
− 𝑎
20
𝑏
20
)

+
𝜋

4𝜔
(𝑎
11
𝑎
20
+ 𝑎
11
𝑎
02
− 𝑏
11
𝑏
20
− 𝑏
11
𝑏
02
)

(39)
is the same as in (29).Hence, byTheoremA.3 in [3] the system
bifurcates from (𝑢, 𝛼) = (0, 𝛼

0
) to a periodic solution; thus the

proof is complete.

Remark 3. As an example, let 𝐷
𝑢
= 1, 𝐷V = 16, 𝛾 = 1,

𝛽 = 5/4, and 𝛼
0
= 35/16, then from (29), we compute 𝑏 =

𝜋((1141012/2205) − (235072/3675)√5) ≐ 1176.323160 > 0.
FromTheorem 2, we can conclude that the transition is jump
and the system bifurcates to a periodic solution on 𝛼 > 𝛼

0

which is a repeller (see Figure 1).

3.3. Turing Bifurcation Analysis. In this subsection, we will
state the Turing instability for the positive equilibrium 𝐸∗ of
model (1). Mathematically speaking, the positive equilibrium
𝐸
∗ is Turing instability, which was emphasized by Turing

in his pioneering work in 1952 [12]. The Turing bifurcation
occurs when

Im (𝛽±
𝑘
) = 0, Re (𝛽±

𝑘
) = 0 at 𝜌

𝑘
= 𝜌
𝑇
̸=0 (40)

and the wave-number√𝜌𝑇 satisfies

𝜌
𝑇
= √

det (𝑀
0
)

𝜇𝐷
𝑢

. (41)

Hence, Turing instability occurs when the condition either
tr(𝑀
𝑘
) < 0 or det(𝑀

𝑘
) > 0 is violated.

Since the positive equilibrium 𝐸∗ is stable without dif-
fusion means that tr(𝑀

0
) < 0 and det(𝑀

0
) > 0 hold, then

tr(𝑀
𝑘
) < 0 is always true. Therefore, for the emergency

of the diffusion-driven instability in model (1), it is needed
det(𝑀

𝑘
) < 0 for some 𝜌

𝑘
> 0. A necessary condition is

𝑎
11
𝜇 + 𝑑
22
𝐷
𝑢
> 0; (42)

otherwise det(𝑀
𝑘
) > 0 for all 𝑘 > 0 since 𝜇𝐷

𝑢
> 0 and

𝑎
11
𝑎
22
− 𝑎
12
𝑎
21
> 0. And we notice that det(𝑀

𝑘
) achieves its

minimum

min
𝑘∈R+

det (𝑀
𝑘
) = 𝑎
11
𝑎
22
− 𝑎
12
𝑎
21
−
(𝜇𝑎
11
+ 𝐷
𝑢
𝑎
22
)
2

4𝐷
𝑢
𝜇

(43)

at the critical value 𝜇2
𝑐
> 0 where

𝜇
2

𝑐
=
𝜇𝑎
11
+ 𝐷
𝑢
𝑎
22

2𝐷
𝑢
𝜇

. (44)

Summarizing the above calculation, we conclude.

Theorem 4. If
𝑎
11
+ 𝑎
22
< 0,

𝑎
11
𝑎
22
− 𝑎
12
𝑎
21
> 0,

𝜇𝑎
11
+ 𝐷
𝑢
𝑎
22
> 0,

(𝜇𝑎
11
+ 𝐷
𝑢
𝑎
22
)
2
> 4𝐷
𝑢
𝜇 (𝑎
11
𝑎
22
− 𝑎
12
𝑎
21
) ,

(45)

then the positive equilibrium𝐸∗ ofmodel (1) is Turing unstable.

0.118 0.12 0.122 0.124 0.126 0.128 0.13 0.132 0.134
0.059

0.06

0.061

0.062

0.063

0.064

0.065

0.066

u

�

Figure 1:The phrase diagram with𝐷
𝑢
= 1,𝐷V = 16, 𝛼 = 35/16, 𝛽 =

5/4, and 𝛾 = 1 illustrating system (4) admits an unstable periodic
solution.

II

III
I

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

1.61.41.21.00.80.60.40.2 1.8

𝛽

𝛾

Figure 2: The dispersal relation of 𝛾 with 𝛽. Parameters: 𝛼 = 1.8,
𝐷
𝑢
= 0.02, 𝜎 = 18. The blue and red curves represent Hopf and

Turing bifurcation curves, respectively.They separate the parametric
space into three domains, and domain(III) is called Turing space.

In Figure 2, based on the results of Theorem 4, we show
the dispersal relation of 𝛾 with 𝛼. The blue and red curves
represent Hopf and Turing bifurcation curves, respectively.
They separate the parametric space into three domains. The
outside domain of the Hopf bifurcation curve is stable and
the inside domain of the Turing bifurcation curve is unstable.
Hence, among these domains, only the domain(III) satisfies
the conditions of Theorem 4 and we call domain(III) as
Turing space, where the Turing instability occurs and the
Turing patterns may be undergone.
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Figure 3: The process of formation of spiral pattern for 𝑢 for (𝛽, 𝛾) = (0.55, 0.44); the other parameters are fixed as in (46). Times: (a) 𝑡 = 0,
(b) 𝑡 = 100, (c) 𝑡 = 500, and (d) 𝑡 = 2000.

4. Pattern Formation

In this section, we perform extensive numerical simulations
of the spatially extended model (4) in 2-dimensional spaces,
and the qualitative results are shown here. Our numerical
simulations employ the nonzero initial (5) and the zero-flux
boundary conditions (6) with a system size of 𝐿

𝑥
× 𝐿
𝑦
, with

𝐿
𝑥
= 𝐿
𝑦
= 25 discretized through 𝑥 → (𝑥

0
, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)

and𝑦 → (𝑦
0
, 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
), with 𝑛 = 100. Other parameters

are fixed as

𝛼 = 1.8, 𝐷
𝑢
= 0.02, 𝜎 = 18, ℎ =

1

4
.

(46)

The numerical integration of (4) was performed by fourth-
order Runge-Kutta scheme integration [45], with a time step
of 𝜏 = 0.01, and by using the standard five-point approx-
imation for the 2D Laplacian with the zero-flux boundary
conditions [46, 47]. More precisely, the concentrations (𝑢𝑛+1

𝑖,𝑗
)

at the moment (𝑛 + 1)𝜏 at the mesh position (𝑥
𝑖
, 𝑦
𝑗
) are given

by

𝑢
(1)

𝑖,𝑗
= 𝑢
𝑛

𝑖,𝑗
+
1

2
𝜏𝐹 (𝑢
𝑛

𝑖,𝑗
)

𝑢
(2)

𝑖,𝑗
= 𝑢
𝑛

𝑖,𝑗
+
1

2
𝜏𝐹 (𝑢
(1)

𝑖,𝑗
)

𝑢
(3)

𝑖,𝑗
= 𝑢
𝑛

𝑖,𝑗
+ 𝜏𝐹 (𝑢

(2)

𝑖,𝑗
)

𝑢
(𝑛+1)

=
1

3
(−𝑢
𝑛

𝑖,𝑗
+ 𝑢
(1)

𝑖,𝑗
+ 2𝑢
(2)

𝑖,𝑗
+ 𝑢
(3)

𝑖,𝑗
)

+
1

6
𝜏𝐹 (𝑢
(3)

𝑖,𝑗
) ,

(47)

where 𝐹(𝑢) is defined in (17).
Initially, the entire system is placed in the steady state

(𝑢
∗
, V∗), and the propagation velocity of the initial pertur-

bation is thus on the order of 5 × 10−4 space units per time
unit. And the system is then integrated for 200 000 time steps,
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Figure 4: Spots-stripes and holes-stripes patterns obtained with model (4) for (a) (𝛽, 𝛾) = (0.60, 0.46) and (b) (𝛽, 𝛾) = (0.60, 0.55) at 200 000
iterations. Other parameters are fixed as (46).
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Figure 5: Spots and holes patterns obtained with model (4) for (a) (𝛽, 𝛾) = (0.55, 0.4) and (b) (𝛽, 𝛾) = (0.79, 0.67) at 200 000 iterations. Other
parameters are fixed as (46).

and the last images are saved. After the initial period during
which the perturbation spreads, either the system goes into
a time-dependent state or to an essentially steady state (time
independent).

In the numerical simulations, different types of dynamics
are observed and it is found that the distributions of predator
and prey are always of the same type. Consequently, we can
restrict our analysis of pattern formation to one distribution.
In this section, we show the distribution of prey 𝑢, for
instance. And the parameters are located in the Turing space
(cf., Figure 2), the region where Turing instability occurs. We
have taken some snapshots with red (blue) corresponding to
the high (low) value of prey 𝑢.

Figure 3 shows the process of pattern formation formodel
(4) with 𝛽 = 0.55 and 𝛾 = 0.44. In this case, the pattern
takes a long time to settle down, starting with a homogeneous
state (𝑢∗, V∗) = (0.2800, 0.1400) (cf., Figure 3(a)), and the
random perturbation leads to the formation of stripes and

spots (cf., Figures 3(b) and 3(c)) and ends with stripes only
(cf., Figure 3(d)), which is time independent.

In Figure 4, we show two spots-stripes patterns obtained
with model (4) at 100 000 iterations; that is, 𝑡 = 5000.
These two patterns are similar to each other. With (𝛽, 𝛾) =
(0.60, 0.46), in this case, the equilibrium is (𝑢∗, V∗) =

(0.2386, 0.1316) and the spots-stripes pattern is relatively
high (cf., Figure 4(a)), while with (𝛽, 𝛾) = (0.60, 0.50),
the equilibrium is (𝑢∗, V∗) = (0.3291, 0.1472), at low prey
densities (c.f., Figure 4(b)).

In Figure 5, we show the interesting and similartime-
independent patterns which obtained by model (4) at 200
000 iterations. They consist of blue/red spots on a red/blue
background. We refer to them as spots (cf., Figure 5(a))
and holes (cf., Figure 5(b)), respectively. In Figure 5(a), with
(𝛽, 𝛾) = (0.55, 0.40), (𝑢∗, V∗) = (0.1983, 0.1214), the hot
spots are isolated zones with high prey densities. In this
case, the predators are in low density obviously. While with
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(𝛽, 𝛾) = (0.79, 0.67), (𝑢∗, V∗) = (0.3539, 0.1497), holes are
isolated zoneswith lowprey density (Figure 5(b)). In this case,
the predators are in high density. From Figure 5(b), one can
see that the predators apparently almost occupy the whole
spatial domain.

5. Concluding and Remarks

In this paper, pattern formation of a spatial model for the
growth of bacterial colonies with the two-dimensional space
is investigated. Based on both mathematical analysis and
numerical simulations, we have found that its spatial pattern
includes periodic solutions from Hopf bifurcation and the
spotted and striped patterns from Turing bifurcation.

It should be noticed that, if considered in a somewhat
broader ecological perspective, our results have an intuitively
clear meaning; there has been a growing understanding in
the past regarding the dynamics of the system’s parameter.
From this standpoint, it seems interesting to know that
the dynamics vary when the parameter moves across the
diagram. From our analysis, the parameters 𝛾 and 𝛽 play
an important role in pattern formation. Our results show
that the pattern formation formed by the bacterial colonies
model represents rich spatial dynamics which will be useful
for studying the dynamic complexity of bacterial ecosystems.
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We analyze the impact of seasonal activity of psyllid on the dynamics of Huanglongbing (HLB) infection. A newmodel about HLB
transmissionwith Logistic growth in psyllid insect vectors and periodic coefficients has been investigated. It is shown that the global
dynamics are determined by the basic reproduction number 𝑅

0
which is defined through the spectral radius of a linear integral

operator. If 𝑅
0
< 1, then the disease-free periodic solution is globally asymptotically stable and if 𝑅

0
> 1, then the disease persists.

Numerical values of parameters of the model are evaluated taken from the literatures. Furthermore, numerical simulations support
our analytical conclusions and the sensitive analysis on the basic reproduction number to the changes of average and amplitude
values of the recruitment function of citrus are shown. Finally, some useful comments on controlling the transmission of HLB are
given.

1. Introduction

Plant disease is an important constraint to crop production.
Due to plant diseases, more than 10% of global food pro-
duction is lost and 800 million people do not have adequate
food in the world [1–3]. Plant pathologists cannot ignore
the juxtaposition of these figures for food shortage and the
reduction of crops caused by plant disease.

Nowadays, Huanglongbing (HLB) which is a century old
disease caused by the bacteria Candidatus Liberibacter spp
is one of the most serious problems of citrus worldwide
[4]. HLB has been responsible for the near destruction of
citrus industries in Asia and Africa [4]. The main symptoms
on HLB-infected citrus trees are yellow shoots, leaves with
blotchy mottle, and small lopsided fruits [4, 5]. The HLB is
a phloem-restricted, noncultured, Gram-negative bacterium
causing crippling diseases denoting “greening” in South
Africa, “mottle leaf ” in the Philippines, “dieback” in India,
and “vein phloem degeneration” in Indonesia. The infected
citrus orchards are usually destroyed or becomeunproductive
in 5 to 8 years [4].

Most of the known plant viruses are transmitted by
insect vectors and entirely dependent on the behaviour and

dispersal capacity of their vectors to spread from plant to
plant. HLB, a destructive disease of citrus, can be transmitted
by grafting from citrus to citrus and by dodder to periwinkle.
The citrus psyllid (Diaphorina Citri Kuwayama) is natural
and mainly vector [4]. In this paper, we mainly consider that
HLB transmitted from tree to tree by Asian citrus psyllid
insect vectors.

Mathematical models play an important role in under-
standing the epidemiology of vector-transmitted plant dis-
eases. Since the introduction of HLB, a lot of researches
have been conducted on the epidemiology of the disease and
on the vector, but the result of these two lines of inquiry
integrated is very few.Analyticalmodels have also beendevel-
oped for the spread of citrus canker [6], butmodels for vector-
transmitted bacterial pathogens are still preliminary [7]. In
[8], the authors proposed a deterministic compartmental
mathematic model to analyze HLB spread between citrus
plants. They assumed that all coefficients of the model are
constant (autonomous systems). However, in the real world,
actual data and evidence show that dynamics of disease
transmission are not as simple as shown in the model. In
[9], Hall and Hentz have studied seasonal activity of psyllid
insect vectors which is correlated with humidity. Seasonal
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fluctuations in the transmission of infectious diseases imply
that the corresponding mathematical models may admit
periodic solutions. It is interesting and important to study
the globally dynamics which are determined by threshold
parameter 𝑅

0
in periodic epidemiological models.

Based on above introduction, we propose a model with
periodic transmission rates to investigate the seasonal HLB
epidemics [10, 11]. In this model, we consider Logistic growth
term for dynamics of susceptible psyllid vector. Furthermore,
we assumed that the infective citrus population is generated
through susceptible citrus which was bit by infective psyllid
and the susceptible psyllid bit the infective citrus which will
become infective psyllid. Then, the periodic system is as
follows:

𝑑𝑆
ℎ (𝑡)

𝑑𝑡
= Λ (𝑡) − 𝛽1 (𝑡) 𝑆ℎ (𝑡) 𝐼V (𝑡) − 𝜇1 (𝑡) 𝑆ℎ (𝑡) ,

𝑑𝐼
ℎ (𝑡)

𝑑𝑡
= 𝛽
1 (𝑡) 𝑆ℎ (𝑡) 𝐼V (𝑡) − 𝜇1 (𝑡) 𝐼ℎ (𝑡) − 𝑑 (𝑡) 𝐼ℎ (𝑡) ,

𝑑𝑆V (𝑡)

𝑑𝑡
= 𝑏 (𝑡) (𝑆V (𝑡) + 𝐼V (𝑡)) [1 −

𝑆V (𝑡) + 𝐼V (𝑡)

𝑚 (𝑆
ℎ (𝑡) + 𝐼ℎ (𝑡))

]

− 𝛽
2
(𝑡) 𝑆V (𝑡) 𝐼ℎ (𝑡) ,

𝑑𝐼V (𝑡)

𝑑𝑡
= 𝛽
2
(𝑡) 𝑆V (𝑡) 𝐼ℎ (𝑡) − 𝜇2 (𝑡) 𝐼V (𝑡) ,

(1)

with initial condition

𝑆
ℎ
(0) > 0, 𝐼

ℎ
(0) > 0, 𝑆V (0) > 0, 𝐼V (0) > 0.

(2)

Here, 𝑆
ℎ
(𝑡), 𝐼
ℎ
(𝑡), 𝑆V(𝑡), and 𝐼V(𝑡) represent susceptible citrus

host, infected citrus host, susceptible psyllid, and infected
psyllid, respectively. We can easily see that 𝑁

ℎ
(𝑡) = 𝑆

ℎ
(𝑡) +

𝐼
ℎ
(𝑡) and 𝑁V(𝑡) = 𝑆V(𝑡) + 𝐼V(𝑡) are the number of citrus

population and psyllid population, respectively. Λ(𝑡) is the
recruitment rate of citrus at time 𝑡, 𝛽

1
(𝑡) is the infected rate of

citrus host at time 𝑡, 𝜇
1
(𝑡) and 𝑑(𝑡) are the nature death and

disease induced death rate of citrus host at time 𝑡, respectively,
𝑏(𝑡) is the intrinsic growth rate of psyllid at time 𝑡, 𝛽

2
(𝑡) and

𝜇
2
(𝑡) are the infected rate and the nature death rate of psyllid

at time 𝑡, respectively, and𝑚(> 0) is themaximumabundance
of psyllid per citrus. Λ(𝑡), 𝛽

1
(𝑡), 𝜇
1
(𝑡), 𝑑(𝑡), 𝑏(𝑡), 𝛽

2
(𝑡), and

𝜇
2
(𝑡) are continuous, positive 𝜔-periodic functions.
The paper is organized as follows. In the next section,

we give the basic reproduction number of (1). In Sections 3
and 4, the results show that the dynamical properties of the
model are completely determined by 𝑅

0
. That is, if 𝑅

0
< 1,

the disease-free periodic solution is globally asymptotically
stable, and if 𝑅

0
> 1, the model is permanence. In Section 5,

we present numerical simulations which demonstrate the
theoretical analysis and a brief discussion of ourmain results.

2. Basic Reproduction Number

In the following, we introduce some notations and lemmas
which will be used for our further argument.

Let (𝑅𝑘, 𝑅𝑘
+
) be the standard ordered 𝑘-dimensional

Euclidean space with a norm ‖ ⋅ ‖. For 𝑢, V ∈ 𝑅
𝑘; we denote

𝑢 ≥ V if 𝑢 − V ∈ 𝑅𝑘
+
, 𝑢 > V if 𝑢 − V ∈ 𝑅𝑘

+
\ {0}, and 𝑢 ≫ V if

𝑢 − V ∈ Int(𝑅𝑘
+
), respectively.

Define 𝑔𝐿 = max
𝑡∈[0,𝜔)

𝑔(𝑡) and 𝑔𝑀 = min
𝑡∈[0,𝜔)

𝑔(𝑡),
where 𝑔(𝑡) is a continuous, positive, 𝜔-periodic function.

Consider the following linear ordinary differential sys-
tem:

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝐴 (𝑡) 𝑥 (𝑡) , (3)

where 𝐴(𝑡) is a continuous, cooperative, irreducible, and
𝜔-periodic 𝑘 × 𝑘 matrix function. Denote Φ

𝐴
(𝑡) be the

fundamental solution matrix of (3) and 𝑟(Φ
𝐴
(𝜔)) be the

spectral radius ofΦ
𝐴
(𝜔). By the Perron-Frobenius Theorem,

we know that 𝑟(Φ
𝐴
(𝜔)) is the principle eigenvalue of Φ

𝐴
(𝜔);

that is, it is simple and admits an eigenvector V∗ ≫ 0.

Lemma 1 (see [12]). Let 𝑝 = (1/𝜔) ln 𝑟(Φ
𝐴(⋅)
(𝜔)). Then there

exists a positive 𝜔-periodic function V(𝑡) such that exp(𝑝𝑡)V(𝑡)
is a solution of (3).

Consider the following nonautonomous linear equation:
𝑑𝑆
ℎ (𝑡)

𝑑𝑡
= Λ (𝑡) − 𝜇1 (𝑡) 𝑆ℎ (𝑡) , (4)

whereΛ(𝑡) and 𝜇
1
(𝑡) are the same as in System (1). FromZhang

and Teng ([13, Lemma 2.1]) and simple calculation, we have the
following lemma.

Lemma 2. System (4) has a unique positive 𝜔-periodic solu-
tion 𝑆∗

ℎ
(𝑡) which is globally asymptotically stable.

Consider the following nonautonomous Logistic equation:
𝑑𝑆V (𝑡)

𝑑𝑡
= 𝑏 (𝑡) 𝑆V (𝑡) (1 −

𝑆V (𝑡)

𝑚𝑆
ℎ
(𝑡)
) , (5)

where 𝑏(𝑡) and𝑚 are the same as in system (1). From Teng and
Li ([14, Lemma 2]) and simple calculation, we can obtain the
following lemma.

Lemma3. System (5) has a unique positive𝜔-periodic solution
𝑆
∗

V (𝑡) which is globally asymptotically stable, where 𝑆∗V (𝑡) =

𝑚𝑆
∗

ℎ
(𝑡).

According to Lemmas 2 and 3, it is easy to see that (1) has
a unique disease-free periodic solution (𝑆∗

ℎ
(𝑡), 0, 𝑆

∗

V (𝑡), 0).
Now, we use the generation operator approach (see [15])

to derive the basic reproduction number. Applying the sym-
bol of the theory in Wang and Zhao [15], for system (1), we
have

F (𝑡, 𝑥) = (

𝛽
1
(𝑡) 𝑆
ℎ
(𝑡) 𝐼V (𝑡)

𝛽
2
(𝑡) 𝑆V (𝑡) 𝐼ℎ (𝑡)

0

0

) ,
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V
+
(𝑡, 𝑥) = (

0

0

Λ (𝑡)

𝑏 (𝑡) (𝑆V (𝑡) + 𝐼V (𝑡))

) ,

V
−
(𝑡, 𝑥) = (

(𝜇
1 (𝑡) + 𝑑 (𝑡)) 𝐼ℎ (𝑡)

𝜇
2 (𝑡) 𝐼V (𝑡)

𝜇
1 (𝑡) 𝑆ℎ + 𝛽1 (𝑡) 𝑆ℎ (𝑡) 𝐼V (𝑡)

𝑏 (𝑡)
(𝑆V (𝑡) + 𝐼V (𝑡))

2

𝑚(𝑆
ℎ (𝑡) + 𝐼ℎ (𝑡))

+𝛽
2
(𝑡) 𝑆V (𝑡) 𝐼ℎ (𝑡)

) ,

(6)

where 𝑥 = (𝐼
ℎ
(𝑡), 𝐼V(𝑡), 𝑆ℎ(𝑡), 𝑆V(𝑡))

𝑇. Then System (1) can be
written as the following form:

𝑑𝑥 (𝑡)

𝑑𝑡
= F (𝑡, 𝑥 (𝑡)) −V (𝑡, 𝑥 (𝑡)) , (7)

whereV(𝑡, 𝑥(𝑡)) =V−(𝑡, 𝑥(𝑡)) −V+(𝑡, 𝑥(𝑡)).
It is easy to obtain that the conditions (A1)–(A5) in [15]

hold. In the following, we will check the conditions (A6) and
(A7) in [15].

We know that 𝑥∗(𝑡) = (0, 0, 𝑆
∗

ℎ
(𝑡), 𝑆
∗

V (𝑡)) is the disease-
free periodic solution of system (7). Denote

𝑓 (𝑡, 𝑥 (𝑡)) = F (𝑡, 𝑥 (𝑡)) −V (𝑡, 𝑥 (𝑡)) ,

𝑀 (𝑡) = (
𝜕𝑓
𝑖
(𝑡, 𝑥
∗
(𝑡))

𝜕𝑥
𝑗

)

3≤𝑖,𝑗≤4

,

(8)

where 𝑓
𝑖
(𝑡, 𝑥(𝑡)) and 𝑥

𝑖
are the 𝑖th components of 𝑓(𝑡, 𝑥(𝑡))

and 𝑥, respectively. According to (6), we have

𝑀(𝑡) = (

−𝜇
1
(𝑡) 0

𝑏 (𝑡) 𝑆
∗2

V (𝑡)

𝑚𝑆
∗2

ℎ
(𝑡)

−𝑏 (𝑡)
) . (9)

It is easy to see that 𝑟(Φ
𝑀
(𝜔)) < 1, where 𝑟(Φ

𝑀
(𝜔))

is the spectral radius of Φ
𝑀
(𝜔). This implies that 𝑥∗(𝑡) is

linearly asymptotically stable in the disease-free subspace
𝑋
𝑆
= {(0, 0, 𝑆

ℎ
, 𝑆V) ∈ 𝑅

4

+
}. Thus, condition (A6) in [15] holds.

We further define

𝐹 (𝑡) = (
𝜕F
𝑖
(𝑡, 𝑥
∗
(𝑡))

𝜕𝑥
𝑗

)

1≤𝑖,𝑗≤2

,

𝑉 (𝑡) = (
𝜕V
𝑖
(𝑡, 𝑥
∗
(𝑡))

𝜕𝑥
𝑗

)

1≤𝑖,𝑗≤2

,

(10)

whereF
𝑖
(𝑡, 𝑥) andV

𝑖
(𝑡, 𝑥) are the 𝑖th components ofF(𝑡, 𝑥)

andV(𝑡, 𝑥), respectively. Then, from (6), we obtain that

𝐹 (𝑡) = (
0 𝛽

1
(𝑡) 𝑆
∗

ℎ
(𝑡)

𝛽
2
(𝑡) 𝑆
∗

V (𝑡) 0
) ,

𝑉 (𝑡) = (
𝜇
1
(𝑡) + 𝑑 (𝑡) 0

0 𝜇
2
(𝑡)
) .

(11)

Let 𝑌(𝑡, 𝑠) be a 2 × 2matrix solution of the system:

𝑑𝑌 (𝑡, 𝑠)

𝑑𝑡
= −𝑉 (𝑡) 𝑌 (𝑡, 𝑠) , ∀𝑡 ≥ 𝑠,

𝑌 (𝑠, 𝑠) = 𝐼,

(12)

where 𝐼 is 2 × 2 identity matrix. From (11) and (12), we have
𝑟(Φ
−𝑉
(𝜔)) < 1. Therefore, the condition (A7) in [15] also

holds.
Let 𝐶

𝜔
be the ordered Banach space of all 𝜔-periodic

function from 𝑅 → 𝑅
2, which is equipped with maximum

norm ‖ ⋅ ‖
∞

and the positive cone 𝐶+
𝜔
= {𝜙 ∈ 𝐶

𝜔
: 𝜙(𝑡) ≥ 0,

for all 𝑡 ∈ 𝑅}. Define the following linear operator 𝐿 : 𝐶
𝜔
→

𝐶
𝜔
by

(𝐿𝜙) (𝑡) = ∫

+∞

0

𝑌 (𝑡, 𝑡 − 𝑎) 𝐹 (𝑡 − 𝑎) 𝜙 (𝑡 − 𝑎) 𝑑𝑎,

∀𝑡 ∈ 𝑅, 𝜙 ∈ 𝐶
𝜔
.

(13)

Based on the assumptions above and the results of Wang and
Zhang [15], we can derive the basic reproduction number 𝑅

0

of system (1) as follows:

𝑅
0
= 𝑟 (𝐿) , (14)

and obtain the following conclusion.

Theorem 4. For system (1), the following statements are valid:

(i) 𝑅
0
= 1 if and only if 𝑟(Φ

𝐹−𝑉
(𝜔)) = 1,

(ii) 𝑅
0
> 1 if and only if 𝑟(Φ

𝐹−𝑉
(𝜔)) > 1,

(iii) 𝑅
0
< 1 if and only if 𝑟(Φ

𝐹−𝑉
(𝜔)) < 1,

where 𝐹(𝑡) and 𝑉(𝑡) are defined in (11).

It follows from Theorem 4 that the disease-free periodic
solution (𝑆

∗

ℎ
(𝑡), 0, 𝑆

∗

V (𝑡), 0) of system (1) is asymptotically
stable if 𝑅

0
< 1, and it is unstable if 𝑅

0
> 1.

In order to calculate 𝑅
0
, we consider the following linear

𝜔-periodic system:

𝑑𝑤

𝑑𝑡
= (−𝑉 (𝑡) +

1

𝜆
𝐹 (𝑡))𝑤, 𝜆 ∈ (0,∞) . (15)

Let 𝑊(𝑡, 𝑠, 𝜆), 𝑡 ⩾ 𝑠, 𝑠 ∈ 𝑅, be the evolution operator of
the System (15) on 𝑅2. Since 𝐹(𝑡) is nonnegative and −𝑉(𝑡)
is cooperative, then 𝑟(𝑊(𝜔, 0, 𝜆)) is continuous and nonin-
creasing for 𝜆 ∈ (0,∞), and lim

𝜆→∞
𝑟(𝑊(𝜔, 0, 𝜆)) < 1.

Thus, we have the following result, which will be used in our
numerical calculation of the basic reproduction ratio 𝑅

0
in

Section 5.

Lemma 5 (see [15]). The following statements are valid.

(i) If 𝑟(𝑊(𝜔, 0, 𝜆)) = 1 has a positive solution, 𝜆
0
is an

eigenvalue of 𝐿, and hence 𝑅
0
> 0.

(ii) If 𝑅
0
> 0, then 𝜆 = 𝑅

0
is the unique solution of 𝑟(𝑊(𝜔,

0, 𝜆)) = 1.
(iii) 𝑅

0
= 0 if and only if 𝑟(𝑊(𝜔, 0, 𝜆)) < 1 for all 𝜆 > 0.
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3. Global Stability of Disease-Free
Periodic Solution

In this section we will prove the global asymptotical stability
of the disease-free periodic solution (𝑆∗

ℎ
(𝑡), 0, 𝑆

∗

V (𝑡), 0).
Let𝑁

ℎ
(𝑡) = 𝑆

ℎ
(𝑡) + 𝐼

ℎ
(𝑡),𝑁V(𝑡) = 𝑆V(𝑡) + 𝐼V(𝑡). Denote

Ω = {(𝑆
ℎ
, 𝐼
ℎ
, 𝑆V, 𝐼V) ∈ 𝑅

4

+
| 0 ≤ 𝑆

ℎ
+ 𝐼
ℎ
≤ 𝑁
1
< +∞,

0 ≤ 𝑆V + 𝐼V ≤ 𝑁2 < +∞} ,

(16)

where 𝑁
1
= Λ
𝐿
/𝜇
𝑀

1
and 𝑁

2
= 𝑚𝑁

1
. Similar to [16, 17], we

firstly prove the following lemmas.

Lemma 6. Ω is a positively invariant set for (1).

Proof. From the equations in (1), we have

𝑑𝑁
ℎ
(𝑡)

𝑑𝑡
= Λ (𝑡) − 𝜇

1
(𝑡)𝑁
ℎ
(𝑡)

≤ Λ
𝐿
− 𝜇
𝑀

1
𝑁
ℎ
(𝑡)

≤ 0 if 𝑁
ℎ (𝑡) ≥ 𝑁1,

𝑑𝑁V (𝑡)

𝑑𝑡
= 𝑏 (𝑡)𝑁V (1 −

𝑁V

𝑚𝑁
ℎ

) − 𝜇
2
(𝑡) 𝐼V (𝑡)

≤ 𝑏 (𝑡)𝑁V (𝑡) (1 −
𝑁V (𝑡)

𝑚𝑁
ℎ

)

≤ 0 if 𝑁V (𝑡) ≥ 𝑁2

(17)

which implies that Ω is a positive invariant compact set for
(1). The proof is completed.

Lemma 7. Let (𝑆
ℎ
(𝑡), 𝐼
ℎ
(𝑡), 𝑆V(𝑡), 𝐼V(𝑡)) be any solution of

system (1). It holds that

lim
𝑡→+∞

(𝑁
ℎ (𝑡) − 𝑆

∗

ℎ
(𝑡)) = 0,

lim
𝑡→+∞

(𝑁V (𝑡) − 𝑆
∗

V (𝑡)) = 0,
(18)

where 𝑆∗
ℎ
(𝑡), 𝑆∗V (𝑡) are defined in Lemmas 2 and 3, respectively.

Proof. We denote that 𝑦
1
(𝑡) = 𝑁

ℎ
(𝑡) − 𝑆

∗

ℎ
(𝑡). It follows from

the first equation of (17) that 𝑑𝑦
1
(𝑡)/𝑑𝑡 ≤ −𝜇

1
(𝑡)𝑦
1
(𝑡), which

implies that lim
𝑡→+∞

𝑦
1
(𝑡) = lim

𝑡→+∞
(𝑁
ℎ
(𝑡) − 𝑆

∗

ℎ
(𝑡)) = 0.

Further, from Lemma 6, we obtain that for any 𝜀 > 0, there
exists a 𝑇 > 0 such that

𝑆
∗

ℎ
(𝑡) − 𝜀 ≤ 𝑁ℎ (𝑡) ≤ 𝑆

∗

ℎ
(𝑡) + 𝜀, 𝑁V (𝑡) < 𝑁2, ∀𝑡 ≥ 𝑇.

(19)

Let 𝑦
2
(𝑡) = 𝑁V(𝑡) − 𝑆

∗

V (𝑡). From the second equation of
(17) and (19), we get

𝑑𝑦
2
(𝑡)

𝑑𝑡
= 𝑏 (𝑡)𝑁V (𝑡) [1 −

𝑁V (𝑡)

𝑚𝑁
ℎ (𝑡)

] − 𝜇
2
(𝑡) 𝐼V (𝑡)

− 𝑏 (𝑡) 𝑆
∗

V (𝑡) [1 −
𝑆
∗

V (𝑡)

𝑚𝑆
∗

ℎ
(𝑡)
]

≤ 𝑏 (𝑡)𝑁V (𝑡) [1 −
𝑁V (𝑡)

𝑚 (𝑆
∗

ℎ
(𝑡) + 𝜀)

]

− 𝑏 (𝑡) 𝑆
∗

V (𝑡) [1 −
𝑆
∗

V (𝑡)

𝑚𝑆
∗

ℎ
(𝑡)
]

= 𝑏 (𝑡) (𝑁V (𝑡) − 𝑆
∗

V (𝑡)) [1 −
𝑆
∗

ℎ
(𝑡)

𝑆
∗

ℎ
(𝑡) + 𝜀

]

− 𝑏 (𝑡) (𝑁
∗

V (𝑡) − 𝑆
∗

V (𝑡))
𝑁V (𝑡)

𝑚 (𝑆
∗

ℎ
(𝑡) + 𝜀)

+ 𝑏 (𝑡)
𝑆
∗2

V (𝑡) 𝜀

𝑚𝑆
∗

ℎ
(𝑡) (𝑆
∗

ℎ
(𝑡) + 𝜀)

= − 𝑏 (𝑡)
𝑁V (𝑡)

𝑚 (𝑆
∗

ℎ
(𝑡) + 𝜀)

𝑦
2
(𝑡) + Δ (𝜀)

(20)

for all 𝑡 > 𝑇, where

Δ (𝜀) = 𝑏 (𝑡) (𝑁V (𝑡) − 𝑆
∗

V (𝑡)) [1 −
𝑆
∗

ℎ
(𝑡)

𝑆
∗

ℎ
+ 𝜀

]

+ 𝑏 (𝑡)
𝑆
∗2

V (𝑡) 𝜀

𝑚𝑆
∗

ℎ
(𝑡) (𝑆
∗

ℎ
+ 𝜀)

.

(21)

Obviously, lim
𝜀→0

Δ(𝜀) = 0. Because 𝜀 is arbitrarily small,
then lim

𝑡→+∞
𝑦
2
(𝑡) = lim

𝑡→+∞
(𝑁V(𝑡) − 𝑆

∗

V (𝑡)) = 0. Hence,
the proof is completed.

Theorem 8. The disease-free periodic solution (𝑆∗
ℎ
(𝑡), 0, 𝑆

∗

V (𝑡),

0) is globally asymptotically stable if 𝑅
0
< 1, whereas it is

unstable if 𝑅
0
> 1.

Proof. From Theorem 4, we have that (𝑆∗
ℎ
(𝑡), 0, 𝑆

∗

V (𝑡), 0) is
unstable if 𝑅

0
> 1, and (𝑆∗

ℎ
(𝑡), 0, 𝑆

∗

V (𝑡), 0) is locally stable if
𝑅
0
< 1.Therefore, we only need to show the global attractivity

of (𝑆∗
ℎ
(𝑡), 0, 𝑆

∗

V (𝑡), 0) for 𝑅0 < 1.
Since 𝑅

0
< 1, by Theorem 4, we can choose 𝜖

1
> 0

sufficiently small such that

𝑟 (Φ
𝐹−𝑉+𝑀

𝜀
1

(𝜔)) < 1, (22)

where

𝑀
𝜖
1

(𝑡) = (
0 𝜖
1

𝜖
1
0
) . (23)

From Lemma 6 and (18), we have that, for above men-
tioned 𝜖

1
> 0, there exists a𝑇

1
> 0 such that 𝑆

ℎ
(𝑡) ≤ 𝑆

∗

ℎ
(𝑡)+𝜖
1
,

𝑆V(𝑡) ≤ 𝑆
∗

V (𝑡) + 𝜖1 for 𝑡 > 𝑇
1
. It follows from the second and

fourth equations that for 𝑡 > 𝑇
1
,

𝑑𝐼
ℎ
(𝑡)

𝑑𝑡
≤ 𝛽
1
(𝑡) (𝑆
∗

ℎ
(𝑡) + 𝜖

1
) 𝐼V (𝑡) − (𝜇1 (𝑡) + 𝑑 (𝑡)) 𝐼ℎ (𝑡) ,

𝑑𝐼V (𝑡)

𝑑𝑡
≤ 𝛽
2
(𝑡) (𝑆
∗

V (𝑡) + 𝜖1) 𝐼ℎ (𝑡) − 𝜇2 (𝑡) 𝐼V (𝑡) .

(24)
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Consider the following comparison system:

𝑑𝐼
ℎ (𝑡)

𝑑𝑡
= 𝛽
1 (𝑡) (𝑆

∗

ℎ
(𝑡) + 𝜖1) 𝐼V (𝑡) − (𝜇1 (𝑡) + 𝑑 (𝑡)) 𝐼ℎ (𝑡) ,

𝑑𝐼V (𝑡)

𝑑𝑡
= 𝛽
2
(𝑡) (𝑆
∗

V (𝑡) + 𝜖1) 𝐼ℎ (𝑡) − 𝜇2 (𝑡) 𝐼V (𝑡) .

(25)

In view of Lemma 1, we know that there exists a positive 𝜔-
periodic function V

1
(𝑡) such that 𝐽(𝑡) ≤ V

1
(𝑡) exp(𝑝

1
𝑡), where

𝐽(𝑡) = (𝐼
ℎ
(𝑡), 𝐼V(𝑡))

𝑇 and 𝑝
1
= (1/𝜔) ln 𝑟(Φ

𝐹−𝑉+𝑀
𝜖

(𝜔)) <

0. It follows from (22) that lim
𝑡→+∞

𝐼
ℎ
(𝑡) = 0 and

lim
𝑡→+∞

𝐼V(𝑡) = 0. By the comparison of theorem [18], we
have lim

𝑡→+∞
𝐼
ℎ
(𝑡) = 0 and lim

𝑡→+∞
𝐼V(𝑡) = 0. From (18),

we have

lim
𝑡→+∞

(𝑆
ℎ
(𝑡) − 𝑆

∗

ℎ
(𝑡)) = 0,

lim
𝑡→+∞

(𝑆V (𝑡) − 𝑆
∗

V (𝑡)) = 0.
(26)

Hence, the disease free periodic solution (𝑆∗
ℎ
(𝑡), 0, 𝑆

∗

V (𝑡), 0) is
globally attractive. This completes the proof.

4. Permanence

In this section, we show that if 𝑅
0
> 1, then the disease

persists.
Firstly, we define 𝑋 = {(𝑆

ℎ
, 𝐼
ℎ
, 𝑆V, 𝐼V) ∈ 𝑅

4

+
},𝑋
0
= {(𝑆
ℎ
, 𝐼
ℎ
,

𝑆V, 𝐼V) ∈ 𝑋 : 𝑆
ℎ
≥ 0, 𝐼

ℎ
> 0, 𝑆V ≥ 0, 𝐼V > 0}, and 𝜕𝑋

0
=

𝑋\𝑋
0
, andwedenote𝑢(𝑡, 𝑥

0
) as the unique solution of System

(1) with the initial value 𝑥
0
= (𝑆
0

ℎ
, 𝐼
0

ℎ
, 𝑆
0

V , 𝐼
0

V ).
Define Poincaré map 𝑃 : 𝑋 → 𝑋 associated with System

(1) as follows:

𝑃 (𝑥
0
) = 𝑢 (𝜔, 𝑥

0
) , ∀𝑥

0
∈ 𝑋. (27)

By Lemma 6, it is easy to see that both𝑋 and𝑋
0
are positively

invariant and 𝑃 is point dissipative. Set

𝑀
𝜕
= {(𝑆
0

ℎ
, 𝐼
0

ℎ
, 𝑆
0

V , 𝐼
0

V ) ∈ 𝜕𝑋0 | 𝑃
𝑚
(𝑆
0

ℎ
, 𝐼
0

ℎ
, 𝑆
0

V , 𝐼
0

V ) ∈ 𝜕𝑋0,

𝑚 ∈ 𝑍
+
} ,

(28)

where 𝑍+ = {0, 1, 2, . . .}. We claim that

𝑀
𝜕
= {(𝑆
ℎ
, 0, 𝑆V, 0) , 𝑆ℎ ≥ 0, 𝑆V ≥ 0} . (29)

Obviously, 𝑀
𝜕
⊇ {(𝑆

ℎ
, 0, 𝑆V, 0), 𝑆ℎ ≥ 0, 𝑆V ≥ 0}. Next we

want to show 𝑀
𝜕
\ {(𝑆
ℎ
, 0, 𝑆V, 0), 𝑆ℎ ≥ 0, 𝑆V ≥ 0} = 0. If it

does not hold, then there exists a point (𝑆0
ℎ
, 𝐼
0

ℎ
, 𝑆
0

V , 𝐼
0

V ) ∈ 𝑀𝜕 \

{(𝑆
ℎ
, 0, 𝑆V, 0), 𝑆ℎ ≥ 0, 𝑆V ≥ 0}.

Case 1. 𝐼0
ℎ
= 0 and 𝐼0V > 0. It is obvious that 𝐼V(𝑡) > 0 and

𝑆
ℎ
(𝑡) > 0 for any 𝑡 > 0. Then, from the second equation

of System (1), 𝑑𝐼
ℎ
(𝑡)/𝑑𝑡|

𝑡=0
= 𝛽
1
(0)𝑆
ℎ
(0)𝐼V(0) > 0 holds. It

follows that (𝑆
ℎ
(𝑡), 𝐼
ℎ
(𝑡), 𝑆V(𝑡), 𝐼V(𝑡)) ∉ 𝜕𝑋

0
for 0 < 𝑡 ≪ 1.

This is a contradiction.

Case 2. 𝐼0
ℎ
> 0 and 𝐼0V = 0. It is obvious that 𝐼

ℎ
(𝑡) > 0 and

𝑆V(𝑡) > 0 for any 𝑡 > 0. Then, from the fourth equation
of System (1), 𝑑𝐼V(𝑡)/𝑑𝑡|𝑡=0 = 𝛽

2
(0)𝑆V(0)𝐼ℎ(0) > 0 holds. It

follows that (𝑆
ℎ
(𝑡), 𝐼
ℎ
(𝑡), 𝑆V(𝑡), 𝐼V(𝑡)) ∉ 𝜕𝑋

0
for 0 < 𝑡 ≪ 1.

This is a contradiction.

That is to say, for any (𝑆0
ℎ
, 𝐼
0

ℎ
, 𝑆
0

V , 𝐼
0

V ) ∉ {(𝑆ℎ, 0, 𝑆V, 0) : 𝑆ℎ ≥

0, 𝑆V ≥ 0}, then (𝑆
0

ℎ
, 𝐼
0

ℎ
, 𝑆
0

V , 𝐼
0

V ) ∉ 𝑀𝜕.Therefore we have𝑀
𝜕
=

{(𝑆
ℎ
, 0, 𝑆V, 0) : 𝑆ℎ ≥ 0, 𝑆V ≥ 0}.
Next, we present the following result of the uniform

persistence of the disease.

Theorem 9. Suppose 𝑅
0
> 1. Then there is a positive constant

𝜖 > 0 such that each positive solution (𝑆
ℎ
(𝑡), 𝐼
ℎ
(𝑡), 𝑆V(𝑡), 𝐼V(𝑡))

of System (1) satisfies

lim inf
𝑡→+∞

𝐼
ℎ
(𝑡) ≥ 𝜖, lim inf

𝑡→+∞

𝐼V (𝑡) ≥ 𝜖. (30)

Proof. By Theorem 4, we obtain 𝑟(Φ
𝐹−𝑉

(𝜔)) > 1. So we can
choose 𝜂 > 0 small enough such that 𝑟(Φ

𝐹−𝑉−𝑀
𝜂

) > 1, where

𝑀
𝜂
= (

0 𝜂

𝜂 0
) . (31)

Put 𝑃
0
= {𝑆
∗

ℎ
(0), 0, 𝑆

∗

V (0), 0}. Now we proceed by contra-
diction to prove that

lim sup
𝑚→+∞

𝑑 (𝑃
𝑚
(𝑆
0

ℎ
, 𝐼
0

ℎ
, 𝑆
0

V , 𝐼
0

V ) , 𝑃0) ≥ 𝛿. (32)

If it does not hold, then

lim sup
𝑚→+∞

𝑑 (𝑃
𝑚
(𝑆
0

ℎ
, 𝐼
0

ℎ
, 𝑆
0

V , 𝐼
0

V ) , 𝑃0) < 𝛿 (33)

for some (𝑆0
ℎ
, 𝐼
0

ℎ
, 𝑆
0

V , 𝐼
0

V ) ∈ 𝑋
0
. Without loss of generality,

suppose that

𝑑 (𝑃
𝑚
(𝑆
0

ℎ
, 𝐼
0

ℎ
, 𝑆
0

V , 𝐼
0

V ) , 𝑃0) < 𝛿, ∀𝑚 ∈ 𝑍
+
. (34)

By the continuity of the solutions with respect to the initial
values, we obtain


𝑢 (𝑡, 𝑃

𝑚
(𝑆
0

ℎ
, 𝐼
0

ℎ
, 𝑆
0

V , 𝐼
0

V )) − 𝑢 (𝑡, 𝑃0)

≤ 𝜂,

∀𝑡 ∈ [0, 𝜔] , ∀𝑚 ∈ 𝑍
+
.

(35)

For any 𝑡 ≥ 0, there exists a 𝑚 ∈ 𝑍
+
such that 𝑡 = 𝑚𝜔 + 𝑡

1
,

where 𝑡
1
∈ [0, 𝜔]. Then we have


𝑢 (𝑡, (𝑆

0

ℎ
, 𝐼
0

ℎ
, 𝑆
0

V , 𝐼
0

V )) − 𝑢 (𝑡, 𝑃0)


=

𝑢 (𝑡
1
, 𝑃
𝑚
(𝑆
0

ℎ
, 𝐼
0

ℎ
, 𝑆
0

V , 𝐼
0

V )) − 𝑢 (𝑡1, 𝑃0)

≤ 𝜂

(36)

for all 𝑡 ≥ 0, which implies that 𝑆∗
ℎ
(𝑡) − 𝜂 ≤ 𝑆

ℎ
(𝑡) ≤ 𝑆

∗

ℎ
(𝑡) + 𝜂,

𝑆
∗

V (𝑡) − 𝜂 ≤ 𝑆V(𝑡) ≤ 𝑆
∗

V (𝑡) + 𝜂. Then from (1) we have

𝑑𝐼
ℎ
(𝑡)

𝑑𝑡
≥ 𝛽
1
(𝑡) (𝑆
∗

ℎ
(𝑡) − 𝜂) 𝐼V (𝑡) − (𝜇1 (𝑡) + 𝑑 (𝑡)) 𝐼ℎ (𝑡) ,

𝑑𝐼V (𝑡)

𝑑𝑡
≥ 𝛽
2
(𝑡) (𝑆
∗

V (𝑡) − 𝜂) 𝐼ℎ (𝑡) − 𝜇2 (𝑡) 𝐼V (𝑡) .

(37)
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Table 1: Parameter definitions and values used for numerical simulations of the Huanglongbing model.

Parameter Definition Average value Unit Reference
Λ The recruitment rate of citrus — month−1 Estimate
𝛽
1

Infected rate of citrus — month−1 Estimate
𝜇
1

Nature death rate of citrus 0.00275–0.004167 month−1 [20]
𝑑 Disease induced death rate of citrus 0.016667–0.027775 month−1 [21]
𝐷 Birth rate of psyllid 3.78327–33.526137 month−1 [20, 22]
𝛽
2

Infected rate of psyllid — month−1 Estimate
𝜇
2

Nature death rate of psyllid 0.1169825–0.95052 month−1 [23]
𝑚 Max abundance of psyllid per citrus 120–1000 — [24]

Table 2: Parameter functions for model (1) according to the values of Table 1.

Parameter functions Value Reference

𝛽
1
(𝑡) 0.0042925 + 0.003543 cos (2𝜋𝑡/12) Estimate

𝜇
1
(𝑡) 0.0034585 + 0.0007085 cos (2𝜋𝑡/12) [20]

𝑑 (𝑡) 0.022221 + 0.005554 cos (2𝜋𝑡/12) [21]

𝐷 (𝑡) 18.6547035 + 14.8714335 cos (2𝜋𝑡/12) [20, 22]

𝛽
2
(𝑡) 0.008779171 + 0.004838437 cos (2𝜋𝑡/12) Estimate

𝜇
2
(𝑡) 0.53375125 + 0.41676875 cos (2𝜋𝑡/12) [23]

𝑏 (𝑡) = 𝐷 (𝑡) − 𝜇
2
(𝑡) 18.120952 + 14.45466475 cos (2𝜋𝑡/12) [20, 22, 23]

𝑚 560 [24]

Consider the linear system

𝑑𝐼
ℎ (𝑡)

𝑑𝑡
= 𝛽
1 (𝑡) (𝑆

∗

ℎ
(𝑡) − 𝜂) 𝐼V (𝑡) − (𝜇1 (𝑡) + 𝑑 (𝑡)) 𝐼ℎ (𝑡) ,

𝑑𝐼V (𝑡)

𝑑𝑡
= 𝛽
2 (𝑡) (𝑆

∗

V (𝑡) − 𝜂) 𝐼ℎ (𝑡) − 𝜇2 (𝑡) 𝐼V (𝑡) .

(38)

By Lemma 1 and the standard comparison principle, we have
that there exists a positive𝜔-periodic function V

2
(𝑡) such that

𝐽(𝑡) = exp(𝑝
2
𝑡)V
2
(𝑡) is a solution of System (38), where 𝐽(𝑡) =

(𝐼
ℎ
(𝑡), 𝐼V(𝑡))

𝑇 and

𝑝
2
=
1

𝜔
ln 𝑟 (Φ

𝐹−𝑉−𝑀
𝜂

(𝜔)) . (39)

It follows from 𝑟(Φ
𝐹−𝑉−𝑀

𝜂

(𝜔)) > 1 that 𝑝
2
> 0 and 𝐽(𝑡) →

+∞ as 𝑡 → +∞. Applying the comparison principle [18], we
know that 𝐼

ℎ
(𝑡) → +∞ and 𝐼V(𝑡) → +∞ as 𝑡 → +∞. This

is a contradiction.Thus, we have proved that (32) holds and𝑃
is weakly uniformly persistent with respect to (𝑋

0
, 𝜕𝑋
0
).

According to the results of Lemma 7, we can easily obtain
that𝑃 has a global attractor𝑃

0
. It is easy to obtain that𝑃

0
is an

isolated invariant set in𝑋 and𝑊𝑠(𝑃
0
)∩𝑋
0
= 0.We know that

𝑃
0
is acyclic in𝑀

𝜕
and every solution in𝑀

𝜕
converges to 𝑃

0
.

According to Zhao [19], we have that𝑃 is uniformly persistent
with respect to (𝑋

0
, 𝜕𝑋
0
). This implies that the solution of

(1) is uniformly persistent with respect to (𝑋
0
, 𝜕𝑋
0
). Thus we

have that there exists a 𝜖 > 0 such that lim inf
𝑡→+∞

𝐼
ℎ
(𝑡) ≥ 𝜖,

lim inf
𝑡→+∞

𝐼V(𝑡) ≥ 𝜖.

5. Numerical Simulations
and Sensitivity Analysis

In this section, we will make numerical simulations bymeans
of Matlab 7.1 to support our theoretical results, to predict
the trend of the disease, and to explore some control and
prevention measures. Numerical values of parameters of
system (1) are given in Table 1 (most of the data are taken from
the literatures ([20–24])).

According to the periodicity of System (1) and Table 1, we
set 𝜇
1
(𝑡) = 𝛼

0

1
+ 𝛼
0

2
cos(2𝜋𝑡/12), where 𝛼0

2
= (0.004167 −

0.00275)/2 = 0.0007085 and 𝛼0
1
= 0.00275 + 𝛼

0

2
= 0.0034585.

By the similar method, we can obtain the other parameter
functions of model (1) (see Table 2). For the simulations that
follows, we apply the parameters in Table 2 unless otherwise
stated.

ChooseΛ(𝑡) = 0.00265+0.00235 cos(2𝜋𝑡/12).Then from
Lemma 5, we can compute 𝑅

0
= 0.9844 < 1 by means of

Matlab 7.1. FromTheorem 8 we obtain that the infected citrus
population 𝐼

ℎ
(𝑡) and the infected psyllid population 𝐼V(𝑡) of

system (1) are extinct (see Figures 1 and 2).
Choose Λ(𝑡) = 0.005 + 0.0035 cos(2𝜋𝑡/12). Then from

Lemma 5, we obtain that 𝑅
0
= 1.8342 > 1. From Theorem 9

we have that the infected citrus population 𝐼
ℎ
(𝑡) and the

infected psyllid population 𝐼V(𝑡) of System (1) are permanence
(see Figures 3 and 4).

From the formulae for 𝑅
0
, we can predict the general

tendency of the epidemic in a long term according to the
current situation, which is presented in Figures 1, 2, 3, and 4.
From the first two figures we know that the epidemic of
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Figure 1: Graphs of numerical simulations of (1) showings the tendency of the infected citrus population. (a) 𝑡 ∈ [0, 2500]; (b) 𝑡 ∈ [0, 500].
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Figure 2: It is similar to Figure 1.

Huanglongbing can be rising in a short time but cannot be
outbreak with the current prevention and control measures.
From Figures 3 and 4, we can see that the epidemic of
Huanglongbing dropped heavily after 100 months, while
there is still tendency to a stable periodic solution in a long
time.

Next, we perform some sensitivity analysis to determine
the influence 𝑅

0
on the parameters Λ(𝑡), 𝛽

1
(𝑡), and 𝛽

2
(𝑡).

We choose function Λ(𝑡) = Λ0
1
+ Λ
0

2
cos(2𝜋𝑡/12), where

Λ
0

1
, Λ0
2
denote the average and amplitude values of Λ(𝑡),

respectively, and Λ
0

1
= (1/12) ∫

12

0
Λ(𝑡)𝑑𝑡. From Figure 5,

we can observe that the blue line is linear relation between
𝑅
0
and Λ

0

2
, and 𝑅

0
increases as Λ0

2
increases. The red

curve reflects the influence of the average value of Λ(𝑡) on
𝑅
0
. Figure 5 shows that Λ0

1
is more sensitive than Λ

0

2
on

the basic reproduction number 𝑅
0
. Therefore, in the real

world, decreasing the average recruitment rate of citrus is the
valuable way to control Huanglongbing.

Now, we consider the combined influence of 𝛽
1
(𝑡) and

𝛽
2
(𝑡) on 𝑅

0
. Set Λ(𝑡) = 0.0027 + 0.00235 cos(2𝜋𝑡/12),

𝛽
1
(𝑡) = 𝑎

1
+ 𝑏
1
cos(2𝜋𝑡/12) and 𝛽

2
(𝑡) = 𝑎

2
+ 𝑏
2
cos(2𝜋𝑡/12).

Moreover, we know that 𝑎
1

= (1/12) ∫
12

0
𝛽
1
(𝑡)𝑑𝑡 and

𝑎
2
= (1/12) ∫

12

0
𝛽
2
(𝑡)𝑑𝑡. Other parameters can be seen in

Table 2.

Case (I). We fix 𝑏
1
= 0.003543 and 𝑏

2
= 0.004838437,

and let 𝑎
1
vary from 0.00001 to 0.015 and 𝑎

2
from 0.00001

to 0.02. For this case, it is interesting to examine how the
average values of adequate contact rate 𝛽

1
(𝑡) and 𝛽

2
(𝑡) affect

the basic reproduction number 𝑅
0
. Numerical results shown
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Figure 3: The figures show that the infected citrus population is permanence. (a) 𝑡 ∈ [0, 2500]; (b) 𝑡 ∈ [0, 500].
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Figure 4: It is similar to Figure 3.

in Figure 6 imply that the basic reproduction number𝑅
0
may

be less than 1 when 𝑎
1
or 𝑎
2
is small enough. And the results

also imply that 𝑅
0
increases as 𝑎

1
and 𝑎
2
increase. Further, we

can observe that from Figure 6(i)the smaller the values of 𝑎
1

or 𝑎
2
are, the more sensitive 𝑅

0
is; (ii) increasing 𝑎

2
may be

more sensitive for 𝑅
0
when 𝑎

1
is fixed; (iii) increasing 𝑎

1
may

be more sensitive for 𝑅
0
when 𝑎

2
is fixed.

Case (II). We fix 𝑎
1
= 0.0042925 and 𝑎

2
= 0.00877917, and

let 𝑏
1
vary from 0.000001 to 0.005 and 𝑏

2
from 0.000002 to

0.006.Then we obtain the result of numerical simulation and
it is shown in Figure 7. Obviously, Figure 7 shows that 𝑅

0
is

linearly related to both 𝑏
1
and 𝑏

2
with the pattern that 𝑅

0

decreases to a relatively small value (less than 1) only when
𝑏
1
and 𝑏
2
are very small.

By the above graphs of the basic reproduction number
𝑅
0
on the average values of recruitment rate of citrus Λ(𝑡)

and adequate contact rate 𝛽
1
(𝑡), 𝛽
2
(𝑡), we know that the basic

reproduction number 𝑅
0
is a monotonic increasing function

by the average values. From the sensitivity analysis diagrams,
we observe that 𝑅

0
falls to less than 1 by decreasing the values

of those parameters.

6. Conclusion

In this paper, we have analyzed a HLB transmission model
with Logistic growth in periodic environments. It is proved
that 𝑅

0
is the threshold for distinguishing the disease extinc-

tion or permanence. The disease-free periodic solution is



Abstract and Applied Analysis 9

0 1 2 3 4 5
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
0

×10
−3

Λ
0
1 = 0.0027

Λ
0
2 = [0.000001, 0.005]

Λ
0
1 = [0.000001, 0.005]

Λ
0
2 = 0.00235

Λ
0
1 or Λ0

2
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globally asymptotically stable and the disease dies out when
𝑅
0
< 1. When 𝑅

0
> 1, the disease persists.

The numerical simulations shown in Figure 5 show that
there are some parameter ranges of Λ

1
and Λ

2
such that the

threshold parameter 𝑅
0
is smaller than 1. It indicates a useful

way to eradicate Huanglongbing by limiting the recruitment
of citrus, including the average value and amplitude of
recruitment function.

The results shown in Figure 6 (Figure 7) show that if the
amplitudes of infected functions 𝑏

1
, 𝑏
2
(the average infected

rate 𝑎
1
, 𝑎
2
) are fixed, we can control the infection of citrus

and psyllid by limiting the average infected rates 𝑎
1
, 𝑎
2
(the

amplitudes of infected functions 𝑏
1
, 𝑏
2
).

According to the above theoretical analysis andnumerical
simulations, we can conclude that the recruitment of citrus
and the infection of citrus and psyllid have significant
effects on Huanglongbing transmission. In order to prevent
the epidemic disease from generating endemic, making an
appropriate reduction of the recruitment rate of citrus and
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decreasing the contact rate between psyllid and the citrus are
effective measures to control Huanglongbing.
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According to integrated pest management strategies, we construct and investigate the dynamics of a Holling-Tanner predator-prey
system with state dependent impulsive effects by releasing natural enemies and spraying pesticide at different thresholds. Applying
the Dulacs criterion, the global stability of the positive equilibrium in the system without impulsive effect is discussed. By using
impulsive differential equation geometry theory and the method of successor functions, we prove the existence of periodic solution
of the system with state dependent impulsive effects. Furthermore, the stability conditions of periodic solutions are obtained. Some
simulations are exerted to illustrate the feasibility of our main results.

1. Introduction

In 2012, the main maize area in Northern China embraced
the large-scale plant diseases and insect pests [1]. With the
good weather condition,Mythimna separataWalker,Ostrinia
furnacalis, aphid, and other pests had a mass propagation
which brought a large damage to the production of corn.
How human beings effectively control the pests has been
a significant task. Due to its simple operation and quick
effect, spraying pesticide has always been the major way to
kill pests for a long time. However, there may be pesticide
residues in vegetables and crops threatening people’s good
health and damaging the environment. With the increasing
awareness of the environment, people are paying more
attention to developing green agriculture. Releasing natural
enemies and artificial capture are becoming significantmeans
of controlling pests.

Different control strategies will be applied due to different
behavior features of pests and their damages for crops in dif-
ferent stages. For instance, in the spawning period ofOstrinia
furnacalis, artificial releasing of Trichogramma (the natural
enemy of Ostrinia furnacalis) will be applied with the control
effect of 70%–80%; if the hatchability is over 30%, pes-
ticide control will be used instantly [2]. In consideration

of the rapidity of chemical control and nonpollution of
biological control, people control pests integrating with
biological, physical, and chemical means under the EIL
(economic injury level) to realize environmental, economic,
and social profits together. Spraying pesticides and releasing
natural enemies are instantaneous; these phenomena can be
described as the impulsive differential equations. In recent
decades, the theoretical research on the impulsive differential
equation has represented a significant development and has
been widely used in various mathematical ecological models
[3–11] and many scholars made a deep analysis of the
impulsive differential ecological system at a fixed time and
have got some important products [12–26]. However, in the
actual process of pest control, relevant measures will be used
according to pest quantity and its damage to crops, which is
the state impulsive differential system. Tang et al. [27, 28],
Zeng et al. [29], Zhao et al. [30], Nie et al. [31, 32], and
literatures [33–37] had a further exploration for the system
and made great progress. Based on the study of a Holling-
Tanner system, an integrated pest control model with two
impulses is established aiming at the specific pest conditions
in different threshold.

Let 𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡) denote the population densities
of pest (prey) and natural enemy (predator) at time 𝑡,
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respectively; then the predator-prey system usually can be
expressed as [38]

𝑑𝑥

𝑑𝑡
= 𝑥𝑔 (𝑥) − 𝑦Φ (𝑥) ,

𝑑𝑦

𝑑𝑡
= 𝑦 [−𝑞 (𝑥) + 𝑐Φ (𝑥)] ,

(1)

in which 𝑔(𝑥) denotes the relative growth rate of the prey;
Φ(𝑥) is the functional response function of the predator; 𝑞(𝑥)
is the mortality rate of the prey. The literature [39] studied
a class of Holling-Tanner system with functional response
functionΦ(𝑥) = 𝑚𝑥/(𝐴 + 𝑥). This system was given by

𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝐾
) −

𝑚𝑥

𝐴 + 𝑥
𝑦,

𝑑𝑦

𝑑𝑡
= 𝑦𝑠 (1 −

ℎ𝑦

𝑥
) ,

𝑥 (0) > 0, 𝑦 (0) > 0.

(2)

Here, let the prey population be growth in logistic and the
environmental capacity is 𝐾; the intrinsic growth rate of
predator is 𝑠 and the carrying capacity is proportional to the
number of prey. Introducing transformation �̃� = 𝑟𝑡, 𝑥(�̃�) =
𝑥(𝑡)/𝐾, 𝑦(�̃�) = 𝑚𝑦(𝑡)/𝑟𝐾, and letting 𝛿 = 𝑠/𝑟, 𝛽 = 𝑠ℎ/𝑚,
𝑎 = 𝐴/𝐾, the system (2) is changed into a dimensionless
form:

𝑑𝑥

𝑑𝑡
= 𝑥 (1 − 𝑥) −

𝑥

𝑎 + 𝑥
𝑦,

𝑑𝑦

𝑑𝑡
= 𝑦 (𝛿 − 𝛽

𝑦

𝑥
) ,

𝑥 (0) > 0, 𝑦 (0) > 0.

(3)

In order to carry out integrated control of pests, we adopt
strategies as follows.

(1)When the pest density 𝑥(𝑡) reached a lower level 𝑥 =

ℎ
1
, we release natural enemies to control pests for low damage

of insect pests on crops; that is,

Δ𝑥 (𝑡) = 0,

Δ𝑦 (𝑡) = 𝜆,
𝑥 = ℎ
1
, (4)

where 𝜆 is amount of natural enemies 𝑦(𝑡) released one time.
(2) If the pest density 𝑥(𝑡) reached a higher level 𝑥 = ℎ

2
,

due to the fact that the damage of insect pests on crops is
severe at this time, we effectively combine spraying pesticides
with releasing natural enemies to control pests; that is,

Δ𝑥 (𝑡) = −𝑝𝑥 (𝑡) ,

Δ𝑦 (𝑡) = −𝑞𝑦 (𝑡) + 𝜏,
𝑥 = ℎ
2
. (5)

Here, 𝜏 is the amount of natural enemies 𝑦(𝑡) released one
time, 𝑝, 𝑞 are mortality rates of pests and natural enemies
which die from spraying pesticides, and 𝑝, 𝑞 ∈ (0, 1).

Synthesizing systems (3), (4), and (5), the following inte-
grated pest management model is obtained:

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝑥 (𝑡) (1 − 𝑥 (𝑡)) −

𝑥 (𝑡)

𝑎 + 𝑥 (𝑡)
𝑦 (𝑡) ,

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝑦 (𝑡) (𝛿 − 𝛽

𝑦 (𝑡)

𝑥 (𝑡)
) ,

𝑥 ̸= ℎ
1
, ℎ
2
, or 𝑥 = ℎ

1
, 𝑦 > 𝑦,

Δ𝑥 (𝑡) = 0,

Δ𝑦 (𝑡) = 𝜆,
𝑥 = ℎ
1
, 𝑦 ≤ 𝑦,

Δ𝑥 (𝑡) = −𝑝𝑥 (𝑡) ,

Δ𝑦 (𝑡) = −𝑞𝑦 (𝑡) + 𝜏,
𝑥 = ℎ
2
,

𝑥 (0) > 0, 𝑦 (0) > 0,

(6)

where 𝑥(𝑡) denotes the population density of pests at time 𝑡
and 𝑦(𝑡) denotes the population density of natural enemies
at time 𝑡; 𝑎, 𝛿, 𝛽 are positive numbers; 𝑝, 𝑞, 𝜆, 𝜏 are control
parameters and positive numbers; the point (ℎ

1
, 𝑦) is the

intersection of the isoclinic line 𝑦 = (1 − 𝑥)(𝑥 + 𝑎) and the
straight line 𝑥 = ℎ

1
.

2. Preliminaries

In order to analyze the dynamics of the system (6), we intro-
duce the basic knowledge of the state impulsive differential
equations.

Consider the state impulsive differential equation:

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝑃 (𝑥, 𝑦) ,

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝑄 (𝑥, 𝑦) ,

(𝑥, 𝑦) ∉ 𝑀(𝑥, 𝑦) ,

Δ𝑥 (𝑡) = 𝛼 (𝑥, 𝑦) ,

Δ𝑦 (𝑡) = 𝛽 (𝑥, 𝑦) ,
(𝑥, 𝑦) ∈ 𝑀(𝑥, 𝑦) ,

(7)

where 𝑃(𝑥, 𝑦) and𝑄(𝑥, 𝑦) have order-one continuous partial
derivatives.

Definition 1. The dynamic system which is formed by solu-
tionmapping of system (7) is called semicontinuous dynamic
system, denoted by (Ω, 𝑓, 𝜑,𝑀), where 𝑓 is semicontinuous
dynamical system mapping and 𝑓 : Ω → Ω, 𝜑(𝑀) = 𝑁,
and in which 𝜑 is pulse mapping. Here,𝑀(𝑥, 𝑦) and𝑁(𝑥, 𝑦)
are straight or curved line in the plane. 𝑀(𝑥, 𝑦) is called
impulsive set, and𝑁(𝑥, 𝑦) is called corresponding image set.

In the system (6), let𝑀
1
= {(𝑥, 𝑦) | 𝑥 = ℎ

1
, 0 < 𝑦 ≤ 𝑦},

and the image set corresponding to impulsive mapping (4) is
𝑁
1
= 𝜑
1
(𝑀
1
) = {(𝑥, 𝑦) | 𝑥 = ℎ

1
, 0 < 𝑦 ≤ 𝑦 + 𝜆}. Let𝑀

2
=

{(𝑥, 𝑦) | 𝑥 = ℎ
2
, 𝑦 > 0}, and the image set corresponding to

impulsive mapping (5) is 𝑁
2
= 𝜑
2
(𝑀
2
) = {(𝑥, 𝑦) | 𝑥(𝑡

+
) =

(1 − 𝑝)ℎ
2
, 𝑦(𝑡
+
) = (1 − 𝑞)𝑦(𝑡) + 𝜏}.

Definition 2. Assume that impulsive set 𝑀 and image set
𝑁 are straight lines, the orbit Π(𝐴, 𝑡) of system (7) starting
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from point 𝐴 on 𝑁 hits𝑀 at point 𝐴
1
and then jumps onto

point 𝐴+
1
, then the function 𝑓(𝐴) = 𝑦

𝐴
+

1

− 𝑦
𝐴
is defined as a

successor function about point𝐴, and then point𝐴+
1
is called

successor point of 𝐴.

Lemma 3 (see [10, 11]). Successor function is continuous.

Definition 4. If there exists a point𝑃
0
on the image set𝑁, and

a constant𝑇 > 0 such thatΠ(𝑃
0
, 𝑇) = 𝑃 ∈ 𝑀, 𝜑(𝑃) = 𝑃

0
∈ 𝑁,

then the orbitΠ(𝑃
0
, 𝑡) starting from 𝑃

0
is called an order-one

periodic solution of the system (7).

Lemma5 (Bendixson theoremof impulsive differential equa-
tions [10, 11]). Assume that 𝐺 is a Bendixson region of system
(7); if 𝐺 does not contain critical points of system (7), then
system (7) contains a closed orbit in 𝐺.

For the system (6), from Lemma 5, the following conclu-
sion is obtained.

Lemma 6. In system (6), if there exist points 𝐴 and 𝐵 on
the image set 𝑁, such that the successor function satisfies
𝑓(𝐴)𝑓(𝐵) < 0, then there must exist an order-one periodic
solution in system (6).

Lemma 7 (Analogue of Poincaré Criterion [3, 4]). Assume
that 𝑥 = 𝜉(𝑡), 𝑦 = 𝜂(𝑡) is the 𝑇-periodic solution of the
following impulsive differential equations:

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝑃 (𝑥, 𝑦) ,

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝑄 (𝑥, 𝑦) ,

Φ (𝑥, 𝑦) ̸= 0,

Δ𝑥 (𝑡) = 𝛼 (𝑥, 𝑦) ,

Δ𝑦 (𝑡) = 𝛽 (𝑥, 𝑦) ,
Φ (𝑥, 𝑦) = 0,

(8)

where 𝑃(𝑥, 𝑦) and 𝑄(𝑥, 𝑦) contain order-one continuous par-
tial derivatives and Φ(𝑥, 𝑦) is a sufficiently smooth function
with gradΦ(𝑥, 𝑦) ̸= 0.

If the multiplier 𝜇 satisfies the condition |𝜇| < 1, then
the periodic solution (𝜉(𝑡), 𝜂(𝑡)) of the system (8) is orbitally
asymptotically stable, where

𝜇 =

𝑛

∏

𝑗=1

𝜅
𝑗
exp[∫

𝑇

0

(
𝜕𝑃 (𝜉 (𝑡) , 𝜂 (𝑡))

𝜕𝑥

+
𝜕𝑄 (𝜉 (𝑡) , 𝜂 (𝑡))

𝜕𝑦
)𝑑𝑡] ,

(9)

with

𝜅
𝑗
= ((

𝜕𝛽

𝜕𝑦
⋅
𝜕Φ

𝜕𝑥
−
𝜕𝛽

𝜕𝑥
⋅
𝜕Φ

𝜕𝑦
+
𝜕Φ

𝜕𝑥
)𝑃
+

+(
𝜕𝛼

𝜕𝑥
⋅
𝜕Φ

𝜕𝑦
−
𝜕𝛼

𝜕𝑦
⋅
𝜕Φ

𝜕𝑥
+
𝜕Φ

𝜕𝑦
)𝑄
+
)

×(
𝜕Φ

𝜕𝑥
𝑃 +

𝜕Φ

𝜕𝑦
𝑄)

−1

,

(10)

and 𝑃, 𝑄, 𝜕𝛼/𝜕𝑥, 𝜕𝛼/𝜕𝑦, 𝜕𝛽/𝜕𝑥, 𝜕𝛽/𝜕𝑦, 𝜕Φ/𝜕𝑥, 𝜕Φ/𝜕𝑦 are
calculated at the point (𝜉(𝜏

𝑗
), 𝜂(𝜏
𝑗
)), 𝑃
+
= 𝑃(𝜉(𝜏

+

𝑗
), 𝜂(𝜏
+

𝑗
)),

𝑄
+
= 𝑄(𝜉(𝜏

+

𝑗
), 𝜂(𝜏
+

𝑗
)), and 𝜏

𝑗
(𝑗 ∈ 𝑁) is the time of the 𝑗th

jump.

3. The Stability of System (6) without
Impulsive Effect

In the system (6), if 𝑝 = 𝑞 = 𝜆 = 𝜏 = 0, that is, the system
without impulsive effect, the following system is obtained:

𝑑𝑥

𝑑𝑡
= 𝑥 (1 − 𝑥) −

𝑥

𝑎 + 𝑥
𝑦,

𝑑𝑦

𝑑𝑡
= 𝑦 (𝛿 − 𝛽

𝑦

𝑥
) ,

𝑥 (0) > 0, 𝑦 (0) > 0.

(11)

If set (𝑥(𝑡), 𝑦(𝑡)) is an arbitrary solution of the system (11)
satisfying the initial conditions, then the following lemma is
obtained.

Lemma 8. The solutions of the system (11) is bounded, which
means ∃𝑇 > 0 satisfies 0 ≤ 𝑥(𝑡) ≤ 1 and 0 ≤ 𝑦(𝑡) ≤ 𝛿/𝛽 for
𝑡 ≥ 𝑇.

Obviously, the system (11) exhibits prey isocline 𝐿
1
: 𝑦 =

(1 − 𝑥)(𝑥 + 𝑎), predator isocline 𝐿
2
: 𝑦 = (𝛿/𝛽)𝑥, nontrivial

equilibrium points 𝐸
0
(1, 0), and 𝐸(𝑥∗, 𝑦∗), and here;

𝑥
∗
=

(𝛽 − 𝛿 − 𝑎𝛽) + √(𝛽 − 𝛿 − 𝑎𝛽)
2
+ 4𝑎𝛽2

2𝛽
,

𝑦
∗
=
𝛿

𝛽
𝑥
∗
.

(12)

Calculating the variational matrix of the equilibrium point in
the system (11), we get

𝐽 (𝐸
0
) = (

−1 −
1

1 + 𝑎

0 𝛿

) . (13)

Obviously, 𝐸
0
is saddle point. At 𝐸,

𝐽 (𝐸) = (

𝑥
∗

𝑥∗ + 𝑎
(1 − 𝑎 − 2𝑥

∗
) −

𝑥
∗

𝑥∗ + 𝑎

𝛿
2

𝛽
−𝛿

) . (14)

The characteristic equation of 𝐽(𝐸) is
𝑓 (𝜆) = 𝜆

2
+ 𝑝𝜆 + 𝑞 = 0, (15)

in which 𝑝 = 𝛿 − (𝑥∗/(𝑥∗ + 𝑎))(1 − 𝑎 − 2𝑥∗), 𝑞 = (𝛿𝑥∗/(𝑥∗ +
𝑎))(𝛿/𝛽 − (1 − 𝑎 − 2𝑥

∗
)).

Thus,

Δ = 𝑝
2
− 4𝑞 = (𝛿 −

𝑥
∗

𝑥∗ + 𝑎
(1 − 𝑎 − 2𝑥

∗
))

2

−
4𝛿𝑥
∗

𝑥∗ + 𝑎
(
𝛿

𝛽
− (1 − 𝑎 − 2𝑥

∗
)) ,
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𝜆
1
𝜆
2
=

𝛿𝑥
∗

𝑥∗ + 𝑎
(
𝛿

𝛽
− (1 − 𝑎 − 2𝑥

∗
))

=
𝛿

𝑥∗ + 𝑎
(𝑥
∗2
+ 𝑎) > 0,

𝜆
1
+ 𝜆
2
= −(𝛿 −

𝑥
∗

𝑥∗ + 𝑎
(1 − 𝑎 − 2𝑥

∗
))

= −
2𝑥
∗2
+ (𝑎 − 1 + 𝛿) 𝑥

∗
+ 𝑎𝛿

𝑥∗ + 𝑎
.

(16)

Let 𝑃(𝑥) = 2𝑥2 + (𝑎 − 1 + 𝛿)𝑥 + 𝑎𝛿, and then

Δ =
𝑃
2
(𝑥
∗
)

(𝑥
∗ + 𝑎)

2
−

4𝛿 (𝑥
∗2
+ 𝑎)

𝑥∗ + 𝑎

=
1

(𝑥
∗ + 𝑎)

2
[𝑃
2
(𝑥
∗
) − 4𝛿 (𝑥

∗2
+ 𝑎) (𝑥

∗
+ 𝑎)] .

(17)

Based on the above analysis, we can get the following
conclusion.

Theorem 9. If 𝑃(𝑥∗) > 0, the positive equilibrium point 𝐸(𝑥∗,
𝑦
∗
) of the system (11) is locally asymptotically stable. Specially,

(1) if (𝐻
1
) : 0 < 𝑃(𝑥

∗
) < (4𝛿(𝑥

∗2
+ 𝑎)(𝑥

∗
+ 𝑎))
1/2, 𝐸(𝑥∗,

𝑦
∗
) is a locally asymptotically stable focus,

(2) if (𝐻
2
) : 𝑃(𝑥

∗
) ⩾ (4𝛿(𝑥

∗2
+ 𝑎)(𝑥

∗
+ 𝑎))
1/2, 𝐸(𝑥∗, 𝑦∗)

is a locally asymptotically stable node.

Next, we discuss the global stability of𝐸(𝑥∗, 𝑦∗) about the
system (11).

Theorem10. If (𝐻
3
) : 𝑎 + 𝛿 ≥ 1 or (𝐻

4
) : 1−√8𝑎𝛿 < 𝑎+𝛿 < 1

is true, then the positive equilibrium𝐸(𝑥
∗
, 𝑦
∗
) of the system (11)

is globally asymptotically stable.

Proof. From (𝐻
3
) or (𝐻

4
), we have 𝑃(𝑥) = 2𝑥

2
+ (𝑎 − 1 +

𝛿)𝑥+𝑎𝛿 > 0 for 𝑥 > 0, and thus 𝑃(𝑥∗) > 0. Structure a Dulac
function as follows:

𝐵 (𝑥, 𝑦) =
𝑥 + 𝑎

𝑥𝑦2
, 𝑥 > 0, 𝑦 > 0. (18)

Let𝑓(𝑥, 𝑦) = 𝑥(1−𝑥)−(𝑥/(𝑎+𝑥))𝑦, 𝑔(𝑥, 𝑦) = 𝑦(𝛿−𝛽(𝑦/𝑥)),
and thus
𝜕 (𝑓𝐵)

𝜕𝑥
+
𝜕 (𝑔𝐵)

𝜕𝑦
= −

1

𝑥𝑦2
[2𝑥
2
+ (𝑎 − 1 + 𝛿) 𝑥 + 𝑎𝛿]

= −
1

𝑥𝑦2
𝑃 (𝑥) ⩽ 0.

(19)

By the Bendixson-Dulac theorem, there does not exist closed
orbit of the system (11) around 𝐸. Based on Lemma 8 and
Theorem 9, the positive equilibrium 𝐸(𝑥

∗
, 𝑦
∗
) is globally

asymptotically stable.

Remark 11. If (𝐻
1
), (𝐻
3
) or (𝐻

1
), (𝐻
4
) are true, then𝐸(𝑥∗, 𝑦∗)

is a globally asymptotically stable focus.

0.0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

1

y

Figure 1: Illustration of vector graph of system (11), where 𝑎 = 0.05,
𝛿 = 0.5, 𝛽 = 0.7.

Remark 12. If (𝐻
2
), (𝐻
3
) or (𝐻

2
), (𝐻
4
) are true, then 𝐸(𝑥∗,

𝑦
∗
) is a globally asymptotically stable node.
Assume that 𝐸(𝑥∗, 𝑦∗) is globally asymptotically stable

focal point of the system (11), and then the illustration of
vector graph of the system is as follows (see Figure 1).

4. The Geometric Analysis of System (6) with
Two State Impulses

In this section, we will discuss the existence and stability of
periodic solution of system (6) only at focal point situation.
So, we assume that the conditions (𝐻

1
), (𝐻
3
) or (𝐻

1
), (𝐻
4
) are

true. According to the practical significance of the integrated
pest management model, the condition (𝐻

5
) : ℎ

1
< (1 −

𝑝)ℎ
2
< ℎ
2
< 𝑥
∗ is always given as such. By the analysis of

system (6), the curve 𝐿
1
: 𝑦 = (1 − 𝑥)(𝑥 + 𝑎) is 𝑋-isocline,

and the line 𝐿
2
: 𝑦 = (𝛿/𝛽)𝑥 is 𝑌-isocline. Let points 𝑃,

𝑄, 𝑅 be the intersection of the curve 𝐿
1
and lines 𝑥 = ℎ

1
,

𝑥 = (1−𝑝)ℎ
2
, 𝑥 = ℎ

2
, respectively. Obviously 𝐸(𝑥∗, 𝑦∗) is the

intersection point of𝐿
1
and𝐿

2
. From the previous discussion,

we know that the first impulsive set is 𝑀
1
= {(𝑥, 𝑦) | 𝑥 =

ℎ
1
, 0 < 𝑦 ≤ 𝑦}, and the image set corresponding to 𝑀

1

is 𝑁
1
= {(𝑥, 𝑦) | 𝑥 = ℎ

1
, 0 < 𝑦 ≤ 𝑦 + 𝜆}; the second

impulsive set is 𝑀
2
= {(𝑥, 𝑦) | 𝑥 = ℎ

2
, 𝑦 > 0}, and the

image set corresponding to 𝑀
2
is 𝑁
2
= {(𝑥, 𝑦) | 𝑥(𝑡

+
) =

(1−𝑝)ℎ
2
, 𝑦(𝑡
+
) = (1−𝑞)𝑦(𝑡)+𝜏}.The structure of the system

can be shown as in Figure 2.
Using successor function and geometric theory of impul-

sive differential equations and according to different positions
of orbit initial points, the existence and stability of periodic
solution of system (6) are discussed as follows.

4.1. The Initial Point on𝑁
1
. Let𝐶

0
(ℎ
1
, 𝑦
𝐶
0

) be an initial point
of the orbit of the system (6); if 𝑦

𝐶
0

< 𝑦, point 𝐶
0
is below
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Figure 2: The structure graph of system (6).

point 𝑃(ℎ
1
, 𝑦), then 𝐶

0
∈ 𝑀
1
(𝑀
1
is impulsive set), and the

image point 𝐶+
0
of 𝐶
0
must be above point 𝑃 with 𝑛 times

impulses; therefore, we only need to discuss the cases of 𝑦
𝐶
0

>

𝑦.
The orbit Π(𝐶

0
, 𝑡) starting from 𝐶

0
(ℎ
1
, 𝑦
𝐶
0

) hits the
impulsive set 𝑀

1
at point 𝐶

1
(ℎ
1
, 𝑦
𝐶
1

), and then 𝐶
1
jumps

to point 𝐶
11
(ℎ
1
, 𝑦
𝐶
11

). If 𝑦
𝐶
11

< 𝑦, 𝐶
11

continued to jump
to point 𝐶

12
(ℎ
1
, 𝑦
𝐶
12

), and after 𝑛 times it reaches the point
𝐶
1𝑛
(ℎ
1
, 𝑦
𝐶
1𝑛

), where 𝑦
𝐶
11

= 𝑦
𝐶
1

+ 𝜆, 𝑦
𝐶
12

= 𝑦
𝐶
1

+ 2𝜆, . . .,
𝑦
𝐶
1𝑛

= 𝑦
𝐶
1

+ 𝑛𝜆, and 𝑦 < 𝑦
𝐶
1𝑛

< 𝑦 + 𝜆. The situation of
point 𝐶

1𝑛
has three cases as follows.

(a) If 𝑦
𝐶
1𝑛

= 𝑦
𝐶
0

(see Figure 3(a)), 𝐶
1𝑛

is coincident with
𝐶
0
, then the curve 𝐶

0
𝐶
1
𝐶
11
⋅ ⋅ ⋅ 𝐶
1𝑛

is closed orbit, and the
system (6) exhibits a 1-periodic solution.

(b) If 𝑦
𝐶
1𝑛

> 𝑦
𝐶
0

(see Figure 3(b)), 𝐶
1𝑛
is above 𝐶

0
; in this

time, the successor function of 𝐶
0
satisfies 𝑓(𝐶

0
) = 𝑦

𝐶
1𝑛

−

𝑦
𝐶
0

> 0. In the meantime, choose a point 𝐷
0
(ℎ
1
, 𝑦
𝐷
0

) on
𝑁
1
satisfying 𝑦

𝐷
0

> 𝑦 + 𝜆. The orbit Π(𝐷
0
, 𝑡) starting from

𝐷
0
hits the impulsive set at point 𝐷

1
(ℎ
1
, 𝑦
𝐷
1

), and 𝐷
1
jumps

sometimes to point 𝐷
1𝑚
(ℎ
1
, 𝑦
𝐷
1𝑚

), where 𝑦 < 𝑦
𝐷
1𝑚

< 𝑦 + 𝜆.
Thus, the successor function of 𝐷

0
satisfies 𝑓(𝐷

0
) = 𝑦

𝐷
1𝑚

−

𝑦
𝐷
0

< 0.
According to Lemma 6, the system (6) exhibits a periodic

solution, and the initial point of the periodic solution is
between 𝐶

0
and𝐷

0
.

(c) If 𝑦
𝐶
1𝑛

< 𝑦
𝐶
0

(see Figure 3(c)), 𝐶
1𝑛
is below 𝐶

0
; in this

time, the successor function of 𝐶
0
is 𝑓(𝐶

0
) = 𝑦

𝐶
1𝑛

− 𝑦
𝐶
0

<

0. On the other hand, choose a point 𝐷
0
(ℎ
1
, 𝑦
𝐷
0

) on 𝑁
1

satisfying 𝑦 < 𝑦
𝐷
0

< 𝑦 + 𝜀 (𝜀 is a sufficiently small
positive number).The orbitΠ(𝐷

0
, 𝑡) starting from𝐷

0
hits the

impulsive set𝑀
1
at point𝐷

1
(ℎ
1
, 𝑦
𝐷
1

), and𝐷
1
jumps to point

𝐷
11
(ℎ
1
, 𝑦
𝐷
11

), where 𝑦
𝐷
11

= 𝑦
𝐷
1

+ 𝜆. As𝐷
0
sufficiently closed

to 𝑃, 𝐷
1
is sufficiently close to 𝑃, then 𝑦

𝐷
11

= 𝑦
𝐷
1

+ 𝜆 > 𝑦
𝐷
0

.
Thus, the successor function of 𝐷

0
satisfies𝑓(𝐷

0
) = 𝑦

𝐷
1

−

𝑦
𝐷
0

> 0.
From Lemma 6, system (6) exhibits a 1-periodic solution.
To sum up the above discussed, we get the following.

Theorem 13. If the initial point 𝐶
0
(ℎ
1
, 𝑦
𝑐
0

) of the orbit of the
system (6) is on 𝑁

1
with 𝑦

𝐶
0

> 𝑦, then the system exhibits a
1-periodic solution.

Next, we will discuss the stability of the above periodic
solutions.

Theorem 14. Let (𝜉(𝑡), 𝜂(𝑡)) be the 𝑇-periodic solution of
the system (6) with the initial point 𝐶

0
(ℎ
1
, 𝜂
0
); the closed

orbit corresponding to the periodic solution is the curve
𝐶
0
𝐶
1
𝐶
11
⋅ ⋅ ⋅ 𝐶
1𝑛
, if

𝜇
 =



𝜅 exp{−∫
𝑇

0

(𝜉 (𝑡) −
𝜉 (𝑡) 𝜂 (𝑡)

(𝜉(𝑡) + 𝑎)
2
+
𝛽𝜂 (𝑡)

𝜉 (𝑡)
) 𝑑𝑡}



< 1,

(20)

where

𝜅 =
𝜂
0
− 𝑛𝜆

𝜂
0

𝑛

∏

𝑗=1

1 − ℎ
1
− (1/ (ℎ

1
+ 𝑎)) (𝜂

0
− (𝑛 − 𝑗) 𝜆)

1 − ℎ
1
− (1/ (ℎ

1
+ 𝑎)) (𝜂

0
− (𝑛 − 𝑗 + 1) 𝜆)

,

(21)

then the periodic solution (𝜉(𝑡), 𝜂(𝑡)) is orbitally asymptotically
stable.

Proof. Let the orbit Π(𝐶
0
, 𝑡) with the initial point 𝐶

0
(ℎ
1
, 𝜂
0
)

hit the impulsive set𝑀
1
at𝐶
1
(𝜉(𝑇), 𝜂(𝑇)), and then𝐶

1
jumps

to the point 𝐶
11
(𝜉(𝜏
1
), 𝜂(𝜏
1
)). The 𝐶

11
continued to jump

to point 𝐶
12
(𝜉(𝜏
2
), 𝜂(𝜏
2
)), and at last, the image point 𝐶

12

reaches point 𝐶
1𝑛
(𝜉(𝜏
𝑛
), 𝜂(𝜏
𝑛
)) with 𝑛 times pulses. Here,

𝜂(𝜏
1
) = 𝜂(𝑇) + 𝜆, 𝜂(𝜏

2
) = 𝜂(𝑇) + 2𝜆, . . . , 𝜂(𝜏

𝑛
) = 𝜂(𝑇) + 𝑛𝜆.

For the 𝑗th time impulse, obviously 𝜉(𝜏+
𝑗
) = 𝜉(𝜏

𝑗+1
), 𝜂(𝜏
+

𝑗
) =

𝜂(𝜏
𝑗+1
). For the system (6), let𝑃(𝑥, 𝑦) = 𝑥(1−𝑥)−(𝑥/(𝑎+𝑥))𝑦,

𝑄(𝑥, 𝑦) = 𝑦(𝛿 − 𝛽(𝑦/𝑥)), 𝛼(𝑥, 𝑦) = 0, 𝛽(𝑥, 𝑦) = 𝜆, Φ(𝑥, 𝑦) =
𝑥 − ℎ
1
, and 𝜉(𝑇) = ℎ

1
, 𝜂(𝑇) = 𝜂

0
− 𝑛𝜆; therefore we have

𝜕𝑃

𝜕𝑥
= 1 − 2𝑥 −

𝑎

(𝑎 + 𝑥)
2
𝑦,

𝜕𝑄

𝜕𝑦
= 𝛿 −

2𝛽𝑦

𝑥
,

𝜕𝛼

𝜕𝑥
=
𝜕𝛼

𝜕𝑦
= 0,

𝜕𝛽

𝜕𝑥
=
𝜕𝛽

𝜕𝑦
= 0,

𝜕Φ

𝜕𝑥
= 1,

𝜕Φ

𝜕𝑦
= 0.

(22)

According to Lemma 7, we get

𝜅
𝑗
= ((

𝜕𝛽

𝜕𝑦
⋅
𝜕Φ

𝜕𝑥
−
𝜕𝛽

𝜕𝑥
⋅
𝜕Φ

𝜕𝑦
+
𝜕Φ

𝜕𝑥
)𝑃
+

+(
𝜕𝛼

𝜕𝑥
⋅
𝜕Φ

𝜕𝑦
−
𝜕𝛼

𝜕𝑦
⋅
𝜕Φ

𝜕𝑥
+
𝜕Φ

𝜕𝑦
)𝑄
+
)

× (
𝜕Φ

𝜕𝑥
𝑃 +

𝜕Φ

𝜕𝑦
𝑄)

−1
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Figure 3: The orbit starting from the point 𝐶
0
on𝑁
1
.

=

𝑃 (𝜉 (𝜏
+

𝑗
) , 𝜂 (𝜏

+

𝑗
))

𝑃 (𝜉 (𝜏
𝑗
) , 𝜂 (𝜏

𝑗
))

=
𝑃 (ℎ
1
, 𝜂 (𝑇) + 𝑗𝜆)

𝑃 (ℎ
1
, 𝜂 (𝑇) + (𝑗 − 1) 𝜆)

=
1 − ℎ
1
− (1/ (ℎ

1
+ 𝑎)) (𝜂

0
− (𝑛 − 𝑗) 𝜆)

1 − ℎ
1
− (1/ (ℎ

1
+ 𝑎)) (𝜂

0
− (𝑛 − 𝑗 + 1) 𝜆)

= 1 −
𝜆/ (ℎ
1
+ 𝑎)

1 − ℎ
1
− (1/ (ℎ

1
+ 𝑎)) (𝜂

0
− (𝑛 − 𝑗 + 1) 𝜆)

,

𝜇 =

𝑛

∏

𝑗=1

𝜅
𝑗
exp [∫

𝑇

0

(
𝜕𝑃

𝜕𝑥
+
𝜕𝑄

𝜕𝑦
)𝑑𝑡]

=

𝑛

∏

𝑗=1

𝜅
𝑗
exp [∫

𝑇

0

(1 − 2𝑥 −
𝑎

(𝑎 + 𝑥)
2
𝑦 + 𝛿 −

2𝛽𝑦

𝑥
)𝑑𝑡]

=

𝑛

∏

𝑗=1

𝜅
𝑗
exp{∫

𝑇

0

[ (1 − 𝑥 −
𝑦

𝑥 + 𝑎
) + (𝛿 −

𝛽𝑦

𝑥
)

−𝑥 +
𝑥𝑦

(𝑎 + 𝑥)
2
−
𝛽𝑦

𝑥
] 𝑑𝑡}

=

𝑛

∏

𝑗=1

𝜅
𝑗
exp{∫

𝑇

0

𝑑𝑥

𝑥
+ ∫

𝑇

0

𝑑𝑦

𝑦

−∫

𝑇

0

(𝑥 −
𝑥𝑦

(𝑎 + 𝑥)
2
+
𝛽𝑦

𝑥
)𝑑𝑡}
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=

𝑛

∏

𝑗=1

𝜅
𝑗

𝜂
0
− 𝑛𝜆

𝜂
0

exp [−∫
𝑇

0

(𝑥 −
𝑥𝑦

(𝑎 + 𝑥)
2
+
𝛽𝑦

𝑥
)𝑑𝑡]

=
𝜂
0
− 𝑛𝜆

𝜂
0

×

𝑛

∏

𝑗=1

1 − ℎ
1
− (1/ (ℎ

1
+ 𝑎)) (𝜂

0
− (𝑛 − 𝑗) 𝜆)

1 − ℎ
1
− (1/ (ℎ

1
+ 𝑎)) (𝜂

0
− (𝑛 − 𝑗 + 1) 𝜆)

× exp [−∫
𝑇

0

(𝑥 −
𝑥𝑦

(𝑎 + 𝑥)
2
+
𝛽𝑦

𝑥
)𝑑𝑡]

= 𝜅 exp{−∫
𝑇

0

(𝜉 (𝑡) −
𝜉 (𝑡) 𝜂 (𝑡)

(𝜉(𝑡) + 𝑎)
2
+
𝛽𝜂 (𝑡)

𝜉 (𝑡)
) 𝑑𝑡} .

(23)

From Lemma 7, if |𝜇| = |𝜅 exp{− ∫𝑇
0
(𝜉(𝑡) − (𝜉(𝑡)𝜂(𝑡)/(𝜉(𝑡) +

𝑎)
2
) + (𝛽𝜂(𝑡)/𝜉(𝑡)))𝑑𝑡}| < 1, then the periodic solution of the

system (6) is orbitally asymptotically stable. This completes
the proof.

Remark 15. If 1 − ℎ
1
− (𝜂
0
/(ℎ
1
+ 𝑎)) > 0 and 𝛽 ≥ 1, then the

periodic solution with initial point 𝐶
0
(ℎ
1
, 𝜂
0
) (where 𝜂

0
> 𝑦)

is orbitally asymptotically stable.

4.2. The Initial Point on𝑁
2
. Based on existence and unique-

ness theorem of differential equations, there exists a unique
point 𝑄

0
((1 − 𝑝)ℎ

2
, 𝑦
𝑄
0

) on 𝑁
2
such that the orbit Π(𝑄

0
, 𝑡)

starting from 𝑄
0
is tangent to 𝑁

1
at point 𝑃(ℎ

1
, 𝑦). Assume

that 𝐶
0
((1 − 𝑝)ℎ

2
, 𝑦
𝐶
0

) is the initial point of the orbitΠ(𝐶
0
, 𝑡)

of system (6). Next, we will investigate the existence of
periodic solution of the system with different positions of 𝐶

0

and 𝑄
0
. Three cases should be discussed.

Case I (𝑦
𝐶
0

= 𝑦
𝑄
0

; see Figure 4). The initial point 𝐶
0
is exactly

𝑄
0
.

The orbitΠ(𝑄
0
, 𝑡) starting from𝑄

0
is tangent to𝑁

1
at the

point 𝑃, and through𝑁
2
hit𝑀

2
at the point 𝑄

1
(ℎ
2
, 𝑦
𝑄
1

), and
then 𝑄

1
jumps to 𝑄+

1
(𝑥
𝑄
+

1

, 𝑦
𝑄
+

1

) on 𝑁
2
. According to (6), the

following is obtained:

𝑥
𝑄
+

1

= (1 − 𝑝) ℎ
2
, 𝑦

𝑄
+

1

= (1 − 𝑞) 𝑦
𝑄
1

+ 𝜏. (24)

About the points 𝑄+
1
and 𝑄

0
, there are the following three

positional relations.

(a) If𝑄+
1
coincides with𝑄

0
: 𝑦
𝑄
+

1

= 𝑦
𝑄
0

(see Figure 4(a)),
then the curve 𝑄

0
𝑃𝑄
1
𝑄
+

1
is closed orbit.

(b) If 𝑄+
1
is below 𝑄

0
: 𝑦
𝑄
+

1

< 𝑦
𝑄
0

(see Figure 4(b)),
then the successor function of 𝑄

0
satisfies 𝑓(𝑄

0
) =

𝑦
𝑄
+

1

− 𝑦
𝑄
0

< 0. In the meantime, take a point 𝑆
0
((1 −

𝑝)ℎ
2
, 𝑦
𝑆
0

) on 𝑁
2
satisfying 0 < 𝑦

𝑆
0

< 𝜀 (𝜀 > 0 small
enough). The orbit Π(𝑆

0
, 𝑡) starting from 𝑆

0
hits the

impulsive 𝑀
2
at the point 𝑆

1
(ℎ
2
, 𝑦
𝑆
1

), and then 𝑆
1

jumps to the point 𝑆+
1
(𝑥
𝑆
+

1

, 𝑦
𝑆
+

1

), where 𝑥
𝑆
+

1

= (1−𝑝)ℎ
2
,

𝑦
𝑆
+

1

= (1−𝑞)𝑦
𝑆
1

+𝜏. Obviously, the successor function
of 𝑆
0
is 𝑓(𝑆

0
) = 𝑦

𝑆
+

1

− 𝑦
𝑆
0

> 0. From Lemma 6, the
system (6) has an order one periodic solution, where
the initial point of the periodic solution is between𝑄

0

and 𝑆
0
.

(c) If 𝑄+
1
is above 𝑄

0
: 𝑦
𝑄
+

1

> 𝑦
𝑄
0

(see Figure 4(c)), the
system (6) does not have closed orbit in the areaΩ

1
=

{(𝑥, 𝑦) | ℎ
1
< 𝑥 < ℎ

2
} in this time.

Based on the discussion above, we get the following.

Theorem 16. Assume that the orbit Π(𝑄
0
, 𝑡) starting from

𝑄
0
((1 − 𝑝)ℎ

2
, 𝑦
𝑄
0

) is tangent to 𝑁
1
at the point 𝑃(ℎ

1
, 𝑦) and

hits the impulsive set 𝑀
2
at the point 𝑄

1
(ℎ
2
, 𝑦
𝑄
1

), the image
point of𝑄

1
is𝑄+
1
(𝑥
𝑄
+

1

, 𝑦
𝑄
+

1

) on𝑁
2
. If 𝑦
𝑄
+

1

≤ 𝑦
𝑄
0

, the system (6)
has 1-periodic solution in the areaΩ

1
= {(𝑥, 𝑦) | ℎ

1
< 𝑥 < ℎ

2
}.

Case II (𝑦
𝐶
0

< 𝑦
𝑄
0

). The initial point 𝐶
0
is below 𝑄

0
.

The isocline 𝐿
1
: 𝑦 = (1 − 𝑥)(𝑥 + 𝑎) intersects with the

phase set𝑁
2
at the point𝑄((1−𝑝)ℎ

2
, 𝑦
𝑄
), and𝑄 is below𝑄

0
.

In this case, we discuss the existence of periodic solution of
the system (6) with the example 𝑦

𝐶
0

= 𝑦
𝑄
(see Figure 5).

The orbit Π(𝑄, 𝑡) starting from 𝑄 moves to the point
𝐶
1
(ℎ
2
, 𝑦
𝐶
1

) on the impulsive set 𝑀
2
, and 𝐶

1
jumps onto

𝐶
+

1
(𝑥
𝐶
+

1

, 𝑦
𝐶
+

1

) on the image set𝑁
2
, and then

𝑦
𝐶
0

= 𝑦
𝑄
= (1 − (1 − 𝑝) ℎ

2
) (𝑎 + (1 − 𝑝) ℎ

2
) ,

𝑥
𝐶
+

1

= (1 − 𝑝) ℎ
2
, 𝑦

𝐶
+

1

= (1 − 𝑞) 𝑦
𝐶
1

+ 𝜏.

(25)

(a) If 𝑦
𝐶
+

1

= 𝑦
𝑄
: 𝐶
+

1
coincide with𝑄 (see Figure 5(a)),

the curve𝑄𝐶
1
𝐶
+

1
is the closed orbit of the system (6).

(b) If 𝑦
𝑄
< 𝑦
𝐶
+

1

≤ 𝑦
𝑄
0

: 𝐶
+

1
is between 𝑄 and 𝑄

0

(see Figure 5(b)), in this case the successor function
of 𝑄 is 𝑓(𝑄) = 𝑦

𝐶
+

1

− 𝑦
𝑄
> 0. On the other hand,

consider the orbit Π(𝑄
0
, 𝑡) starting from 𝑄

0
, Π(𝑄
0
, 𝑡)

hits the impulsive set𝑀
2
at𝑄
1
(ℎ
2
, 𝑦
𝑄
1

), and𝑄
1
jumps

onto 𝑄
+

1
(𝑥
𝑄
+

1

, 𝑦
𝑄
+

1

) on 𝑁
2
. Based on the existence

and uniqueness theorem of differential equations, 𝑄
1

must be below 𝐶
1
, and 𝑄+

1
must be below 𝐶

+

1
. Thus

𝑦
𝑄
+

1

< 𝑦
𝐶
+

1

≤ 𝑦
𝑄
0

, and the successor function of 𝑄
0
is

𝑓(𝑄
0
) = 𝑦
𝑄
+

1

− 𝑦
𝑄
0

< 0. From Lemma 6, the system
(6) has 1-periodic solution, and the initial point of the
periodic solution is between 𝑄

0
and 𝑄.

If 𝑦
𝐶
+

1

> 𝑦
𝑄
0

: 𝐶
+

1
is above 𝑄

0
, in this case the

successor function of𝑄 is𝑓(𝑄) = 𝑦
𝐶
+

1

−𝑦
𝑄
> 0.There

are two different cases (case (c) and case (d)).
(c) If 𝑦

𝐶
+

1

> 𝑦
𝑄
0

and 𝑦
𝑄
+

1

≤ 𝑦
𝑄
0

: 𝑄
+

1
is below 𝑄

0
(see

Figure 5(c)), 𝑓(𝑄
0
) = 𝑦

𝑄
+

1

− 𝑦
𝑄
0

≤ 0, the system (6)
has closed orbit.
(d) If 𝑦

𝐶
+

1

> 𝑦
𝑄
0

and 𝑦
𝑄
+

1

> 𝑦
𝑄
0

: 𝑄
+

1
is above 𝑄

0
(see

Figure 5(d)), the system (6) does not have closed orbit
in the areaΩ

1
= {(𝑥, 𝑦) | ℎ

1
< 𝑥 < ℎ

2
}.
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x

y

E

R

Q

P

0

M1 M2

Q 1

N1
N2

h2h1 (1 − p)h2

L1

L2

Q0 (Q+
1 )

(a)

x

y

E

R

Q

P

0

M1 M2

Q 1

S1

S0

N1
N2

h2h1 (1 − p)h2

L1

L2

Q0

Q
+
1

S
+
1

(b)

x

y

E

R

Q

P

0

M1 M2

Q 1

N1
N2

h2h1 (1 − p)h2

L1

L2

Q0

Q
+
1

(c)

Figure 4: The initial point 𝐶
0
on𝑁
2
(Case I: 𝑦

𝐶
0

= 𝑦
𝑄
0

).

(e) If 𝑦
𝐶
+

1

< 𝑦
𝑄
: 𝐶
+

1
is below 𝑄 (see Figure 5(e)),

in this case the successor function of 𝑄 is 𝑓(𝑄) =

𝑦
𝐶
+

1

−𝑦
𝑄
< 0. On the other hand, take a point𝐷

0
((1−

𝑝)ℎ
2
, 𝑦
𝐷
0

) from 𝑁
2
satisfying that 𝑦

𝐷
0

is sufficiently
small number, which is 0 < 𝑦

𝐷
0

< 𝜀 (𝜀 > 0 small
enough). The orbit Π(𝐷

0
, 𝑡) starting from 𝐷

0
moves

to𝐷
1
(ℎ
2
, 𝑦
𝐷
1

) on the impulsive set𝑀
2
, and𝐷

1
jumps

onto 𝐷+
1
(𝑥
𝐷
+

1

, 𝑦
𝐷
+

1

) on 𝑁
2
, where 𝑥

𝐷
+

1

= (1 − 𝑝)ℎ
2
,

𝑦
𝐷
+

1

= (1−𝑞)𝑦
𝐷
1

+𝜏. Obviously, the successor function

of 𝐷
0
is 𝑓(𝐷

0
) = 𝑦
𝐷
+

1

− 𝑦
𝐷
0

> 0. From Lemma 6, the
system (6) has closed orbit.

Based on the discussion above, we get the following.

Theorem 17. Assume that the orbit Π(𝑄, 𝑡) starting from
𝑄((1 − 𝑝)ℎ

2
, 𝑦
𝑄
) hits the impulsive set𝑀

2
at 𝐶
1
(ℎ
2
, 𝑦
𝐶
1

), and
𝐶
1
jumps onto 𝐶+

1
(𝑥
𝐶
+

1

, 𝑦
𝐶
+

1

) on𝑁
2
. The orbitΠ(𝑄

0
, 𝑡) starting

from the point 𝑄
0
((1 − 𝑝)ℎ

2
, 𝑦
𝑄
0

) is tangent to𝑁
1
at 𝑃(ℎ

1
, 𝑦),
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x

y

E
R

Q

P

0
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N2
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L1
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Q0

C1

(C0)
(C+

1 )

(a)

x

y

E
R

P

0

Q

M1
M2

Q 1

N1
N2

h2h1 (1 − p)h2

L1

L2

Q0

C1

(C0)

C
+
1

Q
+
1

(b)

E
R

P Q 1

L1

L2

C1

Q(C0)

Q0

x
0 h2h1 (1 − p)h2

y M1
M2

N1
N2

C
+
1

Q
+
1

(c)

E
R

P
Q 1

L1

L2

C1

Q(C0)

Q0

x
0 h2h1 (1 − p)h2

y M1
M2

N1
N2

C
+
1

Q
+
1

(d)

E
R

P
Q 1

L1

L2

C1

Q(C0)

D1

D0

Q0

y M1
M2

N1
N2

0 h2h1 (1 − p)h2

x

C
+
1

D
+
1

(e)

Figure 5: The initial point 𝐶
0
on𝑁
2
(Case II: 𝑦

𝐶
0

< 𝑦
𝑄
0

).
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x

y

E

R

Q

P

0

M1
M2

Q 1

N1
N2

h2h1 (1 − p)h2

L1

L2

C1

C0

Q0

Figure 6: The initial point 𝐶
0
on𝑁
2
(Case III: 𝑦

𝐶
0

> 𝑦
𝑄
0

).

and hitting the impulsive set𝑀
2
at𝑄
1
(ℎ
2
, 𝑦
𝑄
1

), the image point
of 𝑄
1
is 𝑄+
1
(𝑥
𝑄
+

1

, 𝑦
𝑄
+

1

). Then one has the following.

(1) If 𝑦
𝐶
+

1

≤ 𝑦
𝑄
0

, the system (6) has 1-periodic solution.
(2) If 𝑦

𝐶
+

1

> 𝑦
𝑄
0

and 𝑦
𝑄
+

1

≤ 𝑦
𝑄
0

, the system (6) has 1-
periodic solution.

Case III (𝑦
𝐶
0

> 𝑦
𝑄
0

; see Figure 6).The initial point𝐶
0
is above

𝑄
0
.

In this case, the orbit Π(𝐶
0
, 𝑡) starting from 𝐶

0
goes

through the isocline 𝐿
1
from the left of the line 𝑥 = ℎ

1
, hitting

the impulsive set𝑀
1
at 𝐶
1
(ℎ
1
, 𝑦
𝐶
1

). The same conclusion can
be made as in Section 4.1.

Next, we discuss the stability of the periodic solution with
the initial point on𝑁

2
.

Theorem 18. Assume that (𝜉(𝑡), 𝜂(𝑡)) is the 𝑇-periodic solu-
tion of the system (6) with initial point 𝐶

0
((1 − 𝑝)ℎ

2
, 𝜂
0
); and

if

𝜇
 =



𝜅 exp{−∫
𝑇

0

(𝜉 (𝑡) −
𝜉 (𝑡) 𝜂 (𝑡)

(𝜉(𝑡) + 𝑎)
2
+
𝛽𝜂 (𝑡)

𝜉 (𝑡)
) 𝑑𝑡}



< 1,

(26)

where

𝜅 =
𝜂
0
− 𝜏

𝜂
0

⋅
1 − (1 − 𝑝) ℎ

2
− (𝜂
0
/ ((1 − 𝑝) ℎ

2
+ 𝑎))

1 − ℎ
2
− ((𝜂
0
− 𝜏) / ((1 − 𝑞) (ℎ

2
+ 𝑎)))

, (27)

the periodic solution (𝜉(𝑡), 𝜂(𝑡)) is orbitally asymptotically
stable.

Proof. Assume that the periodic orbit Π(𝐶
0
, 𝑡) starting

from the point 𝐶
0
((1 − 𝑝)ℎ

2
, 𝜂
0
) moves to the point

𝐶
1
(𝜉(𝑇), 𝜂(𝑇)) on impulsive set 𝑀

2
, and 𝐶

1
jumps onto the

point 𝐶+
1
(𝜉(𝑇
+
), 𝜂(𝑇
+
)) on 𝑁

2
. Therefore, Π(𝐶

0
, 𝑇) = 𝐶

1
,

𝐶
+

1
= 𝜑
2
(𝐶
1
) = 𝐶
0
, 𝜉(𝑇+) = (1−𝑝)𝜉(𝑇), 𝜂(𝑇+) = (1−𝑞)𝜂(𝑇)+

𝜏.

Compared with the system (6), we get

𝑃 (𝑥, 𝑦) = 𝑥 (1 − 𝑥) −
𝑥

𝑎 + 𝑥
𝑦,

𝑄 (𝑥, 𝑦) = 𝑦 (𝛿 − 𝛽
𝑦

𝑥
) ,

𝛼 (𝑥, 𝑦) = −𝑝𝑥, 𝛽 (𝑥, 𝑦) = −𝑞𝑦 + 𝜏,

Φ (𝑥, 𝑦) = 𝑥 − ℎ
2
, 𝜉 (𝑇) = ℎ

2
, 𝜂 (𝑇) =

𝜂
0
− 𝜏

1 − 𝑞
,

𝜕𝑃

𝜕𝑥
= 1 − 2𝑥 −

𝑎

(𝑎 + 𝑥)
2
𝑦,

𝜕𝑄

𝜕𝑦
= 𝛿 −

2𝛽𝑦

𝑥
,

𝜕𝛼

𝜕𝑥
= −𝑝,

𝜕𝛼

𝜕𝑦
= 0,

𝜕𝛽

𝜕𝑥
= 0,

𝜕𝛽

𝜕𝑦
= −𝑞,

𝜕Φ

𝜕𝑥
= 1,

𝜕Φ

𝜕𝑦
= 0.

(28)

Thus,

𝜅
1
= ((

𝜕𝛽

𝜕𝑦
⋅
𝜕Φ

𝜕𝑥
−
𝜕𝛽

𝜕𝑥
⋅
𝜕Φ

𝜕𝑦
+
𝜕Φ

𝜕𝑥
)𝑃
+

+ (
𝜕𝛼

𝜕𝑥
⋅
𝜕Φ

𝜕𝑦
−
𝜕𝛼

𝜕𝑦
⋅
𝜕Φ

𝜕𝑥
+
𝜕Φ

𝜕𝑦
)𝑄
+
)

× (
𝜕Φ

𝜕𝑥
𝑃 +

𝜕Φ

𝜕𝑦
𝑄)

−1

=
(1 − 𝑞) 𝑃 (𝜉 (𝑇

+
) , 𝜂 (𝑇

+
))

𝑃 (𝜉 (𝑇) , 𝜂 (𝑇))

= ( (1 − 𝑝) (1 − 𝑞)

× (1 − (1 − 𝑝) ℎ
2
−

𝜂
0

(1 − 𝑝) ℎ
2
+ 𝑎

))

×(1 − ℎ
2
−

𝜂
0
− 𝜏

(1 − 𝑞) (ℎ
2
+ 𝑎)

)

−1

,

𝜇 = 𝜅
1
exp [∫

𝑇

0

(
𝜕𝑃

𝜕𝑥
+
𝜕𝑄

𝜕𝑦
)𝑑𝑡]

= 𝜅
1
exp [∫

𝑇

0

(1 − 2𝑥 −
𝑎

(𝑎 + 𝑥)
2
𝑦 + 𝛿 −

2𝛽𝑦

𝑥
)𝑑𝑡]

= 𝜅
1
exp{∫

𝑇

0

[ (1 − 𝑥 −
𝑦

𝑥 + 𝑎
) + (𝛿 −

𝛽𝑦

𝑥
)

−𝑥 +
𝑥𝑦

(𝑎 + 𝑥)
2
−
𝛽𝑦

𝑥
] 𝑑𝑡}
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Figure 7: The periodic solution corresponding to Figure 3.

=𝜅
1
exp{∫

𝑇

0

𝑑𝑥

𝑥
+ ∫

𝑇

0

𝑑𝑦

𝑦
− ∫

𝑇

0

(𝑥 −
𝑥𝑦

(𝑎 + 𝑥)
2
+
𝛽𝑦

𝑥
)𝑑𝑡}

=
(1 − 𝑝) (1 − 𝑞) (1 − (1 − 𝑝) ℎ

2
− (𝜂
0
/ ((1 − 𝑝) ℎ

2
+ 𝑎)))

1 − ℎ
2
− ((𝜂
0
− 𝜏) / ((1 − 𝑞) (ℎ

2
+ 𝑎)))

×exp{∫
𝑇

0

𝑑𝑥

𝑥
+ ∫

𝑇

0

𝑑𝑦

𝑦
− ∫

𝑇

0

(𝑥 −
𝑥𝑦

(𝑎 + 𝑥)
2
+
𝛽𝑦

𝑥
)𝑑𝑡}

=
𝜂
0
− 𝜏

𝜂
0

⋅
1 − (1 − 𝑝) ℎ

2
− (𝜂
0
/ ((1 − 𝑝) ℎ

2
+ 𝑎))

1 − ℎ
2
− ((𝜂
0
− 𝜏) / ((1 − 𝑞) (ℎ

2
+ 𝑎)))

× exp [−∫
𝑇

0

(𝑥 −
𝑥𝑦

(𝑎 + 𝑥)
2
+
𝛽𝑦

𝑥
)𝑑𝑡]

= 𝜅 exp [−∫
𝑇

0

(𝑥 −
𝑥𝑦

(𝑎 + 𝑥)
2
+
𝛽𝑦

𝑥
)𝑑𝑡] .

(29)

From Lemma 7, if |𝜇| = |𝜅 exp{− ∫𝑇
0
(𝜉(𝑡) − (𝜉(𝑡)𝜂(𝑡)/

(𝜉(𝑡) + 𝑎)
2
)+(𝛽𝜂(𝑡)/𝜉(𝑡)))𝑑𝑡}| < 1, then the periodic solution
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Figure 8: There exists a 1-periodic solution in the areaΩ
1
= {(𝑥, 𝑦) | ℎ

1
< 𝑥 < ℎ

2
} corresponding to Figure 4(b).

of system (6) is orbitally asymptotically stable.This completes
the proof.

Remark 19. If |((1 − (1 − 𝑝)ℎ
2
) − (𝜂

0
/((1 − 𝑝)ℎ

2
+ 𝑎)))/(1 −

ℎ
2
− ((𝜂
0
− 𝜏)/((1 − 𝑞)(ℎ

2
+ 𝑎))))| ≤ 1 and 𝛽 ≥ 1, the periodic

solution of system (6) with initial point 𝐶
0
((1 − 𝑝)ℎ

2
, 𝜂
0
) is

orbitally asymptotically stable.

5. Example and Numerical Simulation

In this part, we use numerical simulation to confirm the
conclusion obtained above. Let 𝑎 = 0.05, 𝛿 = 0.5, 𝛽 = 0.7,

ℎ
1
= 0.24, ℎ

2
= 0.35, 𝜆 = 0.18, 𝑝 = 0.2, 𝑞 = 0.2. By

calculation, we obtain𝑦 = 0.22,𝑃(0.24, 0.22),𝑄(0.28, 0.2376)
and 𝑅(0.35, 0.26). Then, we have an example as follows:

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝑥 (𝑡) (1 − 𝑥 (𝑡)) −

𝑥 (𝑡)

0.05 + 𝑥 (𝑡)
𝑦 (𝑡) ,

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝑦 (𝑡) (0.5 − 0.7

𝑦 (𝑡)

𝑥 (𝑡)
) ,

𝑥 ̸= 0.24, 0.35 or 𝑥 = 0.24, 𝑦 > 0.22,

Δ𝑥 (𝑡) = 0,

Δ𝑦 (𝑡) = 0.18,
𝑥 = 0.24, 𝑦 ≤ 0.22,
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Figure 9: 1-periodic solution in the area Ω
1
= {(𝑥, 𝑦) | ℎ

1
< 𝑥 < ℎ

2
} corresponding to Figure 4(c) does not exist.

Δ𝑥 (𝑡) = −0.2𝑥 (𝑡) ,

Δ𝑦 (𝑡) = −0.2𝑦 (𝑡) + 𝜏,
𝑥 = 0.35,

𝑥 (0) > 0, 𝑦 (0) > 0.

(30)

Case 1. Let 𝜏 = 0.15, and the initial point is (0.24, 0.3). From
Figure 7 corresponding to Figure 3, the system exhibits a 1-
periodic solution.

Case 2. Let 𝜏 = 0.1, then (0.28, 0.3056) is the initial point.
From Figure 8, which corresponds to Figure 4(b), the system

exhibits a 1-periodic solution in the area Ω
1
= {(𝑥, 𝑦) | ℎ

1
<

𝑥 < ℎ
2
}.

Case 3. Let 𝜏 = 0.15, we get the initial point (0.28, 0.3056).
It is easy to find that the system has no 1-periodic solution in
the area Ω

1
= {(𝑥, 𝑦) | ℎ

1
< 𝑥 < ℎ

2
} from Figure 9 which

corresponds to Figure 4(c).

Case 4. Let 𝜏 = 0.1, the initial point (0.28, 0.2376) is obtained.
FromFigure 10 corresponding to Figure 5(b), in the areaΩ

1
=

{(𝑥, 𝑦) | ℎ
1
< 𝑥 < ℎ

2
}, the system exhibits a 1-periodic

solution.
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Figure 10: There exists a 1-periodic solution in the area Ω
1
= {(𝑥, 𝑦) | ℎ

1
< 𝑥 < ℎ

2
} corresponding to Figure 5(b).

Case 5. Let 𝜏 = 0.15, we can easily get the initial point
(0.28, 0.2376). From Figure 11 corresponding to Figure 5(d),
clearly, there is no 1-periodic solution in the area Ω

1
=

{(𝑥, 𝑦) | ℎ
1
< 𝑥 < ℎ

2
}.

Case 6. Let 𝜏 = 0.15, and the initial point is (0.28, 0.45).
Obviously, we can find a 1-periodic solution from Figure 12
which corresponds to Figure 6.

All the simulations above show agreementwith the results
in Section 4.

6. Conclusion

This paper establishes a class of integrated pest management
model based on state impulse control. In the initial stage
of the occurrence of crop pests, that is, the pest density
satisfies 𝑥(𝑡) ≤ ℎ

1
, we use environment protection measures

to control pests, such as releasing natural enemies. Once the
pest density reaches a higher level 𝑥(𝑡) = ℎ

2
, we will adapt

a combination of spraying insecticide and releasing natural
enemies to control pests. With a short time to finish spraying
insecticide and releasing natural enemies which bring out a
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Figure 11: 1-periodic solution in the area Ω
1
= {(𝑥, 𝑦) | ℎ

1
< 𝑥 < ℎ

2
} corresponding to Figure 5(d) does not exist.

sharp change in the number of pests and natural enemies,
the state impulsive differential system (6) is obtained. Firstly,
let the control parameters 𝑝, 𝑞, 𝜆, 𝜏 be zero, we get Holling-
Tanner ecosystem without impulsive effects. By constructing
Dulac function, we discussed the stability of the positive
equilibrium point 𝐸(𝑥∗, 𝑦∗), and the globally asymptotically
stable conditions are given for focal points and nodal point,
respectively. If the control parameters𝑝, 𝑞, 𝜆, 𝜏 are larger than
zero, the system (6) is semicontinuous pulse dynamic system.
The existence, uniqueness, and stability of the periodic

solutions are the research difficulties, andwe need to consider
all the pulse conditions (the value of ℎ

1
, ℎ
2
) and pulse

function and its corresponding qualitative properties of the
continuous dynamic system. By introducing the successor
function, using impulsive differential geometry theory, we
have discussed the existence of periodic solutions of the
system (6) with a focus. According to the theory of impulsive
differential multiplier Analogue of Poincare Criterion, the
conditions of periodic solution with orbit asymptotically
stable are given. Since (6) is a two-dimensional dynamical
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Figure 12: The periodic solution corresponding to Figure 6.

system, geometric method is intuitive and effective. How to
study high-dimensional ecological dynamic systems by the
geometric theory needs to be resolved in the future.
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A patch model for echinococcosis due to dogs migration is proposed to explore the effect of dogs migration among patches on the
spread of echinococcosis. We firstly define the basic reproduction number 𝑅

0
. The mathematical results show that the dynamics

of the model can be completely determined by 𝑅
0
. If 𝑅
0
< 1, the disease-free equilibrium is globally asymptotically stable. When

𝑅
0
> 1, the model is permanence and endemic equilibrium is globally asymptotically stable. According to the simulations, it is

shown that the larger diffusion of dogs from the lower epidemic areas to the higher prevalence areas can intensify the spread of
echinococcosis. However, the larger diffusion of dogs from the higher prevalence areas to the lower epidemic areas can reduce the
spread and is beneficial for disease control.

1. Introduction

Echinococcosis, which is often referred to as hydatid disease,
is a parasitic disease that affects both humans and other
mammals, such as sheep, dogs, rodents, and horses [1]. The
two most clinically relevant species are Echinococcus granu-
losus and Echinococcus multilocularis, which cause cystic and
alveolar echinococcosis respectively. Humans are incidental
hosts and, in most cases, do not contribute to continuance of
the parasite life cycle, except under unique circumstances [2].

The prevalent scope of echinococcosis inChina is approx-
imately 420 square kilometers, accounting for about 41.7%
of the territory. The rate of incidence of echinococcosis has
increased in the past decade.The operability of echinococco-
sis exceeds 10/100000 in each year. High-risk group subject
to echinococcosis reaches up to 50 million, and the number
of domestic animal amount being faced with the infection of
echinococcosis is more than one hundred million, in which
the amount of dogs is at least 5 million [3].

Mathematical modeling has become an important tool
in analyzing the epidemiological characteristics of infectious
disease and can provide useful control measures. Vari-
ous models have been used to study different aspects of

echinococcosis [4–16].Themodels included varied primarily
on the basis of six key features that were differentially
incorporated in their design [17]. These are (1) the inclusion
of a “latent” class (with time delay from host exposure to
infectiousness); (2) an age structure for definitive and/or
intermediate hosts; (3) the presence of density dependent
constraints; (4) accounting for seasonality; (5) stochastic
parameters; (6) inclusion of a spatial and risk structures.

In [18], in order to explore effective control and pre-
vention measures authors proposed a deterministic model
to study the transmission dynamics of echinococcosis in
Xinjiang. The results showed that the dynamics of the model
was completely determined by the basic reproductive number
𝑅
0
. The model provided an approximate estimate of the basic

reproduction number 𝑅
0
= 1.67.

Many epidemic models with population dispersal among
patches have been proposed and studied (see [19–28]). Wang
and Zhao [19] proposed an epidemic model to describe the
dynamics of disease spread among patches due to population
dispersal. The effect of population dispersal among 𝑛 patches
on the spread of a disease was investigated by Jin and
Wang in [20]. To understand the effect of transport-related
infection on disease spread, an epidemic model for several
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regions which are connected by transportation of individuals
has been proposed by Cui et al. in [21]. In [23], an SIS
patch model with nonconstant transmission coefficients was
formulated to investigate the effect of media coverage and
humanmovement on the spread of infectious diseases among
patches. Qiu [26] developed amathematical model to explore
the effect of host migration between two patches on the
spread of a vector-host disease.

To date, few scholars have researched the echinococcosis
transmission models with dogs migration among patches.
Considering an increasing number of stray dogs, the dispersal
is an essential trait for dogs population. Therefore, we expect
to explore the effect of dogs migration among patches on the
spread of echinococcosis.

The purpose of this paper is to model the transmission
dynamics of echinococcosis spread between two patches due
to dogs migration and describe the dynamics of the model.
The remaining part of this paper is organized as follows.
The model is presented in Section 2. The basic properties on
the positivity and boundedness of solutions computing the
basic reproduction number are in Section 3. In Section 4, we
establish the global stability of the disease-free equilibrium
for the model. In Section 5, we will apply the theory of
permanence to obtain the permanence of the model. The
global stability theorem of endemic equilibrium is stated and
proved in Section 6. In Section 7, we give some examples
to illustrate how the dogs migration affects the dynamics of
echinococcosis. A brief discussion is given in Section 8.

2. Model Formulation

In this section, we mainly formulate an epidemic model to
describe the transmission dynamics of echinococcosis spread
between two discrete patches due to dogs diffusion.

We firstly formulate a model for the spread of echinococ-
cosis in the 𝑖th patch. It follows from [18] that the parameters
of humans do not affect dynamical behaviors of echinococ-
cosis model. Hence in the paper we only consider dogs,
livestock, and Echinococcus eggs in our model. We divide
the dogs population in the 𝑖th patch into two classes: the
susceptible population and the infected population denoted
by 𝑆
𝐷𝑖
(𝑡) and 𝐼

𝐷𝑖
(𝑡), respectively. For livestock population,

we divide the total livestock population in the 𝑖th patch
into two classes: susceptible and infectious denoted by 𝑆

𝐿𝑖
(𝑡)

and 𝐼
𝐿𝑖
(𝑡), respectively. The density of Echinococcus eggs in

the 𝑖th patch is denoted by 𝑥
𝑖
(𝑡). Our assumptions on the

dynamical transmission of echinococcosis in the 𝑖th patch are
demonstrated in the flowchart (Figure 1).

If there is no dogs migration among patches, that is,
the patches are isolated, we suppose that the echinococcosis
dynamics in 𝑖th patch is governed by

̇𝑆
𝐷𝑖

= 𝐴
1𝑖
− 𝛽
1𝑖
𝑆
𝐷𝑖
𝐼
𝐿𝑖
− 𝑑
1𝑖
𝑆
𝐷𝑖

+ 𝜎
𝑖
𝐼
𝐷𝑖
,

̇𝐼
𝐷𝑖

= 𝛽
1𝑖
𝑆
𝐷𝑖
𝐼
𝐿𝑖
− (𝑑
1𝑖
+ 𝜎
𝑖
) 𝐼
𝐷𝑖
,

̇𝑆
𝐿𝑖
= 𝐴
2𝑖
− 𝛽
2𝑖
𝑆
𝐿𝑖
𝑥
𝑖
− 𝑑
2𝑖
𝑆
𝐿𝑖
,

̇𝐼
𝐿𝑖
= 𝛽
2𝑖
𝑆
𝐿𝑖
𝑥
𝑖
− 𝑑
2𝑖
𝐼
𝐿𝑖
,

̇𝑥
𝑖
= 𝑎
𝑖
𝐼
𝐷𝑖

− 𝑑
𝑖
𝑥
𝑖
.

(1)

A1i SDi

𝛽1iSDiILi
IDi

aiIDi

d1iSDi d1iIDi

xi

A2i
SLi

d2iSLi

𝛽2iSLixi
ILi

d2iILi

dixi

Figure 1: Transmission diagram for echinococcosis among dogs,
livestock.

All parameters are assumed positive. For the dog population
in the 𝑖th patch, 𝐴

1𝑖
describes the annual recruitment rate;

𝑑
1𝑖

is the natural death rate; 𝜎
𝑖
denotes the recovery rate

of transition from infected to noninfected dogs, including
natural recovery rate and recovery due to anthelmintic treat-
ment; 𝛽

1𝑖
𝑆
𝐷𝑖
𝐼
𝐿𝑖
describes the transmission of echinococcosis

between susceptible dogs and infectious livestock after the
ingestion of cyst-containing organs of the infected livestock.
For the livestock population in the 𝑖th patch,𝐴

2𝑖
is the annual

recruitment rate; 𝑑
2𝑖
is the death rate; 𝛽

2𝑖
𝑆
𝐿𝑖
𝑥
𝑖
describes the

transmission of echinococcosis to livestock by the ingestion
of Echinococcus eggs in the environment. For Echinococcus
eggs in the 𝑖th patch, 𝑎

𝑖
denotes released rate from infected

dogs; 𝑑
𝑖
is the mortality rate of eggs.

When two patches are connected, we assume that suscep-
tible and infected dogs of every patch 𝑖 leave for patch 𝑗 at
a per capita rate 𝐷

𝑖
. Then the dynamics of echinococcosis is

governed by the following model:

̇𝑆
𝐷𝑖

= 𝐴
1𝑖
− 𝛽
1𝑖
𝑆
𝐷𝑖
𝐼
𝐿𝑖
− 𝑑
1𝑖
𝑆
𝐷𝑖

+ 𝜎
𝑖
𝐼
𝐷𝑖

− 𝐷
𝑖
𝑆
𝐷𝑖

+ 𝐷
𝑗
𝑆
𝐷𝑗
,

̇𝐼
𝐷𝑖

= 𝛽
1𝑖
𝑆
𝐷𝑖
𝐼
𝐿𝑖
− (𝑑
1𝑖
+ 𝜎
𝑖
) 𝐼
𝐷𝑖

− 𝐷
𝑖
𝐼
𝐷𝑖

+ 𝐷
𝑗
𝐼
𝐷𝑗
,

̇𝑆
𝐿𝑖
= 𝐴
2𝑖
− 𝛽
2𝑖
𝑆
𝐿𝑖
𝑥
𝑖
− 𝑑
2𝑖
𝑆
𝐿𝑖
, 𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗.

̇𝐼
𝐿𝑖
= 𝛽
2𝑖
𝑆
𝐿𝑖
𝑥
𝑖
− 𝑑
2𝑖
𝐼
𝐿𝑖
,

̇𝑥
𝑖
= 𝑎
𝑖
𝐼
𝐷𝑖

− 𝑑
𝑖
𝑥
𝑖
.

(2)

Motivated by biological background of model (2), we
always assume that all solutions of model (2) satisfy the
following positive initial conditions:

𝑆
𝐷𝑖
(0) = 𝑆

𝐷𝑖0
> 0, 𝐼

𝐷𝑖
(0) = 𝐼

𝐷𝑖0
> 0,

𝑆
𝐿𝑖 (0) = 𝑆

𝐿𝑖0
> 0, 𝐼

𝐿𝑖 (0) = 𝐼
𝐿𝑖0

> 0,

𝑥
𝑖
(0) = 𝑥

𝑖0
> 0.

(3)

We can easily prove that the solution of model (2) with
initial conditions (3) satisfies 𝑆

𝐷𝑖
(𝑡) > 0, 𝐼

𝐷𝑖
(𝑡) > 0, 𝑆

𝐿𝑖
(𝑡) > 0,

and 𝐼
𝐿𝑖
(𝑡) > 0 for all 𝑡 > 0. Here, we omit the proof.
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3. Basic Properties and Basic Reproduction
Number of the Model

In this section, we mainly present the preliminary results
and derive reproduction number for model (2). In order to
investigate the dynamics of model (2), we begin with stating
some results on model (1). Model (1) has been analyzed
in [18]. Model (1) admits a disease-free equilibrium 𝐸

0𝑖
=

(𝑆
0

𝐷𝑖
, 0, 𝑆
0

𝐿𝑖
, 0, 0) and a unique positive equilibrium 𝐸

∗

𝑖
=

(𝑆
∗

𝐷𝑖
, 𝐼
∗

𝐷𝑖
, 𝑆
∗

𝐿𝑖
, 𝐼
∗

𝐿𝑖
, 𝑥
∗

𝑖
), where

𝑆
0

𝐷𝑖
=
𝐴
1𝑖

𝑑
1𝑖

, 𝑆
0

𝐿𝑖
=
𝐴
2𝑖

𝑑
2𝑖

,

𝑆
∗

𝐷𝑖
=
𝑑
2𝑖
(𝑑
1𝑖
+ 𝜎
𝑖
) (𝐴
1𝑖
𝛽
2𝑖
𝑎
𝑖
+ 𝑑
1𝑖
𝑑
2𝑖
𝑑
𝑖
)

𝑎
𝑖
𝛽
2𝑖
𝑑
1𝑖
(𝛽
1𝑖
𝐴
2𝑖
+ 𝑑
1𝑖
𝑑
2𝑖
+ 𝑑
2𝑖
𝜎
𝑖
)
,

𝐼
∗

𝐷𝑖
=
𝑎
𝑖
𝛽
1𝑖
𝛽
2𝑖
𝐴
1𝑖
𝐴
2𝑖
− (𝑑
1𝑖
+ 𝜎
𝑖
) 𝑑
1𝑖
𝑑
2

2𝑖
𝑑
𝑖

𝑎
𝑖
𝑑
1𝑖
𝛽
2𝑖
(𝛽
1𝑖
𝐴
2𝑖
+ 𝑑
1𝑖
𝑑
2𝑖
+ 𝑑
2𝑖
𝜎
𝑖
)

,

𝑆
∗

𝐿𝑖
=
𝑑
𝑖
𝑑
1𝑖
(𝛽
1𝑖
𝐴
2𝑖
+ 𝑑
1𝑖
𝑑
2𝑖
+ 𝑑
2𝑖
𝜎
𝑖
)

𝛽
1𝑖
(𝑎
𝑖
𝐴
1𝑖
𝛽
2𝑖
+ 𝑑
𝑖
𝑑
1𝑖
𝑑
2𝑖
)

,

𝐼
∗

𝐿𝑖
=
𝑎
𝑖
𝛽
1𝑖
𝛽
2𝑖
𝐴
1𝑖
𝐴
2𝑖
− (𝑑
1𝑖
+ 𝜎
𝑖
) 𝑑
1𝑖
𝑑
2

2𝑖
𝑑
𝑖

𝑑
2𝑖
𝛽
1𝑖
(𝐴
1𝑖
𝛽
2𝑖
𝑎
𝑖
+ 𝑑
1𝑖
𝑑
2𝑖
𝑑
𝑖
)

,

𝑥
∗

𝑖
=
𝑎
𝑖
𝛽
1𝑖
𝛽
2𝑖
𝐴
1𝑖
𝐴
2𝑖
− (𝑑
1𝑖
+ 𝜎
𝑖
) 𝑑
1𝑖
𝑑
2

2𝑖
𝑑
𝑖

𝑑
1𝑖
𝛽
2𝑖
𝑑 (𝛽
1𝑖
𝐴
2𝑖
+ 𝑑
1𝑖
𝑑
2𝑖
+ 𝑑
2𝑖
𝜎
𝑖
)

.

(4)

The reproduction number of model (1) is established in [18],
which can be expressed as

𝑅
0𝑖
=
3

√
𝛽
1𝑖
𝛽
2𝑖
𝐴
1𝑖
𝐴
2𝑖
𝑎
𝑖

(𝑑
1𝑖
+ 𝜎
𝑖
) 𝑑
1𝑖
𝑑
2

2𝑖
𝑑
𝑖

. (5)

From Theorems 3 and 5 in [18], we can obtain the following
lemma.

Lemma 1. Considering model (1), one has that
(a) if 𝑅

0𝑖
< 1, then disease-free equilibrium 𝐸

0𝑖
is globally

asymptotically stable;
(b) if 𝑅

0𝑖
> 1, then positive equilibrium 𝐸

∗

𝑖
is globally

asymptotically stable.

In order to obtain ourmain results, we need the following
lemma. Consider the following linear equation:

�̃�


𝐷1
(𝑡) = 𝐴

11
− 𝑑
11
�̃�
𝐷1 (𝑡) − 𝐷

1
�̃�
𝐷1 (𝑡) + 𝐷

2
�̃�
𝐷2 (𝑡) ,

�̃�


𝐷2
(𝑡) = 𝐴

12
− 𝑑
12
�̃�
𝐷2

(𝑡) − 𝐷
2
�̃�
𝐷2

(𝑡) + 𝐷
1
�̃�
𝐷1

(𝑡) .

(6)

We have the following result on system (6).

Lemma2. System (6)has a unique equilibrium𝑁
0

𝐷
(𝑁
0

𝐷1
, 𝑁
0

𝐷2
)

which is globally stable, where

𝑁
0

𝐷1
=
𝐴
11
(𝑑
12
+ 𝐷
2
) + 𝐴
12
𝐷
2

𝑑
11
𝑑
12
+ 𝑑
11
𝐷
2
+ 𝑑
12
𝐷
1

,

𝑁
0

𝐷2
=
𝐴
12
(𝑑
11
+ 𝐷
1
) + 𝐴
11
𝐷
1

𝑑
11
𝑑
12
+ 𝑑
11
𝐷
2
+ 𝑑
12
𝐷
1

.

(7)

Proof. The Jacobian matrix of (6) at (𝑁0
𝐷1
, 𝑁
0

𝐷2
) is

𝐽 (𝑁
0

𝐷
) = (

− (𝑑
11
+ 𝐷
1
) 𝐷

2

𝐷
1

− (𝑑
12
+ 𝐷
2
)
) . (8)

By simple calculations, the corresponding characteristic
equation is

Φ (𝜆) = 𝜆
2
+ 𝑎
1
𝜆 + 𝑎
0
= 0, (9)

where

𝑎
1
= 𝑑
11
+ 𝑑
12
+ 𝐷
1
+ 𝐷
2
> 0,

𝑎
0
= 𝑑
11
𝑑
12
+ 𝑑
11
𝐷
2
+ 𝑑
12
𝐷
1
> 0.

(10)

Therefore, all roots ofΦ(𝜆)have negative real parts, andhence
𝑁
0
(𝑁
0

𝐷1
, 𝑁
0

𝐷2
) is globally stable.

For any 𝜀 > 0, we define region Γ
𝜀
as follows:

Γ
𝜀
= {(𝑆

𝐷1
, 𝐼
𝐷1
, 𝑆
𝐿1
, 𝐼
𝐿1
, 𝑥
1
, 𝑆
𝐷2
, 𝐼
𝐷2
, 𝑆
𝐿2
, 𝐼
𝐿2
, 𝑥
2
) ∈ R
10

+
,

𝑆
𝐷𝑖

+ 𝐼
𝐷𝑖

≤ 𝑁
0

𝐷𝑖
+ 𝜀, 𝑆
𝐿𝑖
+ 𝐼
𝐿𝑖
≤ 𝑆
0

𝐿𝑖
+ 𝜀,

𝑥
𝑖
≤

𝑎
𝑖

𝑑
𝑖

𝑁
0

𝐷𝑖
+ (1 +

𝑎
𝑖

𝑑
𝑖

) 𝜀, 𝑖 = 1, 2} .

(11)

On the ultimate boundedness of solutions for model (2), we
have the following result.

Lemma 3. All solutions of model (2) with initial condition (3)
ultimately turn into region Γ

𝜀
as 𝑡 → ∞.

Proof. Let (𝑆
𝐷1
(𝑡), 𝐼
𝐷1
(𝑡), 𝑆
𝐿1
(𝑡), 𝐼
𝐿1
(𝑡), 𝑥
1
(𝑡), 𝑆
𝐷2
(𝑡), 𝐼
𝐷2
(𝑡),

𝑆
𝐿2
(𝑡), 𝐼
𝐿2
(𝑡), 𝑥
2
(𝑡)) be any solution of model (2) with initial

conditions (3) and let𝑁
𝐷𝑖
(𝑡) = 𝑆

𝐷𝑖
(𝑡) + 𝐼

𝐷𝑖
(𝑡), 𝑖 = 1, 2. From

model (2) we have

𝑁
𝐷1 (𝑡) = 𝐴

11
− 𝑑
11
𝑁
𝐷1 (𝑡) − 𝐷

1
𝑁
𝐷1 (𝑡) + 𝐷

2
𝑁
𝐷2 (𝑡) ,

𝑁
𝐷2

(𝑡) = 𝐴
12
− 𝑑
12
𝑁
𝐷2

(𝑡) − 𝐷
2
𝑁
𝐷2

(𝑡) + 𝐷
1
𝑁
𝐷1

(𝑡) ,

(12)

and then from Lemma 2 we have lim
𝑡→∞

𝑁
𝐷𝑖
(𝑡) = 𝑁

0

𝐷𝑖
, 𝑖 =

1, 2. Hence, for any 𝜀 > 0, there is a 𝑡
1
> 0 such that

𝑆
𝐷𝑖
(𝑡) + 𝐼

𝐷𝑖
(𝑡) ≤ 𝑁

0

𝐷𝑖
+ 𝜀, 𝑖 = 1, 2, ∀𝑡 ≥ 𝑡

1
. (13)

From the third and fourth equations of model (2), we have

𝑑 (𝑆
𝐿𝑖
(𝑡) + 𝐼

𝐿𝑖
(𝑡))

𝑑𝑡
= 𝐴
2𝑖
− 𝑑
2𝑖
(𝑆
𝐿𝑖 (𝑡) + 𝐼

𝐿𝑖 (𝑡)) ,
(14)

and therefore, there exists a 𝑡
2
> 0 such that

𝑆
𝐿𝑖 (𝑡) + 𝐼

𝐿𝑖 (𝑡) ≤ 𝑆
0

𝐿𝑖
+ 𝜀, 𝑖 = 1, 2, ∀𝑡 ≥ 𝑡

2
. (15)

Finally, from the fifth equation of model (2), we have

̇𝑥
𝑖 (𝑡) ≤ 𝑎

𝑖
(𝑁
0

𝐷𝑖
+ 𝜀) − 𝑑

𝑖
𝑥
𝑖 (𝑡) , 𝑖 = 1, 2, ∀𝑡 ≥ 𝑡

1
, (16)
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and then there is a 𝑡
3
> 𝑡
1
such that

𝑥
𝑖
(𝑡) ≤

𝑎
𝑖

𝑑
𝑖

(𝑁
0

𝐷𝑖
+ 𝜀) + 𝜀

=
𝑎
𝑖

𝑑
𝑖

𝑁
0

𝐷𝑖
+ (1 +

𝑎
𝑖

𝑑
𝑖

) 𝜀, 𝑖 = 1, 2, ∀𝑡 ≥ 𝑡
3
.

(17)

Let 𝑡∗ = max{𝑡
2
, 𝑡
3
}, and then for all 𝑡 > 𝑡

∗ we have

((𝑆
𝐷1 (𝑡) , 𝐼𝐷1 (𝑡) , 𝑆𝐿1 (𝑡) , 𝐼𝐿1 (𝑡) , 𝑥1 (𝑡) , 𝑆𝐷2 (𝑡) ,

𝐼
𝐷2

(𝑡) , 𝑆
𝐿2
(𝑡) , 𝐼
𝐿2
(𝑡) , 𝑥
2
(𝑡))) ∈ Γ

𝜀
.

(18)

This completes the proof of Lemma 3.

According to Lemma 3, all feasible solutions of model (2)
enter or remain in the region Γ

𝜀
as 𝑡 becomes large enough.

In what follows, the dynamics of model (2) can be considered
only in Γ

𝜀
.

Simple algebraic calculation shows that model (2) always
has a unique disease-free equilibrium 𝐸

0
(𝑁
0

𝐷1
, 0, 𝑆
0

𝐿1
, 0, 0,

𝑁
0

𝐷2
, 0, 𝑆
0

𝐿2
, 0, 0). According to the concepts of next genera-

tion matrix and reproduction number presented in [29, 30],
we define

F =

(
(
(
(
(

(

𝛽
11
𝑆
𝐷1
𝐼
𝐿1

𝛽
21
𝑆
𝐿1
𝑥
1

𝑎
1
𝐼
𝐷1

𝛽
12
𝑆
𝐷2
𝐼
𝐿2

𝛽
22
𝑆
𝐿2
𝑥
2

𝑎
2
𝐼
𝐷2

)
)
)
)
)

)

,

V =

(
(
(
(
(

(

(𝑑
11
+ 𝜎
1
) 𝐼
𝐷1

+ 𝐷
1
𝐼
𝐷1

− 𝐷
2
𝐼
𝐷2

𝑑
21
𝐼
𝐿1

𝑑
1
𝑥
1

(𝑑
12
+ 𝜎
2
) 𝐼
𝐷2

+ 𝐷
2
𝐼
𝐷1

− 𝐷
1
𝐼
𝐷1

𝑑
22
𝐼
𝐿2

𝑑
2
𝑥
2

)
)
)
)
)

)

.

(19)

Noting that the disease-free equilibrium of model (2) is 𝐸
0
,

then

𝐹 = (

𝐹
11

0

0 𝐹
22

) , (20)

where

𝐹
11
= (

0 𝛽
11
𝑁
0

𝐷1
0

0 0 𝛽
21
𝑆
0

𝐿1

𝑎
1

0 0

) ,

𝐹
22
= (

0 𝛽
12
𝑁
0

𝐷2
0

0 0 𝛽
22
𝑆
0

𝐿2

𝑎
2

0 0

) ,

𝑉 =

(
(
(
(
(

(

𝑑
11
+ 𝜎
1
+ 𝐷
1

0 0 −𝐷
2

0 0

0 𝑑
21

0 0 0 0

0 0 𝑑
1

0 0 0

−𝐷
1

0 0 𝑑
12
+ 𝜎
2
+ 𝐷
2

0 0

0 0 0 0 𝑑
22

0

0 0 0 0 0 𝑑
2

)
)
)
)
)

)

.

(21)

Denote Δ = 𝑑
1
𝑑
2
𝑑
21
𝑑
22
[𝑑
11
(𝑑
12
+ 𝜎
2
+ 𝐷
2
) + 𝜎
1
(𝑑
12
+ 𝜎
2
+

𝐷
2
)+𝐷
1
(𝑑
12
+𝜎
2
)]. After extensive algebraic calculations, we

can obtain

𝐹𝑉
−1

=
1

Δ
(

𝑀
11

𝑀
12

𝑀
21

𝑀
22

) , (22)

where

𝑀
11
= (

0
Δ (𝐴
11
𝑑
12
+ 𝐴
11
𝐷
2
+ 𝐴
12
𝐷
2
)

𝑑
21
(𝑑
11
𝑑
12
+ 𝑑
11
𝐷
2
+ 𝑑
12
𝐷
1
)

0

0 0
Δ𝛽
21
𝐴
21

𝑑
21
𝑑
1

𝑑
1
𝑑
2
𝑑
21
𝑑
22
𝑎
1
(𝑑
12
+ 𝜎
2
+ 𝐷
2
) 0 0

),

𝑀
12
= (

0 0 0

0 0 0

𝑑
1
𝑑
2
𝑑
21
𝑑
22
𝑎
1
𝐷
2
0 0

) , 𝑀
21
= (

0 0 0

0 0 0

𝑑
1
𝑑
2
𝑑
21
𝑑
22
𝑎
2
𝐷
1
0 0

) ,

𝑀
22
= (

0
Δ𝛽
12
(𝐴
11
𝐷
1
+ 𝐴
12
𝑑
11
+ 𝐴
12
𝐷
1
)

𝑑
22
(𝑑
11
𝑑
12
+ 𝑑
11
𝐷
2
+ 𝑑
12
𝐷
1
)

0

0 0
Δ𝛽
22
𝐴
22

𝑑
22
𝑑
2

𝑑
1
𝑑
2
𝑑
21
𝑑
22
𝑎
2
(𝑑
11
+ 𝜎
1
+ 𝐷
1
) 0 0

).

(23)
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From the proof of Theorem 2 in [30], it follows that

𝑅
0
< 1 (𝑅

0
= 1, 𝑅

0
> 1) ⇐⇒ 𝑠 (𝐽) < 1 (𝑠 (𝐽) = 0, 𝑠 (𝐽) > 0) ,

(24)

where

𝐽 = 𝐹 − 𝑉

= (

(

−(𝑑
11
+ 𝜎
1
+ 𝐷
1
) 𝛽
11
𝑁
0

𝐷1
0 𝐷

2
0 0

0 −𝑑
21

𝛽
21
𝑆
0

𝐿1
0 0 0

𝑎
1

0 −𝑑
1

0 0 0

𝐷
1

0 0 − (𝑑
12
+ 𝜎
2
+ 𝐷
2
) 𝛽
21
𝑁
0

𝐷2
0

0 0 0 0 −𝑑
22

𝛽
22
𝑆
0

𝐿2

0 0 0 𝑎
2

0 −𝑑
2

)

)

(25)

and 𝑠(𝐽) is themaximum real part of the eigenvalues ofmatrix
𝐽.

Using Theorem 2 in [30], we can easily obtain the
following stability result.

Theorem 4. For model (2), one has that

(a) if 𝑅
0
< 1, then disease-free equilibrium 𝐸

0
is locally

asymptotically stable;

(b) if 𝑅
0
> 1, then disease-free equilibrium 𝐸

0
is unstable.

4. Global Stability of the
Disease-Free Equilibrium

We start by considering the global stability of disease-free
equilibrium 𝐸

0
when 𝑅

0
< 1.

Theorem 5. The disease-free equilibrium 𝐸
0
of model (2) is

globally asymptotically stable in Γ
𝜀
if 𝑅
0
< 1.

Proof. FromTheorem 4 we find that disease-free equilibrium
𝐸
0
is locally asymptotically stable if 𝑅

0
< 1. In the following

we only need to prove the global attractiveness of 𝐸
0
. From

(24) we can see that if 𝑅
0
< 1, then 𝑠(𝐽) < 0. Hence, there

is a small enough number 𝜀 > 0 such that 𝑠(𝐽
𝜀
) < 0, where

𝐽
𝜀
= 𝐽 + 𝜀𝐽

1
and

𝐽
1
= (

(

0 𝛽
11

0 0 0 0

0 0 𝛽
21

0 0 0

0 0 0 0 0 0

0 0 0 0 𝛽
12

0

0 0 0 0 0 𝛽
22

0 0 0 0 0 0

)

)

. (26)

Let (𝑆
𝐷1
(𝑡), 𝐼
𝐷1
(𝑡), 𝑆
𝐿1
(𝑡), 𝐼
𝐿1
(𝑡), 𝑥
1
(𝑡), 𝑆
𝐷2
(𝑡), 𝐼
𝐷2
(𝑡), 𝑆
𝐿2
(𝑡),

𝐼
𝐿2
(𝑡), 𝑥
2
(𝑡)) be any solution of model (2) in Γ

𝜀
, then

𝑆
𝐷𝑖
(𝑡) ≤ 𝑁

0

𝐷𝑖
+ 𝜀, 𝑆

𝐿𝑖
(𝑡) ≤ 𝑆

0

𝐿𝑖
+ 𝜀, 𝑖 = 1, 2, ∀𝑡 ≥ 0.

(27)

From model (2), it follows that
̇𝐼
𝐷1

≤ 𝛽
11
(𝑁
0

𝐷1
+ 𝜀) 𝐼
𝐿1
− (𝑑
11
+ 𝜎
1
) 𝐼
𝐷1

− 𝐷
1
𝐼
𝐷1

+ 𝐷
2
𝐼
𝐷2
,

̇𝐼
𝐿1

≤ 𝛽
21
(𝑆
0

𝐿1
+ 𝜀) 𝑥

1
− 𝑑
21
𝐼
𝐿1
,

̇𝑥
1
≤ 𝑎
1
𝐼
𝐷1

− 𝑑
1
𝑥
1
,

̇𝐼
𝐷2

≤ 𝛽
12
(𝑁
0

𝐷2
+ 𝜀) 𝐼
𝐿2
− (𝑑
12
+ 𝜎
2
) 𝐼
𝐷2

− 𝐷
2
𝐼
𝐷2

+ 𝐷
1
𝐼
𝐷1
,

̇𝐼
𝐿2

≤ 𝛽
22
(𝑆
0

𝐿2
+ 𝜀) 𝑥

2
− 𝑑
22
𝐼
𝐿2
,

̇𝑥
2
≤ 𝑎
2
𝐼
𝐷2

− 𝑑
2
𝑥
2
.

(28)

Define an auxiliary linear system:

𝐼


𝐷1
= 𝛽
11
(𝑁
0

𝐷1
+ 𝜀) 𝐼

𝐿1
− (𝑑
11
+ 𝜎
1
) 𝐼
𝐷1

− 𝐷
1
𝐼
𝐷1

+ 𝐷
2
𝐼
𝐷2
,

𝐼


𝐿1
= 𝛽
21
(𝑆
0

𝐿1
+ 𝜀) 𝑥

1
− 𝑑
21
𝐼
𝐿1
,

𝑥


1
= 𝑎
1
𝐼
𝐷1

− 𝑑
1
𝑥
1
,

𝐼


𝐷2
= 𝛽
12
(𝑁
0

𝐷2
+ 𝜀) 𝐼

𝐿2
− (𝑑
12
+ 𝜎
2
) 𝐼
𝐷2

− 𝐷
2
𝐼
𝐷2

+ 𝐷
1
𝐼
𝐷1
,

𝐼


𝐿2
= 𝛽
22
(𝑆
0

𝐿2
+ 𝜀) 𝑥

2
− 𝑑
22
𝐼
𝐿2
,

𝑥


2
= 𝑎
2
𝐼
𝐷2

− 𝑑
2
𝑥
2
.

(29)

Since system (29) is a linear system, the globally stability of
origin is determined by the stability of matrix 𝐽

𝜀
. Since 𝑠(𝐽

𝜀
) <

0, then all the eigenvalues ofmatrix 𝐽
𝜀
have negative real parts.

It then follows that each solution of (29) satisfies

lim
𝑡→+∞

𝐼
𝐷𝑖
(𝑡) = 0, lim

𝑡→+∞

𝐼
𝐿𝑖
(𝑡) = 0,

lim
𝑡→+∞

𝑥
𝑖
(𝑡) = 0, 𝑖 = 1, 2.

(30)

By the comparison principle we have

lim
𝑡→+∞

𝐼
𝐷𝑖 (𝑡) = 0, lim

𝑡→+∞

𝐼
𝐿𝑖 (𝑡) = 0,

lim
𝑡→+∞

𝑥
𝑖 (𝑡) = 0, 𝑖 = 1, 2.

(31)
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Then the limiting system of model (2) is
̇𝑆
𝐷1

= 𝐴
11
− 𝑑
11
𝑆
𝐷1

− 𝐷
1
𝑆
𝐷1

+ 𝐷
2
𝑆
𝐷2
,

̇𝑆
𝐷2
= 𝐴
12
− 𝑑
12
𝑆
𝐷2

− 𝐷
2
𝑆
𝐷2

+ 𝐷
1
𝑆
𝐷1
,

̇𝑆
𝐿1

= 𝐴
21
− 𝑑
21
𝑆
𝐿1
,

̇𝑆
𝐿2

= 𝐴
22
− 𝑑
22
𝑆
𝐿2
.

(32)

By Lemma 2 we find that there is a unique equilibrium
(𝑁
0

𝐷1
, 𝑁
0

𝐷2
, 𝑆
0

𝐿1
, 𝑆
0

𝐿2
) of system (32), which is globally asymp-

totically stable. Thus, according to the theory of asymptotic
autonomous systems [31], we finally obtain that disease-free
equilibrium 𝐸

0
is globally asymptotically stable for model (2)

when 𝑅
0
< 1. This completes the proof of Theorem 5.

5. Permanence

We now turn to the case where 𝑅
0
> 1. We first establish the

permanence for model (2).

Theorem 6. Let 𝐷
𝑖
> 0, 𝑖 = 1, 2. If 𝑅

0
> 1, then model (2) is

permanent. Furthermore, model (2) also has at least one posi-
tive equilibrium𝐸

∗
(𝑆
∗

𝐷1
, 𝐼
∗

𝐷1
, 𝑆
∗

𝐿1
, 𝐼
∗

𝐿1
, 𝑥
∗

1
, 𝑆
∗

𝐷2
, 𝐼
∗

𝐷2
, 𝑆
∗

𝐿2
, 𝐼
∗

𝐿2
, 𝑥
∗

2
).

Proof. Define

𝑋 = {(𝑆
𝐷1
, 𝐼
𝐷1
, 𝑆
𝐿1
, 𝐼
𝐿1
, 𝑥
1
, 𝑆
𝐷2
, 𝐼
𝐷2
, 𝑆
𝐿2
, 𝐼
𝐿2
, 𝑥
2
) :

𝑆
𝐷𝑖

≥ 0, 𝐼
𝐷𝑖

≥ 0, 𝑆
𝐿𝑖
≥ 0, 𝐼
𝐿𝑖
≥ 0, 𝑥

𝑖
≥ 0, 𝑖 = 1, 2} ,

𝑋
0
= {(𝑆
𝐷1
, 𝐼
𝐷1
, 𝑆
𝐿1
, 𝐼
𝐿1
, 𝑥
1
, 𝑆
𝐷2
, 𝐼
𝐷2
, 𝑆
𝐿2
, 𝐼
𝐿2
, 𝑥
2
) :

𝑆
𝐷𝑖

> 0, 𝐼
𝐷𝑖

> 0, 𝑆
𝐿𝑖
> 0, 𝐼
𝐿𝑖
> 0, 𝑥

𝑖
> 0, 𝑖 = 1, 2} ,

𝜕𝑋
0
= 𝑋 \ 𝑋

0
,

𝑀
𝜕
= {(𝑆
𝐷1

(0) , 𝐼
𝐷1

(0) , 𝑆
𝐿1
(0) , 𝐼
𝐿1
(0) , 𝑥

1
(0) ,

𝑆
𝐷2 (0) , 𝐼𝐷2 (0) , 𝑆𝐿2 (0) , 𝐼𝐿2 (0) , 𝑥2 (0)) :

(𝑆
𝐷1

(𝑡) , 𝐼
𝐷1

(𝑡) , 𝑆
𝐿1
(𝑡) , 𝐼
𝐿1
(𝑡) , 𝑥
1
(𝑡) ,

𝑆
𝐷2

(𝑡) , 𝐼
𝐷2

(𝑡) , 𝑆
𝐿2
(𝑡) , 𝐼
𝐿2
(𝑡) , 𝑥
2
(𝑡))

(33)

satisfies model (2),

(𝑆
𝐷1

(𝑡) , 𝐼
𝐷1

(𝑡) , 𝑆
𝐿1
(𝑡) , 𝐼
𝐿1
(𝑡) , 𝑥
1
(𝑡) , 𝑆
𝐷2

(𝑡) ,

𝐼
𝐷2 (𝑡) , 𝑆𝐿2 (𝑡) , 𝐼𝐿2 (𝑡) , 𝑥2 (𝑡)) ∈ 𝜕𝑋

0
, ∀𝑡 ≥ 0} .

(34)

In order to prove Theorem 6, it suffices to show that 𝜕𝑋
0

repels uniformly the solutions of𝑋
0
.

Firstly, by the form of model (2), it is easy to see that both
𝑋 and 𝑋

0
are positively invariant. Clearly, 𝜕𝑋

0
is relatively

closed in 𝑋. Furthermore, model (2) is point dissipative (see
Lemma 3).

We now show that if𝐷
𝑖
> 0, 𝑖 = 1, 2, then

𝑀
𝜕
= {(𝑆

𝐷1
, 0, 𝑆
𝐿1
, 0, 0, 𝑆

𝐷2
, 0, 𝑆
𝐿2
, 0, 0) :

𝑆
𝐷𝑖

≥ 0, 𝑆
𝐿𝑖
≥ 0, 𝑖 = 1, 2} .

(35)

Assume

(𝑆
𝐷1 (0) , 𝐼𝐷1 (0) , 𝑆𝐿1 (0) , 𝐼𝐿1 (0) , 𝑥1 (0) ,

𝑆
𝐷2

(0) , 𝐼
𝐷2

(0) , 𝑆
𝐿2
(0) , 𝐼
𝐿2
(0) , 𝑥

2
(0)) ∈ 𝑀

𝜕
.

(36)

It suffices to show that

𝐼
𝐷1

(𝑡) = 𝐼
𝐿1
(𝑡) = 𝑥

1
(𝑡) = 𝐼

𝐷2
(𝑡)

= 𝐼
𝐿2 (𝑡) = 𝑥

2 (𝑡) = 0, ∀𝑡 ≥ 0.

(37)

Suppose not, then there exists a 𝑡
0
≥ 0 such that at least one of

𝐼
𝐷1
(𝑡
0
), 𝐼
𝐿1
(𝑡
0
), 𝑥
1
(𝑡
0
), 𝐼
𝐷2
(𝑡
0
), 𝐼
𝐿2
(𝑡
0
), or 𝑥

2
(𝑡
0
) is greater than

zero. Here we only consider the case 𝐼
𝐷1
(𝑡
0
) > 0, 𝐼

𝐷2
(𝑡
0
) = 0,

𝑆
𝐷𝑖
(𝑡
0
) = 0, 𝑆

𝐿𝑖
(𝑡
0
) = 0, 𝐼

𝐿𝑖
(𝑡
0
) = 0, and 𝑥

𝑖
(𝑡
0
) = 0, 𝑖 = 1, 2.

The other case can be deduced in the same way. Since

̇𝑆
𝐷𝑖
(𝑡
0
) = 𝐴

1𝑖
− 𝛽
1𝑖
𝑆
𝐷𝑖
(𝑡
0
) 𝐼
𝐿𝑖
(𝑡
0
) − 𝑑
1𝑖
𝑆
𝐷𝑖
(𝑡
0
) + 𝜎
𝑖
𝑆
𝐷𝑖
(𝑡
0
)

+ 𝐷
𝑖
𝑆
𝐷𝑖
(𝑡
0
) − 𝐷
𝑗
𝑆
𝐷𝑗

(𝑡
0
) ≥ 𝐴

1𝑖
> 0,

̇𝑆
𝐿𝑖
(𝑡
0
) = 𝐴

2𝑖
− 𝛽
2𝑖
𝑆
𝐿𝑖
(𝑡
0
) 𝑥
𝑖
(𝑡
0
) − 𝑑
2𝑖
𝑆
𝐿𝑖
(𝑡
0
) = 𝐴

2𝑖
> 0,

̇𝑥
1
(𝑡
0
) = 𝑎𝐼

𝐷1
(𝑡
0
) − 𝑑
1
𝑥
1
(𝑡
0
) = 𝑎𝐼

𝐷1
(𝑡
0
) > 0,

̇𝐼
𝐷1 (𝑡) ≥ − (𝑑

11
+ 𝜎
1
+ 𝐷
1
) 𝐼
𝐷1 (𝑡) , 𝑖 = 1, 2, 𝑖 ̸= 𝑗,

(38)

it follows that there is an 𝜖
0

> 0 small enough such that
𝑆
𝐷𝑖
(𝑡) > 0, 𝑆

𝐿𝑖
(𝑡) > 0, 𝑥

1
(𝑡) > 0, and 𝐼

𝐷1
(𝑡) > 0, 𝑖 = 1, 2,

for all 𝑡
0
< 𝑡 < 𝑡

0
+ 𝜖
0
. If 𝐼
𝐿1
(𝑡
0
+ (𝜖
0
/2)) > 0, then we have

̇𝐼
𝐿1
(𝑡) ≥ −𝑑

21
𝐼
𝐿1
(𝑡) . (39)

This means that 𝐼
𝐿1
(𝑡) > 0 for all 𝑡 ≥ 𝑡

0
+ (𝜖
0
/2). If 𝐼

𝐿1
(𝑡
0
+

(𝜖
0
/2)) = 0, it then follows from model (2) that

̇𝐼
𝐿1
(𝑡
0
+
𝜖
0

2
) = 𝛽

21
𝑆
𝐿1
(𝑡
0
+
𝜖
0

2
) 𝑥
1
(𝑡
0
+
𝜖
0

2
) > 0. (40)

It then follows that there exists an 𝜖
1
< (𝜖
0
/2) such that

𝐼
𝐿1 (𝑡) > 0, ∀𝑡

0
+
𝜖
0

2
< 𝑡 < 𝑡

0
+
𝜖
0

2
+ 𝜖
1
. (41)

By the same way we can obtain that there exists an 𝜖
2
< 𝜖
1

such that

𝐼
𝐷2 (𝑡) > 0, ∀𝑡

0
+
𝜖
0

2
< 𝑡 < 𝑡

0
+
𝜖
0

2
+ 𝜖
2
. (42)

If 𝑥
2
(𝑡
0
+ (𝜖
0
/2) + (𝜖

2
/2)) > 0, then we have

̇𝑥
2
(𝑡) ≥ 𝑑

2
𝑥
2
(𝑡) . (43)

This means that 𝑥
2
(𝑡) > 0 for all 𝑡 > 𝑡

0
+ (𝜖
0
/2) + (𝜖

2
/2); if

𝑥
2
(𝑡
0
+ (𝜖
0
/2) + (𝜖

2
/2)) = 0, it then follows from model (2)

that

̇𝑥
2
(𝑡
0
+
𝜖
0

2
+
𝜖
2

2
) = 𝑎
2
𝐼
𝐷2

(𝑡
0
+
𝜖
0

2
+
𝜖
2

2
) > 0. (44)

It then follows that there exists an 𝜖
3
< (𝜖
2
/2) such that

𝑥
2 (𝑡) > 0, ∀𝑡

0
+
𝜖
0

2
+
𝜖
2

2
< 𝑡 < 𝑡

0
+
𝜖
0

2
+
𝜖
2

2
+ 𝜖
3
. (45)
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By the same way we can obtain that there exists an 𝜖
4
< (𝜖
3
/2)

such that

𝐼
𝐿2
(𝑡) > 0,

∀𝑡
0
+
𝜖
0

2
+
𝜖
2

2
+
𝜖
3

2
< 𝑡 < 𝑡

0
+
𝜖
0

2
+
𝜖
2

2
+
𝜖
3

2
+ 𝜖
4
.

(46)

Thus for all 𝑡 ∈ (𝑡
0
+ (𝜖
0
/2) + (𝜖

2
/2) + (𝜖

3
/2), 𝑡
0
+ (𝜖
0
/2)

+ (𝜖
2
/2) + (𝜖

3
/2) + 𝜖

4
) we have 𝑆

𝐷𝑖
(𝑡) > 0, 𝐼

𝐷𝑖
(𝑡) > 0,

𝑆
𝐿𝑖
(𝑡) > 0, 𝐼

𝐿𝑖
(𝑡) > 0, and 𝑥

𝑖
(𝑡) > 0, 𝑖 = 1, 2. This con-

tradicts the assumption that (𝑆
𝐷1
(0), 𝐼
𝐷1
(0), 𝑆
𝐿1
(0), 𝐼
𝐿1
(0),

𝑥
1
(0), 𝑆
𝐷2
(0), 𝐼
𝐷2
(0), 𝑆
𝐿2
(0), 𝐼
𝐿2
(0), 𝑥
2
(0)) ∈ 𝑀

𝜕
. This proves

(35).
From (24) we can see that if 𝑅

0
> 1, then 𝑠(𝐽) > 0. Hence,

there is a small enough number 𝜃 > 0 such that 𝑠(𝐽
𝜃
) > 0,

where 𝐽
𝜃
= 𝐽 − 𝜃𝐽

1
and 𝐽
1
is given by (26). Let

𝑔 (𝑥) = (

𝑔
1
(𝑥)

𝑔
2
(𝑥)

𝑔
3
(𝑥)

𝑔
4
(𝑥)

)

=

(
(
(
(
(
(
(

(

𝐴
11
(𝑑
12
+ 𝐷
2
+ 𝛽
12
𝑥) + 𝐴

12
𝐷
2

(𝛽
11
𝑥 + 𝑑
11
) (𝛽
12
𝑥 + 𝑑
12
) + 𝐷
1
(𝛽
12
𝑥 + 𝑑
12
) + 𝐷
2
(𝛽
11
+ 𝑑
11
)

𝐴
12
(𝑑
11
+ 𝐷
1
+ 𝛽
11
𝑥) + 𝐴

11
𝐷
1

(𝛽
11
𝑥 + 𝑑
11
) (𝛽
12
𝑥 + 𝑑
12
) + 𝐷
1
(𝛽
12
𝑥 + 𝑑
12
) + 𝐷
2
(𝛽
11
+ 𝑑
11
)

𝐴
12

𝑑
21
+ 𝛽
21
𝑥

𝐴
22

𝑑
22
+ 𝛽
22
𝑥

)
)
)
)
)
)
)

)

,

(47)

and we can see the fact that lim
𝑥→0

𝑔(𝑥) = (𝑁
0

𝐷1
, 𝑁
0

𝐷2
,

𝑆
0

𝐿1
, 𝑆
0

𝐿2
)
𝑇. Hence we can choose 𝛿 > 0 small enough such

that

𝑔
1
(𝛿) = (𝐴

11
(𝑑
12
+ 𝐷
2
+ 𝛽
12
𝛿) + 𝐴

12
𝐷
2
)

× ((𝛽
11
𝛿 + 𝑑
11
) (𝛽
12
𝛿 + 𝑑
12
) + 𝐷
1
(𝛽
12
𝛿 + 𝑑
12
)

+𝐷
2
(𝛽
11
+ 𝑑
11
))
−1

> 𝑁
0

𝐷1
− 𝜃,

𝑔
2 (𝛿) = (𝐴

12
(𝑑
11
+ 𝐷
1
+ 𝛽
11
𝛿) + 𝐴

11
𝐷
1
)

× ((𝛽
11
𝛿 + 𝑑
11
) (𝛽
12
𝛿 + 𝑑
12
) + 𝐷
1
(𝛽
12
𝛿 + 𝑑
12
)

+𝐷
2
(𝛽
11
+ 𝑑
11
))
−1

> 𝑁
0

𝐷2
− 𝜃,

𝑔
3
(𝛿) =

𝐴
12

𝑑
21
+ 𝛽
21
𝛿
> 𝑆
0

𝐿1
− 𝜃,

𝑔
4
(𝛿) =

𝐴
22

𝑑
22
+ 𝛽
22
𝛿
> 𝑆
0

𝐿2
− 𝜃.

(48)

Suppose (𝑆
𝐷1
(𝑡), 𝐼
𝐷1
(𝑡), 𝑆
𝐿1
(𝑡), 𝐼
𝐿1
(𝑡),𝑥
1
(𝑡), 𝑆
𝐷2
(𝑡), 𝐼
𝐷2
(𝑡), 𝑆
𝐿2
(𝑡),

𝐼
𝐿2
(𝑡), 𝑥
2
(𝑡)) is a solution of model (2) with (𝑆

𝐷1
(0), 𝐼
𝐷1
(0),

𝑆
𝐿1
(0), 𝐼
𝐿1
(0), 𝑥
1
(0), 𝑆
𝐷2
(0), 𝐼
𝐷2
(0), 𝑆
𝐿2
(0), 𝐼
𝐿2
(0), 𝑥
2
(0)) ∈ 𝑋

0
.

We now claim that

lim sup
𝑡→∞

max {𝐼
𝐷1

(𝑡) , 𝐼
𝐿1
(𝑡) , 𝑥
1
(𝑡) , 𝐼
𝐷2

(𝑡) ,

𝐼
𝐿2
(𝑡) , 𝑥
2
(𝑡)} > 𝛿.

(49)

Suppose, for the sake of contradiction, that there exists a 𝑇 >

0 such that 𝐼
𝐷𝑖

≤ 𝛿, 𝐼
𝐿𝑖

≤ 𝛿, and 𝑥
𝑖
(𝑡) ≤ 𝛿, 𝑖 = 1, 2, for all

𝑡 ≥ 𝑇. Then by model (2) we have

̇𝑆
𝐷1

(𝑡) ≥ 𝐴
11
− (𝛽
11
𝛿 + 𝑑
11
) 𝑆
𝐷1

− 𝐷
1
𝑆
𝐷1

+ 𝐷
2
𝑆
𝐷2
,

̇𝑆
𝐷2 (𝑡) ≥ 𝐴

12
− (𝛽
12
𝛿 + 𝑑
12
) 𝑆
𝐷2

− 𝐷
2
𝑆
𝐷2

+ 𝐷
1
𝑆
𝐷1
,

̇𝑆
𝐿1
(𝑡) ≥ 𝐴

21
− (𝛽
21
𝛿 + 𝑑
21
) 𝑆
𝐿1
,

̇𝑆
𝐿2 (𝑡) ≥ 𝐴

22
− (𝛽
22
𝛿 + 𝑑
22
) 𝑆
𝐿2

(50)

for 𝑡 ≥ 𝑇. Consider the following auxiliary system:

̇
�̃�
𝐷1 (𝑡) = 𝐴

11
− (𝛽
11
𝛿 + 𝑑
11
) 𝑆
𝐷1

− 𝐷
1
𝑆
𝐷1

+ 𝐷
2
S̃
𝐷2
,

̇
�̃�
𝐷2

(𝑡) = 𝐴
12
− (𝛽
12
𝛿 + 𝑑
12
) 𝑆
𝐷2

− 𝐷
2
𝑆
𝐷2

+ 𝐷
1
𝑆
𝐷1
,

̇
�̃�
𝐿1
(𝑡) = 𝐴

21
− (𝛽
21
𝛿 + 𝑑
21
) 𝑆
𝐿1
,

̇
�̃�
𝐿2
(𝑡) = 𝐴

22
− (𝛽
22
𝛿 + 𝑑
22
) 𝑆
𝐿2
.

(51)

As in our analysis in Lemma 2, system (51) has a unique pos-
itive equilibrium (𝑔

1
(𝛿), 𝑔
2
(𝛿), 𝑔
3
(𝛿), 𝑔
4
(𝛿))which is globally

stable. By (48) and comparison principle, there is a 𝜏 > 0 such
that 𝑆

𝐷1
(𝑡) ≥ 𝑁

0

𝐷1
− 𝜃, 𝑆
𝐷2
(𝑡) ≥ 𝑁

0

𝐷2
− 𝜃, 𝑆
𝐿1
(𝑡) ≥ 𝑆

0

𝐿1
− 𝜃, and

𝑆
𝐿2
(𝑡) ≥ 𝑆

0

𝐿2
− 𝜃 for all 𝑡 ≥ 𝑇 + 𝜏. Consequently, for 𝑡 ≥ 𝑇 + 𝜏,

we have

̇𝐼
𝐷1

(𝑡) ≥ 𝛽
11
(𝑁
0

𝐷1
− 𝜃) 𝐼

𝐿1
− (𝑑
11
+ 𝜎
1
+ 𝐷
1
) 𝐼
𝐷1

+ 𝐷
2
𝐼
𝐷2
,

̇𝐼
𝐿1
(𝑡) ≥ 𝛽

21
(𝑆
0

𝐿1
− 𝜃) 𝑥

1
− 𝑑
21
𝐼
𝐿1
,
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Figure 2: Time series of echinococcosis disease 𝐼
𝐿𝑖
, 𝑖 = 1, 2, when the two patches are isolated for the parameters given in Example 8.
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Figure 3: Surface plot of 𝑅
0
as a function of 𝐷

1
and 𝐷

2
for the

parameters given in Example 8.

̇𝑥
1
(𝑡) ≥ 𝑎

1
𝐼
𝐷1

− 𝑑
1
𝑥
1
,

̇𝐼
𝐷2 (𝑡) ≥ 𝛽

12
(𝑁
0

𝐷2
− 𝜃) 𝐼

𝐿2
− (𝑑
12
+ 𝜎
2
+ 𝐷
2
) 𝐼
𝐷2

+ 𝐷
1
𝐼
𝐷1
,

̇𝐼
𝐿2 (𝑡) ≥ 𝛽

22
(𝑆
0

𝐿2
− 𝜃) 𝑥

2
− 𝑑
22
𝐼
𝐿2
,

̇𝑥
2
(𝑡) ≥ 𝑎

2
𝐼
𝐷2

− 𝑑
2
𝑥
2
.

(52)

Consider an auxiliary system

̇
�̃�
𝐷1

(𝑡) = 𝛽
11
(𝑁
0

𝐷1
− 𝜃) 𝐼

𝐿1
− (𝑑
11
+ 𝜎
1
+ 𝐷
1
) 𝐼
𝐷1

+ 𝐷
2
𝐼
𝐷2
,

̇
�̃�
𝐿1
(𝑡) = 𝛽

21
(𝑆
0

𝐿1
− 𝜃) 𝑥

1
− 𝑑
21
𝐼
𝐿1
,

̇�̃�
1 (𝑡) = 𝑎

1
𝐼
𝐷1

− 𝑑
1
𝑥
1
,

̇
�̃�
𝐷2

(𝑡) = 𝛽
12
(𝑁
0

𝐷2
− 𝜃) 𝐼

𝐿2
− (𝑑
12
+ 𝜎
2
+ 𝐷
2
) 𝐼
𝐷2

+ 𝐷
1
𝐼
𝐷1
,

̇
�̃�
𝐿2 (𝑡) = 𝛽

22
(𝑆
0

𝐿2
− 𝜃) 𝑥

2
− 𝑑
22
𝐼
𝐿2
,

̇�̃�
2
(𝑡) = 𝑎

2
𝐼
𝐷2

− 𝑑
2
𝑥
2
.

(53)

The coefficient matrix of the right hand of (53) is 𝐽
𝜃
. Since

matrix 𝐽
𝜃
has a positive eigenvalues 𝑠(𝐽

𝜃
) with a positive

eigenvector, it follows from a comparison principle that
𝐼
𝐷𝑖
(𝑡) → ∞, 𝐼

𝐿𝑖
(𝑡) → ∞, and 𝑥

𝑖
(𝑡) → ∞ as 𝑡 → ∞, 𝑖 =

1, 2, which leads to a contradiction. This proves (49). Hence
𝑊
𝑠
(𝐸
0
)∩𝑋
0
= 0. Clearly, every forward orbit in𝑀

𝜕
converges

to 𝐸
0
. By Theorem 4.6 in [32] we are able to conclude that

model (2) is uniformly persistent with respect to (𝑋
0
, 𝜕𝑋
0
).

Thus, by a well-known result in persistence theory in [33]
we know that model (2) has at least one positive equilibrium
𝐸
∗
(𝑆
∗

𝐷1
, 𝐼
∗

𝐷1
, 𝑆
∗

𝐿1
, 𝐼
∗

𝐿1
, 𝑥
∗

1
, 𝑆
∗

𝐷2
, 𝐼
∗

𝐷2
, 𝑆
∗

𝐿2
, 𝐼
∗

𝐿2
, 𝑥
∗

2
). This completes

the proof of Theorem 6.

6. Global Stability of 𝐸∗

We further have the following result on the stability of the
endemic equilibrium.

Theorem7. If𝑅
0
> 1, thenmodel (2) admits a unique equilib-

rium 𝐸
∗
(𝑆
∗

𝐷1
, 𝐼
∗

𝐷1
, 𝑆
∗

𝐿1
, 𝐼
∗

𝐿1
, 𝑥
∗

1
, 𝑆
∗

𝐷2
, 𝐼
∗

𝐷2
, 𝑆
∗

𝐿2
, 𝐼
∗

𝐿2
, 𝑥
∗

2
), which is

globally asymptotically stable.

Proof. In Lemma 3, we have proved that 𝑆
𝐷𝑖
(𝑡) + 𝐼

𝐷𝑖
(𝑡) →

𝑁
0

𝐷𝑖
and 𝑆
𝐿𝑖
(𝑡) + 𝐼

𝐿𝑖
(𝑡) → 𝑆

0

𝐿𝑖
as 𝑡 → ∞, 𝑖 = 1, 2. Therefore,

in model (2) we can represent 𝑆
𝐷𝑖

and 𝑆
𝐿𝑖
by𝑁0
𝐷𝑖
− 𝐼
𝐷𝑖
(𝑡) and
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Figure 4: Time series of echinococcosis disease 𝐼
𝐿𝑖
, 𝑖 = 1, 2, when the two patches are connected with𝐷

1
= 0.8,𝐷

2
= 0.2.

𝑆
0

𝐿𝑖
− 𝑆
𝐿𝑖
(𝑡), 𝑖 = 1, 2, respectively, and the model (2) will

degenerate into the following system with six equations:

̇𝐼
𝐷1

(𝑡) = − (𝑑
11
+ 𝜎
1
+ 𝐷
1
) 𝐼
𝐷1

+ 𝛽
11
(𝑁
0

𝐷1
− 𝐼
𝐷1
) 𝐼
𝐿1

+ 𝐷
2
𝐼
𝐷2
,

̇𝐼
𝐿1
(𝑡) = −𝑑

21
𝐼
𝐿1
+ 𝛽
21
(𝑆
0

𝐿1
− 𝐼
𝐿1
) 𝑥
1
,

̇𝑥
1
(𝑡) = 𝑎

1
𝐼
𝐷1

− 𝑑
1
𝑥
1
,

̇𝐼
𝐷2 (𝑡) = 𝐷

1
𝐼
𝐷1

− (𝑑
12
+ 𝜎
2
+ 𝐷
2
) 𝐼
𝐷2

̇𝐼
𝐷1

(𝑡) = +𝛽
12
(𝑁
0

𝐷2
− 𝐼
𝐷2
) 𝐼
𝐿2
,

̇𝐼
𝐿2 (𝑡) = −𝑑

22
𝐼
𝐿2
+ 𝛽
22
(𝑆
0

𝐿2
− 𝐼
𝐿2
) 𝑥
2
,

̇𝑥
2 (𝑡) = 𝑎

2
𝐼
𝐷2

− 𝑑
2
𝑥
2
.

(54)

By Lemma 3, the dynamics of system (54) can be focused on
the following region:

Ω = {(𝐼
𝐷1
, 𝐼
𝐿1
, 𝑥
1
, 𝐼
𝐷2
, 𝐼
𝐿2
, 𝑥
2
) : 0 ≤ 𝐼

𝐷𝑖
≤ 𝑁
0

𝐷𝑖
,

0 ≤ 𝐼
𝐿𝑖
≤ 𝑆
0

𝐿𝑖
, 0 ≤ 𝑥

𝑖
≤

𝑎
𝑖

𝑑
𝑖

𝑁
0

𝐷𝑖
, 𝑖 = 1, 2} .

(55)

We will use the theory of cooperate system to prove the
global stability of system (54). Therefore, we only verify the
assumption in Corollary 3.2 [34] for system (54). Let

𝑓 (𝑢) =
(
(
(

(

𝑓
1
(𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
)

𝑓
2
(𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
)

𝑓
3
(𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
)

𝑓
4
(𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
)

𝑓
5
(𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
)

𝑓
6
(𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
)

)
)
)

)

=

(
(
(
(
(
(
(

(

−(𝑑
11
+ 𝜎
1
+ 𝐷
1
) 𝑢
1
+ 𝛽
11
(𝑁
0

𝐷1
− 𝑢
1
) 𝑢
2
+ 𝐷
2
𝑢
4

−𝑑
21
𝑢
2
+ 𝛽
21
(𝑆
0

𝐿1
− 𝑢
2
) 𝑢
3

𝑎
1
𝑢
1
− 𝑑
1
𝑢
3

𝐷
1
𝑢
1
− (𝑑
12
+ 𝜎
2
+ 𝐷
2
) 𝑢
4
+ 𝛽
12
(𝑁
0

𝐷2
− 𝑢
4
) 𝑢
5

−𝑑
22
𝑢
5
+ 𝛽
22
(𝑆
0

𝐿2
− 𝑢
5
) 𝑢
6

𝑎
2
𝑢
4
− 𝑑
2
𝑢
6

)
)
)
)
)
)
)

)

,

(56)

and then 𝑓 : R6
+
→ R6
+
is a continuously differentiable map.

Clearly 𝑓(0) = 0 and 𝑓
𝑖
(𝑢) ≥ 0 for all 𝑢 ∈ Ω with 𝑢

𝑖
= 0,

𝑖 = 1, 2, . . . , 6. Since 𝜕𝑓
𝑖
/𝜕𝑢
𝑗
≥ 0 (𝑖 ̸= 𝑗) for 𝑢 ∈ Ω, we have

that 𝑓 is cooperative on Ω. For every 𝑝 ∈ (0, 1) and 𝑢 ∈ Ω,
we have

𝑓
1
(𝑝𝑢
1
, 𝑝𝑢
2
, 𝑝𝑢
3
, 𝑝𝑢
4
, 𝑝𝑢
5
, 𝑝𝑢
6
)

= − (𝑑
11
+ 𝜎
1
+ 𝐷
1
) 𝑝𝑢
1
+ 𝛽
11
(𝑁
0

𝐷1
− 𝑝𝑢
1
) 𝑝𝑢
2
+ 𝐷
2
𝑝𝑢
4

≥ − (𝑑
11
+ 𝜎
1
+ 𝐷
1
) 𝑝𝑢
1
+ 𝛽
11
(𝑁
0

𝐷1
− 𝑢
1
) 𝑝𝑢
2
+ 𝐷
2
𝑝𝑢
4

= 𝑝𝑓
1
(𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
) .

(57)

Using the same argument, we can show that 𝑓 is strictly
sublinear on Ω. By computing𝐷𝑓(𝑢), we have

(
𝜕𝑓
𝑖

𝜕𝑢
𝑗

)

1≤𝑖,𝑗≤6

= (

𝑓
11 (𝑢) 𝑓

12 (𝑢)

𝑓
21
(𝑢) 𝑓

22
(𝑢)

) , (58)
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Figure 5: Time series of echinococcosis disease 𝐼
𝐿𝑖
, 𝑖 = 1, 2, when the two patches are connected with𝐷

1
= 0.2,𝐷

2
= 0.8.
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Figure 6: Time series of echinococcosis disease 𝐼
𝐿𝑖
, 𝑖 = 1, 2, when the two patches are isolated for the parameters given in Example 9.

where

𝑓
11 (𝑢) = (

− (𝑑
11
+ 𝜎
1
+ 𝐷
1
) − 𝛽
11
𝑢
2
𝛽
11
(𝑁
0

𝐷1
− 𝑢
1
) 0

0 −𝑑
21
− 𝛽
21
𝑢
3

𝛽
21
(𝑆
0

𝐿1
− 𝑢
3
)

𝑎
1

0 −𝑑
1

),

𝑓
12
(𝑢) = (

𝐷
2
0 0

0 0 0

0 0 0

) , 𝑓
21
(𝑢) = (

𝐷
1
0 0

0 0 0

0 0 0

) ,

𝑓
22
(𝑢) = (

− (𝑑
12
+ 𝜎
2
+ 𝐷
2
) − 𝛽
12
𝑢
5
𝛽
12
(𝑁
0

𝐷2
− 𝑢
4
) 0

0 −𝑑
22
− 𝛽
22
𝑢
6

𝛽
22
(𝑆
0

𝐿2
− 𝑢
5
)

𝑎
2

0 −𝑑
2

).

(59)
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Figure 7: Surface plot of 𝑅
0
as a function of 𝐷

1
and 𝐷

2
for the

parameters given in Example 9.

Clearly, 𝐷𝑓(𝑢) is irreducible for 𝑢 ∈ Ω. From (24) we can
see that if 𝑅

0
> 1, then 𝑠(𝐽) > 0. Since 𝐷𝑓(0) = 𝐽,

we have 𝑠(𝐷𝑓(0)) = 𝑠(𝐽) > 0. By Corollary 3.2 in [34],
one can conclude that system (54) admits a unique posi-
tive equilibrium (𝐼

∗

𝐷1
, 𝐼
∗

𝐿1
, 𝑥
∗

1
, 𝐼
∗

𝐷2
, 𝐼
∗

𝐿2
, 𝑥
∗

2
), which is globally

asymptotically stable. According to the theory of asymptotic
autonomous systems [31], we further obtain that endemic
equilibrium 𝐸

∗
(𝑆
∗

𝐷1
, 𝐼
∗

𝐷1
, 𝑆
∗

𝐿1
, 𝐼
∗

𝐿1
, 𝑥
∗

1
, 𝑆
∗

𝐷2
, 𝐼
∗

𝐷2
, 𝑆
∗

𝐿2
, 𝐼
∗

𝐿2
, 𝑥
∗

2
) is

globally attractive for model (2).

7. Simulations

To complement the mathematical analysis carried out in the
previous section, we now investigate some of the numerical
properties of the two-patch model (2).

Example 8. Take parameters in model (2) as follows:
𝐴
11

= 15, 𝛽
11

= 0.00065, 𝑑
11

= 0.3, 𝜎
1
= 0.2, 𝐴

21
= 80,

𝛽
21

= 0.004, 𝑑
21

= 0.4, 𝑎
1
= 150, 𝑑

1
= 33, 𝐴

12
= 15, 𝛽

12
=

0.0015, 𝑑
12

= 0.3, 𝜎
2
= 0.2, 𝐴

22
= 80, 𝛽

22
= 0.004, 𝑑

22
= 0.4,

𝑎
2
= 150, and 𝑑

2
= 33. If the two patches are isolated, by

simple calculations we have 𝑅
01
= 0.8392, 𝑅

02
= 1.1089.

From Lemma 1 we have that the disease will die out in
the first patch and will be endemic in the second patch
(see Figure 2). From Figure 3 we can easily see that 𝑅

0
will

be larger than 1 under the condition of a larger 𝐷
1
and

a smaller 𝐷
2
. This means that the larger diffusion of dogs

from the lower epidemic areas to the higher prevalence areas
can intensify the spread of echinococcosis (see Figure 4).
However, when𝐷

1
is small and𝐷

2
is large, 𝑅

0
will be smaller

than 1. This indicates that the larger diffusion of dogs from
the higher prevalence areas to the lower epidemic areas can
reduce the spread and is beneficial for disease control (see
Figure 5).

Example 9. Weuse the parameters given in Example 8 except
that 𝐴

11
= 10, 𝛽

11
= 0.0015, 𝐴

21
= 70, 𝐴

12
= 20, and 𝛽

12
=

0.0005. If the two patches are isolated, by simple calculations
we have 𝑅

01
= 0.9266, 𝑅

02
= 0.8463.
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Figure 8: Time series of echinococcosis disease 𝐼
𝐿𝑖
, 𝑖 = 1, 2, when

the two patches are connected with𝐷
1
= 0.2,𝐷

2
= 0.6.

It follows from Lemma 1 that the disease will die out
in both two patches when they are isolated (see Figure 6).
However, from Figure 7 we can see that 𝑅

0
is not always less

than 1. This suggests that dogs diffusion can cause the spread
of echinococcosis in two patches (see Figure 8).

8. Discussion

In this paper, in order to model the transmission dynamics
of echinococcosis spread between two patches due to dogs
migration a patch model for echinococcosis is proposed.
We define the basic reproduction number 𝑅

0
. The math-

ematical results show that the dynamics of the model is
completely determined by 𝑅

0
. If 𝑅
0

< 1, the disease-free
equilibrium is globally asymptotically stable. When 𝑅

0
>

1, the model is permanence and endemic equilibrium is
globally asymptotically stable. According to the simulation
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we have that the larger diffusion of dogs from a low epidemic
area to the high prevalence area can intensify the disease
spread. However, the larger diffusion of dogs from the high
prevalence area to a low epidemic area can reduce the disease
spread and is beneficial to disease control. Additionally, the
model presented in this paper can be extended to describe
the dynamical transmission of echinococcosis with dogs
migration among more than two patches. We leave these in
our future work.
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We study a class of discrete SIRS epidemic models with nonlinear incidence rate 𝐹(𝑆)𝐺(𝐼) and disease-induced mortality. By using
analytic techniques and constructing discrete Lyapunov functions, the global stability of disease-free equilibrium and endemic
equilibrium is obtained. That is, if basic reproduction numberR

0
< 1, then the disease-free equilibrium is globally asymptotically

stable, and ifR
0
> 1, then the model has a unique endemic equilibrium and when some additional conditions hold the endemic

equilibrium also is globally asymptotically stable. By using the theory of persistence in dynamical systems, we further obtain that
only when R

0
> 1, the disease in the model is permanent. Some special cases of 𝐹(𝑆)𝐺(𝐼) are discussed. Particularly, when

𝐹(𝑆)𝐺(𝐼) = 𝛽𝑆𝐼/(1 + 𝜆𝐼), it is obtained that the endemic equilibrium is globally asymptotically stable if and only if R
0
> 1.

Furthermore, the numerical simulations show that for general incidence rate 𝐹(𝑆)𝐺(𝐼) the endemic equilibrium may be globally
asymptotically stable only asR

0
> 1.

1. Introduction

During the past decades, no matter discrete epidemic models
or continuous epidemic models, have been widely studied.
Many important and interesting results can be found in [1–28]
and the references cited therein. The main research subjects
are the computation of the threshold value or basic repro-
duction number which distinguishes whether the infectious
disease will persist or die out, the local and global stability
of the disease-free equilibrium and endemic equilibrium,
the extinction, persistence, and permanence of the disease,
and the bifurcations, chaos, and more complex dynamical
behaviors of the models.

Among these questions, global stability of equilibria
has always been one of the research focuses and difficult
problems.Many authors have investigated this question using
the second Lyapunov method (see [29]). The most popular
types of Lyapunov functions candidate for population biology
models are the Volterra-type functions 𝑥 − 𝑥

∗
− ln(𝑥/𝑥∗)

and the quadratic function (𝑐/2)(𝑥 − 𝑥∗)2. The former has
been successfully applied for various disease propagation

models by Korobeinikov and his coworkers (see [7–10] and
the references cited therein). In [11], Li et al. presented an
algebraic approach to prove the global stability, which can
provide the method of constructing a Lyapunov function and
prove the negative definiteness of the derivative. Recently,
by combining Volterra functions and quadratic functions,
Vargas-De-León has studied global stability of classic con-
tinuous SIS, SIR, and SIRS epidemic models with constant
recruitment, disease-induced death, and standard incidence
rate and bilinear incidence rate in [12, 13], respectively.
McCluskey in [14–16] introduced the Lyapunov functional
formed as ∫𝜏

0
(𝑥(𝑡−𝑠)/𝑥

∗
−1− ln(𝑥(𝑡−𝑠)/𝑥∗))𝑑𝑠 to investigate

global stability of endemic equilibrium of SEIR epidemic
model with distributed delay or discrete delay.

It is well known that a crucial role inmathematicalmodels
of infectious disease is played by the so-called incidence rate,
namely, a function describing themechanism of transmission
of the disease. In most epidemiological models, bilinear
incidence rate 𝛽𝑆𝐼 and standard incidence rate 𝛽𝑆𝐼/𝑁 are
frequently used, where 𝑁 is the total number of the pop-
ulation (𝑁 = 𝑆 + 𝐼 + 𝑅) and 𝛽 > 0 is the per capita
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contact rate. These incidences imply that the contact number
between 𝑆 and 𝐼 is proportional to 𝑆𝐼 or 𝑆𝐼/𝑁. But the
infection probability per contact is likely influenced by the
number of infective and susceptible individuals, because
more infective individuals can increase the infection risk and
susceptible individuals would avoid the contact with infective
individuals.Therefore, a number of nonlinear incidence rates
are suggested by researchers. After studying the cholera
epidemic spread in Bari in 1973, Capasso and Serio [17]
introduced the saturated incidence rate𝛽𝑆𝐺(𝐼) into epidemic
models. To incorporate the effect of the behavioral changes
of the susceptible individuals, Liu et al. proposed the general
incidence rate𝛽𝑆𝐼𝑝/(1+𝑘𝐼𝑞) in [18], where𝑝, 𝑞 > 0 and 𝑘 ≥ 0.
The special cases when 𝑝 and 𝑞 are given different values have
been used bymany authors (see, e.g., Korobeinikov andMaini
[6], Ruan and Wang [19], and Xiao and Ruan [20]).

However, until now, to the best of our knowledge, there
are few search results about global stability of equilibria
for discrete SIRS model with nonlinear incidence rate. Hu
et al. in [28] discussed local stability and complex dynamical
behaviors for a class of discrete SIRS epidemic models with
general nonlinear incidence rate discretized by the forward
Euler scheme. Enatsu et al. in [22] proposed a class of
discrete SIR epidemic models with bilinear incidence rate,
which are derived from continuous SIR epidemic models
with distributed delays by using a variation of the backward
Euler method, and obtained that global stability of disease-
free equilibrium and endemic equilibrium. Muroya et al. in
[23] discussed global stability and permanence of a discrete
epidemic model with bilinear incidence rate and for disease
with immunity and latency spreading in a heterogeneous host
population, which is also discretized from the continuous
case by using the backward Euler method. In [24], Enatsu
et al. studied a class of discrete SIR epidemic models with
nonlinear incidence rates and distributed delays, which are
derived from the corresponding continuous SIR epidemic
models by applying a variation of the backward Euler
discretization. Using discrete-time analogue of Lyapunov
functionals, the global asymptotic stability of the disease-
free equilibriumand endemic equilibrium is fully determined
by the basic reproduction number 𝑅

0
, when the infection

incidence rate has a suitable monotone property.
Motivated by the fact that discrete epidemic models are

more appropriate approach to understand disease transmis-
sion dynamics and to evaluate eradication policies because
they permit arbitrary time step units, preserving the basic
features of corresponding continuous models, in this paper,
we will extend a discrete-time analogue of Lyapunov tech-
niques proposed in [25–27] to the following discrete SIRS
epidemic models with nonlinear incidence rate 𝐹(𝑆)𝐺(𝐼),
which is established by using the backward Euler scheme
(see [30, 31]) to discretize the corresponding continuous SIRS
epidemic model:

𝑆 (𝑛 + 1) = 𝑆 (𝑛) + Λ − 𝐹 (𝑆 (𝑛 + 1)) 𝐺 (𝐼 (𝑛 + 1))

− 𝜇𝑆 (𝑛 + 1) + 𝛾𝑅 (𝑛 + 1) ,

𝐼 (𝑛 + 1) = 𝐼 (𝑛) + 𝐹 (𝑆 (𝑛 + 1)) 𝐺 (𝐼 (𝑛 + 1))

− (𝑘 + 𝜇 + 𝛼) 𝐼 (𝑛 + 1) ,

𝑅 (𝑛 + 1) = 𝑅 (𝑛) + 𝑘𝐼 (𝑛 + 1) − (𝜇 + 𝛾) 𝑅 (𝑛 + 1) .

(1)

We will investigate the global behaviors of solutions of model
(1). By constructing new discrete Lyapunov functions, we will
establish some new criteria on the global asymptotic stability
of the disease-free equilibrium and endemic equilibrium for
model (1). By using the theory of persistence in dynamical
systems, we will further obtain the sufficient and necessary
conditions for the permanence of the disease for model (1).

The organization of this paper is as follows. In Section 2,
the existence of equilibria and positivity of solutions for
model (1) are given. In Section 3, the results on the global
asymptotic stability of the disease-free equilibrium and
endemic equilibrium for model (1) are stated and proved. In
Section 4, the results on the permanence of the disease in
model (1) are established. In Section 5, the global asymptotic
stability of the endemic equilibrium of model (1) for the
special case 𝐹(𝑆) = 𝑆/(1 + 𝜆𝑆) is discussed. Finally, some
examples are given to illustrate the main theoretical results
in Section 6.

2. Equilibria and Positivity

For model (1), 𝑆(𝑛), 𝐼(𝑛), and 𝑅(𝑛) represent the numbers
of susceptible, infectious, and recovered individuals at 𝑛th
generation, respectively. The parameters Λ, 𝜇, 𝛼, and 𝑘 are
positive constants and 𝛾 is nonnegative constant in whichΛ is
the recruitment rate into the population,𝜇 is the natural death
rate, 𝛼 is the disease-induced death rate, 𝑘 is the recovery rate
of the infectious individuals, 𝛾 is the rate of losing immunity,
𝛾 > 0 implies that the recovered individuals would lose the
immunity, and 𝛾 = 0 implies that the recovered individuals
acquire permanent immunity. The spread of disease can be
described by general form with incidence rate 𝐹(𝑆)𝐺(𝐼);
that is, the incidence rate depends on the number of the
susceptible individuals and the number of the infectious
individuals. This generalizes the bilinear incidence rate (i.e.,
𝐹(𝑆)𝐺(𝐼) = 𝛽𝑆𝐼), saturated incidence rate with respect to 𝑆
(i.e., 𝐹(𝑆)𝐺(𝐼) = 𝛽𝑆𝐼/(1 + 𝜆𝑆)), and saturated incidence rate
with respect to 𝐼 (i.e., 𝐹(𝑆)𝐺(𝐼) = 𝛽𝑆𝐼/(1+𝜔𝐼)), where 𝛽 > 0,
𝜆 ≥ 0, and 𝜔 ≥ 0 are constants, which denotes the contact
coefficient and the saturated coefficient, respectively.

The initial condition for model (1) is given by

𝑆 (0) > 0, 𝐼 (0) > 0, 𝑅 (0) ≥ 0. (2)

In this paper, for functions 𝐹(𝑆) and 𝐺(𝐼), we firstly
introduce the following assumption.

(𝐻
1
) 𝐹(𝑆) and 𝐺(𝐼) are positive, monotonically increasing,
and continuous differentiable functions defined for all
𝑆 ≥ 0 and 𝐼 ≥ 0, the derivative𝐺(0) exists, and𝐹(0) =
𝐺(0) = 0. Furthermore,𝐺(𝐼)/𝐼 is nonincreasing for all
𝐼 > 0.
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Remark 1. Assumption (𝐻
1
) is basic for model (1). In fact, for

many special cases of 𝐹(𝑆)𝐺(𝐼), for example, 𝐹(𝑆)𝐺(𝐼) = 𝛽𝑆𝐼,
𝐹(𝑆)𝐺(𝐼) = 𝛽𝑆𝐼/(1 + 𝜆𝑆), and 𝐹(𝑆)𝐺(𝐼) = 𝛽𝑆𝐼/(1 + 𝜔𝐼), (𝐻

1
)

is always satisfied.

In order to obtain the existence of disease-free equilib-
rium and endemic equilibrium of model (1), we introduce a
constant

R
0
=
𝐹 (Λ/𝜇)𝐺


(0)

𝑘 + 𝜇 + 𝛼
. (3)

We have the following result.

Theorem 2. Assume that (𝐻
1
) holds.

(1) When R
0
≤ 1, then model (1) has only a unique

disease-free equilibrium 𝐸
0
(Λ/𝜇, 0, 0).

(2) WhenR
0
> 1, then model (1) shows a unique endemic

equilibrium 𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝑅
∗
), except for 𝐸0, where 𝑆∗, 𝐼∗,

and 𝑅∗ satisfy

Λ = 𝐹 (𝑆
∗
) 𝐺 (𝐼
∗
) + 𝜇𝑆

∗
− 𝛾𝑅
∗
,

𝐼
∗
(𝑘 + 𝜇 + 𝛼) = 𝐹 (𝑆

∗
) 𝐺 (𝐼
∗
) ,

𝑘𝐼
∗
= (𝜇 + 𝛾) 𝑅

∗
.

(4)

Proof. Obviously, model (1) always has a disease-free equilib-
rium 𝐸

0
(Λ/𝜇, 0, 0). From (4), we have

𝑅
∗
=

𝑘𝐼
∗

𝜇 + 𝛾
, Λ = 𝐼

∗
(𝑘 + 𝜇 + 𝛼) + 𝜇𝑆

∗
− 𝛾𝑅
∗
. (5)

Hence,

𝑆
∗
=
1

𝜇
(Λ − 𝐼

∗
(𝑘 + 𝜇 + 𝛼 −

𝑘𝛾

𝜇 + 𝛾
))

=
Λ

𝜇
− 𝐼
∗
(𝜇 + 𝛼) (𝜇 + 𝛾) + 𝑘𝜇

𝜇 (𝜇 + 𝛾)
,

(6)

and from the second equation of (4) we further have

𝐼
∗
(𝑘 + 𝜇 + 𝛼) = 𝐹(

Λ

𝜇
− 𝐼
∗
(𝜇 + 𝛼) (𝜇 + 𝛾) + 𝑘𝜇

𝜇 (𝜇 + 𝛾)
)𝐺 (𝐼

∗
) .

(7)

When 𝐼 > 0, let

𝐻(𝐼) = 𝑘 + 𝜇 + 𝛼 − 𝐹(
Λ

𝜇
− 𝐼

(𝜇 + 𝛼) (𝜇 + 𝛾) + 𝑘𝜇

𝜇 (𝜇 + 𝛾)
)
𝐺 (𝐼)

𝐼
.

(8)

Then by (𝐻
1
) we obtain

lim
𝐼→0
+

𝐻(𝐼) = 𝑘 + 𝜇 + 𝛼 − 𝐹(
Λ

𝜇
)𝐺

(0) {

≥ 0, R
0
≤ 1,

< 0, R
0
> 1.

(9)

Let 𝐼 = Λ(𝜇 + 𝛾)/((𝜇 + 𝛾)(𝜇 + 𝛼) + 𝑘𝜇); then we obviously
have 𝐻(𝐼) = 𝑘 + 𝜇 + 𝛼 > 0. From (𝐻

1
), 𝐹((Λ/𝜇) − 𝐼(((𝜇 +

𝛼)(𝜇 + 𝛾) + 𝑘𝜇)/𝜇(𝜇 + 𝛾))) is monotonically decreasing for
𝐼 ∈ (0, 𝐼], and hence𝐻(𝐼) is monotonically increasing for 𝐼 ∈
(0, 𝐼]. Thus, from (9), we obtain that when R

0
≤ 1 equation

𝐻(𝐼) = 0 has not any solution in (0, 𝐼) and when R
0
> 1

equation𝐻(𝐼) = 0 has a unique positive solution 𝐼∗ in (0, 𝐼).
This shows that when R

0
≤ 1 model (1) does not have any

endemic equilibrium. WhenR
0
> 1, let

𝑅
∗
=

𝑘𝐼
∗

𝜇 + 𝛾
, 𝑆

∗
=
1

𝜇
(Λ − 𝐼

∗
(𝑘 + 𝜇 + 𝛼 −

𝑘𝛾

𝜇 + 𝛼
)) ,

(10)

and then 𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) is a unique endemic equilibrium of
model (1). This completes the proof.

From Theorem 2, we can claim that the basic repro-
duction number of model (1) is R

0
. On the positivity and

ultimate boundedness of solutions ofmodel (1), we obtain the
following theorem.

Theorem 3. Assume that (𝐻
1
) holds. Let (𝑆(𝑛), 𝐼(𝑛), 𝑅(𝑛))

be the solution of model (1) with initial conditions (2); then
(𝑆(𝑛), 𝐼(𝑛), 𝑅(𝑛)) is positive for any 𝑛 > 0 and ultimately
bounded.

Proof. Let (𝑆(𝑛), 𝐼(𝑛), 𝑅(𝑛)) be any solution of model (1) with
initial conditions (2). Further, let𝑁(𝑛) = 𝑆(𝑛) + 𝐼(𝑛) + 𝑅(𝑛));
then model (1) is equivalent to the following form:

𝐼 (𝑛 + 1) =
1

1 + 𝑘 + 𝜇 + 𝛼

× (𝐼 (𝑛) + 𝐹 (𝑁 (𝑛 + 1)

− 𝐼 (𝑛 + 1) − 𝑅 (𝑛 + 1) )

× 𝐺 (𝐼 (𝑛 + 1)) ) ,

𝑅 (𝑛 + 1) =
𝑅 (𝑛) + 𝑘𝐼 (𝑛 + 1)

1 + 𝜇 + 𝛾
,

𝑁 (𝑛 + 1) =
𝑁 (𝑛) + Λ − 𝛼𝐼 (𝑛 + 1)

1 + 𝜇
,

(11)

𝑆 (𝑛 + 1) = 𝑆 (𝑛) + Λ − 𝐹 (𝑆 (𝑛 + 1)) 𝐺 (𝐼 (𝑛 + 1))

− 𝜇𝑆 (𝑛 + 1) + 𝛾𝑅 (𝑛 + 1) .

(12)
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In the following, we will use the induction to prove the
positivity of (𝑆(𝑛), 𝐼(𝑛), 𝑅(𝑛)). When 𝑛 = 0, we have

𝐼 (1) =
1

1 + 𝑘 + 𝜇 + 𝛼

× (𝐼 (0) + 𝐹 (𝑁 (1) − 𝐼 (1) − 𝑅 (1)) 𝐺 (𝐼 (1))) ,

(13)

𝑅 (1) =
𝑅 (0) + 𝑘𝐼 (1)

1 + 𝜇 + 𝛾
, 𝑁 (1) =

𝑁 (0) + Λ − 𝛼𝐼 (1)

1 + 𝜇
,

(14)

𝑆 (1) = 𝑆 (0) + Λ − 𝐹 (𝑆 (1)) 𝐺 (𝐼 (1)) − 𝜇𝑆 (1) + 𝛾𝑅 (1) .

(15)

From (13)–(15) we see that as long as 𝐼(1) is confirmed, then
𝑅(1),𝑁(1), and 𝑆(1) will be whereafter confirmed.

Firstly, we prove that if 𝐼(1) > 0, then 𝑆(1) > 0 and 𝑅(1) >
0. From (14), we directly obtain 𝑅(1) > 0 when 𝐼(1) > 0. Let
𝑥 = 𝑆(1), and from (15) we obtain

Φ (𝑥) ≜ (1 + 𝜇) 𝑥 + 𝐹 (𝑥) 𝐺 (𝐼 (1)) − 𝛾𝑅 (1) − 𝑆 (0) − Λ = 0.

(16)

It is obvious that, when 𝐼(1) > 0, Φ(𝑥) is monotonically
increasing for 𝑥 ≥ 0. Obviously, Φ(𝑥) is a continuous
function for 𝑥. Since Φ(0) = −𝛾𝑅(1) − 𝑆(0) − Λ < 0 and
lim
𝑥→+∞

Φ(𝑥) = +∞, we obtain that Φ(𝑥) = 0 has a unique
positive solution 𝑥. Therefore, we further have 𝑆(1) = 𝑥 > 0.
Furthermore, we also have𝑁(1) = 𝑆(1) + 𝐼(1) + 𝑅(1) > 0.

Let 𝑦 = 𝐼(1)); then from (13) we see that 𝑦 must satisfy
the following equation:

Ψ (𝑦) ≜ 𝑦 −
1

1 + 𝑘 + 𝜇 + 𝛼

× (𝐼 (0) + 𝐹 (𝑁 (1) − 𝑦 − 𝑅 (1)) 𝐺 (𝑦)) = 0,

(17)

where

𝑁(1) =
𝑁 (0) + Λ − 𝛼𝑦

1 + 𝜇
, 𝑅 (1) =

𝑅 (0) + 𝑘𝑦

1 + 𝜇 + 𝛾
. (18)

Denote

𝑎
0
=
𝑁 (0) + Λ

1 + 𝜇
−

𝑅 (0)

1 + 𝜇 + 𝛾
,

𝑏
0
=

𝛼

1 + 𝜇
+ 1 +

𝑘

1 + 𝜇 + 𝛾
.

(19)

Obviously, 𝑎
0
> 0. Let 𝑦

0
= 𝑎
0
/𝑏
0
; then when 𝑦 = 𝑦

0
we have

𝑁(1) − 𝑦 − 𝑅(1) = 0. We also have that 𝑁(1) − 𝑦 − 𝑅(1) is
monotonically decreasing with respect to 𝑦 ∈ [0, 𝑦

0
]. Hence,

by (𝐻
1
), 𝐹(𝑁(1) − 𝑦 −𝑅(1)) is also monotonically decreasing

with respect to 𝑦 ∈ [0, 𝑦
0
]. From the expression of Ψ(𝑦)

and (𝐻
1
), we obtain thatΨ(𝑦) is monotonically increasing for

𝑦 ∈ [0, 𝑦
0
]. Obviously, Ψ(𝑦) is a continuousfunction for 𝑦.

Since

Ψ (0) = −
𝐼 (0)

1 + 𝑘 + 𝜇 + 𝛼
< 0,

Ψ (𝑦
0
) = 𝑦
0
−

1

1 + 𝑘 + 𝜇 + 𝛼
𝐼 (0)

=
(Λ + 𝑁 (0)) (1 + 𝜇 + 𝛾) − 𝑅 (0) (1 + 𝜇)

𝛼 (1 + 𝜇 + 𝛾) + (1 + 𝜇) (1 + 𝜇 + 𝛾) + 𝑘 (1 + 𝜇)

−
1

1 + 𝑘 + 𝜇 + 𝛼
𝐼 (0)

≥
Λ + 𝑆 (0) + 𝐼 (0)

1 + 𝑘 + 𝜇 + 𝛼
−

1

1 + 𝑘 + 𝜇 + 𝛼
𝐼 (0)

=
Λ + 𝑆 (0)

1 + 𝑘 + 𝜇 + 𝛼
,

(20)

there exists a unique 𝑦 ∈ (0, 𝑦
0
) such that Ψ(𝑦) = 0.

Now, we show that 𝑦 is a unique solution of Ψ(𝑦) = 0 on
(0,∞). Otherwise, there is a𝑦 ∈ [𝑦

0
,∞) such thatΨ(𝑦) = 0.

Since𝑦 ≥ 𝑦
0
, we have𝑁(1)−𝑦−𝑅(1) ≤ 0when𝑦 = 𝑦. From

(𝐻
1
), we have 𝐹(𝑆) ≥ 0 for any 𝑆 ≥ 0; hence from Ψ(𝑦


) = 0

we further have 𝑦 ≤ 𝐼(0)/(1 + 𝜇 + 𝛼 + 𝑘). On the other hand,
since 𝑎

0
> 𝐼(0)/(1 + 𝜇) and 𝑏

0
< (1 + 𝜇 + 𝛼 + 𝑘)/(1 + 𝜇), we

obtain𝑦 > 𝐼(0)/(1+𝜇+𝛼+𝑘), which leads to a contradiction.
Therefore, we certainly have 𝐼(1) = 𝑦 > 0. From the above

discussions, we finally have 𝐼(1) > 0, 𝑆(1) > 0, and 𝑅(1) > 0.
When 𝑛 = 1, we obtain

𝐼 (2) =
1

1 + 𝑘 + 𝜇 + 𝛼

× (𝐼 (1) + 𝐹 (𝑁 (1) − 𝐼 (1) − 𝑅 (1)) 𝐺 (𝐼 (1))) ,

𝑅 (2) =
𝑅 (1) + 𝑘𝐼 (2)

1 + 𝜇 + 𝛾
,

𝑁 (2) =
𝑁 (1) + Λ − 𝛼𝐼 (2)

1 + 𝜇
,

𝑆 (2) = 𝑆 (1) + Λ − 𝐹 (𝑁 (2) − 𝐼 (2) − 𝑅 (2))

× 𝐺 (𝐼 (2)) − 𝜇𝑆 (2) + 𝛾𝑅 (2) .

(21)

Obviously, using a similar argument in the above process, we
also can obtain 𝑆(2) > 0, 𝐼(2) > 0, and 𝑅(2) > 0. Lastly, by
using the induction, we can finally obtain 𝑆(𝑛) > 0, 𝐼(𝑛) > 0,
and 𝑅(𝑛) > 0 for all 𝑛 > 0.

From the third equation of model (11), we have

𝑁(𝑛 + 1) ≤
1

1 + 𝜇
(𝑁 (𝑛) + Λ) . (22)

Since comparison equation,

𝑈 (𝑛 + 1) =
1

1 + 𝜇
(𝑈 (𝑛) + Λ) , (23)
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has a globally asymptotically stable equilibrium 𝑈
∗
= Λ/𝜇,

from the comparison principle of difference equations (see
[32]), we finally obtain

lim sup
𝑛→∞

𝑁(𝑛) ≤
Λ

𝜇
. (24)

Therefore, (𝑆(𝑛), 𝐼(𝑛), 𝑅(𝑛)) is also ultimately bound. This
completes the proof.

3. Global Stability

Now, we are concerned with the global asymptotic stability of
disease-free equilibrium 𝐸

0 and endemic equilibrium 𝐸
∗ of

model (1), respectively.

Theorem 4. Assume that (𝐻
1
) holds. Then disease-free equi-

librium 𝐸
0
(Λ/𝜇, 0, 0) of model (1) is globally asymptotically

stable ifR
0
< 1 and is globally attractive ifR

0
= 1.

Proof. Calculating the linearization system of model (1) at
equilibrium 𝐸

0, we have

𝑢
𝑛+1

= 𝑢
𝑛
− 𝐹(

Λ

𝜇
)𝐺

(0) V𝑛+1 − 𝜇𝑢𝑛+1 + 𝛾𝑤𝑛+1,

V
𝑛+1

= V
𝑛
+ 𝐹(

Λ

𝜇
)𝐺

(0) V𝑛+1 − (𝑘 + 𝜇 + 𝛼) V𝑛+1,

𝑤
𝑛+1

= 𝑤
𝑛
+ 𝑘V
𝑛+1

− (𝜇 + 𝛾)𝑤
𝑛+1
.

(25)

From the second equation of system (25), we have

V
𝑛+1

=
V
𝑛

1 + 𝑘 + 𝜇 + 𝛼 − 𝐹 (Λ/𝜇)𝐺 (0)
. (26)

WhenR
0
< 1, we obtain

0 <
1

1 + 𝑘 + 𝜇 + 𝛼 − 𝐹 (Λ/𝜇)𝐺 (0)

=
1

1 + (𝑘 + 𝜇 + 𝛼) (1 −R
0
)
< 1.

(27)

Therefore, lim
𝑛→∞

V
𝑛
= 0. By

𝑢
𝑛+1

=
𝑢
𝑛
− 𝐹 (Λ/𝜇)𝐺


(0) V
𝑛+1

1 + 𝜇
, 𝑤

𝑛+1
=
𝑤
𝑛
+ 𝑘V
𝑛+1

1 + 𝜇 + 𝛾
,

(28)

we further obtain lim
𝑛→∞

𝑢
𝑛
= 0 and lim

𝑛→∞
𝑤
𝑛
= 0. This

shows that 𝐸0 is locally stable when R
0
< 1. Since the case

R
0
= 1 is a critical one for model (1), in the following,

we discuss global attractivity of disease-free equilibrium 𝐸
0

whenR
0
≤ 1.

Let (𝑆(𝑛), 𝐼(𝑛), 𝑅(𝑛)) be any positive solution of model (1)
with initial conditions (2). We need to consider the following
two cases.

Case 1.𝑁(𝑛) ≥ Λ/𝜇 for all 𝑛 = 1, 2, . . ..

Case 2. There exists an integer 𝑛
1
> 0 such that𝑁(𝑛

1
) < Λ/𝜇.

For Case 1, from (24), we directly have

lim
𝑛→∞

𝑁(𝑛) =
Λ

𝜇
. (29)

From third equation of (11), we further obtain

lim
𝑛→∞

𝐼 (𝑛) = lim
𝑛→∞

1

𝛼
[𝑁 (𝑛) (1 + 𝜇) − 𝑁 (𝑛 − 1) − Λ]

=
1

𝛼
[
Λ

𝜇
(1 + 𝜇) −

Λ

𝜇
− Λ] = 0.

(30)

For Case 2, by using the iterative computations to
inequality (22), we can obtain 𝑁(𝑛) < Λ/𝜇 for all 𝑛 ≥ 𝑛

1
.

Hence, 𝑆(𝑛) < Λ/𝜇 for all 𝑛 ≥ 𝑛
1
. From (𝐻

1
), we further

obtain

𝐹 (𝑆 (𝑛 + 1)) < 𝐹(
Λ

𝜇
) , ∀𝑛 ≥ 𝑛

1
. (31)

Since

𝐺 (𝐼 (𝑛 + 1))

𝐼 (𝑛 + 1)
≤ lim
𝐼→0
+

𝐺 (𝐼)

𝐼
= 𝐺

(0) , (32)

from the second equation of model (1), it follows that, for all
𝑛 ≥ 𝑛
1
,

𝐼 (𝑛 + 1) − 𝐼 (𝑛) = 𝐹 (𝑆 (𝑛 + 1)) 𝐺 (𝐼 (𝑛 + 1))

− (𝑘 + 𝜇 + 𝛼) 𝐼 (𝑛 + 1)

= 𝐼 (𝑛 + 1) (𝐹 (𝑆 (𝑛 + 1))

×
𝐺 (𝐼 (𝑛 + 1))

𝐼 (𝑛 + 1)
− (𝑘 + 𝜇 + 𝛼))

≤ 𝐼 (𝑛 + 1) (𝐹(
Λ

𝜇
)𝐺

(0) − (𝑘 + 𝜇 + 𝛼))

= (𝑘 + 𝜇 + 𝛼) 𝐼 (𝑛 + 1) (R0 − 1) .

(33)

IfR
0
≤ 1, then

𝐼 (𝑛 + 1) − 𝐼 (𝑛) ≤ 0 for all 𝑛 ≥ 𝑛
1
. (34)

Hence, 𝐼(𝑛) is nonincreasing for 𝑛 ≥ 𝑛
1
. Consequently,

lim
𝑛→∞

𝐼(𝑛) = 𝐼 exists and 𝐼 ≥ 0.
Suppose 𝐼 > 0; then from the second and third

equations of model (11), we can obtain that lim
𝑛→∞

𝑅(𝑛) and
lim
𝑛→∞

𝑁(𝑛) exist, and

lim
𝑛→∞

𝑅 (𝑛) =
𝑘𝐼

𝜇 + 𝛾
:= �̂�, lim

𝑛→∞
𝑁(𝑛) =

Λ − 𝛼𝐼

𝜇
:= �̂�.

(35)

From 𝑆(𝑛) = 𝑁(𝑛)−𝐼(𝑛)−𝑅(𝑛), it follows that lim
𝑛→∞

𝑆(𝑛) =

𝑆 exists. Obviously, we have �̂� > 0, �̂� ≥ 0, and 𝑆 ≥ 0.
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Taking 𝑛 → ∞ from the both sides of model (1), we can
obtain the following equations:

Λ − 𝐹 (𝑆)𝐺 (𝐼) − 𝜇𝑆 + 𝛾�̂� = 0,

𝐼 (𝑘 + 𝜇 + 𝛼) − 𝐹 (𝑆)𝐺 (𝐼) = 0,

𝑘𝐼 − (𝜇 + 𝛾) �̂� = 0.

(36)

Hence, (𝑆, 𝐼, �̂�) is an equilibrium ofmodel (1). However, from
Theorem 2, we see that whenR

0
≤ 1, (36) only has a unique

solution 𝑆 = Λ/𝜇, 𝐼 = 0, and �̂� = 0. This leads to a
contradiction. Therefore, we have 𝐼 = 0.

Therefore, we always have lim
𝑛→∞

𝐼(𝑛) = 𝐼 = 0. By (35),
it follows that lim

𝑛→∞
𝑅(𝑛) = 0 and lim

𝑛→∞
𝑁(𝑛) = Λ/𝜇.

Consequently, lim
𝑛→∞

𝑆(𝑛) = Λ/𝜇. This shows that disease-
free equilibrium 𝐸

0
= (Λ/𝜇, 0, 0) is globally attractive when

R
0
≤ 1. This completes the proof.

In order to obtain the global asymptotic stability of
endemic equilibrium 𝐸

∗ of model (1), we need the following
assumptions.

(𝐻
2
) For any 𝑆 > 0,

𝐹 (𝑆)

𝐹 (𝑆) − 𝐹 (𝑆
∗
)
−

(𝑆
∗
)
2

𝐹 (𝑆
∗
) (𝑆 − 𝑆

∗
)
≥ 0. (37)

(𝐻
3
) For any 𝑆 > 0,

−
𝜇(𝑆
∗
)
2

𝐹 (𝑆
∗
)
+ 𝛾𝑅
∗
(

𝐹 (𝑆)

𝐹 (𝑆) − 𝐹 (𝑆
∗
)
−

(𝑆
∗
)
2

𝐹 (𝑆
∗
) (𝑆 − 𝑆

∗
)
) ≤ 0.

(38)

Theorem 5. Assume that (𝐻
1
)–(𝐻
3
) hold. If R

0
> 1, then

endemic equilibrium 𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝑅
∗
) of model (1) is globally

asymptotically stable.

Proof. We firstly define the auxiliary functions as follows:

𝑉
1
(𝑆) = 𝑆 − 𝑆

∗
− ∫

𝑆

𝑆
∗

𝐹 (𝑆
∗
)

𝐹 (𝜂)
𝑑𝜂,

𝑉
2 (𝐼) = 𝐼 − 𝐼

∗
− ∫

𝐼

𝐼
∗

𝐺 (𝐼
∗
)

𝐺 (𝜂)
𝑑𝜂,

𝑉
3
(𝑅) =

1

2
(𝑅 − 𝑅

∗
)
2
,

𝑉
4
(𝑁, 𝑅) =

1

2
(𝑁 − 𝑁

∗
+
𝛼

𝑘
(𝑅 − 𝑅

∗
))

2

,

(39)

where𝑁 = 𝑆 + 𝐼 + 𝑅 and𝑁∗ = 𝑆∗ + 𝐼∗ + 𝑅∗. From (𝐻
1
), we

easily obtain that when 𝑆 ̸= 𝑆
∗

𝑉
1 (𝑆) > 𝑆 − 𝑆

∗
− ∫

𝑆

𝑆
∗

𝐹 (𝑆
∗
)

𝐹 (𝑆
∗
)
𝑑𝜂 = 0, (40)

and when 𝐼 ̸= 𝐼
∗

𝑉
2
(𝐼) > 𝐼 − 𝐼

∗
− ∫

𝐼

𝐼
∗

𝐺 (𝐼
∗
)

𝐺 (𝐼
∗
)
𝑑𝜂 = 0. (41)

Let (𝑆(𝑛), 𝐼(𝑛), 𝑅(𝑛)) be any positive solution of model (1)
with initial condition (2). By computing Δ𝑉

1
(𝑛) = 𝑉

1
(𝑆(𝑛 +

1)) − 𝑉
1
(𝑆(𝑛)), we have

Δ𝑉
1 (𝑛) = 𝑆 (𝑛 + 1) − 𝑆 (𝑛) − ∫

𝑆(𝑛+1)

𝑆(𝑛)

𝐹 (𝑆
∗
)

𝐹 (𝜂)
𝑑𝜂. (42)

From (𝐻
1
), it follows that

−
𝐹 (𝑆
∗
)

𝐹 (𝜂)
≤ −

𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
if 𝑆 (𝑛 + 1) ≥ 𝜂 ≥ 𝑆 (𝑛) ,

−
𝐹 (𝑆
∗
)

𝐹 (𝜂)
≥ −

𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
if 𝑆 (𝑛 + 1) ≤ 𝜂 ≤ 𝑆 (𝑛) .

(43)

Hence,

−∫

𝑆(𝑛+1)

𝑆(𝑛)

𝐹 (𝑆
∗
)

𝐹 (𝜂)
𝑑𝜂 ≤ −

𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
(𝑆 (𝑛 + 1) − 𝑆 (𝑛)) ,

Δ𝑉
1
(𝑛) ≤ 𝑆 (𝑛 + 1) − 𝑆 (𝑛) −

𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))

× (𝑆 (𝑛 + 1) − 𝑆 (𝑛))

= (1 −
𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
)

× (Λ − 𝐹 (𝑆 (𝑛 + 1)) 𝐺 (𝐼 (𝑛 + 1))

− 𝜇𝑆 (𝑛 + 1) + 𝛾𝑅 (𝑛 + 1))

= (1 −
𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
)

× (𝜇𝑆
∗
− 𝜇𝑆 (𝑛 + 1) + 𝐹 (𝑆

∗
) 𝐺 (𝐼
∗
)

− 𝐹 (𝑆 (𝑛 + 1)) 𝐺 (𝐼 (𝑛 + 1))

+ 𝛾𝑅 (𝑛 + 1) − 𝛾𝑅
∗
)

= −𝜇(1 −
𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
) (𝑆 (𝑛 + 1) − 𝑆

∗
)

+ (𝑘 + 𝜇 + 𝛼) 𝐼
∗

× (1 −
𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
)
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× (1 −
𝐹 (𝑆 (𝑛 + 1)) 𝐺 (𝐼 (𝑛 + 1))

𝐹 (𝑆
∗
) 𝐺 (𝐼
∗
)

)

+ 𝛾(1 −
𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
) (𝑅 (𝑛 + 1) − 𝑅

∗
)

= −𝜇(1 −
𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
) (𝑆 (𝑛 + 1) − 𝑆

∗
)

+ 𝛾(1 −
𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
) (𝑅 (𝑛 + 1) − 𝑅

∗
)

+ (𝑘 + 𝜇 + 𝛼) 𝐼
∗

× (1 −
𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))

−
𝐹 (𝑆 (𝑛 + 1)) 𝐺 (𝐼 (𝑛 + 1))

𝐹 (𝑆
∗
) 𝐺 (𝐼
∗
)

+
𝐺 (𝐼 (𝑛 + 1))

𝐺 (𝐼
∗
)

) .

(44)
By computing Δ𝑉

2
(𝑛) = 𝑉

2
(𝐼(𝑛 + 1)) − 𝑉

2
(𝐼(𝑛)), we also

have

Δ𝑉
2 (𝑛) ≤ 𝐼 (𝑛 + 1) − 𝐼 (𝑛) −

𝐺 (𝐼
∗
)

𝐺 (𝑛 + 1)

× (𝐼 (𝑛 + 1) − 𝐼 (𝑛))

= (1 −
𝐺 (𝐼
∗
)

𝐺 (𝐼 (𝑛 + 1))
)

× (𝐹 (𝑆 (𝑛 + 1)) 𝐺 (𝐼 (𝑛 + 1))

− (𝑘 + 𝜇 + 𝛼) 𝐼 (𝑛 + 1))

= (𝑘 + 𝜇 + 𝛼) 𝐼
∗
(1 −

𝐺 (𝐼
∗
)

𝐺 (𝐼 (𝑛 + 1))
)

× (
𝐹 (𝑆 (𝑛 + 1)) 𝐺 (𝐼 (𝑛 + 1))

𝐹 (𝑆
∗
) 𝐺 (𝐼
∗
)

−
𝐼 (𝑛 + 1)

𝐼∗
)

= (𝑘 + 𝜇 + 𝛼) 𝐼
∗

× (
𝐹 (𝑆 (𝑛 + 1)) 𝐺 (𝐼 (𝑛 + 1))

𝐹 (𝑆
∗
) 𝐺 (𝐼
∗
)

−
𝐹 (𝑆 (𝑛 + 1))

𝐹 (𝑆
∗
)

−
𝐼 (𝑛 + 1)

𝐼∗

+
𝐼 (𝑛 + 1)

𝐼∗

𝐺 (𝐼
∗
)

𝐺 (𝐼 (𝑛 + 1))
) .

(45)

Further, by computing Δ𝑉
3
(𝑛) = 𝑉

3
(𝑅(𝑛 + 1)) −𝑉

3
(𝑅(𝑛)),

we have

Δ𝑉
3
(𝑛) =

1

2
((𝑅 (𝑛 + 1) − 𝑅 (𝑛))

2

+ 2 (𝑅 (𝑛 + 1) − 𝑅 (𝑛)) (𝑅 (𝑛) − 𝑅
∗
)

+ (𝑅 (𝑛) − 𝑅
∗
)
2
)

−
1

2
(𝑅 (𝑛) − 𝑅

∗
)
2

=
1

2
(𝑅 (𝑛 + 1) − 𝑅 (𝑛)) (𝑅 (𝑛 + 1) + 𝑅 (𝑛) − 2𝑅

∗
)

= (𝑅 (𝑛 + 1) − 𝑅 (𝑛)) (𝑅 (𝑛 + 1) − 𝑅
∗
)

−
1

2
(𝑅 (𝑛 + 1) − 𝑅 (𝑛))

2

≤ (𝑅 (𝑛 + 1) − 𝑅
∗
) (𝑅 (𝑛 + 1) − 𝑅 (𝑛))

= (𝑅 (𝑛 + 1) − 𝑅
∗
) (𝑘𝐼 (𝑛 + 1) − (𝜇 + 𝛾) 𝑅 (𝑛 + 1))

= (𝑅 (𝑛 + 1) − 𝑅
∗
)

× (𝑘 (𝑁 (𝑛 + 1) − 𝑁
∗
)

− 𝑘 (𝑆 (𝑛 + 1) − 𝑆
∗
)

− (𝑘 + 𝜇 + 𝛾) (𝑅 (𝑛 + 1) − 𝑅
∗
))

= 𝑘 (𝑅 (𝑛 + 1) − 𝑅
∗
) (𝑁 (𝑛 + 1) − 𝑁

∗
)

− 𝑘 (𝑅 (𝑛 + 1) − 𝑅
∗
)

× (𝑆 (𝑛 + 1) − 𝑆
∗
)

− (𝑘 + 𝜇 + 𝛾) (𝑅 (𝑛 + 1) − 𝑅
∗
)
2
.

(46)

Finally, by computing Δ𝑉
4
(𝑛) = 𝑉

4
(𝑁(𝑛 + 1), 𝑅(𝑛 + 1)) −

𝑉
4
(𝑁(𝑛), 𝑅(𝑛)), we further have

Δ𝑉
4 (𝑛) =

1

2
[(𝑁 (𝑛 + 1) − 𝑁 (𝑛) +

𝛼

𝑘
(𝑅 (𝑛 + 1) − 𝑅 (𝑛)))

2

+ 2 (𝑁 (𝑛 + 1) − 𝑁 (𝑛) +
𝛼

𝑘
(𝑅 (𝑛 + 1) − 𝑅 (𝑛)))

× (𝑁 (𝑛) − 𝑁
∗
+
𝛼

𝑘
(𝑅 (𝑛) − 𝑅

∗
)) ]

=
1

2
(𝑁 (𝑛 + 1) − 𝑁 (𝑛) +

𝛼

𝑘
(𝑅 (𝑛 + 1) − 𝑅 (𝑛)))

× (𝑁 (𝑛 + 1) + 𝑁 (𝑛) +
𝛼

𝑘
(𝑅 (𝑛 + 1) + 𝑅 (𝑛))

−2 (𝑁
∗
−
𝛼

𝑘
𝑅
∗
))
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= (𝑁 (𝑛 + 1) − 𝑁 (𝑛) +
𝛼

𝑘
(𝑅 (𝑛 + 1) − 𝑅 (𝑛)))

× (𝑁 (𝑛 + 1) − 𝑁
∗
+
𝛼

𝑘
(𝑅 (𝑛 + 1) − 𝑅

∗
))

−
1

2
(𝑁 (𝑛 + 1) − 𝑁

∗
+
𝛼

𝑘
(𝑅 (𝑛 + 1) − 𝑅

∗
))

2

≤ ((𝑁 (𝑛 + 1) − 𝑁
∗
) +

𝛼

𝑘
(𝑅 (𝑛 + 1) − 𝑅

∗
))

× ((𝑁 (𝑛 + 1) − 𝑁 (𝑛)) +
𝛼

𝑘
(𝑅 (𝑛 + 1) − 𝑅 (𝑛)))

= ((𝑁 (𝑛 + 1) − 𝑁
∗
) +

𝛼

𝑘
(𝑅 (𝑛 + 1) − 𝑅

∗
))

× ( (Λ − 𝜇𝑁 (𝑛 + 1) − 𝛼𝐼 (𝑛 + 1))

+
𝛼

𝑘
(𝑘𝐼 (𝑛 + 1) − (𝜇 + 𝛾) 𝑅 (𝑛 + 1)))

= ((𝑁 (𝑛 + 1) − 𝑁
∗
) +

𝛼

𝑘
(𝑅 (𝑛 + 1) − 𝑅

∗
))

× (𝜇𝑁
∗
− 𝜇𝑁 (𝑛 + 1)

−
𝛼 (𝜇 + 𝛾)

𝑘
(𝑅 (𝑛 + 1) − 𝑅

∗
))

= −𝜇(𝑁 (𝑛 + 1) − 𝑁
∗
)
2
−
𝛼
2

𝑘2
(𝜇 + 𝛾)

× (𝑅 (𝑛 + 1) − 𝑅
∗
)
2

−
𝛼 (2𝜇 + 𝛾)

𝑘
(𝑁 (𝑛 + 1) − 𝑁

∗
) (𝑅 (𝑛 + 1) − 𝑅

∗
) .

(47)

Now, we define a Lyapunov function as follows:

𝑉 (𝑆, 𝐼, 𝑅) = 𝑉
1
(𝑆) + 𝑉

2
(𝐼) + 𝜔

1
𝑉
3
(𝑅) + 𝜔

2
𝑉
4
(𝑁, 𝑅) ,

(48)

where 𝜔
1
and 𝜔

2
are positive constants which will be chosen

in the following. It is obvious that from (40) and (41)
𝑉(𝑆, 𝐼, 𝑅) > 0 for all (𝑆, 𝐼, 𝑅) ̸= (𝑆

∗
, 𝐼
∗
, 𝑅
∗
) and 𝑉(𝑆, 𝐼, 𝑅) = 0

if and only if (𝑆, 𝐼, 𝑅) = (𝑆∗, 𝐼∗, 𝑅∗). By computing

Δ𝑉 (𝑛) = 𝑉 (𝑆 (𝑛 + 1) , 𝐼 (𝑛 + 1) , 𝑅 (𝑛 + 1))

− 𝑉 (𝑆 (𝑛) , (𝑛) , 𝑅 (𝑛)) ,

(49)

we have

Δ𝑉 (𝑛) ≤ −𝜇𝜔
2
(𝑁 (𝑛 + 1) − 𝑁

∗
)
2

− (
𝜔
2
𝛼
2

𝑘2
(𝜇 + 𝛾) + 𝜔

1
(𝑘 + 𝜇 + 𝛾))

× (𝑅 (𝑛 + 1) − 𝑅
∗
)
2

− 𝜇(1 −
𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
) (𝑆 (𝑛 + 1) − 𝑆

∗
)

+ 𝛾(1 −
𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
) (𝑅 (𝑛 + 1) − 𝑅

∗
)

− 𝜔
1
𝑘 (𝑅 (𝑛 + 1) − 𝑅

∗
) (𝑆 (𝑛 + 1) − 𝑆

∗
)

+ (𝑘 + 𝜇 + 𝛼) 𝐼
∗

× ((2 −
𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
−
𝐹 (𝑆 (𝑛 + 1))

𝐹 (𝑆
∗
)

)

+ (
𝐺 (𝐼 (𝑛 + 1))

𝐺 (𝐼
∗
)

−
𝐼 (𝑛 + 1)

𝐼∗

+
𝐼 (𝑛 + 1)

𝐼∗

𝐺 (𝐼
∗
)

𝐺 (𝐼 (𝑛 + 1))
− 1))

+ (𝜔
1
𝑘 −

𝜔
2
𝛼 (2𝜇 + 𝛾)

𝑘
)

× (𝑁 (𝑛 + 1) − 𝑁
∗
) (𝑅 (𝑛 + 1) − 𝑅

∗
) .

(50)

Choose constants 𝜔
1
and 𝜔

2
as follows:

𝜔
1
=
𝛾𝐹 (𝑆
∗
)

𝑘 (𝑆
∗
)
2
, 𝜔

2
=

𝑘𝛾𝐹 (𝑆
∗
)

𝛼 (2𝜇 + 𝛾) (𝑆
∗
)
2
. (51)

Then we further have

Δ𝑉 (𝑛) ≤ −
𝜇𝑘
2
𝛾𝐹 (𝑆
∗
)

𝛼 (2𝜇 + 𝛾) (𝑆
∗
)
2
(𝑁 (𝑛 + 1) − 𝑁

∗
)
2

−
𝛾𝐹 (𝑆
∗
)

(𝑆
∗
)
2
(
𝛼 (𝜇 + 𝛾)

𝑘 (2𝜇 + 𝛾)
+
𝜇 + 𝛾

𝑘
+ 1)

× (𝑅 (𝑛 + 1) − 𝑅
∗
)
2

+
𝐹 (𝑆
∗
)

(𝑆
∗
)
2
(𝑆 (𝑛 + 1) − 𝑆

∗
) (1 −

𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
)
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× (−
𝜇(𝑆
∗
)
2

𝐹 (𝑆
∗
)
+
𝛾(𝑆
∗
)
2

𝐹 (𝑆
∗
)

𝑅 (𝑛 + 1) − 𝑅
∗

𝑆 (𝑛 + 1) − 𝑆
∗

− 𝛾 (𝑅 (𝑛 + 1) − 𝑅
∗
)

𝐹 (𝑆 (𝑛 + 1))

𝐹 (𝑆 (𝑛 + 1)) − 𝐹 (𝑆
∗
)
)

+ (𝑘 + 𝜇 + 𝛼) 𝐼
∗

× ((2 −
𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
−
𝐹 (𝑆 (𝑛 + 1))

𝐹 (𝑆
∗
)

)

+ (
𝐺 (𝐼
∗
)

𝐺 (𝐼 (𝑛 + 1))
− 1)

×(
𝐼 (𝑛 + 1)

𝐼∗
−
𝐺 (𝐼 (𝑛 + 1))

𝐺 (𝐼
∗
)

))

= −
𝜇𝑘
2
𝛾𝐹 (𝑆
∗
)

𝛼 (2𝜇 + 𝛾) (𝑆
∗
)
2
(𝑁 (𝑛 + 1) − 𝑁

∗
)
2

−
𝛾𝐹 (𝑆
∗
)

(𝑆
∗
)
2
(
𝛼 (𝜇 + 𝛾)

𝑘 (2𝜇 + 𝛾)
+
𝜇 + 𝛾

𝑘
+ 1)

× (𝑅 (𝑛 + 1) − 𝑅
∗
)
2

+
𝐹 (𝑆
∗
)

(𝑆
∗
)
2
(𝑆 (𝑛 + 1) − 𝑆

∗
) (1 −

𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
)

× ( −
𝜇𝐹 (𝑆
∗
)

(𝑆
∗
)
2

− 𝛾 (𝑅 (𝑛 + 1) − 𝑅
∗
)

× (
𝐹 (𝑆 (𝑛 + 1))

𝐹 (𝑆 (𝑛 + 1)) − 𝐹 (𝑆
∗
)

−
(𝑆
∗
)
2

𝐹 (𝑆
∗
) (𝑆 (𝑛 + 1) − 𝑆

∗
)
))

+ (𝑘 + 𝜇 + 𝛼) 𝐼
∗

× ((2 −
𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
−
𝐹 (𝑆 (𝑛 + 1))

𝐹 (𝑆
∗
)

)

+ (
𝐺 (𝐼
∗
)

𝐺 (𝐼 (𝑛 + 1))
− 1)

×(
𝐼 (𝑛 + 1)

𝐼∗
−
𝐺 (𝐼 (𝑛 + 1))

𝐺 (𝐼
∗
)

)) .

(52)

Noting that 𝐹(𝑆) > 0, for all 𝑆 > 0, then we have

2 −
𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
−
𝐹 (𝑆 (𝑛 + 1))

𝐹 (𝑆
∗
)

≤ 0. (53)

From (𝐻
1
), it follows that𝐹(𝑆(𝑛+1)) ≥ 𝐹(𝑆∗)when 𝑆(𝑛+1) ≥

𝑆
∗ and 𝐹(𝑆(𝑛 + 1)) ≤ 𝐹(𝑆

∗
) when 𝑆(𝑛 + 1) ≤ 𝑆

∗. Hence, we
have the following inequality:

(𝑆 (𝑛 + 1) − 𝑆
∗
) (1 −

𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
) ≥ 0. (54)

Furthermore, from (𝐻
1
), we also have the following inequal-

ities:

𝐺 (𝐼 (𝑛 + 1))

𝐺 (𝐼
∗
)

≥
𝐼 (𝑛 + 1)

𝐼∗
if 0 < 𝐼 (𝑛 + 1) ≤ 𝐼∗,

𝐺 (𝐼 (𝑛 + 1))

𝐺 (𝐼
∗
)

≤
𝐼 (𝑛 + 1)

𝐼∗
if 𝐼 (𝑛 + 1) ≥ 𝐼∗,

(55)

which implies that

(
𝐺 (𝐼
∗
)

𝐺 (𝐼 (𝑛 + 1))
− 1)(

𝐼 (𝑛 + 1)

𝐼∗
−
𝐺 (𝐼 (𝑛 + 1))

𝐺 (𝐼
∗
)

) ≤ 0.

(56)

From (53), (54), and (56), we further obtain

Δ𝑉 (𝑛) ≤ −
𝜇𝑘
2
𝛾𝐹 (𝑆
∗
)

𝛼 (2𝜇 + 𝛾) (𝑆
∗
)
2
(𝑁 (𝑛 + 1) − 𝑁

∗
)
2

−
𝛾𝐹 (𝑆
∗
)

(𝑆
∗
)
2
(
𝛼 (𝜇 + 𝛾)

𝑘 (2𝜇 + 𝛾)
+
𝜇 + 𝛾

𝑘
+ 1)

× (𝑅 (𝑛 + 1) − 𝑅
∗
)
2

+
𝐹 (𝑆
∗
)

(𝑆
∗
)
2
(𝑆 (𝑛 + 1) − 𝑆

∗
) (1 −

𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
)

× [ −
𝜇𝐹 (𝑆
∗
)

(𝑆
∗
)
2

+ 𝛾 (𝑅
∗
− 𝑅 (𝑛 + 1))

× (
𝐹 (𝑆 (𝑛 + 1))

𝐹 (𝑆 (𝑛 + 1)) − 𝐹 (𝑆
∗
)

−
(𝑆
∗
)
2

𝐹 (𝑆
∗
) (𝑆 (𝑛 + 1) − 𝑆

∗
)
)] .

(57)

From (𝐻
2
) and (𝐻

3
), we finally have Δ𝑉(𝑛) ≤ 0 for all 𝑛 ≥ 0.

Obviously, Δ𝑉(𝑛) = 0 if and only if 𝑆(𝑛) = 𝑆
∗, 𝐼(𝑛) = 𝐼

∗,
and 𝑅(𝑛) = 𝑅

∗ for all 𝑛 ≥ 0. Therefore, using the theorems
of stability of the difference equations (see Theorem 6.3 in
[33]), we obtain that 𝐸∗ is globally asymptotically stable.This
completes the proof.

As a special case of model (1), we consider the rate of
losing immunity 𝛾 = 0 in model (1); that is, model (1)
degenerates into a SIR epidemic model. Then, in the above
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calculation of Δ𝑉(𝑛), we can directly obtain the following
inequality without (𝐻

2
) and (𝐻

3
):

Δ𝑉 (𝑛) ≤ −𝜇 (𝑆 (𝑛 + 1) − 𝑆
∗
) (1 −

𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
)

+ (𝑘 + 𝜇 + 𝛼) 𝐼
∗

× ((2 −
𝐹 (𝑆
∗
)

𝐹 (𝑆 (𝑛 + 1))
−
𝐹 (𝑆 (𝑛 + 1))

𝐹 (𝑆
∗
)

)

+ (
𝐺 (𝐼
∗
)

𝐺 (𝐼 (𝑛 + 1))
− 1)

×(
𝐼 (𝑛 + 1)

𝐼∗
−
𝐺 (𝐼 (𝑛 + 1))

𝐺 (𝐼
∗
)

)) .

(58)

We have Δ𝑉(𝑛) ≤ 0 for all 𝑛 ≥ 0 and Δ𝑉(𝑛) = 0 if and
only if 𝑆(𝑛) = 𝑆

∗ and 𝐼(𝑛) = 𝐼
∗ for all 𝑛 ≥ 0. Therefore, as

a consequence of Theorem 5, we have the following result.

Corollary 6. Assume that (𝐻
1
) holds and 𝛾 = 0 in model (1).

Then endemic equilibrium 𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝑅
∗
) is globally asymptot-

ically stable if and only ifR
0
> 1.

Remark 7. By comparing the results obtained in [24], then,
from Corollary 6, we see thatTheorem 5 is a direct extension
of the corresponding result given in [24] on the global
stability of the endemic equilibrium in the nondelayed case
and the recovered individuals are in a position to lose the
immunity.

Remark 8. For general model (1), we spontaneously expect
that as long as basic reproduction number R

0
> 1, then

model (1) shows a unique endemic equilibrium which is
globally asymptotically stable. However, it is a pity that, in
Theorem 5, in order to obtain the global asymptotic stability
of endemic equilibrium 𝐸

∗, we need to introduce some
additional conditions, that is, (𝐻

2
) and (𝐻

3
). Furthermore,

from the proof of Theorem 5, we easily see that assumptions
(𝐻
2
) and (𝐻

3
) only are used to ensure Δ𝑉(𝑛) ≤ 0 for all

𝑛 ≥ 0. Therefore, an important open problem is whether
we can directly prove Δ𝑉(𝑛) ≤ 0 for all 𝑛 ≥ 0 without
assumptions (𝐻

2
) and (𝐻

3
) and further obtain the global

asymptotic stability of endemic equilibrium 𝐸
∗ of model (1)

only when basic reproduction numberR
0
> 1.

4. Permanence of Disease

In this section, we will use the theory of persistence in
general discrete dynamical systems to study the permanence
of model (1). We will obtain that the disease in model (1) is
permanent only when basic reproduction number R

0
> 1

and assumption (𝐻
1
) holds.

Let 𝑋 be a metric space with metric 𝑑 and let 𝑓 : 𝑋 →

𝑋 be a continuous map. For any 𝑥
0
∈ 𝑋, the sequence {𝑥

𝑛
}

defined by 𝑥
𝑛+1

= 𝑓(𝑥
𝑛
) for any integer 𝑛 ≥ 0 is said to be a

solution sequence through 𝑥
0
, and the omega limit set of {𝑥

𝑛
}

is defined by 𝜔(𝑥
0
) = {𝑦 ∈ 𝑋 : there is a sequence 𝑛

𝑘
→ ∞

such that lim
𝑘→∞

𝑥
𝑛
𝑘

= 𝑦}. For a nonempty set𝑀 ⊂ 𝑋, we

further define the stable set of 𝑀 by 𝑊𝑠(𝑀) = {𝑥
0
∈ 𝑋 :

lim
𝑛→∞

𝑑(𝑥
𝑛
,𝑀) = 0}.

Let𝑋
0
be a nonempty open set of𝑋. We denote

𝜕𝑋
0
:= 𝑋 \ 𝑋

0
, 𝑀

𝜕
:= {𝑥
0
∈ 𝜕𝑋
0
: 𝑥
𝑛
∈ 𝜕𝑋
0
∀𝑛 ≥ 0} .

(59)

Lemma 9. Let 𝑓 : 𝑋 → 𝑋 be a continuous map. Assume that
the following conditions hold.

(𝐶
1
) 𝑓 is compact and point dissipative, and 𝑓(𝑋

0
) ⊆ 𝑋

0
.

(𝐶
2
) There exists a finite sequence M = {𝑀

1
, . . . ,𝑀

𝑘
} of

compact and isolated invariant sets such that

(a) 𝑀
𝑖
⋂𝑀
𝑗
= 0 for any 𝑖, 𝑗 = 1, 2, . . . , 𝑘 and 𝑖 ̸= 𝑗;

(b) Ω(𝑀
𝜕
) := ⋃

𝑥∈𝑀
𝜕

𝜔(𝑥) ⊂ ⋃
𝑘

𝑖=1
𝑀
𝑖
;

(c) no subset ofM forms a cycle in 𝜕𝑋
0
;

(d) 𝑊𝑠(𝑀
𝑖
)⋂𝑋
0
= 0 for each 1 ≤ 𝑖 ≤ 𝑘.

Then 𝑓 is uniformly persistent with respect to (𝑋
0
, 𝜕𝑋
0
));

that is, there exists a constant 𝜂 > 0 such that
lim inf

𝑛→∞
𝑑(𝑥
𝑛
, 𝜕𝑋
0
) ≥ 𝜂 for all 𝑥

0
∈ 𝑋
0
.

Here, the definitions on the compactness and point
dissipativity ofmap𝑓 and the definitions on the compactness,
isolated invariance, and the cycle in 𝜕𝑋

0
for sequence M =

{𝑀
1
, . . . ,𝑀

𝑘
} can be found in [34]. Furthermore, Lemma 9

can be obtained fromTheorem 1.1.3, Theorem 1.3.1, Remark
1.3.1, andTheorem 1.3.3 given by Zhao in [34].

On the permanence of the disease for model (1), we have
the following result.

Theorem 10. Assume that (𝐻
1
) holds. Then, the disease in

model (1) is permanent; that is, there are two constants 𝑀 >

𝑚 > 0 such that

𝑚 ≤ lim inf
𝑛→∞

𝐼 (𝑛) ≤ lim sup
𝑛→∞

𝐼 (𝑛) ≤ 𝑀, (60)

for any positive solution (𝑆(𝑛), 𝐼(𝑛), 𝑅(𝑛)) of model (1) if and
only ifR

0
> 1.

Proof. From Theorem 4 we see that the necessity is obvious.
Now, we only need to prove the sufficiency. Define two sets as
follows:

𝑋 = {(𝑆, 𝐼, 𝑅) ∈ 𝑅
3
: 𝑆 > 0, 𝐼 ≥ 0, 𝑅 ≥ 0} ,

𝑋
0
= {(𝑆, 𝐼, 𝑅) ∈ 𝑋 : 𝑆 > 0, 𝐼 > 0, 𝑅 ≥ 0} .

(61)

We have

𝜕𝑋
0
= 𝑋 \ 𝑋

0
= {(𝑆, 𝐼, 𝑅) : 𝑆 > 0, 𝐼 = 0, 𝑅 ≥ 0} . (62)

For any initial point 𝑥
0

= (𝑆
0
, 𝐼
0
, 𝑅
0
) ∈ 𝑋, let 𝑥

𝑛
=

(𝑆(𝑛), 𝐼(𝑛), 𝑅(𝑛)) be the solution of model (1) through 𝑥
0
. We

define map 𝑓 : 𝑋 → 𝑋 by 𝑓(𝑥
0
) = 𝑥
1
.

From the positivity and ultimate boundedness of solu-
tions of model (1), we obtain 𝑓(𝑋

0
) ⊆ 𝑋

0
and 𝑓 is also point

dissipative.
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By observing the proof of Theorem 3, we see that, since
𝑁(1) and 𝑅(1) are continuous with respect to𝑁(0) and 𝑅(0),
respectively, Ψ(𝑦) is also continuous with respect to 𝑥

0
=

(𝑆
0
, 𝐼
0
, 𝑅
0
). Hence, 𝐼(1), as the solution of Ψ(𝑦) = 0, is also

continuous for 𝑥
0
. Similarly, from the expression ofΦ(𝑥) and

the continuity of 𝐼(1) with respect to 𝑥
0
, we obtain thatΦ(𝑥)

is continuous with respect to 𝑥
0
. Hence, 𝑆(1), as the solution

of Φ(𝑥) = 0, is also continuous for 𝑥
0
. Therefore, we finally

obtain that map 𝑓 is continuous on 𝑋. From this, we obtain
that 𝑓 also is compact.

In 𝜕𝑋
0
, we have 𝐼(𝑛) ≡ 0, and hence (𝑆(𝑛), 𝑅(𝑛)) satisfies

𝑆 (𝑛 + 1) = 𝑆 (𝑛) + Λ − 𝜇𝑆 (𝑛 + 1) + 𝛾𝑅 (𝑛 + 1) ,

𝑅 (𝑛 + 1) = 𝑅 (𝑛) − (𝜇 + 𝛾) 𝑅 (𝑛 + 1) .

(63)

Obviously, we can obtain (𝑆(𝑛), 𝑅(𝑛)) → (Λ/𝜇, 0) as 𝑛 →

∞. This shows that 𝜔(𝑥
0
) = {𝐸

0
} for any 𝑥

0
∈ 𝑀
𝜕
and

Ω(𝑀
𝜕
) = ⋃

𝑥∈𝑀
𝜕

𝜔(𝑥) = {𝐸
∗
}. Choose M = {𝐸

0
}; then we

easily see that conditions (a)–(c) of Lemma 9 hold.
Now, we prove that condition (d) in Lemma 9 also holds.

Otherwise, there is a point (𝑆
0
, 𝐼
0
, 𝑅
0
) ∈ 𝑋

0
such that

(𝑆(𝑛), 𝐼(𝑛), 𝑅(𝑛)) → 𝐸
0 as 𝑛 → ∞. From R

0
> 1, we can

choose a small enough constant 𝜀 > 0 such that

(𝐹(
Λ

𝜇
) − 𝜀) (𝐺


(0) − 𝜀) − (𝑘 + 𝜇 + 𝛼) > 0. (64)

Since lim
𝑛→∞

𝑆(𝑛) = Λ/𝜇 and lim
𝑛→∞

(𝐺(𝐼(𝑛))/𝐼(𝑛)) =

𝐺

(0), there exists𝑁 > 0 such that 𝐹(𝑆(𝑛 + 1)) > 𝐹(Λ/𝜇) − 𝜀

and 𝐺(𝐼(𝑛 + 1))/𝐼(𝑛 + 1) > 𝐺(0) − 𝜀 for all 𝑛 > 𝑁. Therefore,
we have

𝐼 (𝑛 + 1)

= 𝐼 (𝑛) + 𝐹 (𝑆 (𝑛 + 1)) 𝐺 (𝐼 (𝑛 + 1)) − (𝑘 + 𝜇 + 𝛼) 𝐼 (𝑛 + 1)

≥ 𝐼 (𝑛) + [(𝐹(
Λ

𝜇
) − 𝜀) (𝐺


(0) − 𝜀) − (𝑘 + 𝜇 + 𝛼)]

× 𝐼 (𝑛 + 1) ,

(65)

for all 𝑛 > 𝑁. Consequently,

𝐼 (𝑛 + 1) [1 + 𝑘 + 𝜇 + 𝛼 − (𝐹(
Λ

𝜇
) − 𝜀) (𝐺


(0) − 𝜀)]

≥ 𝐼 (𝑛) ,

(66)

for all 𝑛 > 𝑁. Since 0 ≤ 1+𝑘+𝜇+𝛼−(𝐹(Λ/𝜇)−𝜀)(𝐺(0)−𝜀) < 1,
we can finally obtain from (66) that lim

𝑛→∞
𝐼(𝑛) = ∞, which

leads to a contradiction.Therefore, condition (d) in Lemma 9
holds. Finally, from Lemma 9 we obtain that the disease in
model (1) is permanent. This completes the proof.

Remark 11. From Theorem 10, we directly see that assump-
tions (𝐻

2
) and (𝐻

3
) only are used to obtain the global

asymptotic stability of endemic equilibrium 𝐸
∗.

5. Special Case 𝐹(𝑆) = 𝑆/ (1 + 𝜆𝑆)

Now, we especially discuss the special case of model (1):
𝐹(𝑆) = 𝑆/(1 + 𝜆𝑆), where 𝜆 ≥ 0 is a constant. Firstly, when
𝐹(𝑆) = 𝑆/(1 + 𝜆𝑆), the basic reproduction number of model
(1) becomes

R
0
=
𝐹 (Λ/𝜇)𝐺


(0)

𝑘 + 𝜇 + 𝛼
=

Λ𝐺

(0)

(𝜇 + 𝜆Λ) (𝑘 + 𝜇 + 𝛼)
. (67)

Furthermore, by calculating, we obtain that (𝐻
2
) naturally

holds, and assumption (𝐻
3
) is equivalent to the following

simple form:

𝛾𝑅
∗
− 𝜇𝑆
∗
≤ 0. (68)

Therefore, as a direct consequence of Theorem 5, we firstly
have the following corollary.

Corollary 12. Assume that (𝐻
1
) holds and 𝐹(𝑆) = 𝑆/(1 + 𝜆𝑆),

where 𝜆 ≥ 0 is a constant. IfR
0
> 1 and inequality (68) holds,

then endemic equilibrium𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝑅
∗
) ofmodel (1) is globally

asymptotically stable.

Furthermore, in order to validate inequality (68), we have
the following result.

Theorem 13. Assume that (𝐻
1
) holds and 𝐹(𝑆) = 𝑆/(1 + 𝜆𝑆)

with 𝜆 ≥ 0 is a constant. Then inequality (68) holds if one of
the following conditions holds:

(1) 1 <R
0
≤ (𝜇(𝑘 + 𝜇 + 𝛼) + Λ𝑘𝜆)/𝑘(𝜇 + 𝜆Λ),

(2) R
0
> (𝜇(𝑘 + 𝜇 + 𝛼) + Λ𝑘𝜆)/𝑘(𝜇 + 𝜆Λ) and 0 ≤ 𝛾 ≤

𝛾 := 𝜇/𝐿, where

𝐿 =
R
0
(𝜇 + 𝜆Λ) 𝑘

𝜇 (𝑘 + 𝜇 + 𝛼)
−
𝜇 (𝑘 + 𝜇 + 𝛼) + Λ𝑘𝜆

𝜇 (𝑘 + 𝜇 + 𝛼)
. (69)

Proof. When 𝐹(𝑆)𝐺(𝐼) = (𝑆/(1 + 𝜆𝑆))𝐺(𝐼), endemic equilib-
rium 𝐸

∗
(𝑆
∗
, 𝐼
∗
, 𝑅
∗
) of model (1) satisfies

Λ =
𝑆
∗

1 + 𝜆𝑆∗
𝐺 (𝐼
∗
) + 𝜇𝑆

∗
− 𝛾𝑅
∗
,

𝐼
∗
(𝑘 + 𝜇 + 𝛼) =

𝑆
∗

1 + 𝜆𝑆∗
𝐺 (𝐼
∗
) ,

𝑘𝐼
∗
= (𝜇 + 𝛾) 𝑅

∗
.

(70)

From the second and third equations of (70), we obtain

𝑆
∗
=

𝐼
∗
(𝑘 + 𝜇 + 𝛼)

𝐺 (𝐼
∗
) − 𝜆 (𝑘 + 𝜇 + 𝛼) 𝐼

∗
, 𝑅

∗
=

𝑘𝐼
∗

𝜇 + 𝛾
. (71)

Putting (71) into the first equation of (70), we have

𝐼
∗
= (Λ −

𝜇 (𝑘 + 𝜇 + 𝛼) 𝐼
∗

𝐺 (𝐼
∗
) − 𝜆 (𝑘 + 𝜇 + 𝛼) 𝐼

∗
)

×
𝜇 + 𝛾

𝜇 (𝑘 + 𝜇 + 𝛼) + 𝛾 (𝜇 + 𝛼)
.

(72)
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Hence, from (71) and (72), we obtain

𝜇𝑆
∗
− 𝛾𝑅
∗
=

𝜇 (𝑘 + 𝜇 + 𝛼) 𝐼
∗

𝐺 (𝐼
∗
) − 𝜆 (𝑘 + 𝜇 + 𝛼) 𝐼

∗
− 𝛾𝑅
∗

=
𝜇 (𝑘 + 𝜇 + 𝛼) (𝜇 + 𝛾) 𝑅

∗

(𝐺 (𝐼
∗
) − 𝜆 (𝑘 + 𝜇 + 𝛼) 𝐼

∗) 𝑘
− 𝛾𝑅
∗

=
𝑅
∗

𝑘 (𝐺 (𝐼
∗
) − 𝜆 (𝑘 + 𝜇 + 𝛼) 𝐼

∗)

× [𝜇 (𝑘 + 𝜇 + 𝛼) (𝜇 + 𝛾)

− 𝑘𝛾(
𝐺 (𝐼
∗
)

𝐼∗
− 𝜆 (𝑘 + 𝜇 + 𝛼)) 𝐼

∗
]

=
𝑅
∗

𝑘 (𝐺 (𝐼
∗
) − 𝜆 (𝑘 + 𝜇 + 𝛼) 𝐼

∗)

× [𝜇 (𝑘 + 𝜇 + 𝛼) (𝜇 + 𝛾)

− 𝑘𝛾(
𝐺 (𝐼
∗
)

𝐼∗
− 𝜆 (𝑘 + 𝜇 + 𝛼))

× (Λ −
𝜇 (𝑘 + 𝜇 + 𝛼) 𝐼

∗

𝐺 (𝐼
∗
) − 𝜆 (𝑘 + 𝜇 + 𝛼) 𝐼

∗
)

×
𝜇 + 𝛾

𝜇 (𝑘 + 𝜇 + 𝛼) + 𝛾 (𝜇 + 𝛼)
]

=
𝑅
∗

𝑘 (𝐺 (𝐼
∗
) − 𝜆 (𝑘 + 𝜇 + 𝛼) 𝐼

∗)

× [𝜇 (𝑘 + 𝜇 + 𝛼) (𝜇 + 𝛾)

−
𝜇 + 𝛾

𝜇 (𝑘 + 𝜇 + 𝛼) + 𝛾 (𝜇 + 𝛼)

× (Λ𝛾𝑘(
𝐺 (𝐼
∗
)

𝐼∗
− 𝜆 (𝑘 + 𝜇 + 𝛼))

− 𝑘𝛾𝜇 (𝑘 + 𝜇 + 𝛼))] .

(73)

Since 𝐺(𝐼)/𝐼 is nonincreasing for all 𝐼 > 0 in (𝐻
1
), we have

𝐺 (𝐼
∗
)

𝐼∗
− 𝜆 (𝑘 + 𝜇 + 𝛼) ≤ 𝐺


(0) − 𝜆 (𝑘 + 𝜇 + 𝛼) . (74)

Therefore, from (73), we further have

𝜇𝑆
∗
− 𝛾𝑅
∗
≥

𝑅
∗

𝑘 (𝐺 (𝐼
∗
) − 𝜆 (𝑘 + 𝜇 + 𝛼) 𝐼

∗)

× (𝜇 (𝑘 + 𝜇 + 𝛼) (𝜇 + 𝛾)

−
𝜇 + 𝛾

𝜇 (𝑘 + 𝜇 + 𝛼) + 𝛾 (𝜇 + 𝛼)

× (Λ𝛾𝑘 (𝐺

(0) − 𝜆 (𝑘 + 𝜇 + 𝛼))

− 𝑘𝛾𝜇 (𝑘 + 𝜇 + 𝛼) ))

=
𝑅
∗

𝑘 (𝐺 (𝐼
∗
) − 𝜆 (𝑘 + 𝜇 + 𝛼) 𝐼

∗)

×
𝜇 (𝜇 + 𝛾) (𝑘 + 𝜇 + 𝛼)

2

𝜇 (𝑘 + 𝜇 + 𝛼) + 𝛾 (𝜇 + 𝛼)

× [
1

𝑘 + 𝜇 + 𝛼
(𝜇 (𝑘 + 𝜇 + 𝛼) + 𝛾 (𝜇 + 𝛼))

+
𝑘𝛾

𝑘 + 𝜇 + 𝛼

−

Λ𝑘𝛾 (𝐺

(0) − 𝜆 (𝑘 + 𝜇 + 𝛼))

𝜇(𝑘 + 𝜇 + 𝛼)
2

]

=
𝑅
∗

𝑘 (𝐺 (𝐼
∗
) − 𝜆 (𝑘 + 𝜇 + 𝛼) 𝐼

∗)

×
𝜇 (𝜇 + 𝛾) (𝑘 + 𝜇 + 𝛼)

2

𝜇 (𝑘 + 𝜇 + 𝛼) + 𝛾 (𝜇 + 𝛼)

× (𝜇 + 𝛾
𝜇 (𝜇 + 𝑘 + 𝛼) + Λ𝑘𝜆

𝜇 (𝑘 + 𝜇 + 𝛼)

−
Λ𝑘𝜆𝐺


(0)

𝜇(𝑘 + 𝜇 + 𝛼)
2
)

=
𝑅
∗

𝑘 (𝐺 (𝐼
∗
) − 𝜆 (𝑘 + 𝜇 + 𝛼) 𝐼

∗)

×
𝜇 (𝜇 + 𝛾) (𝑘 + 𝜇 + 𝛼)

2

𝜇 (𝑘 + 𝜇 + 𝛼) + 𝛾 (𝜇 + 𝛼)

× (𝜇 − 𝛾(
R
0
(𝜇 + 𝜆Λ) 𝑘

𝜇 (𝑘 + 𝜇 + 𝛼)

−
𝜇 (𝜇 + 𝑘 + 𝛼) + Λ𝑘𝜆

𝜇 (𝑘 + 𝜇 + 𝛼)
)) .

(75)

From (75), we obtain that, when the conditions ofTheorem 10
hold, 𝜇𝑆∗ − 𝛾𝑅∗ ≥ 0. Therefore, inequality (68) holds. This
completesthe proof.
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Remark 14. Obviously, from the above discussion for special
case𝐹(𝑆) = 𝑆/(1+𝜆𝑆) ofmodel (1), we also have an important
open problem, that is, whether endemic equilibrium 𝐸

∗ of
model (1) is globally asymptotically stable as long as basic
reproduction numberR

0
> 1.

In the following, we will give an affirmative answer for
above open problem in allusion to 𝐹(𝑆) = 𝑆 and 𝐺(𝐼) =

𝛽𝐼/(1+𝜔𝐼) in model (1), by constructing the other Lyapunov
function which is different from the Lyapunov function used
inTheorem 5.

Firstly, we see in model (1) when 𝐹(𝑆) = 𝑆 and 𝐺(𝐼) =
𝛽𝐼/(1 + 𝜔𝐼), where 𝛽 > 0 and 𝜔 ≥ 0 are two constants, basic
reproduction number

R
0
=
𝐹 (Λ/𝜇)𝐺


(0)

𝑘 + 𝜇 + 𝛼
=

Λ𝛽

𝜇 (𝑘 + 𝜇 + 𝛼)
, (76)

and assumption (𝐻
1
) naturally holds. Therefore, from

Theorem 2, when R
0
> 1, model (1) has a unique endemic

equilibrium 𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝑅
∗
).

Theorem 15. When 𝐹(𝑆)𝐺(𝐼) = 𝛽𝑆𝐼/(1 + 𝜔𝐼) in model (1),
then endemic equilibrium 𝐸

∗ is globally asymptotically stable
ifR
0
> 1.

Proof. We consider the following Lyapunov function:

𝑈 (𝑆, 𝐼, 𝑅) =
𝛽

2𝛼
(𝑁 − 𝑁

∗
)
2
+ (𝐼 − 𝐼

∗
− 𝐼
∗ ln 𝐼

𝐼∗
)

+
𝜔

2
(𝐼 − 𝐼

∗
)
2
+
𝛽

2𝑘
(𝑅 − 𝑅

∗
)
2
.

(77)

It is clear that 𝑈(𝑆, 𝐼, 𝑅) > 0 for all (𝑆, 𝐼, 𝑅) ̸= (𝑆
∗
, 𝐼
∗
, 𝑅
∗
) and

𝑈(𝑆, 𝐼, 𝑅) = 0 if and only if (𝑆, 𝐼, 𝑅) = (𝑆∗, 𝐼∗, 𝑅∗).
Let (𝑆(𝑛), 𝐼(𝑛), 𝑅(𝑛)) be any positive solution ofmodel (1).

By computing

Δ𝑈 (𝑛) = 𝑈 (𝑆 (𝑛 + 1) , 𝐼 (𝑛 + 1) , 𝑅 (𝑛 + 1))

− 𝑈 (𝑆 (𝑛) , 𝐼 (𝑛) , 𝑅 (𝑛)) ,

(78)

a similar argument as in calculation Δ𝑉
3
(𝑛) inTheorem 5, we

obtain

Δ𝑈 (𝑛) ≤
𝛽

𝛼
(𝑁 (𝑛 + 1) − 𝑁

∗
) (𝑁 (𝑛 + 1) − 𝑁 (𝑛))

+ (𝐼 (𝑛 + 1) − 𝐼 (𝑛) − 𝐼
∗ ln 𝐼 (𝑛 + 1)

𝐼 (𝑛)
)

+ 𝜆 (𝐼 (𝑛 + 1) − 𝐼
∗
) (𝐼 (𝑛 + 1) − 𝐼 (𝑛))

+
𝛽

𝑘
(𝑅 (𝑛 + 1) − 𝑅

∗
) (𝑅 (𝑛 + 1) − 𝑅 (𝑛)) .

(79)

By using inequality ln(1 − 𝑥) ≤ −𝑥 for any 𝑥 < 1, we obtain

− ln 𝐼 (𝑛 + 1)
𝐼 (𝑛)

= ln 1 − (1 − 𝐼 (𝑛)

𝐼 (𝑛 + 1)
) ≤ −(1 −

𝐼 (𝑛)

𝐼 (𝑛 + 1)
) .

(80)

Hence,

Δ𝑈 (𝑛) ≤
𝛽

𝛼
(𝑁 (𝑛 + 1) − 𝑁

∗
)

× (Λ − 𝜇𝑁 − 𝛼𝐼 (𝑛 + 1))

+
1 + 𝜔𝐼 (𝑛 + 1)

𝐼 (𝑛 + 1)

× (𝐼 (𝑛 + 1) − 𝐼
∗
) (𝐼 (𝑛 + 1) − 𝐼 (𝑛))

+
𝛽

𝑘
(𝑅 (𝑛 + 1) − 𝑅

∗
)

× (𝑘𝐼 (𝑛 + 1) − (𝜇 + 𝛾) 𝑅 (𝑛 + 1))

=
𝛽

𝛼
(𝑁 (𝑛 + 1) − 𝑁

∗
) (Λ − 𝜇𝑁 − 𝛼𝐼 (𝑛 + 1))

+ (𝐼 (𝑛 + 1) − 𝐼
∗
)

× (𝛽𝑆 (𝑛 + 1) − (1 + 𝜔𝐼 (𝑛 + 1))

× (𝑘 + 𝜇 + 𝛼)) +
𝛽

𝑘
(𝑅 (𝑛 + 1) − 𝑅

∗
)

× (𝑘𝐼 (𝑛 + 1) − (𝜇 + 𝛾) 𝑅 (𝑛 + 1)) .

(81)

Since 𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) satisfies

Λ = 𝜇𝑁
∗
+ 𝛼𝐼
∗
= 𝜇𝑆
∗
+ (𝛼 + 𝜇) 𝐼

∗
+ 𝜇𝑅
∗
,

𝑘 + 𝜇 + 𝛼 =
𝛽𝑆
∗

1 + 𝜔𝐼∗
,

𝑘𝐼
∗
− (𝜇 + 𝛾) 𝑅

∗
= 0,

(82)

then from (81) we further have

Δ𝑈 (𝑛) ≤ −
𝜇𝛽

𝛼
(𝑁 (𝑛 + 1) − 𝑁

∗
)
2

− 𝛽 (𝑁 (𝑛 + 1) − 𝑁
∗
) (𝐼 (𝑛 + 1) − 𝐼

∗
)

+ 𝛽 (𝐼 (𝑛 + 1) − 𝐼
∗
)

× (𝑆 (𝑛 + 1) −
(1 + 𝜔𝐼 (𝑛 + 1)) 𝑆

∗

1 + 𝜔𝐼∗
)

+ 𝛽 (𝑅 (𝑛 + 1) − 𝑅
∗
) (𝐼 (𝑛 + 1) − 𝐼

∗
)

−
𝛽 (𝜇 + 𝛾)

𝑘
(𝑅 (𝑛 + 1) − 𝑅

∗
)
2
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= −
𝜇𝛽

𝛼
(𝑁 (𝑛 + 1) − 𝑁

∗
)
2

− 𝛽 (𝑁 (𝑛 + 1) − 𝑁
∗
) (𝐼 (𝑛 + 1) − 𝐼

∗
)

+ 𝛽 (𝐼 (𝑛 + 1) − 𝐼
∗
)

× ( (𝑁 (𝑛 + 1) − 𝑁
∗
)

− (𝐼 (𝑛 + 1) − 𝐼
∗
) − (𝑅 (𝑛 + 1) − 𝑅

∗
)

+𝑆
∗
−
(1 + 𝜔𝐼 (𝑛 + 1)) 𝑆

∗

1 + 𝜔𝐼∗
)

+ 𝛽 (𝑅 (𝑛 + 1) − 𝑅
∗
) (𝐼 (𝑛 + 1) − 𝐼

∗
)

−
𝛽 (𝜇 + 𝛾)

𝑘
(𝑅 (𝑛 + 1) − 𝑅

∗
)
2

= −
𝜇𝛽

𝛼
(𝑁 (𝑛 + 1) − 𝑁

∗
)
2

−
𝛽 (𝜇 + 𝛾)

𝑘
(𝑅 (𝑛 + 1) − 𝑅

∗
)
2

− 𝛽(𝐼 (𝑛 + 1) − 𝐼
∗
)
2
− 𝛽𝑆
∗
𝜔(𝐼 (𝑛 + 1) − 𝐼

∗
)
2

1 + 𝜔𝐼∗
.

(83)

Therefore, we finally get that Δ𝑈(𝑛) ≤ 0 for all 𝑛 ≥ 0.
Obviously, Δ𝑈(𝑛) = 0 if and only if 𝑁(𝑛 + 1) = 𝑁

∗,
𝐼(𝑛 + 1) = 𝐼

∗, and 𝑅(𝑛 + 1) = 𝑅
∗. Therefore, from the

theorems of stability of difference equations (seeTheorem 6.3
in [33]), we obtain that 𝐸∗ is globally asymptotically stable.
This completes the proof.

Remark 16. By combining Theorem 4, we can obtain that,
when 𝐹(𝑆)𝐺(𝐼) = 𝛽𝑆𝐼/(1 + 𝜔𝐼) in model (1), disease-
free equilibrium 𝐸

0 is globally asymptotically stable if and
only if basic reproduction number R

0
≤ 1 and endemic

equilibrium 𝐸
∗ is globally asymptotically stable if and only if

R
0
> 1.

Remark 17. In [13], the author studied a continuous
SIRS epidemic model with bilinear incidence rate and
obtained that the disease-free equilibrium is globally stable
if basic reproduction number 𝑅

0
≤ 1 and the endemic

equilibrium is globally stable if 𝑅
0
> 1. However, in this

paper, we established the completely same results for
the corresponding backward Euler discretization model
with saturation incidence rate. This shows that the results
obtained in [13] are extended and improved in the discrete
models.

Remark 18. In [25], the following continuous SIRS epidemic
model with a class of nonlinear incidence rates and dis-
tributed delays is considered:

̇𝑆(𝑡) = 𝐵 − 𝜇1𝑆 (𝑡) − 𝛽𝑆 (𝑡) ∫

ℎ

0

𝑓 (𝜏) 𝐺 (𝐼 (𝑡 − 𝜏)) 𝑑𝜏 + 𝛿𝑅 (𝑡) ,

̇𝐼 (𝑡) = 𝛽𝑆 (𝑡) ∫

ℎ

0

𝑓 (𝜏) 𝐺 (𝐼 (𝑡 − 𝜏)) 𝑑𝜏 − (𝜇
2
+ 𝛾) 𝐼 (𝑡) ,

̇𝑅(𝑡) = 𝛾𝐼 (𝑡) − (𝜇3 + 𝛿) 𝑅 (𝑡) .

(84)

By applying Lyapunov functional techniques, Enatsu et al.
obtained that disease-free equilibrium (𝐵/𝜇

1
, 0, 0) of model

(84) is globally asymptotically stable if basic reproduction
number R

0
≤ 1 and endemic equilibrium (𝑆

∗
, 𝐼
∗
, 𝑅
∗
) of

model (84) is globally asymptotically stable if R
0
> 1 and

𝜇
1
𝑆
∗
− 𝛿𝑅
∗
≥ 0 hold. Comparing with the results obtained in

this paper, we can see that our results are the direct extension
of those in [25] for nondelayed discrete SIRS epidemic model
with nonlinear incidence rate 𝐹(𝑆)𝐺(𝐼).

However, we also see whether the conclusions obtained
in [25] can be extended to delayed discrete SIRS epidemic
models with more general nonlinear incidence rate 𝑓(𝑆, 𝐼),
which is left to further investigation in our future work.

6. Numerical Simulations

In this section, we give the following examples and numerical
simulations for model (1).

Example 1. Consider

𝐹 (𝑆) 𝐺 (𝐼) =
𝛽𝑆𝐼

1 + 𝜆𝑆
. (85)

We chooseΛ = 3,𝛼 = 0.2,𝜆 = 1,𝛽 = 0.8,𝜇 = 0.2, 𝛾 = 0.5,
and 𝑘 = 0.3. By calculating, we have the endemic equilibrium
𝐸
∗
= (7, 3.2941, 1.4118)) and the basic reproduction number

R
0
=

Λ𝛽

(𝑘 + 𝜇 + 𝛼) (𝜇 + 𝜆Λ)
= 1.0714 > 1. (86)

However, 𝛾𝑅∗ − 𝜇𝑆
∗
= −0.6941 < 0. Clearly, inequality

(56) does not hold. From the numerical simulation (see
Figure 1), we obtain that the endemic equilibrium 𝐸

∗ is still
globally asymptotically stable. Therefore, in our future work,
we expect to obtain the corresponding theoretical result for
the open problem in Remark 8.

Example 2. Consider

𝐹 (𝑆) 𝐺 (𝐼) =
𝛽𝑆
2
𝐼

1 + 𝜆√𝐼

. (87)

We choose Λ = 4, 𝛼 = 1.2, 𝜆 = 1, 𝛽 = 0.4, 𝜇 = 1.3,
𝛾 = 0.45, and 𝑘 = 1. By calculating, we have the endemic
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Figure 1: Time series of 𝑆(𝑛), 𝐼(𝑛), and 𝑅(𝑛).

equilibrium 𝐸
∗

= (3.0637, 0.0053, 0.0030)) and the basic
reproduction number

R
0
=

Λ
2
𝛽

𝜇2 (𝑘 + 𝜇 + 𝛼)
= 1.082 > 1. (88)

By further computation, we obtain, when 𝑆 = 2.7,

𝐹 (𝑆)

𝐹 (𝑆) − 𝐹 (𝑆
∗
)
−

(𝑆
∗
)
2

𝐹 (𝑆
∗
) (𝑆 − 𝑆

∗
)

=
𝑆
2

𝑆2 − (𝑆
∗
)
2
−

1

𝑆 − 𝑆∗
= −0.7281 < 0,

(89)

and, when 𝑆 = 3.064,

−
𝜇(𝑆
∗
)
2

𝐹 (𝑆
∗
)
+ 𝛾𝑅
∗
(

𝐹 (𝑆)

𝐹 (𝑆) − 𝐹 (𝑆
∗
)
−

(𝑆
∗
)
2

𝐹 (𝑆
∗
) (𝑆 − 𝑆

∗
)
)

= −𝜇 + 𝛾𝑅
∗
(

𝑆
2

𝑆2 − (𝑆
∗
)
2
−

1

𝑆 − 𝑆∗
) = 1.0943 > 0.

(90)

That is, neither (𝐻
2
) nor (𝐻

3
) holds. However, from the

numerical simulation (see Figure 2), it is clear that the
endemic equilibrium𝐸

∗ is still globally asymptotically stable.
Therefore, in our future work, we expect to obtain the
corresponding theoretical result for the open problem in
Remark 8.
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Figure 2: Time series of 𝑆(𝑛), 𝐼(𝑛), and 𝑅(𝑛).

7. Conclusions

This paper deals with global stability of disease-free equi-
librium and endemic equilibrium and the permanence
of disease for a class of discrete SIRS epidemic models
with nonlinear incidence rate 𝐹(𝑆)𝐺(𝐼) and disease-induced
mortality. Under the basic assumption (𝐻

1
), by applying

analytic techniques, we obtain that disease-free equilibrium
𝐸
0 of model (1) is globally asymptotically stable if basic

reproduction number R
0
≤ 1 and disease in the model is

permanent if R
0
> 1. Furthermore, motivated by the recent

progress of Lyapunov techniques in continuous epidemic
models (see, e.g., [25–27]), we construct the corresponding
discrete analogue of Lyapunov functions (seeTheorem 4) for
nonlinear incidence rate 𝐹(𝑆)𝐺(𝐼). Under the assumptions
burdened on 𝐹(𝑆), that is, assumptions (𝐻

2
) and (𝐻

3
),

we prove that the global asymptotic stability for endemic
equilibrium 𝐸

∗ of model (1) for the case R
0
> 1 is an

extension of SIR-type models with nonlinear incidence rate
𝐹(𝑆)𝐺(𝐼) (see, for instance, [7, 26], etc.); that is, when SIRS
models degenerate into SIR models, endemic equilibrium
of the corresponding SIR models is globally asymptoti-
cally stable only if R

0
> 1 and basic assumption (𝐻

1
)

hold.
From the proof of theorems in this paper, we easily

see that discrete Lyapunov functions, such as 𝑉(𝑆, 𝐼, 𝑅)

in Theorem 5, also can be applied for advanced models,
including the models with delay. We expect to study the
global stability of discrete SIRS and SEIRS epidemic models
with rather general incidence rate𝑓(𝑆, 𝐼) and with discrete or
infinite delay, which is left as a future work.
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We study the global property in a delayed periodic predator-prey model with stage-structure in prey and density-independence in
predator. The sufficient conditions on the ultimate boundedness of all positive solutions are obtained, and the sufficient conditions
of the integrable form for the permanence and extinction are further established, respectively. Some well-known results on the
predator density-dependency are improved and extended to the predator density-independent cases. The theoretical results are
confirmed by the special examples and the numerical simulations.

1. Introduction

There are many different kinds of two-species predator-
prey dynamicalmodels inmathematical ecology. Particularly,
two-species predator-prey model with stage-structure have
been extensively studied by a large number of papers, see
[1–5] and the reference cited therein. The main research
topics include the persistence, permanence and extinction of
species, the existence and the global asymptotic properties of
positive periodic solutions in periodic case, and the global
stability of models in general nonautonomous cases.

In [2], Cui and Song studied a periodic predator-prey
system with stage-structure. They provided a sufficient and
necessary condition to guarantee the permanence of species
for the system. In [3], Cui and Takeuchi studied a periodic
predator-prey system with stage-structure with function
response. They provided a sufficient and necessary condition
to guarantee the permanence of species for the system with
infinite delay. Some known results are extended to the delay
case.

So far, from these done works on the predator-prey
model with stage-structure, the authors always assume that

the predator is strictly density-dependent, which is much
identical with the real biological background. On the other
hand, the effect of periodically varying environment plays an
important role in the permanence and extinction of species
for the system (e.g., seasonal effects of climate, food supply,
mating habits, hunting or harvesting seasons, etc.). Thus, the
assumptions of periodicity of the parameters and systemwith
time delay are effective ways to characterize and investigate
population systems. Owing to many natural and man-made
factors such as the low birth rate, high death rate, decreasing
habitats, and the hunting of human beings, and the worse
ecological system, some predator species become rare and
even liable to extinction. For these predator species, we can
ignore the effect of density-dependency. Up to now, there are
someworks on such investigation for the situation of predator
density-independence. The authors always assume that the
density of predator is proportional to the predation rate, the
conversion rate of the immature prey biomass into predator
biomass, and the death rate of predator. Predator density-
independece is reasonable to the real ecosystem.

To our knowledge, few scholars consider the delayed
periodic predator-prey models with stage-structure in prey
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and density-independence in predator. In this paper, we
consider the following system:

𝑑𝑥
1
(𝑡)

𝑑𝑡
= 𝑎 (𝑡) 𝑥

2
(𝑡) − 𝑏 (𝑡) 𝑥

1
(𝑡) − 𝑑 (𝑡) 𝑥

2

1
(𝑡)

− 𝑝 (𝑡) 𝜙 (𝑥
1 (𝑡)) ∫

0

−ℎ

𝑘
12 (𝑠) 𝑦 (𝑡 + 𝑠) 𝑑𝑠,

𝑑𝑥
2
(𝑡)

𝑑𝑡
= 𝑐 (𝑡) 𝑥

1
(𝑡) − 𝑓 (𝑡) 𝑥

2

2
(𝑡) ,

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝑦 (𝑡) [−𝑔 (𝑡) + ℎ (𝑡) ∫

0

−ℎ

𝑘
21 (𝑠) 𝜙 (𝑥

1 (𝑡 + 𝑠)) 𝑑𝑠] .

(1)

Our purpose in this paper is to establish sufficient conditions
of integrable form for the permanence and extinction of
species for system (1). By using the analysis method, the
comparison theorem of cooperative system, and the theory
of the persistence of dynamical systems, the integral form
criteria on the ultimate boundedness, permanence, and
extinction are established. The method used in this paper is
motivated by theworks on the permanence and extinction for
periodic predator-prey systems in patchy environment given
by Teng and Chen in [5].

The organization of this paper is as follows. In the next
section, the basic assumptions for system (1), some notations,
and lemmas which will be used in the later sections are
introduced as the preliminaries. In Section 3, themain results
of this paper are stated. In Section 4, the proofs of the
main theorems are given. In Section 5, the theoretical results
are confirmed by some special examples and the numerical
simulations. Finally, a conclusion is given in Section 6.

2. Preliminaries

In system (1), 𝑥
𝑖
(𝑡) (𝑖 = 1, 2) represent the population density

of the infancy prey and maturity prey at time 𝑡, respectively,
and𝑦(𝑡) represents the population density of predator species
at time 𝑡 which only prey on infancy prey 𝑥

1
(𝑡). Functions

𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡), 𝑑(𝑡), 𝑓(𝑡), 𝑔(𝑡), ℎ(𝑡), and 𝑝(𝑡) are periodic and
continuous defined on 𝑅

+
= [0,∞) with common period

𝜔 > 0, and 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡), 𝑑(𝑡), and 𝑓(𝑡) are also positive,
where 𝑎(𝑡), 𝑏(𝑡), and 𝑑(𝑡) denote the birthrate, mortality, and
density restriction of infancy prey 𝑥

1
(𝑡) at time 𝑡, respectively,

𝑐(𝑡) denotes the transformation from the infancy prey𝑥
1
(𝑡) to

the maturity prey 𝑥
2
(𝑡) at time 𝑡, 𝑓(𝑡) denotes the mortality

and density restriction of maturity prey 𝑥
2
(𝑡) at time 𝑡, 𝑝(𝑡)

denotes the predation rate inwhich the predator𝑦(𝑡) captures
the infancy prey 𝑥

1
(𝑡) at time 𝑡, 𝑔(𝑡) is the mortality of

predator 𝑦(𝑡) at time 𝑡, and ℎ(𝑡) denotes the transformation
from the infancy prey 𝑥

1
(𝑡) to the predator 𝑦(𝑡) by the

assimilation. Functions 𝑘
𝑖𝑗
(𝑠) (𝑖, 𝑗 = 1, 2) are nonnegative

and integrable on [−ℎ, 0] and ∫
0

−ℎ
𝑘
𝑖𝑗
(𝑠)𝑑𝑠 = 1. Function

𝜙(𝑥
1
), the number of the prey consumed per predator in unit

time, is called the predator functional response. In this paper,
we always assume that 𝜙(𝑥

1
) is continuous differentiable

function and 𝜙(0) = 0.

We define set 𝐶
+
as follows:

𝐶
+
= {𝜓 = (𝜓

1
, 𝜓
2
, 𝜓
3
) : 𝜓
𝑖 (𝑠) is nonnegative

continous for 𝑠 ∈ [−ℎ, 0] , 𝜓𝑖 (0) > 0, 𝑖 = 1, 2, 3} .

(2)

For any 𝜓 ∈ 𝐶
+
, the norm is defined by ‖𝜓‖ =

sup
−ℎ≤𝜃≤0

|𝜓(𝜃)|. Motivated by the biological background of
system (1), in this paper, we always assume that the solutions
of system (1) satisfy the following initial conditions:

𝑥
1
(𝑠) = 𝜓

1
(𝑠) , 𝑥

2
(𝑠) = 𝜓

2
(𝑠) ,

𝑦 (𝑠) = 𝜓
3 (𝑠) , −ℎ ⩽ 𝑠 ⩽ 0,

(3)

where 𝜓 = (𝜓
1
, 𝜓
2
, 𝜓
3
) ∈ 𝐶
+
. It is easy to prove that the right

functional of system (1) is continuous and satisfies a local
Lipschitz condition with respect to 𝜓 = (𝜓

1
, 𝜓
2
, 𝜓
3
) ∈ 𝐶

+
.

Therefore, by the fundamental theory of functional differen-
tial equations (see [6–8]), for any 𝜓 = (𝜓

1
, 𝜓
2
, 𝜓
3
) ∈ 𝐶

+
,

system (1) has a unique solution (𝑥
1
(𝑡, 𝜓), 𝑥

2
(𝑡, 𝜓), 𝑦(𝑡, 𝜓))

satisfying initial condition (3). It is also easy to prove that
the solution (𝑥

1
(𝑡, 𝜓), 𝑥

2
(𝑡, 𝜓), 𝑦(𝑡, 𝜓)) is positive; that is,

𝑥
𝑖
(𝑡, 𝜓) > 0 (𝑖 = 1, 2) and 𝑦(𝑡, 𝜓) > 0 in its maximal interval

of existence. In this paper, such a solution of system (1) is
called a positive solution.

Let 𝑓(𝑡) be a 𝜔-periodic continuous function defined on
𝑅
+
, we define

𝐴
𝜔
(𝑓) = 𝜔

−1
∫

𝜔

0

𝑓 (𝑡) 𝑑𝑡, 𝑓
𝑚

= max
𝑡∈𝑅
+

𝑓 (𝑡) ,

𝑓
𝑙
= min
𝑡∈𝑅
+

𝑓 (𝑡) .

(4)

Consider the following differential equations system:

𝑑𝑢 (𝑡)

𝑑𝑡
= 𝛼 (𝑡) V (𝑡) − 𝛽 (𝑡) 𝑢 (𝑡) − 𝛾 (𝑡) 𝑢

2
(𝑡) ,

𝑑V (𝑡)
𝑑𝑡

= 𝛿 (𝑡) 𝑢 (𝑡) − 𝜂 (𝑡) V2 (𝑡) ,
(5)

where functions 𝛼(𝑡), 𝛽(𝑡), 𝛾(𝑡), 𝛿(𝑡), and 𝜂(𝑡) are positive
periodic and continuous defined on 𝑅

+
with common period

𝜔 > 0. We have the following result.

Lemma 1 (see [9]). System (5) has a positive 𝜔-periodic
solution (𝑢

∗
(𝑡), V∗(𝑡)) which is globally asymptotically stable.

Remark 2. Directly from system (5), we can obtain that
when we increase coefficients 𝛼(𝑡) and 𝛿(𝑡), or decrease
coefficients 𝛽(𝑡), 𝛾(𝑡), and 𝜂(𝑡), then 𝑢

∗
(𝑡) and V∗(𝑡) will

largen. Otherwise, 𝑢∗(𝑡) and V∗(𝑡) will decrease.
When the predator species 𝑦(𝑡) = 0 in system (1), we

obtain the following subsystem of system (1):

𝑑𝑥
1 (𝑡)

𝑑𝑡
= 𝑎 (𝑡) 𝑥

2
(𝑡) − 𝑏 (𝑡) 𝑥

1
(𝑡) − 𝑑 (𝑡) 𝑥

2

1
(𝑡) ,

𝑑𝑥
2
(𝑡)

𝑑𝑡
= 𝑐 (𝑡) 𝑥

1
(𝑡) − 𝑓 (𝑡) 𝑥

2

2
(𝑡) .

(6)
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It is clear that the solution (𝑥
1
(𝑡), 𝑥
2
(𝑡)) of system (6) with

initial value (𝑥
1
(0), 𝑥
2
(0)) > 0 is positive for all 𝑡 > 0. We

further have the following result as a corollary of Lemma 1.

Corollary 3. System (6) has a positive 𝜔-periodic solution
(𝑥
∗

1
(𝑡), 𝑥
∗

2
(𝑡)) which is globally asymptotically stable.

Remark 4. As a direct consequence of Corollary 3, we see
that system (1) has a predator extinction periodic solution
(𝑥
∗

1
(𝑡), 𝑥
∗

2
(𝑡), 0).

Remark 5. Obviously, from Remark 2, by increasing coeffi-
cients 𝑎(𝑡) and 𝑐(𝑡), or decreasing coefficients 𝑏(𝑡), 𝑑(𝑡), and
𝑓(𝑡), we can see that 𝑥∗

1
(𝑡) and 𝑥

∗

2
(𝑡) will largen. Otherwise,

𝑥
∗

1
(𝑡) and 𝑥

∗

2
(𝑡) will decrease.

For system (1), we introduce the following basic assump-
tions:

(𝐴
1
) 𝐴
𝜔
(𝑔) > 0;

(𝐴
2
) 𝑝
𝑙
> 0 and ℎ

𝑙
≥ 0;

(𝐴
3
) 𝜙

(𝑥
1
) ⩾ 0 for all 0 ⩽ 𝑥

1
⩽ max

𝑡∈(0,𝜔]
𝑥
∗

1
(𝑡), and 𝜙(0) =

0.

Let𝑋 be a complete metric space with metric 𝑑. Suppose
that 𝑓 : 𝑋 → 𝑋 is a continuous map. For any 𝑥 ∈ 𝑋, we
denote 𝑓𝑛(𝑥) = 𝑓(𝑓

𝑛−1
(𝑥)) for any integer 𝑛 > 1 and 𝑓

1
(𝑥) =

𝑓(𝑥). 𝑓 is said to be compact in 𝑋, if for any bounded set
𝐻 ⊂ 𝑋 set 𝑓(𝐻) = {𝑓(𝑥) : 𝑥 ∈ 𝐻} is precompact in 𝑋. 𝑓 is
said to be point dissipative if there is a bounded set 𝐵

0
⊂ 𝑋

such that for any 𝑥 ∈ 𝑋. Consider

lim
𝑛→∞

𝑑 (𝑓
𝑛
(𝑥) , 𝐵

0
) = 0. (7)

For any 𝑥
0
∈ 𝑋, the positive semiorbit through 𝑥

0
is defined

by 𝛾
+
(𝑥
0
) = {𝑥

𝑛
= 𝑓
𝑛
(𝑥
0
) : 𝑛 = 1, 2, . . .}, the negative

semiorbit through 𝑥
0
is defined as a sequence 𝛾

−
(𝑥
0
) = {𝑥

𝑘
}

satisfying 𝑓(𝑥
𝑘−1

) = 𝑥
𝑘
for integers 𝑘 ⩽ 0, and its 𝜔-limit

set is 𝜔(𝑥
0
) = {𝑦 ∈ 𝑋; there is a time sequence 𝑛

𝑘
→ ∞

such that lim
𝑘→∞

𝑓(𝑥
𝑛
𝑘

) = 𝑦} and its 𝛼-limit set is 𝛼(𝑥
0
) =

{𝑦 ∈ 𝑋; there is a time sequence 𝑛
𝑘

→ −∞ such that
lim
𝑘→∞

𝑓(𝑥
𝑛
𝑘

) = 𝑦}.
A nonempty set 𝐴 ⊂ 𝑋 is said to be invariant if 𝑓(𝐴) ⊆

𝐴. 𝐴 nonempty invariant set 𝑀 of 𝑋 is called to be isolated
in 𝑋, if it is the maximal invariant set in a neighborhood of
itself. For a nonempty set 𝑀 of 𝑋, set 𝑊𝑠(𝑀) := {𝑥 ∈ 𝑋 :

lim
𝑛→∞

𝑑(𝑓
𝑛
(𝑥),𝑀) = 0} is called the stable set of𝑀.

Let 𝐴 and 𝐵 be two isolated invariant sets; set 𝐴 is said to
be chained to set 𝐵, written as 𝐴 → 𝐵, if there exists a full
orbit though some 𝑥 ∉ 𝐴 ∪ 𝐵 such that 𝜔(𝑥) ⊂ 𝐵 and 𝛼(𝑥) ⊂

𝐴. A finite sequence {𝑀
1
, . . . ,𝑀

𝑘
} of isolated invariant sets is

called a chain, if𝑀
1

→ 𝑀
2

→ ⋅ ⋅ ⋅ → 𝑀
𝑘
, and if𝑀

𝑘
= 𝑀
1
,

the chain is called a cycle.
Let 𝑋

0 and 𝜕𝑋
0 be nonempty open set and nonempty

closed set of 𝑋, respectively, and satisfying 𝑋
0
∩ 𝜕𝑋
0

= 0.
We denote

𝑀
𝜕
= {𝑥 ∈ 𝜕𝑋

0
: 𝑓
𝑛
(𝑥) ∈ 𝜕𝑋

0
, ∀𝑛 ≥ 0} . (8)

Lemma 6. Let 𝑓 : 𝑋 → 𝑋 be a continuous map. Assume that
the following conditions hold:

(𝐶
1
) 𝑓 is compact and point dissipative, and 𝑓(𝑋

0
) ⊆ 𝑋

0;
(𝐶
2
) there exists a finite sequence M = {𝑀

1
, . . . ,𝑀

𝑘
} of

compact and isolated invariant sets such that

(a) 𝑀
𝑖
∩ 𝑀
𝑗
= 0 for any 𝑖, 𝑗 = 1, 2, . . . , 𝑘 and 𝑖 ̸= 𝑗;

(b) Ω(𝑀
𝜕
) := ∪{𝜔(𝑥) : 𝑥 ∈ 𝑀

𝜕
} ⊂ ∪
𝑘

𝑖=1
𝑀
𝑖
;

(c) no subset ofM forms a cycle in 𝜕𝑋
0;

(d) 𝑊
𝑠
(𝑀
𝑖
) ∩ 𝑋
0
= 0 for each 1 ≤ 𝑖 ≤ 𝑘.

Then 𝑓 is uniformly persistent with respect to (𝑋
0
, 𝜕𝑋
0
);

that is, there exists a constant 𝜂 > 0 such that
lim inf

𝑛→∞
𝑑(𝑓
𝑛
(𝑥), 𝜕𝑋

0
) ⩾ 𝜂 for all 𝑥 ∈ 𝑋

0.

Lemma 6 can be obtained from Theorem 1.1.3, Theorem
1.3.1, Remark 1.3.1, andTheorem 1.3.3 given by Zhao in [10].

3. Main Results

Firstly, concerning the persistence and permanence of species
for system (1), we have the following general result.

Theorem 7. Suppose that (𝐴
1
)–(𝐴
3
) hold. Then there exists a

positive constant 𝑀 > 0 such that

lim sup
𝑡→∞

𝑥
𝑖
(𝑡) ≤ 𝑀 (𝑖 = 1, 2) ,

lim sup
𝑡→∞

𝑦 (𝑡) ≤ 𝑀,

(9)

for any positive solution (𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑦(𝑡)) of system (1).

Remark 8. Let us see the biological meaning of Theorem 7.
In fact, if the predator species is not ultimately bounded,
then the population density of predator species will expand
unlimitedly. Since the predation rate of predator species for
prey species is strictly positive (i.e., 𝑝𝑙 > 0 in assumption
(𝐴
2
)), the prey species will become extinct because of the

massive preying by the predator species. Since the survival
of predator is absolutely dependent on the prey species, as an
opposite result, the predator species will become extinct too.

However, if the predation rate 𝑝(𝑡) of the predator species
is not strictly positive, that is, 𝑝𝑙 = 0, then it cannot lead to
extinction when the population density of predator species
expands unlimitedly. Therefore, an important open question
is whether we can still obtain the boundedness of predator
species which is density-independent when 𝑝

𝑙
= 0.

Theorem 9. Suppose that (𝐴
1
)–(𝐴
3
) hold. If

𝐴
𝜔
[−𝑔 (𝑡) + ℎ (𝑡) ∫

0

−ℎ

𝑘
21

(𝑠) 𝜙 (𝑥
∗

1
(𝑡 + 𝑠)) 𝑑𝑠] > 0, (10)

where (𝑥∗
1
(𝑡), 𝑥
∗

2
(𝑡)) is the positive𝜔-periodic solution of system

(6), then system (1) is uniformly persistent. That is, there exists
a positive constant 𝜖, such that any solution (𝑥

1
(𝑡), 𝑥
2
(𝑡), 𝑦(𝑡))

of system (1) with initial condition (3) satisfies

lim inf
𝑡→∞

(𝑥
1 (𝑡) , 𝑥2 (𝑡) , 𝑦 (𝑡)) ⩾ (𝜖, 𝜖, 𝜖) . (11)
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Remark 10. Theorem 9 shows that if we guarantee that
(𝐴
1
)–(𝐴
3
) hold, then the prey species must be permanent. In

fact, if the prey species (𝑥
1
(𝑡), 𝑥
2
(𝑡)) is not permanent, then

it may be extinct, as a result the predator species 𝑦(𝑡) will
be extinct too because its survival is absolutely dependent on
𝑥
1
(𝑡). However, when predator species 𝑦(𝑡) become extinct,

prey species (𝑥
1
(𝑡), 𝑥
2
(𝑡)) will not turn to extinction, because

(𝐴
1
) shows that 𝑥

1
(𝑡) has a total positive average growth rate.

Remark 11. From Lemma 1, we know that, when there is
no predator species 𝑦(𝑡), the prey species (𝑥

1
(𝑡), 𝑥
2
(𝑡))

will approach a positive periodic solution stable state
(𝑥
∗

1
(𝑡), 𝑥
∗

2
(𝑡)).When there is predator species𝑦(𝑡),Theorem 9

shows that if the positive periodic stable state (𝑥
∗

1
(𝑡), 𝑥
∗

2
(𝑡))

of prey species (𝑥
1
(𝑡), 𝑥
2
(𝑡)) can guarantee that predator

species 𝑦(𝑡) obtain a positive total average growth rate, that is,
condition (10), then predator species 𝑦(𝑡) will be permanent.

Theorem 12. Suppose that (𝐴
1
)–(𝐴
3
) hold. If

𝐴
𝜔
[−𝑔 (𝑡) + ℎ (𝑡) ∫

0

−ℎ

𝑘
21 (𝑠) 𝜙 (𝑥

∗

1
(𝑡 + 𝑠)) 𝑑𝑠] < 0, (12)

then for any positive solution (𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑦(𝑡)) of system (1),

𝑥
𝑖
(𝑡) → 𝑥

∗

𝑖
(𝑡) (𝑖 = 1, 2) and 𝑦(𝑡) → 0, as 𝑡 → ∞.

Remark 13. Theorem 12 shows that when the prey species
(𝑥
1
(𝑡), 𝑥
2
(𝑡)) approach a positive periodic solution stable state

(𝑥
∗

1
(𝑡), 𝑥
∗

2
(𝑡)), the predator species 𝑦(𝑡) can only obtain a

negative total average growth rate, that is, condition (12), then
𝑦(𝑡) will be extinct.

Lastly, from Theorems 9 and 7 given by Teng and Chen
in [11] on the existence of positive periodic solutions for
general Kolmogorov systems with bounded delays, we have
the following result.

Corollary 14. Suppose that (𝐴
1
)–(𝐴
3
) hold. If

𝐴
𝜔
[−𝑔 (𝑡) + ℎ (𝑡) ∫

0

−ℎ

𝑘
21

(𝑠) 𝜙 (𝑥
∗

1
(𝑡 + 𝑠)) 𝑑𝑠] > 0, (13)

then system (1) has at least a positive 𝜔-periodic solution.

Remark 15. In this paper we obtain the existence of the pos-
itive periodic solutions for system (1) under the assumption
that all parameters are with common periodicity. However,
considering all parameters fluctuating in time with the same
period is unrealistic, because it will be more realistic if we
allow time fluctuations with different period or even non-
period with some almost periodic environment, which will
be more identical with the sound ecosystem.Therefore, there
is a very important open question that is whether the same
result given in Lemma 1 will be true under the assumption
that the parameter in system (1) is almost periodic.

Remark 16. From Remark 5 we know that by increasing
coefficients 𝑎(𝑡) and 𝑐(𝑡) or decreasing coefficients 𝑏(𝑡), 𝑑(𝑡),
and 𝑓(𝑡), then 𝑥

∗

1
(𝑡) and 𝑥

∗

2
(𝑡) will largen. This shows that by

increasing coefficients 𝑎(𝑡) and 𝑐(𝑡) or decreasing coefficients
𝑏(𝑡), 𝑑(𝑡), and 𝑓(𝑡), we can get that

𝐴
𝜔
[−𝑔 (𝑡) + ℎ (𝑡) ∫

0

−ℎ

𝑘
21

(𝑠) 𝜙 (𝑥
∗

1
(𝑡 + 𝑠)) 𝑑𝑠] (14)

increases. Thus, condition (12) can be changed to condition
(10). Therefore, from Theorems 9 and 12, we obtain that
predator 𝑦(𝑡) will become into the permanence from the
quondam extinction. This shows that the stage-structure in
the prey (i.e., the birthrate, mortality, density restriction of
infancy prey, the transformation from the infancy prey to the
maturity prey, and the mortality and density restriction of
maturity prey) will bring the effect for the permanence and
extinction of the predator.

Remark 17. System (1) is a pure delay system with respect to
𝑦(𝑡).We cannot use the variable without time delay to control
the variable with time delay.This shows that it is very difficult
to get the global attractivity of system (1). We will discuss this
problem in the future.

Remark 18. An important open question is that what results
will be obtained with the condition

𝐴
𝜔
[−𝑔 (𝑡) + ℎ (𝑡) ∫

0

−ℎ

𝑘
21 (𝑠) 𝜙 (𝑥

∗

1
(𝑡 + 𝑠)) 𝑑𝑠] = 0. (15)

Is it the permanence of system (1) or the extinction of predator
𝑦(𝑡)?

When system (1) degenerates into the nondelayed system
of ordinary differential equations, that is, in system (1) 𝑘

𝑖𝑗
≡

0 (𝑖, 𝑗 = 1, 2), then we have

𝑑𝑥
1
(𝑡)

𝑑𝑡
= 𝑎 (𝑡) 𝑥

2
(𝑡) − 𝑏 (𝑡) 𝑥

1
(𝑡)

− 𝑑 (𝑡) 𝑥
2

1
(𝑡) − 𝑝 (𝑡) 𝜑 (𝑥

1 (𝑡)) 𝑦 (𝑡) ,

𝑑𝑥
2 (𝑡)

𝑑𝑡
= 𝑐 (𝑡) 𝑥

1
(𝑡) − 𝑓 (𝑡) 𝑥

2

2
(𝑡) ,

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝑦 (𝑡) [−𝑔 (𝑡) + ℎ (𝑡) 𝜑 (𝑥

1 (𝑡))] ;

(16)

we can see that the above assumptions for system (16) will
have the following forms:

(𝐴
∗

1
) 𝐴
𝜔
(𝑔) > 0.

(𝐴
∗

2
) 𝑝
𝑙
> 0 and ℎ

𝑙
≥ 0.

(𝐴
∗

3
) 𝜑

(𝑥
1
) ≥ 0 and 𝜑(0) = 0 for 0 ≤ 𝑥

1
≤ max

𝑡∈(0,𝜔]
𝑥
∗

1
(𝑡).

Therefore, as special cases of Theorems 7–12 we have the
following results for system (16).

Corollary 19. Suppose that (𝐴∗
1
)–(𝐴∗
3
) hold. Then there exists

a positive constant 𝑀 > 0 such that

lim sup
𝑡→∞

𝑥
𝑖
(𝑡) ≤ 𝑀 (𝑖 = 1, 2) ,

lim sup
𝑡→∞

𝑦 (𝑡) ≤ 𝑀,

(17)

for any positive solution (𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑦(𝑡)) of system (16).
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Corollary 20. Suppose that (𝐴∗
1
)–(𝐴∗
3
) hold. If

𝐴
𝜔
[−𝑔 (𝑡) + ℎ (𝑡) 𝜑 (𝑥

∗

1
(𝑡))] > 0, (18)

then system (16) is uniformly persistent, where (𝑥∗
1
(𝑡), 𝑥
∗

2
(𝑡)) is

the positive 𝜔-periodic solution of system (6).

Corollary 21. Suppose that (𝐴∗
1
)–(𝐴∗
3
) hold. If

𝐴
𝜔
[−𝑔 (𝑡) + ℎ (𝑡) 𝜑 (𝑥

∗

1
(𝑡))] < 0, (19)

then for any positive solution ((𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑦(𝑡)) of system (16),

𝑥
𝑖
(𝑡) → 𝑥

∗

𝑖
(𝑡) (𝑖 = 1, 2) and 𝑦(𝑡) → 0 as 𝑡 → ∞.

4. Proof of Theorems

Proof of Theorem 7. For any positive solution (𝑥
1
(𝑡), 𝑥
2
(𝑡),

𝑦(𝑡)) of system (1), we have

𝑑𝑥
1
(𝑡)

𝑑𝑡
≤ 𝑎 (𝑡) 𝑥2 (𝑡) − 𝑏 (𝑡) 𝑥1 (𝑡) − 𝑑 (𝑡) 𝑥

2

1
(𝑡) ,

𝑑𝑥
2 (𝑡)

𝑑𝑡
= 𝑐 (𝑡) 𝑥

1
(𝑡) − 𝑓 (𝑡) 𝑥

2

2
(𝑡) .

(20)

By the vector comparison theorem (see [12, 13]) and
Corollary 3, we can obtain that for any 𝜀 > 0 there is a 𝑇

1
> 0

such that

𝑥
𝑖
(𝑡) ≤ 𝑥

∗

𝑖
(𝑡) + 𝜀, 𝑖 = 1, 2, ∀𝑡 ≥ 𝑇

1
. (21)

This leads to
lim sup
𝑡→∞

𝑥
𝑖 (𝑡) ≤ 𝑀

1
, 𝑖 = 1, 2, (22)

where𝑀
1
= max{𝑥∗

𝑖
(𝑡) : 𝑖 = 1, 2, 𝑡 ∈ [0, 𝜔]}.

Next, we prove that there exists a positive constant𝑀
2
> 0

such that
lim sup
𝑡→∞

𝑦 (𝑡) ≤ 𝑀
2
. (23)

And, from (𝐴
1
) and (𝐴

2
), we can choose positive constants

𝑀
0
> 𝑀
1
and 0 < 𝜖

0
< 𝑀
1
such that

𝑀
1
𝑎
𝑚

− 𝑝
𝑙
𝑀
0
𝜙 (𝜖
0
) < −𝜖

0
, (24)

𝐴
𝜔
[−𝑔 (𝑡) + ℎ (𝑡) 𝜙 (𝜖

0
)] < −𝜖

0
. (25)

We firstly prove that

lim inf
𝑡→∞

𝑦 (𝑡) ≤ 𝑀
0
. (26)

Otherwise, there exists a positive constant 𝑇
2
> 𝑇
1
such that

𝑦(𝑡) > 𝑀
0
for all 𝑡 ≥ 𝑇

2
. If 𝑥
1
(𝑡) ≥ 𝜖

0
for all 𝑡 ≥ 𝑇

2
+ ℎ, then,

for any 𝑡 ≥ 𝑇
2
+ ℎ, we have by (24)

𝑑𝑥
1
(𝑡)

𝑑𝑡
≤ 𝑎 (𝑡) 𝑥2 (𝑡) − 𝑝 (𝑡) 𝜙 (𝑥

1 (𝑡)) ∫

0

−ℎ

𝑘
12 (𝑠) 𝑦 (𝑡 + 𝑠) 𝑑𝑠

< 𝑎 (𝑡) 𝑥
2
(𝑡) − 𝑝 (𝑡) 𝜙 (𝑥

1
(𝑡))𝑀

0

< 𝑀
1
𝑎
𝑚

− 𝑝
𝑙
𝑀
0
𝜙 (𝜖
0
) < −𝜖

0
.

(27)

Integrating (27) from 𝑇
2
+ ℎ to 𝑡 we have

𝑥
1
(𝑡) ≤ 𝑥

1
(𝑇
2
+ ℎ) − 𝜖

0
(𝑡 − 𝑇

2
− ℎ) , (28)

which implies to 𝑥
1
(𝑡) → −∞ as 𝑡 → ∞. This leads a con-

tradiction. Therefore, there is a 𝑡
1
> 𝑇
2
+ ℎ such that 𝑥

1
(𝑡
1
) <

𝜖
0
. Now, we prove that 𝑥

1
(𝑡) < 𝜖

0
for all 𝑡 ≥ 𝑡

1
. Otherwise,

there exists a 𝑡
2
> 𝑡
1
such that𝑥

1
(𝑡
2
) = 𝜖
0
and𝑥
1
(𝑡) < 𝜖

0
for all

𝑡 ∈ (𝑡
1
, 𝑡
2
). Then, we have 𝑑𝑥

1
(𝑡
2
)/𝑑𝑡 ≥ 0. On the other hand,

from the first equation of system (1), a similar calculation as
in (27), we have

𝑑𝑥
1
(𝑡
2
)

𝑑𝑡
≤ 𝑀
1
𝑎
𝑚

− 𝑝
𝑙
𝑀
0
𝜙 (𝜖
0
) ≤ −𝜖

0
, (29)

which leads to a contradiction. Thus, 𝑥
1
(𝑡) < 𝜖

0
for all 𝑡 ≥ 𝑡

1
.

For any 𝑡 ≥ 𝑡
1
+ ℎ, we choose an integer 𝑝

𝑡
> 0 such that

𝑡 ∈ [𝑡
1
+ ℎ + 𝑝

𝑡
𝜔, 𝑡
1
+ ℎ + (𝑝

𝑡
+ 1)𝜔]. Obviously, 𝑝

𝑡
→ ∞ as

𝑡 → ∞. From the third equation of system (1) we have

𝑦 (𝑡) = 𝑦 (𝑡
1
+ ℎ)

× exp∫

𝑡

𝑡
1
+ℎ

[ − 𝑔 (𝑠) + ℎ (𝑠) ∫

0

−ℎ

𝑘
21

(𝜇) 𝜙

× (𝑥
1
(𝜇 + 𝑠)) 𝑑𝜇] 𝑑𝑠

≤ 𝑦 (𝑡
1
+ ℎ) exp∫

𝑡

𝑡
1
+ℎ

[−𝑔 (𝑠) + ℎ (𝑠) 𝜙 (𝜖
0
)] 𝑑𝑠

≤ 𝑦 (𝑡
1
+ ℎ) exp{∫

𝑡
1
+ℎ+𝑝

𝑡
𝜔

𝑡
1
+ℎ

+∫

𝑡

𝑡
1
+ℎ+𝑝

𝑡
𝜔

}

× [−𝑔 (𝑠) + ℎ (𝑠) 𝜙 (𝜖
0
)] 𝑑𝑠

≤ 𝑦 (𝑡
1
+ ℎ) exp (𝑟

∗
𝜔)

× exp{𝑝
𝑡
∫

𝜔

0

[−𝑔 (𝑠) + ℎ (𝑠) 𝜙 (𝜖
0
)] 𝑑𝑠} ,

(30)

where 𝑟
∗
= max

0≤𝑡≤+∞
{|𝑔(𝑡)| + ℎ(𝑡)𝜙(𝜖

0
)}. Hence, from (25),

we obtain 𝑦(𝑡) → 0 as 𝑡 → ∞.This leads to a contradiction.
Thus, (26) holds.

Now, we prove that (23) is true. Otherwise, there is a
sequence of initial functions {𝜓

𝑛
} ⊂ 𝐶

+
for system (1) such

that

lim sup
𝑡→∞

𝑦 (𝑡, 𝜓
𝑛
) > (𝑀

0
+ 1) 𝑛, ∀𝑛 = 1, 2, 3, . . . . (31)

In view of (26), for each 𝑛, there are time sequences {𝑠(𝑛)
𝑞

} and
{𝑡
(𝑛)

𝑞
}, satisfying 0 < 𝑠

(𝑛)

1
< 𝑡
(𝑛)

1
< 𝑠
(𝑛)

2
< 𝑡
(𝑛)

2
< ⋅ ⋅ ⋅ < 𝑠

(𝑛)

𝑞
<

𝑡
(𝑛)

𝑞
< ⋅ ⋅ ⋅ and 𝑠

(𝑛)

𝑞
→ ∞ as 𝑞 → ∞, such that

𝑦 (𝑠
(𝑛)

𝑞
, 𝜓
𝑛
) = 𝑀

0
, 𝑦 (𝑡

(𝑛)

𝑞
, 𝜓
𝑛
) = (𝑀

0
+ 1) 𝑛, (32)

𝑀
0
< 𝑦 (𝑡, 𝜓

𝑛
) < (𝑀

0
+ 1) 𝑛, ∀𝑡 ∈ (𝑠

(𝑛)

𝑞
, 𝑡
(𝑛)

𝑞
) . (33)

By the ultimate boundedness of (𝑥
1
(𝑡, 𝜓
𝑛
), 𝑥
2
(𝑡, 𝜓
𝑛
)), for each

𝑛, there is a constant 𝑇(𝑛) > 0 such that 𝑥
1
(𝑡, 𝜓
𝑛
) < 𝑀

1
for
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all 𝑡 ≥ 𝑇
(𝑛). Further, for each 𝑛 there is 𝐾

(𝑛)
> 0 such that

𝑠
(𝑛)

𝑞
> 𝑇
(𝑛)

+ℎ for all 𝑞 ≥ 𝐾
(𝑛). Hence, for all 𝑞 ≥ 𝐾

(𝑛), directly
from system (1) we have

𝑦 (𝑡
(𝑛)

𝑞
, 𝜓
𝑛
) = 𝑦 (𝑠

(𝑛)

𝑞
, 𝜓
𝑛
)

× exp∫

𝑡
(𝑛)

𝑞

𝑠
(𝑛)

𝑞

[ − 𝑔 (𝑠) + ℎ (𝑠) ∫

0

−ℎ

𝑘
21

(𝜇) 𝜙

× (𝑥
1
(𝜇 + 𝑠, 𝜓

𝑛
)) 𝑑𝜇] 𝑑𝑠

≤ 𝑦 (𝑠
(𝑛)

𝑞
, 𝜓
𝑛
) exp∫

𝑡
(𝑛)

𝑞

𝑠
(𝑛)

𝑞

[−𝑔 (𝑠) + ℎ (𝑠) 𝜙 (𝑀
1
)] 𝑑𝑠

≤ 𝑦 (𝑠
(𝑛)

𝑞
, 𝜓
𝑛
) exp [𝑟

1
(𝑡
(𝑛)

𝑞
− 𝑠
(𝑛)

𝑞
)] ,

(34)

where 𝑟
1
= max

𝑡∈[0,+∞)
{|𝑔(𝑡)|+ℎ(𝑡)𝜙(𝑀

1
)}. Consequently, by

(32) we have

𝑡
(𝑛)

𝑞
− 𝑠
(𝑛)

𝑞
≥
ln 𝑛

𝑟
1

, ∀𝑞 ≥ 𝐾
(𝑛)

. (35)

Hence, for any constant 𝐿 > 0, there is a 𝑁
0

> 0 such that
𝑡
(𝑛)

𝑞
> 𝑠
(𝑛)

𝑞
+ 2𝐿 + ℎ for all 𝑛 ≥ 𝑁

0
and 𝑞 ≥ 𝐾

(𝑛). For any
fixed 𝑛 ≥ 𝑁

0
and 𝑞 ≥ 𝐾

(𝑛), we prove that there must be �̃�
1
∈

[𝑠
(𝑛)

𝑞
+ ℎ, 𝑠
(𝑛)

𝑞
+ 𝐿 + ℎ] such that 𝑥

1
(�̃�
1
, 𝜓
𝑛
) < 𝜖
0
. Otherwise, if

𝑥
1
(𝑡, 𝜓
𝑛
) ≥ 𝜖
0
for all 𝑡 ∈ [𝑠

(𝑛)

𝑞
+ ℎ, 𝑠
(𝑛)

𝑞
+ 𝐿 + ℎ], then, directly

from system (1), we have by (24) and (33). Consider

𝑑𝑥
1
(𝑡, 𝜓
𝑛
)

𝑑𝑡
≤ 𝑎 (𝑡) 𝑥

2
(𝑡, 𝜓
𝑛
)

− 𝑝 (𝑡) 𝜙 (𝑥
1
(𝑡, 𝜓
𝑛
)) ∫

0

−ℎ

𝑘
12 (𝑠) 𝑦 (𝑡 + 𝑠, 𝜓

𝑛
) 𝑑𝑠

≤ 𝑎 (𝑡) 𝑥
2
(𝑡, 𝜓
𝑛
) − 𝑝 (𝑡) 𝜙 (𝑥

1
(𝑡, 𝜓
𝑛
))𝑀
0

< 𝑀
1
𝑎
𝑚

− 𝑝
𝑙
𝑀
0
𝜙 (𝜖
0
) < −𝜖

0
.

(36)

We can choose enough large 𝐿 > 0 such that 𝑀
1
− 𝐿𝜖
0
< 0.

Integrating this inequality from 𝑠
(𝑛)

𝑞
+ℎ to 𝑠

(𝑛)

𝑞
+𝐿+ℎ, we have

𝑥
1
(𝑠
(𝑛)

𝑞
+ 𝐿 + ℎ, 𝜓

𝑛
) < 𝑥
1
(𝑠
(𝑛)

𝑞
+ ℎ, 𝜓

𝑛
)

− 𝜖
0
𝐿 ≤ 𝑀

1
− 𝐿𝜖
0
< 0.

(37)

This leads to a contradiction. Next, we prove 𝑥
1
(𝑡, 𝜓
𝑛
) < 𝜖
0

for all 𝑡 ∈ (�̃�
1
, 𝑡
(𝑛)

𝑞
]. Otherwise, there is a �̃�

2
> �̃�
1
such that

𝑥
1
(�̃�
2
, 𝜓
𝑛
) = 𝜖

0
and 𝑥

1
(𝑡, 𝜓
𝑛
) < 𝜖

0
for all 𝑡 ∈ (�̃�

1
, �̃�
2
). Then,

we have 𝑑𝑥
1
(�̃�
2
, 𝜓
𝑛
)/𝑑𝑡 ≥ 0. On the other hand, a similar

calculation as in (36), we have

𝑑𝑥
1
(�̃�
2
, 𝜓
𝑛
)

𝑑𝑡
≤ 𝑀
1
𝑎
𝑚

− 𝑝
𝑙
𝑀
0
𝜙 (𝜖
0
) < −𝜖

0
. (38)

This leads to a contradiction. Therefore, 𝑥
1
(𝑡) < 𝜖

0
for all 𝑡 ∈

[𝑠
(𝑛)

𝑞
+ 𝐿 + ℎ, 𝑡

(𝑛)

𝑞
] for all 𝑛 ≥ 𝑁

0
and 𝑞 ≥ 𝐾

(𝑛). From (32) and
(33), we have

(𝑀
0
+ 1) 𝑛 = 𝑦 (𝑡

(𝑛)

𝑞
, 𝜓
𝑛
) = 𝑦 (𝑠

(𝑛)

𝑞
+ 𝐿 + ℎ, 𝜓

𝑛
)

× exp∫

𝑡
(𝑛)

𝑞

𝑠
(𝑛)

𝑞
+𝐿+ℎ

[−𝑔 (𝑡) + ℎ (𝑡) ∫

0

−ℎ

𝑘
21

× (𝑠) 𝜙 (𝑥
1
(𝑡 + 𝑠, 𝜓

𝑛
)) 𝑑𝑠] 𝑑𝑡

≤ 𝑦 (𝑠
(𝑛)

𝑞
+ 𝐿 + ℎ, 𝜓

𝑛
)

× exp∫

𝑡
(𝑛)

𝑞

𝑠
(𝑛)

𝑞
+𝐿+ℎ

[−𝑔 (𝑡) + ℎ (𝑡) 𝜙 (𝜖
0
)] 𝑑𝑡

< (𝑀
0
+ 1) 𝑛 exp∫

𝑡
(𝑛)

𝑞

𝑠
(𝑛)

𝑞
+𝐿+ℎ

[−𝑔 (𝑡)

+ ℎ (𝑡) 𝜙 (𝜖
0
)] 𝑑𝑡.

(39)

From (25) we can choose large enough constant 𝐿 > 0 such
that

exp∫

𝑡+𝐿

𝑡

[−𝑔 (𝑡) + ℎ (𝑡) 𝜙 (𝜖
0
)] 𝑑𝑡 < 1, (40)

for all 𝑡 ∈ 𝑅
+
. Hence, from (39) we finally obtain a

contradiction (𝑀
0
+ 1)𝑛 < (𝑀

0
+ 1)𝑛. This shows that (23)

holds. Choose a constant𝑀 = max{𝑀
1
,𝑀
2
}.Then we obtain

that the conclusion of Theorem 7 is true. This completes the
proof.

Proof of Theorem 9. We will use Lemma 6 to prove this theo-
rem. We choose space

𝑋 = {𝜓 = (𝜓
1
, 𝜓
2
, 𝜓
3
) : 𝜓
𝑖
(𝜃) > 0,

𝑖 = 1, 2, 𝜓
3
(𝜃) ≥ 0, ∀𝜃 ∈ [−ℎ, 0]} ,

(41)

and sets𝑋0 and 𝜕𝑋
0 are defined by

𝑋
0
= {𝜓 = (𝜓

1
, 𝜓
2
, 𝜓
3
) ∈ 𝑋 : 𝜓

3 (0) > 0} ,

𝜕𝑋
0
= {𝜓 = (𝜓

1
, 𝜓
2
, 𝜓
3
) ∈ 𝑋 : 𝜓

3
(𝜃) ≡ 0, ∀𝜃 ∈ [−ℎ, 0]} .

(42)

For any 𝜓 ∈ 𝑋, let 𝑥(𝑡, 𝜓) = (𝑥
1
(𝑡, 𝜓), 𝑥

2
(𝑡, 𝜓), 𝑦(𝑡, 𝜓)) be the

solution of system (1) with initial value 𝜓 at 𝑡 = 0. We define
continuous map 𝑃 in Lemma 6 as follows:

𝑃 (𝜓) = 𝑥
𝜔
(𝜓) , 𝜓 ∈ 𝑋, (43)

where 𝑥
𝜔
(𝜓) = 𝑥(𝜔 + 𝑠, 𝜓) with 𝑠 ∈ [−ℎ, 0].

Now, we verify that all the conditions of Lemma 6 will
be satisfied for map 𝑃. It is easy to see that 𝑋

0 and 𝜕𝑋
0

are positively invariant. From the expression of right side
functional 𝑓(𝑡, 𝜙) of system (1), we can directly obtain that,
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for any bounded set 𝐴 ⊂ 𝑋, there is a constant 𝑀(𝐴) > 0

such that |𝑓(𝑡, 𝜙)| ≤ 𝑀(𝐴) for all 𝑡 ≥ 0 and 𝜙 ∈ 𝐴. By the
Ascoli-Arzela theorem, it implies that map 𝑃 is compact on
𝑋; that is, for any bounded set 𝐵 ⊂ 𝑋, set 𝑃(𝐵) = {𝑃(𝜓) =

𝑥
𝜔
(𝜓) : 𝜓 ∈ 𝐵} is precompact. Moreover, by Theorem 7, we

obtain that map 𝑃 is also point dissipative on𝑋.
Further, we define

𝑀
𝜕
= {𝜓 ∈ 𝜕𝑋

0
: 𝑃
𝑚
(𝜓) ∈ 𝜕𝑋

0
, ∀𝑚 > 0} , (44)

where 𝑃
𝑚

= 𝑃(𝑃
𝑚−1

) for all 𝑚 > 1 and 𝑃
1
(𝜓) = 𝑃(𝜓).

Obviously, we have𝑀
𝜕
= 𝜕𝑋
0.

Denote by 𝜔(𝜓) the 𝜔-limit set of solution 𝑥(𝑡, 𝜓) of
system (1) starting at 𝑡 = 0 with initial value 𝜓 ∈ 𝑋. Let

Ω(𝑀
𝜕
) = ⋃{𝜔 (𝜓) : 𝜓 ∈ 𝑀

𝜕
} . (45)

From Remark 2, there is a fixed point of map 𝑃 in𝑀
𝜕
, which

is𝑀
1
= (𝑥
∗

1
(0), 𝑥
∗

2
(0), 0).

From (10), we can choose a constant 𝜖
0
> 0 such that

𝐴
𝜔
(−𝑔 (𝑡) + ℎ (𝑡) ∫

0

−ℎ

𝑘
21 (𝑠) 𝜙 (𝑥

∗

1
(𝑡 + 𝑠) − 𝜖

0
) 𝑑𝑠) > 0.

(46)

By the continuity of solutions with respect to the initial
value, for the above given constant 𝜖

0
> 0, there exists 𝛿

0
> 0

such that for all 𝜓 ∈ 𝑋
0 with ‖𝜓 − 𝑀

1
‖ ≤ 𝛿
0
, it follows that

𝑥𝑡 (𝜓) − 𝑥
𝑡
(𝑀
1
)
 < 𝜖
0
, ∀𝑡 ∈ [0, 𝜔] . (47)

Now, we prove

lim sup
𝑡→∞

𝑑 (𝑃
𝑚
(𝜓) ,𝑀

1
) ⩾ 𝛿
0
. (48)

Suppose the conclusion is not true, then

lim sup
𝑡→∞

𝑑 (𝑃
𝑚
(𝜓) ,𝑀

1
) < 𝛿
0
, (49)

for some 𝜓 ∈ 𝑋
0. Without loss of generality, we can assume

that

𝑑 (𝑃
𝑚
(𝜓) ,𝑀

1
) < 𝛿
0
, ∀𝑚 ≥ 0. (50)

Further, from (47) we have
𝑥𝑡 (𝑃

𝑚
(𝜓)) − 𝑥

𝑡
(𝑀
1
)
 < 𝜖
0
, ∀𝑚 ≥ 0, 𝑡 ∈ [0, 𝜔] . (51)

For any 𝑡 ≥ 0, let 𝑡 = 𝑚𝜔+ 𝑡
, where 𝑡 ∈ [0, 𝜔] and𝑚 = [𝑡/𝜔]

are the greatest integers less than or equal to [𝑡/𝜔], then we
can get

𝑥𝑡 (𝜓) − 𝑥
𝑡
(𝑀
1
)
 =

𝑥𝑡 (𝑃
𝑚
(𝜓)) − 𝑥

𝑡
 (𝑀
1
)
 < 𝜖
0
,

∀𝑡 ≥ 0.

(52)

Since 𝑥
𝑡
(𝜓) = (𝑥

1
(𝑡 + 𝑠, 𝜓), 𝑥

2
(𝑡 + 𝑠, 𝜓), 𝑦(𝑡 + 𝑠, 𝜓)), and

𝑥
𝑡
(𝑀
1
) = (𝑥

∗

1
(𝑡 + 𝑠), 𝑥∗

2
(𝑡 + 𝑠), 0) for all 𝑠 ∈ [−ℎ, 0], it follows

from (52) that, for all 𝑡 ≥ −ℎ,

0 ≤ 𝑦 (𝑡, 𝜓) < 𝜖
0
,

𝑥1 (𝑡, 𝜓) − 𝑥
∗

1
(𝑡)

 < 𝜖
0
,

𝑥2 (𝑡, 𝜓) − 𝑥
∗

2
(𝑡)

 < 𝜖
0
.

(53)

Then, by the third equation of system (1), we get, for any 𝑡 ≥ 0,

𝑑𝑦 (𝑡, 𝜓)

𝑑𝑡
= 𝑦 (𝑡, 𝜓)

× (−𝑔 (𝑡) + ℎ (𝑡) ∫

0

−ℎ

𝑘
21

(𝑠) 𝜙 (𝑥
1
(𝑡 + 𝑠, 𝜓)) 𝑑𝑠)

≥ 𝑦 (𝑡, 𝜓)

× ( − 𝑔 (𝑡)

+ ℎ (𝑡) ∫

0

−ℎ

𝑘
21

(𝑠) 𝜙 (𝑥
∗

1
(𝑡 + 𝑠) − 𝜖

0
) 𝑑𝑠) .

(54)

Therefore, we further have, for any 𝑡 ≥ 0,

𝑦 (𝑡, 𝜓) ≥ 𝜓 (0) exp(∫

𝑡

0

( − 𝑔 (𝑢) + ℎ (𝑢) ∫

0

−ℎ

𝑘
21

(𝑠) 𝜙

× (𝑥
∗

1
(𝑢 + 𝑠) − 𝜖

0
) 𝑑𝑠) 𝑑𝑢) .

(55)

From (46) we can directly obtain that lim
𝑡→∞

𝑦(𝑡, 𝜓) = ∞,
which leads to a contradiction. Therefore, claim (48) holds.
This shows that

𝑊
𝑠
(𝑀
1
) ∩ 𝑋
0
= 0. (56)

From Lemma 1 we can obtain that {𝑀
1
} is a global

attractor of map 𝑃 in 𝑀
𝜕
; that is, each orbit of map 𝑃 in 𝑀

𝜕

converges to {𝑀
1
}. Hence, {𝑀

1
} is isolated in𝑀

𝜕
, and, hence,

in 𝑋 by (56). Furthermore, {𝑀
1
} also is invariant and {𝑀

1
}

does not form a cycle in𝑀
𝜕
and, hence, in 𝜕𝑋

0.
Therefore, all the conditions of Lemma 6 are satisfied. By

Lemma 6 we finally obtain that map 𝑃 is uniformly persistent
with respect to (𝑋

0
, 𝜕𝑋
0
). Further, fromTheorem 3.1.1 given

in [10], we can obtain that all positive solutions of system (1)
are uniformly persistent. This completes the proof.

Proof of Theorem 12. From (12), we can choose a constant 0 <

𝜖
0
< 1, such that

𝐴
𝜔
[−𝑔 (𝑡) + ℎ (𝑡) ∫

0

−ℎ

𝑘
21 (𝑠) 𝜙 (𝑥

∗

1
(𝑡 + 𝑠)) 𝑑𝑠 + ℎ (𝑡) 𝜖0]

≤ −𝜖
0
.

(57)

We first show that for any positive solution (𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑦(𝑡))

of system (1) lim
𝑡→∞

𝑦(𝑡) = 0. Since

𝑑𝑥
1
(𝑡)

𝑑𝑡
< 𝑎 (𝑡) 𝑥2 (𝑡) − 𝑏 (𝑡) 𝑥1 (𝑡) − 𝑑 (𝑡) 𝑥

2

1
(𝑡) ,

𝑑𝑥
2
(𝑡)

𝑑𝑡
= 𝑐 (𝑡) 𝑥

1
(𝑡) − 𝑓 (𝑡) 𝑥

2

2
(𝑡) ,

(58)
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for all 𝑡 > 0. By the comparison theorem and Corollary 3, we
obtain that, for any 𝜖 ∈ (0, 𝜖

0
), there is a 𝑇

𝜖
> 0 such that

𝑥
𝑖
(𝑡) < 𝑥

∗

𝑖
(𝑡) + 𝜖, ∀𝑡 ≥ 𝑇

𝜖
, 𝑖 = 1, 2. (59)

For any 𝑡 > 𝑇
𝜖
+ ℎ, from system (1), we have

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝑦 (𝑡) [−𝑔 (𝑡) + ℎ (𝑡) ∫

0

−ℎ

𝑘
21

(𝑠) 𝜙 (𝑥
1
(𝑡 + 𝑠)) 𝑑𝑠]

≤ 𝑦 (𝑡) [ − 𝑔 (𝑡)

+ℎ (𝑡) ∫

0

−ℎ

𝑘
21 (𝑠) 𝜙 (𝑥

∗

1
(𝑡 + 𝑠) + 𝜖

0
) 𝑑𝑠] .

(60)

From (57) and (60), we obtain that lim
𝑡→∞

𝑦(𝑡) = 0.
Consider the following system with a parameter 𝛼:

𝑑𝑥
1 (𝑡)

𝑑𝑡
= 𝑎 (𝑡) 𝑥

2
(𝑡) − 𝑏 (𝑡) 𝑥

1
(𝑡)

− 𝑑 (𝑡) 𝑥
2

1
(𝑡) − 𝛼𝑝 (𝑡) 𝑥1 (𝑡) ,

𝑑𝑥
2 (𝑡)

𝑑𝑡
= 𝑐 (𝑡) 𝑥

1
(𝑡) − 𝑓 (𝑡) 𝑥

2

2
(𝑡) .

(61)

From Lemma 1 we obtain that (61) has a unique globally
asymptotically stable positive 𝜔-periodic solution
(𝑥
∗

1𝛼
(𝑡), 𝑥
∗

2𝜔
(𝑡)). By the continuity of solutions with respect to

the parameter, we further obtain

lim
𝛼→0

(𝑥
∗

1𝛼
(𝑡) , 𝑥
∗

2𝜔
(𝑡)) = (𝑥

∗

1
(𝑡) , 𝑥
∗

2
(𝑡)) , (62)

where (𝑥
∗

1
(𝑡), 𝑥
∗

2
(𝑡)) is the globally asymptotically stable

positive 𝜔-periodic solution of system (6). Therefore, for any
𝜖 > 0 there is an 𝛼

0
> 0 such that, for all 𝑡 ∈ 𝑅

+
,

𝑥
∗

𝑖𝛼
0

(𝑡) > 𝑥
∗

𝑖
(𝑡) −

𝜖

2
, 𝑖 = 1, 2. (63)

Let 𝜙 = sup{𝜙(𝑥
1
)/𝑥
1

: 0 ≤ 𝑥
1

≤ 𝑀
1
}, then, from

assumption (𝐴
3
), we obtain 0 < 𝜙 < ∞, where 𝑀

1
is given

in Theorem 7. Since lim
𝑡→∞

𝑦(𝑡) = 0, there is a 𝑇
0
> 0 such

that 𝑦(𝑡) < 𝛼
0
/𝜙 for all 𝑡 ≥ 𝑇

0
. Hence, for any 𝑡 ≥ 𝑇

0
+ ℎ, we

have
𝑑𝑥
1
(𝑡)

𝑑𝑡
= 𝑎 (𝑡) 𝑥2 (𝑡) − 𝑏 (𝑡) 𝑥1 (𝑡)

− 𝑑 (𝑡) 𝑥
2

1
(𝑡) − 𝛼

0
𝑝 (𝑡) 𝑥

1
(𝑡) ,

𝑑𝑥
2
(𝑡)

𝑑𝑡
= 𝑐 (𝑡) 𝑥

1
(𝑡) − 𝑓 (𝑡) 𝑥

2

2
(𝑡) .

(64)

From the comparison theorem and Lemma 1, we can obtain
that there is a 𝑇

1
> 𝑇
0
such that, for all 𝑡 ≥ 𝑇

1
,

𝑥
𝑖
(𝑡) > 𝑥

∗

𝑖𝛼
0

(𝑡) −
𝜖

2
> 𝑥
∗

𝑖
(𝑡) − 𝜖, 𝑖 = 1, 2. (65)

Combining (59), we finally obtain that, for all 𝑡 ≥ max{𝑇
𝜖
, 𝑇
1
},

𝑥
∗

𝑖
(𝑡) − 𝜖 < 𝑥

𝑖 (𝑡) < 𝑥
∗

𝑖
(𝑡) + 𝜖, 𝑖 = 1, 2. (66)

Therefore, lim
𝑡→∞

𝑥
𝑖
(𝑡) = 𝑥

∗

𝑖
(𝑡) (𝑖 = 1, 2). This completes

the proof.

5. Examples and Numerical Simulations

In order to testify the validity of results, we consider the
following predator-prey system. The system was obtained by
letting 𝑘

12
(𝑠) = 𝛿(𝑠 + 𝜏

1
) and 𝑘

21
(𝑠) = 𝛿(𝑠 + 𝜏

2
) in system (1).

Consider

𝑑𝑥
1
(𝑡)

𝑑𝑡
= 𝑎 (𝑡) 𝑥2 (𝑡) − 𝑏 (𝑡) 𝑥1 (𝑡)

− 𝑑 (𝑡) 𝑥
2

1
(𝑡) − 𝑝 (𝑡) 𝜙 (𝑥

1
(𝑡)) 𝑦 (𝑡 − 𝜏

1
) ,

𝑑𝑥
2
(𝑡)

𝑑𝑡
= 𝑐 (𝑡) 𝑥1 (𝑡) − 𝑓 (𝑡) 𝑥

2

2
(𝑡) ,

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝑦 (𝑡) [−𝑔 (𝑡) + ℎ (𝑡) 𝜙 (𝑥

1
(𝑡 − 𝜏
2
))] .

(67)

The corresponding prey subsystem is

𝑑𝑥
1 (𝑡)

𝑑𝑡
= 𝑎 (𝑡) 𝑥

2
(𝑡) − 𝑏 (𝑡) 𝑥

1
(𝑡) − 𝑑 (𝑡) 𝑥

2

1
(𝑡) ,

𝑑𝑥
2
(𝑡)

𝑑𝑡
= 𝑐 (𝑡) 𝑥

1
(𝑡) − 𝑓 (𝑡) 𝑥

2

2
(𝑡) .

(68)

Example 1. In system (67), we let 𝑎(𝑡) = 1.2 + sin(2𝜋𝑡),
𝑏(𝑡) = 0.2, 𝑑(𝑡) = 0.2, 𝑐(𝑡) = 0.5 sin(2𝜋𝑡) + 0.75, 𝑓(𝑡) =

0.8, 𝑝(𝑡) = 0.4, 𝑔(𝑡) = 0.28 + 0.1 sin(𝜋𝑡/2), ℎ(𝑡) = 2.1 +

2 sin(𝜋𝑡/3), 𝜏
1
= 0.2, 𝜏

2
= 0.3, and 𝜙(𝑡, 𝑥

1
(𝑡)) = (𝑥

1
(𝑡))/(9 +

𝑥
2

1
(𝑡)). We take different initial functions 𝜓 = (𝜓

1
, 𝜓
2
, 𝜓
3
) =

(2.5 + 𝑘, 1 + 𝑘, 0.3 + 𝑘), 𝑘 = 0, 1, 2, 3, 4, 5 for all 𝑠 ∈

[−0.3, 0]. We easily verify that assumptions (𝐴
1
)–(𝐴
3
) hold.

Therefore, from Lemma 1, system (68) has a unique globally
asymptotically stable positive periodic solution (𝑥

∗

1
(𝑡), 𝑥
∗

2
(𝑡)).

By the numerical simulations, we get that the upper and lower
bounds of periodic function 𝑥

∗

1
(𝑡) are 2.87 and 1, respectively.

It is easy to verify that condition (10) in Theorem 9
also holds. Therefore, from Theorem 9 and Corollary 14, we
obtain that system (67) is ultimately bounded and permanent
and at least has a positive periodic solution. The numerical
simulations of the above results can be seen in Figures 1, 2, 3,
and 4.

Remark 1. There is an open question: from Figure 3, we see
that 𝑦(𝑡) of system (1) has more than one periodic solution.
So, we cannot get a globally asymptotically stability solution
of system (1). Whether we can get a globally asymptotically
stability solution of system (1) under some conditions is our
future work.

Example 2. In system (67), the coefficients 𝑔(𝑡), ℎ(𝑡), 𝑝(𝑡), 𝜏
1
,

𝜏
2
, and 𝜙(𝑡, 𝑥

1
(𝑡)) are given as in Example 1. But, the other

coefficients in system (67) are given as the following different
values: 𝑎(𝑡) = 1 + sin(2𝜋𝑡), 𝑐(𝑡) = 0.2 sin(2𝜋𝑡) + 0.75,
𝑏(𝑡) = 0.25, 𝑑(𝑡) = 0.35, and 𝑓(𝑡) = 1. We see that
coefficients 𝑎(𝑡) and 𝑐(𝑡) are decreased and coefficients 𝑏(𝑡),
𝑑(𝑡), and 𝑓(𝑡) are increased. From Corollary 3, system (68)
has a unique globally asymptotically stable positive periodic
solution (𝑥

∗

1
(𝑡), 𝑥
∗

2
(𝑡)). Moreover, compared with Example 1,

we easily see that 𝑥
∗

1
(𝑡) and 𝑥

∗

2
(𝑡) will decrease. Further,
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we easily verify that assumptions (𝐴
1
)–(𝐴
3
) hold. It is easy

to verify that condition (10) in Theorem 9 does not hold,
but condition (12) in Theorem 12 holds. Therefore, from
Theorem 12, we obtain that predator 𝑦(𝑡) in system (67) will
become into extinction. The numerical simulations of the
above results can be seen in Figures 5 and 6 by taking initial
function 𝜓 = (𝜓

1
, 𝜓
2
, 𝜓
3
) = (2.5, 1, 5) for all 𝑠 ∈ [−0.3, 0].

Remark 2. From the numerical simulations given in Exam-
ples 1 and 2, we see that the stage-structure in the prey, spe-
cially the birthrate, mortality, density restriction of infancy
prey, the transformation from the infancy prey to the matu-
rity prey, and themortality and density restriction ofmaturity
prey, will bring the very obvious effect for the permanence
and extinction of the predator.

Example 3. In system (67), 𝑎(𝑡), 𝑏(𝑡), 𝑑(𝑡), 𝑐(𝑡), 𝑓(𝑡), 𝑝(𝑡), 𝜏
1
,

𝜏
2
, and 𝜙(𝑡, 𝑥

1
(𝑡)) are given as in Example 1, but 𝑔(𝑡) = 0.28 +

0.3 sin(𝜋𝑡/2) and ℎ(𝑡) = 2.1 + 2 sin(𝜋𝑡/7). We take initial
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function 𝜓 = (𝜓
1
, 𝜓
2
, 𝜓
3
) = (2.5, 2, 0.1) for all 𝑠 ∈ [−0.3, 0].

We easily verify that assumptions (𝐴
1
)–(𝐴
3
) hold. From

Example 1, system (68) has a unique globally asymptotically
stable positive periodic solution (𝑥

∗

1
(𝑡), 𝑥
∗

2
(𝑡)), and the upper

and lower bounds of periodic function 𝑥
∗

1
(𝑡) are 2.87 and 1,

respectively.
It is easy to verify that condition (10) in Theorem 9 does

not hold. Therefore, Theorem 9 and Corollary 14 are invalid.
Numerical simulations of the above results can be seen in
Figures 7 and 8. From Figure 7, we see that the prey species 𝑥
is permanent; the predator species 𝑦 is permanent, too.

Example 4. In system (67), 𝑎(𝑡), 𝑏(𝑡), 𝑑(𝑡), 𝑐(𝑡), 𝑓(𝑡), 𝑝(𝑡),
𝜏
1
, 𝜏
2
, and 𝜙(𝑡, 𝑥

1
(𝑡)) are given as in Example 1, but 𝑔(𝑡) =

0.28 + 0.1 sin(𝑡/(2𝜋)) and ℎ(𝑡) = 1.3 + 1.2 sin(𝑡/(5𝜋)). We
take initial function 𝜓 = (𝜓

1
, 𝜓
2
, 𝜓
3
) = (2.5, 1, 0.3) for all 𝑠 ∈

[−0.3, 0]. We easily verify that assumptions (𝐴
1
)–(𝐴
3
) hold.

Therefore, from Lemma 1, system (68) has a unique globally
asymptotically stable positive periodic solution (𝑥

∗

1
(𝑡), 𝑥
∗

2
(𝑡)).
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By the numerical simulations, we get that the upper and lower
bounds of periodic function 𝑥

∗

1
(𝑡) are 2.87 and 1, respectively.

Take the upper bounds of periodic function 𝑥
∗

1
(𝑡) into

condition (10), we easily verify that condition (10) in
Theorem 9 will hold. But we obtain that predator 𝑦(𝑡) in
system (67) is extinct.The numerical simulations of the above
results can be seen in Figures 9 and 10. From Figure 9, we
see that the prey species 𝑥 is permanent, while the predator
species 𝑦 turns to extinction.

Example 5. In systems (67), 𝑎(𝑡), 𝑏(𝑡), 𝑑(𝑡), 𝑐(𝑡), 𝑓(𝑡), 𝑝(𝑡),
𝜏
1
, 𝜏
2
, and 𝜙(𝑡, 𝑥

1
(𝑡)) are given as in Example 1, but 𝑔(𝑡) =

0.3 + 0.1 sin(𝜋𝑡/2) and ℎ(𝑡) = 2.3 + 0.5 sin(𝜋𝑡/7). We take
initial function 𝜓 = (𝜓

1
, 𝜓
2
, 𝜓
3
) = (2.5, 1, 0.3) for all 𝑠 ∈

[−0.3, 0]. We easily verify that assumptions (𝐴
1
)–(𝐴
3
) hold.

Therefore, from Lemma 1, system (68) has a unique globally
asymptotically stable positive periodic solution (𝑥

∗

1
(𝑡), 𝑥
∗

2
(𝑡)).

By the numerical simulations, we get that the upper and lower
bounds of periodic function 𝑥

∗

1
(𝑡) are 2.87 and 1, respectively.
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Take the lower bounds of periodic function 𝑥
∗

1
(𝑡) into

condition (12), we easily verify that condition (12) in
Theorem 12 will hold. But we obtain that predator 𝑦(𝑡) in
system (67) is permanent. The numerical simulations of the
above results can be seen in Figures 11 and 12. From Figure 12,
we see that the prey species 𝑥 is permanent; the predator
species 𝑦 is permanent, too.

6. Conclusions

In the real world, there are many types of interactions
between two species. Predator-prey relations are among the
most common ecological interactions.

In this paper, we study the global property in a delayed
periodic predator-prey model with stage-structure in prey
anddensity-independence in predator.The survival of species
in a biological system is one of the most basic and important
problems in mathematical biology, and permanence is an
important concept when dealing with this problem. Here,
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by using the analysis method, the comparison theorem of
cooperative system, and the theory of the persistence of
dynamical systems, we have established the integral form
criteria on the ultimate boundedness, the sufficient integral
conditions on the permanence and extinction of species. The
method used in this paper is motivated by the works on
the permanence and extinction for periodic predator-prey
systems in patchy environment given by Teng and Chen in
[5]. The results obtained in this paper are different from
the predator-prey system given in [4], where the authors
studied the necessary and sufficient integral conditions on
permanence and extinction of species for nonautonomous
predator-prey systems with infinite delays and predator den-
sity dependence. However, in our paper, we have considered
the effects of general predator functional response on the
survival of species. Therefore, we have modeled a general
nonautonomous predator-prey system with finite delays and
density independence. Some well-known results on the
predator density-dependence are improved and extended to
the predator density-independent cases.
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We investigate a stochastic SI epidemic model in the complex networks. We show that this model has a unique global positive
solution. Then we consider the asymptotic behavior of the model around the disease-free equilibrium and show that the solution
will oscillate around the disease-free equilibrium of deterministic system when 𝑅

0
≤ 1. Furthermore, we derive that the disease

will be persistent when 𝑅
0
> 1. Finally, a series of numerical simulations are presented to illustrate our mathematical findings. A

new result is given such that, when 𝑅
0
≤ 1, with the increase of noise intensity the solution of stochastic system converging to the

disease-free equilibrium is faster than that of the deterministic system.

1. Introduction

Epidemiology is the science to study the distribution of
disease and influencing factors, so as to explore the etiology,
clarify the popular rule of the disease, and formulate the
countermeasures and measures for preventing, controlling,
and eliminating the disease. Many mathematical models of
diseases spreading help us to understand the propagation of
diseases [1, 2].The transmission of diseases can be influenced
by many factors, such as the age and social structure of the
population, the contact network among individuals, and the
metapopulation characteristics. So it is difficult to establish
an accurate epidemic model which is completely consistent
with the real world. In recent years, a lot of compartmental
epidemic models have been studied by many researchers [3–
5], and complex networks also have been used to study the
spread of diseases [6–17].

In this paper we consider an SI model with the birth and
death in complex networks. Asmentioned in the paper [6, 13],
the birth and death do not affect the degree of nodes. Suppose
𝑆
𝑘
(𝑡), 𝐼
𝑘
(𝑡) are the number of the healthy and infected nodes

with the degree 𝑘 at time 𝑡; the mean-field equations can be
written as

𝑑𝑆
𝑘

𝑑𝑡
= 𝑏
𝑘
− 𝜆𝑘𝑆

𝑘
𝜃 − 𝑑𝑆

𝑘
,

𝑑𝐼
𝑘

𝑑𝑡
= 𝜆𝑘𝑆

𝑘
𝜃 − (𝑑 + 𝜖) 𝐼𝑘, (1)

where 𝜃 = (1/⟨𝑘⟩)∑
𝑛

𝑘=1
𝜆𝑘𝑃(𝑘). For system (1), it can be

written as the following form:

𝑑𝑆
𝑘
(𝑡) = (𝑏

𝑘
−

1

⟨𝑘⟩

𝑛

∑

𝑗=1

𝜆𝑘𝑗𝑃 (𝑗) 𝑆
𝑘
(𝑡) 𝐼
𝑗
(𝑡) − 𝑑𝑆

𝑘
(𝑡))𝑑𝑡,

𝑑𝐼
𝑘
(𝑡) = (

1

⟨𝑘⟩

𝑛

∑

𝑗=1

𝜆𝑘𝑗𝑃 (𝑗) 𝑆
𝑘
(𝑡) 𝐼
𝑗
(𝑡) − (𝑑 + 𝜖) 𝐼

𝑘
(𝑡))𝑑𝑡.

(2)

We denote 𝛽
𝑘𝑗

= (1/⟨𝑘⟩)𝜆𝑘𝑗𝑃(𝑗), so we obtain

𝑑𝑆
𝑘
(𝑡) = (𝑏

𝑘
−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
(𝑡) 𝐼
𝑗
(𝑡) − 𝑑𝑆

𝑘
(𝑡))𝑑𝑡,

𝑑𝐼
𝑘 (𝑡) = (

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘 (𝑡) 𝐼𝑗 (𝑡) − (𝑑 + 𝜖) 𝐼𝑘 (𝑡))𝑑𝑡.

(3)

It always has the disease-free equilibrium 𝐸
0

= (𝑆
0

1
, 0, . . . ,

𝑆
0

𝑛
, 0), where 𝑆

0

𝑘
= 𝑏
𝑘
/𝑑, 𝑘 = 1, 2, . . . , 𝑛. If 𝐴 = (𝛽

𝑘𝑗
)
𝑛×𝑛

is
irreducible and 𝑅

0
≤ 1, then 𝐸

0
is globally stable in 𝐷, while
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if 𝑅
0
> 1, 𝐸

0
is unstable and there is an endemic equilibrium

𝐸
∗

= (𝑆
∗

1
, 𝐼
∗

1
, . . . , 𝑆

∗

𝑛
, 𝐼
∗

𝑛
) belonging to 𝐷 which is globally

asymptotically stable in𝐷; here

𝐷 = {(𝑆
1
, 𝐼
1
, . . . , 𝑆

𝑛
, 𝐼
𝑛
) ∈ R
2𝑛

+
: 𝑆
𝑘
, 𝐼
𝑘
≤

𝑏
𝑘

𝑑
, 𝑆
𝑘
+ 𝐼
𝑘
≤

𝑏
𝑘

𝑑
,

𝑘 = 1, 2, . . . , 𝑛} ,

𝑀
0
= 𝑀(𝑆

0

1
, . . . , 𝑆

0

𝑛
) = (

𝛽
𝑘𝑗
𝑆
0

𝑘

𝑑 + 𝜖
)

𝑛×𝑛

, 𝑅
0
= 𝜌 (𝑀

0
) ,

(4)

and 𝜌(𝑀
0
) denotes the spectral radius of𝑀

0
.

The deterministic models have some limitations in
describing the spread of disease.The accident in the process of
disease transmission can not be reflected by the deterministic
models. This is because of the fact that the deterministic
models ignore the effect of the environmental noise. In
an ecosystem, the environmental noise is inevitably in the
real world; thus stochastic models are more realistic. In the
research of stochastic epidemic models, many researchers
make a lot of contributions [17–26].

In this paper, we consider the following stochastic system:

𝑑𝑆
𝑘
(𝑡) = (𝑏

𝑘
−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
(𝑡) 𝐼
𝑗
(𝑡) − 𝑑𝑆

𝑘
(𝑡))𝑑𝑡

+ 𝜎
𝑘1
𝑆
𝑘 (𝑡) 𝑑𝐵𝑘1 (𝑡) ,

𝑑𝐼
𝑘 (𝑡) = (

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘 (𝑡) 𝐼𝑗 (𝑡) − (𝑑 + 𝜖) 𝐼𝑘 (𝑡))𝑑𝑡

+ 𝜎
𝑘2
𝐼
𝑘
(𝑡) 𝑑𝐵

𝑘2
(𝑡) ,

(5)

where 𝐵
𝑘𝑖
(𝑡), 𝑘 = 1, 2, . . . , 𝑛, 𝑖 = 1, 2, are independent

standard Brownian motions with 𝐵
𝑘𝑖
(0) = 0, and 𝜎

2

𝑘𝑖
≥ 0,

𝑘 = 1, 2, . . . , 𝑛, 𝑖 = 1, 2, represent the intensities of 𝐵
𝑘𝑖
(𝑡).

The remaining parts of this paper are as follows. In the
next sectionwe show the existence and uniqueness of a global
positive solution of model (5). In Section 3, we analyze the
asymptotic behavior around the disease-free equilibrium. In
Section 4, we study the dynamic of system (5) around the
endemic of the deterministic model. In Section 5, numerical
simulations and conclusions are carried out.

2. Global Positive Solution

When we study a dynamical behavior, a global solution is
important for the system. In this section we show that the
solution of system (5) is global and nonnegative. As we know,
for a stochastic differential equation, the coefficients of the
equation are generally required to satisfy the linear growth
condition and the local Lipschitz condition. It is a sufficient
condition for a stochastic differential equation has a unique
global (i.e., no explosion in a finite time) solution for any
given initial value [27, 28]. Although the coefficients of system

(5) satisfy locally Lipschitz continuous, they are not satisfied
with the linear growth condition, so the solution of system (5)
may explode at a finite time. In this section, Lyapunov analysis
method (mentioned in [29]) is used to show that the solution
of system (5) is positive and global.

Theorem 1. For any given initial value (𝑆
1
(0), I
1
(0), . . . ,

𝑆
𝑛
(0), 𝐼
𝑛
(0)) ∈ R2𝑛

+
, there is a unique positive solution (𝑆

1
(𝑡),

𝐼
1
(𝑡), . . . , 𝑆

𝑛
(𝑡), 𝐼
𝑛
(𝑡)) of model (5) on 𝑡 ≥ 0 and the solu-

tion will remain in R2𝑛
+

with probability 1, namely, (𝑆
1
(𝑡),

𝐼
1
(𝑡), . . . , 𝑆

𝑛
(𝑡), 𝐼
𝑛
(𝑡)) ∈ R2𝑛

+
for all 𝑡 ≥ 0 a.s.

Proof. Due to the fact that the coefficients of the system (5)
are locally Lipschitz continuous, for any given initial value
(𝑆
1
(0), 𝐼
1
(0), . . . , 𝑆

𝑛
(0), 𝐼
𝑛
(0)) ∈ R2𝑛

+
, it has a unique local

solution (𝑆
1
(𝑡), 𝐼
1
(𝑡), . . . , 𝑆

𝑛
(𝑡), 𝐼
𝑛
(𝑡)) on 𝑡 ∈ [0, 𝜏

𝑒
), where 𝜏

𝑒

is the explosion time [30]. If we show that 𝜏
𝑒

= ∞ a.s., it
suggests that this solution is global. Let 𝑙

0
> 0 be sufficiently

large so that 𝑆
𝑘
(0), 𝐼
𝑘
(0) (𝑘 = 1, 2, . . . , 𝑛) all lie within the

interval [1/𝑙
0
, 𝑙
0
]. For each integer 𝑙 ≥ 𝑙

0
, defining the stopping

time

𝜏
𝑙
= inf {𝑡 ∈ [0, 𝜏

𝑒
) : min {𝑆

𝑘 (𝑡) , 𝐼𝑘 (𝑡) , 𝑘 = 1, . . . , 𝑛} ≤
1

𝑙

or max {𝑆
𝑘
(𝑡) , 𝐼
𝑘
(𝑡) , 𝑘 = 1, . . . , 𝑛} ≥ 𝑙} ,

(6)

we set inf 0 = ∞ (as usual 0 denotes the empty set).
Obviously, 𝜏

𝑙
is increasing as 𝑙 → ∞. Set 𝜏

∞
= lim

𝑙→∞
𝜏
𝑙
;

therefore 𝜏
∞

≤ 𝜏
𝑒
a.s. If 𝜏

∞
= ∞ a.s. is true, then 𝜏

𝑒
= ∞

a.s. and (𝑆
1
(𝑡), 𝐼
1
(𝑡), . . . , 𝑆

𝑛
(𝑡), 𝐼
𝑛
(𝑡)) ∈ R2𝑛

+
a.s. for 𝑡 ≥ 0. In

other words, to complete the proof it is required to show that
𝜏
∞

= ∞ a.s. If this statement is false, then there is a pair of
constants 𝑇 > 0 and 𝜀 ∈ (0, 1) such that 𝑃{𝜏

∞
≤ 𝑇} > 𝜀. Thus

there is an integer 𝑙
1
≥ 𝑙
0
, such that

𝑃 {𝜏
𝑙
≤ 𝑇} ≥ 𝜀, ∀𝑙 ≥ 𝑙

1
. (7)

Define a 𝐶2-function 𝑉 : R2𝑛
+

→ R
+
as follows:

𝑉 (𝑆
1
, 𝐼
1
, . . . , 𝑆

𝑛
, 𝐼
𝑛
)

=

𝑛

∑

𝑘=1

[(𝑆
𝑘
− 1 − ln 𝑆

𝑘
) + (𝐼
𝑘
− 1 − ln 𝐼

𝑘
)] .

(8)

Applying Itô’s formula, we obtain

𝑑 (𝑆
1
, 𝐼
1
, . . . , 𝑆

𝑛
, 𝐼
𝑛
)

=

𝑛

∑

𝑘=1

[(1 −
1

𝑆
𝑘

)𝑑𝑆
𝑘
+

1

2

1

𝑆
2

𝑘

(𝑑𝑆
𝑘
)
2
+ (1 −

1

𝐼
𝑘

)𝑑𝐼
𝑘

+
1

2

1

𝐼
2

𝑘

(𝑑𝐼
𝑘
)
2
]
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=

𝑛

∑

𝑘=1

[

[

(1 −
1

𝑆
𝑘

)[

[

(𝑏
𝑘
−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
𝐼
𝑗
− 𝑑𝑆
𝑘
)𝑑𝑡

+ 𝜎
𝑘1
𝑆
𝑘 (𝑡) 𝑑𝐵𝑘1 (𝑡)

]

]

+
1

2
𝜎
2

𝑘1
𝑑𝑡 + (1 −

1

𝐼
𝑘

)

× [

[

(

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
𝐼
𝑗
− (𝑑 + 𝜖) 𝐼𝑘)𝑑𝑡 + 𝜎

𝑘2
𝐼
𝑘
𝑑𝐵
𝑘2 (𝑡)

]

]

+
1

2
𝜎
2

𝑘2
𝑑𝑡]

]

=

𝑛

∑

𝑘=1

[ 𝑏
𝑘
−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
𝐼
𝑗
− 𝑑𝑆
𝑘
−

𝑏
𝑘

𝑆
𝑘

+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
𝐼
𝑗
+ 𝑑

+
1

2
𝜎
2

𝑘1
+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
𝐼
𝑗
− (𝑑 + 𝜖) 𝐼

𝑘
−

∑
𝑛

𝑗=1
𝛽
𝑘𝑗
𝑆
𝑘
𝐼
𝑗

𝐼
𝑘

+ (𝑑 + 𝜖) +
1

2
𝜎
2

𝑘2
]

]

𝑑𝑡

+

𝑛

∑

𝑘=1

[𝜎
𝑘1

(𝑆
𝑘
− 1) 𝑑𝐵

𝑘1
(𝑡) + 𝜎

𝑘2
𝐼
𝑘
𝑑𝐵
𝑘2

(𝑡)]

≤

𝑛

∑

𝑘=1

(𝑏
𝑘
+ 2𝑑 + 𝜖 +

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝐼
𝑗
+

1

2
(𝜎
2

𝑘1
+ 𝜎
2

𝑘2
))𝑑𝑡

+

𝑛

∑

𝑘=1

[𝜎
𝑘1

(𝑆
𝑘
− 1) 𝑑𝐵

𝑘1
(𝑡) + 𝜎

𝑘2
(𝐼
𝑘
− 1) 𝑑𝐵

𝑘2
(𝑡)]

=: 𝐾𝑑𝑡 + [𝜎
𝑘1

(𝑆
𝑘
− 1) 𝑑𝐵

𝑘1
(𝑡) + 𝜎

𝑘2
𝐼
𝑘
𝑑𝐵
𝑘2

(𝑡)] .

(9)

We can now integrate both sides of (9) from 0 to 𝜏
𝑙
∧ 𝑇 and

then take the expectations

𝐸 [𝑉 (𝑆
1
(𝜏
𝑙
∧ 𝑇) , 𝐼

1
(𝜏
𝑙
∧ 𝑇) , . . . , 𝑆

𝑛
(𝜏
𝑙
∧ 𝑇) , 𝐼

𝑛
(𝜏
𝑙
∧ 𝑇))]

≤ 𝑉 (𝑆
1
(0) , 𝐼
1
(0) , . . . , 𝑆

𝑛
(0) , 𝐼
𝑛
(0)) + 𝐸 [∫

𝜏
𝑙
∧𝑇

0

𝐾𝑑𝑡]

≤ 𝑉 (𝑆
1
(0) , 𝐼
1
(0) , . . . , 𝑆

𝑛
(0) , 𝐼
𝑛
(0)) + 𝐾𝑇.

(10)

Let Ω
𝑙

= {𝜏
𝑙

≤ 𝑇} for 𝑙 ≥ 𝑙
1
and, by (7), 𝑃(Ω

𝑙
) ≥

𝜀. Note that, for every 𝜔 ∈ Ω
𝑙
, there is at least one of

𝑆
𝑘
(𝜏
𝑙
, 𝜔) and 𝐼

𝑘
(𝜏
𝑙
, 𝜔), 𝑘 = 1, 2, . . . , 𝑛, that equals either 𝑙 or

1/𝑙, and therefore𝑉(𝑆
1
(𝜏
𝑙
, 𝜔), 𝐼
1
(𝜏
𝑙
, 𝜔), . . . , 𝑆

𝑛
(𝜏
𝑙
, 𝜔), 𝐼
𝑛
(𝜏
𝑙
, 𝜔))

is not less than either

𝑙 − 1 − ln 𝑙 or 1

𝑙
− 1 − ln 1

𝑙
=

1

𝑙
− 1 + ln 𝑙. (11)

Hence,

𝑉 (𝑆
1
(𝜏
𝑙
, 𝜔) , 𝐼

1
(𝜏
𝑙
, 𝜔) , . . . , 𝑆

𝑛
(𝜏
𝑙
, 𝜔) , 𝐼

𝑛
(𝜏
𝑙
, 𝜔))

≥ (𝑙 − 1 − ln 𝑙) ∧ (
1

𝑙
− 1 + ln 𝑙) .

(12)

It then follows from (7) and (10) that

𝑉 (𝑆
1
(0) , 𝐼
1
(0) , . . . , 𝑆

𝑛
(0) , 𝐼
𝑛
(0)) + 𝐾𝑇

≥ 𝐸 [1
Ω
𝑙(𝜔)

𝑉 (𝑆
1
(𝜏
𝑙
, 𝜔) , 𝐼

1
(𝜏
𝑙
, 𝜔) , . . . , 𝑆

𝑛
(𝜏
𝑙
, 𝜔) , 𝐼

𝑛
(𝜏
𝑙
, 𝜔))]

≥ 𝜀 [(𝑙 − 1 − ln 𝑙) ∧ (
1

𝑙
− 1 + ln 𝑙)] ,

(13)

where 1
Ω
𝑙(𝜔)

is the indicator function of Ω
𝑙
. Letting 𝑙 → ∞,

we have that

∞ > 𝑉(𝑆
1
(0) , 𝐼
1
(0) , . . . , 𝑆

𝑛
(0) , 𝐼
𝑛
(0)) + 𝐾𝑇 ≥ ∞

(14)

is a contradiction. So we must have 𝜏
∞

= ∞. Therefore, it
implies 𝑆

𝑘
(𝑡), 𝐼
𝑘
(𝑡), 𝑘 = 1, 2, . . . , 𝑛, will not explode in a finite

time with probability one.

3. Asymptotic Behavior around
the Disease-Free Equilibrium

As mentioned in the Introduction, 𝐸
0
= (𝑏
1
/𝑑, 0, . . . , 𝑏

𝑛
/𝑑, 0)

is the disease-free equilibrium of system (3), and when 𝑅
0
≤

1, 𝐸
0
is globally stable, which means that the disease will be

extinct in the limited time. In this section, we will study the
asymptotic behavior around 𝐸

0
of system (5).

Lemma 2. If 𝐴 is nonnegative and irreducible, then the
spectral radius 𝜌(𝐴) of 𝐴 is a simple eigenvalue, and 𝐴 has
a positive eigenvector 𝜔 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
) corresponding to

𝜌(𝐴). Besides, if 0 ≤ 𝐴 ≤ 𝐵, then 𝜌(𝐴) ≤ 𝜌(𝐵). (This lemma
can be found in [20].)

Theorem 3. Assume𝐴 = (𝛽
𝑘𝑗
)
𝑛×𝑛

is irreducible. If 𝑅
0
≤ 1 and

the following condition is satisfied:

𝜎
2

𝑘1
≤

4

3
𝑑, 𝜎

2

𝑘2
≤ 2 (𝑑 + 𝜖) , (15)

then for any given initial value (𝑆
1
(0), 𝐼
1
(0), . . . , 𝑆

𝑛
(0), 𝐼
𝑛
(0)) ∈

R2𝑛
+
, the solution of system (5) has the property

lim sup
𝑡→∞

1

𝑡
𝐸∫

𝑡

0

[(𝑆
𝑘
(𝑟) −

𝑏
𝑘

𝑑
)

2

+ 𝐼
2

𝑘
(𝑟)] 𝑑𝑟

≤
3

2

𝑛

∑

𝑘=1

𝑎
𝑘
𝜎
2

𝑘1
𝑏
2

𝑘

𝑑2𝐾
1

,

(16)

where

𝐾
1
= min{

𝜔
𝑘
𝛽
𝑘𝑘

(2𝑑 + 𝜖) (𝑑 + 𝜖)
(𝑑 −

3

4
𝜎
2

𝑘1
) , 𝑑 + 𝜖 −

1

2
𝜎
2

𝑘2
} .

(17)
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Proof. First change the variables 𝑠
𝑘
= 𝑆
𝑘
− 𝑏
𝑘
/𝑑, 𝑖
𝑘
= 𝐼
𝑘
; then

−𝑏
𝑘
/𝑑 ≤ 𝑠

𝑘
≤ 0, 𝑖
𝑘
≥ 0 and system (5) can be written as

𝑑𝑠
𝑘
= (−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(𝑠
𝑘
+

𝑏
𝑘

𝑑
) 𝑖
𝑗
− 𝑑𝑠
𝑘
)𝑑𝑡

+ 𝜎
𝑘1

(𝑠
𝑘
+

𝑏
𝑘

𝑑
)𝑑𝐵
𝑘1

(𝑡) ,

𝑑𝑖
𝑘
= (

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(𝑠
𝑘
+

𝑏
𝑘

𝑑
) 𝑖
𝑗
− (𝑑 + 𝜖) 𝑖𝑘)𝑑𝑡 + 𝜎

𝑘2
𝑖
𝑘
𝑑𝐵
𝑘2 (𝑡) .

(18)

Let 𝑆0 = (𝑆
0

1
, 𝑆
0

2
, . . . , 𝑆

0

𝑛
), where 𝑆

0

𝑘
= 𝑏
𝑘
/𝑑, 𝑘 = 1, 2, . . . , 𝑛.

Define

𝑀(𝑠) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝛽
11
𝑆
0

1

𝑑 + 𝜖

𝛽
12

(𝑆
0

1
+ 𝑠
1
)

𝑑 + 𝜖
⋅ ⋅ ⋅

𝛽
1𝑛

(𝑆
0

1
+ 𝑠
1
)

𝑑 + 𝜖

𝛽
21

(𝑆
0

2
+ 𝑠
2
)

𝑑 + 𝜖

𝛽
22
𝑆
0

2

𝑑 + 𝜖
⋅ ⋅ ⋅

𝛽
2𝑛

(𝑆
0

2
+ 𝑠
2
)

𝑑 + 𝜖

...
... d

...

𝛽
𝑛1

(𝑆
0

𝑛
+ 𝑠
𝑛
)

𝑑 + 𝜖

𝛽
𝑛2

(𝑆
0

𝑛
+ 𝑠
𝑛
)

𝑑 + 𝜖
⋅ ⋅ ⋅

𝛽
𝑛𝑛
𝑆
0

𝑛

𝑑 + 𝜖

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

;

(19)

then it is nonnegative and irreducible. By Lemma 2, there
is a positive eigenvector 𝜔 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
) of 𝑀(𝑠)

corresponding to 𝜌(𝑀(𝑠)), such that

(𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)𝑀 (𝑠) = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
) 𝜌 (𝑀 (𝑠)) . (20)

Define a 𝐶2-function 𝑉 : R2𝑛
+

→ R
+
by

𝑉 (𝑠
1
, 𝑖
1
, . . . , 𝑠

𝑛
, 𝑖
𝑛
) =

1

2

𝑛

∑

𝑘=1

𝑎
𝑘
(𝑠
𝑘
+ 𝑖
𝑘
)
2
+

𝑛

∑

𝑘=1

𝜔
𝑘

𝑑 + 𝜖
𝑖
𝑘
, (21)

where 𝑎
𝑘
, 𝑘 = 1, 2, . . . , 𝑛, are positive constants. Then the

function 𝑉 is positive definite, and

𝑑𝑉 = 𝐿𝑉𝑑𝑡 +

𝑛

∑

𝑘=1

𝑎
𝑘
(𝑠
𝑘
+ 𝑖
𝑘
)

× (𝜎
𝑘1

(𝑠
𝑘
+

𝑏
𝑘

𝑑
)𝑑𝐵
𝑘1

(𝑡) + 𝜎
𝑘2
𝑖
𝑘
𝑑𝐵
𝑘2

(𝑡))

+

𝑛

∑

𝑘=1

𝜔
𝑘

𝑑 + 𝜖
𝜎
𝑘2
𝑖
𝑘
𝑑𝐵
𝑘2

(𝑡) ,

(22)

where

𝐿𝑉 =

𝑛

∑

𝑘=1

𝑎
𝑘
(𝑠
𝑘
+ 𝑖
𝑘
) [−𝑑𝑠

𝑘
− (𝑑 + 𝜖) 𝑖

𝑘
]

+
1

2

𝑛

∑

𝑘=1

𝑎
𝑘
[𝜎
2

𝑘1
(𝑠
𝑘
+

𝑏
𝑘

𝑑
)

2

+ 𝜎
2

𝑘2
𝑖
2

𝑘
]

+

𝑛

∑

𝑘=1

𝜔
𝑘

𝑑 + 𝜖

[

[

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(𝑠
𝑘
+

𝑏
𝑘

𝑑
) 𝑖
𝑗
− (𝑑 + 𝜖) 𝑖𝑘

]

]

= −

𝑛

∑

𝑘=1

𝑎
𝑘
[(𝑑 −

1

2
𝜎
2

𝑘1
) 𝑠
2

𝑘
+ (𝑑 + 𝜖 −

1

2
𝜎
2

𝑘2
) 𝑖
2

𝑘
]

+

𝑛

∑

𝑘=1

∑

𝑗 ̸= 𝑘

𝜔
𝑘

𝑑 + 𝜖
𝛽
𝑘𝑗
𝑠
𝑘
𝑖
𝑘

−

𝑛

∑

𝑘=1

[𝑎
𝑘 (2𝑑 + 𝜖) −

𝜔
𝑘

𝑑 + 𝜖
𝛽
𝑘𝑘
] 𝑠
𝑘
𝑖
𝑘

+

𝑛

∑

𝑘=1

𝑛

∑

𝑗=1

𝜔
𝑘

𝑑 + 𝜖
𝛽
𝑘𝑗

b
𝑘

𝑑
𝑖
𝑘

−

𝑛

∑

𝑘=1

𝜔
𝑘
𝑖
𝑘

+
1

2

𝑛

∑

𝑘=1

𝑎
𝑘
𝜎
2

𝑘1
(2𝑠
𝑘

𝑏
𝑘

𝑑
+

𝑏
2

𝑘

𝑑2
) .

(23)

Choose 𝑎
𝑘

= 𝜔
𝑘
𝛽
𝑘𝑘
/(2𝑑 + 𝜖)(𝑑 + 𝜖), 𝑘 = 1, 2, . . . , 𝑛; then

𝑎
𝑘
(2𝑑 + 𝜖) − (𝜔

𝑘
/(𝑑 + 𝜖))𝛽

𝑘𝑘
= 0. And we note that

𝑛

∑

𝑘=1

∑

𝑗 ̸= 𝑘

𝜔
𝑘

𝑑 + 𝜖
𝛽
𝑘𝑗
𝑠
𝑘
𝑖
𝑘
+

𝑛

∑

𝑘=1

𝑛

∑

𝑗=1

𝜔
𝑘

𝑑 + 𝜖
𝛽
𝑘𝑗

𝑏
𝑘

𝑑
𝑖
𝑘

= (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)

×

[
[
[
[
[
[
[
[
[
[
[
[

[

𝛽
11
𝑆
0

1

𝑑 + 𝜖

𝛽
12

(𝑆
0

1
+ 𝑠
1
)

𝑑 + 𝜖
⋅ ⋅ ⋅

𝛽
1𝑛

(𝑆
0

1
+ 𝑠
1
)

𝑑 + 𝜖

𝛽
21

(𝑆
0

2
+ 𝑠
2
)

𝑑 + 𝜖

𝛽
22
𝑆
0

2

𝑑 + 𝜖
⋅ ⋅ ⋅

𝛽
2𝑛

(𝑆
0

2
+ 𝑠
2
)

𝑑 + 𝜖

...
... d

...

𝛽
𝑛1

(𝑆
0

𝑛
+ 𝑠
𝑛
)

𝑑 + 𝜖

𝛽
𝑛2

(𝑆
0

𝑛
+ 𝑠
𝑛
)

𝑑 + 𝜖
⋅ ⋅ ⋅

𝛽
𝑛𝑛
𝑆
0

𝑛

𝑑 + 𝜖

]
]
]
]
]
]
]
]
]
]
]
]

]

×

[
[
[
[

[

𝑖
1

𝑖
2

...
𝑖
𝑛

]
]
]
]

]

= 𝜔𝑀(𝑠) 𝑖.

(24)



Abstract and Applied Analysis 5

Then

𝐿𝑉 = −

𝑛

∑

𝑘=1

𝑎
𝑘
[(𝑑 −

1

2
𝜎
2

𝑘1
) 𝑠
2

𝑘
+ (𝑑 + 𝜖 −

1

2
𝜎
2

𝑘2
) 𝑖
2

𝑘
]

− 𝜔𝑖 + 𝜔𝑀(𝑠) 𝑖 +
1

2

𝑛

∑

𝑘=1

𝑎
𝑘
𝜎
2

𝑘1
(2𝑠
𝑘

𝑏
𝑘

𝑑
+

𝑏
2

𝑘

𝑑2
)

≤ −

𝑛

∑

𝑘=1

𝑎
𝑘
[(𝑑 −

3

4
𝜎
2

𝑘1
) 𝑠
2

𝑘
+ (𝑑 + 𝜖 −

1

2
𝜎
2

𝑘2
) 𝑖
2

𝑘
]

+ 𝜔 (𝑀 (𝑠) − 1) 𝑖 +
3

2

𝑛

∑

𝑘=1

𝑎
𝑘
𝜎
2

𝑘1

𝑏
2

𝑘

𝑑2

= −

𝑛

∑

𝑘=1

𝑎
𝑘
[(𝑑 −

3

4
𝜎
2

𝑘1
) 𝑠
2

𝑘
+ (𝑑 + 𝜖 −

1

2
𝜎
2

𝑘2
) 𝑖
2

𝑘
]

+ 𝜔 (𝜌 (𝑀 (𝑠)) − 1) 𝑖 +
3

2

𝑛

∑

𝑘=1

𝑎
𝑘
𝜎
2

𝑘1

𝑏
2

𝑘

𝑑2
,

(25)

where the last equality is derived from (20). Since −𝑏
𝑘
/𝑑 ≤

𝑠
𝑘

≤ 0, then 0 ≤ 𝑀(𝑠) ≤ 𝑀(𝑆
0
) = (𝑆

0

𝑘
𝛽
𝑘𝑗
/(𝑑 + 𝜖))

𝑛×𝑛
=

𝑀
0
, and so 𝜌(𝑀(𝑠)) ≤ 𝜌(𝑀

0
) according to Lemma 2. Besides,

𝑅
0
≤ 1, and then 𝜌(𝑀(𝑠)) ≤ 1. Therefore

𝑑𝑉 ≤ [−

𝑛

∑

𝑘=1

𝑎
𝑘
[(𝑑 −

3

4
𝜎
2

𝑘1
) 𝑠
2

𝑘
+ (𝑑 + 𝜖 −

1

2
𝜎
2

𝑘2
) 𝑖
2

𝑘
]

+
3

2

𝑛

∑

𝑘=1

𝑎
𝑘
𝜎
2

𝑘1

𝑏
2

𝑘

𝑑2
]𝑑𝑡

+

𝑛

∑

𝑘=1

𝑎
𝑘
(𝑠
𝑘
+ 𝑖
𝑘
) 𝜎
𝑘1

(𝑠
𝑘
+

𝑏
𝑘

𝑑
)𝑑𝐵
𝑘1

(𝑡)

+

𝑛

∑

𝑘=1

(𝑎
𝑘
(𝑠
𝑘
+ 𝑖
𝑘
) 𝜎
𝑘2

+
𝜔
𝑘

𝑑 + 𝜖
𝜎
𝑘2
) 𝑖
𝑘
𝑑𝐵
𝑘2

(𝑡) .

(26)

Integrating both sides of (26) from 0 to 𝑡, and taking
expectation, yields

0 ≤ 𝐸 [𝑉 (𝑠
1 (𝑡) , 𝑖1 (𝑡) , . . . , 𝑠𝑛 (𝑡) , 𝑖𝑛 (𝑡))]

≤ 𝐸 [𝑉 (𝑠
1
(0) , 𝑖
1
(0) , . . . , 𝑠

𝑛
(0) , 𝑖
𝑛
(0))]

+ 𝐸∫

𝑡

0

[−

𝑛

∑

𝑘=1

𝑎
𝑘
[(𝑑 −

3

4
𝜎
2

𝑘1
) 𝑠
2

𝑘
(𝑟)

+ (𝑑 + 𝜖 −
1

2
𝜎
2

𝑘2
) 𝑖
2

𝑘
(𝑟) ]

+
3

2

𝑛

∑

𝑘=1

𝑎
𝑘
𝜎
2

𝑘1

𝑏
2

𝑘

𝑑2
]𝑑𝑟,

(27)

which implies

𝐸∫

𝑡

0

[

𝑛

∑

𝑘=1

𝑎
𝑘
[(𝑑 −

3

4
𝜎
2

𝑘1
) 𝑠
2

𝑘
(𝑟) + (𝑑 + 𝜖 −

1

2
𝜎
2

𝑘2
) 𝑖
2

𝑘
(𝑟)]] 𝑑𝑟

≤ 𝐸 [𝑉 (𝑠
1 (0) , 𝑖1 (0) , . . . , 𝑠𝑛 (0) , 𝑖𝑛 (0))] +

3

2

𝑛

∑

𝑘=1

𝑎
𝑘
𝜎
2

𝑘1

𝑏
2

𝑘

𝑑2
𝑡.

(28)

Therefore

lim sup
𝑡→∞

1

𝑡
𝐸∫

𝑡

0

[

𝑛

∑

𝑘=1

𝑎
𝑘
[(𝑑 −

3

4
𝜎
2

𝑘1
) 𝑠
2

𝑘
(𝑟)

+ (𝑑 + 𝜖 −
1

2
𝜎
2

𝑘2
) 𝑖
2

𝑘
(𝑟)] ] 𝑑𝑟

≤
3

2

𝑛

∑

𝑘=1

𝑎
𝑘
𝜎
2

𝑘1

𝑏
2

𝑘

𝑑2
;

(29)

that is,

lim sup
𝑡→∞

1

𝑡
𝐸∫

𝑡

0

[

𝑛

∑

𝑘=1

𝑎
𝑘
[(𝑑 −

3

4
𝜎
2

𝑘1
)(𝑆
𝑘 (𝑟) −

𝑏
𝑘

𝑑
)

2

+(𝑑 + 𝜖 −
1

2
𝜎
2

𝑘2
) 𝐼
2

𝑘
(𝑟) ]] 𝑑𝑟

≤
3

2

𝑛

∑

𝑘=1

𝑎
𝑘
𝜎
2

𝑘1

𝑏
2

𝑘

𝑑2
.

(30)

If we let

𝐾
1
= min {𝑎

𝑘
(𝑑 −

3

4
𝜎
2

𝑘1
) , 𝑑 + 𝜖 −

1

2
𝜎
2

𝑘2
} , (31)

then

lim sup
𝑡→∞

1

𝑡
𝐸∫

𝑡

0

[(𝑆
𝑘 (𝑟) −

𝑏
𝑘

𝑑
)

2

+ 𝐼
2

𝑘
(𝑟)] 𝑑𝑟

≤
3

2

𝑛

∑

𝑘=1

𝑎
𝑘
𝜎
2

𝑘1
𝑏
2

𝑘

𝑑2𝐾
1

,

(32)

as the theorem is proved.

Remark 4. From Theorem 3, we can get the conclusion that
the solution of the stochastic system will oscillate around
the disease-free equilibrium of the deterministic model; the
values of 𝜎

𝑘1
and 𝜎

𝑘2
have bearing on the intensity of

turbulence. If the stochastic perturbations become small,
the solution of system (5) will be close to the disease-free
equilibrium of system (3).

Besides, if 𝜎
𝑘1

= 0, then 𝐸
0
is also the disease-free

equilibrium of system (5). From the proof of Theorem 3, we
can obtain

𝐿𝑉 ≤ −

𝑛

∑

𝑘=1

𝑎
𝑘
[(𝑑 −

3

4
𝜎
2

𝑘1
) 𝑠
2

𝑘
+ (𝑑 + 𝜖 −

1

2
𝜎
2

𝑘2
) 𝑖
2

𝑘
] ≤ 0.

(33)

Therefore, 𝐸
0
is globally asymptotically stable.
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4. The Dynamic of System (5) around the
Endemic of System (3)

In the deterministicmodel, if𝑅
0
> 1, there exists the endemic

equilibrium 𝐸
∗. But 𝐸∗ is not the endemic equilibrium of

stochastic system (5), because there is no endemic equilib-
rium for the stochastic system (5). In fact, we still want to find
the relation between the solution of stochastic system and𝐸

∗.
Given a weighted digraph (G, 𝐴) with 𝑛 vertices, where

𝐴 = (𝑎
𝑘𝑗
)
𝑛𝑛

is the weight matrix, whose entry 𝑎
𝑘𝑗
equals the

weight of arc (𝑗, 𝑘) if it exists, and 0 otherwise, the Laplacian
matrix of 𝐴 is defined as

𝐿
𝐴
=

[
[
[
[
[
[
[
[

[

∑

𝑘 ̸= 1

𝑎
1𝑘

−𝑎
12

⋅ ⋅ ⋅ −𝑎
1𝑛

−𝑎
21

∑

𝑘 ̸= 2

𝑎
2𝑘

⋅ ⋅ ⋅ −𝑎
2𝑛

...
... d

...
−𝑎
𝑛1

−𝑎
𝑛2

⋅ ⋅ ⋅ ∑

𝑘 ̸= 𝑛

𝑎
𝑛𝑘

]
]
]
]
]
]
]
]

]

. (34)

Let 𝑐
𝑘
denote the cofactor of the 𝑘th diagonal element of 𝐿

𝐴
,

and we have the following results.

Theorem 5. Assume 𝐴 = (𝛽
𝑘𝑗
)
𝑛×𝑛

is irreducible and 𝑅
0

>

1. For any given initial value (𝑆
1
(0), 𝐼
1
(0), . . . , 𝑆

𝑛
(0), 𝐼
𝑛
(0)) ∈

R2𝑛
+
, the solution of system (5) has the property

lim sup
𝑡→∞

1

𝑡

𝑛

∑

𝑘=1

∫

𝑡

0

[𝑝
𝑘
𝑑(𝑆
𝑘
− 𝑆
∗

𝑘
)
2
+ 𝑚
𝑘 (𝑑 + 𝜖) (𝐼𝑘 − 𝐼

∗

𝑘
)
2
] 𝑑𝑠

≤

𝑛

∑

𝑘=1

[(
𝑎𝑐
𝑘
𝑏
𝑘

𝑑
+

(𝑚
𝑘
+ 𝑝
𝑘
) 𝑏
2

𝑘

𝑑2
)𝜎
2

𝑘1

+(
(𝑎 + 1) 𝑐

𝑘
𝑏
𝑘

𝑑
+

𝑚
𝑘
𝑏
2

𝑘

𝑑2
)𝜎
2

𝑘2
] , 𝑎.𝑠.,

(35)

where 𝐸
∗

= (𝑆
∗

1
, 𝐼
∗

1
, . . . , 𝑆

∗

𝑛
, 𝐼
∗

𝑛
) is the endemic equilibrium of

system (3) and 𝑐
𝑘
, 𝑘 = 1, 2, . . . , 𝑛, denote the cofactor of the 𝑘th

diagonal element of 𝐿
𝐴
(𝐴 = (𝛽

𝑘𝑗
)
𝑛×𝑛

= (𝛽
𝑘𝑗
𝑆
∗

𝑘
𝐼
∗

𝑗
)
𝑛×𝑛

), and 𝑎,
𝑚
𝑘
, 𝑝
𝑘
, 𝑘 = 1, 2, . . . , 𝑛, are positive constants defined as in the

proof.

Proof. Since 𝐸∗ is the endemic equilibrium of system (3), we
have

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
∗

𝑘
𝐼
∗

𝑗
+ 𝑑𝑆
∗

𝑘
= 𝑏
𝑘
,

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
∗

𝑘
𝐼
∗

𝑗
= (𝑑 + 𝜖) 𝐼

∗

𝑘
. (36)

Define

𝑉 (𝑆
1
, 𝐼
1
, . . . , 𝑆

𝑛
, 𝐼
𝑛
)

= 𝑎

𝑛

∑

𝑘=1

𝑐
𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
− 𝑆
∗

𝑘
ln

𝑆
𝑘

𝑆
∗

𝑘

+ 𝐼
𝑘
− 𝐼
∗

𝑘
− 𝐼
∗

𝑘
ln

𝐼
𝑘

𝐼
∗

𝑘

)

+

𝑛

∑

𝑘=1

𝑐
𝑘
(𝐼
𝑘
− 𝐼
∗

𝑘
− 𝐼
∗

𝑘
ln

𝐼
𝑘

𝐼
∗

𝑘

)

+
1

2

𝑛

∑

𝑘=1

𝑚
𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
+ 𝐼
𝑘
− 𝐼
∗

𝑘
)
2

+
1

2

𝑛

∑

𝑘=1

𝑝
𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
)
2

:= 𝑎𝑉
1
+ 𝑉
2
+ 𝑉
3
+ 𝑉
4
,

(37)

where 𝑎, 𝑚
𝑘
, 𝑝
𝑘
, 𝑘 = 1, 2, . . . , 𝑛, are positive constants to be

determined later. From the property (1) of Lemma A.2 (see
[20]), we know 𝑐

𝑘
> 0, 𝑘 = 1, 2, . . . , 𝑛. Hence 𝑉 is positive

definite. Let 𝐿 be the generating operator of system (5). Then
we get

𝐿𝑉
1
=

𝑛

∑

𝑘=1

𝑐
𝑘
(1 −

𝑆
∗

𝑘

𝑆
𝑘

)(𝑏
𝑘
−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
𝐼
𝑗
− 𝑑𝑆
𝑘
)

+

𝑛

∑

𝑘=1

𝑐
𝑘
𝑆
∗

𝑘
𝜎
2

𝑘1

2

+

𝑛

∑

𝑘=1

𝑐
𝑘
(1 −

𝐼
∗

𝑘

𝐼
𝑘

)(

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
𝐼
𝑗
− (𝑑 + 𝜖) 𝐼

𝑘
)

+

𝑛

∑

𝑘=1

𝑐
𝑘
𝐼
∗

𝑘
𝜎
2

𝑘2

2

=

𝑛

∑

𝑘=1

𝑐
𝑘
[

[

𝑏
𝑘
− 𝑑𝑆
𝑘
− 𝑏
𝑘

𝑆
∗

𝑘

𝑆
𝑘

+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
∗

𝑘
𝐼
𝑗

+ 𝑑𝑆
∗

𝑘

− (𝑑 + 𝜖) 𝐼𝑘 + (𝑑 + 𝜖) 𝐼
∗

𝑘
−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗

𝑆
𝑘
𝐼
𝑗
𝐼
∗

𝑘

𝐼
𝑘

+
1

2
(𝑆
∗

𝑘
𝜎
2

𝑘1
+ 𝐼
∗

𝑘
𝜎
2

𝑘2
)]

]

=

𝑛

∑

𝑘=1

𝑐
𝑘
[

[

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
+ 𝑑𝑆
∗

𝑘
− 𝑑𝑆
𝑘
−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗

𝑆
∗

𝑘

𝑆
𝑘

− 𝑑𝑆
∗

𝑘

𝑆
∗

𝑘

𝑆
𝑘

+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗

𝐼
𝑗

𝐼
∗

𝑗

+ 𝑑𝑆
∗

𝑘
−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗

𝐼
𝑘

𝐼
∗

𝑘

−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗

𝑆
𝑘
𝐼
𝑗
𝐼
∗

𝑘

𝐼
𝑘
𝑆
∗

𝑘
𝐼
∗

𝑗

+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
+

1

2
(𝑆
∗

𝑘
𝜎
2

𝑘1
+ 𝐼
∗

𝑘
𝜎
2

𝑘2
)]

]

=

𝑛

∑

𝑘=1

𝑐
𝑘
[

[

−𝑑𝑆
∗

𝑘
(
𝑆
∗

𝑘

𝑆
𝑘

+
𝑆
𝑘

𝑆
∗

𝑘

− 2) +

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(

𝐼
𝑗

𝐼
∗

𝑗

−
𝐼
𝑘

𝐼
∗

𝑘

)

+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(2 −

𝑆
∗

𝑘

𝑆
𝑘

−

𝑆
𝑘
𝐼
𝑗
𝐼
∗

𝑘

𝐼
𝑘
𝑆
∗

𝑘
𝐼
∗

𝑗

)

+
1

2
(𝑆
∗

𝑘
𝜎
2

𝑘1
+ 𝐼
∗

𝑘
𝜎
2

𝑘2
)]

]

.

(38)
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Figure 1: 𝜆 = 0.025, 𝜎
𝑘1

= 0.005, 𝜎
𝑘2

= 0.03, 𝑅
0
≤ 1. (a), (b) 𝑃(𝑘) = 𝑚

𝑘 exp(−𝑚)/𝑘!,𝑚 = 6, 𝑅
0
= 0.4704 ≤ 1; (c), (d) 𝑃(𝑘) = 2𝑚

2
𝑘
−3,𝑚 = 3,

𝑅
0
= 0.9071 ≤ 1.

𝐿𝑉
2
=

𝑛

∑

𝑘=1

𝑐
𝑘
(1 −

𝐼
∗

𝑘

𝐼
𝑘

) (

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
𝐼
𝑗
− (𝑑 + 𝜖) 𝐼𝑘)

+

𝑛

∑

𝑘=1

𝑐
𝑘
𝐼
∗

𝑘
𝜎
2

𝑘2

2

=

𝑛

∑

𝑘=1

𝑐
𝑘
[

[

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
𝐼
𝑗
− (𝑑 + 𝜖) 𝐼

𝑘
−

𝐼
∗

𝑘

𝐼
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
𝐼
𝑗

+ (𝑑 + 𝜖) 𝐼
∗

𝑘
+

𝐼
∗

𝑘
𝜎
2

𝑘2

2

]

]

=

𝑛

∑

𝑘=1

𝑐
𝑘
[

[

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
𝐼
𝑗
−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗

𝐼
𝑘

𝐼
∗

𝑘

−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗

𝑆
𝑘
𝐼
𝑗
𝐼
∗

𝑘

𝐼
𝑘
𝑆
∗

𝑘
𝐼
∗

𝑗

+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
+

𝐼
∗

𝑘
𝜎
2

𝑘2

2

]

]

.

(39)

𝐿𝑉
3
=

𝑛

∑

𝑘=1

𝑚
𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
+ 𝐼
𝑘
− 𝐼
∗

𝑘
) (𝑏
𝑘
− 𝑑𝑆
𝑘
− (𝑑 + 𝜖) 𝐼𝑘)

+

𝑛

∑

𝑘=1

𝑚
𝑘

𝜎
2

𝑘1
𝑆
2

𝑘
+ 𝜎
2

𝑘2
𝐼
2

𝑘

2
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Figure 2: 𝜆 = 0.05, 𝜎
𝑘1

= 0.01, 𝜎
𝑘2

= 0.02. (a), (b) 𝑃(𝑘) = 𝑚
𝑘 exp(−𝑚)/𝑘!, 𝑚 = 6, 𝑅

0
= 0.9409 ≤ 1; (c), (d) 𝑃(𝑘) = 2𝑚

2
𝑘
−3, 𝑚 = 3,

𝑅
0
= 1.8142 ≥ 1.

=

𝑛

∑

𝑘=1

𝑚
𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
+ 𝐼
𝑘
− 𝐼
∗

𝑘
)

× (−𝑑 (𝑆
𝑘
− 𝑆
∗

𝑘
) − (𝑑 + 𝜖) (𝐼

𝑘
− 𝐼
∗

𝑘
))

+

𝑛

∑

𝑘=1

𝑚
𝑘

𝜎
2

𝑘1
𝑆
2

𝑘
+ 𝜎
2

𝑘2
𝐼
2

𝑘

2

=

𝑛

∑

𝑘=1

𝑚
𝑘
[− 𝑑(𝑆

𝑘
− 𝑆
∗

𝑘
)
2
− (𝑑 + 𝜖) (𝐼

𝑘
− 𝐼
∗

𝑘
)
2

− (2𝑑 + 𝜖) (𝑆𝑘 − 𝑆
∗

𝑘
) (𝐼
𝑘
− 𝐼
∗

𝑘
)

+
𝜎
2

𝑘1
𝑆
2

𝑘
+ 𝜎
2

𝑘2
𝐼
2

𝑘

2
]

≤

𝑛

∑

𝑘=1

𝑚
𝑘
[−(𝑑 −

(2𝑑 + 𝜖)
2

2 (𝑑 + 𝜖)
) (𝑆
𝑘
− 𝑆
∗

𝑘
)
2

−
(𝑑 + 𝜖)

2
(𝐼
𝑘
− 𝐼
∗

𝑘
)
2
+

𝜎
2

𝑘1
𝑆
2

𝑘
+ 𝜎
2

𝑘2
𝐼
2

𝑘

2
]

=

𝑛

∑

𝑘=1

𝑚
𝑘
[
(𝑑 + 𝜖)

2
+ 𝑑
2

2 (𝑑 + 𝜖)
(𝑆
𝑘
− 𝑆
∗

𝑘
)
2
−

(𝑑 + 𝜖)

2
(𝐼
𝑘
− 𝐼
∗

𝑘
)
2

+
𝜎
2

𝑘1
𝑆
2

𝑘
+ 𝜎
2

𝑘2
𝐼
2

𝑘

2
] .
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Figure 3: 𝜆 = 0.08, 𝜎
𝑘1

= 0.01, 𝜎
𝑘2

= 0.01, 𝑅
0
≥ 1. (a), (b) 𝑃(𝑘) = 𝑚

𝑘 exp(−𝑚)/𝑘!, 𝑚 = 6, 𝑅
0
= 1.5054 ≥ 1; (c), (d) 𝑃(𝑘) = 2𝑚

2
𝑘
−3, 𝑚 = 3,

𝑅
0
= 2.9027 ≥ 1.

𝐿𝑉
4
=

𝑛

∑

𝑘=1

𝑝
𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
)(𝑏
𝑘
−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
𝐼
𝑗

− 𝑑𝑆
𝑘
)

+

𝑛

∑

𝑘=1

𝑝
𝑘

𝜎
2

𝑘1
𝑆
2

𝑘

2

=

𝑛

∑

𝑘=1

𝑝
𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
)

× (

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(𝑆
∗

𝑘
𝐼
∗

𝑗
− 𝑆
𝑘
𝐼
𝑗
) − 𝑑 (𝑆

𝑘
− 𝑆
∗

𝑘
))

+

𝑛

∑

𝑘=1

𝑝
𝑘

𝜎
2

𝑘1
𝑆
2

𝑘

2

= −

𝑛

∑

𝑘=1

𝑝
𝑘
[

[

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
∗

𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
) (𝐼
𝑗
− 𝐼
∗

𝑗
)

+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝐼
𝑗
(𝑆
𝑘
− 𝑆
∗

𝑘
)
2
+ 𝑑(𝑆
𝑘
− 𝑆
∗

𝑘
)
2
−
𝜎
2

𝑘1
𝑆
2

𝑘

2

]

]

.

(40)
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Figure 4: (a), (b) 𝜆 = 0.05, 𝜎
𝑘1

= 0.015, 𝜎
𝑘2

= 0.05, 𝑃(𝑘) = 𝑚
𝑘 exp(−𝑚)/𝑘!,𝑚 = 6, 𝑅

0
= 0.94.9 ≤ 1. (c), (d) 𝜆 = 0.025, 𝜎

𝑘1
= 0.01, 𝜎

𝑘2
= 0.1,

𝑃(𝑘) = 2𝑚
2
𝑘
−3,𝑚 = 3, 𝑅

0
= 0.9071 ≤ 1.

By property (2) of Lemma A.2 (see [20]), we know

𝑛

∑

𝑘=1

𝑐
𝑘
(

𝑛

∑

𝑗=1

𝛽
𝑘𝑗

𝐼
𝑗

𝐼
∗

𝑗

−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗

𝐼
𝑘

𝐼
∗

𝑘

) = 0,

𝑛

∑

𝑘=1

𝑐
𝑘
(

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
ln

𝐼
𝑗

𝐼
∗

𝑗

−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
ln

𝐼
𝑘

𝐼
∗

𝑘

) = 0.

(41)

Besides, note that 𝑥 − 1 − ln𝑥 ≥ 0 for 𝑥 > 0; then

𝑆
∗

𝑘

𝑆
𝑘

≥ 1 + ln
𝑆
∗

𝑘

𝑆
𝑘

,

𝑆
𝑘
𝐼
𝑗
𝐼
∗

𝑘

𝐼
𝑘
𝑆
∗

𝑘
𝐼
∗

𝑗

≥ 1 + ln
𝑆
𝑘
𝐼
𝑗
𝐼
∗

𝑘

𝐼
𝑘
𝑆
∗

𝑘
𝐼
∗

𝑗

. (42)

According to (41) and (42), we get

𝑛

∑

𝑘=1

𝑐
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(2 −

𝑆
∗

𝑘

𝑆
𝑘

−

𝑆
𝑘
𝐼
𝑗
𝐼
∗

𝑘

𝐼
𝑘
𝑆
∗

𝑘
𝐼
∗

𝑗

)

≤

𝑛

∑

𝑘=1

𝑐
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
[2 − (1 + ln

𝑆
∗

𝑘

𝑆
𝑘

) − (1 + ln
𝑆
𝑘
𝐼
𝑗
𝐼
∗

𝑘

𝐼
𝑘
𝑆
∗

𝑘
𝐼
∗

𝑗

)]

=

𝑛

∑

𝑘=1

𝑐
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(ln

𝐼
𝑘

𝐼
∗

𝑘

− ln
𝐼
𝑗

𝐼
∗

𝑗

) = 0,

(43)
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𝑛

∑

𝑘=1

𝑐
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗

𝑆
𝑘
𝐼
𝑗
𝐼
∗

𝑘

𝐼
𝑘
𝑆
∗

𝑘
𝐼
∗

𝑗

≥

𝑛

∑

𝑘=1

𝑐
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(1 + ln

𝑆
𝑘
𝐼
𝑗
𝐼
∗

𝑘

𝐼
𝑘
𝑆
∗

𝑘
𝐼
∗

𝑗

)

=

𝑛

∑

𝑘=1

𝑐
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(1 − ln

𝑆
∗

𝑘

𝑆
𝑘

)

+

𝑛

∑

𝑘=1

𝑐
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(ln

𝐼
𝑗

𝐼
∗

𝑗

− ln
𝐼
𝑘

𝐼
∗

𝑘

)

≥

𝑛

∑

𝑘=1

𝑐
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(2 −

𝑆
∗

𝑘

𝑆
𝑘

) .

(44)

Substituting (41) and (43) into (38), we get

𝐿𝑉
1
≤

𝑛

∑

𝑘=1

𝑐
𝑘
[−𝑑𝑆
∗

𝑘
(
𝑆
∗

𝑘

𝑆
𝑘

+
𝑆
𝑘

𝑆
∗

𝑘

− 2) +
1

2
(𝑆
∗

𝑘
𝜎
2

𝑘1
+ 𝐼
∗

𝑘
𝜎
2

𝑘2
)]

= −

𝑛

∑

𝑘=1

𝑐
𝑘
𝑑
(𝑆
𝑘
− 𝑆
∗

𝑘
)
2

𝑆
𝑘

+

𝑛

∑

𝑘=1

𝑐
𝑘

2
(𝑆
∗

𝑘
𝜎
2

𝑘1
+ 𝐼
∗

𝑘
𝜎
2

𝑘2
) .

(45)

Substituting (44) into (39), we get

𝐿𝑉
2
≤

𝑛

∑

𝑘=1

𝑐
𝑘
[

[

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
𝐼
𝑗
−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗

𝐼
𝑘

𝐼
∗

𝑘

−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(2 −

𝑆
∗

𝑘

𝑆
𝑘

)

+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
+

𝐼
∗

𝑘
𝜎
2

𝑘2

2

]

]

=

𝑛

∑

𝑘=1

𝑐
𝑘
[

[

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(𝑆
𝑘
− 𝑆
∗

𝑘
) (𝐼
𝑗
− 𝐼
∗

𝑗
)

−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(

𝐼
𝑘

𝐼
∗

𝑘

−

𝐼
𝑗

𝐼
∗

𝑗

)

−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(2 −

𝑆
∗

𝑘

𝑆
𝑘

−
𝑆
𝑘

𝑆
∗

𝑘

) +
𝐼
∗

𝑘
𝜎
2

𝑘2

2

]

]

=

𝑛

∑

𝑘=1

𝑐
𝑘
[

[

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(𝑆
𝑘
− 𝑆
∗

𝑘
) (𝐼
𝑗
− 𝐼
∗

𝑗
)

+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝐼
∗

𝑗

(𝑆
𝑘
− 𝑆
∗

𝑘
)
2

𝑆
𝑘

+
𝐼
∗

𝑘
𝜎
2

𝑘2

2

]

]

.

(46)

Therefore,

𝐿𝑉 = 𝑎𝐿𝑉
1
+ 𝐿𝑉
2
+ 𝐿𝑉
3
+ 𝐿𝑉
4

≤ −

𝑛

∑

𝑘=1

[𝑝
𝑘
𝑑 − 𝑚

𝑘

(𝑑 + 𝜖)
2
+ 𝑑
2

2 (𝑑 + 𝜖)
] (𝑆
𝑘
− 𝑆
∗

𝑘
)
2

−
1

2

𝑛

∑

𝑘=1

𝑚
𝑘
(𝑑 + 𝜖) (𝐼

𝑘
− 𝐼
∗

𝑘
)
2

−

𝑛

∑

𝑘=1

𝑐
𝑘
(𝑎𝑑 −

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝐼
∗

𝑗
)

(𝑆
𝑘
− 𝑆
∗

𝑘
)
2

𝑆
𝑘

+

𝑛

∑

𝑘=1

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(𝑐
𝑘
− 𝑝
𝑘
𝑆
∗

𝑘
) (𝑆
𝑘
− 𝑆
∗

𝑘
) (𝐼
𝑗
− 𝐼
∗

𝑗
)

−

𝑛

∑

𝑘=1

𝑛

∑

𝑗=1

𝑝
𝑘
𝛽
𝑘𝑗
𝐼
𝑗
(𝑆
𝑘
− 𝑆
∗

𝑘
)
2

+

𝑛

∑

𝑘=1

𝑎𝑐
𝑘
𝑆
∗

𝑘
+ (𝑚
𝑘
+ 𝑝
𝑘
) 𝑆
2

𝑘

2
𝜎
2

𝑘1

+

𝑛

∑

𝑘=1

(𝑎 + 1) 𝑐
𝑘
𝐼
∗

𝑘
+ 𝑚
𝑘
𝐼
2

𝑘

2
𝜎
2

𝑘2

≤ −

𝑛

∑

𝑘=1

[𝑝
𝑘
𝑑 − 𝑚

𝑘

(𝑑 + 𝜖)
2
+ 𝑑
2

2 (𝑑 + 𝜖)
] (𝑆
𝑘
− 𝑆
∗

𝑘
)
2

−
1

2

𝑛

∑

k=1
𝑚
𝑘 (𝑑 + 𝜖) (𝐼𝑘 − 𝐼

∗

𝑘
)
2

−

𝑛

∑

𝑘=1

𝑐
𝑘
(𝑎𝑑 −

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝐼
∗

𝑗
)

(𝑆
𝑘
− 𝑆
∗

𝑘
)
2

𝑆
𝑘

+

𝑛

∑

𝑘=1

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(𝑐
𝑘
− 𝑝
𝑘
𝑆
∗

𝑘
) (𝑆
𝑘
− 𝑆
∗

𝑘
) (𝐼
𝑗
− 𝐼
∗

𝑗
)

+

𝑛

∑

𝑘=1

𝑎𝑐
𝑘
𝑆
∗

𝑘
+ (𝑚
𝑘
+ 𝑝
𝑘
) 𝑆
2

𝑘

2
𝜎
2

𝑘1

+

𝑛

∑

𝑘=1

(𝑎 + 1) 𝑐𝑘𝐼
∗

𝑘
+ 𝑚
𝑘
𝐼
2

𝑘

2
𝜎
2

𝑘2
.

(47)

Choose 𝑎 = max{(∑𝑛
𝑗=1

𝛽
𝑘𝑗
𝐼
∗

𝑗
)/𝑑, 𝑘 = 1, 2, . . . , 𝑛}, 𝑚

𝑘
= (𝑑 +

𝜖)𝑝
𝑘
𝑑/((𝑑 + 𝜖)

2
+ 𝑑
2
), 𝑝
𝑘
= 𝑐
𝑘
/𝑆
∗

𝑘
, 𝑘 = 1, 2, . . . , 𝑛; then

𝐿𝑉 ≤ −

𝑛

∑

𝑘=1

𝑝
𝑘
𝑑

2
(𝑆
𝑘
− 𝑆
∗

𝑘
)
2
−

1

2

𝑛

∑

𝑘=1

𝑚
𝑘
(𝑑 + 𝜖) (𝐼

𝑘
− 𝐼
∗

𝑘
)
2

+
1

2

𝑛

∑

𝑘=1

[(
𝑎𝑐
𝑘
𝑏

𝑑
+

(𝑚
𝑘
+ 𝑝
𝑘
) 𝑏
2

𝑑2
)𝜎
2

𝑘1

+(
(𝑎 + 1) 𝑐𝑘𝑏

𝑑
+

𝑚
𝑘
𝑏
2

𝑑2
)𝜎
2

𝑘2
]

:= 𝐹 (𝑡) .

(48)
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Therefore,

𝑑𝑉 ≤ 𝐹 (𝑡) 𝑑𝑡

+

𝑛

∑

𝑘=1

[[𝑎𝑐
𝑘
𝜎
𝑘1

(𝑆
𝑘
− 𝑆
∗

𝑘
) + (𝑚

𝑘
+ 𝑝
𝑘
) 𝜎
𝑘1

(𝑆
𝑘
− 𝑆
∗

𝑘
) 𝑆
𝑘
]

× 𝑑𝐵
𝑘1

(𝑡)

+ [𝑐
𝑘 (𝑎 + 1) 𝜎𝑘2 (𝐼𝑘 − 𝐼

∗

𝑘
) + 𝑚
𝑘
𝜎
𝑘2

(𝐼
𝑘
− 𝐼
∗

𝑘
) 𝐼
𝑘
]

× 𝑑𝐵
𝑘2

(𝑡)] .

(49)

Integrating both sides of (49) from 0 to 𝑡 yields

𝑉 (𝑡) − 𝑉 (0)

≤ ∫

𝑡

0

𝐹 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝑛

∑

𝑘=1

[𝑎𝑐
𝑘
𝜎
𝑘1

(𝑆
𝑘
− 𝑆
∗

𝑘
) + (𝑚

𝑘
+ 𝑝
𝑘
) 𝜎
𝑘1

(𝑆
𝑘
− 𝑆
∗

𝑘
) 𝑆
𝑘
]

× 𝑑𝐵
𝑘1

(𝑠)

+ ∫

𝑡

0

𝑛

∑

𝑘=1

[𝑐
𝑘
(𝑎 + 1) 𝜎

𝑘2
(𝐼
𝑘
− 𝐼
∗

𝑘
) + 𝑚
𝑘
𝜎
𝑘2

(𝐼
𝑘
− 𝐼
∗

𝑘
) 𝐼
𝑘
]

× 𝑑𝐵
𝑘2 (𝑠) .

(50)

Let 𝑀
1
(𝑡) := ∫

𝑡

0
∑
𝑛

𝑘=1
[𝑎𝑐
𝑘
𝜎
𝑘1
(𝑆
𝑘
− 𝑆
∗

𝑘
) + (𝑚

𝑘
+ 𝑝
𝑘
)𝜎
𝑘1
(𝑆
𝑘
−

𝑆
∗

𝑘
)𝑆
𝑘
]𝑑𝐵
𝑘1
(𝑠), 𝑀

2
(𝑡) := ∫

𝑡

0
∑
𝑛

𝑘=1
[𝑐
𝑘
(𝑎 + 1)𝜎

𝑘2
(𝐼
𝑘
− 𝐼
∗

𝑘
) +

𝑚
𝑘
𝜎
𝑘2
(𝐼
𝑘
−𝐼
∗

𝑘
)𝐼
𝑘
]𝑑𝐵
𝑘2
(𝑠), which are local continuous martin-

gale, and𝑀
1
(0) = 𝑀

2
(0) = 0. Moreover

lim sup
𝑡→∞

⟨𝑀
1
,𝑀
1
⟩
𝑡

𝑡
≤ 8

𝑛

∑

𝑘=1

𝜎
2

𝑘1
[𝑎
2
𝑐
2

𝑘
+ (𝑚
𝑘
+ 𝑝
𝑘
)
2
𝑏
2

𝑘

𝑑2
]

𝑏
2

𝑘

𝑑2

< ∞,

lim sup
𝑡→∞

⟨𝑀
2
,𝑀
2
⟩
𝑡

𝑡
≤ 8

𝑛

∑

𝑘=1

𝜎
2

𝑘2
[𝑐
2

𝑘
(𝑎 + 1)

2
+ 𝑚
2

𝑘

𝑏
2

𝑘

𝑑2
]

𝑏
2

𝑘

𝑑2
< ∞.

(51)

By Lemma A.4 (see [20]), we obtain

lim
𝑡→∞

𝑀
1 (𝑡)

𝑡
= 0, lim

𝑡→∞

𝑀
2 (𝑡)

𝑡
= 0 a.s., (52)

which together with (50) implies

lim inf
𝑡→∞

∫
𝑡

0
𝐹 (𝑠) 𝑑𝑠

𝑡
≥ 0 a.s. (53)

Consequently,

lim sup
𝑡→∞

1

𝑡

𝑛

∑

𝑘=1

∫

𝑡

0

[𝑝
𝑘
𝑑(𝑆
𝑘
− 𝑆
∗

𝑘
)
2
+ 𝑚
𝑘
(𝑑 + 𝜖) (𝐼

𝑘
− 𝐼
∗

𝑘
)
2
] 𝑑𝑠

≤

𝑛

∑

𝑘=1

[(
𝑎𝑐
𝑘
𝑏
𝑘

𝑑
+

(𝑚
𝑘
+ 𝑝
𝑘
) 𝑏
2

𝑘

𝑑2
)𝜎
2

𝑘1

+(
(𝑎 + 1) 𝑐𝑘𝑏𝑘

𝑑
+

𝑚
𝑘
𝑏
2

𝑘

𝑑2
)𝜎
2

𝑘2
] , a.s.

(54)

ThusTheorem 5 is proved.

Remark 6. Theorem 5 shows that the solution of system (5)
fluctuates around the certain level which is relevant to 𝐸

∗ of
system (3) and 𝜎

2

𝑘1
, 𝜎2
𝑘2
, 𝑘 = 1, 2, . . . , 𝑛. The distance between

the solution 𝑋(𝑡) = (𝑆
1
(𝑡), 𝐼
1
(𝑡), . . . , 𝑆

𝑛
(𝑡), 𝐼
𝑛
(𝑡)) and 𝐸

∗ of
system (3) has the following form:

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

𝑋(𝑠) − 𝐸
∗

2
𝑑𝑠 ≤ 𝐶‖𝜎‖

2
, (55)

where 𝐶 is a positive constant and ‖𝜎‖
2
= ∑
𝑛

𝑘=1
(𝜎
2

𝑘1
+ 𝜎
2

𝑘2
).

Although the solution of system (5) does not have stability
as the deterministic system, we can draw a conclusion that
system (5) is persistent on the basis of the result ofTheorem 5,
which also accounts for the fact that the disease is prevalent.

5. Simulations and Conclusions

5.1. Numerical Simulations. In order to confirm the results
above, we numerically simulate the solution of system (5)
with 𝑛 = 50, 𝑏

𝑘
= 0.25, 𝑑 = 0.3, 𝜖 = 0.01, and initial value

𝑆
𝑘
(0) = 0.5, 𝐼

𝑘
(0) = 0.1, 𝑘 = 1, 2, . . . , 50. Using Milstein’s

Higer Order Method [31], we get the discretization equation:

𝑆
𝑘,𝑖+1

= 𝑆
𝑘,𝑖

+ Δ𝑡(𝑏
𝑘
−

2

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘,𝑖
𝐼
𝑗,𝑖

− 𝑑𝑆
𝑘,𝑖
)

+ 𝜎
𝑘1
𝑆
𝑘,𝑖
√Δ𝑡𝜉
𝑘1,𝑖

+
𝜎
2

𝑘1

2
𝑆
𝑘,𝑖
Δ𝑡 (𝜉
2

𝑘1,𝑖
− 1) ,

𝐼
𝑘,𝑖+1

= 𝐼
𝑘,𝑖

+ Δ𝑡(

2

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘,𝑖
𝐼
𝑗,𝑖

− (𝑑 + 𝜖) 𝐼𝑘,𝑖)

+ 𝜎
𝑘2
𝐼
𝑘,𝑖
√Δ𝑡𝜉
𝑘2,𝑖

+
𝜎
2

𝑘2

2
𝐼
𝑘,𝑖
Δ𝑡 (𝜉
2

𝑘2,𝑖
− 1) ,

(56)

where 𝑘 = 1, 2, . . . , 𝑛 and 𝜉
𝑘1,𝑖

, 𝜉
𝑘2,𝑖

, 𝑖 = 1, 2, . . . , 𝑁, are the
independent Gaussian random variables𝑁(0, 1).

From Theorem 3 and Remark 4, it is shown that the
expectations of 𝑆

𝑘
(𝑡), 𝐼
𝑘
(𝑡), 𝑘 = 1, 2, . . . , 𝑛, are converging

under some conditions, and the solution of system (5) will
oscillate around the disease-free equilibrium of system (3). In
Figure 1, we choose parameters 𝜆 = 0.025, 𝜎

𝑘1
= 0.005, and

𝜎
𝑘2

= 0.03, such that 𝑅
0
≤ 1, and in Figures 1(a) and 1(b) we

choose 𝑃(𝑘) = 𝑚
𝑘 exp(−𝑚)/𝑘!, and in Figures 1(c) and 1(d)
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we choose 𝑃(𝑘) = 2𝑚
2
𝑘
−3. From Figure 1, we can see that the

disease-free equilibrium 𝐸
0
of system (3) (imaginary lines)

is globally asymptotically stable and the curves of system (5)
(real lines) always fluctuate around the curves of system (3)
(imaginary lines). From Figure 2, we can see that, due to
the difference of the degree distribution, the critical value of
spread is different.

In Figure 3, parameters 𝜆 = 0.08, 𝜎
𝑘1

= 0.01, and
𝜎
𝑘2

= 0.01 and others are the same as the previous. From
Figure 3, we can see that the position of the equilibrium state
is different due to the difference of the degree distribution.
From Figures 1(d), 2(b), 4(b), and 4(d), we found that the
solution of stochastic system converging to the disease-free
equilibrium is faster than that of the deterministic system
with the increase of noise intensity.

5.2. Conclusions. The numerical simulations illustrate the
mathematical theorems well. Due to the existence of the
noise, the solution of the stochastic system goes around the
solution of the deterministic system.With intensities decreas-
ing, the turbulence intensity is weaker. From numerical
simulations, we have a new discovery. When 𝑅

0
≤ 1, with the

increase of noise intensity, the solution of stochastic system
converging to the disease-free equilibrium is faster than the
deterministic system. This is because of the fact that, when
𝑅
0

≤ 1, the disease will die out after some time. However
in the real world many stochastic factors contributed to the
extinction of the disease.
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We investigate a predator-prey model with dispersal for both predator and prey among n patches; our main purpose is to extend
the global stability criteria by Li and Shuai (2010) on a predator-prey model with dispersal for prey among n patches. By using
the method of constructing Lyapunov functions based on graph-theoretical approach for coupled systems, we derive sufficient
conditions under which the positive coexistence equilibrium of this model is unique and globally asymptotically stable if it exists.

1. Introduction

In the literature of predator-prey population systems, both
continuous reaction-diffusion systems and discrete patchy
models are used to study the spatial heterogeneity [1, 2];
patchy models are often used to describe directed movement
of population among niches or migration among habitats. It
is naturally interesting problem to consider how the dispersal
or migration of predator and prey influences the global
dynamics of the interacting ecological system; thus patchy
predator-prey model received lots of attentions [1, 3–6].

Since the discrete patchy models usually involve high-
dimensional system, it is rather mathematically challenging
to study the uniqueness and stability of the positive equilib-
rium of the predator-prey patchy models, and the available
global dynamics criteria in the literatures mainly focus on
the special case of two-patch [3] or on the permanence and
existence of periodic solutions [4–6].

Recently, Li and Shuai [7] considered the following
predator-prey model with dispersal for prey among 𝑛-patch:

̇𝑥
𝑖
= 𝑥
𝑖
(𝑟
𝑖
− 𝑏
𝑖
𝑥
𝑖
− 𝑒
𝑖
𝑦
𝑖
) +

𝑛

∑

𝑗=1

𝑑
𝑥

𝑖𝑗
(𝑥
𝑗
− 𝛼
𝑥

𝑖𝑗
𝑥
𝑖
) ,

̇𝑦
𝑖
= 𝑦
𝑖
(−𝛾
𝑖
− 𝛿
𝑖
𝑦
𝑖
+ 𝜀
𝑖
𝑥
𝑖
) , 𝑖 = 1, . . . , 𝑛.

(1)

Here, 𝑥
𝑖
, 𝑦
𝑖
denote the densities of prey and predators on

the patch 𝑖, respectively. The parameters 𝑟
𝑖
, 𝑏
𝑖
and 𝛾

𝑖
, 𝛿
𝑖

in the model are nonnegative constants. What is more, the
parameters 𝑒

𝑖
and 𝜀

𝑖
in the model are positive constants.

Constant 𝑑𝑥
𝑖𝑗
is the dispersal rate of the prey from patch 𝑗 to

patch 𝑖 and constants 𝛼𝑥
𝑖𝑗
can be selected to represent different

boundary conditions in the continuous diffusion case.
In [7], the authors studied the global stability of the coex-

istence equilibrium of system (1), by considering (1) as a cou-
pled 𝑛 predator-prey submodels on networks. Using results
from graph theory and a developed systematic approach that
allows one to construct global Lyapunov functions for large-
scale coupled systems from building blocks of individual
vertex systems, Li and Shuai [7] obtain the following sharp
results for (1).

Proposition 1 (see [7, Theorem 6.1]). Assume that (𝑑𝑥
𝑖𝑗
)
𝑛×𝑛

is
irreducible. If there exists 𝑘 such that 𝑏

𝑘
> 0 or 𝛿

𝑘
> 0, then,

whenever a positive equilibrium 𝐸
∗
exists in (1), it is unique

and globally asymptotically stable in the positive cone 𝑅+
2𝑛
.

Although well-improved results have been seen in the
above work on dispersal predator-prey model, such models
are not well studied yet in the sense that model (1) assumes
no dispersal for predator, which is not realistic in many cases
[1, 3]. Thus it is interesting for us to consider the global

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 176493, 6 pages
http://dx.doi.org/10.1155/2014/176493

http://dx.doi.org/10.1155/2014/176493


2 Abstract and Applied Analysis

stability of the positive equilibrium for predator-prey model
with dispersal for both predator and prey.

Motivated by the above work in [7], in this paper we
generalize model (1) into the following predator-prey model
with dispersal for both predator and prey:

̇𝑥
𝑖
= 𝑥
𝑖
(𝑟
𝑖
− 𝑏
𝑖
𝑥
𝑖
− 𝑒
𝑖
𝑦
𝑖
) +

𝑛

∑

𝑗=1

𝑑
𝑥

𝑖𝑗
(𝑥
𝑗
− 𝛼
𝑥

𝑖𝑗
𝑥
𝑖
)

̇𝑦
𝑖
= 𝑦
𝑖
(−𝛾
𝑖
− 𝛿
𝑖
𝑦
𝑖
+ 𝜀
𝑖
𝑥
𝑖
) +

𝑛

∑

𝑗=1

𝑑
𝑦

𝑖𝑗
(𝑦
𝑗
− 𝛼
𝑦

𝑖𝑗
𝑦
𝑖
) ,

𝑖 = 1, . . . , 𝑛.

(2)

Here, the parameters 𝑟
𝑖
, 𝑏
𝑖
, 𝑒
𝑖
, 𝛾
𝑖
, 𝛿
𝑖
, and 𝜀

𝑖
are defined the

same as those in (1). The nonnegative constants 𝑑𝑦
𝑖𝑗
, 𝛼𝑦
𝑖𝑗
, and

𝑑
𝑦

𝑖𝑗
are the dispersal rate of the predators from patch 𝑗 to

patch 𝑖, and 𝛼𝑦
𝑖𝑗
represents the different boundary conditions

in the continuous diffusion case. Clearly, when 𝑑𝑦
𝑖𝑗
= 0 for

all 𝑖, 𝑗 = 1, . . . , 𝑛, model (2) directly reduces to (1); thus our
model (2) directly extends model (1) in [7].

The main purpose of this paper is to obtain the global
stability for the coexistence equilibriumof (2).Wewill engage
the techniques of constructing Lyapunov function based on
graph-theory which were well developed by Li et al. in [7–9];
we refer to [10–12] for recent applications. Our study seems
to be the first attempt in applying the network method for
coupled network systems of differential equations to address
the predator-prey systemwith dispersal for both predator and
prey among patches. Networkedmethod has been extensively
investigated in the several fields. For example, multiagent
systems can be seen as complicated network systems. A lot
of researchers take their interest in flocking and consensus of
themultiagent systems [13–17].What ismore, neural network
systems can be seen as complicated network systems. Over
the past few decades, various neural network models have
been extensively investigated [18–20].

A mathematical description of a network is a directed
graph consisting of vertices and directed arcs connecting
them.At each vertex, the local dynamics are given by a system
of differential equations called the vertex system.Thedirected
arcs indicate interconnections and interactions among vertex
systems.

A digraph 𝐺 with 𝑛 vertices for the system (2) can be
constructed as follows. Each vertex represents a patch and
(𝑗, 𝑖) ∈ 𝐸(𝐺) if and only if 𝑑𝑥

𝑖𝑗
, 𝑑
𝑦

𝑖𝑗
> 0. At each vertex of 𝐺,

the vertex dynamics is described by a predator-prey system.
The coupling among these predator-prey systems is provided
by dispersal of predator and prey among patches.

This paper is organized as follows. In the next section,
we introduce preliminaries results on graph-theory based on
coupled network models. In Section 3, we obtain the main
result of system (2). This is followed by a brief conclusion
section.

2. Preliminaries

In this section, we will list some definitions and Theorems
that we will use in the later sections.

A directed graph or digraph𝐺 = (𝑉, 𝐸) contains a set𝑉 =

{1, 2, . . . , 𝑛} of vertices and a set 𝐸 of arcs (𝑖, 𝑗) leading from
initial vertex 𝑖 to terminal vertex 𝑗. A subgraph𝐻 of 𝐺 is said
to be spanning if𝐻 and𝐺 have the same vertex set. A digraph
𝐺 is weighted if each arc (𝑗, 𝑖) is assigned a positive weight.
𝑎
𝑖𝑗
> 0 if and only if there exists an arc from vertex 𝑗 to vertex

𝑖 in 𝐺.
The weight 𝑤(𝐻) of a subgraph 𝐻 is the product of the

weights on all its arcs. A directed path 𝑃 in 𝐺 is a subgraph
with distinct vertices 𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑚
such that its set of arcs is

{(𝑖
𝑘
, 𝑖
𝑘+1
) : 𝑘 = 1, 2, . . . , 𝑚}. If 𝑖

𝑚
= 𝑖
1
, we call 𝑃 a directed

cycle.
A connected subgraph 𝑇 is a tree if it contains no cycles,

directed or undirected.
A tree 𝑇 is rooted at vertex 𝑖, called the root, if 𝑖 is not

a terminal vertex of any arcs, and each of the remaining
vertices is a terminal vertex of exactly one arc. A subgraph
𝑄 is unicyclic if it is a disjoint union of rooted trees whose
roots form a directed cycle.

Given a weighted digraph 𝐺 with 𝑛 vertices, define the
weight matrix 𝐴 = (𝑎

𝑖𝑗
)
𝑛×𝑛

whose entry 𝑎
𝑖𝑗
equals the weight

of arc (𝑗, 𝑖) if it exists, and 0 otherwise. For our purpose, we
denote a weighted digraph as (𝐺, 𝐴). A digraph 𝐺 is strongly
connected if for any pair of distinct vertices, there exists a
directed path from one to the other. A weighted digraph
(𝐺, 𝐴) is strongly connected if and only if the weight matrix
𝐴 is irreducible.

The Laplacian matrix of (𝐺, 𝐴) is denoted by 𝐿. Let 𝑐
𝑖

denote the cofactor of the 𝑖th diagonal element of 𝐿. The
following results are listed as follows from [7].

Proposition 2 (see [7]). Assume 𝑛 ≥ 2. Then

𝑐
𝑖
= ∑

T∈𝑇
𝑖

𝑤 (T) , (3)

where 𝑇
𝑖
is the set of all spanning trees T of (𝐺, 𝐴) that are

rooted at vertex 𝑖, and 𝑤(𝑇) is the weight of 𝑇. In particular,
if (𝐺, 𝐴) is strongly connected, then 𝑐

𝑖
> 0 for 1 ≤ 𝑖 ≤ 𝑛.

Theorem 3 (see [7]). Assume 𝑛 ≥ 2. Let 𝑐
𝑖
be given in

Proposition 2. Then the following identity holds:

𝑛

∑

𝑖,𝑗=1

𝑐
𝑖
𝑎
𝑖𝑗
𝐹
𝑖𝑗
(𝑥
𝑖
, 𝑥
𝑗
) = ∑

𝑄∈Q
𝑤 (𝑄) ∑

(𝑠,𝑟)∈𝐸(𝐶𝑄)

𝐹
𝑟𝑠
(𝑥
𝑟
, 𝑥
𝑠
) , (4)

where 𝐹
𝑖𝑗
(𝑥
𝑖
, 𝑥
𝑗
), 1 ≤ 𝑖, 𝑗 ≤ 𝑛, are arbitrary functions, Q is the

set of all spanning unicyclic graphs of (𝐺, 𝐴),𝑤(𝑄) is the weight
of 𝑄, and 𝐶

𝑄
denotes the directed cycle of 𝑄.

Given a network represented by digraph𝐺with 𝑛 vertices,
𝑛 ≥ 2, a coupled system can be built on 𝐺 by assigning each
vertex its own internal dynamics and then coupling these
vertex dynamics based on directed arcs in 𝐺. Assume that
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each vertex dynamics is described by a system of differential
equations

𝑢


𝑖
= 𝑓
𝑖
(𝑡, 𝑢
𝑖
) , (5)

where 𝑢
𝑖
∈ Rmi and 𝑓

𝑖
: R × Rmi → Rmi . Let 𝑔

𝑖𝑗
: R × Rmi ×

Rmj → Rmi represent the influence of vertex 𝑗 on vertex 𝑖,
and let 𝑔

𝑖𝑗
≡ 0 if there exists no arc from 𝑗 to 𝑖 in 𝐺. Then we

obtain the following coupled system on graph 𝐺:

𝑢


𝑖
= 𝑓
𝑖
(𝑡, 𝑢
𝑖
) +

𝑛

∑

𝑗=1

𝑔
𝑖𝑗
(𝑡, 𝑢
𝑖
, 𝑢
𝑗
) , 𝑖 = 1, 2, . . . , 𝑛. (6)

Here functions 𝑓
𝑖
, 𝑔
𝑖𝑗
are such that initial-value problems

have unique solutions.
We assume that each vertex system has a globally stable

equilibrium and possesses a global Lyapunov function 𝑉
𝑖
.

Theorem 4 (see [7]). Assume that the following assumptions
are satisfied.

(1) There exist functions 𝑉
𝑖
(𝑡, 𝑢
𝑖
), 𝐹
𝑖𝑗
(𝑡, 𝑢
𝑖
, 𝑢
𝑗
) and con-

stants 𝑎
𝑖𝑗
≥ 0 such that

𝑉
𝑖
(𝑡, 𝑢
𝑖
) ≤

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
𝐹
𝑖𝑗
(𝑡, 𝑢
𝑖
, 𝑢
𝑗
) , 𝑡 > 0, 𝑢

𝑖
∈ 𝐷
𝑖
. (7)

(2) Along each directed cycle 𝐶 of the weighted digraph
(𝐺, 𝐴), 𝐴 = (𝑎

𝑖𝑗
),

∑

(𝑠,𝑟)∈𝐸(𝐶)

𝐹
𝑟𝑠
(𝑡, 𝑢
𝑟
, 𝑢
𝑠
) ≤ 0. (8)

(3) Constants 𝑐
𝑖
are given by the cofactor of the 𝑖th diagonal

element of 𝐿.

Then the function 𝑉(𝑡, 𝑢) = ∑𝑛
𝑖=1
𝑐
𝑖
𝑉
𝑖
(𝑡, 𝑢
𝑖
) satisfies 𝑉(𝑡, 𝑢) ≤ 0

for 𝑡 > 0, 𝑢 ∈ 𝐷; namely, 𝑉 is a Lyapunov function for the
system (6).

3. Main Results

In this section, the stability for the positive equilibrium of
the 𝑛-patch predator-preymodel (2) is considered.We regard
(2) as a coupled system on a network. Using a Lyapunov
function for the 𝑛-patch predator-prey model with dispersal
and Theorem 4 of Section 2, we will establish that a positive
equilibrium of the 𝑛-patch predator-prey model (2) with
dispersal is globally asymptotically stable in R2𝑛

+
as long as it

exists.
First of all, we will give a lemma for the system (2).

Lemma 5. The set R2𝑛
+

is the positive invariant set for the
system (2).

ThenextTheorem gives the globally asymptotically stable
condition for the positive equilibrium of the system (2).

Theorem 6. Assume that a positive equilibrium 𝐸
∗

=

(𝑥
∗

1
, 𝑦
∗

1
, 𝑥
∗

2
, 𝑦
∗

2
, . . . , 𝑥

∗

𝑛
, 𝑦
∗

𝑛
) exists for the system (2) and the

following assumptions hold.

(1) Dispersal matrixes (𝑑𝑥
𝑖𝑗
)
𝑛×𝑛

, (𝑑𝑦
𝑖𝑗
)
𝑛×𝑛

are irreducible;
moreover there exists 𝑘 such that 𝑏

𝑘
> 0 or 𝛿

𝑘
> 0.

(2) There exists nonnegative constant 𝜆 such that 𝜆 ⋅

𝑑
𝑥

𝑖𝑗
𝜀
𝑖
𝑥
∗

𝑗
= 𝑑
𝑦

𝑖𝑗
𝑒
𝑖
𝑦
∗

𝑗
for 1 ≤ 𝑖, 𝑗 ≤ 𝑛, or 𝑑𝑥

𝑖𝑗
𝜀
𝑖
𝑥
∗

𝑗
=

𝜆 ⋅ 𝑑
𝑦

𝑖𝑗
𝑒
𝑖
𝑦
∗

𝑗
for 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

Then, the positive equilibrium 𝐸
∗ is unique and globally

asymptotically stable in 𝑅2𝑛
+
.

Proof. Let

𝑍
1

𝑖
(𝑥
𝑖
, 𝑦
𝑖
) = 𝑟
𝑖
− 𝑏
𝑖
𝑥
𝑖
− 𝑒
𝑖
𝑦
𝑖
,

𝑍
2

𝑖
(𝑥
𝑖
, 𝑦
𝑖
) = −𝛾

𝑖
− 𝛿
𝑖
𝑦
𝑖
+ 𝜀
𝑖
𝑥
𝑖
.

(9)

In the sequel, we have

𝑍
1

𝑖
(𝑥
∗

𝑖
, 𝑦
∗

𝑖
) = −

1

𝑥
∗

𝑖

𝑛

∑

𝑗=1

𝑑
𝑥

𝑖𝑗
(𝑥
∗

𝑗
− 𝛼
𝑥

𝑖𝑗
𝑥
∗

𝑖
) ,

𝑍
2

𝑖
(𝑥
∗

𝑖
, 𝑦
∗

𝑖
) = −

1

𝑦
∗

𝑖

𝑛

∑

𝑗=1

𝑑
𝑦

𝑖𝑗
(𝑦
∗

𝑗
− 𝛼
𝑦

𝑖𝑗
𝑦
∗

𝑖
) .

(10)

Set Lyapunov functions as

𝑉
𝑖
(𝑥
𝑖
, 𝑦
𝑖
) = 𝜀
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
− 𝑥
∗

𝑖
ln
𝑥
𝑖

𝑥
∗

𝑖

)

+ 𝑒
𝑖
(𝑦
𝑖
− 𝑦
𝑖
− 𝑦
∗

𝑖
ln
𝑦
𝑖

𝑦
∗

𝑖

) .

(11)

Direct differentiating 𝑉
𝑖
along the system (2), we have

𝑉
𝑖
(𝑥
𝑖
, 𝑦
𝑖
) = 𝜀
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
) [𝑍
1

𝑖
(𝑥
𝑖
, 𝑦
𝑖
) − 𝑍
1

𝑖
(𝑥
∗

𝑖
, 𝑦
∗

𝑖
)]

+ 𝑒
𝑖
(𝑦
𝑖
− 𝑦
∗

𝑖
) [𝑍
2

𝑖
(𝑥
𝑖
, 𝑦
𝑖
) − 𝑍
2

𝑖
(𝑥
∗

𝑖
, 𝑦
∗

𝑖
)]

+ 𝜀
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
) 𝑍
1

𝑖
(𝑥
∗

𝑖
, 𝑦
∗

𝑖
)

+
𝜀
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
)

𝑥
∗

𝑖

𝑛

∑

𝑗=1

𝑑
𝑥

𝑖𝑗
(𝑥
𝑗
− 𝛼
𝑥

𝑖𝑗
𝑥
𝑖
)

+ 𝑒
𝑖
(𝑦
𝑖
− 𝑦
∗

𝑖
) 𝑍
2

𝑖
(𝑥
∗

𝑖
, 𝑦
∗

𝑖
)

+
𝑒
𝑖
(𝑦
𝑖
− 𝑦
∗

𝑖
)

𝑦
∗

𝑖

𝑛

∑

𝑗=1

𝑑
𝑦

𝑖𝑗
(𝑦
𝑗
− 𝛼
𝑦

𝑖𝑗
𝑦
𝑖
)

= 𝜀
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
) [𝑍
1

𝑖
(𝑥
𝑖
, 𝑦
𝑖
) − 𝑍
1

𝑖
(𝑥
∗

𝑖
, 𝑦
∗

𝑖
)]

+ 𝑒
𝑖
(𝑦
𝑖
− 𝑦
∗

𝑖
) [𝑍
2

𝑖
(𝑥
𝑖
, 𝑦
𝑖
) − 𝑍
2

𝑖
(𝑥
∗

𝑖
, 𝑦
∗

𝑖
)]

+

𝑛

∑

𝑗=1

𝑑
𝑥

𝑖𝑗
𝜀
𝑖
𝑥
∗

𝑗
𝐹
𝑥

𝑖𝑗
(𝑥
𝑖
, 𝑥
𝑗
) +

𝑛

∑

𝑗=1

𝑑
𝑦

𝑖𝑗
𝑒
𝑖
𝑦
∗

𝑗
𝐹
𝑦

𝑖𝑗
(𝑦
𝑖
, 𝑦
𝑗
)
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= −𝜀
𝑖
𝑏
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
)
2
− 𝜀
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
) 𝑒
𝑖
(𝑦
𝑖
− 𝑦
∗

𝑖
)

− 𝑒
𝑖
𝛿
𝑖
(𝑦
𝑖
− 𝑦
∗

𝑖
)
2
+ 𝑒
𝑖
(𝑦
𝑖
− 𝑦
∗

𝑖
) 𝜀
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
)

+

𝑛

∑

𝑗=1

𝑑
𝑥

𝑖𝑗
𝜀
𝑖
𝑥
∗

𝑗
𝐹
𝑥

𝑖𝑗
(𝑥
𝑖
, 𝑥
𝑗
) +

𝑛

∑

𝑗=1

𝑑
𝑦

𝑖𝑗
𝑒
𝑖
𝑦
∗

𝑗
𝐹
𝑦

𝑖𝑗
(𝑦
𝑖
, 𝑦
𝑗
)

= −𝜀
𝑖
𝑏
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
)
2
− 𝑒
𝑖
𝛿
𝑖
(𝑦
𝑖
− 𝑦
∗

𝑖
)
2

+

𝑛

∑

𝑗=1

𝑑
𝑥

𝑖𝑗
𝜀
𝑖
𝑥
∗

𝑗
𝐹
𝑥

𝑖𝑗
(𝑥
𝑖
, 𝑥
𝑗
) +

𝑛

∑

𝑗=1

𝑑
𝑦

𝑖𝑗
𝑒
𝑖
𝑦
∗

𝑗
𝐹
𝑦

𝑖𝑗
(𝑦
𝑖
, 𝑦
𝑗
) ,

(12)

where

𝐹
𝑥

𝑖𝑗
(𝑥
𝑖
, 𝑥
𝑗
) =

𝑥
𝑗

𝑥
∗

𝑗

−
𝑥
𝑖

𝑥
∗

𝑖

+ 1 −

𝑥
∗

𝑖
𝑥
𝑗

𝑥
𝑖
𝑥
∗

𝑗

,

𝐹
𝑦

𝑖𝑗
(𝑦
𝑖
, 𝑦
𝑗
) =

𝑦
𝑗

𝑦
∗

𝑗

−
𝑦
𝑖

𝑦
∗

𝑖

+ 1 −

𝑦
∗

𝑖
𝑦
𝑗

𝑦
𝑖
𝑦
∗

𝑗

.

(13)

Set 𝑎𝑥
𝑖𝑗
= 𝑑
𝑥

𝑖𝑗
𝜀
𝑖
𝑥
∗

𝑗
, 𝑏𝑦
𝑖𝑗
= 𝑑
𝑦

𝑖𝑗
𝑒
𝑖
𝑦
∗

𝑗
,𝐴 = (𝑎

𝑥

𝑖𝑗
)
𝑛×𝑛

, and 𝐵 = (𝑏𝑦
𝑖𝑗
)
𝑛×𝑛

.
One has

𝐺
𝑥

𝑖
(𝑥
𝑖
) = −

𝑥
𝑖

𝑥
∗

𝑖

+ ln
𝑥
𝑖

𝑥
∗

𝑖

, 𝐺
𝑦

𝑖
(𝑦
𝑖
) = −

𝑦
𝑖

𝑦
∗

𝑖

+ ln
𝑦
𝑖

𝑦
∗

𝑖

. (14)

Next, we have two cases to consider.

Case I. 𝑑𝑥
𝑖𝑗
𝜀
𝑖
𝑥
∗

𝑗
= 𝜆 ⋅ 𝑑

𝑦

𝑖𝑗
𝑒
𝑖
𝑦
∗

𝑗
for 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

Case II. 𝜆 ⋅ 𝑑𝑥
𝑖𝑗
𝜀
𝑖
𝑥
∗

𝑗
= 𝑑
𝑦

𝑖𝑗
𝑒
𝑖
𝑦
∗

𝑗
for 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

For Case I, from the fact that 𝑎𝑥
𝑖𝑗
= 𝑑
𝑥

𝑖𝑗
𝜀
𝑖
𝑥
∗

𝑗
and 𝑏𝑦

𝑖𝑗
=

𝑑
𝑦

𝑖𝑗
𝑒
𝑖
𝑦
∗

𝑗
, we obtain that 𝑎𝑥

𝑖𝑗
= 𝜆𝑏
𝑦

𝑖𝑗
; thus 𝐴 = 𝜆 ⋅ 𝐵. Then we

obtain that

𝑉
𝑖
(𝑥
𝑖
, 𝑦
𝑖
) ≤ −𝜀

𝑖
𝑏
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
)
2
− 𝑒
𝑖
𝛿
𝑖
(𝑦
𝑖
− 𝑦
∗

𝑖
)
2

+

𝑛

∑

𝑗=1

𝑎
𝑥

𝑖𝑗
(𝐺
𝑥

𝑖
(𝑥
𝑖
) − 𝐺
𝑥

𝑗
(𝑥
𝑗
))

+

𝑛

∑

𝑗=1

𝑎
𝑥

𝑖𝑗
(1 −

𝑥
∗

𝑖
𝑥
𝑗

𝑥
𝑖
𝑥
∗

𝑗

+ ln
𝑥
∗

𝑖
𝑥
𝑗

𝑥
𝑖
𝑥
∗

𝑗

)

+

𝑛

∑

𝑗=1

𝑏
𝑦

𝑖𝑗
(𝐺
𝑦

𝑖
(𝑦
𝑖
) − 𝐺
𝑦

𝑗
(𝑦
𝑗
))

+

𝑛

∑

𝑗=1

𝑏
𝑦

𝑖𝑗
(1 −

𝑦
∗

𝑖
𝑦
𝑗

𝑦
𝑖
𝑦
∗

𝑗

+ ln
𝑦
∗

𝑖
𝑦
𝑗

𝑦
𝑖
𝑦
∗

𝑗

)

≤ −𝜀
𝑖
𝑏
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
)
2
− 𝑒
𝑖
𝛿
𝑖
(𝑦
𝑖
− 𝑦
∗

𝑖
)
2

+ 𝜆

𝑛

∑

𝑗=1

𝑏
𝑦

𝑖𝑗
(𝐺
𝑥

𝑖
(𝑥
𝑖
) − 𝐺
𝑥

𝑗
(𝑥
𝑗
))

+ 𝜆

𝑛

∑

𝑗=1

𝑏
𝑦

𝑖𝑗
(1 −

𝑥
∗

𝑖
𝑥
𝑗

𝑥
𝑖
𝑥
∗

𝑗

+ ln
𝑥
∗

𝑖
𝑥
𝑗

𝑥
𝑖
𝑥
∗

𝑗

)

+

𝑛

∑

𝑗=1

𝑏
𝑦

𝑖𝑗
(𝐺
𝑦

𝑖
(𝑦
𝑖
) − 𝐺
𝑦

𝑗
(𝑦
𝑗
))

+

𝑛

∑

𝑗=1

𝑏
𝑦

𝑖𝑗
(1 −

𝑦
∗

𝑖
𝑦
𝑗

𝑦
𝑖
𝑦
∗

𝑗

+ ln
𝑦
∗

𝑖
𝑦
𝑗

𝑦
𝑖
𝑦
∗

𝑗

) .

(15)

Let 𝑐𝑦
𝑖
denote the cofactor of the 𝑖th diagonal element of the

matrix 𝐵. From the irreducible character of matrix 𝐵, we have
𝑐
𝑦

𝑖
> 0.
Furthermore, set Lyapunov functions as

𝑉 (𝑥, 𝑦) = 𝑉 (𝑥
1
, 𝑦
1
, . . . , 𝑥

𝑛
, 𝑦
𝑛
)

=

𝑛

∑

𝑖=1

𝑐
𝑦

𝑖
𝑉
𝑥

𝑖
(𝑥
𝑖
) +

𝑛

∑

𝑖=1

𝑐
𝑦

𝑖
𝑉
𝑦

𝑖
(𝑦
𝑖
) .

(16)

Then differentiating 𝑉 along the solution of the system (2),
we obtain that

𝑉 (𝑥, 𝑦) ≤ −

𝑛

∑

𝑖=1

𝑐
𝑦

𝑖
𝜀
𝑖
𝑏
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
)
2
−

𝑛

∑

𝑖=1

𝑐
𝑦

𝑖
𝑒
𝑖
𝛿
𝑖
(𝑦
𝑖
− 𝑦
∗

𝑖
)
2

+

𝑛

∑

𝑖,𝑗=1

𝜆𝑏
𝑦

𝑖𝑗
𝑐
𝑦

𝑖
(𝐺
𝑥

𝑖
(𝑥
𝑖
) − 𝐺
𝑥

𝑗
(𝑥
𝑗
))

+

𝑛

∑

𝑖,𝑗=1

𝑏
𝑦

𝑖𝑗
𝑐
𝑦

𝑖
(𝐺
𝑦

𝑖
(𝑦
𝑖
) − 𝐺
𝑦

𝑗
(𝑦
𝑗
)) .

(17)

Let 𝐺 represent the directed graph associated with matrix
𝐵. Then 𝐺 has vertices 1, 2, . . . , 𝑛 with a directed arc (𝑘, 𝑗)
from 𝑘 to 𝑗 if and only if 𝑏𝑦

𝑘𝑗
̸=0. Then 𝐸(𝐺) is the set of all

directed arcs of 𝐺. By Kirchhoff ’s Matrix-Tree Theorem (see
Proposition 2) we know that 𝜐

𝑘
= 𝐶
𝑘𝑘

can be expressed as
a sum of weights of all directed spanning subtrees 𝑇 of 𝐺
that are rooted at vertex 𝑘. Thus, each term in 𝜐

𝑘
𝑎
𝑘𝑗

is the
weight 𝜔(𝑄) of a unicyclic subgraph 𝑄 of 𝐺 obtained from
such a tree 𝑇 by adding a directed arc (𝑘, 𝑗) from the root
𝑘 to vertex 𝑗. Because the arc (𝑘, 𝑗) is a part of the unique
cycle 𝐶𝑄 of 𝑄 and that the same unicyclic graph 𝑄 can be
formed when each arc of 𝐶𝑄 is added to a corresponding
rooted tree 𝑇, then the double sum can be expressed as a sum
over all unicyclic subgraphs 𝑄 containing vertices 1, 2, . . . , 𝑛.
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Therefore, following from the irreducible character of matrix
𝐵 andTheorem 2.3 in [7], we obtain

𝑛

∑

𝑖,𝑗=1

𝜆𝑏
𝑦

𝑖𝑗
𝑐
𝑦

𝑖
(𝐺
𝑥

𝑖
(𝑥
𝑖
) − 𝐺
𝑥

𝑗
(𝑥
𝑗
)) = 0,

𝑛

∑

𝑖,𝑗=1

𝑏
𝑦

𝑖𝑗
𝑐
𝑦

𝑖
(𝐺
𝑦

𝑖
(𝑦
𝑖
) − 𝐺
𝑦

𝑗
(𝑦
𝑗
)) = 0.

(18)

Combining with the fact that 1 − 𝑎 + ln 𝑎 ≤ 0, therefore we
have

𝑉 (𝑥, 𝑦) ≤ 0. (19)

When we consider 𝑉(𝑥, 𝑦) = 0, by condition 1, there exists
𝑘 ∈ 𝑁

+
such that

(𝑥
𝑘
− 𝑥
∗

𝑘
)
2
= 0 or (𝑦

𝑘
− 𝑦
∗

𝑘
)
2
= 0. (20)

It means that 𝑥
𝑘
= 𝑥
∗

𝑘
or 𝑦
𝑘
= 𝑦
∗

𝑘
.

If 𝑖 and 𝑘 can be connected with an arc from 𝑘 to 𝑖 in 𝐺,
then we have 𝑎𝑦

𝑖𝑘
> 0 and 𝑏𝑦

𝑖𝑘
> 0. Furthermore,

1 −
𝑥
∗

𝑖
𝑥
𝑘

𝑥
𝑖
𝑥
∗

𝑘

+ ln
𝑥
∗

𝑖
𝑥
𝑘

𝑥
𝑖
𝑥
∗

𝑘

= 0,

1 −
𝑦
∗

𝑖
𝑦
𝑘

𝑦
𝑖
𝑦
∗

𝑘

+ ln
𝑦
∗

𝑖
𝑦
𝑘

𝑦
𝑖
𝑦
∗

𝑘

= 0.

(21)

Because of 1 − 𝑎 + ln 𝑎 ≤ 0 and 1 − 𝑎 + ln 𝑎 = 0,⇔ 𝑎 = 0. we
deduce that

𝑥
𝑖

𝑥
∗

𝑖

=
𝑥
𝑘

𝑥
∗

𝑘

,
𝑦
𝑖

𝑦
∗

𝑖

=
𝑦
𝑘

𝑦
∗

𝑘

. (22)

From𝑥
𝑘
= 𝑥
∗

𝑘
, or𝑦
𝑘
= 𝑦
∗

𝑘
, we obtain that𝑥

𝑖
= 𝑥
∗

𝑖
and𝑦
𝑖
/𝑦
∗

𝑖
=

𝑦
𝑘
/𝑦
∗

𝑘
or 𝑦
𝑖
= 𝑦
∗

𝑖
and 𝑥

𝑖
/𝑥
∗

𝑖
= 𝑥
𝑘
/𝑥
∗

𝑘
.

By condition 1 and the definition of matrixes 𝐴, 𝐵, we get
that𝐵 are irreducible. By strong connectivity of𝐺, there exists
a directed path 𝑃 from any 𝑖 to 𝑘. Then we have that, for any
𝑖 = 1, 2, . . . , 𝑛, there must be

𝑥
𝑖
= 𝑥
∗

𝑖
,

𝑦
𝑖

𝑦
∗

𝑖

= 𝜇, 𝜇 ≥ 0, (23)

or for any 𝑖 = 1, 2, . . . , 𝑛, there must be

𝑦
𝑖
= 𝑦
∗

𝑖
,

𝑥
𝑖

𝑥
∗

𝑖

= 𝜇, 𝜇 ≥ 0. (24)

Next, we will prove that the largest compact invariant subset
of {(𝑥, 𝑦) | 𝑉(𝑥, 𝑦) = 0} is the singleton {𝐸∗}.

We only consider the case that

𝑥
𝑖
= 𝑥
∗

𝑖
,

𝑦
𝑖

𝑦
∗

𝑖

= 𝜇, 𝑖 = 1, 2, . . . , 𝑛, 𝜇 ≥ 0. (25)

The case that

𝑦
𝑖
= 𝑦
∗

𝑖
,

𝑥
𝑖

𝑥
∗

𝑖

= 𝜇, 𝑖 = 1, 2, . . . , 𝑛, 𝜇 ≥ 0 (26)

is similar to this case. So we omit it.

If 𝜇 = 0, we have 𝑦
𝑖
= 0 for any 𝑖 = 1, 2, . . . , 𝑛, and then

we have

𝑥
∗

𝑖
(𝑟
𝑖
− 𝑏
𝑖
𝑥
∗

𝑖
) +

𝑛

∑

𝑗=1

𝑑
𝑥

𝑖𝑗
(𝑥
∗

𝑗
− 𝛼
𝑥

𝑖𝑗
𝑥
∗

𝑖
) = 0, (27)

which contradicts to the fact that

𝑥
∗

𝑖
(𝑟
𝑖
− 𝑏
𝑖
𝑥
∗

𝑖
− 𝑒
𝑖
𝑦
∗

𝑖
) +

𝑛

∑

𝑗=1

𝑑
𝑥

𝑖𝑗
(𝑥
∗

𝑗
− 𝛼
𝑥

𝑖𝑗
𝑥
∗

𝑖
) = 0. (28)

If 𝜇 > 0 and 𝜇 ̸=1, we have 𝑦
𝑖
= 𝜇𝑦
∗

𝑖
for any 𝑖 = 1, 2, . . . , 𝑛,

and then we have

𝑥
∗

𝑖
(𝑟
𝑖
− 𝑏
𝑖
𝑥
∗

𝑖
− 𝑒
𝑖
𝜇𝑦
∗

𝑖
) +

𝑛

∑

𝑗=1

𝑑
𝑥

𝑖𝑗
(𝑥
∗

𝑗
− 𝛼
𝑥

𝑖𝑗
𝑥
∗

𝑖
) = 0, (29)

which also contradicts to the fact that

𝑥
∗

𝑖
(𝑟
𝑖
− 𝑏
𝑖
𝑥
∗

𝑖
− 𝑒
𝑖
𝑦
∗

𝑖
) +

𝑛

∑

𝑗=1

𝑑
𝑥

𝑖𝑗
(𝑥
∗

𝑗
− 𝛼
𝑥

𝑖𝑗
𝑥
∗

𝑖
) = 0. (30)

Therefore, we obtain that 𝜇 = 1, which means

𝑥
𝑖
= 𝑥
∗

𝑖
, 𝑦
𝑖
= 𝑦
∗

𝑖
, 𝑖 = 1, 2, . . . , 𝑛. (31)

Namely, we get that the largest compact invariant subset of
{(𝑥, 𝑦) | 𝑉(𝑥, 𝑦) = 0} is the singleton {𝐸

∗
}. Therefore,

by the LaSalle Invariance Principle ([21]), 𝐸∗ is globally
asymptotically stable in R2𝑛

+
.

With the similar arguments to the Case I, we can prove
that 𝐸∗ is globally asymptotically stable in R2𝑛

+
for Case II.

This completes the proof.

Remark 7. Theorem 6 is applicable to model (1): consider
model (2) with 𝑑𝑦

𝑖𝑗
= 0, 𝑖, 𝑗 = 1, . . . , 𝑛, and let 𝜆 = 0; thus

Theorem 6 directly reduces to Proposition 1 by Li and Shuai
[7] for (1).

By Theorem 6 and similar arguments to Remark 7,
we directly have the following global stability theorem for
the predator-prey model with discrete dispersal of predator
among patches.

Corollary 8. Consider the model

̇𝑥
𝑖
= 𝑥
𝑖
(𝑟
𝑖
− 𝑏
𝑖
𝑥
𝑖
− 𝑒
𝑖
𝑦
𝑖
) ,

̇𝑦
𝑖
= 𝑦
𝑖
(−𝛾
𝑖
− 𝛿
𝑖
𝑦
𝑖
+ 𝜀
𝑖
𝑥
𝑖
) +

𝑛

∑

𝑗=1

𝑑
𝑦

𝑖𝑗
(𝑦
𝑗
− 𝛼
𝑦

𝑖𝑗
𝑦
𝑖
) ,

𝑖 = 1, . . . , 𝑛.

(32)

Assume that the matrix (𝑑𝑦
𝑖𝑗
)
𝑛×𝑛

is irreducible. If there exists
𝑘 such that 𝑏

𝑘
> 0 or 𝛿

𝑘
> 0; then, whenever a

positive equilibrium 𝐸
∗
exists in (32), it is unique and globally

asymptotically stable in the positive cone 𝑅2𝑛
+
.
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4. Discussion

In this paper, we generalize the model of the 𝑛-patch
predator-prey model of [7] to the general model (2) that
both the prey and the predator have dispersal among 𝑛-
patches. Based on the network method for coupled systems
of differential equations developed in [7–9], we prove that the
positive equilibrium of (2) is globally asymptotically stable
given some conditions on the coupling (seeTheorem 6). Our
main theorem generalizes Theorem 6.1 in [7] and our results
also cover the other case of (2) in that only the predators
disperse among patches.

Biologically, our result of Theorem 6 implies that if
predator-prey system is dispersing among strongly connected
patches (which is equivalent to the irreducibility of the
dispersal matrixes of predator and prey) and if the system
is permanent (which guarantees the existence of positive
equilibrium), then the numbers of both predators and prey in
each patches will eventually be stable at some corresponding
positive values given the well-coupled dispersal (condition 2
of Theorem 6).

We remark that our Theorem 6 requires the extra con-
dition 2 for the coupling dispersal coefficients and that the
global dynamics for the coexistence equilibrium of (2) with-
out condition 2 of Theorem 6 are still unclear. It remains an
interesting future problem for the patchy dispersal predator-
prey model.
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This paper is concerned with the shunting inhibitory cellular neural networks (SICNNs) with time-varying delays in the leakage (or
forgetting) terms. Under proper conditions, we employ a novel argument to establish a criterion on the global exponential stability
of pseudo almost periodic solutions by using Lyapunov functional method and differential inequality techniques. We also provide
numerical simulations to support the theoretical result.

1. Introduction

In the last three decades, shunting inhibitory cellular neural
networks (SICNNs) have been extensively applied in psy-
chophysics, speech, perception, robotics, adaptive pattern
recognition, vision, and image processing. Hence, they have
been the object of intensive analysis by numerous authors
in recent years. In particular, there have been extensive
results on the problem of the existence and stability of the
equilibrium point and periodic and almost periodic solutions
of SICNNswith time-varying delays in the literature.We refer
the reader to [1–7] and the references cited therein.

It is well known that SICNNs have been introduced as
new cellular neural networks (CNNs) in Bouzerdoum et al.
in [1, 8, 9], which can be described by

𝑥


𝑖𝑗
(𝑡) = −𝑎

𝑖𝑗 (𝑡) 𝑥𝑖𝑗 (𝑡)

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝑡) 𝑓 (𝑥

𝑘𝑙
(𝑡 − 𝜏

𝑘𝑙
(𝑡))) 𝑥

𝑖𝑗
(𝑡)

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝑡)

⋅ ∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝑥

𝑘𝑙
(𝑡 − 𝑢)) 𝑑𝑢 𝑥

𝑖𝑗
(𝑡) + 𝐿

𝑖𝑗
(𝑡) ,

𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛,

(1)

where 𝐶
𝑖𝑗
denotes the cell at the (𝑖, 𝑗) position of the lattice.

The 𝑟-neighborhood𝑁
𝑟
(𝑖, 𝑗) of 𝐶

𝑖𝑗
is given as

𝑁
𝑟
(𝑖, 𝑗) = {𝐶

𝑘𝑙
: max (|𝑘 − 𝑖| ,

𝑙 − 𝑗
) ≤ 𝑟,

1 ≤ 𝑘 ≤ 𝑚, 1 ≤ 𝑙 ≤ 𝑛} ,

(2)

where 𝑁
𝑞
(𝑖, 𝑗) is similarly specified, 𝑥

𝑖𝑗
is the activity of

the cell 𝐶
𝑖𝑗
, 𝐿

𝑖𝑗
(𝑡) is the external input to 𝐶

𝑖𝑗
, the function

𝑎
𝑖𝑗
(𝑡) > 0 represents the passive decay rate of the cell activity,

𝐶
𝑘𝑙

𝑖𝑗
(𝑡) and 𝐵

𝑘𝑙

𝑖𝑗
(𝑡) are the connection or coupling strength of

postsynaptic activity of the cell transmitted to the cell𝐶
𝑖𝑗
, and

the activity functions 𝑓(⋅) and 𝑔(⋅) are continuous functions
representing the output or firing rate of the cell 𝐶

𝑘𝑙
, and

𝜏
𝑘𝑙
(𝑡) ≥ 0 corresponds to the transmission delay.
Obviously, the first term in each of the right side of (1)

corresponds to stabilizing negative feedback of the system
which acts instantaneously without time delay; these terms
are variously known as “forgettin” or leakage terms (see,
for instance, Kosko [10], Haykin [11]). It is known from
the literature on population dynamics and neural networks
dynamics (see Gopalsamy [12]) that time delays in the
stabilizing negative feedback terms will have a tendency
to destabilize a system. Therefore, the authors of [13–19]
dealt with the existence and stability of equilibrium and
periodic solutions for neuron networks model involving
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leakage delays. Recently, Liu and Shao [20] considered the
following SICNNs with time-varying leakage delays:

𝑥


𝑖𝑗
(𝑡) = −𝑎

𝑖𝑗
(𝑡) 𝑥

𝑖𝑗
(𝑡 − 𝜂

𝑖𝑗
(𝑡))

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝑡) 𝑓 (𝑥

𝑘𝑙
(𝑡 − 𝜏

𝑘𝑙 (𝑡))) 𝑥𝑖𝑗 (𝑡)

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝑡)

× ∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝑥

𝑘𝑙
(𝑡 − 𝑢)) 𝑑𝑢 𝑥

𝑖𝑗
(𝑡) + 𝐿

𝑖𝑗
(𝑡) ,

(3)

where 𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛, 𝜂
𝑖𝑗
, : R → [0 +

∞) denotes the leakage delay. By using Lyapunov functional
method and differential inequality techniques, in [20], some
sufficient conditions have been established to guarantee that
all solutions of (1) converge exponentially to the almost
periodic solution. Moreover, it is well known that the global
exponential convergence behavior of solutions plays a key
role in characterizing the behavior of dynamical system since
the exponential convergent rate can be unveiled (see [21–
24]). However, to the best of our knowledge, few authors
have considered the exponential convergence on the pseudo
almost periodic solution for (1). Motivated by the above
discussions, in this paper, we will establish the existence and
uniqueness of pseudo almost periodic solution of (1) by using
the exponential dichotomy theory and contraction mapping
fixed point theorem. Meanwhile, we also will give the condi-
tions to guarantee that all solutions and their derivatives of
solutions for (1) converge exponentially to the pseudo almost
periodic solution and its derivative, respectively.

For convenience, we denote by R𝑝(R = R1) the set of all
𝑝-dimensional real vectors (real numbers). We will use

{𝑥
𝑖𝑗
(𝑡)} = (𝑥

11
(𝑡) , . . . , 𝑥

1𝑛
(𝑡) , . . . , 𝑥

𝑖1
(𝑡) , . . . ,

𝑥
𝑖𝑛 (𝑡) , . . . , 𝑥𝑚1 (𝑡) , . . . , 𝑥𝑚𝑛 (𝑡)) ∈ R

𝑚×𝑛
.

(4)

For any 𝑥(𝑡) = {𝑥
𝑖𝑗
(𝑡)} ∈ R𝑚×𝑛, we let |𝑥| denote the absolute-

value vector given by |𝑥| = {|𝑥
𝑖𝑗
|} and define ‖𝑥(𝑡)‖ =

max
(𝑖,𝑗)

{|𝑥
𝑖𝑗
(𝑡)|}. A matrix or vector 𝐴 ≥ 0 means that all

entries of 𝐴 are greater than or equal to zero. 𝐴 > 0 can be
defined similarly. Formatrices or vectors𝐴

1
and𝐴

2
,𝐴

1
≥ 𝐴

2

(resp. 𝐴
1
> 𝐴

2
) means that𝐴

1
−𝐴

2
≥ 0 (resp. 𝐴

1
−𝐴

2
> 0).

For the convenience, we will introduce the notations:

ℎ
+
= sup

𝑡∈R

|ℎ (𝑡)| , ℎ
−
= inf

𝑡∈R
|ℎ (𝑡)| , (5)

where ℎ(𝑡) is a bounded continuous function.
The initial conditions associatedwith system (3) are of the

form:

𝑥
𝑖𝑗
(𝑠) = 𝜑

𝑖𝑗
(𝑠) , 𝑠 ∈ (−∞, 0] ,

𝑖𝑗 ∈ 𝐽 := {11, . . . , 1𝑛, 21, . . . , 2𝑛, . . . , 𝑚1, . . . , 𝑚𝑛} ,

(6)

where 𝜑
𝑖𝑗
(⋅) and 𝜑



𝑖𝑗
(⋅) are real-valued bounded continuous

functions defined on (−∞, 0].

Thepaper is organized as follows. Section 2 includes some
lemmas and definitions, which can be used to check the
existence of almost periodic solutions of (3). In Section 3,
we present some new sufficient conditions for the existence
of the continuously differentiable pseudo almost periodic
solution of (3). In Section 4, we establish sufficient conditions
on the global exponential stability of pseudo almost periodic
solutions of (3). At last, an example and its numerical
simulation are given to illustrate the effectiveness of the
obtained results.

2. Preliminary Results

In this section, we will first recall some basic definitions and
lemmas which are used in what follows.

In this paper, BC(R,R𝑝
) denotes the set of bounded con-

tinued functions fromR toR𝑝. Note that (BC(R,R𝑝
), ‖ ⋅ ‖

∞
)

is a Banach spacewhere ‖ ⋅ ‖
∞
denotes the sup norm ‖ 𝑓‖

∞
:=

sup
𝑡∈R‖𝑓(𝑡)‖.

Definition 1 (see [25, 26]). Let 𝑢(𝑡) ∈ BC(R,R𝑝
). 𝑢(𝑡) is said

to be almost periodic on R if, for any 𝜀 > 0, the set 𝑇(𝑢, 𝜀) =
{𝛿 : ‖𝑢(𝑡+𝛿)−𝑢(𝑡)‖ < 𝜀 for all 𝑡 ∈ R} is relatively dense; that
is, for any 𝜀 > 0, it is possible to find a real number 𝑙 = 𝑙(𝜀) > 0;
for any interval with length 𝑙(𝜀), there exists a number 𝛿 =

𝛿(𝜀) in this interval such that ‖𝑢(𝑡+𝛿)−𝑢(𝑡)‖ < 𝜀, for all 𝑡 ∈ R.
We denote by AP(R,R𝑛

) the set of the almost periodic
functions from R to R𝑛. Besides, the concept of pseudo
almost periodicity (pap) was introduced by Zhang in the
early nineties. It is a natural generalization of the classical
almost periodicity. Precisely, define the class of functions
PAP

0
(R,R) as follows:

{𝑓 ∈ BC (R,R
𝑛
) | lim

𝑇→+∞

1

2𝑇
∫

𝑇

−𝑇

𝑓 (𝑡)
 𝑑𝑡 = 0} . (7)

A function 𝑓 ∈ BC(R,R𝑛
) is called pseudo almost periodic

if it can be expressed as

𝑓 = ℎ + 𝜑, (8)

where ℎ ∈ AP(R,R𝑛
) and 𝜑 ∈ PAP

0
(R,R𝑛

).The collection of
such functions will be denoted by PAP(R,R𝑛

). The functions
ℎ and 𝜑 in the above definition are, respectively, called the
almost periodic component and the ergodic perturbation
of the pseudo almost periodic function 𝑓. The decompo-
sition given in definition above is unique. Observe that
(PAP(R,R𝑛

), ‖ ⋅ ‖
∞
) is a Banach space and AP(R,R𝑛

) is a
proper subspace of PAP(R,R𝑛

) since the function 𝜙(𝑡) =

cos𝜋𝑡 + cos 𝑡 + 𝑒
−𝑡
4sin2𝑡 is pseudo almost periodic function

but not almost periodic. It should be mentioned that pseudo
almost periodic functions possess many interesting proper-
ties; we shall need only a few of them and for the proofs we
shall refer to [25].

Lemma 2 (see [25, page 57]). If 𝑓 ∈ PAP(R,R) and 𝑔 is its
almost periodic component, then we have

𝑔 (R) ⊂ 𝑓 (R). (9)

Therefore ‖𝑓‖
∞

≥ ‖𝑔‖
∞

≥ inf
𝑥∈R|𝑔(𝑥)| ≥ inf

𝑥∈R|𝑓(𝑥)|.
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Lemma 3 (see [25, page 140]). Suppose that both functions 𝑓
and its derivative 𝑓 are in PAP(R,R). That is, 𝑓 = 𝑔 + 𝜑 and
𝑓

= 𝛼 + 𝛽, where 𝑔, 𝛼 ∈ AP(R,R) and 𝜑, 𝛽 ∈ PAP

0
(R,R).

Then the functions 𝑔 and𝜑 are continuous differentiable so that

𝑔

= 𝛼, 𝜑


= 𝛽. (10)

Lemma 4. Let 𝐵∗
= {𝑓 | 𝑓, 𝑓


∈ PAP(R,R)} equipped with

the induced norm defined by ‖𝑓‖
𝐵
∗ = max{‖𝑓‖

∞
, ‖𝑓


‖
∞
} =

max{sup
𝑡∈R|𝑓(𝑡)|, sup𝑡∈R|𝑓


(𝑡)|}, and then 𝐵

∗ is a Banach
space.

Proof. Suppose that {𝑓
𝑝
}
+∞

𝑝=1
is a Cauchy sequence in 𝐵

∗, and
then for any 𝜀 > 0, there exists𝑁(𝜀) > 0, such that

𝑓
𝑝
− 𝑓

𝑞

𝐵∗

=max{sup
𝑡∈R


𝑓
𝑝
(𝑡) −𝑓

𝑞
(𝑡)


, sup
𝑡∈R


𝑓
𝑝
 (𝑡) − 𝑓

𝑞
 (𝑡)


}< 𝜀,

∀𝑝, 𝑞 ≥ 𝑁 (𝜀) .

(11)

By the definition of pseudo almost periodic function, let

𝑓
𝑝
= 𝑔

𝑝
+ 𝜑

𝑝
, where 𝑔

𝑝
∈ AP (R,R) ,

𝜑
𝑝
∈ PAP

0 (R,R) , 𝑝 = 1, 2, . . . .

(12)

From Lemma 3, we obtain

𝑓


𝑝
= 𝑔



𝑝
+ 𝜑



𝑝
, where 𝑔



𝑝
∈ AP (R,R) ,

𝜑


𝑝
∈ PAP

0
(R,R) , 𝑝 = 1, 2, . . . .

(13)

On combining (11) with Lemma 2, we deduce that,
{𝑔

𝑝
}
+∞

𝑝=1
, {𝑔



𝑝
}
+∞

𝑝=1
⊂ AP(R,R) are Cauchy sequence, so that

{𝜑
𝑝
}
+∞

𝑝=1
, {𝜑



𝑝
}
+∞

𝑝=1
⊂ PAP

0
(R,R) are also Cauchy sequence.

Firstly, we show that there exists 𝑔 ∈ AP(R,R) such that
𝑔
𝑝
uniformly converges to 𝑔, as 𝑝 → +∞.
Note that {𝑔

𝑝
} is Cauchy sequence in AP(R,R).

for all 𝜀 > 0, ∃𝑁(𝜀), such that for all 𝑝, 𝑞 ≥ 𝑁(𝜀)


𝑔
𝑝
(𝑡) − 𝑔

𝑞
(𝑡)


< 𝜀, ∀𝑡 ∈ R. (14)

So for fixed 𝑡 ∈ R, it is easy to see {𝑔
𝑝
(𝑡)}

+∞

𝑝=1
is Cauchy number

sequence. Thus, the limits of 𝑔
𝑝
(𝑡) exist as 𝑝 → +∞ and let

𝑔(𝑡) = lim
𝑝→+∞

𝑔
𝑝
(𝑡). In (14), let 𝑞 → +∞, and we have


𝑔 (𝑡) − 𝑔

𝑝
(𝑡)


≤ 𝜀, ∀𝑡 ∈ R, 𝑝 ≥ 𝑁 (𝜀) . (15)

Thus, 𝑔
𝑛
uniformly converges to 𝑔, as 𝑝 → +∞. Moreover,

from the Theorem 1.9 [26, page 5], we obtain 𝑔 ∈ AP(R,R).
Similarly, we also obtain that there exist 𝑔∗

∈ AP(R,R) and
𝜑, 𝜑

∗
∈ BC(R,R), such that


𝑔
∗
(𝑡) − 𝑔



𝑝
(𝑡)


≤ 𝜀,


𝜑 (𝑡) − 𝜑

𝑝
(𝑡)


≤ 𝜀,


𝜑
∗
(𝑡) − 𝜑



𝑝
(𝑡)


≤ 𝜀,

∀𝑡 ∈ R, 𝑝 ≥ 𝑁 (𝜀) ,

(16)

which lead to

𝑔


𝑝
⇒ 𝑔

∗
, 𝜑

𝑝
⇒ 𝜑, 𝜑



𝑝
⇒ 𝜑

∗
, (17)

where 𝑝 → +∞ and “⇒” means uniform convergence.
Next, we claim that 𝜑, 𝜑∗

∈ PAP
0
(R). Together with (16)

and the facts that

lim
𝑟→+∞

1

2𝑟
∫

𝑟

−𝑟


𝜑
𝑝 (𝑠)


𝑑𝑠 = 0, lim

𝑟→+∞

1

2𝑟
∫

𝑟

−𝑟


𝜑


𝑝
(𝑠)


𝑑𝑠 = 0,

𝑝 = 1, 2, . . . ,

1

2𝑟
∫

𝑟

−𝑟

𝜑 (𝑠)
 𝑑𝑠 ≤

1

2𝑟
∫

𝑟

−𝑟


𝜑 (𝑠) − 𝜑

𝑝 (𝑠)

𝑑𝑠

+
1

2𝑟
∫

𝑟

−𝑟


𝜑
𝑝
(𝑠)


𝑑𝑠, 𝑟 > 0, 𝑛 = 1, 2, . . . ,

1

2𝑟
∫

𝑟

−𝑟

𝜑
∗
(𝑠)

 𝑑𝑠 ≤
1

2𝑟
∫

𝑟

−𝑟


𝜑
∗
(𝑠) − 𝜑



𝑝
(𝑠)


𝑑𝑠

+
1

2𝑟
∫

𝑟

−𝑟


𝜑


𝑝
(𝑠)


𝑑𝑠, 𝑟 > 0, 𝑝 = 1, 2, . . . ,

(18)

we have

lim
𝑟→+∞

1

2𝑟
∫

𝑟

−𝑟

𝜑 (𝑠)
 𝑑𝑠 = 0, lim

𝑟→+∞

1

2𝑟
∫

𝑟

−𝑟

𝜑
∗
(𝑠)

 𝑑𝑠 = 0.

(19)

Hence 𝜑, 𝜑
∗
∈ PAP

0
(R). Let 𝑓 = g + 𝜑, 𝑓∗

= 𝑔
∗
+ 𝜑

∗, then
𝑓 = 𝑔 + 𝜑 ∈ PAP (R), 𝑓∗

= 𝑔
∗
+ 𝜑

∗
∈ PAP (R) and 𝑓

𝑝
⇒ 𝑓,

𝑓


𝑝
⇒ 𝑓

∗ as 𝑝 → +∞.
Finally, we reveal 𝑓

= 𝑓
∗. For 𝑡, Δ𝑡 ∈ R, it follows that

𝑓
𝑝
(𝑡 + Δ𝑡) − 𝑓

𝑝
(𝑡) = ∫

𝑡+Δ𝑡

𝑡

𝑓


𝑝
(𝑠) 𝑑𝑠. (20)

In view of the uniform convergence of 𝑓
𝑝

and 𝑓


𝑝
, let

𝑝 → +∞ for (20), and we get

𝑓 (𝑡 + Δ𝑡) − 𝑓 (𝑡) = ∫

𝑡+Δ𝑡

𝑡

𝑓
∗
(𝑠) 𝑑𝑠, (21)

which implies that

𝑓
∗
(𝑡) = lim

Δ𝑡→0

∫
𝑡+Δ𝑡

𝑡
𝑓
∗
(𝑠) 𝑑𝑠

Δ𝑡

= lim
Δ𝑡→0

𝑓 (𝑡 + Δ𝑡) − 𝑓 (𝑡)

Δ𝑡
= 𝑓


(𝑡) .

(22)

In summary, in view of (15), (16), and (22), we obtain
that the Cauchy sequence {𝑓

𝑝
}
+∞

𝑝=1
⊂ 𝐵

∗ satisfies


𝑓
𝑝
− 𝑓

𝐵∗
→ 0 (𝑝 → +∞) , (23)

and 𝑓 ∈ 𝐵
∗. This yields that 𝐵∗ is a Banach space. The proof

is completed.



4 Abstract and Applied Analysis

Remark 5. Let 𝐵 = {𝑓 | 𝑓, 𝑓


∈ PAP(R,R𝑛×𝑚
)}

equipped with the induced norm defined by ‖𝑓‖
𝐵

=

max{‖𝑓‖
∞
, ‖𝑓


‖
∞
} = max{sup

𝑡∈R‖𝑓(𝑡)‖, sup𝑡∈R‖𝑓

(𝑡)‖}. It

follows from Lemma 4 that 𝐵 is a Banach space.

Definition 6 (see [19, 20]). Let 𝑥 ∈ R𝑝 and 𝑄(𝑡) be a 𝑝 × 𝑝

continuous matrix defined on R. The linear system

𝑥

(𝑡) = 𝑄 (𝑡) 𝑥 (𝑡) (24)

is said to admit an exponential dichotomy on R if there exist
positive constants 𝑘, 𝛼, and projection𝑃 and the fundamental
solution matrix𝑋(𝑡) of (24) satisfying


𝑋 (𝑡) 𝑃𝑋

−1
(𝑠)


≤ 𝑘𝑒

−𝛼(𝑡−𝑠)
, for 𝑡 ≥ 𝑠,


𝑋 (𝑡) (𝐼 − 𝑃)𝑋

−1
(𝑠)


≤ 𝑘𝑒

−𝛼(𝑠−𝑡)
, for 𝑡 ≤ 𝑠.

(25)

Lemma 7 (see [19]). Assume that 𝑄(𝑡) is an almost periodic
matrix function and 𝑔(𝑡) ∈ PAP(R,R𝑝

). If the linear system
(24) admits an exponential dichotomy, then pseudo almost
periodic system

𝑥

(𝑡) = 𝑄 (𝑡) 𝑥 (𝑡) + 𝑔 (𝑡) (26)

has a unique pseudo almost periodic solution 𝑥(𝑡), and

𝑥 (𝑡) = ∫

𝑡

−∞

𝑋(𝑡) 𝑃𝑋
−1

(𝑠) 𝑔 (𝑠) 𝑑𝑠

− ∫

+∞

𝑡

𝑋 (𝑡) (𝐼 − 𝑃)𝑋
−1

(𝑠) 𝑔 (𝑠) 𝑑𝑠.

(27)

Lemma 8 (see [19, 20]). Let 𝑐
𝑖
(𝑡) be an almost periodic

function on R and

𝑀[𝑐
𝑖
] = lim

𝑇→+∞

1

𝑇
∫

𝑡+𝑇

𝑡

𝑐
𝑖 (𝑠) 𝑑𝑠 > 0, 𝑖 = 1, 2, . . . , 𝑝. (28)

Then the linear system

𝑥

(𝑡) = diag (−𝑐

1 (𝑡) , −𝑐2 (𝑡) , . . . , −𝑐𝑝 (𝑡)) 𝑥 (𝑡) (29)

admits an exponential dichotomy on R.

3. Existence of Pseudo Almost
Periodic Solutions

In this section, we establish sufficient conditions on the
existence of pseudo almost periodic solutions of (3).

For 𝑖𝑗, 𝑘𝑙 ∈ 𝐽, 𝑎
𝑖𝑗

: R → (0, +∞) is an almost periodic
function, 𝜂

𝑖𝑗
, 𝜏

𝑘𝑙
: R → [0, +∞), and 𝐿

𝑖𝑗
, 𝐶

𝑘𝑙

𝑖𝑗
, 𝐵

𝑘𝑙

𝑖𝑗
: R →

R are pseudo almost periodic functions. We also make the
following assumptions which will be used later.

We also make the following assumptions.

(S1) There exist constants𝑀
𝑓
,𝑀

𝑔
, 𝐿

𝑓
, and 𝐿

𝑔
such that

𝑓 (𝑢) − 𝑓 (V) ≤ 𝐿
𝑓 |𝑢 − V| , 𝑓 (𝑢)

 ≤ 𝑀
𝑓
,

𝑔 (𝑢) − 𝑔 (V) ≤ 𝐿
𝑔 |𝑢 − V| , 𝑔 (𝑢)

 ≤ 𝑀
𝑔
,

∀𝑢, V ∈ R.

(30)

(S2) For 𝑖𝑗 ∈ 𝐽, the delay kernels 𝐾
𝑖𝑗

: [0,∞) → R are
continuous, and |𝐾

𝑖𝑗
(𝑡)|𝑒

𝛽𝑡 are integrable on [0,∞)

for a certain positive constant 𝛽.

(S3) Let

𝐿 = max{max
(𝑖,𝑗)

{sup
𝑡∈R



∫

𝑡

−∞

𝑒
−∫
𝑡

𝑠
𝑎
𝑖𝑗
(𝑢)𝑑𝑢

𝐿
𝑖𝑗
(𝑠) 𝑑𝑠



} ,

max
(𝑖,𝑗)

{sup
𝑡∈R



𝐿
𝑖𝑗
(𝑡) − 𝑎

𝑖𝑗
(𝑡)

× ∫

𝑡

−∞

𝑒
−∫
𝑡

𝑠
𝑎
𝑖𝑗
(𝑢)𝑑𝑢

𝐿
𝑖𝑗
(𝑠) 𝑑𝑠



}} > 0.

(31)

Moreover, there exists a constant 𝜅 such that

0 < 𝜅 ≤ 𝐿, max
(𝑖,j)

{
1

𝑎
−

𝑖𝑗

𝐸
𝑖𝑗
, (1 +

𝑎
+

𝑖𝑗

𝑎
−

𝑖𝑗

)𝐸
𝑖𝑗
} ≤ 𝜅,

max
(𝑖,𝑗)

{
1

𝑎
−

𝑖𝑗

𝐹
𝑖𝑗
, (1 +

𝑎
+

𝑖𝑗

𝑎
−

𝑖𝑗

)𝐹
𝑖𝑗
} < 1,

(32)

where

𝐸
𝑖𝑗
= [

[

𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗
+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗

+

(𝐿
𝑓
(𝜅 + 𝐿) +

𝑓 (0)
)

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗

+

× ∫

∞

0


𝐾

𝑖𝑗 (𝑢)

𝑑𝑢 (𝐿

𝑔
(𝜅 + 𝐿) +

𝑔 (0)
)
]

]

(𝜅 + 𝐿) ,

𝑖𝑗 ∈ 𝐽,

𝐹
𝑖𝑗
= [

[

𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗
+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗

+

(𝑀
𝑓
+ 𝐿

𝑓
(𝜅 + 𝐿))

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗

+

(∫

∞

0


𝐾

𝑖𝑗 (𝑢)

𝑑𝑢𝑀

𝑔

+∫

∞

0


𝐾

𝑖𝑗
(𝑢)


𝑑𝑢𝐿

𝑔
(𝜅 + 𝐿))]

]

,

𝑖𝑗 ∈ 𝐽.

(33)

Lemma 9. Assume that assumptions (S
1
) and (S

2
) hold.Then,

for 𝜑(⋅) ∈ PAP(R,R), the function ∫
∞

0
𝐾

𝑖𝑗
(𝑢)𝑔(𝜑(𝑡 − 𝑢)) 𝑑𝑢

belongs to PAP(R,R), where 𝑖𝑗 ∈ 𝐽.
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Proof. Let 𝜑 ∈ PAP(R,R). Obviously, (S
1
) implies that 𝑔 is a

uniformly continuous function onR. By using Corollary 5.4
in [25, page 58], we immediately obtain the following:

𝑔 (𝜑 (𝑡)) = 𝜒
1
(𝑡) + 𝜒

2
(𝑡) ∈ PAP (R,R) , (34)

where 𝜒
1
∈ AP(R,R) and 𝜒

2
∈ PAP

0
(R,R). Then, for any

𝜀 > 0, it is possible to find a real number 𝑙 = 𝑙(𝜀) > 0; for any
interval with length 𝑙, there exists a number 𝜏 = 𝜏(𝜀) in this
interval such that

𝜒1 (𝑡 + 𝜏) − 𝜒
1
(𝑡)

 <
𝜀

1 + ∫
∞

0


𝐾i𝑗 (𝑢)


𝑑𝑢

, ∀𝑡 ∈ R, 𝑖𝑗 ∈ 𝐽,

lim
𝑟→+∞

1

2𝑟
∫

𝑟

−𝑟

𝜒2 (V)
 𝑑V = 0.

(35)

It follows that



∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝜒

1
(𝑡 + 𝜏 − 𝑢) 𝑑𝑢 − ∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝜒

1
(𝑡 − 𝑢) 𝑑𝑢



≤ ∫

∞

0


𝐾

𝑖𝑗
(𝑢)



𝜒1 (𝑡 + 𝜏 − 𝑢) − 𝜒
1
(𝑡 − 𝑢)

 𝑑𝑢

< ∫

∞

0


𝐾

𝑖𝑗 (𝑢)

𝑑𝑢

𝜀

1 + ∫
∞

0


𝐾

𝑖𝑗
(𝑢)


𝑑𝑢

< 𝜀, ∀𝑡 ∈ R, 𝑖𝑗 ∈ 𝐽,

lim
𝑟→+∞

1

2𝑟
∫

𝑟

−𝑟



∫

∞

0

𝐾
𝑖𝑗 (𝑢) 𝜒2 (V − 𝑢) 𝑑𝑢



𝑑V

≤ lim
𝑟→+∞

1

2𝑟
∫

𝑟

−𝑟

∫

∞

0


𝐾

𝑖𝑗
(𝑢)



𝜒2 (V − 𝑢)
 𝑑𝑢 𝑑V

= lim
𝑟→+∞

1

2𝑟
∫

∞

0


𝐾

𝑖𝑗
(𝑢)


∫

𝑟

−𝑟

𝜒2 (V − 𝑢)
 𝑑V 𝑑𝑢

= lim
𝑟→+∞

1

2𝑟
∫

∞

0


𝐾

𝑖𝑗
(𝑢)


∫

𝑟−𝑢

−𝑟−𝑢

𝜒2 (𝑧)
 𝑑𝑧 𝑑𝑢

≤ lim
𝑟→+∞

1

2𝑟
∫

∞

0


𝐾

𝑖𝑗
(𝑢)


∫

𝑟+𝑢

−𝑟−𝑢

𝜒2 (𝑧)
 𝑑𝑧 𝑑𝑢

≤ lim
𝑟→+∞

∫

∞

0


𝐾

𝑖𝑗
(𝑢)


(1 +

1

𝑟
𝑢)

1

2 (𝑟 + 𝑢)

× ∫

𝑟+𝑢

−𝑟−𝑢

𝜒2 (𝑧)
 𝑑𝑧 𝑑𝑢

≤ lim
𝑟→+∞

∫

∞

0


𝐾

𝑖𝑗 (𝑢)

𝑒
(1/𝑟)𝑢 1

2 (𝑟 + 𝑢)
∫

𝑟+𝑢

−𝑟−𝑢

𝜒2 (𝑧)
 𝑑𝑧 𝑑𝑢

≤ lim
𝑟→+∞

∫

∞

0


𝐾

𝑖𝑗
(𝑢)


𝑒
𝛽𝑢 1

2 (𝑟 + 𝑢)
∫

𝑟+𝑢

−𝑟−𝑢

𝜒2 (𝑧)
 𝑑𝑧 𝑑𝑢

= 0, where 𝑟 >
1

𝛽
, 𝑖𝑗 ∈ 𝐽.

(36)

Thus,

∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝜒

1
(𝑡 − 𝑢) 𝑑𝑢 ∈ AP (R,R) ,

∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝜒

2
(𝑡 − 𝑢) 𝑑𝑢 ∈ PAP

0
(R,R) ,

(37)

which yield

∫

∞

0

𝐾
𝑖𝑗 (𝑢) 𝑔𝑗 (𝜑 (𝑡 − 𝑢)) 𝑑𝑢

= ∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝜒

1
(𝑡 − 𝑢) 𝑑𝑢

+ ∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝜒

2
(𝑡 − 𝑢) 𝑑𝑢 ∈ PAP (R,R) , 𝑖𝑗 ∈ 𝐽.

(38)

The proof of Lemma 9 is completed.

Theorem 10. Let (S
1
), (S

2
), and (S

3
) hold. Then, there exists

at least one continuously differentiable pseudo almost periodic
solution of system (3).

Proof. Let 𝜑 ∈ 𝐵. Obviously, the boundedness of 𝜑 and (S
1
)

imply that 𝑓 and 𝜑
𝑖𝑗
are uniformly continuous functions on

R for 𝑖𝑗 ∈ 𝐽. Set 𝑓(𝑡, 𝑧) = 𝜑
𝑖𝑗
(𝑡 − 𝑧) (𝑖𝑗 ∈ 𝐽). By Theorem 5.3

in [25, page 58] and Definition 5.7 in [25, page 59], we can
obtain that 𝑓 ∈ PAP(R × Ω) and 𝑓 is continuous in 𝑧 ∈ 𝐾

and uniformly in 𝑡 ∈ R for all compact subset 𝐾 of Ω. This,
together with 𝜏

𝑖𝑗
, 𝜂

𝑖𝑗
∈ PAP(R,R) and Theorem 5.11 in [25,

page 60], implies that

𝜑
𝑖𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)) ∈ PAP (R,R) ,

𝜑
𝑖𝑗
(𝑡 − 𝜂

𝑖𝑗 (𝑡)) ∈ PAP (R,R) ,

𝑖𝑗 ∈ 𝐽.

(39)

Again from Corollary 5.4 in [25, page 58], we have

𝑓 (𝜑
𝑖𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))) ∈ PAP (R,R) , 𝑖𝑗 ∈ 𝐽, (40)

which, together with Lemma 9, implies

𝑎
𝑖𝑗 (𝑡) ∫

𝑡

𝑡−𝜂
𝑖𝑗
(𝑡)

𝜑


𝑖𝑗
(𝑠) 𝑑𝑠

= 𝑎
𝑖𝑗
(𝑡) 𝜑

𝑖𝑗
(𝑡) − 𝑎

𝑖𝑗
(𝑡) 𝜑

𝑖𝑗
(𝑡 − 𝜂

𝑖𝑗
(𝑡)) ∈ PAP (R,R) ,

𝑖𝑗 ∈ 𝐽,

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝑡) 𝑓 (𝜑

𝑘𝑙
(𝑡 − 𝜏

𝑘𝑙
(𝑡))) 𝜑

𝑖𝑗
(𝑡)

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝑡)

× ∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝜑

𝑘𝑙
(𝑡 − 𝑢)) 𝑑𝑢𝜑

𝑖𝑗
(𝑡) + 𝐿

𝑖𝑗
(𝑡) ∈ PAP (R,R) ,

𝑖𝑗 ∈ 𝐽.

(41)
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For any 𝜑 ∈ 𝐵, we consider the pseudo almost periodic solu-
tion 𝑥

𝜑
(𝑡) of nonlinear pseudo almost periodic differential

equations

𝑥


𝑖𝑗
(𝑡) = −𝑎

𝑖𝑗
(𝑡) 𝑥

𝑖𝑗
(𝑡) + 𝑎

𝑖𝑗
(𝑡) ∫

𝑡

𝑡−𝜂
𝑖𝑗
(𝑡)

𝜑


𝑖𝑗
(𝑠) 𝑑𝑠

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝑡) 𝑓 (𝜑

𝑘𝑙
(𝑡 − 𝜏

𝑘𝑙 (𝑡))) 𝜑𝑖𝑗 (𝑡)

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝑡)

× ∫

∞

0

𝐾
𝑖𝑗 (𝑢) 𝑔 (𝜑

𝑘𝑙 (𝑡 − 𝑢)) 𝑑𝑢𝜑𝑖𝑗 (𝑡) + 𝐿
𝑖𝑗 (𝑡) ,

𝑖𝑗 ∈ 𝐽.

(42)

Then, notice that 𝑀[𝑎
𝑖𝑗
] > 0, 𝑖𝑗 ∈ 𝐽, and it follows from

Lemma 8 that the linear system,

𝑥


𝑖𝑗
(𝑡) = −𝑎

𝑖𝑗 (𝑡) 𝑥𝑖𝑗 (𝑡) , 𝑖𝑗 ∈ 𝐽, (43)

admits an exponential dichotomy on R. Thus, by Lemma 7,
we obtain that the system (42) has exactly one pseudo almost
periodic solution:

𝑥
𝜑
(𝑡) = {𝑥

𝜑

𝑖𝑗
(𝑡)}

= {∫

𝑡

−∞

𝑒
−∫
𝑡

𝑠
𝑎
𝑖𝑗
(𝑢)𝑑𝑢

× [𝑎
𝑖𝑗
(𝑠) ∫

𝑠

𝑠−𝜂
𝑖𝑗
(𝑠)

𝜑


𝑖𝑗
(𝑢) 𝑑𝑢

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝑠)

× 𝑓 (𝜑
𝑘𝑙
(𝑠 − 𝜏

𝑘𝑙
(𝑠))) 𝜑

𝑖𝑗
(𝑠)

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝑠)

× ∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝜑

𝑘𝑙
(𝑠 − 𝑢)) 𝑑𝑢𝜑

𝑖𝑗
(𝑠)

+ 𝐿
𝑖𝑗
(𝑠) ] 𝑑𝑠} .

(44)

From (S
1
), (S

2
), and the Corollary 5.6 in [25, page 59], we get

(𝑥
𝜑
(𝑡))


= {𝑥

𝜑

𝑖𝑗



(𝑡)}

= {[𝑎
𝑖𝑗
(𝑡) ∫

𝑡

𝑡−𝜂
𝑖𝑗
(𝑡)

𝜑


𝑖𝑗
(𝑠) 𝑑𝑠

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝑡) 𝑓 (𝜑

𝑘𝑙
(𝑡 − 𝜏

𝑘𝑙 (𝑡))) 𝜑𝑖𝑗 (𝑡)

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝑡)

× ∫

∞

0

𝐾
𝑖𝑗 (𝑢) 𝑔 (𝜑

𝑘𝑙 (𝑡 − 𝑢)) 𝑑𝑢𝜑𝑖𝑗 (𝑡) + 𝐿
𝑖𝑗 (𝑡) ]

− 𝑎
𝑖𝑗
(𝑡)

× ∫

𝑡

−∞

𝑒
−∫
𝑡

𝑠
𝑎
𝑖𝑗
(𝑢)𝑑𝑢

× [𝑎
𝑖𝑗
(𝑠) ∫

𝑠

𝑠−𝜂
𝑖𝑗
(𝑠)

𝜑


𝑖𝑗
(𝑢) 𝑑𝑢

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝑠)

× 𝑓 (𝜑
𝑘𝑙
(𝑠 − 𝜏

𝑘𝑙
(𝑠))) 𝜑

𝑖𝑗
(𝑠)

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝑠)

× ∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝜑

𝑘𝑙
(𝑠 − 𝑢)) 𝑑𝑢𝜑

𝑖𝑗
(𝑠)

+ 𝐿
𝑖𝑗 (𝑠) ] 𝑑𝑠}

(45)

which is a pseudo almost periodic function. Therefore, 𝑥𝜑
∈

𝐵. Let 𝜑0
(𝑡) = 𝑥

0
(𝑡). Then,

𝜑
0
(𝑡) = {𝜑

0

𝑖𝑗
(𝑡)} = {∫

𝑡

−∞

𝑒
−∫
𝑡

𝑠
𝑎
𝑖𝑗
(𝑢)𝑑𝑢

𝐿
𝑖𝑗 (𝑠) 𝑑𝑠} ∈ 𝐵,

𝐿 =

𝜑
0𝐵

.

(46)

Set

𝐵
∗∗

= {𝜑 | 𝜑 ∈ 𝐵,

𝜑 − 𝜑

0𝐵
≤ 𝜅} . (47)

If 𝜑 ∈ 𝐵
∗∗, then

𝜑
𝐵

≤

𝜑 − 𝜑

0𝐵
+

𝜑
0𝐵

≤ 𝜅 + 𝐿. (48)

Now, we define a mapping 𝑇 : 𝐵
∗∗

→ 𝐵
∗∗ by setting

𝑇 (𝜑) (𝑡) = 𝑥
𝜑
(𝑡) , ∀𝜑 ∈ 𝐵

∗∗
. (49)

We next prove that the mapping 𝑇 is a contraction mapping
of the 𝐵∗∗.

First we show that, for any 𝜑 ∈ 𝐵
∗∗, 𝑇(𝜑) = 𝑥

𝜑
∈ 𝐵

∗∗.
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Note that

𝑇 (𝜑) (𝑡) − 𝜑

0
(𝑡)



= {



∫

𝑡

−∞

𝑒
−∫
𝑡

𝑠
𝑎
𝑖𝑗
(𝑢)𝑑𝑢

× [𝑎
𝑖𝑗
(𝑠) ∫

𝑠

𝑠−𝜂
𝑖𝑗
(𝑠)

𝜑


𝑖𝑗
(𝑢) 𝑑𝑢

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝑠) 𝑓 (𝜑

𝑘𝑙
(𝑠 − 𝜏

𝑘𝑙
(𝑠))) 𝜑

𝑖𝑗
(𝑠)

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝑠)

× ∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝜑

𝑘𝑙
(𝑠 − 𝑢)) 𝑑𝑢𝜑

𝑖𝑗
(𝑠) ] 𝑑𝑠



}

≤ {∫

𝑡

−∞

𝑒
−∫
𝑡

𝑠
𝑎
−

𝑖𝑗
𝑑𝑢

× [𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

𝜑
𝐵

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗

+

(
𝑓 (𝜑

𝑘𝑙
(𝑠 − 𝜏

𝑘𝑙
(𝑠)))

−𝑓 (0)
 +

𝑓 (0)
 )

𝜑
𝐵

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗

+

× ∫

∞

0


𝐾

𝑖𝑗
(𝑢)



×(
𝑔 (𝜑

𝑘𝑙 (𝑠 − 𝑢)) − 𝑔 (0)
 +

𝑔 (0)
) 𝑑𝑢

×
𝜑

𝐵
] 𝑑𝑠}

≤
{

{

{

1

𝑎
−

𝑖𝑗

[

[

𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗
+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗

+

(𝐿
𝑓𝜑

𝐵
+
𝑓 (0)

)

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗

+

∫

∞

0


𝐾

𝑖𝑗
(𝑢)


𝑑𝑢 (𝐿

𝑔𝜑
𝐵

+
𝑔 (0)

)
]

]

×
𝜑

𝐵

}

}

}

≤
{

{

{

1

𝑎
−

𝑖𝑗

[

[

𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗
+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗

+

(𝐿
𝑓
(𝜅 + 𝐿) +

𝑓 (0)
)

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗

+

×∫

∞

0


𝐾

𝑖𝑗 (𝑢)

𝑑𝑢 (𝐿

𝑔
(𝜅 +𝐿)+

𝑔 (0)
)
]

]

(𝜅 + 𝐿)

}

}

}

,


(𝑇 (𝜑) (𝑡) − 𝜑

0
(𝑡))



= {



[𝑎
𝑖𝑗
(𝑡) ∫

𝑡

𝑡−𝜂
𝑖𝑗
(𝑡)

𝜑


𝑖𝑗
(𝑠) 𝑑𝑠

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝑡) 𝑓 (𝜑

𝑘𝑙
(𝑡 − 𝜏

𝑘𝑙 (𝑡))) 𝜑𝑖𝑗 (𝑡)

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝑡)

× ∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝜑

𝑘𝑙
(𝑡 − 𝑢)) 𝑑𝑢𝜑

𝑖𝑗
(𝑡) ]

− 𝑎
𝑖𝑗 (𝑡) ∫

𝑡

−∞

𝑒
−∫
𝑡

𝑠
𝑎
𝑖𝑗
(𝑢)𝑑𝑢

× [𝑎
𝑖𝑗
(𝑠) ∫

𝑠

𝑠−𝜂
𝑖𝑗
(𝑠)

𝜑


𝑖𝑗
(𝑢) 𝑑𝑢

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝑠) 𝑓 (𝜑

𝑘𝑙
(𝑠 − 𝜏

𝑘𝑙
(𝑠))) 𝜑

𝑖𝑗
(𝑠)

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝑠)

× ∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝜑

𝑘𝑙
(𝑠 − 𝑢)) 𝑑𝑢𝜑

𝑖𝑗
(𝑠)] 𝑑𝑠



}

≤ {(1 +

𝑎
+

𝑖𝑗

𝑎
−

𝑖𝑗

)

× [

[

𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗
+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗

+

(𝐿
𝑓𝜑

𝐵
+
𝑓 (0)

)

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗

+

× ∫

∞

0


𝐾

𝑖𝑗
(𝑢)


𝑑𝑢 (𝐿

𝑔𝜑
𝐵

+
𝑔 (0)

)
]

]

𝜑
𝐵

}

}

}

≤ {(1 +

𝑎
+

𝑖𝑗

𝑎
−

𝑖𝑗

)

× [

[

𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗
+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗

+

(𝐿
𝑓
(𝜅 + 𝐿) +

𝑓 (0)
)

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗

+
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× ∫

∞

0


𝐾

𝑖𝑗 (𝑢)

𝑑𝑢 (𝐿

𝑔
(𝜅 + 𝐿) +

𝑔 (0)
)
]

]

× (𝜅 + 𝐿)} .

(50)

It follows that


𝑇 (𝜑) − 𝜑

0𝐵
≤ max

(𝑖,𝑗)

{
1

𝑎
−

𝑖𝑗

𝐸
𝑖𝑗
, (1 +

𝑎
+

𝑖𝑗

𝑎
−

𝑖𝑗

)𝐸
𝑖𝑗
} ≤ 𝜅; (51)

that is, 𝑇(𝜑) = 𝑥
𝜑
∈ 𝐵

∗∗.
Second, we show that 𝑇 is a contract operator.
In fact, in view of (44), (48), (S

1
), (S

2
), and (S

3
), for 𝜑, 𝜓 ∈

𝐵
∗∗, we have

𝑇 (𝜑 (𝑡)) − 𝑇 (𝜓 (𝑡))


= {

(𝑇 (𝜑 (𝑡)) − 𝑇 (𝜓 (𝑡)))

𝑖𝑗


}

= {



∫

𝑡

−∞

𝑒
−∫
𝑡

𝑠
𝑎
𝑖𝑗
(𝑢)𝑑𝑢

× [𝑎
𝑖𝑗
(𝑠) ∫

𝑠

𝑠−𝜂
𝑖𝑗
(𝑠)

(𝜑


𝑖𝑗
(𝑢) − 𝜓



𝑖𝑗
(𝑢)) 𝑑𝑢

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝑠)

× (𝑓 (𝜑
𝑘𝑙
(𝑠 − 𝜏

𝑘𝑙 (𝑠))) 𝜑𝑖𝑗 (𝑠)

−𝑓 (𝜓
𝑘𝑙
(𝑠 − 𝜏

𝑘𝑙
(𝑠))) 𝜓

𝑖𝑗
(𝑠))

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝑠)

× (∫

∞

0

𝐾
𝑖𝑗 (𝑢) 𝑔 (𝜑

𝑘𝑙 (𝑠 − 𝑢)) 𝑑𝑢𝜑𝑖𝑗 (𝑠)

− ∫

∞

0

𝐾
𝑖𝑗 (𝑢) 𝑔

× (𝜓
𝑘𝑙
(𝑠 − 𝑢)) 𝑑𝑢𝜓

𝑖𝑗
(𝑠) ) ] 𝑑𝑠



}

≤ {∫

𝑡

−∞

𝑒
−∫
𝑡

𝑠
𝑎
𝑖𝑗
(𝑢)𝑑𝑢

× [𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

𝜑 − 𝜓
𝐵

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗

+

(
𝑓 (𝜑

𝑘𝑙
(𝑠 − 𝜏

𝑘𝑙
(𝑠)))



×

𝜑
𝑖𝑗
(𝑠) − 𝜓

𝑖𝑗
(𝑠)



+
𝑓 (𝜑

𝑘𝑙
(𝑠 − 𝜏

𝑘𝑙 (𝑠)))

−𝑓 (𝜓
𝑘𝑙
(𝑠 − 𝜏

𝑘𝑙
(𝑠)))




𝜓
𝑖𝑗
(𝑠)


)

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗

+

(∫

∞

0


𝐾

𝑖𝑗
(𝑢)



×
𝑔 (𝜑

𝑘𝑙
(𝑠 − 𝑢))

 𝑑𝑢

𝜑
𝑖𝑗
(𝑠)− 𝜓

𝑖𝑗
(𝑠)



+ ∫

∞

0


𝐾

𝑖𝑗 (𝑢)


×
𝑔 (𝜑

𝑘𝑙 (𝑠 − 𝑢))−𝑔 (𝜓
𝑘𝑙 (𝑠 − 𝑢))

 𝑑𝑢

×

𝜓
𝑖𝑗
(𝑠)


)] 𝑑𝑠}

≤ {
1

𝑎
−

𝑖𝑗

[𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

𝜑 − 𝜓
𝐵

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗

+

(𝑀
𝑓

𝜑 − 𝜓
𝐵

+ 𝐿
𝑓𝜑 − 𝜓

𝐵

𝜓
𝐵

)

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗

+

× (∫

∞

0


𝐾

𝑖𝑗
(𝑢)


𝑑𝑢𝑀

𝑔

𝜑 − 𝜓
𝐵

+ ∫

∞

0


𝐾

𝑖𝑗
(𝑢)


𝑑𝑢𝐿

𝑔𝜑 − 𝜓
𝐵

𝜓
𝐵

)]}

= {
1

𝑎
−

𝑖𝑗

[𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗

+

(𝑀
𝑓
+ 𝐿

𝑓𝜓
𝐵

)

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗

+

× (∫

∞

0


𝐾

𝑖𝑗
(𝑢)


𝑑𝑢𝑀

𝑔

+ ∫

∞

0


𝐾

𝑖𝑗
(𝑢)


𝑑𝑢𝐿

𝑔𝜓
𝐵

)]
𝜑 − 𝜓

𝐵
}

≤ {
1

𝑎
−

𝑖𝑗

[𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗

+

(𝑀
𝑓
+ 𝐿

𝑓
(𝜅 + 𝐿))

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗

+
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× (∫

∞

0


𝐾

𝑖𝑗 (𝑢)

𝑑𝑢𝑀

𝑔

+ ∫

∞

0


𝐾

𝑖𝑗
(𝑢)


𝑑𝑢𝐿

𝑔
(𝜅 + 𝐿))]

×
𝜑 − 𝜓

𝐵
} ,


(𝑇 (𝜑 (𝑡)) − 𝑇 (𝜓 (𝑡)))



= {

(𝑇


(𝜑 (𝑡)) − 𝑇


(𝜓 (𝑡)))

𝑖𝑗


}

= {



[𝑎
𝑖𝑗
(𝑡) ∫

𝑡

𝑡−𝜂
𝑖𝑗
(𝑡)

(𝜑


𝑖𝑗
(𝑠) − 𝜓



𝑖𝑗
(𝑠)) 𝑑𝑠

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝑡)

× (𝑓 (𝜑
𝑘𝑙
(𝑡 − 𝜏

𝑘𝑙
(𝑡))) 𝜑

𝑖𝑗
(𝑡)

−𝑓 (𝜓
𝑘𝑙
(𝑡 − 𝜏

𝑘𝑙 (𝑡))) 𝜓𝑖𝑗 (𝑡))

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝑡)

× (∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝜑

𝑘𝑙

× (𝑡 − 𝑢)) 𝑑𝑢𝜑
𝑖𝑗
(𝑡)

− ∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝜓

𝑘𝑙
(𝑡 − 𝑢)) 𝑑𝑢

× 𝜓
𝑖𝑗
(𝑡) ) ]

− 𝑎
𝑖𝑗
(𝑡) ∫

𝑡

−∞

𝑒
−∫
𝑡

𝑠
𝑎
𝑖𝑗
(𝑢)𝑑𝑢

× [𝑎
𝑖𝑗
(𝑠) ∫

𝑠

𝑠−𝜂
𝑖𝑗
(𝑠)

(𝜑


𝑖𝑗
(𝑢) − 𝜓



𝑖𝑗
(𝑢)) 𝑑𝑢

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝑠)

× (𝑓 (𝜑
𝑘𝑙
(𝑠 − 𝜏

𝑘𝑙 (𝑠))) 𝜑𝑖𝑗 (𝑠)

− 𝑓 (𝜓
𝑘𝑙
(𝑠 − 𝜏

𝑘𝑙 (𝑠)))

× 𝜓
𝑖𝑗 (𝑠))

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝑠)

× (∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝜑

𝑘𝑙
(𝑠 − 𝑢)) 𝑑𝑢𝜑

𝑖𝑗
(𝑠)

− ∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔

× (𝜓
𝑘𝑙
(𝑠 − 𝑢)) 𝑑𝑢𝜓

𝑖𝑗
(𝑠) ) ] 𝑑𝑠



}

≤ {(1 +

𝑎
+

𝑖𝑗

𝑎
−

𝑖𝑗

)[𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗

+

(𝑀
𝑓
+ 𝐿

𝑓
(𝜅 + 𝐿))

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗

+

(∫

∞

0


𝐾

𝑖𝑗 (𝑢)

𝑑𝑢𝑀

𝑔

+ ∫

∞

0


𝐾

𝑖𝑗 (𝑢)

𝑑𝑢

× 𝐿
𝑔
(𝜅 + 𝐿) )]

×
𝜑 − 𝜓

𝐵
} ,

(52)
which yields

𝑇 (𝜑) − 𝑇 (𝜓)
𝐵

≤ max
(𝑖,𝑗)

{
1

𝑎
−

𝑖𝑗

𝐹
𝑖𝑗
, (1 +

𝑎
+

𝑖𝑗

𝑎
−

𝑖𝑗

)𝐹
𝑖𝑗
}
𝜑 − 𝜓

𝐵
,

(53)

which implies that the mapping 𝑇 : 𝐵
∗∗

→ 𝐵
∗∗ is a

contractionmapping.Therefore, usingTheorem 0.3.1 of [27],
we obtain that the mapping 𝑇 possesses a unique fixed point

𝑥
∗
= {𝑥

∗

𝑖𝑗
(𝑡)} ∈ 𝐵

∗∗
, 𝑇𝑥

∗
= 𝑥

∗
. (54)

By (42) and (44), 𝑥∗ satisfies (42). So (3) has at least one
continuously differentiable pseudo almost periodic solution
𝑥
∗. The proof of Theorem 10 is now completed.

4. Exponential Stability of the Pseudo Almost
Periodic Solution

In this section, we will discuss the exponential stability of the
pseudo almost periodic solution of system (3).

Definition 11. Let 𝑥
∗
(𝑡) = {𝑥

∗

𝑖𝑗
(𝑡)} be the pseudo almost

periodic solution of system (3). If there exist constants 𝛼 > 0

and 𝑀 > 1 such that, for every solution 𝑥(𝑡) = {𝑥
𝑖𝑗
(𝑡)} of

system (3) with any initial value 𝜑(𝑡) = {𝜑
𝑖𝑗
(𝑡)} satisfying (6),

𝑥 (𝑡) − 𝑥
∗
(𝑡)

1

= max
(𝑖,𝑗)

{max {𝑥𝑖𝑗 (𝑡) − 𝑥
∗

𝑖𝑗
(𝑡)


,

𝑥


𝑖𝑗
(𝑡) − 𝑥

∗

𝑖𝑗



(𝑡)

}}

≤ 𝑀
𝜑 − 𝑥

∗0
𝑒
−𝛼𝑡

, ∀𝑡 > 0,

(55)

where ‖𝜑 − 𝑥
∗
‖
0

= max{sup
𝑡≤0

max
(𝑖,𝑗)

|𝜑
𝑖𝑗
(𝑡) − 𝑥

∗

𝑖𝑗
(𝑡)|,

sup
𝑡≤0

max
(𝑖,𝑗)

|𝜑


𝑖𝑗
(𝑡)−𝑥

∗

𝑖𝑗


(𝑡)|}.Then 𝑥

∗
(𝑡) is said to be globally

exponentially stable.
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Theorem 12. Suppose that all conditions in Theorem 10 are
satisfied. Then system (3) has at least one pseudo almost peri-
odic solution 𝑥

∗
(𝑡). Moreover, 𝑥∗

(𝑡) is globally exponentially
stable.

Proof. By Theorem 10, (3) has at least one continuously dif-
ferentiable pseudo almost periodic solution 𝑥

∗
(𝑡) = {𝑥

∗

𝑖𝑗
(𝑡)}

such that

𝑥
∗𝐵

≤ 𝜅 + 𝐿. (56)

Suppose that 𝑥(𝑡) = {𝑥
𝑖𝑗
(𝑡)} is an arbitrary solution of (1)

associated with initial value 𝜑(𝑡) = {𝜑
𝑖𝑗
(𝑡)} satisfying (6). Let

𝑦(𝑡) = {𝑦
𝑖𝑗
(𝑡)} = {𝑥

𝑖𝑗
(𝑡) − 𝑥

∗

𝑖𝑗
(𝑡)}. Then

𝑦


𝑖𝑗
(𝑡) = −𝑎

𝑖𝑗
(𝑡) 𝑦

𝑖𝑗
(𝑡 − 𝜂

𝑖𝑗
(𝑡))

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝑡)

× [𝑓 (𝑥
𝑘𝑙
(𝑡 − 𝜏

𝑘𝑙
(𝑡))) 𝑥

𝑖𝑗
(𝑡)

− 𝑓 (𝑥
∗

𝑘𝑙
(𝑡 − 𝜏

𝑘𝑙
(𝑡))) 𝑥

∗

𝑖𝑗
(𝑡)]

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝑡)

× [∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝑥

𝑘𝑙
(𝑡 − 𝑢)) 𝑑𝑢𝑥

𝑖𝑗
(𝑡)

− ∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝑥

∗

𝑘𝑙
(𝑡 − 𝑢)) 𝑑𝑢𝑥

∗

𝑖𝑗
(𝑡)]

= −𝑎
𝑖𝑗
(𝑡) 𝑦

𝑖𝑗
(𝑡)

+ 𝑎
𝑖𝑗
(𝑡) ∫

𝑡

𝑡−𝜂
𝑖𝑗
(𝑡)

𝑦


𝑖𝑗
(𝑢) 𝑑𝑢

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝑡)[𝑓 (𝑥

𝑘𝑙
(𝑡 − 𝜏

𝑘𝑙
(𝑡)))𝑥

𝑖𝑗
(𝑡)

− 𝑓 (𝑥
∗

𝑘𝑙
(𝑡 − 𝜏

𝑘𝑙 (𝑡)))

× 𝑥
∗

𝑖𝑗
(𝑡)]

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝑡)

× [∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝑥

𝑘𝑙
(𝑡 − 𝑢)) 𝑑𝑢𝑥

𝑖𝑗
(𝑡)

−∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝑥

∗

𝑘𝑙
(𝑡 − 𝑢)) 𝑑𝑢𝑥

∗

𝑖𝑗
(𝑡)] .

(57)

Define continuous functions Γ
𝑖
(𝜔) and Π

𝑖
(𝜔) by setting

Γ
𝑖𝑗
(𝜔) = −𝑎

−

𝑖𝑗
+ 𝜔 + 𝑎

+

𝑖𝑗
𝜂
+

𝑖𝑗
𝑒
𝜔𝜂
+

𝑖𝑗

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗

+

(𝑀
𝑓
+ 𝐿

𝑓
𝑒
𝜔𝜏
+

𝑘𝑙 (𝜅 + 𝐿))

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗

+

× (∫

∞

0


𝐾

𝑖𝑗
(𝑢)


𝑑𝑢𝑀

𝑔

+ ∫

∞

0


𝐾

𝑖𝑗
(𝑢)


𝐿
𝑔
𝑒
𝜔𝑢

𝑑𝑢 (𝜅 + 𝐿)) ,

Π
𝑖𝑗
(𝜔) = (1 +

𝑎
+

𝑖𝑗

𝑎
−

𝑖𝑗
− 𝜔

)

× [𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗
𝑒
𝜔𝜂
+

𝑖𝑗

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗

+

(𝑀
𝑓
+ 𝐿

𝑓
𝑒
𝜔𝜏
+

𝑘𝑙 (𝜅 + 𝐿))

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗

+

(∫

∞

0


𝐾

𝑖𝑗
(𝑢)


𝑑𝑢𝑀

𝑔

+ ∫

∞

0


𝐾

𝑖𝑗
(𝑢)


𝐿
𝑔
𝑒
𝜔𝑢

𝑑𝑢

× (𝜅 + 𝐿) )] ,

(58)

where 𝑡 > 0, 𝜔 ∈ [0, 𝛽], 𝑖𝑗 ∈ 𝐽. Then, from (S
3
), we have

Γ
𝑖𝑗
(0) = −𝑎

−

𝑖𝑗
+ 𝑎

+

𝑖𝑗
𝜂
+

𝑖𝑗

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗

+

(𝑀
𝑓
+ 𝐿

𝑓
(𝜅 + 𝐿))

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑞
(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗

+

× (∫

∞

0


𝐾

𝑖𝑗
(𝑢)


𝑑𝑢𝑀

𝑔

+ ∫

∞

0


𝐾

𝑖𝑗
(𝑢)


𝐿
𝑔
𝑑𝑢 (𝜅 + 𝐿))

= − 𝑎
−

𝑖𝑗
(1 −

1

𝑎
−

𝑖𝑗

𝐹
𝑖𝑗
) < 0, 𝑖𝑗 ∈ 𝐽,

Π
𝑖𝑗
(0) = (1 +

𝑎
+

𝑖𝑗

𝑎
−

𝑖𝑗

)
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× [

[

𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗
+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗

+

(𝑀
𝑓
+ 𝐿

𝑓
(𝜅 + 𝐿))

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗

+

× (∫

∞

0


𝐾

𝑖𝑗
(𝑢)


𝑑𝑢𝑀

𝑔

+ ∫

∞

0


𝐾

𝑖𝑗
(𝑢)


𝐿
𝑔
𝑑𝑢 (𝜅 + 𝐿))]

]

= (1 +

𝑎
+

𝑖𝑗

𝑎
−

𝑖𝑗

)𝐹
𝑖𝑗
< 1, 𝑖𝑗 ∈ 𝐽,

(59)

which, together with the continuity of Γ
𝑖𝑗
(𝜔) and Π

𝑖𝑗
(𝜔),

implies that we can choose a constant 𝜆 ∈ (0,min{𝛽,
min

(𝑖,𝑗)
𝑎
−

𝑖𝑗
}) such that

Γ
𝑖𝑗
(𝜆) = −𝑎

−

𝑖𝑗
+ 𝜆 + 𝑎

+

𝑖𝑗
𝜂
+

𝑖𝑗
𝑒
𝜆𝜂
+

𝑖𝑗

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗

+

(𝑀
𝑓
+ 𝐿

𝑓
𝑒
𝜆𝜏
+

𝑘𝑙 (𝜅 + 𝐿))

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗

+

× (∫

∞

0


𝐾

𝑖𝑗
(𝑢)


𝑑𝑢𝑀

𝑔

+ ∫

∞

0


𝐾

𝑖𝑗
(𝑢)


𝐿
𝑔
𝑒
𝜆𝑢
𝑑𝑢 (𝜅 + 𝐿))

= (𝑎
−

𝑖𝑗
− 𝜆)(

𝛽
𝑖𝑗

𝑎
−

𝑖𝑗
− 𝜆

− 1) < 0,

(60)

Π
𝑖𝑗
(𝜆) = (1 +

𝑎
+

𝑖𝑗

𝑎
−

𝑖𝑗
− 𝜆

)

× [

[

𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗
𝑒
𝜆𝜂
+

𝑖𝑗+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗

+

(𝑀
𝑓
+𝐿

𝑓
𝑒
𝜆𝜏
+

𝑘𝑙 (𝜅 + 𝐿))

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗

+

(∫

∞

0


𝐾

𝑖𝑗
(𝑢)


𝑑𝑢𝑀

𝑔

+ ∫

∞

0


𝐾

𝑖𝑗
(𝑢)


𝐿
𝑔
𝑒
𝜆𝑢
𝑑𝑢

× (𝜅 + 𝐿) )]

]

= (1 +

𝑎
+

𝑖𝑗

𝑎
−

𝑖𝑗
− 𝜆

)𝛽
𝑖𝑗
< 1,

(61)

where

𝛽
𝑖𝑗
= 𝑎

+

𝑖𝑗
𝜂
+

𝑖𝑗
𝑒
𝜆𝜂
+

𝑖𝑗

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗

+

(𝑀
𝑓
+ 𝐿

𝑓
𝑒
𝜆𝜏
+

𝑘𝑙 (𝜅 + 𝐿))

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗

+

× (∫

∞

0


𝐾

𝑖𝑗 (𝑢)

𝑑𝑢𝑀

𝑔

+ ∫

∞

0


𝐾

𝑖𝑗
(𝑢)


𝐿
𝑔
𝑒
𝜆𝑢
𝑑𝑢 (𝜅 + 𝐿)) , 𝑖𝑗 ∈ 𝐽.

(62)

Let𝑀 be a constant such that

𝑀 >

𝑎
−

𝑖𝑗
− 𝜆

𝛽
𝑖𝑗

> 1, ∀𝑖𝑗 ∈ 𝐽, (63)

which, together with (60), yields

1

𝑀
−

𝛽
𝑖𝑗

𝑎
−

𝑖𝑗
− 𝜆

< 0,

𝛽
𝑖𝑗

𝑎
−

𝑖𝑗
− 𝜆

< 1, ∀𝑖𝑗 ∈ 𝐽. (64)

Consequently, for any 𝜀 > 0, it is obvious that

𝑦 (𝑡)
1

< (
𝜑 − 𝑥

∗0
+ 𝜀) 𝑒

−𝜆𝑡
< 𝑀(

𝜑 − 𝑥
∗0

+ 𝜀) 𝑒
−𝜆𝑡

𝑡 ∈ (−∞, 0] .

(65)

In the following, we will show that

𝑦 (𝑡)
1

< 𝑀(
𝜑 − 𝑥

∗0
+ 𝜀) 𝑒

−𝜆𝑡
, ∀𝑡 > 0. (66)

Otherwise, there must exist 𝑖𝑗 ∈ 𝐽 and 𝜃 > 0 such that

𝑦 (𝜃)
1

=max {𝑦𝑖𝑗 (𝜃)

,

𝑦


𝑖𝑗
(𝜃)


}= 𝑀(

𝜑 − 𝑥
∗0

+ 𝜀) 𝑒
−𝜆𝜃

,

𝑦 (𝑡)
1

< 𝑀(
𝜑 − 𝑥

∗0
+ 𝜀) 𝑒

−𝜆𝑡
, ∀𝑡 ∈ (−∞, 𝜃) .

(67)

Note that

𝑦


𝑖𝑗
(𝑠) + 𝑎

𝑖𝑗
(𝑠) 𝑦

𝑖𝑗
(𝑠)

= 𝑎
𝑖𝑗
(𝑠) ∫

𝑠

𝑠−𝜂
𝑖𝑗
(𝑠)

𝑦


𝑖𝑗
(𝑢) 𝑑𝑢

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝑠)

× [𝑓 (𝑥
𝑘𝑙
(𝑠 − 𝜏

𝑘𝑙 (𝑠))) 𝑥𝑖𝑗 (𝑠)

−𝑓 (𝑥
∗

𝑘𝑙
(𝑠 − 𝜏

𝑘𝑙 (𝑠))) 𝑥
∗

𝑖𝑗
(𝑠)]

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝑠)

× [∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝑥

𝑘𝑙
(𝑠 − 𝑢)) 𝑑𝑢𝑥

𝑖𝑗
(𝑠)
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− ∫

∞

0

𝐾
𝑖𝑗 (𝑢) 𝑔 (𝑥

∗

𝑘𝑙
(𝑠 − 𝑢)) 𝑑𝑢𝑥

∗

𝑖𝑗
(𝑠)] ,

𝑠 ∈ [0, 𝑡] , 𝑡 ∈ [0, 𝜃] .

(68)

Multiplying both sides of (68) by 𝑒∫
𝑠

0
𝑎
𝑖𝑗
(𝑢)𝑑𝑢 and integrating on

[0, 𝑡], we get

𝑦
𝑖𝑗 (𝑡) = 𝑦

𝑖𝑗 (0) 𝑒
−∫
𝑡

0
𝑎
𝑖𝑗
(𝑢)𝑑𝑢

+ ∫

𝑡

0

𝑒
−∫
𝑡

𝑠
𝑎
𝑖𝑗
(𝑢)𝑑𝑢

× [𝑎
𝑖𝑗
(𝑠) ∫

𝑠

𝑠−𝜂
𝑖𝑗
(𝑠)

𝑦


𝑖𝑗
(𝑢) 𝑑𝑢

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝑠)

× (𝑓 (𝑥
𝑘𝑙
(𝑠 − 𝜏

𝑘𝑙
(𝑠))) 𝑥

𝑖𝑗
(𝑠)

− 𝑓 (𝑥
∗

𝑘𝑙
(𝑠 − 𝜏

𝑘𝑙
(𝑠))) 𝑥

∗

𝑖𝑗
(𝑠))

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝑠)

× (∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝑥

𝑘𝑙
(𝑠 − 𝑢)) 𝑑𝑢𝑥

𝑖𝑗
(𝑠)

− ∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝑥

∗

𝑘𝑙
(𝑠 − 𝑢)) 𝑑𝑢𝑥

∗

𝑖𝑗
(𝑠))] 𝑑𝑠,

𝑡 ∈ [0, 𝜃] .

(69)

Thus, with the help of (67), we have

𝑦
𝑖𝑗
(𝜃)



=



𝑦
𝑖𝑗
(0) 𝑒

−∫
𝜃

0
𝑎
𝑖𝑗
(𝑢)𝑑𝑢

+ ∫

𝜃

0

𝑒
−∫
𝜃

𝑠
𝑎
𝑖𝑗
(𝑢)𝑑𝑢

× [𝑎
𝑖𝑗
(𝑠) ∫

𝑠

𝑠−𝜂
𝑖𝑗
(𝑠)

𝑦


𝑖𝑗
(𝑢) 𝑑𝑢

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝑠) (𝑓 (𝑥

𝑘𝑙
(𝑠 − 𝜏

𝑘𝑙 (𝑠))) 𝑥𝑖𝑗 (𝑠)

− 𝑓 (𝑥
∗

𝑘𝑙
(𝑠 − 𝜏

𝑘𝑙
(𝑠))) 𝑥

∗

𝑖𝑗
(𝑠))

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝑠)

× (∫

∞

0

𝐾
𝑖𝑗 (𝑢) 𝑔 (𝑥

𝑘𝑙 (𝑠 − 𝑢)) 𝑑𝑢𝑥𝑖𝑗 (𝑠)

− ∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝑥

∗

𝑘𝑙
(𝑠 − 𝑢)) 𝑑𝑢𝑥

∗

𝑖𝑗
(𝑠)) ] 𝑑𝑠



≤ (
𝜑 − 𝑥

∗0
+ 𝜀) 𝑒

−𝑎
−

𝑖𝑗
𝜃
+ ∫

𝜃

0

𝑒
−∫
𝜃

𝑠
𝑎
𝑖𝑗
(𝑢)𝑑𝑢

× [𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗
𝑀(

𝜑 − 𝑥
∗0

+ 𝜀) 𝑒
−𝜆(𝑠−𝜂

𝑖𝑗
(𝑠))

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖j
+

(
𝑓 (𝑥

𝑘𝑙
(𝑠 − 𝜏

𝑘𝑙 (𝑠)))



𝑥
𝑖𝑗 (𝑠) − 𝑥

∗

𝑖𝑗
(𝑠)



+
𝑓 (𝑥

𝑘𝑙
(𝑠 − 𝜏

𝑘𝑙
(𝑠)))

−𝑓 (𝑥
∗

𝑘𝑙
(𝑠 − 𝜏

𝑘𝑙 (𝑠)))


×

𝑥
∗

𝑖𝑗
(𝑠)


) + ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗

+

× (∫

∞

0


𝐾

𝑖𝑗
(𝑢)



𝑔 (𝑥
𝑘𝑙
(𝑠 − 𝑢))

 𝑑𝑢

𝑥
𝑖𝑗
(𝑠) − 𝑥

∗

𝑖𝑗
(𝑠)



+ ∫

∞

0


𝐾

𝑖𝑗
(𝑢)



𝑔 (𝑥
𝑘𝑙
(𝑠 − 𝑢))

−𝑔 (𝑥
∗

𝑘𝑙
(𝑠 − 𝑢))

 𝑑𝑢

×

𝑥
∗

𝑖𝑗
(𝑠)


)] 𝑑𝑠

≤ (
𝜑 − 𝑥

∗0
+ 𝜀) 𝑒

−𝑎
−

𝑖𝑗
𝜃
+ ∫

𝜃

0

𝑒
−∫
𝜃

𝑠
𝑎
𝑖𝑗
(𝑢)𝑑𝑢

× [𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗
𝑀(

𝜑 − 𝑥
∗0

+ 𝜀) 𝑒
−𝜆(𝑠−𝜂

𝑖𝑗
(𝑠))

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗

+

(𝑀
𝑓 

𝑦
𝑖𝑗
(𝑠)



+ 𝐿
𝑓 𝑦𝑘𝑙 (𝑠 − 𝜏

𝑘𝑙
(𝑠))




𝑥
∗

𝑖𝑗
(𝑠)


)

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑞
(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗

+

× (∫

∞

0


𝐾

𝑖𝑗 (𝑢)

𝑑𝑢𝑀

𝑔 
𝑦
𝑖𝑗 (𝑠)



+ ∫

∞

0


𝐾

𝑖𝑗
(𝑢)


𝐿
𝑔 𝑦𝑘𝑙 (𝑠 − 𝑢)

 𝑑𝑢

×

𝑥
∗

𝑖𝑗
(𝑠)


)] 𝑑𝑠

≤ (
𝜑 − 𝑥

∗0
+ 𝜀) 𝑒

−𝑎
−

𝑖𝑗
𝜃
+ ∫

𝜃

0

𝑒
−∫
𝜃

𝑠
𝑎
𝑖𝑗
(𝑢)𝑑𝑢

× [𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗
𝑀(

𝜑 − 𝑥
∗0

+ 𝜀) 𝑒
−𝜆(𝑠−𝜂

𝑖𝑗
(𝑠))

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗

+

× (𝑀
𝑓
𝑀(

𝜑 − 𝑥
∗0

+ 𝜀) 𝑒
−𝜆𝑠

+ 𝐿
𝑓
𝑀(

𝜑 − 𝑥
∗0

+ 𝜀) 𝑒
−𝜆(𝑠−𝜏

𝑘𝑙
(𝑠)) 

𝑥
∗

𝑖𝑗
(𝑠)


)

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗

+

× (∫

∞

0


𝐾

𝑖𝑗
(𝑢)


𝑑𝑢𝑀

𝑔
𝑀(

𝜑 − 𝑥
∗0

+ 𝜀) 𝑒
−𝜆𝑠

+ ∫

∞

0


𝐾

𝑖𝑗
(𝑢)


𝐿
𝑔
𝑀(

𝜑 − 𝑥
∗0

+ 𝜀)

× 𝑒
−𝜆(𝑠−𝑢)

𝑑𝑢

𝑥
∗

𝑖𝑗
(𝑠)


)] 𝑑𝑠

≤ 𝑀(
𝜑 − 𝑥

∗0
+ 𝜀)
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× {
𝑒
−𝑎
−

𝑖𝑗
𝜃

𝑀
+ ∫

𝜃

0

𝑒
−∫
𝜃

𝑠
𝑎
𝑖𝑗
(𝑢)𝑑𝑢

𝑒
−𝜆𝑠

× [𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗
𝑒
𝜆𝜂
+

𝑖𝑗

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗

+

(𝑀
𝑓
+ 𝐿

𝑓
𝑒
𝜆𝜏
+

𝑘𝑙 (𝜅 + 𝐿))

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑞
(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗

+

× (∫

∞

0


𝐾

𝑖𝑗
(𝑢)


𝑑𝑢𝑀

𝑔

+ ∫

∞

0


𝐾

𝑖𝑗 (𝑢)

𝐿
𝑔
𝑒
𝜆𝑢
𝑑𝑢 (𝜅 + 𝐿))] 𝑑𝑠}

≤ 𝑀(
𝜑 − 𝑥

∗0
+ 𝜀)

× {
𝑒
−𝑎
−

𝑖𝑗
𝜃

𝑀
+ 𝑒

−𝑎
−

𝑖𝑗
𝜃
∫

𝜃

0

𝑒
(𝑎
−

𝑖𝑗
−𝜆)𝑠

𝑑𝑠𝛽
𝑖𝑗
}

≤ 𝑀(
𝜑 − 𝑥

∗0
+ 𝜀) 𝑒

−𝜆𝜃

× [
𝑒
(𝜆−𝑎
−

𝑖𝑗
)𝜃

𝑀
+

𝛽
𝑖𝑗

𝑎
−

𝑖𝑗
− 𝜆

(1 − 𝑒
(𝜆−𝑎
−

𝑖𝑗
)𝜃
)]

= 𝑀(
𝜑 − 𝑥

∗0
+ 𝜀) 𝑒

−𝜆𝜃

× [(
1

𝑀
−

𝛽
𝑖𝑗

𝑎
−

𝑖𝑗
− 𝜆

) 𝑒
(𝜆−𝑎
−

𝑖𝑗
)𝜃
+

𝛽
𝑖𝑗

𝑎
−

𝑖𝑗
− 𝜆

] ,

(70)

which, together with (64) and (67), implies that


𝑦
𝑖𝑗
(𝜃)


< 𝑀 (‖ 𝜑 − 𝑥

∗
‖
0
+ 𝜀) 𝑒

−𝜆𝜃
, (71)

𝑦 (𝜃)
1

= max {𝑦𝑖𝑗 (𝜃)

,

𝑦


𝑖𝑗
(𝜃)


}

=

𝑦


𝑖𝑗
(𝜃)


= 𝑀(

𝜑 − 𝑥
∗𝜉

+ 𝜀) 𝑒
−𝜆𝜃

.

(72)

From (60), (61) and (67)–(72) yield


𝑦


𝑖𝑗
(𝜃)



≤ 𝑎
𝑖𝑗 (𝜃)


𝑦
𝑖𝑗 (𝜃)



+



𝑎
𝑖𝑗 (𝜃) ∫

𝜃

𝜃−𝜂
𝑖𝑗
(𝜃)

𝑦


𝑖𝑗
(𝑢) 𝑑𝑢

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝜃)

× [𝑓 (𝑥
𝑘𝑙
(𝜃 − 𝜏

𝑘𝑙
(𝜃))) 𝑥

𝑖𝑗
(𝜃)

− 𝑓 (𝑥
∗

𝑘𝑙
(𝜃 − 𝜏

𝑘𝑙 (𝜃))) 𝑥
∗

𝑖𝑗
(𝜃)]

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑞
(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝜃)

× [∫

∞

0

𝐾
𝑖𝑗 (𝑢) 𝑔 (𝑥

𝑘𝑙 (𝜃 − 𝑢)) 𝑑𝑢𝑥𝑖𝑗 (𝜃)

− ∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝑥

∗

𝑘𝑙
(𝜃 − 𝑢)) 𝑑𝑢𝑥

∗

𝑖𝑗
(𝜃)]



≤ 𝑎
+

𝑖𝑗


𝑦
𝑖𝑗 (𝜃)



+ [𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗
𝑀(

𝜑 − 𝑥
∗𝜉

+ 𝜀) 𝑒
−𝜆(𝜃−𝜂

𝑖𝑗
(𝜃))

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑟
(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗

+

× (
𝑓 (𝑥

𝑘𝑙
(𝜃 − 𝜏

𝑘𝑙
(𝜃)))




𝑥
𝑖𝑗
(𝜃) − 𝑥

∗

𝑖𝑗
(𝜃)



+
𝑓 (𝑥

𝑘𝑙
(𝜃 − 𝜏

𝑘𝑙
(𝜃))) − 𝑓 (𝑥

∗

𝑘𝑙
(𝜃 − 𝜏

𝑘𝑙
(𝜃)))



×

𝑥
∗

𝑖𝑗
(𝜃)


)

+ ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗

+

(∫

∞

0


𝐾

𝑖𝑗
(𝑢)



𝑔 (𝑥
𝑘𝑙
(𝜃 − 𝑢))

 𝑑𝑢

×

𝑥
𝑖𝑗
(𝜃) − 𝑥

∗

𝑖𝑗
(𝜃)



+ ∫

∞

0


𝐾

𝑖𝑗
(𝑢)



×
𝑔 (𝑥

𝑘𝑙
(𝜃 − 𝑢))

−𝑔 (𝑥
∗

𝑘𝑙
(𝜃 − 𝑢))

 𝑑𝑢

×

𝑥
∗

𝑖𝑗
(𝜃)


)

≤ {𝑎
+

𝑖𝑗
[(

1

𝑀
−

𝛽
𝑖𝑗

𝑎
−

𝑖𝑗
− 𝜆

) 𝑒
(𝜆−𝑎
−

𝑖𝑗
)𝜃
+

𝛽
𝑖𝑗

𝑎
−

𝑖𝑗
− 𝜆

]

+ 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗
𝑒
𝜆𝜂
+

𝑖𝑗 + ∑

𝐶
𝑘𝑙
∈𝑁
𝑟
(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗

+

× (𝑀
𝑓
+ 𝐿

𝑓
𝑒
𝜆𝜏
+

𝑘𝑙 (𝜅 + 𝐿)) + ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗

+

× (∫

∞

0


𝐾

𝑖𝑗
(𝑢)


𝑑𝑢𝑀

𝑔

+ ∫

∞

0


𝐾

𝑖𝑗
(𝑢)


𝐿
𝑔
𝑒
𝜆𝑢
𝑑𝑢 (𝜅 + 𝐿))}𝑀

× (
𝜑 − 𝑥

∗0
+ 𝜀) 𝑒

−𝜆𝜃

≤ 𝑀(
𝜑 − 𝑥

∗0
+ 𝜀) 𝑒

−𝜆𝜃

×[𝑎
+

𝑖𝑗
(

1

𝑀
−

𝛽
𝑖𝑗

𝑎
−

𝑖𝑗
− 𝜆

) 𝑒
(𝜆−𝑎
−

𝑖𝑗
)𝜃
+𝛽

𝑖𝑗
(

𝑎
+

𝑖𝑗

𝑎
−

𝑖𝑗
− 𝜆

+ 1)]

< 𝑀(
𝜑 − 𝑥

∗0
+ 𝜀) 𝑒

−𝜆𝜃
,

(73)
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which contradicts (72). Hence, (66) holds. Letting 𝜀 → 0
+,

we have from (66) that
𝑦(𝑡)

1
≤ 𝑀

𝜑 − 𝑥
∗0

𝑒
−𝜆𝑡

, ∀𝑡 > 0, (74)

which implies
𝑥 (𝑡) − 𝑥

∗
(𝑡)

1
≤ 𝑀

𝜑 − 𝑥
∗0

𝑒
−𝜆𝑡

, ∀𝑡 > 0. (75)

This completes the proof.

5. An Example

In this section, we give an example with numerical simulation
to demonstrate the results obtained in previous sections.

Example 13. Consider the following SICNNs with time-
varying delays in the leakage terms:

𝑑𝑥
𝑖𝑗

𝑑𝑡
= −𝑎

𝑖𝑗
(𝑡) 𝑥

𝑖𝑗
(𝑡 − 𝜂

𝑖𝑗
(𝑡)) − ∑

𝑐
𝑘𝑙
∈𝑁
𝑟
(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
𝑓 (𝑥

𝑘𝑙
(𝑡 − sin2𝑡)) 𝑥

𝑖𝑗
(𝑡)

− ∑

𝐶
𝑘𝑙
∈𝑁
𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝑥

𝑘𝑙
(𝑡 − 𝑢)) 𝑑𝑢𝑥

𝑖𝑗
+ 𝐿

𝑖𝑗
(𝑡) , 𝑖, 𝑗 = 1, 2, 3,

(76)

[

[

𝑎
11

𝑎
12

𝑎
13

𝑎
21

𝑎
22

𝑎
23

𝑎
31

𝑎
32

𝑎
33

]

]

= [

[

1 1 3

3 1 3

3 1 3

]

]

[

[

𝐵
11

𝐵
12

𝐵
13

𝐵
21

𝐵
22

𝐵
23

𝐵
31

𝐵
32

𝐵
33

]

]

= [

[

𝐶
11

𝐶
12

𝐶
13

𝐶
21

𝐶
22

𝐶
23

𝐶
31

𝐶
32

𝐶
33

]

]

= [

[

0.1 0.2 0.1

0.2 0 0.2

0.1 0.2 0.1

]

]

,

[

[

𝜂
11

𝜂
12

𝜂
13

𝜂
21

𝜂
22

𝜂
23

𝜂
31

𝜂
32

𝜂
33

]

]

= 0.01

[
[
[
[
[
[
[
[
[
[

[

sin2√3𝑡 +
0.1

1 + 𝑡2
cos2√3𝑡 +

0.1

1 + 𝑡2
sin22𝑡 + 0.1

1 + 𝑡2

cos2√5𝑡 +
0.1

1 + 𝑡2
sin2√5𝑡 +

0.1

1 + 𝑡2
cos22𝑡 + 0.1

1 + 𝑡2

sin22𝑡 + 0.1

1 + 𝑡2
cos23𝑡 + 0.1

1 + 𝑡2
sin2√2𝑡 +

0.1

1 + 𝑡2

]
]
]
]
]
]
]
]
]
]

]

[

[

𝐿
11

𝐿
12

𝐿
13

𝐿
21

𝐿
22

𝐿
23

𝐿
31

𝐿
32

𝐿
33

]

]

=

[
[
[
[
[
[
[
[
[

[

0.7 + 0.24 sin2√2𝑡 −
1

1 + 𝑡2
0.41 + 0.5 cos2𝑡 1

0.61 + 0.2 cos2𝑡 − 1

1 + 𝑡2
0.67 + 0.2 sin2𝑡 1

0.59 + 0.4 cos4𝑡 − 1

1 + 𝑡2
0.5 + 0.41 sin2𝑡 1

]
]
]
]
]
]
]
]
]

]

.

(77)

Set
𝜅 = 0.7, 𝑟 = 𝑞 = 1, 𝐾

𝑖𝑗
(𝑢) = |sin 𝑢| 𝑒

−𝑢
,

𝑖 = 1, 2, 3, 𝑗 = 1, 2, 3,

𝑓 (𝑥) = 𝑔 (𝑥) =
1

50
(|𝑥 − 1| − |𝑥 + 1|) ,

(78)

clearly,

𝑀
𝑓
= 𝑀

𝑔
= 0.04, 𝐿

𝑓
= 𝐿

𝑔
= 0.04,

∑

𝐶
𝑘𝑙
∈𝑁
1
(1,1)

𝐶
𝑘𝑙

11
= ∑

𝐶
𝑘𝑙
∈𝑁
1
(1,1)

𝐵
𝑘𝑙

11
= 0.5,

∑

𝐶
𝑘𝑙
∈𝑁
1
(1,2)

𝐶
𝑘𝑙

12
= ∑

𝐶
𝑘𝑙
∈𝑁
1
(1,2)

𝐵
𝑘𝑙

12
= 0.8,

∑

𝐶
𝑘𝑙
∈𝑁
1
(1,3)

𝐶
𝑘𝑙

13
= ∑

𝐶
𝑘𝑙
∈𝑁
1
(1,3)

𝐵
𝑘𝑙

13
= 0.5,

∑

𝐶
𝑘𝑙
∈𝑁
1
(2,1)

𝐶
𝑘𝑙

21
= ∑

𝐶
𝑘𝑙
∈𝑁
1
(2,1)

𝐵
𝑘𝑙

21
= 0.8,

∑

𝐶
𝑘𝑙
∈𝑁
1
(2,2)

𝐶
𝑘𝑙

22
= ∑

𝐶
𝑘𝑙
∈𝑁
1
(2,2)

𝐵
𝑘𝑙

22
= 1.2,

∑

𝐶
𝑘𝑙
∈𝑁
1
(2,3)

𝐶
𝑘𝑙

23
= ∑

𝐶
𝑘𝑙
∈𝑁
1
(2,3)

𝐵
𝑘𝑙

23
= 0.8,

∑

𝐶
𝑘𝑙
∈𝑁
1
(3,1)

𝐶
𝑘𝑙

31
= ∑

𝐶
𝑘𝑙
∈𝑁
1
(3,1)

𝐵
𝑘𝑙

31
= 0.5,
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∑

𝐶
𝑘𝑙
∈𝑁
1
(3,2)

𝐶
𝑘𝑙

32
= ∑

𝐶
𝑘𝑙
∈𝑁
1
(3,2)

𝐵
𝑘𝑙

32
= 0.8,

∑

𝐶
𝑘𝑙
∈𝑁
1
(3,3)

𝐶
𝑘𝑙

33
= ∑

𝐶
𝑘𝑙
∈𝑁
1
(3,3)

𝐵
𝑘𝑙

33
= 0.5,

(79)

where 𝑖𝑗 ∈ 𝐽 = {11, 12, 13, 21, 22, 23, 31, 32, 33}. Then,

𝐿 = max{max
(𝑖,𝑗)

{sup
𝑡∈R



∫

𝑡

−∞

𝑒
−∫
𝑡

𝑠
𝑎
𝑖𝑗
(𝑢)𝑑𝑢

𝐿
𝑖𝑗
(𝑠) 𝑑𝑠



} ,

max
(𝑖,𝑗)

{sup
𝑡∈R



𝐿
𝑖𝑗
(𝑡) − 𝑎

𝑖𝑗
(𝑡)

× ∫

𝑡

−∞

𝑒
−∫
𝑡

𝑠
𝑎
𝑖𝑗
(𝑢)𝑑𝑢

𝐿
𝑖𝑗 (𝑠) 𝑑𝑠



}}

= 1 > 0,

0.7 = 𝜅 ≤ 𝐿 = 1,

max
(𝑖,𝑗)

{
1

𝑎
−

𝑖𝑗

𝐸
𝑖𝑗
, (1 +

𝑎
+

𝑖𝑗

𝑎
−

𝑖𝑗

)𝐸
𝑖𝑗
} = 0.6603 ≤ 𝜅,

max
(𝑖,𝑗)

{
1

𝑎
−

𝑖𝑗

𝐹
𝑖𝑗
, (1 +

𝑎
+

𝑖𝑗

𝑎
−

𝑖𝑗

)𝐹
𝑖𝑗
} = 0.5804 < 1.

(80)

It follows that system (56) satisfies all the conditions in
Theorems 10 and 12. Hence, system (76) has exactly one
pseudo almost periodic solution. Moreover, the pseudo
almost periodic solution is globally exponentially stable. The
fact is verified by the numerical simulation in Figures 1, 2, and
3 and there are three different initial values which are 𝜑

11
≡ 1,

𝜑
12

≡ −3, 𝜑
13

≡ 4, 𝜑
21

≡ 2, 𝜑
22

≡ 5, 𝜑
23

≡ 3, 𝜑
33

≡ −1,
𝜑
32

≡ −2, 𝜑
33

≡ −5; 𝜑
11

≡ 2, 𝜑
12

≡ −1, 𝜑
13

≡ 5, 𝜑
21

≡ 4,
𝜑
22

≡ 2, 𝜑
23

≡ 1, 𝜑
33

≡ −3, 𝜑
32

≡ −4, 𝜑
33

≡ 3 and 𝜑
11

≡ −2,
𝜑
12

≡ 1, 𝜑
13

≡ −5, 𝜑
21

≡ −4, 𝜑
22

≡ −2, 𝜑
23

≡ −1, 𝜑
33

≡ 3,
𝜑
32

≡ 4, 𝜑
33

≡ −3, respectively.

Remark 14. By using the inequality analysis technique, in
[19, 20], the authors obtained the existence of almost periodic
solution of SICNNs with leakage delays, but they did not
give the existence and global exponential convergence for
the pseudo almost periodic solution. Since [1–9] only dealt
with SICNNs without leakage delays, [14–18, 21–24] give
no opinions about the problem of pseudo almost periodic
solutions for SICNNs with leakage delays. One can observe
that all the results in these literatures and the references
therein cannot be applicable to prove the existence and
exponential stability of pseudo almost periodic solutions for
SICNNs (56).
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A nonautonomous predator-prey model with infertility control in the prey is formulated and investigated. Threshold conditions
for the permanence and extinction of fertility prey and infertility prey are established. Some new threshold values of integral form
are obtained. For the periodic cases, these threshold conditions act as sharp threshold values for the permanence and extinction
of fertility prey and infertility prey. There are also mounting concerns that the quantity of biological sterile drug is obtained in the
process of the prevention and control of pest in the grasslands and farmland. Finally, two examples are given to illustrate the main
results of this paper. The numerical simulations shown that, when the pest population is permanet, different dynamic behaviors
may be found in this model, such as the global attractivity and the chaotic attractor.

1. Introduction

Small mammals living in the grasslands, such as the plateau
pika, not only burrow, but also accumulate the soil outside the
hole, which makes the grass cease growing. More seriously,
after a rainstorm, the soil would be washed away which
increased soil erosion. So a greater range of damages resulted.
And the lack of protective vegetation exacerbated the deserti-
fication and degradation of pastures. Besides, pirates of pikas
also eat grass, which reduced the carrying capacity. When
the number of these small mammals increased sharply, it
would cause a lot of trouble and loss to economy, ecology,
and people’s lives on the grassland. So at this moment, they
are referred to as harmful animals.

As the change of the natural environment by the human
production activities, agricultural, and the rapid development
of cities provide plenty of food resources and good habitat
for rodent, rat increases seriously, the management of pest
also will be more difficult. Mouse control strategy from the
traditional damage caves andmachinery catch to fumigation,
acute rodenticide, anticoagulant therapy, and the application
of many chemical methods has made important progress.
At present, the chemical prevention and control play

an important role in the mouse control technology. However,
chemical control is effective for short and harmful rat will
soon come again and reproduction rapidly leads to the
quick rebound in this species. In the fields, the application
of acute rodenticide reaches 80; the population in the two
years can be restored to the original level. In addition, there
still exist many problems such as environmental pollution,
secondary poisoning, and fungicide resistance in chemical
control, which makes chemical Rodenticide restricted to
the application of the rodent sustainable control. And inte-
grating multidisciplinary approach and means, the sterility
control technology based on ecological security has grad-
ually become the development direction of rodent control.
Infertility control technology has both directly and indirectly
reduced the rodent population density, and will not lead to
sharp fluctuations in ecological system, so it has a very good
advantage in the environmental safety and cost-effectiveness.

Now, there are very serious rat in many areas of China,
such as Xinjiang, Inner Mongolia, Gansu, Shanxi, and The
Tibetan Plateau. In the Inner Mongolia grasslands, it is
predicted that pest harm area is about 100 million mu and
the serious disaster area is about 50 million mu [1]. Prairie
mousehole per hectare is 300 at least and even 900 at most.
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In 2006, eleven silver foxes were introduced for the first
time at Alxa League in Inner Mongolia grassland in order to
control the prairie mice.Those foxes can catch large amounts
of prairie gerbil, Meriones unguiculatus, and jerboa [2]. In
addition, in 2011, Beowulf Biological antisterility rodenticide
was used. The purpose is to test the effect of preventing
grassland rat and whether or not achieves these requirements
such as restraining the birth rates of harmful rat population,
reducing the pest population density, slowing population
growth benefiting Environmental Health and Safety [3].

At present, the research about infertility control is at most
laboratory studies [4–9] and theoretical analysis even less.
Based on the above understanding of the facts andmathemat-
ical biology background, the study about a class of predator-
preymodel with infertility control in the prey (harmful rat) is
very meaningful. Moreover, the result indicated that species
and quantity are different by vegetation and physiognomy,
and change of density is more distinct along with changing
season. Therefore, it is a very basilic problem to research this
kind of nonautonomous population dynamic systems.

It is interesting to note that rodents living in the North
generally have seasonal breeding, such as plateau pika nearby
Qinghai lake breed fromApril to August, Brandt’s voles breed
from March to September, and Mongolian gerbil in Inner
Mongolia breed from April to August. Obviously, this kind
of periodic phenomenon, extensively exists in the real world.
Therefore, the dynamical behavior of the 𝜔-periodic system
is also worthy of being discussed.

Now, we only consider infertility control in the prey
(harmful rat)𝑋(𝑡) population. It is composed of two popula-
tion classes: one is the class of fertility prey, denoted by 𝐹(𝑡),
and the other is the class of infertility prey, denoted by 𝑆(𝑡).
Therefore, at any time 𝑡, the total density of prey population
is 𝑋(𝑡) = 𝐹(𝑡) + 𝑆(𝑡). Fertility rodents will become infertile
after eating the sterilant. Therefore, 𝜇(𝑡) is assumed to the
rate at which infertility prey contacts occur. In this paper,
we study the following nonautonomous predator-prey model
with infertility control in the prey:

𝑑𝐹 (𝑡)

𝑑𝑡
= 𝐹 (𝑡) [𝑏

1
(𝑡) − 𝑎

11
(𝑡) (𝐹 (𝑡) + 𝑆 (𝑡))

− 𝜇 (𝑡) − 𝑎12 (𝑡) 𝑍 (𝑡)] ,

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝜇 (𝑡) 𝐹 (𝑡) − 𝑑

2
(𝑡) 𝑆 (𝑡) − 𝑎

11
(𝑡)

× [𝐹 (𝑡) + 𝑆 (𝑡)] 𝑆 (𝑡) − 𝑎12 (𝑡) 𝑆 (𝑡) 𝑍 (𝑡) ,

𝑑𝑍 (𝑡)

𝑑𝑡
= 𝑍 (𝑡) [𝑏

2
(𝑡) + 𝑎

21
(𝑡) (𝐹 (𝑡) + 𝑆 (𝑡)) − 𝑎

22
(𝑡) 𝑍 (𝑡)]

(1)

with initial conditions

𝐹 (0) = 𝐹
0
, 𝑆 (0) = 𝑆

0
, 𝑍 (0) = 𝑍

0
, (2)

where

(𝐹
0
, 𝑆
0
, 𝑍
0
) ∈ 𝑅
3

+
= {(𝐹, 𝑆, 𝑍) ∈ 𝑅

3
: 𝐹 > 0, 𝑆 > 0, 𝑍 > 0} .

(3)

Here, 𝐹(𝑡) is the fertility prey population density, 𝑆(𝑡) is the
sterility prey population density, 𝑍(𝑡) is the predator popu-
lation density, 𝑏

1
(𝑡), 𝑎
11
(𝑡) are the intrinsic growth rate and

density-dependent coefficient of the prey, respectively, 𝑏
2
(𝑡),

𝑎
22
(𝑡) are the intrinsic growth rate and density-dependent

coefficient of the predator, respectively, 𝑎
12
(𝑡) is the capturing

rate of the predator, and 𝑎
21
(𝑡) is the rate of conversion of

nutrients into the reproduction of the predator.

2. Preliminaries

For a continuous bounded function 𝑓(𝑡) defined on 𝑅
+
=

[0,∞), we denote

𝑓
𝑚
= lim sup
𝑡→∞

𝑓 (𝑡) , 𝑓
𝑙
= lim inf
𝑡→∞

𝑓 (𝑡) . (4)

If𝑓 is𝜔-periodic, then the average value of on a time interval
[0, 𝜔] can be defined as

𝑓 =
1

𝜔
∫

𝜔

0

𝑓 (𝑡) 𝑑𝑡. (5)

For system (1), we introduce the following assumptions.

(H
1
) Functions 𝑎

11
(𝑡), 𝜇(𝑡), 𝑎

12
(𝑡), 𝑑
2
(𝑡), 𝑎
21
(𝑡), and 𝑎

22
(𝑡)

are all negative, continuous, and bounded on 𝑅
+
and

𝑏
𝑖
(𝑡) (𝑖 = 1, 2) are continuous and bounded functions.

(H
2
) There exist positive constants 𝜔

𝑗
> 0 (𝑗 = 1, 2, 3,

4, 5, 6) such that

lim inf
𝑡→∞

∫

𝑡+𝜔
𝑖

𝑡

𝑏
𝑖
(𝜃) 𝑑𝜃 > 0, lim inf

𝑡→∞

∫

𝑡+𝜔
3

𝑡

𝑑
2
(𝜃) 𝑑𝜃 > 0,

lim inf
𝑡→∞

∫

𝑡+𝜔
3+𝑖

𝑡

𝑎
𝑖𝑖 (𝜃) 𝑑𝜃 > 0, lim inf

𝑡→∞

∫

𝑡+𝜔
6

𝑡

𝜇 (𝜃) 𝑑𝜃 > 0.

(6)

In particular, whenmodel (1) degenerates into𝜔-periodic
system, that is, 𝑎

11
(𝑡), 𝜇(𝑡), 𝑎

12
(𝑡), 𝑑
2
(𝑡), 𝑎
21
(𝑡), 𝑏
1
(𝑡), 𝑏
2
(𝑡), and

𝑎
22
(𝑡) are continuous periodic functions with period 𝜔 > 0,

then assumption (H
2
) is equivalent to the following forms:

(H
2
) 𝑏
𝑖
> 0, 𝑎

𝑖𝑖
> 0, 𝑑

2
> 0, and 𝜇 > 0 (𝑖 = 1, 2).

In the following, we state several lemmas which will be
useful in the proof of main results in the paper.

Firstly, we consider the following nonautonomous logistic
equation:

𝑑𝑧 (𝑡)

𝑑𝑡
= 𝑧 (𝑡) (𝑏2 (𝑡) − 𝑎22 (𝑡) 𝑧 (𝑡)) , (7)

where functions 𝑏
2
(𝑡) and 𝑎

22
(𝑡) are bounded continuous

defined on 𝑅
+
and 𝑎

22
(𝑡) ≥ 0 for all 𝑡 ≥ 0. We have the

following result.

Lemma 1 (see [10]). Suppose that there are constants 𝜔
𝑖
>

0 (𝑖 = 1, 2) such that

lim inf
𝑡→∞

∫

𝑡+𝜔
1

𝑡

𝑏
2
(𝜃) d𝜃 > 0, lim inf

𝑡→∞

∫

𝑡+𝜔
2

𝑡

𝑎
22
(𝜃) d𝜃 > 0.

(8)
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Then,

(a) there exist positive constants𝑚 and𝑀 such that for any
positive solution 𝑧(𝑡) of (7)

𝑚 ≤ lim inf
𝑡→∞

𝑧 (𝑡) ≤ lim sup
𝑡→∞

𝑧 (𝑡) ≤ 𝑀; (9)

(b) each fixed positive solution 𝑧
∗
(𝑡) of (7) is globally

uniformly attractive;
(c) if 𝑎𝑙

22
> 0, then for any positive solution 𝑧(𝑡) of (7)

(
𝑏
2

𝑎
22

)

𝑙

≤ lim inf
𝑡→∞

𝑧 (𝑡) ≤ lim sup
𝑡→∞

𝑧 (𝑡) ≤ (
𝑏
2

𝑎
22

)

𝑚

; (10)

(d) if (7) is𝜔-periodic, then condition (8) reduces to 𝑏
2
> 0

and 𝑎
22
> 0; thus (7) has a uniformly attractive positive

𝜔-periodic solution.

Further, we consider the following nonautonomous equa-
tion:
𝑑𝑧 (𝑡)

𝑑𝑡
= 𝑧 (𝑡) [𝑏2 (𝑡) − 𝑎22 (𝑡) 𝑧 (𝑡) + 𝑎21 (𝑡) (𝐹 (𝑡) + 𝑆 (𝑡))] ,

(11)

where 𝑏
2
(𝑡) and 𝑎

22
(𝑡) are defined as in (7) and 𝑎

21
(𝑡)(𝐹(𝑡) +

𝑆(𝑡)) is continuous and bounded function defined on 𝑅
+
.

Let 𝑧(𝑡, 𝑡
0
, 𝑧
0
) be the solution of (11) with initial condition

𝑧(𝑡
0
) = 𝑧
0
and let 𝑧

0
(𝑡) be some fixed positive solution of (7).

We have the following result.

Lemma 2 (see [11]). Suppose that all conditions of Lemma 1
hold. Then for any constants 𝜀 > 0 and 𝑀 > 0 there exist
constant 𝛿 = 𝛿(𝜀) > 0 and 𝑇 = 𝑇(𝜀,𝑀) > 0 such that for any
𝑡
0
∈ 𝑅
+
and 𝑧
0
∈ [𝑀
−1
,𝑀], when |𝑎

21
(𝑡)(𝐹(𝑡) + 𝑆(𝑡))| < 𝛿 for

all 𝑡 ≥ 𝑡
0
, one has
𝑧 (𝑡, 𝑡0, 𝑧0) − 𝑧0 (𝑡)

 < 𝜀, ∀𝑡 ≥ 𝑡
0
+ 𝑇. (12)

Next, we consider the following nonautonomous linear
equation:

𝑑𝑢 (𝑡)

𝑑𝑡
= 𝜇 (𝑡) − 𝑑2 (𝑡) 𝑢 (𝑡) , (13)

where 𝜇(𝑡) and 𝑑
2
(𝑡) are bounded continuous defined on 𝑅

+

and 𝜇(𝑡) ≥ 0 for all 𝑡 ≥ 0. We have the following result.

Lemma 3 (see [12]). Suppose that there are constants 𝜔
𝑖
>

0 (𝑖 = 1, 2) such that

lim inf
𝑡→∞

∫

𝑡+𝜔
1

𝑡

𝜇 (𝜃) d𝜃 > 0, lim inf
𝑡→∞

∫

𝑡+𝜔
2

𝑡

𝑑
2
(𝜃) d𝜃 > 0.

(14)

Then,

(a) there exist positive constants𝑚 and𝑀 such that for any
positive solution 𝑢(𝑡) of (13)

𝑚 ≤ lim inf
𝑡→∞

𝑢 (𝑡) ≤ lim sup
𝑡→∞

𝑢 (𝑡) ≤ 𝑀; (15)

(b) each fixed positive solution 𝑢
∗
(𝑡) of (13) is globally

uniformly attractive;

(c) if 𝑑𝑙
2
> 0, then for any positive solution 𝑢(𝑡) of (13)

(
𝜇

𝑑
2

)

𝑙

≤ lim inf
𝑡→∞

𝑧 (𝑡) ≤ lim sup
𝑡→∞

𝑧 (𝑡) ≤ (
𝜇

𝑑
2

)

𝑚

; (16)

(d) if (13) is 𝜔-periodic, then the condition (14) reduces to
𝜇 > 0 and 𝑑

2
> 0; thus (13) has a uniformly attractive

positive 𝜔-periodic solution.

Further we investigate the following nonautonomous
linear equation:

𝑑𝑢 (𝑡)

𝑑𝑡
= 𝜇 (𝑡) − 𝑑2 (𝑡) 𝑢 (𝑡) + 𝑒 (𝑡) , (17)

where 𝜇(𝑡) and 𝑑
2
(𝑡) are defined as in (13) and 𝑒(𝑡) is

continuous and bounded function defined on 𝑅
+
.

Let 𝑢(𝑡, 𝑡
0
, 𝑢
0
) be the solution of (17) with initial condition

𝑢(𝑡
0
) = 𝑢
0
and let 𝑢

0
(𝑡) be some fixed positive solution of (13).

We have the following result.

Lemma 4 (see [13]). Suppose that there exists a constant 𝛾 > 0
such that

lim inf
𝑡→∞

∫

𝑡+𝛾

𝑡

𝑑
2
(𝜃) 𝑑𝜃 > 0. (18)

Then for any constants 𝜀 > 0 and𝑀 > 0 there exist constants
𝛿 = 𝛿(𝜀) > 0 and 𝑇 = 𝑇(𝜀,𝑀) > 0 such that for any 𝑡

0
∈ 𝑅
+

and 𝑢
0
∈ [𝑀
−1
,𝑀], when |𝑒(𝑡)| < 𝛿 for all 𝑡 ≥ 𝑡

0
, one has

𝑢 (𝑡, 𝑡0, 𝑢0) − 𝑢0 (𝑡)
 < 𝜀, ∀𝑡 ≥ 𝑡

0
+ 𝑇. (19)

In (17), if function 𝜇(𝑡) ≡ 0, then we can obtain that
𝑢
0
(𝑡) ≡ 0. We have the following Corollary 5 of Lemma 4.

Corollary 5. Suppose that 𝜇(𝑡) ≡ 0 for all 𝑡 ∈ 𝑅
+ and there

exists a constant 𝛾 > 0 such that

lim inf
𝑡→∞

∫

𝑡+𝛾

𝑡

𝑑
2
(𝜃) 𝑑𝜃 > 0. (20)

Then for any constants 𝜀 > 0 and𝑀 > 0 there exist constants
𝛿 = 𝛿(𝜀) > 0 and 𝑇 = 𝑇(𝜀,𝑀) > 0 such that for any 𝑡

0
∈ 𝑅
+

and 𝑢
0
∈ [𝑀
−1
,𝑀], when |𝑒(𝑡)| < 𝛿 for all 𝑡 ≥ 𝑡

0
, one has

𝑢 (𝑡, 𝑡0, 𝑧0)
 < 𝜀, ∀𝑡 ≥ 𝑡

0
+ 𝑇. (21)

3. Main Results

It is obvious that the solution (𝐹(𝑡), 𝑆(𝑡), 𝑍(𝑡)) of model (1)
with initial condition (2) is positive; that is, 𝐹(𝑡) > 0, 𝑆(𝑡) > 0,
𝑍(𝑡) > 0 for all 𝑡 ≥ 0 in the maximum interval of existence
of the solution. On the ultimate boundedness of solutions of
system (1), we get the following theorem.
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Theorem 6. Suppose that (𝐻
1
) and (𝐻

2
) hold. Then system

(1) is ultimately bounded in the sense that there is a positive
constant M such that

lim sup
𝑡→∞

𝐹 (𝑡) < 𝑀, lim sup
𝑡→∞

𝑆 (𝑡) < 𝑀,

lim sup
𝑡→∞

𝑍 (𝑡) < 𝑀

(22)

for any positive solution (𝐹(𝑡), 𝑆(𝑡), 𝑍(𝑡)) of system (1).

The ecological implication of Theorem 6 is that the
fertility prey 𝐹(𝑡) is ultimately bounded. The sterility prey
𝑆(𝑡), when assumptions (H

1
) and (H

2
) hold, if 𝑆(𝑡) is not

ultimately bounded, then 𝑆(𝑡) will expand unlimitedly. But
the conversion of the fertile prey lies on the sterile prey by
sterile drugs. So, the prerequisite for the unlimited increase of
the sterility prey is that the fertility prey must be expanding
unlimitedly. In short, the number of harmful rat will not go
on rising forever.

Proof. Let (𝐹(𝑡), 𝑆(𝑡), 𝑍(𝑡)) be any positive solution of system
(1). From the first equation of system (1) we have

𝑑𝐹 (𝑡)

𝑑𝑡
≤ 𝐹 (𝑡) (𝑏1 (𝑡) − 𝑎11 (𝑡) 𝐹 (𝑡)) . (23)

From (H
2
), it is easy to verify that the comparison equation

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝑥 (𝑡) [𝑏1 (𝑡) − 𝑎11 (𝑡) 𝑥 (𝑡)] (24)

satisfies all conditions of Lemma 1. So, the comparison
theoremandLemma 1 imply thatwe obtain there is a constant
𝑀
1
such that for any positive solution (𝐹(𝑡), 𝑆(𝑡), 𝑍(𝑡)) of

system (1), there is a 𝑇
1
> 0 such that we have 𝐹(𝑡) < 𝑀

1

for all 𝑡 ≥ 𝑇
1
. Further, from the second equation of system (1)

we have
𝑑𝑆 (𝑡)

𝑑𝑡
≤ 𝜇 (𝑡)𝑀

1
− 𝑑
2
(𝑡) 𝑆 (𝑡) (25)

for all 𝑡 ≥ 𝑇
2
. From Lemma 3 it can be obtained that under

assumption (H
2
) any positive solution 𝑥(𝑡) of the following

nonautonomous linear equation:

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝜇 (𝑡)𝑀1 − 𝑑2 (𝑡) 𝑆 (𝑡) (26)

is ultimately bounded.Hence, using the comparison theorem,
we further can obtain that there is a constant𝑀

2
> 0 such that

for any positive solution (𝐹(𝑡), 𝑆(𝑡), 𝑍(𝑡)) of system (1), there
is a 𝑇
2
≥ 𝑇
1
such that 𝑆(𝑡) < 𝑀

2
for all 𝑡 ≥ 𝑇

1
. Lastly, from

the third equation of equation of system (1) we have

𝑑𝑍 (𝑡)

𝑑𝑡
≤ 𝑍 (𝑡) (𝑏2 (𝑡) + 𝑎21 (𝑡) (𝑀1 +𝑀2) − 𝑎22 (𝑡) 𝑍 (𝑡))

(27)

for all 𝑡 ≥ 𝑇
2
. Consider the following nonautonomous

equation:

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝑥 (𝑡) (𝑏2 (𝑡) + 𝑎21 (𝑡) (𝑀1 +𝑀2) − 𝑎22 (𝑡) 𝑥 (𝑡)) ,

(28)

the comparison theorem and Lemma 1 imply that there
is a constant 𝑀

3
such that for any positive solution

(𝐹(𝑡), 𝑆(𝑡), 𝑍(𝑡)) of system (2), there is a 𝑇
3
> 0 such that

𝑍(𝑡) < 𝑀
3
for all 𝑡 ≥ 𝑇

3
.

Now, let 𝑀 = max{𝑀
1
,𝑀
2
,𝑀
3
}; then from the above

proofs, we have

lim sup
𝑡→∞

𝐹 (𝑡) < 𝑀, lim sup
𝑡→∞

𝑆 (𝑡) < 𝑀,

lim sup
𝑡→∞

𝑍 (𝑡) < 𝑀.
(29)

Therefore, solution (𝐹(𝑡), 𝑆(𝑡), 𝑍(𝑡)) is ultimately bounded.
This completes the proof.

Remark 7. Applying the comparison theorem and combining
conclusion (c) of Lemmas 1 and 3, we can obtain that if
assumptions (H

1
) and (H

2
) hold in system (1), 𝑎𝑙

11
> 0,𝑑𝑙

2
> 0,

and 𝑎𝑙
22
> 0, then constants𝑀

𝑖
(𝑖 = 1, 2, 3) given above can

be chosen by

𝑀
1
= (

𝑏
1

𝑎
11

)

𝑚

, 𝑀
2
= (

𝜇𝑀
1

𝑑
2

)

𝑚

,

𝑀
3
= (

𝑏
2
+ 𝑎
21
(𝑀
1
+𝑀
2
)

𝑎
22

)

𝑚

.

(30)

Next, we discuss the permanence and extinction of
fertility prey 𝐹(𝑡) and infertility prey 𝑆(𝑡).

Let 𝑍
0
(𝑡) be some fixed positive solution of the following

nonautonomous logistic equation:

𝑑𝑍 (𝑡)

𝑑𝑡
= 𝑍 (𝑡) (𝑏2 (𝑡) − 𝑎22 (𝑡) 𝑍 (𝑡)) . (31)

Particularly, if 𝑎𝑙
22
> 0, using conclusion (c) of Lemma 1, we

can obtain

(
𝑏
2

𝑎
22

)

𝑙

≤ lim inf
𝑡→∞

𝑍
0 (𝑡) ≤ lim sup

𝑡→∞

𝑍
0 (𝑡) ≤ (

𝑏
2

𝑎
22

)

𝑚

. (32)

Theorem 8. Suppose that (𝐻
1
) and (𝐻

2
) hold and there exists

a constant 𝜆 > 0 such that

lim inf
𝑡→∞

∫

𝑡+𝜆

𝑡

(𝑏
1 (𝜃) − 𝜇 (𝜃) − 𝑎12 (𝜃) 𝑍0 ((𝜃))) d𝜃 > 0. (33)

Then,

lim inf
𝑡→∞

𝐹 (𝑡) > 𝑚, lim inf
𝑡→∞

𝑆 (𝑡) > 𝑚 (34)

for any positive solution (𝐹(𝑡), 𝑆(𝑡), 𝑍(𝑡)) of system (1).
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Theorem 8 shows that if we guarantee that assumptions
(H
1
), (H
2
) and (35) hold, then the prey species must be

permanent. In the ecological system, each component part,
including the animal, plant and microorganism, plays its
own role, and they are indispensable and irreplaceable. Every
creature may deviate from its original trajectory, which lead
to the outbreak of this population and the negative effect on
human beings, such as harmful rat. Even if it happens, this
species should not be extinct through the human activity.
What we should do is to control the rat population to such
a degree that will not be harmful to human beings.Therefore,
the permanence of harmful rat given by Theorem 8 is very
necessary.

Proof. Let (𝐹(𝑡), 𝑆(𝑡), 𝑍(𝑡)) be any positive solution of system
(1). From condition (17) there are positive constants 𝜀

0
, 𝜂 and

𝑇
∗ such that for all 𝑡 ≥ 𝑇∗

∫

𝑡+𝜆

𝑡

(𝑏
1 (𝜃) − 𝜇 (𝜃) − 2𝜀

0
𝑎
11 (𝜃) − 𝑎12 (𝜃)

× (𝑍
0 (𝜃) + 𝜀0)) 𝑑𝜃 > 𝜂.

(35)

According to Theorem 6, there exists a constant 𝑇∗∗ ≥ 𝑇
∗

such that

𝐹 (𝑡) < 𝑀, 𝑆 (𝑡) < 𝑀, 𝑍 (𝑡) < 𝑀, (36)

for all 𝑡 ≥ 𝑇∗∗. Consider (11), that is,

𝑑𝑧 (𝑡)

𝑑𝑡
= 𝑧 (𝑡) (𝑏

2
(𝑡) − 𝑎

22
(𝑡) 𝑧 (𝑡) + 𝑎

21
(𝑡) (𝐹 (𝑡) + 𝑆 (𝑡))) ,

(37)

from Lemma 2, for 𝜀
0
and 𝑀 given in above there exist

constants 𝛿
0
= 𝛿
0
(𝜀
0
) > 0 and 𝑇

0
= 𝑇
0
(𝜀
0
,𝑀) > 0 such that

for any 𝑡
0
∈ 𝑅
+
and 𝑍

0
∈ [0,𝑀], when |𝑎

21
(𝑡)(𝐹(𝑡) + 𝑆(𝑡))| <

𝛿
0
for all 𝑡 ≥ 𝑡

0
, we have

𝑧 (𝑡, 𝑡0, 𝑧0) − 𝑧0 (𝑡)
 < 𝜀0, ∀𝑡 ≥ 𝑡

0
+ 𝑇
0
, (38)

where 𝑧(𝑡, 𝑡
0
, 𝑧
0
) is the solution of (11) with initial condition

𝑧(𝑡
0
) = 𝑧
0
.

Choose constant 𝛼
0
as follows:

0 < 𝛼
0
≤ min{𝜀

0
,

𝛿
0

𝑎
𝑚

21
(𝐹
𝑚 + 𝑆𝑚) + 1

} . (39)

Consider the following nonautonomous linear equation:

𝑑𝑢 (𝑡)

𝑑𝑡
= 𝜇 (𝑡) 𝐹 (𝑡) − 𝑑2 (𝑡) 𝑢 (𝑡) . (40)

From Corollary 5, for 𝛼
0
and 𝑀 given in above there exist

constants 𝛿
1
= 𝛿
1
(𝛼
0
) < 𝛼

0
and 𝑇

1
= 𝑇
1
(𝛼
0
,𝑀) > 0 such

that for any 𝑡
0
∈ 𝑅
+
and 𝑢
0
∈ [0,𝑀], when |𝜇(𝑡)𝐹(𝑡)| < 𝛿

1
for

all 𝑡 ≥ 𝑡
0
, we have

𝑢 (𝑡, 𝑡0, 𝑢0)
 < 𝛼0, ∀𝑡 ≥ 𝑡

0
+ 𝑇
1
. (41)

Let 𝛼
1

= min{𝜀
0
, 𝛿
1
/(𝜇
𝑚
+ 1)}, we will discuss the

following three cases.
Case 1.There exists a constant𝑇 ≥ 𝑇

0
such that 𝐹(𝑡) ≤ 𝛼

1
for

all 𝑡 ≥ 𝑇.
Case 2. There exists a constant 𝑇 ≥ 𝑇

0
such that 𝐹(𝑡) ≥ 𝛼

1

for all 𝑡 ≥ 𝑇.
Case 3.There exists a time sequence {[𝑠

𝑘
, 𝑡
𝑘
]} satisfying 𝑇

0
≤

𝑠
1
< 𝑡
1
< 𝑠
2
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑠

𝑘
< 𝑡
𝑘
< ⋅ ⋅ ⋅ , and lim

𝑘→∞
𝑠
𝑘
= ∞

such that

𝐹 (𝑡) ≤ 𝛼1, ∀𝑡 ∈

∞

⋃

𝑘=1

[𝑠
𝑘
, 𝑡
𝑘
] ,

𝐹 (𝑡) > 𝛼1, ∀𝑡 ∉

∞

⋃

𝑘=1

[𝑠
𝑘
, 𝑡
𝑘
] .

(42)

If Case 1 appears, we have

𝑑𝑆 (𝑡)

𝑑𝑡
≤ 𝜇 (𝑡) 𝐹 (𝑡) − 𝑑2 (𝑡) 𝑆 (𝑡) , (43)

for all 𝑡 ≥ 𝑇. Considering the auxiliary system

𝑑𝑢 (𝑡)

𝑑𝑡
= 𝜇 (𝑡) 𝐹 (𝑡) − 𝑑2 (𝑡) 𝑢 (𝑡) . (44)

Let 𝑆(𝑡) be the solution of the above equation satisfying initial
condition 𝑆(𝑇) = 𝑢(𝑇), by the comparison theorem,we have
𝑆(𝑡) ≤ 𝑢(𝑡) for all 𝑡 ≥ 𝑇. Since 𝐹(𝑡) ≤ 𝛼

1
for all 𝑡 ≥ 𝑇, Hence,

|𝜇(𝑡)𝐹(𝑡)| < 𝛿
1
for all 𝑡 ≥ 𝑇 and 𝑢(𝑇) ≤ 𝑀. By (41), we have

𝑢(𝑡) = 𝑢(𝑡, 𝑇

, 𝑢
0
(𝑇

)) < 𝛼

0
for all 𝑡 ≥ 𝑇+𝑇

1
.Then, we obtain

𝑆(𝑡) < 𝛼
0
for all 𝑡 ≥ 𝑇 + 𝑇

1
. So,

𝐹 (𝑡) ≤ 𝛼
1
, 𝑆 (𝑡) < 𝛼

0
, 𝑍 (𝑡) < 𝑀, ∀𝑡 ≥ 𝑇


+ 𝑇
1
.

(45)

Hence, 𝑎
21
(𝑡)(𝐹(𝑡) + 𝑆(𝑡)) < 𝛿

0
for all 𝑡 ≥ 𝑇


+ 𝑇
1
. In

(38), choosing 𝑡
0
= 𝑇

+ 𝑇
1
, 𝑍
0
= 𝑍(𝑇


+ 𝑇
1
) and 𝑍(𝑡) =

𝑍(𝑡, 𝑡
0
, 𝑍(𝑇

+ 𝑇
1
)), by (38), we can get

𝑍(𝑡, 𝑡
0
, 𝑍 (𝑇


+ 𝑇
1
)) < 𝑍

0
(𝑡) + 𝜀

0
, ∀𝑡 ≥ 𝑇


+ 𝑇
1
+ 𝑇
0
.

(46)

Then,

𝐹 (𝑡) ≤ 𝛼
1
< 𝜀
0
, 𝑆 (𝑡) < 𝛼

0
< 𝜀
0
, 𝑍 (𝑡) < 𝑍

0
(𝑡) + 𝜀

0
,

∀𝑡 ≥ 𝑇

+ 𝑇
1
+ 𝑇
0
.

(47)

For any 𝑡 ≥ 𝑇 + 𝑇
1
+ 𝑇
0
, we have

𝑑𝐹 (𝑡)

𝑑𝑡

= 𝐹 (𝑡) (𝑏1 (𝑡) − 𝑎11 (𝑡) (𝐹 (𝑡) + 𝑆 (𝑡)) − 𝜇 (𝑡) − 𝑎12 (𝑡) 𝑍 (𝑡))

≥ 𝐹 (𝑡) (𝑏
1
(𝑡) − 2𝜀

0
𝑎
11
(𝑡) − 𝜇 (𝑡) − 𝑎

12
(𝑡) (𝑍

0
(𝑡) + 𝜀

0
)) .

(48)
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Integrating the above inequality from 𝑇

+𝑇
1
+𝑇
0
to 𝑡 > 𝑇 +

𝑇
1
+ 𝑇
0
, we can obtain

𝐹 (𝑡) ≥ 𝐹 (𝑇

+ 𝑇
1
+ 𝑇
0
)

× exp∫
𝑡

𝑇

+𝑇
1
+𝑇
0

(𝑏
1
(𝜃) − 2𝜀

0
𝑎
11
(𝜃)

−𝜇 (𝜃) − 𝑎
12
(𝜃) (𝑍

0
(𝜃) + 𝜀

0
)) 𝑑𝜃.

(49)

From this and (35), it follows lim
𝑡→∞

𝐹(𝑡) = ∞ which leads
to a contradiction.

If Case 2 appears, then obviously 𝐹(𝑡) is permanent.
If Case 3 appears, for any {[𝑠

𝑘
, 𝑡
𝑘
]} we have 𝐹(𝑠

𝑘
) =

𝐹(𝑡
𝑘
) = 𝛼
1
and𝐹(𝑡) ≤ 𝛼

1
for all 𝑡 ∈ [𝑠

𝑘
, 𝑡
𝑘
]. If 𝑡
𝑘
− 𝑠
𝑘
≤ 𝑇
1
+𝑇
0
,

choosing constant

ℎ = sup
𝑡≥0

{𝑏
1 (𝑡) + 𝑎11 (𝑡) (𝜀0 +𝑀) + 𝜇 (𝑡) + 𝑎12 (𝑡)𝑀} , (50)

integrating the first equation of model (1) in interval [𝑠
𝑘
, 𝑡
𝑘
],

we get

𝑑𝐹 (𝑡)

𝑑𝑡
= 𝐹 (𝑠

𝑘
) exp∫

𝑡

𝑠
𝑘

(𝑏
1
(𝜃) − 𝑎

11
(𝜃) (𝐹 (𝜃) + 𝑆 (𝜃))

− 𝜇 (𝜃) − 𝑎
12
(𝜃) 𝑍 (𝜃)) 𝑑𝜃

≥ 𝐹 (𝑠
𝑘
) exp∫

𝑡

𝑠
𝑘

(𝑏
1 (𝜃) − 𝑎11 (𝜃) (𝜀0 +𝑀)

− 𝜇 (𝜃) − 𝑎
12
(𝜃)𝑀) 𝑑𝜃

≥ 𝛼
1
exp {−ℎ (𝑇

1
+ 𝑇
0
)} .

(51)

If 𝑡
𝑘
−𝑠
𝑘
> 𝑇
1
+𝑇
0
, because 𝐹(𝑡) ≤ 𝛼

1
for all 𝑡 ∈ [𝑠

𝑘
, 𝑡
𝑘
], we

have |𝜇(𝑡)𝐹(𝑡)| < 𝛿
1
for all 𝑡 ∈ [𝑠

𝑘
, 𝑡
𝑘
] and 𝑢(𝑠

𝑘
) = 𝑆(𝑠

𝑘
) ≤ 𝑀.

Hence, we have 𝑢(𝑡) < 𝛼
0
for all 𝑡 ∈ [𝑠

𝑘
+ 𝑇
1
, 𝑡
𝑘
]. Then, we

obtain 𝑆(𝑡) < 𝛼
0
for all 𝑡 ∈ [𝑠

𝑘
+ 𝑇
1
, 𝑡
𝑘
]. So,

𝐹 (𝑡) ≤ 𝛼
1
, 𝑆 (𝑡) < 𝛼

0
, 𝑍 (𝑡) < 𝑀

∀𝑡 ∈ [𝑠
𝑘
+ 𝑇
1
, 𝑡
𝑘
] .

(52)

Hence, 𝑎
21
(𝑡)(𝐹(𝑡) + 𝑆(𝑡)) < 𝛿

0
for any 𝑡 ∈ [𝑠

𝑘
+ 𝑇
1
, 𝑡
𝑘
]. In

(38), choosing 𝑡
0
= 𝑠
𝑘
+ 𝑇
1
, 𝑍
0
= 𝑍(𝑠

𝑘
+ 𝑇
1
) and 𝑍(𝑡) =

𝑍(𝑡, 𝑡
0
, 𝑍(𝑠
𝑘
+ 𝑇
1
)), by (38), we can get

𝑍 (𝑡, 𝑡
0
, 𝑍 (𝑠
𝑘
+ 𝑇
1
)) < 𝑍

0
(𝑡) + 𝜀

0
, ∀𝑡 ∈ [𝑠

𝑘
+ 𝑇
1
+ 𝑇
0
, 𝑡
𝑘
] .

(53)

Then,

𝐹 (𝑡) ≤ 𝛼
1
< 𝜀
0
, 𝑆 (𝑡) < 𝛼

0
< 𝜀
0
, 𝑍 (𝑡) < 𝑍

0
(𝑡) + 𝜀

0
,

∀𝑡 ∈ [𝑠
𝑘
+ 𝑇
1
+ 𝑇
0
, 𝑡
𝑘
] .

(54)

For any 𝑡 ∈ [𝑠
𝑘
, 𝑡
𝑘
], when 𝑡 ≤ 𝑠

𝑘
+𝑇
1
+𝑇
0
, we can obtain from

the above discussion on the case 𝑡
𝑘
− 𝑠
𝑘
≤ 𝑇
1
+ 𝑇
0
,

𝐹 (𝑡) ≥ 𝛼
1
exp {−ℎ (𝑇

1
+ 𝑇
0
)} . (55)

In particular, we have𝐹(𝑠
𝑘
+ 𝑇
1
+ 𝑇
0
) ≥ 𝛼
1
exp{−ℎ(𝑇

1
+ 𝑇
0
)}.

When 𝑡 > 𝑠
𝑘
+ 𝑇
1
+ 𝑇
0
, then we choose an integer 𝑝 > 0 such

that 𝑡 ∈ [𝑠
𝑘
+𝑇
1
+𝑇
0
+𝑝𝜆, 𝑠

𝑘
+𝑇
1
+𝑇
0
+(𝑝+1)𝜆]; integrating the

first equation of system (1) from 𝑠
𝑘
+𝑇
1
+𝑇
0
to 𝑡 > 𝑠

𝑘
+𝑇
1
+𝑇
0

we can obtain

𝑑𝐹 (𝑡)

𝑑𝑡

= 𝐹 (𝑠
𝑘
+ 𝑇
1
+ 𝑇
0
)

× exp∫
𝑡

𝑠
𝑘
+𝑇
1
+𝑇
0

(𝑏
1 (𝜃) − 𝑎11 (𝜃) (𝐹 (𝜃) + 𝑆 (𝜃))

−𝜇 (𝜃) − 𝑎
12
(𝜃) 𝑍 (𝜃)) 𝑑𝜃

≥ 𝛼
1
exp {−ℎ (𝑇

1
+ 𝑇
0
)}

× exp∫
𝑡

𝑠
𝑘
+𝑇
1
+𝑇
0

(𝑏
1 (𝜃) − 2𝜀0𝑎11 (𝜃) − 𝜇 (𝜃)

−𝑎
12
(𝜃) (𝑍

0
(𝜃) + 𝜀

0
)) 𝑑𝜃

= 𝛼
1
exp {−ℎ (𝑇

1
+ 𝑇
0
)}

× exp (∫

𝑠
𝑘
+𝑇
1
+𝑇
0
+𝑝𝜆

𝑠
𝑘
+𝑇
1
+𝑇
0

+∫

𝑡

𝑠
𝑘
+𝑇
1
+𝑇
0
+𝑝𝜆

)

× (𝑏
1 (𝜃) − 2𝜀0𝑎11 (𝜃)

− 𝜇 (𝜃) − 𝑎
12
(𝜃) (𝑍

0
(𝜃) + 𝜀

0
)) 𝑑𝜃

≥ 𝛼
1
exp {−ℎ (𝑇

1
+ 𝑇
0
)}

× exp∫
𝑡

𝑠
𝑘
+𝑇
1
+𝑇
0
+𝑝𝜆

(𝑏
1 (𝜃) − 2𝜀0𝑎11 (𝜃) − 𝜇 (𝜃)

− 𝑎
12
(𝜃) (𝑍

0
(𝜃) + 𝜀

0
)) 𝑑𝜃

≥ 𝛼
1
exp {−ℎ (𝑇

1
+ 𝑇
0
)} exp {−ℎ

1
𝜆} ,

(56)

where ℎ
1
= sup

𝑡≥0
{𝑏
1
(𝑡)+2𝜀

0
𝑎
11
(𝑡)+𝜇(𝑡)+𝑎

12
(𝑡)(𝑍
0
(𝜃)+𝜀

0
)}.

Choose

𝑚
1
= 𝛼
1
exp {− (ℎ (𝑇

1
+ 𝑇
0
) + ℎ
1
𝜆)} ; (57)

then from above discussion we finally obtain

𝐹 (𝑡) ≥ 𝑚1, ∀𝑡 ∈

∞

⋃

𝑘=1

[𝑠
𝑘
, 𝑡
𝑘
] . (58)

In addition, we have 𝐹(𝑡) > 𝛼
1
for all 𝑡 ∉ ⋃

∞

𝑘=1
[𝑠
𝑘
, 𝑡
𝑘
].

Then, we finally obtain

𝐹 (𝑡) ≥ 𝑚
1
, ∀𝑡 ≥ 𝑇


. (59)

Considering the second equation of system (1), according
toTheorem 6, we have

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝜇 (𝑡) 𝐹 (𝑡) − 𝑑2 (𝑡) 𝑆 (𝑡) − 𝑎11 (𝑡)

× (𝐹 (𝑡) + 𝑆 (𝑡)) 𝑆 (𝑡) − 𝑎
12
(𝑡) 𝑆 (𝑡) 𝑍 (𝑡)

≥ 𝜇 (𝑡)𝑚1 − (𝑑2 (𝑡) + 2𝑀𝑎
11 (𝑡) + 𝑎12 (𝑡)𝑀) 𝑆 (𝑡)

(60)

for all 𝑡 ≥ 𝑇.
Considering the auxiliary equation

𝑑𝑢 (𝑡)

𝑑𝑡
= 𝜇 (𝑡)𝑚1 − (𝑑2 (𝑡) + 2𝑀𝑎

11 (𝑡) + 𝑎12 (𝑡)𝑀) 𝑢 (𝑡) .

(61)
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According to Lemma 3, there exists a constant 𝑚
2
such that

lim inf
𝑡→∞

𝑢(𝑡) ≥ 𝑚
2
for any positive solution of (61). By the

comparison theorem and (60), we have

lim inf
𝑡→∞

𝑆 (𝑡) ≥ lim inf
𝑡→∞

𝑢 (𝑡) ≥ 𝑚2. (62)

Let𝑚 = min{𝑚
1
, 𝑚
2
}; from (59) and (62) we obtain

lim inf
𝑡→∞

𝐹 (𝑡) ≥ 𝑚, lim inf
𝑡→∞

𝑆 (𝑡) ≥ 𝑚. (63)

This completes the proof.

Theorem 9. Suppose that (𝐻
1
) and (𝐻

2
) hold and there exists

a constant 𝜆 > 0 such that

lim sup
𝑡→∞

∫

𝑡+𝜆

𝑡

(𝑏
1 (𝜃) − 𝜇 (𝜃) − 𝑎12 (𝜃) 𝑍0 (𝜃)) 𝑑𝜃 ≤ 0. (64)

Then,

lim
𝑡→∞

𝐹 (𝑡) = 0, lim
𝑡→∞

𝑆 (𝑡) = 0 (65)

for any positive solution (𝐹(𝑡), 𝑆(𝑡), 𝑍(𝑡)) of system (1).

Thebiologicalmeaning ofTheorem 9 is that if (H
1
), (H
2
),

and (64) hold, the prey species will be extinct. Form the
viewpoint of the Nature Conservancy and Human Health,
the best way for our human beings is to keep the existence of
the species, and, meanwhile, guarantee such existence do no
harm to us.Thus, the condition ofmaking harmful rat extinct
for management expert is very important. Therefore, it is a
critical threshold value.

Proof. By (64), we have for any 0 < 𝜀 < 1, there are positive
constants 𝜀

1
< 𝜀 and 𝜀

0
and 𝑇

0
> 0 such that

∫

𝑡+𝜆

𝑡

(𝑏
1
(𝜃)−𝜇 (𝜃)−𝑎

11
(𝜃) 𝜀−𝑎

12
(𝜃) (𝑍

0
(𝜃) − 𝜀

1
)) 𝑑𝜃 < −𝜀

0

(66)

for all 𝑡 ≥ 𝑇
0
. From the third equation of system (1) we have

𝑑𝑍 (𝑡)

𝑑𝑡
≥ 𝑍 (𝑡) (𝑏2 (𝑡) − 𝑎22 (𝑡) 𝑍 (𝑡)) , ∀𝑡 ≥ 𝑇

0
; (67)

applying the comparison theorem and conclusion (b) of
Lemma 1, there exists a constant 𝑇

1
≥ 𝑇
0
such that 𝑍(𝑡) ≥

𝑍
0
(𝑡) − 𝜀

1
for all 𝑡 ≥ 𝑇

1
. For any 𝑡 ≥ 𝑇

1
, we have

𝑑𝐹 (𝑡)

𝑑𝑡

= 𝐹 (𝑡) (𝑏1 (𝑡) − 𝑎11 (𝑡) (𝐹 (𝑡) + 𝑆 (𝑡)) − 𝜇 (𝑡) − 𝑎12 (𝑡) 𝑍 (𝑡))

≤ 𝐹 (𝑡) (𝑏
1
(𝑡) − 𝑎

11
(𝑡) 𝐹 (𝑡) − 𝜇 (𝑡) − 𝑎

12
(𝑡) 𝑍 (𝑡)) .

(68)

For any 0 < 𝜀 < 1, if 𝐹(𝑡) ≥ 𝜀 for all 𝑡 ≥ 𝑇
1
, integrating (68)

from 𝑇
1
to 𝑡, we obtain

𝐹 (𝑡) ≤ 𝐹 (𝑇
1
) exp∫

𝑡

𝑇
1

(𝑏
1
(𝜃) − 𝑎

11
(𝜃) 𝜀 − 𝜇 (𝜃)

− 𝑎
12
(𝜃) (𝑍

0
(𝜃) − 𝜀

1
)) 𝑑𝜃.

(69)

From (66), it follows that 𝐹(𝑡) → 0 as 𝑡 → ∞ which leads
to a contradiction. Hence, there exists a 𝑡

1
≥ 𝑇
1
such that

𝐹(𝑡
1
) < 𝜀. Let

ℎ = sup
𝑡≥𝑇
1

{𝑏
1
(𝑡) + 𝑎

11
(𝑡) + 𝜇 (𝑡) + 𝑎

12
(𝑡) (𝑍

0
(𝜃) − 𝜀

1
)} ; (70)

we prove

𝐹 (𝑡) ≤ 𝜀 exp {ℎ𝜆} , ∀𝑡 ≥ 𝑡
1
. (71)

If (71) is not true, then there exists a 𝑡
2
> 𝑡
1
such that 𝐹(𝑡

2
) >

𝜀 exp{ℎ𝜆}. From 𝐹(𝑡
1
) < 𝜀, there exists a 𝑡

3
∈ (𝑡
1
, 𝑡
2
) such that

𝐹(𝑡
3
) = 𝜀 and 𝐹(𝑡) > 𝜀 for all 𝑡 ∈ (𝑡

3
, 𝑡
2
). Let 𝑝 ≥ 0 be an

integer such that 𝑡
2
∈ (𝑡
3
+𝑝𝜆, 𝑡

3
+ (𝑝 + 1)𝜆], integrating (68)

from 𝑡
3
to 𝑡
2
,

𝜀 exp {ℎ𝜆} < 𝐹 (𝑡
2
) ≤ 𝐹 (𝑡

3
)

× exp∫
𝑡
2

𝑡
3

(𝑏
1
(𝜃) − 𝑎

11
(𝜃) 𝜀

−𝜇 (𝜃) − 𝑎
12
(𝜃) (𝑍

0
(𝜃) − 𝜀

1
)) 𝑑𝜃

≤ 𝜀 exp {ℎ𝜆} ,
(72)

which leads to a contradiction. Hence, (71) holds. From the
arbitrariness of 𝜀, we finally obtain 𝐹(𝑡) → 0 as 𝑡 → ∞.
Considering the second equation

𝑑𝑆 (𝑡)

𝑑𝑡

= 𝜇 (𝑡) 𝐹 (𝑡) − 𝑑2 (𝑡) 𝑆 (𝑡) − 𝑎11 (𝑡)

× (𝐹 (𝑡) + 𝑆 (𝑡)) 𝑆 (𝑡) − 𝑎
12
(𝑡) 𝑆 (𝑡) 𝑍 (𝑡)

≤ 𝜇 (𝑡) 𝐹 (𝑡) − 𝑑2 (𝑡) 𝑆 (𝑡) ≤ 𝜀 exp {ℎ𝜆} 𝜇 (𝑡) − 𝑑2 (𝑡) 𝑆 (𝑡)
(73)

for all 𝑡 ≥ 𝑡
1
. UsingCorollary 5,we can easily obtain 𝑆(𝑡) → 0

as 𝑡 → ∞. This completes the proof.

Further, from conclusion (c) of Lemma 1, as consequence
of Theorems 8 and 9, we also have the following corollaries.

Corollary 10. Suppose that (𝐻
1
) and (𝐻

2
) hold, 𝑎𝑙

22
> 0 and

there exists a constant 𝜆 > 0 such that

lim inf
𝑡→∞

∫

𝑡+𝜆

𝑡

(𝑏
1 (𝜃) − 𝜇 (𝜃) − 𝑎12 (𝜃) (

𝑏
2

𝑎
22

)

𝑚

) d𝜃 > 0. (74)

Then,
lim inf
𝑡→∞

𝐹 (𝑡) > 𝑚, lim inf
𝑡→∞

𝑆 (𝑡) > 𝑚 (75)

for any positive solution (𝐹(𝑡), 𝑆(𝑡), 𝑍(𝑡)) of system (1).
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Figure 1: Permanence of system (1) with parameters in Example 1.

Corollary 11. Suppose that (𝐻
1
) and (𝐻

2
) hold, 𝑎𝑙

22
> 0 and

there exists a constant 𝜆 > 0 such that

lim sup
𝑡→∞

∫

𝑡+𝜆

𝑡

(𝑏
1 (𝜃) − 𝜇 (𝜃) − 𝑎12 (𝜃) (

𝑏
2

𝑎
22

)

𝑙

) d𝜃 ≤ 0. (76)

Then,

lim
𝑡→∞

𝐹 (𝑡) = 0, lim
𝑡→∞

𝑆 (𝑡) = 0 (77)

for any positive solution (𝐹(𝑡), 𝑆(𝑡), 𝑍(𝑡)) of system (1).

As consequences of Theorems 8 and 9, we have the
following corollaries. Firstly, from Lemmas 1 we obtain that
if (H
1
) and (H

2
) hold, then (31) have the globally uniformly

attractive nonnegative 𝜔-periodic solutions 𝑍
0
(𝑡).

Corollary 12. Suppose that system (1) is 𝜔-periodic and (𝐻
1
)

and (𝐻
2
) hold. Then the fertility prey 𝐹(𝑡) and infertility prey

𝑆(𝑡) in model (1) are permanent if and only if

𝜇 < 𝑏
1
− 𝑎
12
𝑍
0
. (78)

Corollary 13. Suppose that system (1) is 𝜔-periodic and (𝐻
1
)

and (𝐻
2
) hold. Then the fertility prey 𝐹(𝑡) and infertility prey

𝑆(𝑡) in model (1) are extinct if and only if

𝜇 ≥ 𝑏
1
− 𝑎
12
𝑍
0
. (79)

Remark 14. In the process of the prevention and control of
rat in the grasslands and farmland, we are concerned about
how many biological sterile drug should be put in a period
in order to make the population of the harmful rat reduce
to a very low level. From Corollaries 12 and 13, we can easily
obtain that 𝜇 = 𝑏

1
− 𝑎
12
𝑍
0
is a critical value. If 𝜇 ≥ 𝑏

1
− 𝑎
12
𝑍
0
,

we can control the population of rat at a very low level. The
results are very meaningful and significant.

When system (1) is simplified into the corresponding
autonomous system, that is,

𝑑𝐹 (𝑡)

𝑑𝑡
= 𝐹 (𝑡) (𝑏

1
− 𝑎
11
(𝐹 (𝑡) + 𝑆 (𝑡)) − 𝜇 − 𝑎

12
𝑍 (𝑡)) ,

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝜇𝐹 (𝑡) − 𝑑2𝑆 (𝑡) − 𝑎11 (𝐹 (𝑡) + 𝑆 (𝑡)) 𝑆 (𝑡)

− 𝑎
12
𝑆 (𝑡) 𝑍 (𝑡) ,

𝑑𝑍 (𝑡)

𝑑𝑡
= 𝑍 (𝑡) (𝑏2 + 𝑎21 (𝐹 (𝑡) + 𝑆 (𝑡)) − 𝑎22𝑍 (𝑡)) .

(80)

Remark 15. For system (80), we know that 𝜇 = 𝑏
1
− 𝑎
12
𝑏
2
/𝑎
22

is a critical value. Then, we can obtain that the quantity of
biological sterile drug should be 𝜇 ≥ 𝑏

1
− 𝑎
12
𝑏
2
/𝑎
22
.

4. Example and Numerical Simulation

In this section, we give some examples and numerical
simulations to the above theoretical analysis.



Abstract and Applied Analysis 9

0
10

20
30

40

0
5

10
15
0
2
4
6
8

10
12

F(t)

Z
(t
)

S(t)

(a)

0 10 20 30 40 50
0

5

10

15

20

25

F(t)

S
(t
)

(b)

0 10 20 30 40 50
1

2

3

4

5

6

7

8

9

10

11

Z
(t
)

F(t)

(c)

0 5 10 15 20 25
1

2

3

4

5

6

7

8

9

10

11

Z
(t
)

S(t)

(d)

Figure 2: Chaotic behavior of system (1) with parameters in Example 2.

Example 1. Take 𝑏
1
(𝑡) = 10+sin(6𝑡/𝜋), 𝑎

11
(𝑡) = 0.09+0.001×

sin(6𝑡/𝜋), 𝜇(𝑡) = 9×(0.35+0.2×cos(4𝑡/𝜋)+0.01×sin(4𝑡/𝜋)),
𝑎
12
(𝑡) = 1.2 + cos(6𝑡/𝜋), 𝑑

2
(𝑡) = 2 + 0.005 × sin(𝑡𝜋/6), 𝑏

2
(𝑡) =

1.5 +cos(6𝑡/𝜋), 𝑎
21
(𝑡) = 0.7+0.3×cos(6𝑡/𝜋) and 𝑎

22
(𝑡) = 5+

3 × sin(6𝑡/𝜋) in system (1). We easily verify that assumptions
(H
1
), (H
2
) hold. From Lemma 1, some fixed positive solution

𝑍
0
(𝑡) of system (32) satisfies 0.00625 ≤ 𝑍

0
(𝑡) ≤ 1.25.

Moreover, condition (35) lim inf
𝑡→∞

∫
𝑡+𝜆

𝑡
(𝑏
1
(𝜃) − 𝜇(𝜃) −

𝑎
12
(𝜃)𝑍
0
((𝜃)))𝑑𝜃 > 0 > 9 − 9 × (0.35 + 0.21) − 2.2 × 1.25 =

1.21 > 0 holds, therefore, by Theorem 8, system (1) with
these parameters is permanent.The corresponding numerical
simulations are given in Figure 1, and this figure illustrates
that the solutions will tend towards periodic oscillation along
with time passing. It means that there exists a periodic
solution, and it is seemed that this periodic solution is
globally attractive.

Example 2. Take 𝑏
1
(𝑡) = 10+sin(6𝑡/𝜋), 𝑎

11
(𝑡) = 0.09+0.001×

sin(6𝑡/𝜋), 𝜇(𝑡) = 9 × (0.35 + 0.1 × cos(𝑡/4) + 0.1 × sin(𝑡/4)),
𝑎
12
(𝑡) = 1.2 + cos(𝑡/6), 𝑑

2
(𝑡) = 2 + 0.005 × sin(6𝑡/𝜋),

𝑏
2
(𝑡) = 1.5 + cos(𝑡/6), 𝑎

21
(𝑡) = 0.7 + 0.3 × cos(6𝑡/𝜋) and

𝑎
22
(𝑡) = 5 + 3 × sin(𝑡/6) in system (1). By similar calculation,

we can obtain that (H
1
), (H
2
) and (35) hold. Therefore, by

Theorem 8, system (1) with these parameters is permanent, as
shown in numerical simulations of Figures 2(a)–2(d), which
not only illustrate the validity of the proposed results, but also
display the interesting complex dynamic behaviors; that is,
there is not periodic oscillation alongwith time passing as like
Figure 1, and from (a)–(d) in Figure 2, it can be obviously seen
that there is a strange chaotic attractor, which may contribute
to a better understanding of the complex chaotic behaviors
which can be a high risk of the uncertain number of the
population due to the unpredictability.

5. Conclusion

Based on the mouse rampant phenomenon in some areas, a
predator-prey model with infertility control in rat species is
established in the situation where all coefficients depend on
time. For the nonautonomous system threshold conditions
for the permanence and the extinction of fertility prey and
infertility prey are established.The condition for permanence
has the form of a lim inf condition for some time-dependent
sterility conversion rate (𝜇(𝑡)) while the condition for extinc-
tion assumes the form of a lim sup condition. Hence, in
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the general case the main results are not threshold criteria in
a strict sense. However, in the periodic cases, the conditions
merge into a sharp threshold criterion and sterile drug dosage
can be obtained. Two numerical examples are carried out to
support theoretical results, and the second simulation result
suggests that there may be interesting dynamic behaviors in
this model-a strange chaotic attractor. Furthermore, chaos
may cause the number of pests approaching to the uncontrol-
lable state due to the unpredictability. Thus, how to control
chaos in the populationmodel is very important, which needs
further investigation.
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Based on the real observation data in Tongcheng city, this paper established a mathematical model of schistosomiasis transmission
under flood in Anhui province. The delay of schistosomiasis outbreak under flood was considered. Analysis of this model shows
that the disease free equilibrium is locally asymptotically stable if the basic reproduction number is less than one. The stability of
the unique endemic equilibriummay be changed under some conditions even if the basic reproduction number is larger than one.
The impact of flood on the stability of the endemic equilibrium is studied and the results imply that flood can destabilize the system
and periodic solutions can arise by Hopf bifurcation. Finally, numerical simulations are performed to support these mathematical
results and the results are in accord with the observation data from Tongcheng Schistosomiasis Control Station.

1. Introduction

As we know, schistosomiasis is a serious water-borne disease.
It is not easy to control because of many reasons such
as flood. Many reports have shown that flood leads to a
serious outbreak of schistosomiasis [1–3]. During the flood
period there are a lot of people that come into contact with
contaminated water, which may lead to the fact that a lot of
people are infected by schistosome [1–3]. In China, Anhui
province often encounters floods; in particular in 1998 the
flood was one of the most serious flood [1]. Based on the
observation data from Tongcheng Schistosomiasis Control
Station in Anhui province (Figure 1), we can see that the
number of patients and the area of snails increase by a big
margin after 1998 in Tongcheng city in Anhui province.
Although people know the phenomenon that schistosomiasis
will be serious after flood, people do not know the reason
and there are only some live reports. Hence, it is necessary
to investigate theoretically the effect of flood on the schisto-
somiasis transmission.

After flood the infected human by cercaria will have an
incubation period to become an infectious human. In fact,
it is about five weeks from the time of cercaria penetration
through skins of human to the time when eggs are discharged
[4]. Adult schistosomes in human are capable of producing
eggs for a number of years [5]. This leads to breakout of
schistosomiasis in many places after flood. For example,
the catastrophic flood in 1998 brought a serious impact on
the prevalence of schistosomiasis in Anhui province from
1998 to 2000 [1]. Furthermore, the data from Tongcheng
Schistosomiasis Control Station (Figure 1) and the report
of Ge et al. [1] both show that schistosomiasis is more
serious in three years after flood than in the flood year. This
phenomenon is called the delayed effect of flood [1]. In this
paper we want to investigate how flood affects the dynamical
behavior of schistosomiasis.

Many schistosomiasismodels have involvedmany aspects
such as drug-resistant, age-structure, incubation period of
snail, and chemotherapy [6–10].Their results imply thatmany
factors affect the transmission of schistosomiasis. However,
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Figure 1: The observation data in Tongcheng city from Tongcheng Schistosomiasis Control Station in 1998–2007.

there are few mathematical models considering the effect of
flood in previous papers.

To study the delayed effect of flood, we use a time delay
to reflect the incubation period in the infected human. We
modified themodel in [11]. Distribute human into susceptible
𝑥
𝑠
(𝑡) and infectious 𝑥

𝑖
(𝑡) and snails into susceptible 𝑦

𝑠
(𝑡),

preshedding 𝑦
𝑒
(𝑡), and infectious 𝑦

𝑖
(𝑡). The model in [11]

reads
𝑑𝑥
𝑠

𝑑𝑡
= 𝐴
𝑥
− 𝜇
𝑥
𝑥
𝑠
− 𝛽
𝑥
𝑥
𝑠
𝑦
𝑖
,

𝑑𝑥
𝑖

𝑑𝑡
= 𝛽
𝑥
𝑥
𝑠
𝑦
𝑖
− (𝜇
𝑥
+ 𝛼
𝑥
) 𝑥
𝑖
,

𝑑𝑦
𝑠

𝑑𝑡
= 𝐴
𝑦
− 𝜇
𝑦
𝑦
𝑠
− 𝛽
𝑦
𝑥
𝑖
𝑦
𝑠
,

𝑑𝑦
𝑒

𝑑𝑡
= 𝛽
𝑦
𝑥
𝑖
𝑦
𝑠
− (𝜇
𝑦
+ 𝜃) 𝑦

𝑒
,

𝑑𝑦
𝑖

𝑑𝑡
= 𝜃𝑦
𝑒
− (𝜇
𝑦
+ 𝛼
𝑦
) 𝑦
𝑖
,

(1)

where 𝐴
𝑥
is the recruitment rate of human, 𝜇

𝑥
is the death

rate of human, 𝛼
𝑥
is the disease-induced death rate of

human, 𝛽
𝑥
is the transmission rate from infectious snails to

susceptible human, 𝐴
𝑦
is the recruitment rate of snail host,

𝜇
𝑦
is the death rate of snail host, 𝛼

𝑦
is the disease-induced

death rate of snail host, 𝛽
𝑦
is the transmission rate from

infectious human to susceptible snails, and 𝜃 is the translate
rate from infected and preshedding snails to shedding snails.
In the model, we have studied the stability of equilibria and
preferable control strategies.

The goal of this paper is to study the impact of flood
on the basic reproduction number and the dynamics of
the schistosomiasis transmission. This paper is organized as
follows. In Section 2 we establish a schistosomiasis model
with a time delay and define the basic reproduction number
𝑅
0
. The stability of the disease free equilibrium is obtained in

Section 3. We devote Section 4 to the Hopf bifurcation anal-
ysis. Section 5 examines mathematical results by numerical
simulations.

2. The Delayed Model

By incorporating a time delay in human, we have the follow-
ing model:

𝑑𝑥
𝑠

𝑑𝑡
= 𝐴
𝑥
− 𝜇
𝑥
𝑥
𝑠
(𝑡) − 𝛽

𝑥
𝑥
𝑠
(𝑡 − 𝜏) 𝑦

𝑖
(𝑡 − 𝜏) 𝑒

−𝜇
𝑥
𝜏
,

𝑑𝑥
𝑖

𝑑𝑡
= 𝛽
𝑥
𝑥
𝑠
(𝑡 − 𝜏) 𝑦

𝑖
(𝑡 − 𝜏) 𝑒

−𝜇
𝑥
𝜏
− (𝜇
𝑥
+ 𝛼
𝑥
) 𝑥
𝑖
(𝑡) ,

𝑑𝑦
𝑠

𝑑𝑡
= 𝐴
𝑦
− 𝜇
𝑦
𝑦
𝑠 (𝑡) − 𝛽

𝑦
𝑥
𝑖 (𝑡) 𝑦𝑠 (𝑡) ,

𝑑𝑦
𝑒

𝑑𝑡
= 𝛽
𝑦
𝑥
𝑖
(𝑡) 𝑦
𝑠
(𝑡) − (𝜇

𝑦
+ 𝜃) 𝑦

𝑒
(𝑡) ,

𝑑𝑦
𝑖

𝑑𝑡
= 𝜃𝑦
𝑒
(𝑡) − (𝜇

𝑦
+ 𝛼
𝑦
) 𝑦
𝑖
(𝑡) ,

(2)

where 𝜏 is the incubation period in the infected human, that
is, the time from cercaria penetration through skins to the
time when eggs are discharged.

Define the basic reproduction number according to
biological meanings:

𝑅
0
=

𝐴
𝑥
𝐴
𝑦
𝜃𝛽
𝑥
𝑒
−𝜇
𝑥
𝜏
𝛽
𝑦

𝜇
𝑥
𝜇
𝑦
(𝜇
𝑥
+ 𝛼
𝑥
) (𝜇
𝑦
+ 𝛼
𝑦
) (𝜇
𝑦
+ 𝜃)

. (3)

These quantities have a clear biological interpretation. Con-
sider the case when an infectious snail is introduced into a
purely susceptible people population with size 𝐴

𝑥
/𝜇
𝑥
. The

size of susceptible people who become infectious people per
unit time is 𝛽

𝑥
(𝐴
𝑥
/𝜇
𝑥
). 1/(𝜇

𝑥
+ 𝛼
𝑥
) is the mean infective

period of the infectious people and 𝑒
−𝜇
𝑥
𝜏 represents the

survived rate of people during his infection. On the other
hand, infectious people can infect 𝛽

𝑦
(𝐴
𝑦
/𝜇
𝑦
) susceptible

snails which should get through the latent time where
the rate of transmission is 𝜃 and then infective period is
1/(𝜇
𝑦
+ 𝛼
𝑦
)(𝜇
𝑦
+ 𝜃). Thus, 𝑅

0
gives the total number of

secondary infectious snails produced by a typical infected
snail during its entire period of infectiousness in a completely
susceptible population. The following section shows that the



Abstract and Applied Analysis 3

basic reproduction number𝑅
0
provides a threshold condition

for parasite extinction.

Theorem 1. There exist at most two equilibria:

(i) if𝑅
0
≤ 1, system (2) has a disease free equilibrium𝐸

0
=

(𝐴
𝑥
/𝜇
𝑥
, 0, 𝐴
𝑦
/𝜇
𝑦
, 0, 0);

(ii) if 𝑅
0
> 1, system (2) has two equilibria, the disease free

equilibrium 𝐸
0
and the unique endemic equilibrium

𝐸 = (𝑥
∗

𝑠
, 𝑥
∗

𝑖
, 𝑦
∗

𝑠
, 𝑦
∗

𝑒
, 𝑦
∗

𝑖
), where

𝑥
∗

𝑠
=

𝐴
𝑥
(𝐴
𝑥
𝛽
𝑦
+ 𝜇
𝑦
(𝜇
𝑥
+ 𝛼
𝑥
))

𝜇
𝑥
(𝐴
𝑥
𝛽
𝑦
+ 𝜇
𝑦
𝑅
0
(𝜇
𝑥
+ 𝛼
𝑥
))

,

𝑥
∗

𝑖
=

𝐴
𝑥
𝜇
𝑦
(𝑅
0
− 1)

𝐴
𝑥
𝛽
𝑦
+ 𝜇
𝑦
𝑅
0
(𝜇
𝑥
+ 𝛼
𝑥
)
,

𝑦
∗

𝑠
=

𝐴
𝑦
(𝐴
𝑥
𝛽
𝑦
+ 𝜇
𝑦
𝑅
0
(𝜇
𝑥
+ 𝛼
𝑥
))

𝜇
𝑦
𝑅
0
(𝐴
𝑥
𝛽
𝑦
+ 𝜇
𝑦
(𝜇
𝑥
+ 𝛼
𝑥
))

,

𝑦
∗

𝑒
=

𝜇
𝑥
𝜇
𝑦
(𝜇
𝑥
+ 𝛼
𝑥
) (𝜇
𝑦
+ 𝛼
𝑦
) (𝑅
0
− 1)

𝜃𝛽
𝑥
𝑒−𝜇𝑥𝜏 (𝐴

𝑥
𝛽
𝑦
+ 𝜇
𝑦
(𝜇
𝑥
+ 𝛼
𝑥
))

,

𝑦
∗

𝑖
=

𝜇
𝑥
𝜇
𝑦
(𝜇
𝑥
+ 𝛼
𝑥
) (𝑅
0
− 1)

𝛽
𝑥
𝑒−𝜇𝑥𝜏 (𝐴

𝑥
𝛽
𝑦
+ 𝜇
𝑦
(𝜇
𝑥
+ 𝛼
𝑥
))

.

(4)

Next we will discuss the stabilities of 𝐸
0
and 𝐸 in system

(2).

3. Stability Analysis of 𝐸
0

In this section, we will analyze the stability of the disease free
equilibrium𝐸

0
of the delayedmodel (2) in the two cases:𝑅

0
<

1 and 𝑅
0
> 1.

Theorem 2. The disease free equilibrium 𝐸
0
of the system (2)

is locally asymptotically stable if 𝑅
0
< 1 and unstable if 𝑅

0
> 1.

Proof. Denote 𝑏 = 𝜇
𝑥

+ 𝛼
𝑥
, 𝑐 = 𝜇

𝑦
+ 𝛼
𝑦
, 𝑑 = 𝜇

𝑦
+

𝜃. By linearizing the system (2) around 𝐸
0
we can obtain

the characteristic roots that are −𝜇
𝑥
, −𝜇
𝑦
and roots of the

following equation:

𝜆
3
+ (𝑏 + 𝑐 + 𝑑) 𝜆

2
+ (𝑏𝑐 + 𝑏𝑑 + 𝑐𝑑) 𝜆

+ 𝑏c𝑑 −

𝐴
𝑥
𝐴
𝑦
𝜃𝛽
𝑥
𝑒
−𝜇
𝑥
𝜏
𝛽
𝑦

𝜇
𝑥
𝜇
𝑦

𝑒
−𝜆𝜏

= 0.

(5)

Denote the left-hand side of (5) as𝐹(𝜆, 𝜏). It is easy to see that

𝐹 (0, 𝜏) = 𝑏𝑐𝑑 −

𝐴
𝑥
𝐴
𝑦
𝜃𝛽
𝑥
𝑒
−𝜇
𝑥
𝜏
𝛽
𝑦

𝜇
𝑥
𝜇
𝑦

𝑒
−𝜆𝜏

= 𝑏𝑐𝑑 (1 − 𝑅
0
) ,

𝐹


𝜆
(𝜆, 𝜏) = 3𝜆

2
+ 2 (𝑏 + 𝑐 + 𝑑) 𝜆 + (𝑏𝑐 + 𝑏𝑑 + 𝑐𝑑)

+ 𝜏

𝐴
𝑥
𝐴
𝑦
𝜃𝛽
𝑥
𝑒
−𝜇
𝑥
𝜏
𝛽
𝑦

𝜇
𝑥
𝜇
𝑦

𝑒
−𝜆𝜏

.

(6)

(i) If𝑅
0
> 1,𝐹(0, 𝜏) < 0, 𝐹



𝜆
(𝜆, 𝜏) > 0 for 𝜆 ≥ 0 and 𝜏 > 0.

Thus, (5) has a positive real solution for 𝜏 > 0 and the
disease free equilibrium 𝐸

0
is unstable.

(ii) If 𝑅
0

< 1, 𝐹(0, 𝜏) > 0. Since 𝐹


𝜆
(𝜆, 𝜏) > 0 for

𝜆 ≥ 0 and 𝜏 > 0, (5) does not have nonnegative
real roots for 𝜏 > 0. Hence, if (5) has roots with
nonnegative real parts they must be complex roots.
Moreover these complex roots should be obtained
from a pair of complex conjugate roots crossing the
imaginary axis. Thus, (5) must have a pair of purely
imaginary roots 𝜆 = ±𝜔𝑖 for some 𝜏 > 0. Without
loss of generality we assume that 𝜔 > 0. Then 𝜔must
be a positive solution of the following equation:

− 𝜔
3
𝑖 − (𝑏 + 𝑐 + 𝑑) 𝜔

2
+ (𝑏𝑐 + 𝑏𝑑 + 𝑐𝑑) 𝜔𝑖 + 𝑏𝑐𝑑

−

𝐴
𝑥
𝐴
𝑦
𝜃𝛽
𝑥
𝑒
−𝜇
𝑥
𝜏
𝛽
𝑦

𝜇
𝑥
𝜇
𝑦

(cos (𝜔𝜏) − 𝑖 sin (𝜔𝜏)) = 0,

(7)

which is equivalent to

− 𝜔
3
+ (𝑏𝑐 + 𝑏𝑑 + 𝑐𝑑) 𝜔

+

𝐴
𝑥
𝐴
𝑦
𝜃𝛽
𝑥
𝑒
−𝜇
𝑥
𝜏
𝛽
𝑦

𝜇
𝑥
𝜇
𝑦

sin (𝜔𝜏) = 0,

− (𝑏 + 𝑐 + 𝑑) 𝜔
2
+ 𝑏𝑐𝑑

−

𝐴
𝑥
𝐴
𝑦
𝜃𝛽
𝑥
𝑒
−𝜇
𝑥
𝜏
𝛽
𝑦

𝜇
𝑥
𝜇
𝑦

cos (𝜔𝜏) = 0.

(8)

Let 𝐴
𝑥
𝐴
𝑦
𝜃𝛽
𝑥
𝑒
−𝜇
𝑥
𝜏
𝛽
𝑦
/𝜇
𝑥
𝜇
𝑦
= 𝑒. Hence,

𝜔
6
+ (𝑏
2
+ 𝑐
2
+ 𝑑
2
) 𝜔
4
+ (𝑏
2
𝑐
2
+ 𝑏
2
𝑑
2
+ 𝑐
2
𝑑
2
) 𝜔
2

+ (𝑏
2
𝑐
2
𝑑
2
− 𝑒
2
) = 0.

(9)

Assuming 𝑧 = 𝜔
2, we can obtain

𝑧
3
+ 𝛼𝑧
2
+ 𝛽𝑧 + 𝛾 = 0, (10)

where 𝛼 = 𝑏
2
+ 𝑐
2
+ 𝑑
2
> 0, 𝛽 = 𝑏

2
𝑐
2
+ 𝑏
2
𝑑
2
+ 𝑐
2
𝑑
2
> 0, 𝛾 =

𝑏
2
𝑐
2
𝑑
2
− 𝑒
2
> 0 as 𝑅

0
< 1.

From [12, Lemma 3.31], if 𝛼 ≥ 0, 𝛽 > 0, 𝛾 ≥ 0, then (10)
has no positive real roots. This implies that (7) does not have
positive solution 𝜔 since 𝑅

0
< 1. Therefore, (5) does not have

purely imaginary roots. Consequently, the real parts of all
eigenvalues of 𝐸

0
are negative for all positive 𝜏. This indicates

that the disease free equilibrium 𝐸
0
is locally asymptotically

stable if 𝑅
0
< 1.
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4. Hopf Bifurcation Analysis

In this section, we turn to the study of the stability of the
endemic equilibrium 𝐸 when 𝑅

0
> 1. Notice that 𝑅

0
> 1

is equivalent to

𝜏 < 𝜏
∗
=

1

𝜇
𝑥

ln
𝐴
𝑥
𝐴
𝑦
𝜃𝛽
𝑥
𝛽
𝑦

𝜇
𝑥
𝜇
𝑦
(𝜇
𝑥
+ 𝛼
𝑥
) (𝜇
𝑦
+ 𝛼
𝑦
) (𝜇
𝑦
+ 𝜃)

. (11)

The characteristic equation of 𝐸 is

𝜆
5
+ 𝑎
1
𝜆
4
+ 𝑎
2
𝜆
3
+ 𝑎
3
𝜆
2
+ 𝑎
4
𝜆 + 𝑎
5

= 𝑒
−𝜆𝜏

(𝑏
1
𝜆
4
+ 𝑏
2
𝜆
3
+ 𝑏
3
𝜆
2
+ 𝑏
4
𝜆 + 𝑏
5
) ,

(12)

where

𝑎
1
= 𝜇
𝑥
+ 𝜇
𝑦
+ 𝑏 + 𝑐 + 𝑑 > 0,

𝑎
2
= 𝑏𝑐 + 𝑏𝑑 + 𝑏𝜇

𝑥
+ 𝑏𝜇
𝑦
+ 𝑐𝑑 + 𝑐𝜇

𝑥
+ 𝑐𝜇
𝑦

+ 𝑑𝜇
𝑥
+ 𝑑𝜇
𝑦
+ 𝜇
𝑥
𝜇
𝑦
> 0,

𝑎
3
= 𝑏𝑐𝑑 + 𝑏𝑐𝜇

𝑥
+ 𝑏𝑐𝜇
𝑦
+ 𝑐𝑑𝜇

𝑥

+ 𝑐𝑑𝜇
𝑦
+ 𝑑𝜇
𝑥
𝜇
𝑦
,

𝑎
4
= 𝑏𝑐𝑑𝜇

𝑥
+ 𝑏𝑐𝑑𝜇

𝑦
+ 𝑐𝑑𝜇

𝑥
𝜇
𝑦
,

𝑎
5
= 𝑏𝑐𝑑𝜇

𝑥
𝜇
𝑦
,

𝑏
1
= −𝛽
𝑥
𝑦
∗

𝑖
𝑒
−𝜇
𝑥
𝜏
< 0,

𝑏
2
= −𝛽
𝑥
𝑦
∗

𝑖
𝑒
−𝜇
𝑥
𝜏
(𝑏 + 𝑑 + 𝑐 + 𝜇

𝑦
) < 0,

𝑏
3
= −𝛽
𝑥
𝑦
∗

𝑖
𝑒
−𝜇
𝑥
𝜏
(𝑏𝜇
𝑦
+ 𝑏𝑑 + 𝑑𝜇

𝑦
+ 𝑏𝑐 + 𝑐𝑑 + 𝑐𝜇

𝑦
) + 𝑏𝑐𝑑,

𝑏
4
= −𝛽
𝑥
𝑦
∗

𝑖
𝑒
−𝜇
𝑥
𝜏
(𝑏𝑑𝜇
𝑦
+ 𝑏𝑐𝜇
𝑦
+ 𝑐𝑑𝜇

𝑦
+ 𝑏𝑐𝑑)

+ 𝑏𝑐𝑑 (𝜇
𝑥
+ 𝜇
𝑦
) ,

𝑏
5
= −𝛽
𝑥
𝑦
∗

𝑖
𝑒
−𝜇
𝑥
𝜏
𝑏𝑐𝑑𝜇
𝑦
+ 𝑏𝑐𝑑𝜇

𝑥
𝜇
𝑦
.

(13)

In the following, it can be shown that (12) does not have
nonnegative real roots for 𝜏 > 0. Let

𝑎
3
= 𝑎
3
− 𝑏𝑐𝑑𝑒

−𝜆𝜏
,

𝑎
4
= 𝑎
4
− 𝑏𝑐𝑑 (𝜇

𝑥
+ 𝜇
𝑦
) 𝑒
−𝜆𝜏

,

𝑎
5
= 𝑎
5
− 𝑏𝑐𝑑𝜇

𝑥
𝜇
𝑦
𝑒
−𝜆𝜏

,

�̃�
3
= −𝛽
𝑥
𝑦
∗

𝑖
𝑒
−𝜇
𝑥
𝜏
(𝑏𝜇
𝑦
+ 𝑏𝑑 + 𝑑𝜇

𝑦
+ 𝑏𝑐 + 𝑐𝑑 + 𝑐𝜇

𝑦
) < 0,

�̃�
4
= −𝛽
𝑥
𝑦
∗

𝑖
𝑒
−𝜇
𝑥
𝜏
(𝑏𝑑𝜇
𝑦
+ 𝑏𝑐𝜇
𝑦
+ 𝑐𝑑𝜇

𝑦
+ 𝑏𝑐𝑑) < 0,

�̃�
5
= −𝛽
𝑥
𝑦
∗

𝑖
𝑒
−𝜇
𝑥
𝜏
𝑏𝑐𝑑𝜇
𝑦
< 0.

(14)

Note that 𝑎
3
> 0, 𝑎

4
> 0, 𝑎

5
> 0 for all 𝜆 ≥ 0 and 𝜏 > 0. We

rewrite (12) in the following form:

𝜆
5
+ 𝑎
1
𝜆
4
+ 𝑎
2
𝜆
3
+ 𝑎
3
𝜆
2
+ 𝑎
4
𝜆 + 𝑎
5

= 𝑒
−𝜆𝜏

(𝑏
1
𝜆
4
+ 𝑏
2
𝜆
3
+ �̃�
3
𝜆
2
+ �̃�
4
𝜆 + �̃�
5
) .

(15)

It is easy to see that the left-hand side in (15) is positive while
the right-hand side is negative for all𝜆 ≥ 0.Then (12) does not
have nonnegative real solutions. Nowwe consider whether or
not (12) has purely imaginary solutions.

Suppose 𝜆 = 𝜔𝑖, 𝜔 > 0 for some 𝜏 > 0, is a root of (12).
Then we have

𝜔
5
𝑖 + 𝑎
1
𝜔
4
− 𝑎
2
𝜔
3
𝑖 − 𝑎
3
𝜔
2
+ 𝑎
4
𝜔𝑖 + 𝑎

5

= [cos (𝜔𝜏) − 𝑖 sin (𝜔𝜏)]

× (𝑏
1
𝜔
4
− 𝑏
2
𝜔
3
𝑖 − 𝑏
3
𝜔
2
+ 𝑏
4
𝜔𝑖 + 𝑏

5
) .

(16)

Therefore

𝜔
5
− 𝑎
2
𝜔
3
+ 𝑎
4
𝜔 = cos (𝜔𝜏) (−𝑏

2
𝜔
3
+ 𝑏
4
𝜔)

− sin (𝜔𝜏) (𝑏
1
𝜔
4
− 𝑏
3
𝜔
2
+ 𝑏
5
) ,

𝑎
1
𝜔
4
− 𝑎
3
𝜔
2
+ 𝑎
5
= cos (𝜔𝜏) (𝑏1𝜔

4
− 𝑏
3
𝜔
2
+ 𝑏
5
)

+ sin (𝜔𝜏) (−𝑏
2
𝜔
3
+ 𝑏
4
𝜔) .

(17)

From (17), we obtain

(𝑎
1
𝜔
4
− 𝑎
3
𝜔
2
+ 𝑎
5
)
2

+ (𝜔
5
− 𝑎
2
𝜔
3
+ 𝑎
4
𝜔)
2

= (𝑏
1
𝜔
4
− 𝑏
3
𝜔
2
+ 𝑏
5
)
2

+ (−𝑏
2
𝜔
3
+ 𝑏
4
𝜔)
2

;

(18)

that is,

𝜔
10

+ (𝑎
2

1
− 2𝑎
2
− 𝑏
2

1
) 𝜔
8
+ (𝑎
2

2
+ 2𝑎
4
− 2𝑎
1
𝑎
3

−𝑏
2

2
+ 2𝑏
1
𝑏
3
) 𝜔
6

+ (𝑎
2

3
− 2𝑎
2
𝑎
4
+ 2𝑎
1
𝑎
5
+ 2𝑏
2
𝑏
4
− 𝑏
2

3
− 2𝑏
1
𝑏
5
) 𝜔
4

+ (𝑎
2

4
− 2𝑎
3
𝑎
5
− 𝑏
2

4
+ 2𝑏
3
𝑏
5
) 𝜔
2
+ (𝑎
2

5
− 𝑏
2

5
) = 0.

(19)

Let 𝑧 = 𝜔
2 again; we obtain

𝑧
5
+ 𝑐
1
𝑧
4
+ 𝑐
2
𝑧
3
+ 𝑐
3
𝑧
2
+ 𝑐
4
𝑧 + 𝑐
5
= 0, (20)

where

𝑐
1
= 𝑎
2

1
− 2𝑎
2
− 𝑏
2

1
,

𝑐
2
= 𝑎
2

2
+ 2𝑎
4
− 2𝑎
1
𝑎
3
− 𝑏
2

2
+ 2𝑏
1
𝑏
3
,

𝑐
3
= 𝑎
2

3
− 2𝑎
2
𝑎
4
+ 2𝑎
1
𝑎
5
+ 2𝑏
2
𝑏
4
− 𝑏
2

3
− 2𝑏
1
𝑏
5
,

𝑐
4
= 𝑎
2

4
− 2𝑎
3
𝑎
5
− 𝑏
2

4
+ 2𝑏
3
𝑏
5
,

𝑐
5
= 𝑎
2

5
− 𝑏
2

5
.

(21)
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Because (20) is very complex, the roots cannot easily be
found. However, we know there are positive roots in some
conditions. For example, if 𝑐

5
< 0, then (20) has at least

a positive root, say 𝑧
0
, and (19) has at least a positive root

𝜔
0
= √𝑧
0
. Consequently, the endemic equilibrium𝐸may lose

stability and lead to oscillations because the time delay 𝜏 > 0.
In this case, we will do bifurcation analysis by 𝜏 as bifurcation
parameter in the following.

Let 𝜆(𝜏) = 𝜉(𝜏) + 𝑖𝜔(𝜏) be a root of (12) such that
𝜉(𝜏
0
) = 0, 𝜔(𝜏

0
) = 𝜔

0
(𝜔
0

> 0) for some initial value of
the bifurcation parameter 𝜏

0
. From (17) we can obtain

𝜏
𝑗

=
1

𝜔
0

arccos(((𝑎
1
𝑏
1
− 𝑏
2
) 𝜔
8

0
+ (𝑏
4
+ 𝑎
2
𝑏
2
− 𝑎
1
𝑏
3
− 𝑎
3
𝑏
1
) 𝜔
6

0

+ (−𝑎
2
𝑏
4
− 𝑎
4
𝑏
2
+ 𝑎
1
𝑏
5
+ 𝑎
3
𝑏
3
+ 𝑎
5
𝑏
1
) 𝜔
4

0
)

× ((𝑏
1
𝜔
4

0
− 𝑏
3
𝜔
2

0
+ 𝑏
5
)
2

+ (−𝑏
2
𝜔
3

0
+ 𝑏
4
𝜔
0
)
2

)

−1

+
(𝑎
4
𝑏
4
− 𝑎
3
𝑏
5
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(22)

Now we can show the transversal condition
(𝑑Re 𝜆(𝜏)/𝑑𝜏)|

𝜏=𝜏
0

̸= 0.
Differentiating (12) with respect to 𝜏 yields
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𝜆
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Using (12), we obtain

(
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Then,
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If we denote 𝑧
0
= 𝜔
2

0
, we get
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Denote 𝑓(𝑧) = 𝑧
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the largest positive simple root of (19); from [12, Lemma 3.32
andTheorem 3.32], we have
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Figure 2: The trajectories of 𝑥
𝑖
and 𝑦

𝑖
occur oscillations when 𝜏

0
= 3.

Thus,
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(28)

Summarizing the above analysis, we have the following
results.

Theorem 3. If 𝑅
0
> 1, 𝑐

5
< 0 and 𝜔

0
is the largest positive

simple root of (19), a Hopf bifurcation occurs around the
endemic equilibrium 𝐸 of the delayed model (2).

5. Numerical Simulations

Based on the observation data from the investigation
of Tongcheng Schistosomiasis Control Station in Anhui
province, we estimated transmission rates in our model. Also
according to the previous papers [7–9, 11, 13], we choose the
parameter values in Table 1. Thus, 𝑅

0
> 1, 𝜏∗ = 327, and

𝑐
5
< 0 when 𝜏 = 0.1.
Note that the bifurcation parameter 𝜏

0
= 3 at this time.

Weperformed some simulations and obtained Figure 2. From
Figure 2 we can see that Hopf bifurcation can occur when
𝜏
0

= 3. This implies that schistosomiasis will break out in
about three years after flood. It is also in accord with the
investigation of Tongcheng Schistosomiasis Control Station.
This phenomenon is also in accord with the report of the
whole Anhui province [1]. From our theoretical results and

Table 1: Values of parameters.

Parameters Values (per capita per year) References
𝐴
𝑥

6 [8, 9]
𝜇
𝑥

0.014 [8, 9, 11]
𝛼
𝑥

10−5 [8, 9]
𝛽
𝑥

0.003 Estimated
𝐴
𝑦

100 [8, 9]
𝜇
𝑦

0.3 [8, 9, 11]
𝛼
𝑦

0.01 [9]
𝛽
𝑦

0.001 Estimated
𝜃 9.125 [13]

the reports we can see that schistosomiasis will break out
in about the third year after a flood. Hence, we can get the
result that the delayed effect of flood may be caused by the
incubation period of schistosome in the infected human.

6. Discussion

In this paper, based on the observation data in Tongcheng
Schistosomiasis Control Station in Anhui province we have
modified our previous model by including a time delay
that describes the incubation period of schistosome within
infected human. We define the basic reproduction number
𝑅
0
according to biological meanings and give the existence of

the disease free equilibrium and the endemic equilibrium.We
find that, if𝑅

0
< 1, then the disease free equilibrium is locally

asymptotically stable. However, the stability of the unique
endemic equilibrium may be changed under some condition
even if the basic reproduction number is larger than one.The
results imply that the time delay can destabilize the system
and periodic solutions can arise by Hopf bifurcation.

Numerical simulations imply that schistosomiasis will
break out in about three years after flood. Furthermore the
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observation data show that schistosomiasis will be the most
serious in about the third year after flood. From Figure 1,
we can see that the number of patients and snails did not
greatly change in 1998 and 1999. However, in 2001 the number
of patients became about 5 times that of 1998, and the
area of snails became about two times that of 1998. In our
simulations, there is a little difference. Our results are higher
than the observation data. We think the reason may be
that after flood the government dispatched a large number
of manpower and material resources to control the spread
of the disease. In summary, our theoretical results are in
accord with the investigation of Tongcheng Schistosomiasis
Control Station and the report of Anhui Province Institute
of Schistosomiasis for the whole Anhui province. Hence, we
can obtain the result that after flood the delayed effect of flood
may be caused by the incubation period of schistosome in the
definitive host. Furthermore, the period of outbreak is about
three years after flood in Anhui province.
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In order to reflect the population covered by institutionalmedical services, the concept of hospital potential capacity is proposed and
a formula for its estimation is developed based on a population dynamic model. Using the collected data on hospital outpatient and
inpatient services and the demographical information on Chongqing as an example, the demand for medical resource allocation in
Chongqing is dynamically estimated. Moreover, the proposed formula is also useful in the estimation of the basic reproduction
number in epidemiology. The results can be contributed to the improvement of decision-making in the allocation of medical
resources and the evaluation of the interventions and control efforts of the infectious disease.

1. Introduction

Hospital potential capacity reflects the population covered by
the medical institutes, which is a crucial indicator to evaluate
publicly served medical resource allocation. As the patient
flowof a hospital is a complicated dynamic process, it is rather
difficult to estimate the hospital potential capacity effectively
by a simple statistical analysis of hospital outpatient and
inpatient numbers.

Currently, there is no particular prototype for the estima-
tion of hospital potential capacity, and most people are more
concerned about the bed number or the bed capacity. How-
ever, bed planning and management are carried out under
uncertainty and verification of environmental assessments
and limited resources, and the spreadsheet calculations deter-
mined by simple planning and management capacity often
underestimate the true demand for beds [1, 2]. On the other
hand, the dynamic capacity of hospitals can be determined
to a certain extent by studying the patients’ length of stay
in hospitals, simulating relevant activities for patient flow
in hospitals, and employing mathematical methods such as
mixed exponential distributions, compartmental modelling,
and simulationmodelling to conduct integrated data analysis
[3]. For example, the demand for beds and the waiting time

for bed appointments can be estimated by analyzing a heart
surgery patient’s length of stay in an intensive care unit [4].

A new planning paradigm for improving the hospital
capacity is to improve hospital resource allocation through
the simulation of patient flow so as to avoid possible bottle-
necks, which is also the new direction of research, and on
which a growing number of research studies are focusing
currently [5]. If the entry or the exit of patients under
special medical conditions is considered as the patient flow
and all the in-between activities or services require medical
resources, this type of patient flow can be described as
a resource network with basic network features. Hospital
administrators can predict and assess the queuing model by
determining the network features and, therefore, can improve
the control of patient in-flows and enhance the resource
utilization rate [6].

From a point of view of epidemiology, the basic repro-
duction number 𝑅

0
is commonly used to characterize disease

transmissibility during an epidemic, which means the mean
number of secondary cases of disease caused by a typical
infected individual in a totally susceptible population in
its lifetime without any control policies [7–9]. Now, many
different methods have been proposed to estimate the basic
reproduction number 𝑅

0
from the surveillance data [9–11].
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For example, using the final epidemic size, [10] introduced
the following calculation formula:

𝑅
0
=
𝑁 − 1

𝐶

𝑆
0

∑

𝑖=𝑆
𝑓
+1

1

𝑖
, (1)

where 𝑁 is the population size, 𝐶 is the total number of
cases in the given disease, and 𝑆

0
and 𝑆

𝑓
are the numbers

of susceptible individuals in the population at the start and
end of the given disease, respectively. In addition, let 𝑢

0
=

𝑆
0
/𝑁 and 𝑢

∞
= 𝑆
𝑓
/𝑁. Reference [12] obtained the following

formula to estimate the basic reproduction number 𝑅
0
of the

disease:

𝑅
0
=
1

𝑢
0
− 𝑢
∞

[ln 𝑢
0
− ln 𝑢

∞
] . (2)

Note that the parameter𝑁 in (1) is equal to the hospital poten-
tial capacity to a certain extent.The estimation of the hospital
potential capacity has very definite value in epidemiology.

In this study, by use of the surveillance data from
Southwest Hospital and the demographic data of Chongqing
city, we proposed a formula to estimate the hospital potential
capacity. Chongqing is located in the southeast of inland
China, on the middle-upper reaches of the Yangtze River,
with a total population of more than 30 million. As a pilot
zone for the national urban and rural comprehensive reform,
Chongqing has a distinctive feature of large urban and rural
areas with unbalanced economic and social developments,
especially uneven distribution of medical resources. Accord-
ing to the statistics in 2012, there are 18 top-rated hospitals,
among which six are large general hospitals with more
than 1500 treatment tables, such as Southwest Hospital, the
First Affiliated Hospital of Chongqing Medical University,
Three Gorges Central Hospital, Xinqiao Hospital, Daping
Hospital, and the Second Affiliated Hospital of Chongqing
Medical University, mostly situated in the main city areas
[13]. Southwest Hospital is the largest integrated medical
and health institution, which provides medical treatment,
education, and research facilities, accommodates more than
3000 beds with an average of over 10,000 outpatients per
day and over 100,000 inpatients per year. Therefore, the
study of population covered by the medical services offered
by Southwest Hospital is regionally representative, and it
provides important guidance to the allocation of medical
resources in Chongqing.

This paper first constructs a population dynamics model,
which reflects the hospital potential capacity on base of com-
partmentalmodeling, then utilizes the dynamic feature of the
model and the data of the outpatients and inpatient numbers
in Southwest Hospital from 2000 to 2012 to dynamically esti-
mate the potential capacity for the same period. Based on the
estimated potential capacity together with the surveillance
data from the hospital on two common infectious diseases,
viral hepatitis and brothersmouth disease, the corresponding
basic reproduction number of these disease is dynamically
estimated. By combining the annual demographic data in
Chongqing for this time span, we dynamically estimate the
annual demand of medical resource allocation in Chongqing

a1x

a2y

a3ya4z

z

x y

Figure 1: Flow chart of the population dynamic model.

from the estimated potential capacity. Considering the fact
that Southwest Hospital is the largest medical institution
in Chongqing (including staff, equipment, etc.), we collect
further statistical data from another big general hospital—
Daping Hospital—in order to adjust the data of Southwest
Hospital. In this way, we can estimate the demand of annual
medical resource allocation more reasonably and provide
suggestions on themedical resource allocation inChongqing,
which enhance the decision-making in the allocation ofmed-
ical resources to achieve the balance of demands-resource.

2. Methods and Data

2.1. Model Description. Intuitively, we divide the population
into three types: healthy persons, outpatients, and inpatients.
They are called the three compartments and are denoted by
𝑥, 𝑦, 𝑧, respectively. Generally, the population in the hospital
service areas is relatively stable; therefore, the influences of
birth and death in such areas are negligible. In other words,
we can assume that the input and output of the population
in this area remain the same. Hence, the population flow can
be described as the following block diagram (Figure 1). Here
𝑎
1
represents the disease rate of healthy persons, 𝑎

2
, the cure

rate of outpatients, 𝑎
3
, the hospitalizing rate of outpatients,

and 𝑎
4
, the cure rate of inpatients. According to the biological

significance of the parameters, all 𝑎
𝑖
, 𝑖 = 1, 2, 3, 4, are positive

and 𝑎
2
+ 𝑎
3
= 1.

FromFigure 1, we have the following differential equation
model:

d𝑥
d𝑡
= −𝑎
1
𝑥 + 𝑎
2
𝑦 + 𝑎
4
𝑧,

d𝑦
d𝑡
= 𝑎
1
𝑥 − (𝑎

2
+ 𝑎
3
) 𝑦,

d𝑧
d𝑡
= 𝑎
3
𝑦 − 𝑎
4
𝑧.

(3)

Clearly, the population in a hospital service area is 𝑁 = 𝑥 +
𝑦 + 𝑧. According to model (3), we have 𝑑𝑁/𝑑𝑡 = 0, which
means that the hospital potential capacity remains constant.
Note that 𝑥 = 𝑁 − 𝑦 − 𝑧. Model (3) can be simplified as

d𝑦
d𝑡
= 𝑎
1
𝑁 − (1 + 𝑎

1
) 𝑦 − 𝑎

1
𝑧 ≜ 𝐹
1
(𝑦, 𝑧) ,

d𝑧
d𝑡
= 𝑎
3
𝑦 − 𝑎
4
𝑧 ≜ 𝐹
2
(𝑦, 𝑧) .

(4)

Here, we used 𝑎
2
+ 𝑎
3
= 1.
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2.2. Data. Thedemographic data of Chongqing is taken from
the Chongqing Statistical Yearbook 2012 [14]. The hospital
outpatient and inpatient data are extracted from the statistical
reports of medical services offered by Southwest Hospital
and Daping Hospital from 2000 to 2012. The data of viral
hepatitis and hand-foot-and-mouth disease are extracted
from Southwest Hospital between the years of 2003 and 2012.
The sources of these data are valid and reliable, including the
overall numbers of outpatients and inpatients. Among them,
the data for Southwest Hospital are used for the dynamic
estimation of potential capacity𝑁 and the basic reproduction
number 𝑅

0
, whereas the data for Daping Hospital are mainly

used for the estimation of percentages of outpatients from
other hospitals in comparison to Southwest Hospital for
more reasonable results in estimated demand of allocation of
medical resources in Chongqing.

3. Results

3.1. Dynamics of Model (4). Let 𝐹
1
= 0 and 𝐹

2
= 0. It is easy

to obtain a unique positive equilibrium (𝑦∗, 𝑧∗) in model (4),
where

𝑦
∗
=
𝑎
1
𝑎
4
𝑁

(1 + 𝑎
1
) 𝑎
4
+ 𝑎
1
𝑎
3

, 𝑧
∗
=
𝑎
1
𝑎
3
𝑁

(1 + 𝑎
1
) 𝑎
4
+ 𝑎
1
𝑎
3

. (5)

The Jacobian matrix 𝐽 of model (4) at the equilibrium is

𝐽 = [
− (1 + 𝑎

1
) −𝑎
1

𝑎
3
−𝑎
4

] . (6)

After a simple calculation, we find that the determinant of the
Jacobian matrix 𝐽 is positive, and its trace is negative. Thus,
the unique equilibrium (𝑦∗, 𝑧∗) is globally asymptotically
stable based on the Routh-Hurwitz criterion and linearity of
the model [15].

3.2. Estimation of theHospital Potential Capacity and the Basic
Reproduction Number. According to the dynamics of model
(4), the hospital outpatients and inpatients tend towards the
positive equilibrium (5). From the collected data for the
monthly outpatients in Chongqing Southwest Hospital from
2000 to 2012, we see that the monthly outpatient numbers
are relatively stable. Therefore, we use the number of annual
outpatients for the estimation of 𝑦∗ at the equilibrium. We
then assume that everyone gets sick at least once per year; that
is, 𝑎
1
= 1. The annual parameters 𝑎

3
and 𝑎
4
can be estimated

from the collected data. From the expression of 𝑦∗ in (5), we
can determine the annual hospital potential capacity

𝑁 =
𝑦
∗
((1 + 𝑎

1
) 𝑎
4
+ 𝑎
1
𝑎
3
)

𝑎
1
𝑎
4

. (7)

Using formula (7) and the data from Southwest Hospital,
we have the dynamical estimation of the potential capacity𝑁
(corresponding to the no adjust term in Figure 2(a)). Based
on formula (2) and the surveillance data of the viral hepatitis
and hand-foot-and-mouth disease, the corresponding basic
reproduction number 𝑅

0
of the diseases is further obtained

(Figure 3). From Figure 3, we can see that almost all basic
reproduction numbers are greater than unity.

Furthermore, from the estimated annual potential
capacity results and the annual demographic statistics of
Chongqing, we can estimate the numbers of medical institu-
tions required tomeet themedical andhealth demandof pop-
ulation in Chongqing (corresponding to the no adjust term in
Figure 2(b)). As seen from Figure 2, the population covered
by the medical services of Southwest Hospital increases
annually, and this rate of increase is much faster than the
rate of increase in the population of Chongqing. Thus, the
number of medical institutions required decreases each year.

3.3. Adjustment of the Number of Hospitals Required. In 2012,
the medical and health demand of the whole population in
Chongqing could be satisfied with six medical institutions of
similar scale to Southwest Hospital (Figure 2(b)). However,
there are 18 top-rated hospitals in the city [13]. Does it indicate
that the present number of medical institutions is already
saturated? Because the Southwest Hospital is the largest one
in the region, no matter in the software or hardware facilities,
but also the number of outpatients and inpatients compared
with medical institutions. The collected data of the other
large general hospital—Daping Hospital—suggest that the
increasing rate of outpatients is still much slower than that
of Southwest Hospital (Figure 4), with the average number of
outpatients constituting only 45% that of Southwest Hospital.
Thus, in this section, considering the imbalance of resources
and service ability between different medical institutions,
we adjust the annual number of outpatients of Southwest
Hospital in order to obtain a better estimation of the annual
demand of medical resources in Chongqing.

With respect to the statistical data of Daping Hospital,
we consider 20% and 40% as correction coefficients in order
to adjust the number of outpatients in Southwest Hospital
while keeping the other parameters unchanged. Thus, we
determine the hospital potential capacity and the number
of medical institutions required using these coefficients, and
these results are presented in Figure 2 (corresponding to the
20% and 40% adjust term in Figure 2).

4. Discussion

Because Southwest Hospital is the largest individual general
medical institution in Chongqing, it has the largest annual
outpatient and inpatient numbers. The results, presented in
this paper and calculated from the dynamic analysis of data
from Southwest Hospital, indicate the number of medical
resource allocations for the same scale as that of Southwest
Hospital. Under the same conditions, these numbers could
be taken as the maximum number of allocations for medical
resources. However, the data obtained from other large
medical institutions mentioned in this paper cannot reach
such level. We can assume that this sequence of data is in a
descending order. Thus, in order to obtain realistic results,
we adjust the data of Southwest Hospital using the correction
coefficients. For instance, in 2012, the number of medical
institutions required for a coefficient of 40% for Southwest
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Figure 2: Illustration of the potential capacity and the number of hospital required under different correction coefficients. (a) Potential
capacity, and (b) number of hospital required.
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Figure 3: Illustration of the basic reproduction number for viral
hepatitis and brothers mouth disease between the years of 2003 and
2012.

hospital is 14, whereas only seven medical institutions in
Chongqing, with a potential capacity of approximately 17.5
million, can meet or exceed this requirement. The number
of medical institutions required for a coefficient of 20% for
Southwest hospital is 28, whereas there are only 18 top-
rated hospitals in Chongqing with a potential capacity of
about 22 million, which is much lower than the demand of
the total population of more than 30 million. Therefore, we
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Figure 4: Comparison of outpatients in Chongqing Southwest
Hospital and Chongqing Daping Hospital.

conclude that the existing medical institutions in Chongqing
still cannot meet the demand of the whole population.

Regarding the estimation of the basic reproduction num-
ber 𝑅
0
, such as formula (1) or (2), we can use the proposed

formula (7) to estimate the requisite population size. Thus,
it is a meaningful study to combine the formulae (2), (7)
with clinical surveillance data during an epidemic to obtain
the estimation of the basic reproduction number. For two
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common infectious diseases, such as viral hepatitis and hand-
foot-and-mouth disease, the estimated results indicate that
almost all 𝑅

0
are greater than unity. Note that 𝑅

0
> 1

means that the disease is endemic in the area. Therefore, the
incidence will not be significant in the near future with the
current status. This will help us to understand the trend of
the epidemic and has potential benefits in evaluating different
interventions and control efforts [16, 17]. Our conclusion
shows 𝑅

0
is generally larger as the infectious disease is caused

by the enteric viruses, and happens to children. More stricter
and effective control efforts are necessary in control of the
epidemic. In order to control the epidemic, we need to take
stricter and more effective control efforts.
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The paper investigates the behavior of price differential equation model based on economic theory with two delays. The primary
aim of this thesis is to provide a research method to explore the undeveloped areas of the price model with two delays. Firstly, we
modify the traditional price model by considering demand function as a downward opening quadratic function, and supply and
demand functions both depending on the price of the past and the present. Then the price model with two delays is established.
Secondly, by considering the price model with one delay, we get the stable interval. Regarding another delay as a parameter, we
studied the linear stability and local Hopf bifurcation. In addition, we pay attention to the direction and stability of the bifurcating
periodic solutions which are derived by using the normal form theory and center manifold method. Afterwards, the study turns to
simulate the results through numerical analysis, which shows that the provided method is valid.

1. Introduction

Recent developments in mathematical economics and in
problems of business administration have led to extensive
use of differential equation model. Bifurcations and chaos
always show in the contemporary literature of economics as
basic concepts. The paper of Shuhe [1] was the pioneering
work in studying price differential equation model which
provides a dynamic system to investigate sectoral dynamics of
an economyphenomenon. Since demanddepends on the past
price, further study on pricemodel with delay can be found in
[2]. Reference [3] focused on the phenomenon of bifurcation
which forms an integral part of qualitative approach to study
dynamical systems. Similarly, [4–6], which investigated the
local Hopf bifurcation and the existence of periodic solutions
of price model, had important consequences for theoretical
and empirical model building in economics. Reference [7]
provided a brief survey of the literature of bifurcation detec-
tions in economicmodels.The existence of different bifurcate
parameters leads to chaos and the causes of complicated
phenomenon were argued in [8]. In short, few people studied
price model with delay; what is more, no results involving
price model with two delays have occurred.

In order to illustrate the economic phenomena with price
varying accurately, a reasonable mathematical model of price
is needed. Thus, we introduce a traditional price differential
equation model in [1]:

𝑑
2
𝑃 (𝑡)

𝑑𝑡2
= 𝜇𝛿 (𝑃 (𝑡))

𝑑𝑃 (𝑡)

𝑑𝑡
− 𝜇𝑏
0
𝑃 (𝑡) + 𝜇𝑑

0
− 𝜇𝑔
0
. (1)

The meaning of parameters refers to [1]. We modify the
traditional price differential equation model by considering
the following factors.

Firstly, we denote the correlation coefficient between
demand and price rising rate by 𝛿(𝑃(𝑡)).We consider demand
function as a downward opening quadratic function and
supply function as a linear function:

𝛿 (𝑃 (𝑡)) = 𝑏(𝑃 (𝑡) + 𝛽)
2
+ 𝐶
0
, 𝑏 < 0, 𝛽 < 0, 𝐶

0
< 0. (2)

Secondly, according to the cobweb theory, sincemanufac-
turers need a production cycle time from obtaining market
information to adjust the production line, the role of price
adjustment lags on the supply function of time.The purchase
of the consumers also depends on the price change and
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decision whether to buy or not. Then, supply and demand
functions both depend on the price of the past and the
present. We introduce two delays 𝜏

1
, 𝜏
2
to denote supply and

demand functions, which depend on the price of the past,
respectively. A differential system with two delays for price
differential equation model is transformed into the following
form:

𝑑
2
𝑃 (𝑡)

𝑑𝑡2
= 𝜇 [𝑏(𝑃 + 𝛽)

2
+ 𝐶
0
]
𝑑𝑃 (𝑡 − 𝜏

2
)

𝑑𝑡

− 𝜇𝑏
0
𝑃 (𝑡) − 𝜇𝑎𝑃 (𝑡 − 𝜏

1
) + 𝜇 (𝑑

0
− 𝑔
0
) .

(3)

Let 𝑃(𝑡) = 𝑥(𝑡), 𝑑𝑃(𝑡)/𝑑𝑡 = 𝑦(𝑡), and notice that supply
and demand functions both depend on the price of the past
and the present; then the model is described by the following
autonomous system:

̇𝑥 (𝑡) = 𝑑𝑦 (𝑡) + 𝑘𝑦 (𝑡 − 𝜏
2
) ,

̇𝑦 (𝑡) = 𝜇 [𝑏(𝑥 (𝑡) + 𝛽)
2
+ 𝐶
0
] 𝑦 (𝑡 − 𝜏

2
) − 𝜇𝑏

0
𝑥 (𝑡)

− 𝜇𝑎𝑥 (𝑡 − 𝜏
1
) + 𝜇 (𝑑

0
− 𝑔
0
) ,

(4)

where 𝑑, 𝑘 refers to [2]. 𝑥(𝑡) is the price at time 𝑡, and 𝑦(𝑡) is
the amount of supply at time 𝑡; 𝜇 > 0, 𝑏

0
> 0, 𝑎 > 0, 𝑏 < 0,

𝛽 < 0, 𝐶
0
< 0.

Different from the previous work in [1, 2, 4], the purpose
of this paper is to investigate the stability of the Hopf
bifurcation and the direction of bifurcation periodic solution
of a price differential equation model with two delays. The
structure of the paper is as follows. In Section 2, linear stabil-
ity and localHopf bifurcations are studied by using qualitative
methods. In Section 3, we regard 𝜏

2
as bifurcation parameter

and consider (4) with 𝜏
1
in its stable interval; the direction of

Hopf bifurcation and the stability of the bifurcation periodic
solutions are derived by using the normal form theory
and center manifold method. Afterwards, the presented
numerical simulations in Section 4 have demonstrated the
theoretical analysis.

2. Local Stability and Hopf Bifurcation

Obviously, system (4) always has an equilibrium 𝐸
∗

=

(𝑥
∗
, 𝑦
∗
) = ((𝑑

0
− 𝑔
0
)/(𝑏
0
+ 𝑎), 0). In the following, we will

investigate the effect of the delay 𝜏
1
, 𝜏
2
on the dynamics of

system (4).
Let 𝑢(𝑡) = 𝑥(𝑡) − 𝑥

∗, V(𝑡) = 𝑦(𝑡) − 𝑦
∗; the linearization of

system (4) at zero steady state is

̇𝑢 (𝑡) = 𝑑V (𝑡) + 𝑘V (𝑡 − 𝜏
2
) ,

̇V (𝑡) = 𝜇 [𝑏(𝑃
0
+ 𝛽)
2
+ 𝐶
0
] V (𝑡 − 𝜏

2
)

− 𝜇𝑏
0
𝑢 (𝑡) − 𝜇𝑎𝑢 (𝑡 − 𝜏

1
) .

(5)

For convenience, as in literature of [5], we denote 𝐴 =

−𝜇[𝑏(𝑃
0
+ 𝛽)
2
+ 𝐶
0
)] > 0, 𝐵 = 𝜇𝑏

0
> 0, 𝐶 = 𝜇𝑎 > 0. Then (5)

become
̇𝑢 (𝑡) = 𝑑V (𝑡) + 𝑘V (𝑡 − 𝜏

2
) ,

̇V (𝑡) = −𝐴V (𝑡 − 𝜏
2
) − 𝐵𝑢 (𝑡) − 𝐶𝑢 (𝑡 − 𝜏

1
) .

(6)

The corresponding characteristic equation is

𝜆
2
+ 𝐴𝑒
−𝜆𝜏
2𝜆 + 𝐵𝑘𝑒

−𝜆𝜏
2 + 𝐶𝑑𝑒

−𝜆𝜏
1 + 𝐶𝑘𝑒

−𝜆(𝜏
1
+𝜏
2
)
= 0. (7)

To study the stability of equilibrium 𝐸
∗ of (4) and Hopf

bifurcation, it is sufficient to analyze the distribution of the
roots of (7). It is stable if all roots of (7) have negative real
parts andunstable if one root has positive real part. In order to
study the characteristic (7) with two delays, we first consider
(7) with one delay. Without loss of generality, we choose 𝜏

1

as a parameter and employ Rouche’s theorem in Cooke and
Grossman [9]; we will find the stable interval for 𝜏

1
. Then

we consider (7) with 𝜏
1
in its stable intervals. Using Rouche’s

theorem again, regard 𝜏
2
as a parameter; we will find the

stable interval (depends on 𝜏
1
) for 𝜏

2
. Then we obtain the

stable interval for system (4).
Now we analyse the case when 𝜏

2
= 0; (7) becomes

𝜆
2
+ 𝐴𝜆 + 𝐵𝑘 + 𝐶𝑑𝑒

−𝜆𝜏
1 + 𝐶𝑘𝑒

−𝜆𝜏
1 = 0. (8)

Using a procedure similar to [10], we make some hypotheses
as follows:
(H1) 𝐴2 ≤ 4[𝐵𝑘 + 𝐶𝑑 + 𝐶𝑘],
(H2) 𝐴2 > 4[𝐵𝑘 + 𝐶𝑑 + 𝐶𝑘],
(H3) 𝐵2𝑘2 < 𝐶

2
(𝑑 + 𝑘)

2,
(H4) 𝐵2𝑘2 > 𝐶

2
(𝑑 + 𝑘)

2, 2𝐵𝑘 > 𝐴
2, and (−2𝐵𝑘 + 𝐴

2
)
2
>

4[𝐵
2
𝑘
2
− 𝐶
2
(𝑑 + 𝑘)

2
],

(H5) neither (H3) nor (H4).
Obviously, when 𝜏

1
= 𝜏
2
= 0, (4) becomes a system of ODE.

Under the hypothesis (H1), all roots of (7) have negative real
parts if and only if𝐴 > 0; under the hypothesis (H2), all roots
of (8) have negative real parts if and only if 𝐴 > 0 and 𝐵𝑘 +

𝐶𝑑 + 𝐶𝑘 > 0. Above all, either (H1) or (H2) holds for 𝜏
1
=

𝜏
2
= 0, and all roots of (7) have negative real parts.
Applying the lemma in [9] again, we obtain the following

results.

Lemma 1. For (8), one has the following:

(i) if (H3) holds and 𝜏
1
= 𝜏
(1)

1,𝑛
, then (8) has a pair of purely

imaginary roots ±𝑖𝜔
+
;

(ii) if (H4) holds and 𝜏
1
= 𝜏
(1)

1,𝑛
(𝑟𝑒𝑠. 𝜏

1
= 𝜏
(2)

1,𝑛
) then (8) has

a pair of imaginary roots of ±𝑖𝜔
+
(𝑟𝑒𝑠. ± 𝑖𝜔

−
);

(iii) if (H5) holds and 𝜏
2

> 0, then (8) has no purely
imaginary root, where

𝜔
2

±
=

2𝐵𝑘 − 𝐴
2

2

± [
1

4
(−2𝐵𝑘 + 𝐴

2
)
2

− 𝐵
2
𝑘
2
+ 𝐶
2
(𝑑 + 𝑘)

2
]

1/2

,

(9)

𝜏
(1)

1,𝑛
=

1

𝜔
+

arccos{
(𝜔
2

+
− 𝐵𝑘)

𝐶𝑑 + 𝐶𝑘
} +

2𝑛𝜋

𝜔
+

,

𝜏
(2)

1,𝑛
=

1

𝜔
−

arccos{
(𝜔
2

−
− 𝐵𝑘)

𝐶𝑑 + 𝐶𝑘
} +

2𝑛𝜋

𝜔
−

, (𝑛 = 0, 1, . . .) .

(10)
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Proof. Let 𝜆 = 𝑖𝜔 be the root of (8); we thus have

−𝜔
2
+ 𝐴𝜔𝑖 + 𝐵𝑘 + 𝐶 (𝑑 + 𝑘) 𝑒

−𝜆𝜏
1 = 0. (11)

Separating the real and imaginary parts

−𝜔
2
+ 𝐵𝑘 + 𝐶 (𝑑 + 𝑘) cos𝜔𝜏1 = 0,

𝐴𝜔 − 𝐶 (𝑑 + 𝑘) sin𝜔𝜏
1
= 0.

(12)

Eliminating the harmonic terms gives

𝜔
4
+ (−2𝐵𝑘 + 𝐴

2
) 𝜔
2
+ 𝐵
2
𝑘
2
− 𝐶
2
(𝑑 + 𝑘)

2
= 0. (13)

Obviously

𝜔
2

1
⋅ 𝜔
2

2
= 𝐵
2
𝑘
2
− 𝐶
2
(𝑑 + 𝑘)

2
, 𝜔

2

1
+ 𝜔
2

2
= 2𝐵𝑘 − 𝐴

2
.

(14)

From (12) and by direct computation, we obtain 𝜔
2

±
, 𝜏(1)
1,𝑛
, 𝜏(2)
1,𝑛
.

The result is straightforward.

Denote the minimum value of 𝜏
1,𝑛

by 𝜏
0

1
; that is,

min(𝜏
1,𝑛
) = 𝜏
0

1
, and

𝜆
𝑘,𝑛

= 𝛼
𝑘,𝑛

(𝜏
1
) + 𝑖𝜔

𝑘,𝑛
(𝜏
1
) ,

𝛼
1,𝑛

(𝜏
(1)

1,𝑛
) = 0, 𝜔

1,𝑛
(𝜏
(1)

1,𝑛
) = 𝜔
+
,

𝛼
2,𝑛

(𝜏
(2)

1,𝑛
) = 0, 𝜔

2,𝑛
(𝜏
(2)

1,𝑛
) = 𝜔
−
.

(15)

To see if 𝜏(1)
1,𝑛

and 𝜏
(2)

1,𝑛
are bifurcation values, we need to

verify if the transversality conditions hold.

Lemma 2. The following transversality conditions

𝑑Re 𝜆
1,𝑛

(𝜏
(1)

1,𝑛
)

𝑑𝜏
1

> 0,

𝑑Re 𝜆
1,𝑛

(𝜏
(2)

1,𝑛
)

𝑑𝜏
1

> 0, (16)

hold.

Proof. Differentiating (8) with respect to 𝜏
1
yields

2𝜆
𝑑𝜆

𝑑𝜏
1

+ 𝐴
𝑑𝜆

𝑑𝜏
1

+ 𝐶 (𝑘 + 𝑑) 𝑒
−𝜆𝜏
1 (−𝜏
1

𝑑𝜆

𝑑𝜏
1

− 𝜆) = 0,

𝑑𝜆

𝑑𝜏
1

=
𝐶 (𝑘 + 𝑑) 𝜆𝑒

−𝜆𝜏
1

2𝜆 + 𝐴 − 𝐶 (𝑘 + 𝑑) 𝜏
1
𝑒−𝜆𝜏1

;

(17)

then we have

Re 𝑑𝜆

𝑑𝜏
1

= Re{ 2𝜆 + 𝐴

𝐶 (𝑘 + 𝑑) 𝜆𝑒
−𝜆𝜏
1

−
𝜏
1

𝜆
} =

2𝜆 + 𝐴

𝐶 (𝑘 + 𝑑) 𝜆𝑒
−𝜆𝜏
1

=
1

𝐶 (𝑑 + 𝑘)
⋅

2𝑖𝜔 + 𝐴

𝑖𝜔 (cos𝜔𝜏
1
− 𝑖 sin𝜔𝜏

1
)

=
1

𝐶 (𝑑 + 𝑘)
⋅
𝐴𝜔 sin𝜔𝜏

1
+ 2𝜔
2 cos𝜔𝜏

1

𝜔2
,

(18)

which satisfied 𝐶 > 0 and 𝑑 + 𝑘 > 0; then for
𝜆
1,𝑛
(𝜏
(1)

1,𝑛
), 𝑑Re 𝜆

1,𝑛
(𝜏
(1)

1,𝑛
)/𝑑𝜏
1

> 0, and for 𝜆
1,𝑛
(𝜏
(2)

1,𝑛
),

𝑑Re 𝜆
1,𝑛
(𝜏
(2)

1,𝑛
)/𝑑𝜏
1
> 0. We complete the proof.

Thus, we get the distribution of the characteristic roots of
(8).

Lemma 3. For (8), one has the following:

(i) if (H3) and either (1) (H1)𝐴 > 0 or (2) (H2)𝐴 > 0 and
𝐵𝑘+𝐶𝑑+𝐶𝑘 > 0 hold, thenwhen 𝜏

1
∈ [0, 𝜏

(1)

1,0
), all roots

of (8) have negative real parts, and when 𝜏
1
> 𝜏
(1)

1,0
, (8)

has at least one root with positive real part;
(ii) if (H4) and either (H1) or (H2) hold, then there are k

switches from stability to instability; that is, when 𝜏
1
∈

(𝜏
(2)

1,𝑛
, 𝜏
(1)

1,𝑛+1
), 𝑛 = −1, 0, 1, . . . , 𝑘−1, all roots of (8) have

negative real parts, where 𝜏(2)
2,−1

= 0, 𝜏
1
∈ [𝜏
(1)

1,𝑛
, 𝜏
(2)

1,𝑛+1
)

and 𝜏
1
> 𝜏
(1)

1,𝑘
, 𝑛 = 0, 1, . . . , 𝑘 − 1, and (8) has at least

one root with positive real part.

That is to say, under those conditions when 𝜏
2
= 0, 𝜏
1
∈ [0, 𝜏

0

1
),

system (4) is asymptotically stable, and system (4) undergoes a
Hopf bifurcation when 𝜏

1
= 𝜏
0

1
.

Then, we consider stable interval for 𝜏
1
in which all

roots of (8) have negative real parts, regarding 𝜏
2
> 0 as a

parameter.

Lemma4. If all roots of (8) have negative real parts, then there
exists a 𝜏0

2
(𝜏
1
) > 0, such that when 𝜏

2
∈ [0, 𝜏

0

2
(𝜏
1
)) all roots of

(7) have negative real parts.

Proof. All roots of (8) have negative real parts which means
that system (4) is stable when 𝜏

2
= 0. In what follows, we

consider (4) with fixed 𝜏
1
in its stable interval, regarding 𝜏

2
as

a parameter. Let 𝑖V (V > 0) be a root of (4); then we obtain

− V2 + 𝐴 (cos V𝜏
2
− 𝑖 sin V𝜏

2
) V𝑖 + 𝐵𝑘 (cos V𝜏

2
− 𝑖 sin V𝜏

2
)

+ 𝐶𝑑 (cos V𝜏
1
− 𝑖 sin V𝜏

1
)

+ 𝐶𝑘 (cos V (𝜏
1
+ 𝜏
2
) − 𝑖 sin V (𝜏

1
+ 𝜏
2
)) = 0.

(19)

Suppose that𝐹(V) = V2−𝐴V𝑖 cos V𝜏
2
−𝐴V sin V𝜏

2
−𝐵𝑘 cos V𝜏

2
+

𝐵𝑘𝑖 sin V𝜏
2
− 𝐶𝑑 cos V𝜏

2
+ 𝐶𝑑𝑖 sin V𝜏

2
− 𝐶𝑘 cos V(𝜏

1
+ 𝜏
2
) +

𝐶𝑘𝑖 sin V(𝜏
1
+ 𝜏
2
). Since 𝐹(0) = −(𝐵𝑘 + 𝐶𝑑 + 𝐶𝑘) < 0

and 𝐹(+∞) = +∞, then (19) has at least one positive root.
Without loss of generality, the roots of (19) are defined by
V
1
, V
2
, . . . , V

𝑘
. For every V

𝑖
(𝑖 = 1, 2, . . . , 𝑘), there exists a

sequence {𝜏
(𝑗)

2𝑖
| 𝑗 = 1, 2, . . .}, such that (19) holds. The

expression of 𝜏(𝑗)
2𝑖

and V
𝑖
can be derived by (19) for fixed 𝜏

1
;

we will calculate them directly by the use of Mathematica
software in Section 4; here we omit them. Let 𝜏0

2
= {min 𝜏𝑗

2𝑖
|

𝑖 = 1, 2, . . . , 𝑘, 𝑗 = 1, 2, . . .} and let V
0
be the positive and

simple root of (19) when 𝜏
2

= 𝜏
0

2
. When 𝜏

2
= 𝜏
0

2
, (19)

has a pair of purely imaginary roots ±𝑖V∗ for 𝜏
1
∈ [0, 𝜏

0

1
).

Then, as 𝜏
2
varies, the sum of the multiplicities of zeros in

the open right half-plane can change only if a zero appears
on or crosses the imaginary axis. In what follows, we assume
that (H6) [𝑑Re 𝜆(𝜏

2
)/𝑑𝜏
2
]
𝜏
2
=𝜏
𝑗

2𝑖

̸= 0. Therefore, by the general
Hopf bifurcation theorem for FDEs in Wei and Ruan [10],
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we get that when 𝜏
2
∈ [0, 𝜏

0

2
) all roots of (7) have negative

real parts.
Applying the discussion above and noticing that all roots

of (8) have negative real parts, we know that there exist 𝜏0
2
> 0

such that all roots of (7) with 𝜏
2
∈ [0, 𝜏

0

2
) have negative real

parts. The proof is complete.

Summarizing the above lemmas and literature of Hale
[11], we obtain the following sufficient conditions for all
characteristic roots of (8) to have negative real parts.

Theorem 5. Suppose that (H6) holds and either (H1) or (H2)
is satisfied.

(i) If (H3) holds, then for any 𝜏
1
∈ [0, 𝜏

(1)

1,0
) there exists a

𝜏
0

2
(𝜏
1
) > 0 such that when 𝜏

0

2
∈ [0, 𝜏

2
(𝜏
1
)), all roots of

(7) have negative real parts.

(ii) If (H4) holds, then for any 𝜏
1
∈ ∪
𝑘−1

𝑛=−1
(𝜏
(2)

1,𝑛
, 𝜏
(1)

1,𝑛+1
) there

exists a 𝜏
2
(𝜏
1
) > 0, such that when 𝜏

1
∈ [0, 𝜏

(1)

1,0
) all

roots of (7) have negative real parts, where 𝜏(1)
1,𝑗

and 𝜏(2)
1,𝑗

are defined by (10).
(iii) If (H5) holds, then for any 𝜏

1
≥ 0, there exists a 𝜏

2
(𝜏
1
) >

0, such that when 𝜏
2
∈ [0, 𝜏

2
(𝜏
1
)) all roots of (7) have

negative real parts.

That is to say, under the conditions that 𝜏
1
is stable interval,

there exist a 𝜏
2
(depend on 𝜏

1
) such that when 𝜏

2
∈ [0, 𝜏

0

2
),

system (4) is asymptotically stable, and system (4) undergoes a
Hopf bifurcation when 𝜏

2
= 𝜏
(𝑗)

2𝑖
, 𝑖 = 1, 2, . . . , 𝑘; 𝑗 = 1, 2 . . ..

3. Direction and Stability of the Bifurcating
Periodic Solutions

In the previous section, we obtain the conditions underwhich
a family of periodic solutions bifurcate from the steady state
and the equilibrium loses its stability when 𝜏

2
= 𝜏
(𝑗)

2𝑖
, 𝑖 =

1, 2, . . . , 𝑘; 𝑗 = 1, 2, . . . for fixed 𝜏
1
, and the relationship

between 𝜏
1
and 𝜏

2
can be derived by (19). Throughout this

section, by using techniques of the normal form and center
manifold theory due to Hale [11], we derive the algorithm for
determining the direction of the Hopf bifurcations and the
stability of the bifurcating periodic solutions at critical values
on the center manifold.

Since the analysis is local, we regard 𝜏
2
= 𝜏
0

2
+ 𝛾, 𝛾 ∈

𝑅 as bifurcation parameter. Choosing the space as 𝐶 =

𝐶([−𝜏
0

2
, 0], 𝑅

2
) and 𝑢

𝑡
= 𝑢(𝑡 + 𝜃) ∈ 𝐶 for 𝜃 ∈ [−𝜏

0

2
, 0], system

(3) is transformed into FDE as

̇𝑢 (𝑡) = 𝐿
𝛾
(𝜙) + 𝐹 (𝜙, 𝛾) , (20)

with

𝐿
𝛾
(𝜙) = 𝐵

1
𝜙 (0) + 𝐵

2
𝜙 (−𝜏
1
) + 𝐵
3
𝜙 (−𝜏
2
) ,

𝐹 (𝜙, 𝛾) = (
0

𝜇𝑏𝜙
2

1
(0) 𝜙
2
(−𝜏
2
) + 2𝜇 (𝑃

0
+ 𝛽) 𝜙

1
(0) 𝜙
2
(0)

) ,

(21)

where 𝐵
1
= (
0 𝑑

−𝜇𝑏
0
0
), 𝐵
2
= (
0 0

−𝜇𝑎 0 ), and 𝐵3 = (
0 𝑘

0 2𝜇(𝑃
0
+𝛽)
2
+𝐶
0

).
Obviously, 𝐿

𝛾
(𝜙) is continuous linear function mapping

𝐶([−𝜏
0

2
, 0], 𝑅

2
) into 𝑅

2. By the Riesz representation theorem,
there exists a matrix whose elements are bounded variation
functions 𝜂(𝜃, 𝛾) in 𝜃 ∈ [−𝜏

0

2
, 0] such that

𝐿
𝛾
𝜙 = ∫

0

−𝜏
0

2

𝑑𝜂 (𝜃, 𝛾) 𝜙 (𝜃) , for 𝜙 ∈ 𝐶. (22)

In fact, we choose

𝜂 (𝜃, 𝛾) = 𝐵
1
𝛿 (𝜃) + 𝐵

2
𝛿 (𝜃 + 𝜏

1
) + 𝐵
3
𝛿 (𝜃 + 𝜏

2
) , (23)

where 𝛿(𝜃) is a delta function.
For 𝜙 ∈ 𝐶


([−𝜏
0

2
, 0], 𝑅

2
) the operators𝐴 and𝑅 are defined

as

𝐴 (𝜇) 𝜙 (𝜃) =

{{{{

{{{{

{

𝑑𝜙 (𝜃)

𝑑𝜃
, 𝜃 ∈ [−𝜏

0

2
, 0) ,

∫

0

−𝜏
0

2

𝑑 (𝜂 (𝑡, 𝜇) 𝜙 (𝑡)) , 𝜃 = 0,

𝑅 (𝜇) 𝜙 (𝜃) = {
0, 𝜃 ∈ [−𝜏

0

2
, 0) ,

𝑓 (𝛾, 𝜃) , 𝜃 = 0.

(24)

Let 𝜓 ∈ 𝐶

[0, 𝜏
0

2
]; the adjoint operator 𝐴∗(0) corresponding

to 𝐴(0) is defined as follows:

𝐴
∗
𝜓 (𝑠) =

{{{

{{{

{

−
𝑑𝜓 (𝑠)

𝑑𝑠
, 𝑠 ∈ (0, 𝜏

0

2
] ,

∫

0

−𝜏
0

2

𝑑 (𝜂
𝑇
(𝑡, 0) 𝜓 (−𝑡)) , 𝑠 = 0.

(25)

Then system (20) can be written in the following form: ̇𝑢
𝑡
=

𝐴(𝛼)𝑢
𝑡
+ 𝑅(𝛼)𝑢

𝑡
, where 𝑢

𝑡
= 𝑢(𝑡 + 𝜃) for 𝜃 ∈ [−1, 0).

For 𝜙 ∈ 𝐶

([−𝜏
0

2
, 0], 𝑅

2
) and 𝜓 ∈ 𝐶


[0, 𝜏
0

2
], define the

adjoint bilinear:

⟨𝜓, 𝜙⟩ = 𝜓 (0) 𝜙 (0) − ∫

0

−𝜏
0

2

∫

𝜃

𝜀=0

𝜓 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉,

(26)

where 𝜂(𝜃) = 𝜂(𝜃, 0).

Proposition 6. Let 𝑞(𝜃) and 𝑞∗(𝑠) be eigenvectors of𝐴 and𝐴∗
corresponding to 𝑖𝜔

0
and −𝑖𝜔

0
, respectively, satisfying ⟨𝑞∗, 𝑞⟩ =

1 and ⟨𝑞
∗
, 𝑞⟩ = 0. Then

𝑞 (𝜃) = (𝑞
1
, 𝑞
2
)
𝑇
𝑒
𝑖𝜔
0
𝜃
= (𝑑 + 𝑘𝑒

−𝑖𝜔
0
𝜏
2 , 𝑖𝜔)
𝑇

𝑒
𝑖𝜔
0
𝜃
,

𝑞
∗
(𝑠) = 𝐷 (𝑞

∗

1
, 𝑞
∗

2
) 𝑒
−𝑖𝜔
0
𝑠
= (𝜇𝑏

0
+ 𝜇𝑎𝑒

𝑖𝜔
0
𝜏
1 , 𝑖𝜔) 𝑒

−𝑖𝜔
0
𝑠
,

(27)

where

𝐷 = [(𝑞
1
𝑞
∗

1
+ 𝑞
2
𝑞
∗

2
) + 𝜏
0

1
[−𝜇𝑎𝑒

−𝑖𝜔
0
𝜏
0

1𝑞
1
𝑞
∗

2
]

+ [𝑘𝑞
2
𝑞
∗

1
+ [2𝜇𝑏(𝑃

0
+ 𝛽)
2
+ 𝐶
0
] 𝑞
∗

2
𝑞
2
] 𝜏
0

2
𝑒
−𝑖𝜔
0
𝜏
0

2 ]

−1

.

(28)
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Proof. We assume that 𝑞(𝜃) = (𝑞
1
, 𝑞
2
)
𝑇
𝑒
𝑖𝜔
0
𝜃 is the eigenvector

of 𝐴(0) corresponding to 𝑖𝜔 and 𝑞
∗
(𝑠) = 𝐷(𝑞

∗

1
, 𝑞
∗

2
)
𝑇
𝑒
−𝑖𝜔
0
𝑠

is the eigenvector of 𝐴∗(0) corresponding to −𝑖𝜔. It follows
from the definition of 𝐴(0), 𝐴∗(0), (22), and (23) that we
have 𝐴𝑞(0) = ∫

0

−𝜏
0

2

𝑑(𝜂(𝑡, 𝜇)𝜙(𝑡)) = 𝑖𝜔
0
𝑞(0) and 𝐴

∗
𝑞(0) =

∫
0

−𝜏
0

2

𝑑(𝜂
𝑇
(𝑡, 𝜇)𝜙(−𝑡)) = −𝑖𝜔

0
𝑞(0); we have

[𝑖𝜔
0
𝐼 − (𝐵

1
+ 𝐵
2
𝑒
−𝑖𝜔
0
𝜏
1 + 𝐵
3
𝑒
−𝑖𝜔
0
𝜏
2)] 𝑞 (0) = 0,

[−𝑖𝜔
0
𝐼 − (𝐵

1
+ 𝐵
2
𝑒
𝑖𝜔
0
𝜏
1 + 𝐵
3
𝑒
𝑖𝜔
0
𝜏
2)] 𝑞
∗
(0) = 0,

(29)

where 𝐼 is identity matrix; that is,

(
𝑖𝜔
0

− (𝑑 + 𝑘𝑒
−𝑖𝜔
0
𝜏
2)

𝜇 (𝑏
0
+ 𝑎𝑒
−𝑖𝜔
0
𝜏
1) 𝑖𝜔

0
− 𝜇 [𝑏 (𝑃

0
+ 𝛽) + 𝐶

0
] 𝑒
−𝑖𝜔
0
𝜏
2

)

× (
𝑞
1

𝑞
2

) = 0,

(
−𝑖𝜔
0

𝜇 (𝑏
0
+ 𝑎𝑒
𝑖𝜔
0
𝜏
1)

− (𝑑 + 𝑘𝑒
𝑖𝜔
0
𝜏
2) −𝑖𝜔

0
− 𝜇 [𝑏 (𝑃

0
+ 𝛽) + 𝐶

0
] 𝑒
𝑖𝜔
0
𝜏
2

)

× (
𝑞
∗

1

𝑞
∗

2

) = 0.

(30)

By direct computation and considering 𝑞(𝜃) = 𝑞(0)𝑒
𝑖𝜔𝜃,

𝑞
∗
(𝑠) = 𝑞

∗
(0)𝑒
−𝑖𝜔𝑠, we obtain 𝑞(𝜃) and 𝑞

∗
(𝑠). Now, we

calculate ⟨𝑞∗, 𝑞⟩ as follows:

⟨𝑞(𝑠)
∗
, 𝑞 (𝜃)⟩

= 𝐷
{

{

{

(𝑞
∗

1
, 𝑞
∗

2
) (

𝑞
1

𝑞
2

)

− ∫

0

−𝜏
0

2

∫

𝜃

𝜀=0

(

𝑞
∗

1

𝑞
∗

2

)

𝑇

𝑒
−𝑖𝜔
0
(𝜀−𝜃)

𝑑𝜂 (𝜃) (
𝑞
1

𝑞
2

) 𝑒
𝑖𝜔
0
𝜀
𝑑𝜀
}

}

}

= 𝐷
{

{

{

(𝑞
1
𝑞
∗

1
+ 𝑞
2
𝑞
∗

2
) − ∫

0

−𝜏
0

2

(

𝑞
∗

1

𝑞
∗

2

)

𝑇

𝜃𝑒
𝑖𝜔
0
𝜃
𝑑𝜂 (𝜃) (

𝑞
1

𝑞
2

)
}

}

}

= 𝐷{ (𝑞
1
𝑞
∗

1
+ 𝑞
2
𝑞
∗

2
) + 𝜏
0

1
[−𝜇𝑎𝑒

−𝑖𝜔
0
𝜏
0

1𝑞
1
𝑞
∗

2
]

+ [𝑘𝑞
2
𝑞
∗

1
+ [2𝜇𝑏(𝑃

0
+ 𝛽)
2
+ 𝐶
0
] 𝑞
∗

2
𝑞
2
] 𝜏
0

2
𝑒
−𝑖𝜔
0
𝜏
0

2 }

= 1.

(31)

Since ⟨𝜓, 𝐴𝜙⟩ = ⟨𝐴
∗
𝜓, 𝜙⟩, we get

𝑖𝜔 ⟨𝑞
∗
, 𝑞⟩ = ⟨𝐴

∗
𝑞
∗
, 𝑞⟩ = ⟨−𝑖𝜔

0
𝑞
∗
, 𝑞⟩ = 𝑖𝜔

0
⟨𝑞
∗
, 𝑞⟩ . (32)

Therefore, ⟨𝑞∗, 𝑞⟩ = 0. This completes the proof.

Then, we construct the coordinates of the centermanifold
𝐶
0
at 𝛾 = 0. Let

𝑧 (𝑡) = ⟨𝑞
∗
, 𝑢
𝑡
⟩ , 𝑊 (𝑡, 𝜃) = 𝑢

𝑡 (𝜃) − 2Re {𝑧 (𝑡) 𝑞 (𝜃)} .
(33)

On the center manifold 𝐶
0
, we have

𝑊(𝑡, 𝜃) = 𝑊 (𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃) , (34)

where

𝑊(𝑧, 𝑧, 𝜃) = 𝑊
20
(𝜃)

𝑧
2

2
+𝑊
11
(𝜃) 𝑧𝑧

+𝑊
02

𝑧
2

2
+𝑊
30

𝑧
3

6
+ ⋅ ⋅ ⋅ ,

(35)

and 𝑧 and 𝑧 are local coordinates for the center manifold 𝐶
0

in the direction of 𝑞 and 𝑞∗, respectively. Since 𝛾 = 0, we have

𝑧

(𝑡) = 𝑖𝜔

0
𝑧 (𝑡) + ⟨𝑞

∗
(𝜃) , 𝑓 (𝑊 + 2Re {𝑧 (𝑡) 𝑞 (𝜃)})⟩

= 𝑖𝜔
0
𝑧 (𝑡) + 𝑞

∗
(0) 𝑓 (𝑊 (𝑧, 𝑧, 0) + 2Re {𝑧 (𝑡) 𝑞 (0)})

≜ 𝑖𝜔
0
𝑧 (𝑡) + 𝑞

∗
(0) 𝑓0 (𝑧, 𝑧) ,

(36)

where

𝑓
0 (𝑧, 𝑧) = 𝑓

𝑧
2

𝑧
2

2
+ 𝑓
𝑧
2

𝑧
2

2
+ 𝑓
𝑧𝑧
𝑧𝑧 + ⋅ ⋅ ⋅ . (37)

We rewrite in abbreviated form as

𝑧

(𝑡) = 𝑖𝜔

0
𝑧 + 𝑔 (𝑧, 𝑧) , (38)

where

𝑔 (𝑧, 𝑧) = 𝑞
∗
(0) 𝑓
0
(𝑧, 𝑧)

= 𝑔
20

𝑧
2

2
+ 𝑔
11
𝑧𝑧 + 𝑔

02

𝑧
2

2
+ 𝑔
21

𝑧
2
𝑧

2
+ ⋅ ⋅ ⋅ .

(39)

By (20) and (38), we obtain

𝑊 = ̇𝑢
𝑡
− ̇𝑧𝑞 − ̇𝑧 𝑞

= {
𝐴𝑊 − 2Re 𝑞∗ (0) 𝑓

0
𝑞 (𝜃) , 𝜃 ∈ [−𝜏

0

2
, 0] ,

𝐴𝑊 − 2Re 𝑞∗ (0) 𝑓
0
𝑞 (𝜃) + 𝑓

0
, 𝜃 = 0

≜ 𝐴𝑊 +𝐻 (𝑧, 𝑧, 𝜃) ,

(40)

where

𝐻(𝑧, 𝑧, 𝜃) = 𝐻
20
(𝜃)

𝑧
2

2
+ 𝐻
11
(𝜃) 𝑧𝑧 + 𝐻

02
(𝜃)

𝑧
2

2
+ ⋅ ⋅ ⋅ .

(41)

Substituting (26) and (38) into𝑊 = 𝑊
𝑧
̇𝑧+𝑊
𝑧
̇𝑧 on the center

manifold 𝐶
0
and comparing the coefficients we get

(𝐴 − 2𝑖𝜔
0
𝐼)𝑊
20
(𝜃) = −𝐻

20
(𝜃) , 𝐴𝑊

11
(𝜃) = −𝐻

11
(𝜃) ,

(𝐴 + 2𝑖𝜔
0
𝐼)𝑊
02 (𝜃) = −𝐻

02 (𝜃) .

(42)

Comparing the coefficients with (41) gives that

𝐻
20
(𝜃) = −𝑔

20
𝑞 (𝜃) − 𝑔

02
𝑞 (𝜃) ,

𝐻
11
(𝜃) = −𝑔

11
𝑞 (𝜃) − 𝑔

11
𝑞 (𝜃) .

(43)
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From (42), (43), and the definition of 𝐴, we can derive the
following equation:

𝑊
20 (𝜃) = 2𝑖𝜔

0
𝑊
20 (𝜃) + 𝑔

20
𝑞 (𝜃) + 𝑔

20
𝑞 (𝜃) ,

𝑊
11
(𝜃) = 𝑔

11
𝑞 (𝜃) + 𝑔

11
𝑞 (𝜃) .

(44)

Solving for𝑊
20
(𝜃) and𝑊

11
(𝜃), we get

𝑊
20
(𝜃) =

𝑖𝑔
20

𝜔
0

𝑞 (0) 𝑒
𝑖𝜔
0
𝜃
−

𝑔
02

3𝑖𝜏
0
𝜔
0

𝑞 (0) 𝑒
−𝑖𝜔
0
𝜃
+ 𝐸
1
𝑒
2𝑖𝜔
0
𝜃
,

𝑊
11
(𝜃) = −

𝑖𝑔
11

𝜔
0

𝑞 (0) 𝑒
𝑖𝜔
0
𝜃
+
𝑖𝑔
11

𝜔
0

𝑞 (0) 𝑒
−𝑖𝜔
0
𝜃
+ 𝐸
2
,

(45)

where 𝐸
1
= (𝐸
(1)

1
, 𝐸
2

1
) ∈ 𝑅

2, 𝐸
2
= (𝐸
(1)

2
, 𝐸
2

2
) ∈ 𝑅

2 are two
constant vectors, which can be determined by setting 𝜃 = 0

in𝐻.
By (33), 𝜙

𝑡
(𝜃) = [𝑢

1
(𝑡 −𝜏
1
), 𝑢
2
(𝑡 −𝜏
2
)] = 𝑊(𝑡, 𝜃)+𝑧𝑞(𝜃)+

𝑧 𝑞(𝜃) , and noticing 𝑞(𝜃) = (𝑞
1
, 𝑞
2
)
𝑇
𝑒
𝑖𝜔
0
𝜃 we have

𝜙
𝑡
(𝜃) = 𝑧(

𝑑 + 𝑘𝑒
−𝑖𝜔
0
𝜏
0

2

𝑖𝜔
) 𝑒
−𝑖𝜔
0
𝜃

+ 𝑧(
𝑑 + 𝑘𝑒

𝑖𝜔
0
𝜏
0

2

−𝑖𝜔
) 𝑒
−𝑖𝜔
0
𝜃
+𝑊(𝑡, 𝜃) .

(46)

Then it is easy to obtain

𝜙
1
(0) = 𝑧 (𝑑 + 𝑘𝑒

−𝑖𝜔
0
𝜏
0

2) + 𝑧 (𝑑 + 𝑘𝑒
𝑖𝜔
0
𝜏
𝑜

2 ) +𝑊
(1)

(0) ,

𝜙
2 (0) = 𝑧𝜔𝑖 + 𝑧 (−𝑖𝜔) + 𝑊

(2)
(0) ,

𝜙
2
(𝑡 − 𝜏

0

2
) = 𝑧𝜔𝑖𝑒

−𝑖𝜔
0
𝜏
0

2 − 𝑧𝑒
𝑖𝜔
0
𝜏
0

2 +𝑊
2
(𝑡 − 𝜏

0

2
) ,

(47)

where

𝑊
(1)

(0) = 𝑊
(1)

20
(0)

𝑧
2

2
+𝑊
(1)

11
(0) 𝑧𝑧

+𝑊
(1)

02
(0)

𝑧

2
+ 𝑜 (|𝑧, 𝑧|

3
) ,

𝑊
(2)

(0) = 𝑊
(2)

20
(0)

𝑧
2

2
+𝑊
(2)

11
(0) 𝑧𝑧

+𝑊
(2)

02
(0)

𝑧

2
+ 𝑜 (|𝑧, 𝑧|

3
) ,

𝑊
(2)

(𝑡 − 𝜏
2
) = 𝑊

(2)

20
(−𝜏
0

2
)
𝑧
2

2
+𝑊
(2)

11
(−𝜏
0

2
) 𝑧𝑧

+𝑊
(2)

02
(−𝜏
0

2
)
𝑧

2
+ 𝑜 (|𝑧, 𝑧|

3
) ,

𝑓
0 (𝑧, 𝑧) = (

0

𝜇𝑏𝜙
2

1
(0) 𝜙
2
(−𝜏
0

2
) + 2𝜇 (𝑃

0
+ 𝛽) 𝜙

1
(0) 𝜙
2
(0)

) .

(48)

Thus, from (39), it follows that

𝑔 (𝑧, 𝑧) = 𝑞
∗
(0) 𝑓0 (𝑧, 𝑧) = 𝐷 (𝑞

∗

1
𝑞
∗

2
)

× (
0

𝜇𝑏𝜙
2

1
(0) 𝜙
2
(−𝜏
0

2
) + 2𝜇 (𝑃

0
+ 𝛽) 𝜙

1
(0) 𝜙
2
(0)

)

= 𝐷𝑞
∗

2
[𝜇𝜙
2

1
(0) 𝜙2 (−𝜏

0

2
) + 2𝜇 (𝑃

0
+ 𝛽) 𝜙

1 (0) 𝜙2 (0)]

= 𝐷{2𝜇 (𝑃
0
+ 𝛽) 𝑞

∗

2
𝑞
1
𝑞
2
𝑧
2
+ 2𝜇 (𝑃

0
+ 𝛽)

× 𝑞
∗

2
(𝑞
1
𝑞
2
+ 𝑞
1
𝑞
2
) 𝑧𝑧 + 2𝜇 (𝑃

0
+ 𝛽) 𝑞

∗

2
𝑞
1
𝑞
2
𝑧
2

+ [𝜇𝑏𝑞
∗

2
(𝑞
2

1
𝑞
2
𝑒
𝑖𝜔
0
𝜏
0

2 + 2𝑞
1
𝑞
1
𝑞
2
𝑒
−𝑖𝜔
0
𝜏
0

2)

+ 2𝜇 (𝑃
0
+ 𝛽) 𝑞

∗

2

× (𝑞
2
𝑊
(1)

11
(0) + 𝑞

1
𝑊
(2)

11
(0)

+
𝑞
2
𝑊
(1)

20
(0) + 𝑞

1
𝑊
(2)

20
(0)

2
)] 𝑧
2
𝑧}

+ 𝑜 (𝜙
4
) .

(49)

Comparing the coefficient with (39), we have

𝑔
20

= 4𝐷𝜇 (𝑃
0
+ 𝛽) 𝑞

∗

2
𝑞
1
𝑞
2
,

𝑔
11

= 4𝐷𝜇 (𝑃
0
+ 𝛽) 𝑞

∗

2
Re (𝑞
1
𝑞
2
) ,

𝑔
02

= 4𝐷𝜇 (𝑃
0
+ 𝛽) 𝑞

∗

2
𝑞
1
𝑞
2
,

𝑔
21

= 2𝐷[𝜇𝑏𝑞
∗

2
(𝑞
2

1
𝑞
2
𝑒
𝑖𝜔
0
𝜏
0

2 + 2𝑞
1
𝑞
1
𝑞
2
𝑒
−𝑖𝜔
0
𝜏
0

2)

+ 2𝜇 (𝑃
0
+ 𝛽) 𝑞

∗

2

× (𝑞
2
𝑊
(1)

11
(0) + 𝑞

1
𝑊
(2)

11
(0)

+
𝑞
2
𝑊
(1)

20
(0) + 𝑞

1
𝑊
(2)

20
(0)

2
)] .

(50)

From (40), we get that𝐻(𝑧, 𝑧, 0) = −2Re 𝑞∗(0)𝑓
0
𝑞(0) + 𝑓

0
=

−2Re(𝑔𝑞(0)) + 𝑓
0
= −𝑔𝑞(0) − 𝑔 𝑞(0) + 𝑓

0
; that is,

𝐻
20 (0) = −𝑔

20
𝑞 (0) − 𝑔

20
𝑞 (0) + (

0

4𝜇 (𝑃
0
+ 𝛽) 𝑞

1
𝑞
2

) ,

𝐻
11
(0) = −𝑔

11
𝑞 (0) − 𝑔

11
𝑞 (0) + (

0

2 (𝑃
0
+ 𝛽) (𝑞

1
𝑞
2
+ 𝑞
1
𝑞
2
)
) .

(51)
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By the definition of 𝐴 and (42) we have

∫

0

−𝜏
0

2

𝑑𝜂 (𝜃)𝑊20 (𝜃) = 2𝑖𝜔
0
𝑊
20
− 𝐻
20 (0) ,

∫

0

−𝜏
0

2

𝑑𝜂 (𝜃)𝑊
11
(𝜃) = −𝐻

11
(0) .

(52)

Notice that

(𝑖𝜔
0
𝐼 − ∫

0

−𝜏
0

2

𝑑𝜂 (𝜃) 𝑒
𝑖𝜔
0
𝜃
)𝑞 (0) = 0,

(−𝑖𝜔
0
𝐼 − ∫

0

−𝜏
0

2

𝑑𝜂 (𝜃) 𝑒
𝑖𝜔
0
𝜃
)𝑞 (0) = 0.

(53)

Substituting (45) and (52) into (51), we obtain

(
2𝑖𝜔
0

−𝑑 − 𝑘𝑒
2𝑖𝜔
0
𝜏
0

2

𝜇𝑏
0
+ 𝜇𝑎𝑒

−2𝑖𝜔
0
𝜏
0

1 2𝑖𝜔
0
− 𝜇 [𝑏(𝑃

0
+ 𝛽)
2
+ 𝐶
0
] 𝑒
2𝑖𝜔
0
𝜏
0

2

)𝐸
1

= (
0

4𝜇 (𝑃
0
+ 𝛽) 𝑞

1
𝑞
2

) ,

(
0 −𝑑 − 𝑘

𝜇 (𝑏
0
+ 𝑎) −𝜇 [𝑏(𝑃

0
+ 𝛽)
2
+ 𝐶
0
]
)𝐸
2

= (
0

2 (𝑃
0
+ 𝛽) (𝑞

1
𝑞
2
+ 𝑞
1
𝑞
2
)
) .

(54)

By direct computation, we obtain

𝐸
(1)

1
=

[4𝜇 (𝑃
0
+ 𝛽) 𝑞

1
𝑞
2
] (𝑑 + 𝑘𝑒

−2𝑖𝜔
0
𝜏
0

2)

[𝜇𝑏
0
+ 𝜇𝑎𝑒−2𝑖𝜔0𝜏

0

1 ] (𝑑 + 𝑘𝑒−2𝑖𝜔0𝜏
0

2 ) − 2𝑖𝜔
0
[𝜇 [𝑏(𝑃

0
+ 𝛽)
2
+ 𝐶
0
] 𝑒−2𝑖𝜔0𝜏

0

2 − 2𝑖𝜔
0
]

,

𝐸
(2)

1
=

−6𝑖𝜔
0
𝜇 (𝑃
0
+ 𝛽) 𝑞

1
𝑞
2

− [𝜇𝑏
0
+ 𝜇𝑎𝑒−2𝑖𝜔0𝜏

0

1 ] (𝑑 + 𝑘𝑒−2𝑖𝜔0𝜏
0

2 ) + 2𝑖𝜔
0
[𝜇 [𝑏(𝑃

0
+ 𝛽)
2
+ 𝐶
0
] 𝑒−2𝑖𝜔0𝜏

0

2 − 2𝑖𝜔
0
]

,

𝐸
(1)

2
=

2 (𝑃
0
+ 𝛽) (𝑞

1
𝑞
2
+ 𝑞
1
𝑞
2
)

𝜇 (𝑏
0
) − 𝑎

, 𝐸
(2)

2
= 0.

(55)

Thus, we can compute the following values which deter-
mine the properties of bifurcating periodic solutions at the
critical value 𝜏0

2
:

𝐶
1
(0) =

𝑖

2𝜏
0

2
𝜔
0

(𝑔
20
𝑔
11
− 2

𝑔11
 −

1

3

𝑔02


2
) +

𝑔
21

2
,

𝜇
2
= −

Re {𝐶
1
(0)}

Re {𝜆 (𝜏0
2
)}
,

𝛽
2
= 2Re {𝐶

1
(0)} ,

𝑇
2
= −

Im {𝐶
1
(0)} + 𝜇

2
(Im {𝜆


(𝜏
0

2
)})

𝜔
0

.

(56)

More specifically (see Hassard et al. [12]), 𝜇
2
determines the

direction of the Hopf bifurcation: if 𝜇
2
> 0 (𝜇

2
< 0), then the

Hopf bifurcation is forward (backward) and the bifurcating
periodic solutions exist for 𝜏 > 𝜏

0

2
(𝜏 < 𝜏

0

2
). 𝛽
2
determines the

stability of the bifurcating periodic solutions: the bifurcating
periodic solutions are stable (unstable) if 𝛽

2
< 0 (𝛽

2
> 0). 𝑇

2

determines the period of the bifurcating periodic solutions:
the period increases (decreases) if 𝑇

2
> 0 (𝑇

2
< 0).

4. Numerical Simulation

In order to validate the theoretical analysis, we will present
some numerical simulations. We take the following coeffi-
cients as an example: 𝜇 = 0.13, 𝑏

0
= 10, 𝑎 = 12, 𝑑

0
= 60,

𝑔
0
= 20, 𝛽 = −2, 𝑏 = 1, 𝑘 = 1, and 𝑑 = 1, it is easy to obtain

𝐸
∗
= (1.82, 0), 𝜔

0
≈ 0.89, and 𝜏

0

1
≈ 0.72. We choose 𝜏0

1
= 0.7;

then from (19) and by means of Mathematica software, we
get V
0
≈ 2 and 𝜏

0

2
≈ 0.86. Taking (𝑥(0), 𝑦(0) = (2, 2)) as

the initial conditions. By Theorem 5 and the above results,
we know equilibrium𝐸

∗ is locally asymptotically stable when
𝜏
2
= 0.8 < 𝜏

0

2
as is illustrated in Figure 1. When 𝜏

2
> 𝜏
0

2
,

𝐸
∗ is unstable and periodic solutions occur from 𝐸

∗; we take
𝜏
2
= 0.9, the corresponding phase plots are shown in Figure 2.
Finally, the numerical simulation shows that it is a

complex transformation process for the system changes from
stable equilibrium to chaos.

5. Conclusion

Different from the previous work in [1, 2, 4], the main
contribution of this paper lies in the following aspects.
Firstly, we modify the traditional price differential equation
model by considering demand function that is settled as
a downward opening quadratic function and considering
supply and demand functions that are both depending on the
price of the past and the present. Then the price differential
equation model with two delays is established. Secondly, to
study the stability and Hopf bifurcation of system (4), we
consider (4) with one delay 𝜏

1
and find the stable interval for

𝜏
1
. In the following, regarding 𝜏

2
as a parameter, we obtain

the stable interval for 𝜏
2
. Then we get the stable interval for

(4). In addition, we derive the algorithm for determining
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Figure 1: Equilibrium 𝐸
∗ is locally asymptotically stable when 𝜏

1
=

0.7, 𝜏
2
= 0.8 < 𝜏

0

2
.
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Figure 2: Equilibrium 𝐸
∗ is unstable when 𝜏

1
= 0.7, 𝜏

2
= 0.9 > 𝜏

0

2
.

the direction of the Hopf bifurcation and the stability of
the bifurcating periodic solutions by using techniques of
normal form theory and center manifold method. Lastly, a
numerical analysis confirms the effectiveness of our research
results. The paper provided the preparative work for further
discussion. For instance, we consider that supply cannot
increase with the price without limit; the production capacity
of enterprises and social resources are limited; then we can
modify the supply function as a fractional linear function
of price. The results in the paper enrich the toolbox for the
qualitative analysis of mathematical economics and business
administration.
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This paper presents a deterministic SATQ-type mathematical model (including susceptible, alcoholism, treating, and quitting
compartments) for the spread of alcoholismwith two control strategies to gain insights into this increasingly concerned about health
and social phenomenon. Some properties of the solutions to themodel including positivity, existence and stability are analyzed.The
optimal control strategies are derived by proposing an objective functional and using Pontryagin’s Maximum Principle. Numerical
simulations are also conducted in the analytic results.

1. Introduction

Alcoholism, also known as alcohol dependence, is a disease
that includes the desire for alcohol and continuing to drink it
despite its negative effect on individual’s health, relationships,
and social status [1]. Similar to all other drug addictions,
alcoholism can be regarded as a treatable disease. The World
Health Organization estimates that about 140 million people
throughout the world suffer from alcohol dependence with
related problems, such as being sick, losing a job, among a
host of other things [2]. Particularly, young people’s alco-
holism problem is a major concern to public health. US
surveys indicate that approximately 90% of college students
have consumed alcohol at least once [3], and more than
40% of college students have engaged in binge drinking [4,
5]. Unfortunately, the biological mechanisms underpinning
alcoholism are not known; however, risk factors include
social environment, stress, mental health, genetic sensitivity,
age, ethnic group, and sex [6, 7]. Long-term alcohol abuse
will produce negative changes in the brain such as tolerance
and physical dependence.The subtle changesmake it difficult
for the alcoholics to stop drinking and result in alcohol
withdrawal symptoms upon discontinuation of alcohol con-
sumption. Alcohol damages almost all parts of the body and
contribute to a number of human diseases including but
not limited to liver cirrhosis, pancreatitis, heart disease, and

sexual dysfunction and can eventually be deadly [8]. Damage
to the central and peripheral nervous systems can take place
from sustained alcohol consumption [9–13].

Although alcoholism is becoming more and more dan-
gerous and serious as well as a widespread social phe-
nomenon, only much less work has been done in the mathe-
maticalmodelling of alcoholism as a growing health problem,
including a few studies which offered some mathematical
approaches to understand the growing burden of alcoholism
[10, 14–19]. In [10], a SIR-type model was proposed; the
authors used standard contact rate between susceptibles
and alcoholism, getting alcoholism reproductive number
and discussing the existence and stability of two equilibria.
In [14], a framework where drinking was modeled as a
socially contagious process in low- and high-risk connected
environments was introduced; they found that high levels
of social interaction between light and moderate drinkers in
low-risk environments can diminish the importance of the
distribution of relative drinking times on the prevalence of
heavy drinking. In [15], neurophysiological examinations of
100 long-term alcohol dependent patients, who were having
neuropsychiatric treatment, showed symptoms of polytopic
damage of the peripheral and central nervous system. The
results showed that for recognition of the damage an exten-
sive diagnostic programmemust be used. In [16], the authors
considered a kind of binge drinking model with two equal
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infectivity drunk states; mathematical analyses established
that the global dynamics of themodel were determined by the
basic reproduction number. In [17], the authors modified the
model from [16]; that is, they considered different infectivity
of two drunk states, and a SEIR-type model of alcoholism
was thus presented, in which two alcohol related states were
involved, namely, no alcohol dependent consumers 𝐷(𝑡)
and alcohol dependent consumers 𝐴(𝑡). In [18], the authors
formulated a deterministic model for evaluating the impact
of heavy alcohol drinking on the reemerging gonorrhea
epidemic, and both analytical and numerical results were
provided to ascertain whether heavy alcohol drinking had
an impact on the transmission dynamics of gonorrhea. The
approach of the literature [18] was very meaningful, since
it provided a new direction of thinking when the cross-
infection between alcoholism and other pathological diseases
occurs. In recent monograph [19], the authors also proposed
a SIR-type model to investigate alcohol abuse phenomenon
and generated some useful insights; for example, the basic
reproductive number was not always the key to controlling
drinking within the population. For other papers that study
the model of giving up smoking or quitting drinking, please
see [20, 21] and references cited therein.

As living standard and health awareness get improved,
more and more people who fall into binge drinking state
are actively seeking the quitting alcoholism measures and
treatment methods [1, 11, 22]. In [22], treatment strategy was
introduced into a simple SIR-type alcoholics quitting model,
in which the authors used the bilinear incidence to depict the
“infection” between the occasional drinkers 𝑆 and problem
drinkers 𝐷. Motivated by some aforementioned documents
[10, 19, 22], in this paper, we will formulate a more reasonable
alcoholics quitting model. The fact that our model is more
reasonable is embodied from the following three aspects.

(1) Taking into account that alcoholism is a widespread
social phenomenon, so the standard incidence is
superior to bilinear incidence when we portray the
relationship between the alcoholism and the suscep-
tibles during the course of infection. While in [22],
the authors adopted bilinear incidence, we will adopt
standard incidence in this paper.

(2) Since alcohol is harmful to health, moreover, as
we all know, alcoholism is treatable if we can take
approximate measure in time, for example, artificial
isolation from alcoholisms, medications, persuasion,
and education programing on alcoholism. So it is
necessary to take effective measures to avoid alcohol
or to treat after alcoholism. Documents [10, 19] have
not considered these aspects.

(3) Since there is effective prevention and treatment in
describing the phenomenon of alcoholism, there are
some people who will never drink due to successful
prevention or some people who no longer drink after
successful treatment. Therefore, when we formulate
the model in this paper, it’s reasonable to introduce
a new compartment𝑄, the people in which will never
drink for ever. Obviously, themodels of [10, 19, 22] are
not involving the quitting compartment 𝑄.

Based on the above considerations, we will premeditate
two treating methods, namely, prevention of susceptibles
from alcoholism and treatment on alcoholism as control
variables; hence, we will derive a SATQ-type model. We
note the fact that many authors are interested in solving
optimal control problems, such as cost minimization and
optimal control of various disease, especially with biological
background and various mathematical models [22–24]. In
this paper, we will propose an objective functional which
considers not only alcohol quitting effects but also the cost
of controlling alcohol. Then, we consider a range of issues
related to the optimal control with themethod of Pontryagin’s
Maximum Principle, including optimal control existence,
uniqueness, and characterization.

The organization of this paper is as follows. In the
next section, the alcoholism model with prevention for the
susceptibles and treatment for alcoholism is formulated. In
Section 3, the basic reproduction number and the existence of
equilibria are investigated.The stability of the disease free and
endemic equilibria is proved in Section 4. Optimal control
strategies by the classic method of PMP (Pontryagin’s Maxi-
mum Principle) are discussed in Section 5. In Section 6, we
give some numerical simulations. We give some discussions
and conclusions in the last section.

2. The Model Formulation and Some
Fundamental Properties

In this section, we introduce a mathematical model with
prevention and treatment for the alcoholism and then study
some important properties such as the boundness and posi-
tivity of its solutions.

2.1. Model Formulation and Parameter Explanation. The
total population is partitioned into four compartments: the
susceptible compartment 𝑆 which refers to the persons
who never drink or drink moderately without affecting the
physical health, the alcoholism compartment 𝐴 which refers
to the persons who binge drink and affect the physical health
seriously, the treatment compartment 𝑇 which refers to the
persons who have been receiving treatments by taking pills or
othermedical interventions after alcoholism, and the quitting
compartment 𝑄 which refers to the persons who recover
from alcoholism after treatment and stay off alcohol hereafter.
In this paper, we focus on a closed environment, such as a
community, a university, or a village. So the total number of
population to be considered is a constant; we denote it as𝑁.
The population flow among those compartments is shown in
the following diagram (Figure 1).

The schematic diagram leads to the following system of
ordinary differential equations:

𝑆

= 𝜇𝑁 − (1 − 𝑢

1
)
𝛽𝑆𝐴

𝑁
− 𝜇𝑆,

𝐴

= (1 − 𝑢

1
)
𝛽𝑆𝐴

𝑁
+ 𝜉𝑇 − (𝑢

2
+ 𝜇)𝐴,
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Figure 1: Transfer diagram for the dynamics of alcoholism model.

𝑇

= 𝑢
2
𝐴 − (𝜇 + 𝜉 + 𝛿) 𝑇,

𝑄

= 𝛿𝑇 − 𝜇𝑄.

(1)

Here, 𝜇𝑁 is the birth number of the population; 𝜇 is the
natural death rate of the population; 𝑢

1
is the fraction of

the susceptible individuals who successfully avoid to stay
off the alcoholism; 𝑢

2
is the fraction of the alcoholics who

take part in treatments; here, 0 ≤ 𝑢
𝑖
≤ 1, 𝑖 = 1, 2, and

they will be considered as two control variables in Section 5;
𝛽 is the transmission coefficient of the “infection” for the
susceptible individuals from the alcoholic individuals; 𝜉 is the
rate coefficient of the person who fail to be treated and return
to the alcoholism compartmentmostly due to their ownweak
will; 𝛿 is the rate coefficient of the person who have received
effective treatment and recovered from alcoholism forever.

2.2. Boundedness of Solutions to System and Positively Invari-
ant Region. It is important to show positivity and bounded-
ness for the system (1) as they represent populations. Firstly,
we present the positivity of the solutions. System (1) can be
put into the matrix form

𝑋

= 𝐺 (𝑋) , (2)

where𝑋 = (𝑆, 𝐴, 𝑇, 𝑄)
𝑇
∈ 𝑅
4 and 𝐺(𝑋) is given by

𝐺 (𝑋) = (

𝐺
1 (𝑋)

𝐺
2
(𝑋)

𝐺
3
(𝑋)

𝐺
4
(𝑋)

)

=(

𝜇𝑁 − (1 − 𝑢
1
)
𝛽𝑆𝐴

𝑁
− 𝜇𝑆

(1 − 𝑢
1
)
𝛽𝑆𝐴

𝑁
+ 𝜉𝑇 − (𝑢

2
+ 𝜇)𝐴

𝑢
2
𝐴 − (𝜇 + 𝜉 + 𝛿) 𝑇

𝛿𝑇 − 𝜇𝑄

).

(3)

It is easy to check that

𝐺
𝑖
(𝑋)

𝑋
𝑖
(𝑡)=0,𝑋

𝑡
∈𝐶
+

≥ 0, 𝑖 = 1, 2, 3, 4. (4)

Due to Lemma 2 in [25], any solution of (1) is 𝑋(𝑡) ∈ 𝑅4
+
for

all 𝑡 ≥ 0.
We denote 𝑁(𝑡) = 𝑆(𝑡) + 𝐴(𝑡) + 𝑇(𝑡) + 𝑄(𝑡); summing

equations in (1) yields

𝑑𝑁 (𝑡)

𝑑𝑡
= 0, (5)

so 𝑁(𝑡) = 𝑆(𝑡) + 𝐴(𝑡) + 𝑇(𝑡) + 𝑄(𝑡) = constant (denoted as
𝑁), and the set

Ω = {(𝑆, 𝐴, 𝑇, 𝑄) ∈ 𝑅
4

+
: 𝑆 + 𝐴 + 𝑇 + 𝑄 ≤ 𝑁} (6)

is a positively invariant region for (1). Therefore, we will
consider the global stability of (1) on the setΩ.

3. The Basic Reproduction Number and
Existence of Alcoholism Equilibria

3.1. The Basic Reproduction Number 𝑅
0
. In epidemiology,

the basic reproduction number (sometimes called basic
reproductive rate or basic reproductive ratio) of an infection
is the number of infectious cases that one infectious case
generates on average over the course of its infectious period.
While in this context, it means the number of persons that
an alcoholic will “infect” during his “infectious” period in the
pure susceptible environment so that the infected personswill
enter the alcoholism compartment. It is easy to see that the
model has an alcohol free equilibrium 𝐸

0
= (𝑆
0
, 0, 0, 0) =

(𝑁, 0, 0, 0). In the following, the basic reproduction number
of system (1) will be obtained by the next generation matrix
method formulated in [26].

Let 𝑥 = (𝐴, 𝑇, 𝑄, 𝑆)𝑇, then system (1) can be written as

𝑑𝑥

𝑑𝑡
= F (𝑥) −V (𝑥) , (7)

where

F (𝑥) = (

(1 − 𝑢
1
)
𝛽𝑆𝐴

𝑁
0

0

0

) ,

V (𝑥) = (

(𝑢
2
+ 𝜇)𝐴 − 𝜉𝑇

(𝜇 + 𝜉 + 𝛿) 𝑇 − 𝑢
2
𝐴

𝜇𝑄 − 𝛿𝑇

(1 − 𝑢
1
)
𝛽𝑆𝐴

𝑁
+ 𝜇𝑆 − 𝜇𝑁

).

(8)

The Jacobian matrices of F(𝑥) and V(𝑥) at the alcohol free
equilibrium 𝐸

0
are, respectively,

𝐷F (𝐸
0
) = (

𝐹
3×3

0

0 0
) ,

𝐷V (𝐸
0
) = (

𝑉
3×3

0

(1 − 𝑢
1
) 𝛽 0 0 𝜇

) ,

(9)

where

𝐹 = (

(1 − 𝑢
1
) 𝛽 0 0

0 0 0

0 0 0

) , 𝑉 = (

𝑢
2
+ 𝜇 −𝜉 0

−𝑢
2

𝜇 + 𝜉 + 𝛿 0

0 −𝛿 𝜇

) .

(10)

The basic reproduction number, denoted by 𝑅
0
, is thus given

by

𝑅
0
= 𝜌 (𝐹𝑉

−1
) =

𝛽 (1 − 𝑢
1
) (𝜇 + 𝜉 + 𝛿)

𝑢
2
(𝜇 + 𝛿) + 𝜇 (𝜇 + 𝜉 + 𝛿)

. (11)
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It is easy to see that both of the control parameters con-
tributed to reducing the alcoholism. From this point, the
control measures are meaningful.

3.2. Existence of Alcoholism Equilibrium. The endemic equi-
librium 𝐸

∗
(𝑆
∗
, 𝐴
∗
, 𝑇
∗
, 𝑄
∗
) of system (1) is determined by

equations

𝜇𝑁 − (1 − 𝑢
1
)
𝛽𝑆𝐴

𝑁
− 𝜇𝑆 = 0,

(1 − 𝑢
1
)
𝛽𝑆𝐴

𝑁
+ 𝜉𝑇 − (𝑢

2
+ 𝜇)𝐴 = 0,

𝑢
2
𝐴 − (𝜇 + 𝜉 + 𝛿) 𝑇 = 0,

𝛿𝑇 − 𝜇𝑄 = 0.

(12)

The third equation in (12) leads to

𝐴 =
𝜇 + 𝜉 + 𝛿

𝑢
2

𝑇. (13)

From the last equation in (12), we have

𝑄 =
𝛿𝑇

𝜇
. (14)

From the first equation of (12), and together with (13), we can
get

𝑆 =
𝜇𝑁

𝜇 + (((1 − 𝑢
1
) 𝛽) /𝑁)𝐴

=
𝜇𝑁
2
𝑢
2

𝜇𝑁𝑢
2
+ (1 − 𝑢

1
) 𝛽𝑇 (𝜇 + 𝜉 + 𝛿)

.

(15)

Substituting (13)–(15) into the second equation of (12) gives

𝜇𝑁 −
𝜇
2
𝑁
2
𝑢
2

𝜇𝑁𝑢
2
+ (1 − 𝑢

1
) 𝛽𝑇 (𝜇 + 𝜉 + 𝛿)

+ 𝜉𝑇 − (𝜇 + 𝑢
2
)
𝜇 + 𝜉 + 𝛿

𝑢
2

𝑇 = 0.

(16)

By simplifying (16), we can get

𝑇 {[𝑢
2
𝜉 (1 − 𝑢

1
) 𝛽 (𝜇 + 𝜉 + 𝛿)

− (1 − 𝑢
1
) 𝛽(𝜇 + 𝜉 + 𝛿)

2
(𝜇 + 𝑢

2
)] 𝑇 + 𝜎} = 0,

(17)

where
𝜎 = 𝑢

2
𝜇𝑁 (1 − 𝑢

1
) 𝛽 (𝜇 + 𝜉 + 𝛿)

+ (𝑢
2
)
2
𝜇𝑁𝜉 − 𝜇𝑁𝑢

2
(𝜇 + 𝑢

2
) (𝜇 + 𝜉 + 𝛿) .

(18)

Hence, we get two explicit solutions to (17); one is 𝑇
0
= 0,

which is corresponding to the alcohol free equilibria, and the
other is
𝑇
∗
= (𝜎) ((1 − 𝑢1) 𝛽(𝜇 + 𝜉 + 𝛿)

2
(𝜇 + 𝑢

2
)

−𝑢
2
𝜉 (1 − 𝑢

1
) 𝛽 (𝜇 + 𝜉 + 𝛿) )

−1

=
𝜎

(1 − 𝑢
1
) 𝛽 (𝜇 + 𝜉 + 𝛿) [𝜇𝜉 + (𝛿 + 𝜇) (𝜇 + 𝑢

2
)]
,

(19)

which should be corresponding to the alcoholism equilibria
on condition that 𝑇∗ > 0; otherwise, the alcoholism
equilibria are nonexistent. It is enough to show the positivity
of 𝜎 tomake sure the existence of alcoholism equilibria on the
condition 𝑅

0
≥ 1. By some simple calculations, we simplify

the expression of 𝜎 to be

𝜎 = 𝜇𝑁𝑢
2
{(𝜇 + 𝜉 + 𝛿) (1 − 𝑢

1
) 𝛽

− [(𝜇 + 𝑢
2
) (𝛿 + 𝜇) + 𝜇𝜉]} .

(20)

Since 𝑅
0
> 1 is equivalent to

𝛽 (1 − 𝑢
1
) (𝜇 + 𝜉 + 𝛿) > 𝑢

2
(𝜇 + 𝛿) + 𝜇 (𝜇 + 𝜉 + 𝛿) , (21)

the right side of this inequality is exactly equal to (𝜇+𝑢
2
)(𝛿+

𝜇) + 𝜇𝜉. Hence, we have proved the existence of 𝑇∗ > 0,
so are the alcoholism equilibria. We summarize this result in
Theorem 1.

Theorem 1. For system (1), there is always an alcohol free
equilibrium 𝐸

0
= (𝑁, 0, 0, 0). When 𝑅

0
> 1, besides alcohol

free equilibrium 𝐸
0
, system (1) also has a unique alcoholism

equilibrium 𝐸
∗
(𝑆
∗
, 𝐴
∗
, 𝑇
∗
, 𝑄
∗
), where

𝑆
∗
=

𝜇𝑁
2
𝑢
2

𝜇𝑁𝑢
2
+ (1 − 𝑢

1
) 𝛽𝑇∗ (𝜇 + 𝜉 + 𝛿)

,

𝐴
∗
=
𝜇 + 𝜉 + 𝛿

𝑢
2

𝑇
∗
,

𝑄
∗
=
𝛿𝑇
∗

𝜇
,

𝑇
∗
=

𝜎

(1 − 𝑢
1
) 𝛽 (𝜇 + 𝜉 + 𝛿) [𝜇𝜉 + (𝛿 + 𝜇) (𝜇 + 𝑢

2
)]
.

(22)

4. Stability Analysis of Equilibria

For the convenience of subsequent proof, we denote a vector
𝑋 = (𝐴, 𝑇, 𝑄, 𝑆)

𝑇 and

𝑓 (𝑋) =(

(1 − 𝑢
1
)
𝛽𝑆𝐴

𝑁
+ 𝜉𝑇 − (𝑢

2
+ 𝜇)𝐴

𝑢
2
𝐴 − (𝜇 + 𝜉 + 𝛿) 𝑇

𝛿𝑇 − 𝜇𝑄

𝜇𝑁 − (1 − 𝑢
1
)
𝛽𝑆𝐴

𝑁
− 𝜇𝑆

). (23)

So the Jacobian matrix of 𝑓(𝑥) about vector 𝑋 is as the
following:

𝐽 =
𝜕𝑓 (𝑋)

𝜕𝑋

=(

(1 − 𝑢
1
) 𝛽𝑆

𝑁
− (𝜇 + 𝑢

2
) 𝜉 0

(1 − 𝑢
1
) 𝛽𝐴

𝑁

𝑢
2

− (𝜇 + 𝜉 + 𝛿) 0 0

0 𝛿 −𝜇 0

−
(1 − 𝑢

1
) 𝛽𝑆

𝑁
0 0 −𝜇 −

(1 − 𝑢
1
) 𝛽𝐴

𝑁

).

(24)

Theorem 2. For system (1), the alcohol free equilibrium 𝐸
0
is

locally asymptotically stable if 𝑅
0
< 1.
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Proof. Since

𝐽 (𝐸
0
)

= (

(1 − 𝑢
1
) 𝛽 − (𝜇 + 𝑢

2
) 𝜉 0 0

𝑢
2

− (𝜇 + 𝜉 + 𝛿) 0 0

0 𝛿 −𝜇 0

− (1 − 𝑢
1
) 𝛽 0 0 −𝜇

) ,

(25)

we can easily get that two of the eigenvalues are 𝜆
1
= 𝜆
2
=

−𝜇 < 0, while 𝜆
3
, 𝜆
4
satisfy

𝜆
2
+ [2𝜇 + 𝜉 + 𝛿 + 𝑢

2
− (1 − 𝑢

1
) 𝛽] 𝜆

+ (𝜇 + 𝜉 + 𝛿) (𝜇 + 𝑢
2
− (1 − 𝑢

1
) 𝛽) − 𝑢

2
𝜉 = 0.

(26)

Thus,

𝜆
3
+ 𝜆
4
= (1 − 𝑢

1
) 𝛽 − (𝜇 + 𝜉 + 𝛿) − (𝜇 + 𝑢

2
) . (27)

Since 𝑅
0
< 1 is equivalent to

𝛽 (1 − 𝑢
1
) (𝜇 + 𝜉 + 𝛿) < 𝑢

2
(𝜇 + 𝛿) + 𝜇 (𝜇 + 𝜉 + 𝛿)

< (𝜇 + 𝑢
2
) (𝜇 + 𝜉 + 𝛿) ,

(28)

so

𝛽 (1 − 𝑢
1
) < 𝜇 + 𝑢

2
, (29)

and then

𝜆
3
+ 𝜆
4
< − (𝜇 + 𝜉 + 𝛿) < 0, (30)

while

𝜆
3
𝜆
4
= (𝜇 + 𝜉 + 𝛿) (𝜇 + 𝑢

2
− (1 − 𝑢

1
) 𝛽) − 𝑢

2
𝜉. (31)

Similarly from 𝑅
0
< 1, we can derive the inequality

−𝛽 (1 − 𝑢
1
) (𝜇 + 𝜉 + 𝛿) > −𝑢

2
(𝜇 + 𝛿) − 𝜇 (𝜇 + 𝜉 + 𝛿) , (32)

so
𝜆
3
𝜆
4
> (𝜇 + 𝑢

2
) (𝜇 + 𝜉 + 𝛿)

− 𝑢
2
𝜉 − 𝑢
2
(𝜇 + 𝛿) − 𝜇 (𝜇 + 𝜉 + 𝛿) .

(33)

It reduces to

𝜆
3
𝜆
4
> 0. (34)

Hence, Re 𝜆
3
< 0, Re 𝜆

4
< 0. The proof is complete.

Next, we will turn to investigate the global stability of 𝐸
0
.

Theorem 3. For system (1), the alcohol free equilibrium 𝐸
0
is

globally asymptotically stable if 𝑅
0
< 1.

Proof. Consider the subsystem of (1) as follows:

𝐴

= (1 − 𝑢

1
)
𝛽𝑆𝐴

𝑁
+ 𝜉𝑇 − (𝑢

2
+ 𝜇)𝐴,

𝑇

= 𝑢
2
𝐴 − (𝜇 + 𝜉 + 𝛿) 𝑇,

𝑄

= 𝛿𝑇 − 𝜇𝑄.

(35)

Equation (35) can be rewritten as

(

̇𝐴

̇𝑇

̇𝑄

) = (𝐹 − 𝑉)(

𝐴

𝑇

𝑄

) − (1 −
𝑆

𝑁
)

× (

𝛽 (1 − 𝑢
1
) 0 0

0 0 0

0 0 0

)(

𝐴

𝑇

𝑄

) .

(36)

Since 𝑆 ≤ 𝑁 and 0 ≤ 𝑢
1
≤ 1, then for all 𝑡 > 0, we can get

(

̇𝐴

̇𝑇

̇𝑄

) ≤ (𝐹 − 𝑉)(

𝐴

𝑇

𝑄

) . (37)

According to Lemma 1 in [26], all the eigenvalues of matrix
𝐹 − 𝑉 have negative real parts, so the solutions of this sub-
system are stable whenever 𝑅

0
< 1. So (𝐴(𝑡), 𝑇(𝑡), 𝑄(𝑡)) →

(0, 0, 0) as 𝑡 → ∞. By the comparison theorem [27], and
based on the fact that the total population is constant 𝑁, it
follows that (𝐴(𝑡), 𝑇(𝑡), 𝑄(𝑡)) → (0, 0, 0) and 𝑆(𝑡) → 𝑁

as 𝑡 → ∞. So the alcohol free equilibrium 𝐸
0
is globally

asymptotically stable; the proof is complete.

Theorem 4. For system (1), the alcoholism equilibrium
𝐸
∗
(𝑆
∗
, 𝐴
∗
, 𝑇
∗
, 𝑄
∗
) is globally asymptotically stable if 𝑅

0
> 1.

Proof. Since the total population in model (1) is a constant
number𝑁, in order to prove the global stability of system (1),
it is sufficed to prove the corresponding stability of subsystem
(38):

𝑆

= 𝜇𝑁 − (1 − 𝑢

1
)
𝛽𝑆𝐴

𝑁
− 𝜇𝑆,

𝐴

= (1 − 𝑢

1
)
𝛽𝑆𝐴

𝑁
+ 𝜉𝑇 − (𝑢

2
+ 𝜇)𝐴,

𝑇

= 𝑢
2
𝐴 − (𝜇 + 𝜉 + 𝛿) 𝑇.

(38)

We make normalization transform and still use the same
symbols 𝑆, 𝐴, 𝑇 to denote the variables; then (38) can be
transformed into

𝑆

= 𝜇 − (1 − 𝑢

1
) 𝛽𝑆𝐴 − 𝜇𝑆,

𝑠𝐴

= (1 − 𝑢

1
) 𝛽𝑆𝐴 + 𝜉𝑇 − (𝑢

2
+ 𝜇)𝐴,

𝑇

= 𝑢
2
𝐴 − (𝜇 + 𝜉 + 𝛿) 𝑇.

(39)

From (39), we can easily know that the equilibria (𝑆∗, 𝐴∗, 𝑇∗)
satisfy the following three equalities to be used later:

𝜇 = (1 − 𝑢
1
) 𝛽𝑆
∗
𝐴
∗
− 𝜇𝑆
∗
,

(1 − 𝑢
1
) 𝛽𝑆
∗
𝐴
∗
+ 𝜉𝑇
∗
= (𝑢
2
+ 𝜇)𝐴

∗
,

𝑢
2
𝐴
∗
= (𝜇 + 𝜉 + 𝛿) 𝑇

∗
.

(40)
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Let 𝑉 = 𝑥
1
(𝑆 − 𝑆

∗
− 𝑆
∗ ln(𝑆/𝑆∗)) + 𝑥

2
(𝐴 − 𝐴

∗
−

𝐴
∗ ln(𝐴/𝐴∗)) + 𝑥

3
(𝑇 − 𝑇

∗
− 𝑇
∗ ln(𝑇/𝑇∗)); then

𝑉
(39)

= 𝑥
1
[𝜇 − (1 − 𝑢

1
) 𝛽𝑆𝐴 − 𝜇𝑆

−
𝑆
∗

𝑆
𝜇 + (1 − 𝑢

1
) 𝛽𝑆
∗
𝐴 + 𝜇𝑆

∗
]

+ 𝑥
2
[ (1 − 𝑢

1
) 𝛽𝑆𝐴 + 𝜉𝑇 − (𝑢

2
+ 𝜇)𝐴

− (1 − 𝑢
1
) 𝛽𝑆𝐴

∗
−
𝐴
∗

𝐴
𝜉𝑇 + (𝑢

2
+ 𝜇)𝐴

∗
]

+ 𝑥
3
[𝑢
2
𝐴 − (𝜇 + 𝜉 + 𝛿) 𝑇

−
𝑇
∗

𝑇
𝑢
2
𝐴 + (𝜇 + 𝜉 + 𝛿) 𝑇

∗
]

= 𝑥
1
[ (1 − 𝑢

1
) 𝛽𝑆
∗
𝐴
∗
+ 𝜇𝑆
∗
− (1 − 𝑢

1
) 𝛽𝑆𝐴 − 𝜇𝑆

−
𝑆
∗

𝑆
((1 − 𝑢

1
) 𝛽𝑆
∗
𝐴
∗
+ 𝜇𝑆
∗
)

+ (1 − 𝑢
1
) 𝛽𝑆
∗
𝐴 + 𝜇𝑆

∗
]

+ 𝑥
2
[ (1 − 𝑢

1
) 𝛽𝑆𝐴 + 𝜉𝑇 − (𝑢

2
+ 𝜇)𝐴

− (1 − 𝑢
1
) 𝛽𝑆𝐴

∗
−
𝐴
∗

𝐴
𝜉𝑇 + (𝑢

2
+ 𝜇)𝐴

∗
]

+ 𝑥
3
[𝑢
2
𝐴 − (𝜇 + 𝜉 + 𝛿) 𝑇

−
𝑇
∗

𝑇
𝑢
2
𝐴 + (𝜇 + 𝜉 + 𝛿) 𝑇

∗
]

= 𝑥
1
𝜇𝑆
∗
(2 −

𝑆

𝑆∗
−
𝑆
∗

𝑆
)

+ [𝑥
1
(1 − 𝑢

1
) 𝛽𝑆
∗
𝐴
∗
+ 𝑥
2
(𝑢
2
+ 𝜇)𝐴

∗

+ 𝑥
3
(𝜇 + 𝜉 + 𝛿) 𝑇

∗
]

− [𝑥
1

(𝑆
∗
)
2
(1 − 𝑢

1
) 𝛽𝐴
∗

𝑆
+ 𝑥
2
(1 − 𝑢

1
) 𝛽𝑆𝐴

∗

+ 𝑥
2

𝐴
∗
𝜉𝑇

𝐴
+ 𝑥
3

𝑇
∗

𝑇
𝑢
2
𝐴]

+ 𝑆𝐴 [−𝑥
1
(1 − 𝑢

1
) 𝛽 + 𝑥

2
(1 − 𝑢

1
) 𝛽]

+ 𝐴 [− (𝑢
2
+ 𝜇) 𝑥

2
+ 𝑥
1
(1 − 𝑢

1
) 𝛽𝑆
∗
+ 𝑢
2
𝑥
3
]

+ 𝑇 [𝜉𝑥
2
− (𝜇 + 𝜉 + 𝛿) 𝑥

3
] .

(41)

To eliminate the cross-term 𝑆𝐴 and two single-variable terms
𝐴 and 𝑇, we let

−𝑥
1
(1 − 𝑢

1
) 𝛽 + 𝑥

2
(1 − 𝑢

1
) 𝛽 = 0,

− (𝑢
2
+ 𝜇) 𝑥

2
+ 𝑥
1
(1 − 𝑢

1
) 𝛽𝑆
∗
+ 𝑢
2
𝑥
3
= 0,

𝜉𝑥
2
− (𝜇 + 𝜉 + 𝛿) 𝑥

3
= 0.

(42)

By solving them, we can get

𝑥
1
= 1, 𝑥

2
= 1,

𝑥
3
=

𝜉

𝜇 + 𝜉 + 𝛿
=
𝑢
2
+ 𝜇 − (1 − 𝑢

1
) 𝛽𝑆
∗

𝑢
2

.

(43)

Next, we let

𝑉


1
= 𝑥
1
(1 − 𝑢

1
) 𝛽𝑆
∗
𝐴
∗
+ 𝑥
2
(𝑢
2
+ 𝜇)𝐴

∗

+ 𝑥
3
(𝜇 + 𝜉 + 𝛿) 𝑇

∗
,

𝑉


2
= −[𝑥

1

(𝑆
∗
)
2
(1 − 𝑢

1
) 𝛽𝐴
∗

𝑆

+ 𝑥
2
(1 − 𝑢

1
) 𝛽𝑆𝐴

∗
+ 𝑥
2

𝐴
∗
𝜉𝑇

𝐴
+ 𝑥
3

𝑇
∗

𝑇
𝑢
2
𝐴] ,

(44)

and then

𝑉

= 𝑥
1
𝜇𝑆
∗
(2 −

𝑆

𝑆∗
−
𝑆
∗

𝑆
) + 𝑉



1
+ 𝑉


2
. (45)

Due to

(𝑢
2
+ 𝜇)𝐴

∗
= (1 − 𝑢

1
) 𝛽𝑆
∗
𝐴
∗
+ 𝜉𝑇
∗
,

𝑥
3
(𝜇 + 𝜉 + 𝛿) 𝑇

∗
= 𝜉𝑇
∗
𝑥
2
= 𝜉𝑇
∗
,

(46)
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so

𝑉


1
= 2 (1 − 𝑢

1
) 𝛽𝑆
∗
𝐴
∗
+ 2𝜉𝑇

∗
,

𝑉


2
= −[

(𝑆
∗
)
2
(1 − 𝑢

1
) 𝛽𝐴
∗

𝑆

+ (1 − 𝑢
1
) 𝛽𝑆𝐴

∗
+
𝐴
∗
𝜉𝑇

𝐴
+ 𝑥
3

𝑇
∗

𝑇
𝑢
2
𝐴]

≤ −2[
(𝑆
∗
)
2
(1 − 𝑢

1
) 𝛽𝐴
∗

𝑆
⋅ (1 − 𝑢

1
) 𝛽𝑆𝐴

∗
]

1/2

− 2 [
𝐴
∗
𝜉𝑇

𝐴
⋅ 𝑥
3

𝑇
∗

𝑇
𝑢
2
𝐴]

= −2 (1 − 𝑢
1
) 𝛽𝑆
∗
𝐴
∗
− 2(𝑥
3
𝐴
∗
𝜉𝑢
2
𝑇
∗
)
1/2

= −2 (1 − 𝑢
1
) 𝛽𝑆
∗
𝐴
∗
− 2[𝜉𝑇

∗
(𝑥
3
𝑢
2
𝐴
∗
)]
1/2

= −2 (1 − 𝑢
1
) 𝛽𝑆
∗
𝐴
∗

− 2{𝜉𝑇
∗
[(𝑢
2
+ 𝜇)𝐴

∗
− (1 − 𝑢

1
) 𝛽𝑆
∗
𝐴
∗
]}
1/2

= −2 (1 − 𝑢
1
) 𝛽𝑆
∗
𝐴
∗
− 2(𝜉𝑇

∗
𝜉𝑇
∗
)
1/2

= −2 (1 − 𝑢
1
) 𝛽𝑆
∗
𝐴
∗
− 2𝜉𝑇

∗
.

(47)

Hence,

𝑉

= 𝜇𝑆
∗
(2 −

𝑆

𝑆∗
−
𝑆
∗

𝑆
) + 𝑉



1
+ 𝑉


2

≤ 𝜇𝑆
∗
(2 −

𝑆

𝑆∗
−
𝑆
∗

𝑆
) + 2 (1 − 𝑢

1
) 𝛽𝑆
∗
𝐴
∗

+ 2𝜉𝑇
∗
− 2 (1 − 𝑢

1
) 𝛽𝑆
∗
𝐴
∗
− 2𝜉𝑇

∗

= 𝜇𝑆
∗
(2 −

𝑆

𝑆∗
−
𝑆
∗

𝑆
) ≤ 0,

(48)

𝑉

= 0 if and only if 𝑆 = 𝑆

∗, 𝐴 = 𝐴
∗, 𝑇 = 𝑇

∗. According
to LaSalle’s invariance principle [28], we can derive the
conclusion that the alcoholism equilibria 𝐸∗(𝑆∗, 𝐴∗, 𝑇∗, 𝑄∗)
are globally asymptotically stable; the proof is complete.

5. Optimal Control Problem

5.1. The Existence of Optimal Control. In order to investigate
an effective campaign to control alcoholism in a community
which pursue the goals of the minimized alcoholisms and
more recovered individuals, we will reconsider the system (1)
and use two control variables to reduce the numbers of alco-
holics. The difference is that we will change the parameters
𝑢
1
, 𝑢
2
into control variable 𝑢

1
(𝑡), 𝑢
2
(𝑡). Their aforementioned

definitions allow us to do so. 𝑢
1
(𝑡) is used to limit the

proportion of the susceptible individual to contact with
alcoholism, usually by propaganda and education, so that the
susceptible individual can stay off alcoholism consciously and
be free of “infection,” we can understand the effect of 𝑢

1
(𝑡)

is to prevent the the susceptible from contacting with the
alcoholism. The control variable 𝑢

2
(𝑡) is used to control the

alcoholism to take appropriate treatment measures, such as
taking pills or seeking other medical help. However, just as a
coin has two sides, there will be a lot of costs generated during
the control process. So it is advisable to balance between the
costs and the alcohol effects. In view of this, our optimal
control problem tominimize the objective functional is given
by

𝐽 (𝑢
1
, 𝑢
2
) = ∫

𝑡
𝑓

0

[𝐴 (𝑡) +
𝑐
1

2
𝑢
2

1
(𝑡) +

𝑐
2

2
𝑢
2

2
(𝑡)] 𝑑𝑡, (49)

which subjects to system

𝑆

= 𝜇𝑁 − (1 − 𝑢

1 (𝑡))
𝛽𝑆𝐴

𝑁
− 𝜇𝑆,

𝐴

= (1 − 𝑢

1
(𝑡))

𝛽𝑆𝐴

𝑁
+ 𝜉𝑇 − (𝑢

2
(𝑡) + 𝜇)𝐴,

𝑇

= 𝑢
2 (𝑡) 𝐴 − (𝜇 + 𝜉 + 𝛿) 𝑇,

𝑄

= 𝛿𝑇 − 𝜇𝑄,

(50)

with initial conditions

𝑆 (0) = 𝑆
0
, 𝐴 (0) = 𝐴

0
,

𝑇 (0) = 𝑇
0
, 𝑄 (0) = 𝑄

0
.

(51)

Here, 𝑢
𝑖
(𝑡) ∈ 𝑈 ≜ {(𝑢

1
, 𝑢
2
) | 𝑢
𝑖
(𝑡) is measurable and 0 ≤

𝑢
𝑖
(𝑡) ≤ 1, for all 𝑡 ∈ [0, 𝑡

𝑓
]}, 𝑡
𝑓
is the end time to be

controlled, 𝑈 is an admissible control set, 𝑐
𝑖
, and 𝑖 = 1, 2, are

weight factors (positive constants) that adjust the intensity of
two different control measures.

Next, we will investigate the existence of the optimal
control of the above-mentioned problem.

Theorem 5. There exists an optimal control pair 𝑢
∗

=

(𝑢
∗

1
, 𝑢
∗

2
) ∈ 𝑈 such that

𝐽 (𝑢
∗

1
, 𝑢
∗

2
) = min 𝐽 (𝑢

1
, 𝑢
2
) , 𝑢

1 (𝑡) , 𝑢2 (𝑡) ∈ 𝑈 (52)

subjects to the control system (1) with initial conditions (50).

Proof. Toprove the existence of an optimal control, according
to the classic literature [29], we have to show the following.

(1) The control and state variables are nonnegative values.
(2) The control set 𝑈 is convex and closed.
(3) The right side of the state system is bounded by linear

function in the state and control variables.
(4) The integrand of the objective functional is concave

on 𝑈.
(5) There exist constants 𝑑

1
, 𝑑
2
> 0 and 𝛼 > 1 such

that the integrand 𝐿(𝑡; 𝑢
1
; 𝑢
2
) ≜ 𝐴(𝑡) + (𝑐

1
/2)𝑢
2

1
(𝑡) +

(𝑐
2
/2)𝑢
2

2
(𝑡) of the objective functional satisfies

𝐿 (𝑡; 𝑢
1
; 𝑢
2
) ≥ 𝑑
1
(
𝑢1


2
+
𝑢2


2
)
𝛼/2

− 𝑑
2

(53)
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statements (1), (2) and (3) are obvious satisfied, we only need
to test and verify the latter two ones. Since the four state
variables have been all proved to be up bounded by 𝑁, we
will get the following equalities:

𝑆

≤ 𝜇𝑁, 𝐴


≤ (1 − 𝑢

1 (𝑡)) 𝛽𝑆 + 𝜉𝑇,

𝑇

≤ 𝑢
2 (𝑡) 𝐴, 𝑄


≤ 𝛿𝑇,

(54)

so the fourth condition is set up. As for the last condition,

𝐿 (𝑡; 𝑢
1
; 𝑢
2
) ≥ 𝑑
1
(
𝑢1


2
+
𝑢2


2
)
𝛼/2

− 𝑑
2

(55)

is also true, when we choose 𝑑
1
= min{𝑐

1
/2, 𝑐
2
/2}, and for all

𝑑
2
∈ 𝑅
+
, 𝛼 = 2. The proof is complete.

We next come to the core of this section.

5.2. The Characterization of the Optimal Control. With the
existence of the optimal control pairs established, we now
present the optimality system and use a result from [30];
we can easily know the existence of the solutions to the
optimality system (71) which will be gotten later. Firstly, we
come to discuss the theorem that relates to the character-
ization of the optimal control. The optimality system can
be used to compute candidates for optimal control pairs.
To do this, we begin by defining an augmented Hamilto-
nian 𝐻 with penalty terms for the control constraints as
follows:

𝐻 = 𝐴 (𝑡) +
𝑐
1

2
𝑢
2

1
(𝑡) +

𝑐
2

2
𝑢
2

2
(𝑡)

+ 𝜆
1
[𝜇𝑁 − (1 − 𝑢

1 (𝑡))
𝛽𝑆𝐴

𝑁
− 𝜇𝑆]

+ 𝜆
2
[(1 − 𝑢

1
(𝑡))

𝛽𝑆𝐴

𝑁
+ 𝜉𝑇 − (𝑢

2
(𝑡) + 𝜇)𝐴]

+ 𝜆
3
[𝑢
2
(𝑡) 𝐴 − (𝜇 + 𝜉 + 𝛿) 𝑇] + 𝜆

4
(𝛿𝑇 − 𝜇𝑄)

− 𝑤
11
𝑢
1
(𝑡) − 𝑤

12
(1 − 𝑢

1
(𝑡))

− 𝑤
21
𝑢
2
(𝑡) − 𝑤

22
(1 − 𝑢

2
(𝑡)) ,

(56)

where 𝑤
𝑖𝑗
(𝑡) ≥ 0 are the penalty multipliers satisfying

𝑤
11 (𝑡) 𝑢1 (𝑡) = 𝑤12 (𝑡) (1 − 𝑢1 (𝑡))

= 0 at optimal control 𝑢∗
1
,

𝑤
21 (𝑡) 𝑢2 (𝑡) = 𝑤22 (𝑡) (1 − 𝑢2 (𝑡))

= 0 at optimal control 𝑢∗
2
.

(57)

Theorem6. Given optimal control pairs (𝑢∗
1
, 𝑢
∗

2
) and solutions

𝑆(𝑡), 𝐴(𝑡), 𝑇(𝑡), 𝑄(𝑡) of the corresponding state system (50),
there exist adjoint variables 𝜆

𝑖
, 𝑖 = 1, 2, 3, 4, satisfying

𝜆


1
= 𝜆
1
(1 − 𝑢

1
(𝑡))

𝛽𝐴

𝑁
+ 𝜇𝜆
1
− 𝜆
2
(1 − 𝑢

1
(𝑡))

𝛽𝐴

𝑁
,

𝜆


2
= −1 + 𝜆

1
(1 − 𝑢

1 (𝑡))
𝛽𝑆

𝑁
− 𝜆
2
(1 − 𝑢

1 (𝑡))
𝛽𝑆

𝑁

+ 𝜆
2
(𝜇 + 𝑢

2
(𝑡)) − 𝜆

3
𝑢
2
(𝑡) ,

𝜆


3
= −𝜆
2
𝜉 + 𝜆
3
(𝜇 + 𝜉 + 𝛿) − 𝜆

4
𝛿,

𝜆


4
= 𝜇𝜆
4
,

(58)

with the terminal conditions

𝜆
𝑖
(𝑡
𝑓
) = 0, 𝑖 = 1, 2, 3, 4. (59)

Furthermore, (𝑢∗
1
, 𝑢
∗

2
) are represented by

𝑢
∗

1
= min(1,max(0,

𝛽𝑆𝐴 (𝜆
2
− 𝜆
1
)

𝑐
1
𝑁

)) ,

𝑢
∗

2
= min(1,max(0,

𝐴 (𝜆
2
− 𝜆
3
)

𝑐
2

)) .

(60)

Proof. According to Pontryagin Maximum Principle [29–
31], we first differentiate the Hamiltonian operator 𝐻, with
respect to states. Then the adjoint system can be written as

𝜆


1
= −

𝜕𝐻

𝜕𝑆
, 𝜆



2
= −

𝜕𝐻

𝜕𝐴
,

𝜆


3
= −

𝜕𝐻

𝜕𝑇
, 𝜆



4
= −

𝜕𝐻

𝜕𝑄
.

(61)

The terminal condition (56) of adjoint equations is given by
𝜆
𝑖
(𝑡
𝑓
) = 0, 𝑖 = 1, 2, 3, 4.

To obtain the necessary conditions of optimality (59), we
also differentiate theHamiltonian operator𝐻, with respect to
𝑈 = (𝑢

1
, 𝑢
2
) and set them equal to zero; then

𝜕𝐻

𝜕𝑢
1

= 𝑐
1
𝑢
1
(𝑡) + 𝜆

1

𝛽𝑆𝐴

𝑁
− 𝜆
2

𝛽𝑆𝐴

𝑁
− 𝑤
11
+ 𝑤
12
= 0,

𝜕𝐻

𝜕𝑢
2

= 𝑐
2
𝑢
2
(𝑡) − 𝜆

2
𝐴 + 𝜆

3
𝐴 − 𝑤

21
+ 𝑤
22
= 0.

(62)

By solving the optimal control, we obtain

𝑢
∗

1
=
1

𝑐
1

[(𝜆
2
− 𝜆
1
)
𝛽𝑆𝐴

𝑁
+ 𝑤
11
− 𝑤
12
] . (63)

To determine an explicit expression for the optimal
control without𝑤

11
and𝑤

12
, a standard optimality technique

is utilized [29]. We consider the following three cases.

(i) On the set {𝑡 | 0 < 𝑢
∗

1
(𝑡) < 1}, we have 𝑤

11
(𝑡) =
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𝑤
12
(𝑡) = 0. Hence, the optimal control is

𝑢
∗

1
=
1

𝑐
1

[(𝜆
2
− 𝜆
1
)
𝛽𝑆𝐴

𝑁
] . (64)

(ii) On the set {𝑡 | 𝑢∗
1
(𝑡) = 1}, we have 𝑤

11
(𝑡) = 0. Hence,

1 = 𝑢
∗

1
(𝑡) =

1

𝑐
1

[(𝜆
2
− 𝜆
1
)
𝛽𝑆𝐴

𝑁
− 𝑤
12
] . (65)

This implies that

1

𝑐
1

(𝜆
2
− 𝜆
1
)
𝛽𝑆𝐴

𝑁
≥ 1 since 𝑤

12 (𝑡) ≥ 0. (66)

(iii) On the set {𝑡 | 𝑢∗
1
(𝑡) = 0}, we have 𝑤

12
(𝑡) = 0. Hence,

0 = 𝑢
∗

1
(𝑡) =

1

𝑐
1

[(𝜆
2
− 𝜆
1
)
𝛽𝑆𝐴

𝑁
+ 𝑤
11
] . (67)

This implies that

1

𝑐
1

(𝜆
2
− 𝜆
1
)
𝛽𝑆𝐴

𝑁
≤ 0 since 𝑤

11
(𝑡) ≥ 0. (68)

Combining these results, the optimal control 𝑢∗
1
(𝑡) is

characterized as

𝑢
∗

1
= min{1,max{0, 1

𝑐
1

[(𝜆
2
− 𝜆
1
)
𝛽𝑆𝐴

𝑁
]}} . (69)

Using the similar arguments, we can also obtain the other
optimal control function

𝑢
∗

2
= min{1,max{0,

(𝜆
2
− 𝜆
3
) 𝐴

𝑐
2

}} . (70)

The proof is complete.

We point out that the optimality system consists
of the state system (50) with the initial conditions
𝑆(0), 𝐴(0), 𝑇(0), 𝑄(0), the adjoint (or costate) system
(58) with the terminal conditions (59), and the optimality
condition (60). Any optimal control pairs must satisfy
this optimality system. For the convenience of subsequent

numerical simulation in Section 6, we give the optimality
system as follows:

𝑆

= 𝜇𝑁 − (1 −min{1,max{0, 1

𝑐
1

[(𝜆
2
− 𝜆
1
)
𝛽𝑆𝐴

𝑁
]}} (𝑡))

×
𝛽𝑆𝐴

𝑁
− 𝜇𝑆,

𝐴

= (1−min{1,max{0, 1

𝑐
1

[(𝜆
2
−𝜆
1
)
𝛽𝑆𝐴

𝑁
]}} (𝑡))

𝛽𝑆𝐴

𝑁

+ 𝜉𝑇 − (min{1,max{0,
(𝜆
2
− 𝜆
3
) 𝐴

𝑐
2

}} (𝑡) + 𝜇)𝐴,

𝑇

= min{1,max{0,

(𝜆
2
− 𝜆
3
) 𝐴

𝑐
2

}} (𝑡) 𝐴

− (𝜇 + 𝜉 + 𝛿) 𝑇,

𝑄

= 𝛿𝑇 − 𝜇𝑄,

𝜆


1
= 𝜆
1
(1 −min{1,max{0, 1

𝑐
1

[(𝜆
2
− 𝜆
1
)
𝛽𝑆𝐴

𝑁
]}} (𝑡))

×
𝛽𝐴

𝑁
+ 𝜇𝜆
1

− 𝜆
2
(1−min{1,max{0, 1

𝑐
1

[(𝜆
2
−𝜆
1
)
𝛽𝑆𝐴

𝑁
]}}(𝑡))

×
𝛽𝐴

𝑁
,

𝜆


2
= −1

+ 𝜆
1
(1−min{1,max{0, 1

𝑐
1

[(𝜆
2
−𝜆
1
)
𝛽𝑆𝐴

𝑁
]}} (𝑡))

×
𝛽𝑆

𝑁
− 𝜆
3
⋅min{1,max{0,

(𝜆
2
− 𝜆
3
) 𝐴

𝑐
2

}} (𝑡)

− 𝜆
2
(1 −min{1,max{0, 1

𝑐
1

[(𝜆
2
− 𝜆
1
)
𝛽𝑆𝐴

𝑁
]}})

×
𝛽𝑆

𝑁
+ 𝜆
2
(𝜇+min{1,max{0,

(𝜆
2
− 𝜆
3
) 𝐴

𝑐
2

}}(𝑡)) ,

𝜆


3
= −𝜆
2
𝜉 + 𝜆
3
(𝜇 + 𝜉 + 𝛿) − 𝜆

4
𝛿,

𝜆


4
= 𝜇𝜆
4
,

𝑆 (0) = 𝑆0, 𝐴 (0) = 𝐴0, 𝑇 (0) = 𝑇0,

𝑄 (0) = 𝑄0, 𝜆
𝑖
(𝑡
𝑓
) = 0, 𝑖 = 1, 2, 3, 4.

(71)

5.3. The Uniqueness of Optimal Control. Due to the a priori
boundedness of the state, adjoint functions, and the resulting
Lipschitz structure of the ODEs, we can obtain the unique-
ness of the optimal control.
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Lemma 7 (see [23]). The function 𝑢∗(𝑠) = min (𝑏,max (𝑠, 𝑎))
is Lipschitz continuous in 𝑠, where 𝑎 < 𝑏 are some fixed positive
constants.

Theorem 8. For all 𝑡 ∈ [0, 𝑡
𝑓
], the solution to the optimality

system (71) is unique.

Proof. Suppose (𝑆, 𝐴, 𝑇, 𝑄, 𝜆
1
, 𝜆
2
, 𝜆
3
, 𝜆
4
) and

(𝑆, 𝐴, 𝑇, 𝑄, 𝜆
1
, 𝜆
2
, 𝜆
3
, 𝜆
4
) are two different solutions of

our optimality system (71). Let

𝑆 = 𝑒
𝜆𝑡
𝑚, 𝐴 = 𝑒

𝜆𝑡
𝑛, 𝑇 = 𝑒

𝜆𝑡
𝑝,

𝑄 = 𝑒
𝜆𝑡
𝑞, 𝜆

1
= 𝑒
−𝜆𝑡
𝑟, 𝜆

2
= 𝑒
−𝜆𝑡
𝑠,

𝜆
3
= 𝑒
−𝜆𝑡
𝑤, 𝜆

4
= 𝑒
−𝜆𝑡V,

𝑆 = 𝑒
𝜆𝑡
𝑚, 𝐴 = 𝑒

𝜆𝑡
𝑛, 𝑇 = 𝑒

𝜆𝑡
𝑝,

𝑄 = 𝑒
𝜆𝑡
𝑞, 𝜆

1
= 𝑒
−𝜆𝑡
𝑟, 𝜆

2
= 𝑒
−𝜆𝑡
𝑠,

𝜆
3
= 𝑒
−𝜆𝑡
𝑤, 𝜆

4
= 𝑒
−𝜆𝑡V,

(72)

where 𝜆 > 0 is to be chosen.
Accordingly, we have

𝑢
∗

1
(𝑡) = min{1,max{0,

𝛽𝑚𝑛 (𝑠 − 𝑟) 𝑒
𝜆𝑡

𝑐
1
𝑁

}} ,

𝑢
∗

2
(𝑡) = min{1,max{0, (𝑠 − 𝑤) 𝑛

𝑐
2

}} ,

𝑢
∗

1
(𝑡) = min{1,max{0,

𝛽𝑚𝑛 (𝑠 − 𝑟) 𝑒
𝜆𝑡

𝑐
1
𝑁

}} ,

𝑢
∗

2
(𝑡) = min{1,max{0, (𝑠 − 𝑤) 𝑛

𝑐
2

}} .

(73)

Now we substitute 𝑆 = 𝑒
𝜆𝑡
𝑚, 𝐴 = 𝑒

𝜆𝑡
𝑛, 𝑇 = 𝑒

𝜆𝑡
𝑝, 𝑄 = 𝑒

𝜆𝑡
𝑞,

𝜆
1
= 𝑒
−𝜆𝑡
𝑟, 𝜆
2
= 𝑒
−𝜆𝑡
𝑠, 𝜆
3
= 𝑒
−𝜆𝑡
𝑤, 𝜆
4
= 𝑒
−𝜆𝑡V and 𝑆 =

𝑒
𝜆𝑡
𝑚, 𝐴 = 𝑒

𝜆𝑡
𝑛, 𝑇 = 𝑒

𝜆𝑡
𝑝, 𝑄 = 𝑒

𝜆𝑡
𝑞, 𝜆
1
= 𝑒
−𝜆𝑡
𝑟, 𝜆
2
=

𝑒
−𝜆𝑡
𝑠, 𝜆
3
= 𝑒
−𝜆𝑡
𝑤, 𝜆
4
= 𝑒
−𝜆𝑡V into the first ODE of (71),

respectively; then we can obtain

𝑚 + 𝜆𝑚 = 𝜇𝑁𝑒
−𝜆𝑡

− (1 −min{1,max{0,
𝛽𝑚𝑛 (𝑠 − 𝑟) 𝑒

𝜆𝑡

𝑐
1
𝑁

}})

×
𝛽𝑚𝑛𝑒

𝜆𝑡

𝑁
− 𝜇𝑚,

(74)

for𝑚 and𝑚, respectively. Similarly, we can derive

̇𝑛 + 𝜆𝑛

= (1 −min{1,max{1,
𝛽𝑚𝑛 (𝑠 − 𝑟) 𝑒

𝜆𝑡

𝑐
1
𝑁

}})
𝛽𝑚𝑛𝑒

𝜆𝑡

𝑁

+ 𝜉𝑝 − (min{1,max{0, 𝑛 (𝑠 − 𝑤)
𝑐
2

}} + 𝜇) 𝑛,

(75)

for 𝑛 and 𝑛, respectively;

̇𝑝 + 𝜆𝑝 = min{1,max{0, 𝑛 (𝑠 − 𝑤)
𝑐
2

}} 𝑛

− (𝜇 + 𝜉 + 𝛿) 𝑝,

(76)

for 𝑝 and 𝑝, respectively;

̇𝑞 + 𝜆𝑞 = 𝛿𝑝 − 𝜇𝑞, (77)

for 𝑞 and 𝑞, respectively;

̇𝑟 − 𝜆𝑟 = 𝑟(1 −min{1,max{0,
𝛽𝑚𝑛 (𝑠 − 𝑟) 𝑒

𝜆𝑡

𝑐
1
𝑁

}})
𝛽𝑛𝑒
𝜆𝑡

𝑁

+ 𝜇𝑟−𝑠(1−min{1,max{0,
𝛽𝑚𝑛 (𝑠 − 𝑟) 𝑒

𝜆𝑡

𝑐
1
𝑁

}})

×
𝛽𝑛𝑒
𝜆𝑡

𝑁
,

(78)

for 𝑟 and 𝑟, respectively;

̇𝑠 − 𝜆𝑠 = −𝑒
𝜆𝑡

+ 𝑟(1 −min{1,max{0,
𝛽𝑚𝑛 (𝑠 − 𝑟) 𝑒

𝜆𝑡

𝑐
1
𝑁

}})
𝛽𝑚𝑒
𝜆𝑡

𝑁

− 𝑠(1 −min{1,max{0,
𝛽𝑚𝑛 (𝑠 − 𝑟) 𝑒

𝜆𝑡

𝑐
1
𝑁

}})

×
𝛽𝑚𝑒
𝜆𝑡

𝑁
+ 𝑠(min{1,max{0, 𝑛 (𝑠 − 𝑤)

𝑐
2

}} + 𝜇)

− 𝑤(min{1,max{0, 𝑛 (𝑠 − 𝑤)
𝑐
2

}}) ,

(79)

for 𝑠 and 𝑠, respectively;

̇𝑤 − 𝜆𝑤 = −𝑠𝜉 + (𝜇 + 𝜉 + 𝛿)𝑤 − 𝛿V, (80)

for 𝑤 and 𝑤, respectively;

̇V − 𝜆V = 𝜇V, (81)

for V and V, respectively.
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By Lemma 7, we can obtain

𝑢
∗

1
(𝑡) − 𝑢

∗

1
(𝑡)
 ≤

𝛽𝑒
𝜆𝑡

𝑐
1
𝑁
|𝑚𝑛 (𝑠 − 𝑟) − 𝑚𝑛 (𝑠 − 𝑟)| ,

𝑢
∗

2
(𝑡) − 𝑢

∗

2
(𝑡)
 ≤

1

𝑐
2

|𝑛 (𝑠 − 𝑤) − 𝑛 (𝑠 − 𝑤)| .

(82)

The equations for 𝑚, 𝑛, 𝑝, 𝑞, 𝑟, 𝑠, 𝑤, V and the equations
for 𝑚, 𝑛, 𝑝, 𝑞, 𝑟, 𝑠, 𝑤, V are subtracted, respectively; then we
multiply each equation by appropriate difference of functions
and integrate from 0 to 𝑡

𝑓
. Next, we add all eight integral

equations and some inequality techniques to obtain unique-
ness. The following calculation is similar; for the sake of
simplicity, we only take𝑚 and𝑚 for an example:

𝑚 − 𝑚 + (𝜇 + 𝜆) (𝑚 − 𝑚)

=
𝛽𝑒
𝜆𝑡

𝑁
[−(1 −min{1,max{0,

𝛽𝑚𝑛 (𝑠 − 𝑟) 𝑒
𝜆𝑡

𝑐
1
𝑁

}})𝑚𝑛

+(1 −min{1,max{0,
𝛽𝑚𝑛 (𝑠 − 𝑟) 𝑒

𝜆𝑡

𝑐
1
𝑁

}})𝑚𝑛] .

(83)

Multiplying both sides of (83) by (𝑚−𝑚) and integrating
from 0 to 𝑡

𝑓
gives

1

2
(𝑚 − 𝑚)

2
(𝑡
𝑓
) + (𝜇 + 𝜆)∫

𝑡
𝑓

0

(𝑚 − 𝑚)
2
𝑑𝑡

= ∫

𝑡
𝑓

0

(𝑚 − 𝑚)
𝛽𝑒
𝜆𝑡

𝑁

× [− (1 − 𝑢
∗

1
)𝑚𝑛 + (1 − 𝑢

∗

1
)𝑚𝑛] 𝑑𝑡

= ∫

𝑡
𝑓

0

(𝑚 − 𝑚)
𝛽𝑒
𝜆𝑡

𝑁
[(𝑢
∗

1
− 1) (𝑚𝑛 − 𝑚𝑛 + 𝑚𝑛 − 𝑚𝑛)

+ 𝑚𝑛 (𝑢
∗

1
− 𝑢
∗

1
)] 𝑑𝑡

≤
𝛽𝑒
𝜆𝑡
𝑓

𝑁
∫

𝑡
𝑓

0

(𝑚 − 𝑚)

× [𝑢
∗

1
− 1



(𝑚 |𝑛 − 𝑛| + |𝑚 − 𝑚| 𝑛) + 𝑚𝑛
𝛽𝑒
𝜆𝑡

𝑐
1
𝑁



× 𝑚𝑛 (𝑠 − 𝑟) − 𝑚𝑛 (𝑠 − 𝑟) ] 𝑑𝑡

≤
𝛽𝑒
𝜆𝑡
𝑓

𝑁
∫

𝑡
𝑓

0

(𝑚 − 𝑚)

× [
𝑢
∗

1
− 1

 (𝑚 |𝑛 − 𝑛| + |𝑚 − 𝑚| 𝑛) + 𝑚𝑛
𝛽𝑒
𝜆𝑡

𝑐
1
𝑁

|𝑚𝑛 (𝑠 − 𝑠) + (𝑚𝑛 − 𝑚𝑛) 𝑠

− (𝑚𝑛 (𝑟 − 𝑟) + (𝑚𝑛 − 𝑚𝑛) 𝑟)| ] 𝑑𝑡

≤
𝛽𝑒
𝜆𝑡
𝑓

𝑁
∫

𝑡
𝑓

0

[
𝑢
∗

1
− 1

 |𝑚| |𝑚 − 𝑚| |𝑛 − 𝑛|

+ |𝑚 − 𝑚|
2
|𝑛| + |𝐵| |𝑠| |𝑛| |𝑚 − 𝑚|

2

+ |𝐵| |𝑚𝑛| |𝑚 − 𝑚| |𝑟 − 𝑟|

+ |𝐵| |𝑚𝑛| |𝑚 − 𝑚| |𝑠 − 𝑠|

+ |𝐵| |𝑠| |𝑚| |𝑚 − 𝑚| |𝑛 − 𝑛|

+ |𝐵| |𝑟| |𝑚| |𝑚 − 𝑚| |𝑛 − 𝑛|

+ |𝐵| |𝑟| |𝑛| |𝑚 − 𝑚|
2
] 𝑑𝑡

≤
𝛽𝑒
𝜆𝑡
𝑓

𝑁
∫

𝑡
𝑓

0

[

𝑢
∗
− 1



2
|𝑚| ((𝑚 − 𝑚)

2
+ (𝑛 − 𝑛)

2
)

+ |𝑛| (𝑚 − 𝑚)
2

+
|𝐵| |𝑚𝑛|

2
((𝑚 − 𝑚)

2
+ (𝑠 − 𝑠)

2
)

+
|𝐵| |𝑠| |𝑚|

2
((𝑚 − 𝑚)

2
+ (𝑛 − 𝑛)

2
)

+ |𝐵| |𝑠| |𝑛| (𝑚 − 𝑚)
2

+
|𝐵| |𝑚𝑛|

2
((𝑚 − 𝑚)

2
+ (𝑟 − 𝑟)

2
)

+
|𝐵| |𝑚| |𝑟|

2
((𝑚 − 𝑚)

2
+ (𝑛 − 𝑛)

2
)

+ |𝐵| |𝑟| |𝑛| (𝑚 − 𝑚)
2
]𝑑𝑡.

(84)

In the above derivation, we use many scaling techniques
for inequality or absolute inequality. Particularly, what should
be noted is that to get the first inequality of above derivation,
we use the estimation of |𝑢∗

1
(𝑡) − 𝑢

∗

1
(𝑡)| which has been given

before; besides, for the sake of convenience, we note 𝐵 =

𝑚𝑛(𝛽𝑒
𝜆𝑡
𝑓/𝑁). Furthermore, we notice that the coefficients of

all the eight terms in the last formula: (𝑚 − 𝑚)
2
+ (𝑛 − 𝑛)

2,
(𝑚 −𝑚)

2, (𝑚 −𝑚)
2
+ (𝑠 − 𝑠)

2, (𝑚 −𝑚)
2
+ (𝑛 − 𝑛)

2, (𝑚 −𝑚)
2,

(𝑚−𝑚)
2
+(𝑟−𝑟)

2, (𝑚−𝑚)2+(𝑛−𝑛)2, (𝑚−𝑚)2, namely, (|𝑢∗
1
−

1|/2)|𝑚|, |𝑛|, (|𝐵||𝑚𝑛|)/2, (|𝐵||𝑠||𝑚|)/2, |𝐵||𝑠|𝑛, (|𝐵||𝑚𝑛|)/2,
(|𝐵||𝑚||𝑟|)/2, |𝐵||𝑟||𝑛| are nonnegative and bounded. So there
exists a positive constant 𝑐

2
such that

1

2
(𝑚 − 𝑚)

2
(𝑡
𝑓
) + (𝜇 + 𝜆)∫

𝑡
𝑓

0

(𝑚 − 𝑚)
2
𝑑𝑡
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≤ 𝑐
2

𝛽𝑒
𝜆𝑡
𝑓

𝑁
∫

𝑡
𝑓

0

((𝑚 − 𝑚)
2
+ (𝑛 − 𝑛)

2

+ (𝑠 − 𝑠)
2
+ (𝑟 − 𝑟)

2
) 𝑑𝑡.

(85)

Combining eight of these inequalities gives

1

2
(𝑚 − 𝑚) (𝑡

𝑓
) +

1

2
(𝑛 − 𝑛) (𝑡

𝑓
) +

1

2
(𝑝 − 𝑝) (𝑡

𝑓
)

+
1

2
(𝑞 − 𝑞) (𝑡

𝑓
) +

1

2
(𝑟 − 𝑟) (0) +

1

2
(𝑠 − 𝑠) (0)

+
1

2
(𝑤 − 𝑤) (0) +

1

2
(V − V) (0) + (𝜇 + 𝜆)

× ∫

𝑡
𝑓

0

{(𝑚 − 𝑚)
2
+ (𝑛 − 𝑛)

2
+ (𝑝 − 𝑝)

2

+ (𝑞 − 𝑞)
2
+ (𝑠 − 𝑠)

2

+ (𝑟 − 𝑟)
2
+ (𝑤 − 𝑤)

2
+ (V − V)2)} 𝑑𝑡

≤ 𝐵∫

𝑡
𝑓

0

{(𝑚 − 𝑚)
2
+ (𝑛 − 𝑛)

2
+ (𝑝 − 𝑝)

2

+ (𝑞 − 𝑞)
2
+ (𝑟 − 𝑟)

2
+ (𝑠 − 𝑠)

2

+ (𝑤 − 𝑤)
2
+ (V − V)2} 𝑑𝑡.

(86)

Thus, from the above inequality we can conclude that

(𝜇 + 𝜆 − 𝐵)∫

𝑡
𝑓

0

{(𝑚 − 𝑚)
2
+ (𝑛 − 𝑛)

2

+ (𝑝 − 𝑝)
2
+ (𝑞 − 𝑞)

2
+ (𝑟 − 𝑟)

2

+ (𝑠 − 𝑠)
2
+(𝑤 − 𝑤)

2
+ (V − V)2} 𝑑𝑡 ≤ 0,

(87)

where 𝐵 depends on the coefficients and the bounds depend
on𝑚, 𝑛, 𝑝, 𝑞, 𝑟, 𝑠, 𝑤, V. If we choose 𝜆 such that 𝜇+𝜆 > 𝐵, then
𝑚 = 𝑚, 𝑛 = 𝑛, 𝑝 = 𝑝, 𝑞 = 𝑞, 𝑟 = 𝑟, 𝑠 = 𝑠, 𝑤 = 𝑤, and V = V.
Hence, the solution to the optimality system is unique. The
proof is complete.

6. Numerical Simulation

6.1. The Simulation of State System (1) without Control
Parameters. For the sake of simplicity but without loss of
generality, we will perform the numerical simulation of state
system (1) with parameters 𝑢

1
= 0, 𝑢

2
= 0. Before

illustrating the analytic properties of the alcoholism model
(1), we will target the populations in the environment of
a community or a university, for example, the school of
material science and engineering in our university, that is,
Lan zhou University of Technology (LUT for short), owing to
the accurate and available information we can obtain. Refer-
ring to the information provided by the admissions office
of LUT, this school will enroll almost 1200 undergraduates
and almost 300 various postgraduates at the beginning of

fall semester; at the same time, there will be almost 1500
various students graduated and left this school, so the scale
of students in school remained almost 6000; we can take the
total population 𝑁 = 6000. In this simulation, we will take
September as the initial time and units in one week, period
in one year. According to the investigations of the student
union implemented in September every year, we can take
initial values as 𝑆(0) = 4500, 𝐴(0) = 1000, 𝑇(0) = 300,
and 𝑄(0) = 200. It seems that the alcoholism is a little bit
more, but it is rather natural because many freshmen feel
confused when they are faced with the new environment and
a new lifestyle; many of them have no better choice but gather
together to drink in small groups to mediate the anxiety and
get to know each other; over time, some of them develop
the habit of drinking. To a certain extent, for example, the
frequent drinking badly affects their study; we can classify
them into the alcoholism compartment. Other initial values
seem more reasonable, so we need no more explanation. As
we know, alcoholism death is seldom happen within one
year, so we omit mortality from alcoholism; then how to
understand the recruitment rate as well as natural death rate
𝜇? We can treat the freshmen admission as the recruitment
population and graduation students as the natural “death”
parts. So we can take 𝜇 = 1500/6000 = 0.25, which is exactly
consistent with the value in [16]. As for the infection rate 𝛽
and recovery rate 𝛿, we will let them be variables, since the
drinking behaviors are related to many factors such as the
season and the pressure.

According to the data we get from the student union,
we choose 𝜉 = 0.4. To summarize, we list the values of
the parameters in Table 1. Using the values of parameters in
Table 1, we can plot Figures 2 and 3 which are on condition
𝑅
0
< 1 and 𝑅

0
≥ 1, respectively. From Figure 2, we easily

know when 𝑅
0
< 1 holds; the solution of system (1) tends to

the alcohol free equilibrium𝐸
0
and verifies the global stability

of 𝐸
0
. While seen from Figure 3, we also know that if 𝑅

0
≥

1 holds, the solution of system (1) tends to the alcoholism
equilibrium 𝐸

∗ and verifies the global stability of 𝐸∗.

6.2. The Sensitivity of 𝑅
0
about Two Control Parameters.

Although from the expression of the model reproduction
number 𝑅

0
, we can easily find out the fact that the two

control variables, that is, 𝑢
1
and 𝑢

2
, attribute to reducing the

severity of alcoholism; we will still depict the graph between
𝑅
0
and the two control variables to see more intuitiveness see

Figure 4. It seems from the figure that 𝑅
0
is a monotonically

decreasing function about two control parameters, so it is
advisable to take two approaches simultaneously to control
the alcoholics.

6.3. The Simulation of Optimality System (71). In this subsec-
tion, we will investigate numerically the optimal solution to
optimality system (71) by numerical method from [32]; the
optimality system is solved with a fourth-order Runge-Kutta
scheme. Beginning with a guess for the control variables, the
state system is solved forward in time and then those values of
state are used to solve the adjoint equations backward in time.
The controls are updated at the end of each iteration using
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Figure 2: When 𝑅
0
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0
is globally
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= 0.71698).
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Figure 3: When 𝑅
0

≥ 1, the alcoholism equilibrium 𝐸
∗

=

(4466, 476, 32, 26) corresponding to the given parameters is globally
asymptotically stable (𝛽 = 0.3, 𝛿 = 0.2, and 𝑅

0
= 1.08511).

the values of optimal controls obtained lastly. The iterations
continue until convergence takes place.

In the simulations, we choose the available variable values
as Table 1 shows; besides, 𝛽 = 0.3, 𝛿 = 0.2. The initial value
of model (1) is assumed to be 𝑆(0) = 4500, 𝐴(0) = 1000,
𝑇(0) = 300, and 𝑄(0) = 200 as before.

The ideal weights in objective functional are very difficult
to obtain in reality; it needs much work on data mining and
fitting.Hence, the acquisition of appropriate practical weights

Table 1: The parameters description of model (1).

Parameter Description Values
𝜇 Natural birth rate or death rate 0.25

𝛽
Transmission coefficient between
alcoholism and susceptibles Variables

𝑁 The total populations to be considered 6000

𝛿
The rate of populations quitting from
alcoholism permanently after treatment Variables

𝜉
The rate of populations failed in
treatment and returned to be alcoholic 0.4
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u
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Figure 4: The relationship between 𝑅
0
and two control variables 𝑢

1

and 𝑢
2
.

is still a difficult problem and remains for further investiga-
tions.The cost associated with𝐴(𝑡) and 𝑢

1
(𝑡)mainly includes

the cost of dangerous behaviours during the alcoholism time
and educating the public, while the cost associated with
𝑢
2
(𝑡)mainly comes from health professional and the medical

resource includingmedicines andnursing care. In viewof this
and taking the expressions of 𝑢

1
, 𝑢
2
into account, after many

numerical simulations, we finally give weighting coefficients
as 𝑐
1
= 10
2
; 𝑐
2
= 10
4. It should be pointed out that the

weights here are of only theoretical interest to reveal the
control strategies proposed in this paper. Another point to
note is that themaximumcontrol is very difficult to achieve in
reality, so we will omit the situation of the maximum control
during the series of simulations.

Next, we will make some necessary instructions and
explanations to the above simulation graphs. Figures 5, 6,
7, and 8 depict the number of four compartments under
different control levels when we choose the weight coeffi-
cients in objective function to be 𝑐

1
= 10
2
; 𝑐
2
= 10
4. From

the four simulation graphs, we can observe the following
simple facts, in reducing the total number of alcoholisms
and increasing the number of susceptibles; the effectiveness
of various control measures is as follows: optimal control is
evidently better than middle control, and middle control is
better than single control 𝑢

2
, single control 𝑢

2
is better than

single control 𝑢
1
, while single control 𝑢

1
is much better than

no control.
Figures 9 and 10 depict the optimal control law of 𝑢

1
, 𝑢
2
,

respectively. In the beginning of the simulation, the control
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Figure 8: Number of people in quitting compartment when we
choose the weights in objective function are 𝑐
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Figure 9: Figures of the optimal control 𝑢
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when we choose the

weight in objective function are 𝑐
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Figure 10: Figures of the optimal control 𝑢
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effort of 𝑢
1
should be decreased from 0.65 to 0.5 within the

first month, and over the next week, it should be increased to
the maximum control until 50 weeks, then rapidly decreased
to 0 at the end of the simulation. As for the control 𝑢

2
, it

should start from around 0.5 due to the initial alcoholics then
increase to 0.55 within one week since the rapid infection and
next decrease to almost 0 since the effectiveness of treatment
in three weeks, but with the infection going on, the control
effort of 𝑢

2
should gradually increase to the maximum and

maintain this level until the tenth week for the purpose of
consolidation therapy and preventing rebound; hereafter, it
should be gradually decreased to the level of almost 0.43 until
the fifty weeks then quickly decreased to 0 in the end.
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Figure 11: Number of the susceptibles when we choose the weights
in objective function are 𝑐
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.

In order to investigate the influence of different weight
coefficients in the objective functional on the effect of
controlling, at the same time, for a better comparison, we will
change the weight coefficients in objective function into 𝑐

2
=

10
4; 𝑐
1
= 10
2, and we will list the corresponding numerical

simulation results as Figures 11–16 show.
When we change the weight coefficients in objective

function into 𝑐
1
= 10
4, 𝑐
2
= 10
2, we find that the results

of simulations derived from the graphs are very similar to
the ones before. We speculate that the most likely reasons of
this result are due to three respects; one is that the weight
coefficients are not too sensitive in the numerical simulation,
and another possible reason is that both of the two controls
are important, in some sense, equivalently important.The last
but not themost unlikely reason is that we have not found the
most appropriate weight coefficients in the simulation, which
is very difficult to find as previously mentioned.

7. Conclusions

In this paper, we formulate an alcoholics quitting model
and firstly investigate the variation discipline of various
populations from the perspective of global stability; then
we propose an objective functional to examine two different
controlmeasures (i.e., prevention and treatment) on the effect
of alcohol. The basic reproduction number of the model was
derived and the global stability of the two equilibria is given.
From the expression of the basic reproductionnumber𝑅

0
and
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Figure 14: Number of people in quitting compartment when we
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related numerical simulation, we can easily see that the two
control strategies are effective in the alcoholics process.

Using Pontryagin’s Maximum Principle, we firstly deter-
mine the necessary conditions for existence of optimal
control pairs.The uniqueness of the solution to the optimality
system (71) is derived by the classical method of contradic-
tion. Numerical simulations of the model suggest that the
two different groups of weights in the objective function have
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much similar effects on the transmission of the alcoholism;
from this point, the two control measures are almost equally
important in controlling the alcoholism, although they will
probably have great influences on the cost of the objective
function. From the simulation figures, it seems that the effect
of optimal control, which is measured by the reduction in
the number of alcoholics and the increase in the number of
susceptibles, is much better than other control strategies as
noted earlier in the simulation section. According to the real-
time curve of two optimal controls, we point out the specific
implementation methods of optimal control which can be
achieved in practice.
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We investigate an SIR epidemic model with stochastic perturbations. We assume that stochastic perturbations are of a white noise
type which is directly proportional to the distances of three variables from the steady-state values, respectively. By constructing
suitable Lyapunov functions and applying Itô’s formula, some qualitative properties are obtained, such as the existence of global
positive solutions, stochastic boundedness, and permanence. A series of numerical simulations to illustrate these mathematical
findings are presented.

1. Introduction

Almost all mathematical models for the transmission of
infectious diseases descend from the classical susceptible-
infective-removed (SIR) model of Kermack andMcKendrick
[1]. The dynamic behavior of different epidemic models and
a lot of their extensions is well investigated by a number of
scholars; see [2–11].Thebasic and important research subjects
for recent studies are the existence of the threshold values
which distinguish whether the disease dies out, the stability
of the disease-free and the endemic equilibria, permanence,
and extinction [12]. During the last few decades, a number
of realistic transmission functions have become the focus of
considerable attention, and many authors are interested in
the formulation of nonlinear incidence rate (see [13–17]). A
nonlinear incidence rate can arise from saturation effects that
if the proportion of the infection in a population is very high,
so that exposure to the disease agent is virtually certain, then
the transmission rate may respond more slowly than linear
to the increase in the number of infection [18]. For example,
Capasso and Serio [19] introduced a saturated transmission
rate 𝑓(𝑆, 𝐼) = 𝑘𝑆𝐼/(1 + 𝛼𝐼), where 𝑘𝐼 measures the infection
force of the disease and 1/(1 + 𝛼𝐼) measures the inhibition
effect from the behavioral change of the susceptible indi-
viduals when their number increases or from the crowding
effect of the infective individuals. To be biologically feasible,
the function of the incidence rate 𝑓(𝑆, 𝐼) = 𝑘𝑆𝐼/(1 + 𝛼𝐼)

is a positive continuous and differentiable and satisfies the
conditions

𝑓 (𝑆, 0) = 0 = 𝑓 (0, 𝐼) ,

𝜕𝑓 (𝑆, 𝐼)

𝜕𝑆
=

𝑘𝐼

1 + 𝛼𝐼
> 0,

𝜕𝑓 (𝑆, 𝐼)

𝜕𝐼
=

𝑘𝑆

(1 + 𝛼𝐼)
2
> 0,

(1)

for all 𝑆, 𝐼 > 0. It is easy to know that the function 𝑓(𝑆, 𝐼) is
concave with respect to the variable 𝐼; that is,

𝜕
2
𝑓 (𝑆, 𝐼)

𝜕𝐼2
= −

2𝛼𝑘𝑆

(1 + 𝛼𝐼)
3
< 0 for 𝑆, 𝐼 > 0, (2)

which implies that when the number of infections is very high
that the exposure to the disease agent is virtually certain, the
incidence rate will respond more slowly than linearly to the
disease in 𝐼.

In the real world, population dynamics is inevitably
subjected to environmental noise, which is an important
component in an ecosystem. Most natural phenomena do
not follow strictly deterministic laws but rather oscillate
randomly about some average values, so that the population
density never attains a fixed value with the advancement
of time [20, 21]. Recent advances in stochastic differential
equations enable a lot of authors to introduce randomness
into deterministic model of physical phenomena to reveal
the effect of environmental variability, whether it is a random
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noise in the system of differential equations or environmental
fluctuations in parameters; see [12, 13, 22–30]. Of them, Tuck-
well andWilliams [28] investigated the properties of a simple
discrete time stochastic epidemic model. A classical model
of an SIRS epidemic in an open population was considered
by El Maroufy et al. [12]. They established the global stability
of disease-free and endemic equilibrium points for both the
deterministic and stochastic models. Based on the theory
of stochastic differential equation, Cai et al. [13] studied
the dynamics of an SIRS epidemic model with a ratio-
dependent incidence rate. In [29], the authors extended the
classical SIRS epidemic model incorporating media coverage
from a deterministic framework to a stochastic differential
equation and focused on how environmental fluctuations of
the contact coefficient affect the extinction of the disease.

To the best of our knowledge, a small amount of work has
been done with stochastic perturbation on an SIR epidemic
model with a saturated transmission rate 𝑘𝑆𝐼/(1 + 𝛼𝐼). The
purpose of this paper is to study that the stochastic factor has
a significant effect on the dynamics of SIR epidemic model
with a saturated incidence rate.The organization of this paper
is as follows. In the next section, we present the formulation of
mathematicalmodel with environmental noise.We give some
properties about deterministic model (4) and carry out the
analysis of the dynamical properties of stochastic model (3),
respectively. Finally, we give a concluding section.

2. Model and Dynamics Analysis

Let 𝑆(𝑡) be the number of susceptible individuals, 𝐼(𝑡)
the number of infective individuals, and 𝑅(𝑡) the num-
ber of removed individuals at time 𝑡, respectively. Moti-
vated by [31], we assume that stochastic perturbations are
of white noise type, which are directly proportional to
distances 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡) from the steady-state values of
𝑆
∗
, 𝐼
∗
, 𝑅
∗and influence on d𝑆(𝑡)/d𝑡, d𝐼(𝑡)/d𝑡, d𝑅(𝑡)/d𝑡,

respectively. In this way, an SIR epidemic model with a
saturated transmission rate and stochastic fluctuations will be
reduced to the following form:

d𝑆 = (𝑏 − 𝑑𝑆 − 𝑘𝑆𝐼

1 + 𝛼𝐼
+ 𝛾𝑅) d𝑡 + 𝜎

1
(𝑆 − 𝑆

∗
) d𝐵 (𝑡) ,

d𝐼 = ( 𝑘𝑆𝐼

1 + 𝛼𝐼
− (𝑑 + 𝜇) 𝐼) d𝑡 + 𝜎

2
(𝐼 − 𝐼

∗
) d𝐵 (𝑡) ,

d𝑅 = (𝜇𝐼 − (𝑑 + 𝛾) 𝑅) d𝑡 + 𝜎
3
(𝑅 − 𝑅

∗
) d𝐵 (𝑡) .

(3)

All parameters are positive constants, 𝑏 is the recruitment
rate of the population, 𝑑 is the natural death rate of the
population, 𝑘 is the proportionality constant, 𝛼 is the param-
eter that measures the psychological or inhibitory effect, 𝛾
is the rate at which recovered individuals lose immunity
and return to the susceptible class, and 𝜇 is the natural
recovery rate of the infective individuals. Note that 𝜎

1
, 𝜎
2
,

and 𝜎
3
are real constants and known as the intensity of

the stochastic environment and 𝐵(𝑡) is standard Brownian
motion.

2.1. Dynamics of the Deterministic Model. In this subsection,
when 𝜎

1
= 𝜎
2
= 𝜎
3
= 0, we consider the deterministic SIR

epidemic model:
d𝑆
d𝑡
= 𝑏 − 𝑑𝑆 −

𝑘𝑆𝐼

1 + 𝛼𝐼
+ 𝛾𝑅,

d𝐼
d𝑡
=

𝑘𝑆𝐼

1 + 𝛼𝐼
− (𝑑 + 𝜇) 𝐼,

d𝑅
d𝑡
= 𝜇𝐼 − (𝑑 + 𝛾) 𝑅.

(4)

Because of the biological meaning of the components
(𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)), we focus on the model in the first quadrant
R3
+
= {(𝑆, 𝐼, 𝑅) ∈ R3 : 𝑆 ≥ 0, 𝐼 ≥ 0, 𝑅 ≥ 0}. Model (4)

always has a disease-free equilibrium 𝐸
0
= (𝑏/𝑑, 0, 0), which

corresponds to the extinction of the disease.
Define the basic reproduction number as

𝑅
0
=

𝑏𝑘

𝑑 (𝑑 + 𝜇)
, (5)

which denotes the number of individuals infected by a single
infected individual placed in a totally susceptible population.

Theorem 1. From model (4), it follows that
(i) if 𝑅

0
≤ 1, there is no positive equilibrium;

(ii) if 𝑅
0
> 1, there is a unique endemic equilibrium 𝐸

∗
=

(𝑆
∗
, 𝐼
∗
, 𝑅
∗
), which corresponds to the coexistence of 𝑆,

𝐼, and 𝑅 and is given by

𝑆
∗
=
(𝑑 + 𝜇) (𝑑 (d + 𝜇 + 𝛾) + 𝛼𝑏 (𝑑 + 𝛾))
𝛼𝑑 (𝑑 + 𝜇) (𝑑 + 𝛾) + 𝑑𝑘 (𝑑 + 𝜇 + 𝛾)

,

𝐼
∗
=

(𝑑 + 𝛾) (𝑏𝑘 − 𝑑 (𝑑 + 𝜇))

(𝑑 + 𝜇) (𝑑 (𝑑 + 𝜇 + 𝛾) + 𝛼𝑏 (𝑑 + 𝛾))
𝑆
∗
,

𝑅
∗
=

𝜇

𝑑 + 𝛾
𝐼
∗
.

(6)

In other words, when 𝑅
0
> 1, the disease can invade a totally

susceptible population and the number of cases will increase,
whereas when 𝑅

0
≤ 1, the disease will always fail to spread.

Lemma 2. The plane 𝑆 + 𝐼 + 𝑅 = 𝑏/𝑑 is a manifold of model
(4), which is attracting in the first octant.

Proof. Summing up the three equations in (4) and denoting
𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡), we obtain

d𝑁
d𝑡

= 𝑏 − 𝑑𝑁. (7)

It is clear that𝑁(𝑡) = 𝑏/𝑑 is a solution of (7) and for any
𝑁(𝑡
0
) ≥ 0, the general solution of (7) is

𝑁(𝑡) =
1

𝑑
(𝑏 − (𝑏 − 𝑑𝑁 (𝑡

0
)) 𝑒
−𝑑(𝑡−𝑡

0
)
) . (8)

Hence,

lim
𝑡→∞

𝑁(𝑡) =
𝑏

𝑑
, (9)

which implies the conclusion.
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Theorem 3. The endemic equilibrium point 𝐸∗ = (𝑆∗, 𝐼∗, 𝑅∗)
is globally asymptotically stable in R3

+
.

Proof. The Jacobian matrix J(𝑆, 𝐼, 𝑅) at equilibrium point
𝐸
∗
= (𝑆
∗
, 𝐼
∗
, 𝑅
∗
) is given by

J (𝐸∗) = (
𝐽
11
𝐽
12
𝐽
13

𝐽
21
𝐽
22
𝐽
23

𝐽
31
𝐽
32
𝐽
33

) , (10)

where

𝐽
11
= −𝑑 −

𝑘𝐼
∗

1 + 𝛼𝐼∗
, 𝐽

12
= −

𝑘𝑆
∗

(1 + 𝛼𝐼
∗
)
2
, 𝐽

13
= 𝛾,

𝐽
21
=

𝑘𝐼
∗

1 + 𝛼𝐼∗
, 𝐽

22
=

𝑘𝑆
∗

(1 + 𝛼𝐼∗)
2
− 𝑑 − 𝜇, 𝐽

23
= 0,

𝐽
31
= 0, 𝐽

32
= 𝜇, 𝐽

33
= −𝑑 − 𝛾.

(11)

The characteristic equation at the interior equilibrium
point 𝐸∗ is

𝜆
3
+ 𝑄
1
𝜆
2
+ 𝑄
2
𝜆 + 𝑄

3
= 0, (12)

where

𝑄
1
= − (𝐽

11
+ 𝐽
22
+ 𝐽
33
) ,

𝑄
2
= 𝐽
11
𝐽
22
− 𝐽
12
𝐽
21
+ (𝐽
11
+ 𝐽
22
) 𝐽
33
,

𝑄
3
= 𝐽
12
𝐽
21
𝐽
33
− 𝐽
21
𝐽
13
𝐽
32
− 𝐽
11
𝐽
22
𝐽
33
.

(13)

It is clear that

𝐽
11
< 0, 𝐽

12
< 0, 𝐽

13
> 0, 𝐽

21
> 0,

𝐽
22
< 0, 𝐽

32
> 0, 𝐽

33
< 0.

(14)

Here 𝑄
1
> 0, 𝑄

2
> 0 and 𝑄

3
> 0.

Now 𝑄
1
𝑄
2
− 𝑄
3
= (𝐽
11
+ 𝐽
22
)𝐽
12
𝐽
21
+ 𝐽
21
𝐽
13
𝐽
32
− 𝐽
2

11
(𝐽
22
+

𝐽
33
) − 𝐽

2

22
(𝐽
11
+ 𝐽
33
) − 𝐽

2

33
(𝐽
11
+ 𝐽
22
) − 2𝐽

11
𝐽
22
𝐽
33

> 0.
Therefore, model (4) is globally stable at the equilibrium𝐸∗ =
(𝑆
∗
, 𝐼
∗
, 𝑅
∗
).

2.2. Dynamics of the Stochastic Model. Let (Ω,F,P) be a
complete probability space with a filtration {F

𝑡
}
𝑡∈R
+

satisfy-
ing the usual conditions; that is, it is right continuous and
increasing whileF

0
contains all P-null sets. Denote

𝑋 (𝑡) = (𝑆 (𝑡) , 𝐼 (𝑡) , 𝑅 (𝑡)) ≜ (𝑥
1
(𝑡) , 𝑥
2
(𝑡) , 𝑥
3
(𝑡)) , (15)

and the norm |𝑋(𝑡)| = √𝑆2(𝑡) + 𝐼2(𝑡) + 𝑅2(𝑡). And denote
𝐶
2,1
(R3 × (0,∞);R

+
) as the family of all nonnegative func-

tions 𝑉(𝑋, 𝑡) defined on R3 × (0,∞) such that they are
continuously twice differentiable in𝑋 and once in 𝑡.

We define the differential operator L associated with
three-dimensional stochastic differential equation

d𝑋(𝑡) = 𝑓 (𝑋, 𝑡) d𝑡 + 𝑔 (𝑋, 𝑡) d𝐵 (𝑡) , (16)

as

L = 𝜕

𝜕𝑡
+

3

∑

𝑖=1

𝑓
𝑖
(𝑋, 𝑡)

𝜕

𝜕𝑥
𝑖

+
1

2

3

∑

𝑖,𝑗=1

(𝑔
𝑇
(𝑋, 𝑡) 𝑔 (𝑋, 𝑡))

𝑖𝑗

𝜕
2

𝜕𝑥
𝑖
𝜕𝑥
𝑗

,

(17)

where

𝑓 =(

𝑏 − 𝑑𝑆 −
𝑘𝑆𝐼

1 + 𝛼𝐼
+ 𝛾𝑅

𝑘𝑆𝐼

1 + 𝛼𝐼
− (𝑑 + 𝜇) 𝐼

𝜇𝐼 − (𝑑 + 𝛾) 𝑅

),

𝑔 = diag (𝜎
1
(𝑆 − 𝑆

∗
) , 𝜎
2
(𝐼 − 𝐼

∗
) , 𝜎
3
(𝑅 − 𝑅

∗
)) .

(18)

If L acts on a function𝑉 ∈ 𝐶2,1(R3 ×(0,∞);R
+
), then we

denote

L𝑉 (𝑋, 𝑡) = 𝑉
𝑡
(𝑋, 𝑡) + 𝑉

𝑋
(𝑋, 𝑡) 𝑓 (𝑋, 𝑡)

+
1

2
trace (𝑔𝑇 (𝑋, 𝑡) 𝑉

𝑋𝑋
(𝑋, 𝑡) 𝑔 (𝑋, 𝑡)) ,

(19)

where 𝑇means transposition.
In this subsection, we first show the existence of a unique

positive global solution of the stochastic model (3).

Theorem 4. For model (3) and any given initial value (𝑆(0),
𝐼(0), 𝑅(0)) ∈ R3

+
, there is a unique solution (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)) on

𝑡 ≥ 0 and will remain in R3
+
with probability one.

Proof. Since the coefficients of model (3) satisfy the local
Lipschitz condition, there is a unique local solution on [0, 𝜏

𝑒
),

where 𝜏
𝑒
is the explosion time. Therefore, by Itô’s formula,

the unique local solution of model (3) is positive. Next, let us
show that this solution is global; that is, 𝜏

𝑒
= ∞ a.s.

Let 𝑛
0
> 0 be sufficiently large for 𝑆(0), 𝐼(0), and 𝑅(0)

lying with the interval [1/𝑛
0
, 𝑛
0
]. For each integer 𝑛 ≥ 𝑛

0
,

define a sequence of stopping times by

𝜏
𝑛
= inf {𝑡 ∈ [0, 𝜏

𝑒
] : 𝑆 (𝑡) ∉ (

1

𝑛
, 𝑛)

or 𝐼 (𝑡) ∉ (1
𝑛
, 𝑛) or 𝑅 (𝑡) ∉ (1

𝑛
, 𝑛)} ,

(20)

where we set inf 0 = ∞ (0 represents the empty set) in this
paper. Since 𝜏

𝑛
is nondecreasing as 𝑛 → ∞, there exists the

limit

𝜏
∞
= lim
𝑛→∞

𝜏
𝑛
. (21)

Then 𝜏
∞
≤ 𝜏
𝑒
a.s. Now, we need to show 𝜏

∞
= ∞ a.s. If this

statement is violated, then there exist 𝑇 > 0 and 𝜀 ∈ (0, 1)
such that

P {𝜏
∞
≤ 𝑇} > 𝜀. (22)

Thus, there is an integer 𝑛
1
≥ 𝑛
0
such that

P {𝜏
𝑛
≤ 𝑇} ≥ 𝜀 ∀𝑛 ≥ 𝑛

1
. (23)
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Define a 𝐶3-function 𝑉 : R3
+
→ R
+
by

𝑉 (𝑆, 𝐼, 𝑅) = (𝑆 − 1 − ln 𝑆) + (𝐼 − 1 − ln 𝐼) + (𝑅 − 1 − ln𝑅) ,
(24)

which is a nonnegative function. If (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)) ∈ R3
+
, by

using Itô’s formula, we compute

d𝑉 (𝑆, 𝐼, 𝑅) = ((1 −
1

𝑆
)(𝑏 − 𝑑𝑆 −

𝑘𝑆𝐼

1 + 𝛼𝐼
+ 𝛾𝑅)

+ (1 −
1

𝐼
)(

𝑘𝑆𝐼

1 + 𝛼𝐼
− (𝑑 + 𝜇) 𝐼)

+ (1 −
1

𝑅
) (𝜇𝐼 − (𝑑 + 𝛾) 𝑅) +

𝜎
2

1

2
(1 −

𝑆
∗

𝑆
)

2

+
𝜎
2

2

2
(1 −

𝐼
∗

𝐼
)

2

+
𝜎
2

3

2
(1 −

𝑅
∗

𝑅
)

2

) d𝑡

+ (𝜎
1
(1 −

1

𝑆
) (𝑆 − 𝑆

∗
)+ 𝜎
2
(1 −

1

𝐼
) (𝐼 − 𝐼

∗
)

+ 𝜎
3
(1 −

1

𝑅
) (𝑅 − 𝑅

∗
)) d𝐵 (𝑡)

= (𝑏 + 3𝑑 + 𝜇 + 𝛾 +
𝜎
2

1

2
(1 −

𝑆
∗

𝑆
)

2

+
𝜎
2

2

2
(1 −

𝐼
∗

𝐼
)

2

+
𝜎
2

3

2
(1 −

𝑅
∗

𝑅
)

2

+
𝑘𝐼

1 + 𝛼𝐼
−

𝑘𝑆

1 + 𝛼𝐼
− 𝑑 (𝑆 + 𝐼 + 𝑅)

−
𝑏

𝑆
−
𝛾𝑅

𝑆
−
𝜇𝐼

𝑅
) d𝑡

+ (𝜎
1
(1 −

1

𝑆
) (𝑆 − 𝑆

∗
) + 𝜎
2
(1 −

1

𝐼
) (𝐼 − 𝐼

∗
)

+ 𝜎
3
(1 −

1

𝑅
) (𝑅 − 𝑅

∗
)) d𝐵 (𝑡)

≤ (𝑏 + 3𝑑 + 𝜇 + 𝛾 +
𝜎
2

1

2
(1 −

𝑆
∗

𝑆
)

2

+
𝜎
2

2

2
(1 −

𝐼
∗

𝐼
)

2

+
𝜎
2

3

2
(1 −

𝑅
∗

𝑅
)

2

+
𝑘

𝛼
) d𝑡

+ (𝜎
1
(1 −

1

𝑆
) (𝑆 − 𝑆

∗
) + 𝜎
2
(1 −

1

𝐼
) (𝐼 − 𝐼

∗
)

+ 𝜎
3
(1 −

1

𝑅
) (𝑅 − 𝑅

∗
)) d𝐵 (𝑡)

≤ 𝑀d𝑡

+ (𝜎
1
(1 −

1

𝑆
) (𝑆 − 𝑆

∗
) + 𝜎
2
(1 −

1

𝐼
) (𝐼 − 𝐼

∗
)

+ 𝜎
3
(1 −

1

𝑅
) (𝑅 − 𝑅

∗
)) d𝐵 (𝑡) ,

(25)

where𝑀 is a positive constant. Integrating both sides of the
above inequality from 0 to 𝜏

𝑛
∧ 𝑇, we get

∫

𝜏
𝑛
∧𝑇

0

d𝑉 (𝑆 (𝑠) , 𝐼 (𝑠) , 𝑅 (𝑠))

≤ ∫

𝜏
𝑛
∧𝑇

0

𝑀d𝑠

+ ∫

𝜏
𝑛
∧𝑇

0

(𝜎
1
(1 −

1

𝑆
) (𝑆 − 𝑆

∗
) + 𝜎
2
(1 −

1

𝐼
) (𝐼 − 𝐼

∗
)

+ 𝜎
3
(1 −

1

𝑅
) (𝑅 − 𝑅

∗
)) d𝐵 (𝑠) ,

(26)

where 𝜏
𝑛
∧𝑇 = min{𝜏

𝑛
, 𝑇}.Then taking the expectations leads

to

E𝑉 (𝑆 (𝜏
𝑛
∧ 𝑇) , 𝐼 (𝜏

𝑛
∧ 𝑇) , 𝑅 (𝜏

𝑛
∧ 𝑇))

≤ 𝑉 (𝑆 (0) , 𝐼 (0) , 𝑅 (0)) + 𝑀𝑇.

(27)

Set Ω
𝑛
= {𝜏
𝑛
≤ 𝑇} for 𝑛 ≥ 𝑛

1
and from (23), we

have P(Ω
𝑛
) ≥ 𝜀. For every ] ∈ Ω

𝑛
, there are some 𝑖

such that 𝑥
𝑖
(𝜏
𝑛
, ]) equals either 𝑛 or 1/𝑛 for 𝑖 = 1, 2, 3;

hence 𝑉(𝑆(𝜏
𝑛
, ]), 𝐼(𝜏

𝑛
, ]), 𝑅(𝜏

𝑛
, ])) is no less than min{𝑛 − 1 −

ln 𝑛, 1/𝑛 − 1 − ln(1/𝑛)}. Then we obtain

𝑉 (𝑆 (0) , 𝐼 (0) , 𝑅 (0)) + 𝑀𝑇

≥ E (1
Ω
𝑛
(])𝑉 (𝑆 (𝜏𝑛) , 𝐼 (𝜏𝑛) , 𝑅 (𝜏𝑛)))

≥ 𝜀min {𝑛 − 1 − ln 𝑛, 1
𝑛
− 1 − ln 1

𝑛
} ,

(28)

where 1
Ω
𝑛
(]) is the indicator function of Ω

𝑛
. Letting 𝑛 → ∞

leads to the contradiction∞ = 𝑉(𝑆(0), 𝐼(0), 𝑅(0)) + 𝑀𝑇 <

∞. This completes the proof.

Theorem 4 shows that the solution to model (3) will
remain inR3

+
.The propertymakes us continue to discuss how

the solution varies inR3
+
in more detail. Here, we present that

the definition of stochastic ultimate boundedness [32] is one
of the important topics in population dynamics and is defined
as follows.

Definition 5. The solutions 𝑋(𝑡) = (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)) of model
(3) are said to be stochastically ultimately bounded, if for any
𝜀 ∈ (0, 1), there is a positive constant 𝛿 = 𝛿(𝜀), such that for
any initial value (𝑆(0), 𝐼(0), 𝑅(0)) ∈ R3

+
, the solution 𝑋(𝑡) to

model (3) has the property that

lim sup
𝑡→∞

P {|𝑋 (𝑡)| > 𝛿} < 𝜀. (29)
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Theorem 6. The solutions of model (3) are stochastically
ultimately bounded for any initial value (𝑆(0), 𝐼(0), 𝑅(0)) ∈
R3
+
.

Proof. FromTheorem 4, the solution will remain inR3
+
for all

𝑡 ≥ 0 almost surely. Define a function

𝑉 (𝑆, 𝐼, 𝑅) = 𝑒
𝑡
(𝑆
𝜃
+ 𝐼
𝜃
+ 𝑅
𝜃
) , (30)

for (𝑆, 𝐼, 𝑅) ∈ R3
+
and 𝜃 > 1. By Itô’s formula we obtain

d𝑉 (𝑆, 𝐼, 𝑅)

= 𝑒
𝑡
(𝜃𝑆
𝜃−1
(𝑏 − 𝑑𝑆 −

𝑘𝑆𝐼

1 + 𝛼𝐼
+ 𝛾𝑅)

+ 𝜃𝐼
𝜃−1
(
𝑘𝑆𝐼

1 + 𝛼𝐼
− (𝑑 + 𝜇) 𝐼)

+ 𝜃𝑅
𝜃−1
(𝜇𝐼 − (𝑑 + 𝛾) 𝑅)

+
𝜃 (𝜃 − 1)

2
(𝜎
2

1
𝑆
𝜃
(1 −

𝑆
∗

𝑆
)

2

+ 𝜎
2

2
𝐼
𝜃
(1 −

𝐼
∗

𝐼
)

2

+𝜎
2

3
𝑅
𝜃
(1 −

𝑅
∗

𝑅
)

2

)) d𝑡

+ 𝑒
𝑡
𝜃(𝜎
1
𝑆
𝜃
(1 −

𝑆
∗

𝑆
) + 𝜎
2
𝐼
𝜃
(1 −

𝐼
∗

𝐼
)

+𝜎
3
𝑅
𝜃
(1 −

𝑅
∗

𝑅
)) d𝐵 (𝑡)

≤ 𝐶𝑒
𝑡d𝑡 + 𝑒𝑡𝜃(𝜎

1
𝑆
𝜃
(1 −

𝑆
∗

𝑆
) + 𝜎
2
𝐼
𝜃
(1 −

𝐼
∗

𝐼
)

+𝜎
3
𝑅
𝜃
(1 −

𝑅
∗

𝑅
)) d𝐵 (𝑡) ,

(31)

where 𝐶 > 0 is a suitable constant.
Based onTheorem 4 and from (31), we have

E (𝑒𝑡∧𝜏𝑛𝑉 (𝑆 (𝑡 ∧ 𝜏
𝑛
) , 𝐼 (𝑡 ∧ 𝜏

𝑛
) , 𝑅 (𝑡 ∧ 𝜏

𝑛
)))

≤ 𝑉 (𝑆 (0) , 𝐼 (0) , 𝑅 (0)) + 𝐶E∫
𝑡∧𝜏
𝑛

0

𝑒
𝑠d𝑠.

(32)

Letting 𝑛 → ∞ yields

𝑒
𝑡E𝑉 (𝑆 (𝑡) , 𝐼 (𝑡) , 𝑅 (𝑡)) ≤ 𝑉 (𝑆 (0) , 𝐼 (0) , 𝑅 (0)) + 𝐶 (𝑒𝑡 − 1) ,

(33)

which implies

E𝑉 (𝑆 (𝑡) , 𝐼 (𝑡) , 𝑅 (𝑡)) ≤ 𝑒−𝑡𝑉 (𝑆 (0) , 𝐼 (0) , 𝑅 (0)) + 𝐶. (34)

Note that

|𝑋(𝑡)|
𝜃
= (𝑆
2
(𝑡) + 𝐼

2
(𝑡) + 𝑅

2
(𝑡))
𝜃/2

≤ 3
𝜃/2max {𝑆𝜃 (𝑡) , 𝐼𝜃 (𝑡) , 𝑅𝜃 (𝑡)}

≤ 3
𝜃/2
(𝑆
𝜃
+ 𝐼
𝜃
+ 𝑅
𝜃
) .

(35)

Then we get

E|𝑋(𝑡)|𝜃 ≤ 3𝜃/2 (𝑒−𝑡𝑉 (𝑆 (0) , 𝐼 (0) , 𝑅 (0)) + 𝐶) , (36)

which means

lim sup
𝑡→∞

E|𝑋(𝑡)|𝜃 ≤ 3𝜃/2𝐶 < ∞. (37)

Therefore, there exists a positive constant 𝛿
1
such that

lim sup
𝑡→∞

E √𝑋 (𝑡)

< 𝛿
1
. (38)

For any 𝜀 > 0, set 𝛿 = 𝛿2
1
/𝜀
2, then by Chebyshev’s inequality,

P {|𝑋 (𝑡) > 𝛿|} ≤
E √𝑋 (𝑡)



√𝛿

. (39)

Thus, we obtain

lim sup
𝑡→∞

P {|𝑋 (𝑡) > 𝛿|} ≤ 𝛿
1

√𝛿

= 𝜀, (40)

which yields the required assertion.

Generally speaking, the nonexplosion property, the exis-
tence, and the uniqueness of the solution are not enough but
the property of permanence is more desirable since it means
the long time survival in a population dynamics. Now, the
definition of stochastic permanence [33] will be given below.

Definition 7. The solutions 𝑋(𝑡) = (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)) of model
(3) are said to be stochastically permanent, if for any 𝜀 ∈ (0, 1),
there exists a pair of positive constants 𝛿 = 𝛿(𝜀) and 𝜒 = 𝜒(𝜀)
such that for any initial value (𝑆(0), 𝐼(0), 𝑅(0)) ∈ R3

+
, the

solution𝑋(𝑡) to model (3) has the properties

lim inf
𝑡→∞

P {|𝑋 (𝑡)| ≤ 𝛿} ≥ 1 − 𝜀,

lim inf
𝑡→∞

P {|𝑋 (𝑡)| ≥ 𝜒} ≥ 1 − 𝜀.
(41)

Theorem 8. Assume 𝑑 < 𝑏 and for any initial value
(𝑆(0), 𝐼(0), 𝑅(0)) ∈ R3

+
, the solution (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)) satisfies

lim sup
𝑡→∞

E (|𝑋(𝑡)|−𝜗) ≤ 𝑄, (42)

where 𝜗 is an arbitrary positive constant satisfying

𝜗 + 1

2
max {𝜎2

1
, 𝜎
2

2
, 𝜎
2

3
} < 𝑏 − 𝑑, (43)

𝑄 =
3
𝜗
(4𝜔𝐶
1
+ 𝐶
2
)

4𝜔𝐶
1

×max
{{{

{{{

{

1,(

2𝐶
1
+ 𝐶
2
+ √𝐶

2

2
+ 4𝐶
1
𝐶
2

2𝐶
1

)

𝜗−2

}}}

}}}

}

,

(44)
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in which 𝜔 is an arbitrary positive constant satisfying

𝜔 < 𝑏 − 𝑑 −
𝜗 + 1

2
max {𝜎2

1
, 𝜎
2

2
, 𝜎
2

3
} , (45)

𝐶
1
= 𝑏 − 𝑑 −

𝜗 + 1

2
max {𝜎2

1
, 𝜎
2

2
, 𝜎
2

3
} − 𝜔,

𝐶
2
= 𝑑 +max {𝜎2

1
, 𝜎
2

2
, 𝜎
2

3
} + 2𝜔.

(46)

Proof. Define a function

𝑉 (𝑆, 𝐼, 𝑅) =
1

𝑆 + 𝐼 + 𝑅
, (47)

for (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)) ∈ R3
+
; using Itô’s formula, we get

d𝑉 (𝑆, 𝐼, 𝑅)

= −𝑉
2
(𝑏 − 𝑑 (𝑆 + 𝐼 + 𝑅)) d𝑡

+ 𝑉
3
(𝜎
2

1
(𝑆 − 𝑆

∗
)
2
+ 𝜎
2

2
(𝐼 − 𝐼

∗
)
2
+ 𝜎
2

3
(𝑅 − 𝑅

∗
)
2
) d𝑡

− 𝑉
2
(𝜎
1
(𝑆 − 𝑆

∗
) + 𝜎
2
(𝐼 − 𝐼

∗
) + 𝜎
3
(𝑅 − 𝑅

∗
)) d𝐵 (𝑡) .

(48)

Choosing a positive constant 𝜗 that satisfies (43) and
applying Itô’s formula, we obtain

L(1 + 𝑉)𝜗

= 𝜗(1 + 𝑉)
𝜗−1

× ( − 𝑉
2
(𝑏 − 𝑑 (𝑆 + 𝐼 + 𝑅))

+𝑉
3
(𝜎
2

1
(𝑆 − 𝑆

∗
)
2
+ 𝜎
2

2
(𝐼 − 𝐼

∗
)
2
+ 𝜎
2

3
(𝑅 − 𝑅

∗
)
2
))

+
𝜗 (𝜗 − 1)

2
𝑉
4
(1 + 𝑉)

𝜗−2

× (𝜎
2

1
(𝑆 − 𝑆

∗
)
2
+ 𝜎
2

2
(𝐼 − 𝐼

∗
)
2
+ 𝜎
2

3
(𝑅 − 𝑅

∗
)
2
)

= 𝜗(1 + 𝑉)
𝜗−2

× ( − 𝑉
2
(𝑏 − 𝑑 (𝑆 + 𝐼 + 𝑅)) − 𝑉

3
(𝑏 − 𝑑 (𝑆 + 𝐼 + 𝑅))

+ 𝑉
3
(𝜎
2

1
(𝑆 − 𝑆

∗
)
2
+ 𝜎
2

2
(𝐼 − 𝐼

∗
)
2
+ 𝜎
2

3
(𝑅 − 𝑅

∗
)
2
)

+
𝜗 + 1

2
𝑉
4
(𝜎
2

1
(𝑆 − 𝑆

∗
)
2
+ 𝜎
2

2
(𝐼 − 𝐼

∗
)
2
+ 𝜎
2

3
(𝑅 − 𝑅

∗
)
2
))

= 𝜗(1 + 𝑉)
𝜗−2
𝑊,

(49)

where
𝑊 = − 𝑉

2
(𝑏 − 𝑑 (𝑆 + 𝐼 + 𝑅)) − 𝑉

3
(𝑏 − 𝑑 (𝑆 + 𝐼 + 𝑅))

+ 𝑉
3
(𝜎
2

1
(𝑆 − 𝑆

∗
)
2
+ 𝜎
2

2
(𝐼 − 𝐼

∗
)
2
+ 𝜎
2

3
(𝑅 − 𝑅

∗
)
2
)

+
𝜗 + 1

2
𝑉
4
(𝜎
2

1
(𝑆 − 𝑆

∗
)
2
+ 𝜎
2

2
(𝐼 − 𝐼

∗
)
2
+ 𝜎
2

3
(𝑅 − 𝑅

∗
)
2
)

≤ 𝑑𝑉 − (𝑏 − 𝑑)𝑉
2

+ 𝑉
3
(𝜎
2

1
(𝑆 − 𝑆

∗
)
2
+ 𝜎
2

2
(𝐼 − 𝐼

∗
)
2
+ 𝜎
2

3
(𝑅 − 𝑅

∗
)
2
)

+
𝜗 + 1

2
𝑉
4
(𝜎
2

1
(𝑆 − 𝑆

∗
)
2
+ 𝜎
2

2
(𝐼 − 𝐼

∗
)
2
+ 𝜎
2

3
(𝑅 − 𝑅

∗
)
2
) .

(50)
Using the facts that

𝑉
3
(𝜎
2

1
(𝑆 − 𝑆

∗
)
2
+ 𝜎
2

2
(𝐼 − 𝐼

∗
)
2
+ 𝜎
2

3
(𝑅 − 𝑅

∗
)
2
)

< max {𝜎2
1
, 𝜎
2

2
, 𝜎
2

3
}𝑉,

𝑉
4
(𝜎
2

1
(𝑆 − 𝑆

∗
)
2
+ 𝜎
2

2
(𝐼 − 𝐼

∗
)
2
+ 𝜎
2

3
(𝑅 − 𝑅

∗
)
2
)

< max {𝜎2
1
, 𝜎
2

2
, 𝜎
2

3
}𝑉
2
,

(51)

then,

𝑊 ≤ (𝑑 +max {𝜎2
1
, 𝜎
2

2
, 𝜎
2

3
})𝑉

− (𝑏 − 𝑑 −
𝜗 + 1

2
max {𝜎2

1
, 𝜎
2

2
, 𝜎
2

3
})𝑉
2
.

(52)

Let 𝜔 > 0 be sufficiently small such that it satisfies (45),
by Itô’s formula; then

L (𝑒𝜔𝑡(1 + 𝑉)𝜗) = 𝜔𝑒𝜔𝑡(1 + 𝑉)𝜗 + 𝑒𝜔𝑡L(1 + 𝑉)𝜗

= 𝑒
𝜔𝑡
(1 + 𝑉)

𝜗−2
(𝜔(1 + 𝑉)

2
+𝑊)

≤ 𝑒
𝜔𝑡
(1 + 𝑉)

𝜗−2
(𝜔 − 𝐶

1
𝑉
2
+ 𝐶
2
𝑉)

≤ 𝑄
0
𝑒
𝜔𝑡
,

(53)

where 𝑄
0
= (4𝜔𝐶

1
+ 𝐶
2
)/(4𝐶

1
)max{1, ((2𝐶

1
+ 𝐶
2
+

√𝐶
2

2
+ 4𝐶
1
𝐶
2
)/(2𝐶

1
))
𝜗−2
} and 𝐶

1
, 𝐶
2
have been defined in

the statement of the theorem. Thus,

E (𝑒𝜔𝑡(1 + 𝑉)𝜗) ≤ (1 + 𝑉 (0))𝜗 + 𝑄0
𝜔
𝑒
𝜔𝑡
. (54)

Therefore we obtain

lim sup
𝑡→∞

E (𝑉(𝑡)𝜗) ≤ lim sup
𝑡→∞

E(1 + 𝑉)𝜗 ≤ 𝑄0
𝜔
. (55)

For (𝑆, 𝐼, 𝑅) ∈ R3
+
, we know that (𝑆 + 𝐼 + 𝑅)𝜗 ≤ 3𝜗(𝑆2 +

𝐼
2
+ 𝑅
2
)
𝜗/2
≤ 3
𝜗
|𝑋(𝑡)|

𝜗; consequently,

lim sup
𝑡→∞

E( 1

|𝑋 (𝑡)|
𝜗
) ≤ 3

𝜗 lim sup
𝑡→∞

E (𝑉(𝑡)𝜗) ≤ 3
𝜗
𝑄
0

𝜔
= 𝑄,

(56)
which completes the proof.
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Figure 1: Solutions of model (3) with different noise. Other parameters and initial condition are given in text. (a) 𝜎
1
= 0.05, 𝜎

2
= 0.01, and

𝜎
3
= 0.03 and (b) 𝜎

1
= 0.1, 𝜎

2
= 0.06, and 𝜎

3
= 0.12.

Considering Chebyshev inequality,Theorems 6 and 8, we
immediately obtain the following result.

Theorem 9. Assume max{𝜎2
1
, 𝜎
2

2
, 𝜎
2

3
} < 2(𝑏 − 𝑑); then the

solutions of model (3) are stochastically permanent.

Proof. From Theorem 6, we have P{|𝑋(𝑡)| > 𝛿} ≤ 𝜀 which
implies

P {|𝑋 (𝑡)| ≤ 𝛿} ≥ 1 − 𝜀. (57)

This follows that

lim inf
𝑡→∞

P {|𝑋 (𝑡)| ≤ 𝛿} ≥ 1 − 𝜀. (58)

ByTheorem 8, we get

lim sup
𝑡→∞

E( 1

|𝑋 (𝑡)|
𝜗
) ≤ 𝑄. (59)

For any 𝜀 > 0, let 𝜒 = 𝜀𝜗/𝑄𝜗; then

P {|𝑋 (𝑡)| < 𝜒} = P{ 1

|𝑋 (𝑡)|
>
1

𝜒
} ≤ 𝜒

1/𝜗E (|𝑋 (𝑡)|−𝜗) .

(60)

Hence,

lim sup
𝑡→∞

P {|𝑋 (𝑡)| < 𝜒} ≤ 𝜒1/𝜗𝑄 = 𝜀, (61)

which follows that

lim inf
𝑡→∞

P {|𝑋 (𝑡)| ≥ 𝜒} ≥ 1 − 𝜀. (62)

The proof is complete.

3. Conclusions

In this paper, we propose an SIR epidemic model with a
nonlinear incidence rate of the form 𝑘𝑆𝐼/(1 + 𝛼𝐼). We extend
to consider and analyze the epidemic model with stochastic
perturbations. The value of this study lies in two aspects.
First, it presents existence and global stability analysis of the
endemic equilibrium for the deterministicmodel (4). Second,
it verifies some relevant properties of the corresponding
stochastic model (3) and reveals the effect of environmental
noise on the epidemic model.

To study the effect of environmental noise on the deter-
ministic model (4), we stochastically perturb model (4) with
respect to white noise around its endemic equilibrium. By
constructing suitable Lyapunov functions and applying Itô’s
formula, we obtain that there is a unique positive solution
to model (3) for any positive initial value and derive that
the solution is stochastically bounded and permanent under
some conditions. These conditions depend on the intensities
of noise 𝜎

1
, 𝜎
2
, and 𝜎

3
. When the intensities of noise satisfy

some conditions and are not sufficiently large, the population
of the stochastic model may be stochastically permanent.

As an example, we perform some numerical simulations
to illustrate the analytical results of stochastic model (3) by
referring to the method mentioned in Higham [34]. Then
model (3) can be rewritten as the following discretization
equations:

𝑆
𝑖+1
= 𝑆
𝑖
+ (𝑏 − 𝑑𝑆

𝑖
−
𝑘𝑆
𝑖
𝐼
𝑖

1 + 𝛼𝐼
𝑖

+ 𝛾𝑅
𝑖
)Δ𝑡

+ 𝜎
1
(𝑆
𝑖
− 𝑆
∗
)√Δ𝑡𝜉

𝑖
+
𝜎
2

1

2
(𝑆
𝑖
− 𝑆
∗
)
2
(𝜉
2

𝑖
− 1)Δ𝑡,
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Figure 2: Solutions of model (3) with different noise. Other parameters and initial condition are the same as Figure 1. (a) 𝜎
1
= 0, 𝜎

2
= 0.06,

and 𝜎
3
= 0 and (b) 𝜎

1
= 1.7 and 𝜎

2
= 𝜎
3
= 0.

𝐼
𝑖+1
= 𝐼
𝑖
+ (

𝑘𝑆
𝑖
𝐼
𝑖

1 + 𝛼𝐼
𝑖

− (𝑑 + 𝜇) 𝐼
𝑖
) + 𝜎
2
(𝐼
𝑖
− 𝐼
∗
)√Δ𝑡𝜉

𝑖

+
𝜎
2

2

2
(𝐼
𝑖
− 𝐼
∗
)
2
(𝜉
2

𝑖
− 1)Δ𝑡,

𝑅
𝑖+1
= 𝑅
𝑖
+ (𝜇𝐼
𝑖
− (𝑑 + 𝛾) 𝑅

𝑖
) Δ𝑡 + 𝜎

3
(𝑅
𝑖
− 𝑅
∗
)√Δ𝑡𝜉

𝑖

+
𝜎
2

3

2
(𝑅
𝑖
− 𝑅
∗
)
2
(𝜉
2

𝑖
− 1)Δ𝑡,

(63)

where 𝜉
𝑖
(𝑖 = 1, 2, . . . , 𝑛) is the Gaussian random variables

𝑁(0, 1).
Figure 1 shows time-series plots for model (3) with

and without stochastic perturbations. The parameters are
taken as 𝑏 = 1, 𝑑 = 0.2, 𝑘 = 1, 𝛼 = 0.5, 𝛾 =

0.25, and 𝜇 = 0.3 and initial value (𝑆(0), 𝐼(0), 𝑅(0)) =

(1.35, 0.9, 0.45). In this case, model (4) has the endemic point
𝐸
∗
= (1.087, 2.3478, 1.5652). The only difference between

conditions of Figures 1(a) and 1(b) is that the values of
environmental noise intensities 𝜎

1
, 𝜎
2
, and 𝜎

3
are different.

In Figure 1(a), with 𝜎
1
= 0.05, 𝜎

2
= 0.01, and 𝜎

3
= 0.03 and

in Figure 1(b), with 𝜎
1
= 0.1, 𝜎

2
= 0.06, and 𝜎

3
= 0.12,

the condition of Theorem 9 is satisfied. That is, the solutions
of model (3) are stochastically permanent. From Figures 1(a)
and 1(b), one can see that with increasing the noise intensities,
the solutions of model (3) will be oscillating strongly around
the endemic point 𝐸∗ of model (4).

To study the effect of noise in model (3) further, in
Figure 2(a), we choose 𝜎

1
= 𝜎
3
= 0, 𝜎

2
= 0.06 which

satisfies the condition of Theorem 9, while in Figure 2(b),
𝜎
1
= 1.7, 𝜎

2
= 𝜎
3
= 0 that does not satisfy the condition of

Theorem 9. From Figure 2(a), one can see that the infective
population 𝐼 will be oscillating slightly around 𝐼∗ = 2.3478,
and both the susceptible 𝑆 and the removed 𝑅 population
will be affected by the noise but the effect is very small.
From Figure 2(b), when the condition of Theorem 9 is not
satisfied, the noise can force the population to become largely
fluctuating. In this case, the solution of model (3) is not
stochastically permanent.
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A more realistic mathematical model of malaria is introduced, in which we not only consider the recovered humans return to
the susceptible class, but also consider the recovered humans return to the infectious class. The basic reproduction number 𝑅

0

is calculated by next generation matrix method. It is shown that the disease-free equilibrium is globally asymptotically stable if
𝑅
0
≤ 1, and the system is uniformly persistence if 𝑅

0
> 1. Some numerical simulations are also given to explain our analytical

results. Our results show that to control and eradicate the malaria, it is very necessary for the government to decrease the relapse
rate and increase the recovery rate.

1. Introduction

Malaria is caused by a parasite called Plasmodium, which is
transmitted via the bites of infected mosquitoes. Approxi-
mately half of the world’s population is at risk of malaria.
Most malaria cases and deaths occur in Sub-Saharan Africa.
In 2011, 99 countries and territories had ongoing malaria
transmission [1]. Recently, the incidence of malaria has been
rising due to drug resistance. Various control strategies have
been taken to reduce malaria transmissions.

Many epidemic models have been analyzed mathemat-
ically and applied to specific diseases [2, 3]. Since the first
mathematical model of malaria transmission is introduced
by Ross [4], quite a few mathematical models have been for-
mulated to investigate the transmission dynamics of malaria
[5–12]. Ngwa and Shu [5] analyze a deterministic differen-
tial equation model for endemic malaria involving variable
human and mosquito populations. Ngwa [6] also analyzes a
mathematical model for endemic malaria involving variable
human and mosquito populations and uses a perturbation
analysis to approximate the endemic equilibrium in the
important case where the disease related death rate is non-
zero, small but significant. Furthermore, in quasistation-
arity, the stochastic process undergoes oscillations about
a mean population whose size can be approximated by

the stable endemic deterministic equilibrium. Chitnis et al.
[7, 8] study a model that both human and vector species
follow a logistic population, and human have immigra-
tion and disease-induced death. They present a bifurcation
analysis and analyze a periodically-forced difference equa-
tion model for malaria in mosquitoes that captures the
effects of seasonality and allows the mosquitoes to feed
on a heterogeneous population of hosts. Chamchod and
Britton [9] incorporate a vector-bias term into a malaria
transmission model to account for the greater attractiveness
of infectious humans to mosquitoes in terms of differing
probabilities that a mosquito arriving at a human depending
on whether he is infectious or susceptible. To take account
of the incubation periods of parasites within the human and
the mosquito, a delayed Ross-Macdonald model is taken by
Ruan et al. [10]. Further, Xiao and Zou [11] use mathematical
models to explored a natural concern of possible epidemics
caused by multiple species of malaria parasites in one region.
They find that epidemics involving both species in a single
region are possible. Li [12] provides a basic analysis for the
stage-structured malaria model and shows that both the
baseline and the stage-structured malaria models undergo
backward bifurcations.

Recently, Li et al. [13] consider a fast and slow dynamics of
malaria model with relapse, and analyse the global dynamics
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Figure 1: Transfer diagram of the model (1).

by using the geometric singular perturbation theory. They
find that a treatment should be given to symptomatic patients
completely and adequately rather than asymptomatic infec-
tion. On the other hand, for the asymptomatic patients, their
results strongly suggest that to control and eradicate the
malaria, it is very necessary for the government to control the
relapse rate strictly. Nadjm and Behrens [14] state that relapse
is when symptoms reappear after the parasites had been eli-
minated from blood but persist as dormant hypnozoites in
liver cells. This commonly occurs between 8–24 weeks and is
commonly seen with P. vivax and P. ovale infections. Other
papers also consider the inluence of relapse in giving up
smoking or quitting drinking, please see [15, 16] and refer-
ences cited therein.

Chitnis et al. [7] assume that the recovered humans have
some immunity to the disease and do not get clinically ill,
but they still harbor low levels of parasite in their blood
streams and can pass the infection to mosquitoes. After some
period of time, they lose their immunity and return to the
susceptible class. Unfortunately, they do not consider that the
recovered humans will return to their infectious state because
of incomplete treatment. Li et al. [13] consider the relapse but
not that the recovered humans may return to the susceptible
class.

Motivated by these works, in this paper, we propose a
more realistic mathematical model of malaria, in which we
assume that the recovered humans return to the susceptible
class and relapse. The basic reproductive number 𝑅

0
is calcu-

lated and the persistence theory is used to analyze the uni-
formly persistence of the system.

The organization of this paper is as follows. In the next
section, a mathematical model of malaria with relapse is for-
mulated. In Section 3, the basic reproduction number and
the stability of disease-free equilibria are investigated. The
existence of endemic equilibrium and uniformly persistence
are proved in Section 4, and some numerical simulations are
given in Section 5. In the last section, we give some brief dis-
cussions.

2. The Model

2.1. System Description. In this section, we introduce a math-
ematical model of malaria with relapse. Because hosts might

get repeatedly infected due to not acquiring complete immu-
nity so the population is assumed to be described by the
SIRSmodel. Mosquitoes are assumed not to recover from the
parasites so the mosquito population can be described by the
SI model.The total number of population at time 𝑡 is given by
𝑁 = 𝑆

ℎ
(𝑡)+𝐼
ℎ
(𝑡)+𝑅

ℎ
(𝑡) and𝑀 = 𝑆

𝑚
(𝑡)+𝐼
𝑚
(𝑡).The structure

of model is shown in Figure 1. The transfer diagram leads to
the following system of ordinary differential equations:

𝑑𝑆
ℎ (𝑡)

𝑑𝑡
= 𝜇𝑁 −

𝛽𝑆
ℎ
𝐼
𝑚

𝑁
+ 𝜌
1
𝑅
ℎ
− 𝜇𝑆
ℎ
,

𝑑𝐼
ℎ
(𝑡)

𝑑𝑡
=
𝛽𝑆
ℎ
𝐼
𝑚

𝑁
+ 𝜌
2
𝑅
ℎ
− (𝛾 + 𝜇) 𝐼

ℎ
,

𝑑𝑅
ℎ (𝑡)

𝑑𝑡
= 𝛾𝐼
ℎ
− (𝜌
1
+ 𝜌
2
+ 𝜇) 𝑅

ℎ
,

𝑑𝑆
𝑚 (𝑡)

𝑑𝑡
= 𝜂𝑀 −

𝛼
1
𝑆
𝑚
𝐼
ℎ

𝑁
−
𝛼
2
𝑆
𝑚
𝑅
ℎ

𝑁
− 𝜂𝑆
𝑚
,

𝑑𝐼
𝑚
(𝑡)

𝑑𝑡
=
𝛼
1
𝑆
𝑚
𝐼
ℎ

𝑁
+
𝛼
2
𝑆
𝑚
𝑅
ℎ

𝑁
− 𝜂𝐼
𝑚
,

(1)

where 𝑆
ℎ
, 𝐼
ℎ
, 𝑅
ℎ
, 𝑆
𝑚
, 𝐼
𝑚
, 𝑁, and𝑀 represent the number of

susceptible humans, infectious humans, recovered humans,
susceptible mosquitoes, infectious mosquitoes, the total size
of the human population, and the total size of themosquitoes
population, respectively. 𝜇 is the natural birth and death
rate of humans, 𝜂 is the natural birth and death rate of
mosquitoes, 𝛽 is from an infectious mosquito to a susceptible
human transmission rate in humans,𝛼

1
and𝛼
2
represent both

infectious and recovered human to a susceptible mosquito
transmission rate in mosquitoes, 𝛾 is treatment rate, 𝜌

1
is rec-

overy rate (individuals from recovered class could back to
susceptible class again because they had a very small amount
of parasites, which would be cleared quickly by their own
immune system), 𝜌

2
is relapse rate, and 𝑞 is the number of

mosquitoes per individual. All the parameters can be found in
Table 1. In the model,𝑁 and𝑀 are constant, so we introduce
the new variables in terms of proportion as follows:

𝑠
ℎ
=
𝑆
ℎ

𝑁
, 𝑥

1
=
𝐼
ℎ

𝑁
, 𝑥

2
=
𝑅
ℎ

𝑁
,

𝑠
𝑚
=
𝑆
𝑚

𝑀
, 𝑦 =

𝐼
𝑚

𝑀
,

(2)
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Table 1: The parameters description of malaria model.

𝛼
1

From an infectious human to a susceptible mosquito,
transmission rate in mosquitoes

𝛼
2

From a recovered human to a susceptible mosquito,
transmission rate in mosquitoes.

𝛽
From an infectious mosquito to a susceptible human,
transmission rate in humans

𝑁 The total size of human population
𝑀 The total size of mosquito population
𝜇 Natural birth and death rate of humans
𝛾 Treatment rate
𝜌
1 Recovery rate
𝜌
2 Relapse rate
𝜂 Natural birth and death rate of mosquitoes
𝑞 The number of mosquitoes per individual

with 𝑠
ℎ
+𝑥
1
+𝑥
2
= 1, 𝑠

𝑚
+𝑦 = 1.Then the system (1) becomes

𝑑𝑥
1
(𝑡)

𝑑𝑡
= 𝑞𝛽 (1 − 𝑥

1
− 𝑥
2
) 𝑦 + 𝜌

2
𝑥
2
− (𝛾 + 𝜇) 𝑥

1
,

𝑑𝑥
2
(𝑡)

𝑑𝑡
= 𝛾𝑥
1
− (𝜌
1
+ 𝜌
2
+ 𝜇) 𝑥

2
,

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝛼
1
(1 − 𝑦) 𝑥

1
+ 𝛼
2
(1 − 𝑦) 𝑥

2
− 𝜂𝑦.

(3)

2.2. Basic Properties

2.2.1. Invariant Region. Notice that from (1) we have

𝑑𝑁 (𝑡)

𝑑𝑡
= 0,

𝑑𝑀 (𝑡)

𝑑𝑡
= 0. (4)

Thus, the total human population 𝑁 and mosquitoes’ popu-
lation𝑀 are constant. Since the system (3) monitor human
population, it is plausible to assume that all its state variables
and parameters are nonnegative for all 𝑡 ≥ 0. Further, it can
be shown that the region

Ω = {(𝑥
1
(𝑡) , 𝑥
2
(𝑡) , 𝑦 (𝑡)) ∈ 𝑅

3

+
:

𝑥
1 (𝑡) + 𝑥2 (𝑡) ≤ 1}

(5)

is positively-invariant. Thus, each solution of the system
(3), with initial conditions in Ω, remains there for 𝑡 ≥ 0.
Therefore, the 𝜔-limit sets of solutions of the system (3), are
contained in Ω. Furthermore, in Ω, the usual existence,
uniqueness, and continuation results hold for the system,
so that the system (3), is well-posed mathematically and
epidemiologically. So we consider dynamics of system (3) on
the setΩ in this paper.

2.2.2. Positivity of Solutions. For system (3), to ensure the
solutions of the systemwith positive initial conditions remain
positive for all 𝑡 > 0, it is necessary to prove that all the state
variables are nonnegative, so we have the following lemma.

Lemma 1. If 𝑥
1
(0) > 0, 𝑥

2
(0) > 0, 𝑦(0) > 0, the solutions

𝑥
1
(𝑡), 𝑥
2
(𝑡), and 𝑦(𝑡) of system (3) are positive for all 𝑡 ≥ 0.

Proof. Under the given initial conditions, it is easy to prove
that the solutions of the system (3) are positive; if not, we ass-
ume a contradiction: that there exists a first time 𝑡

1
such that

𝑥
1
(𝑡
1
) = 0, 𝑥



1
(𝑡
1
) ≤ 0, 𝑥

2
(𝑡
1
) ≥ 0,

𝑦 (𝑡
1
) ≥ 0, 𝑥

2
(𝑡
1
) + 𝑦 (𝑡

1
) > 0,

𝑥
2
(𝑡) > 0, 𝑦 (𝑡) > 0,

𝑡 ∈ (0, 𝑡
1
) ;

(6)

there exists a 𝑡
2
, such that

𝑥
2
(𝑡
2
) = 0, 𝑥



2
(𝑡
2
) ≤ 0, 𝑥

1
(𝑡
2
) ≥ 0,

𝑦 (𝑡
2
) ≥ 0, 𝑥

1
(𝑡
2
) + 𝑦 (𝑡

2
) > 0,

𝑥
1
(𝑡) > 0, 𝑦 (𝑡) > 0,

𝑡 ∈ (0, 𝑡
2
) ;

(7)

there exists a 𝑡
3
, such that

𝑦 (𝑡
3
) = 0, 𝑦


(𝑡
3
) ≤ 0, 𝑥

1
(𝑡
3
) ≥ 0,

𝑥
2
(𝑡
3
) ≥ 0, 𝑥

1
(𝑡
3
) + 𝑥
2
(𝑡
3
) > 0,

𝑥
1 (𝑡) > 0, 𝑥

2 (𝑡) > 0,

𝑡 ∈ (0, 𝑡
3
) .

(8)

In the first case, we have

𝑥


1
(𝑡
1
) = 𝑞𝛽 (1 − 𝑥

2
) 𝑦 + 𝜌

2
𝑥
2
> 0, (9)

which is a contradiction meaning that 𝑥
1
(𝑡) > 0, 𝑡 ≥ 0.

In the second case, we have

𝑥


2
(𝑡
2
) = 𝛾𝑥

1
> 0, (10)

which is a contradiction meaning that 𝑥
2
(𝑡) > 0, 𝑡 ≥ 0.

In the third case, we have

𝑦

(𝑡
3
) = 𝛼
1
𝑥
1
+ 𝛼
2
𝑥
2
> 0, (11)

which is a contradiction meaning that 𝑦(𝑡) > 0, 𝑡 ≥ 0. Thus,
the solutions 𝑥

1
(𝑡), 𝑥

2
(𝑡), and 𝑦(𝑡) of system (3) remain

positive for all 𝑡 > 0.

3. Analysis of the Model

The model (3) has one disease-free equilibrium 𝐸
0
and one

endemic equilibrium 𝐸∗.

3.1. Disease-Free Equilibrium and the Basic Reproduction
Number. Themodel has a disease-free equilibrium given by

𝐸
0
= (0, 0, 0) . (12)
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In the following, the basic reproduction number of system
(3) will be obtained by the next generation matrix method
formulated in [17].

Let𝑋 = (𝑥
1
, 𝑥
2
, 𝑦)
𝑇, then system (3) can be written as

𝑑𝑋

𝑑𝑡
= F (𝑋) −V (𝑋) , (13)

where

F (𝑋) = (

𝑞𝛽 (1 − 𝑥
1
− 𝑥
2
) 𝑦

0

𝛼
1
(1 − 𝑦) 𝑥

1
+ 𝛼
2
(1 − 𝑦) 𝑥

2

) ,

V (𝑋) = (

−𝜌
2
𝑥
2
+ (𝛾 + 𝜇) 𝑥

1

−𝛾𝑥
1
+ (𝜌
1
+ 𝜌
2
+ 𝜇) 𝑥

2

𝜂𝑦

) .

(14)

The Jacobian matrices ofF(𝑋) andV(𝑋) at the disease-free
equilibrium 𝐸

0
are, respectively,

𝐷F (𝐸
0
) = (

0 0 𝑞𝛽

0 0 0

𝛼
1
𝛼
2
0

) ,

𝐷V (𝐸
0
) = (

𝛾 + 𝜇 −𝜌
2

0

−𝛾 𝜌
1
+ 𝜌
2
+ 𝜇 0

0 0 −𝜂

) .

(15)

The model reproduction number
denoted by 𝑅

0
is thus given by 𝑅

0
=

√𝑞𝛽[𝛼
1
(𝜌
1
+ 𝜌
2
+ 𝜇) + 𝛼

2
𝛾]/𝜂[(𝜇 + 𝛾)(𝜌

1
+ 𝜌
2
+ 𝜇) − 𝛾𝜌

2
].

Here 𝑅
0
is associated with disease transmission by infected

humans as well as the infection of susceptible humans by
infected mosquitoes. Susceptible mosquitoes acquire malaria
infection from infected humans in two ways, namely, by
infected or recoveries. Susceptible humans acquire infection
following effective contacts with infected mosquitoes.

3.2. Global Stability of 𝐸
0

Theorem 2. For system (3), the disease-free equilibrium 𝐸
0
is

locally asymptotically stable if 𝑅
0
< 1.

Proof. The linearised system (3) at the disease-free equilib-
rium is given by

𝑑𝑥
1

𝑑𝑡
= − (𝛾 + 𝜇) 𝑥

1
+ 𝜌
2
𝑥
2
+ 𝑞𝛽𝑦,

𝑑𝑥
2

𝑑𝑡
= 𝛾𝑥
1
− (𝜌
1
+ 𝜌
2
+ 𝜇) 𝑥

2
,

𝑑𝑦

𝑑𝑡
= 𝛼
1
𝑥
1
+ 𝛼
2
𝑥
2
− 𝜂𝑦.

(16)

Therefore, the characteristic equation is

𝜆
3
+ 𝐴
1
𝜆
2
+ 𝐴
2
𝜆 + 𝐴

3
(1 − 𝑅

2

0
) = 0. (17)

with 𝐴
1
= 𝛾 + 2𝜇 + 𝜌

1
+ 𝜌
2
+ 𝜂, 𝐴

2
= [(𝛾 + 𝜇)(𝜌

1
+ 𝜌
2
+ 𝜇)(1 +

𝜂) − 𝑞𝛽𝛼
1
], and 𝐴

3
= [(𝛾 + 𝜇)(𝜌

1
+ 𝜌
2
+ 𝜇) − 𝛾𝜌

2
]𝜂. We use

the Routh-Hurwitz criterion [18] to prove that when 𝑅
0
< 1,

all roots of (17) have negative real part. From (17), we see that
𝐻
1
= 𝛾 + 2𝜇 + 𝜌

1
+ 𝜌
2
+ 𝜂 > 0 and

𝐻
2
= 𝐴
1
𝐴
2
− 𝐴
3
(1 − 𝑅

2

0
)

= (𝛾 + 2𝜇 + 𝜌
1
+ 𝜌
2
+ 𝜂)

× [(𝛾 + 𝜇) (𝜌
1
+ 𝜌
2
+ 𝜇) − 𝛾𝜌

2
] (1 + 𝜂)

− 𝑞𝛽𝛼
1
− 𝜂 (𝛾 + 𝜇) (𝜌

1
+ 𝜌
2
+ 𝜇)

+ 𝜂𝛾𝜌
2
+ 𝑞𝛽 [𝛼

1
(𝜌
1
+ 𝜌
2
+ 𝜇) + 𝛼

2
𝛾] .

(18)

For ease of notation, we introduce 𝐵
1
= 𝛾 + 𝜇 and 𝐵

2
= 𝜌
1
+

𝜌
2
+ 𝜇, so that

𝐻
2
= (𝐵
1
+ 𝐵
2
) (𝐵
1
𝐵
2
− 𝛾𝜌
2
) + 𝜂 (𝐵

1
+ 𝐵
2
+ 𝜂)

× [1 −
(𝐵
1
+ 𝜂) 𝑞𝛽𝛼

1

𝜂 (𝐵
1
+ 𝐵
2
) (𝐵
1
+ 𝐵
2
+ 𝜂)

] + 𝑞𝛽𝛼
2
𝛾

≥ (𝐵
1
+ 𝐵
2
) (𝐵
1
𝐵
2
− 𝛾𝜌
2
) + 𝜂 (𝐵

1
+ 𝐵
2
+ 𝜂)

× [1 −
𝑞𝛽𝛼
1

𝜂 (𝐵
1
+ 𝐵
2
)
] + 𝑞𝛽𝛼

2
𝛾

≥ (𝐵
1
+ 𝐵
2
) (𝐵
1
𝐵
2
− 𝛾𝜌
2
) + 𝜂 (𝐵

1
+ 𝐵
2
+ 𝜂)

× [1 −
𝑞𝛽𝛼
1
𝐵
2
+ 𝑞𝛽𝛼

2
𝛾

𝜂 (𝐵
1
𝐵
2
+ 𝐵
2

2
)
] + 𝑞𝛽𝛼

2
𝛾

≥ (𝐵
1
+ 𝐵
2
) (𝐵
1
𝐵
2
− 𝛾𝜌
2
) + 𝜂 (𝐵

1
+ 𝐵
2
+ 𝜂)

× [1 −
𝑞𝛽𝛼
1
𝐵
2
+ 𝑞𝛽𝛼

2
𝛾

𝜂 (𝐵
1
𝐵
2
− 𝛾𝜌
2
)
] + 𝑞𝛽𝛼

2
𝛾

= (𝐵
1
+ 𝐵
2
) (𝐵
1
𝐵
2
− 𝛾𝜌
2
) + 𝜂 (𝐵

1
+ 𝐵
2
+ 𝜂)

× [1 − 𝑅
2

0
] + 𝑞𝛽𝛼

2
𝛾.

(19)

Thus, for 𝑅
0
< 1, 𝐻

2
> 0. Lastly, 𝐻

3
= 𝐻
2
𝐴
3
(1 − 𝑅

2

0
). Thus,

for 𝑅
0
< 1, all roots of (17) have negative real parts. The dis-

ease-free equilibriumpoint𝐸
0
, is locally asymptotically stable

if 𝑅
0
< 1.

In the following, we prove that when𝑅
0
≤ 1,𝐸

0
is globally

asymptotically stable inΩ.

Theorem 3. For system (3), the disease-free equilibrium 𝐸
0
is

globally asymptotically stable if 𝑅
0
≤ 1.

Proof. We introduce the following Lyapunov function [19,
20]:

𝑉 = 𝑎𝑥
1
+ 𝑏𝑥
2
+ 𝑐𝑦, (20)
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where 𝑎 = 𝛼
1
(𝜌
1
+𝜌
2
+𝜇)+𝛼

2
𝛾, 𝑏 = 𝛼

2
(𝛾 +𝜇) +𝛼

1
𝜌
2
, and 𝑐 =

(𝛾 + 𝜇)(𝜌
1
+ 𝜌
2
+ 𝜇) − 𝛾𝜌

2
. It is easy to see that 𝑎, 𝑏, and 𝑐 are

all positive. The derivative of 𝑉 is given by

𝑉 = 𝑎 ̇𝑥
1
+ 𝑏 ̇𝑥
2
+ 𝑐 ̇𝑦

= 𝑎 [𝑞𝛽 (1 − 𝑥
1
− 𝑥
2
) 𝑦 + 𝜌

2
𝑥
2
− (𝛾 + 𝜇) 𝑥

1
]

+ 𝑏 [𝛾𝑥
1
− (𝜌
1
+ 𝜌
2
+ 𝜇) 𝑥

2
]

+ 𝑐 [𝛼
1
(1 − 𝑦) 𝑥

1
+ 𝛼
2
(1 − 𝑦) 𝑥

2
− 𝜂𝑦]

= (𝑎𝑞𝛽 − 𝑐𝜂) 𝑦 − [𝑎 (𝛾 + 𝜇) − 𝑏𝛾 − 𝑐𝛼
1
] 𝑥
1

+ [𝑎𝜌
2
− 𝑏 (𝜌

1
+ 𝜌
2
+ 𝜇) + 𝑐𝛼

2
] 𝑥
2

− (𝑎𝑞𝛽 + 𝑐𝛼
1
) 𝑥
1
𝑦 − (𝑎𝑞𝛽 + 𝑐𝛼

2
) 𝑥
2
𝑦

= − (𝑎𝑞𝛽 + 𝑐𝛼
1
) 𝑥
1
𝑦 − (𝑎𝑞𝛽 + 𝑐𝛼

2
) 𝑥
2
𝑦

+

(𝑅
2

0
− 1) 𝑦

[(𝛾 + 𝜇) (𝜌
1
+ 𝜌
2
+ 𝜇) − 𝛾𝜌

2
] 𝜂
.

(21)

If 𝑅
0
≤ 1, then (𝑅2

0
− 1)/[(𝛾 + 𝜇)(𝜌

1
+ 𝜌
2
+ 𝜇) − 𝛾𝜌

2
]𝜂 ≤ 0.

As we know that −(𝑎𝑞𝛽 + 𝑐𝛼
1
) < 0 and −(𝑎𝑞𝛽 + 𝑐𝛼

2
) < 0,

so we obtain 𝑉 ≤ 0. Furthermore, 𝑉 = 0 only if 𝑦 = 0 or
𝑅
0
= 1. The maximum invariant set in {(𝑥

1
, 𝑥
2
, 𝑦) : 𝑉 = 0} is

the singleton 𝐸
0
. By LaSalle’s Invariance Principle [21], 𝐸

0
is

globally asymptotically stable in Ω.

3.3. Endemic Equilibrium

3.3.1. Existence of the Endemic Equilibrium

Theorem 4. If 𝑅
0
> 1, system (3) has a unique endemic equi-

librium 𝐸∗ = (𝑥∗
1
, 𝑥
∗

2
, 𝑦
∗
), where

𝑥
∗

1
= ( (𝜌

1
+ 𝜌
2
+ 𝜇) [(𝛾 + 𝜇) (𝜌

1
+ 𝜌
2
+ 𝜇) − 𝛾𝜌

2
]

×𝜂 (𝑅
2

0
− 1))

× ([(𝛾 + 𝜇) (𝜌
1
+ 𝜌
2
+ 𝜇) − 𝛾𝜌

2
]

× [𝛼
1
(𝜌
1
+ 𝜌
2
+ 𝜇) + 𝛼

2
𝛾]

+ (𝜌
1
+ 𝜌
2
+ 𝜇 + 𝛾))

−1
,

𝑥
∗

2
=

𝛾

𝜌
1
+ 𝜌
2
+ 𝜇
𝑥
1
,

𝑦
∗
=

[𝛼
1
(𝜌
1
+ 𝜌
2
+ 𝜇) + 𝛼

2
𝛾] 𝑥
1

[𝛼
1
(𝜌
1
+ 𝜌
2
+ 𝜇) + 𝛼

2
𝛾] 𝑥
1
+ 𝜂 (𝜌

1
+ 𝜌
2
+ 𝜇)

.

(22)

Proof. It follows from system (3) that

𝑞𝛽 (1 − 𝑥
∗

1
− 𝑥
∗

2
) 𝑦
∗
+ 𝜌
2
𝑥
∗

2
− (𝛾 + 𝜇) 𝑥

∗

1
= 0,

𝛾𝑥
∗

1
− (𝜌
1
+ 𝜌
2
+ 𝜇) 𝑥

∗

2
= 0,

𝛼
1
(1 − 𝑦

∗
) 𝑥
∗

1
+ 𝛼
2
(1 − 𝑦

∗
) 𝑥
∗

2
− 𝜂𝑦 = 0.

(23)

From the second equation of (23), we obtain

𝑥
∗

2
=

𝛾

𝜌
1
+ 𝜌
2
+ 𝜇
𝑥
∗

1
. (24)

Substituting 𝑥∗
2
into the third equation of (23), we have

𝑦
∗
=

[𝛼
1
(𝜌
1
+ 𝜌
2
+ 𝜇) + 𝛼

2
𝛾] 𝑥
∗

1

[𝛼
1
(𝜌
1
+ 𝜌
2
+ 𝜇) + 𝛼

2
𝛾] 𝑥
∗

1
+ 𝜂 (𝜌

1
+ 𝜌
2
+ 𝜇)

. (25)

Then substituting (24) and (25) into first equation of (23), we
get

𝑥
∗

1
= ( (𝜌

1
+ 𝜌
2
+ 𝜇) [(𝛾 + 𝜇) (𝜌

1
+ 𝜌
2
+ 𝜇) − 𝛾𝜌

2
]

×𝜂 (𝑅
2

0
− 1))

× ([(𝛾 + 𝜇) (𝜌
1
+ 𝜌
2
+ 𝜇) − 𝛾𝜌

2
]

× [𝛼
1
(𝜌
1
+ 𝜌
2
+ 𝜇) + 𝛼

2
𝛾]

+ (𝜌
1
+ 𝜌
2
+ 𝜇 + 𝛾))

−1
.

(26)

Hence, if 𝑅
0
≤ 1, there is no positive root of (26), while if

𝑅
0
> 1 there is one positive root.

3.3.2. Uniform Persistence of the Disease. We using the per-
sistence theory of dynamical system to show the uniform
persistence of the disease when 𝑅

0
> 1. Let 𝐸 be a closed pos-

itively invariant subset ofΩ, on which a continuous flowF is
defined. We denote the restriction F to 𝜕𝐸 by 𝜕F and note
that 𝜕𝐸 is in general not positively invariant. Let 𝑁 be the
maximal invariant set of 𝜕F on 𝜕𝐸. Suppose 𝑁 is a closed
invariant set and there exists a cover {𝑁

𝛼
}
𝛼∈𝐴

of𝑁, where𝐴 is
a nonempty index set.𝑁

𝛼
⊂ 𝜕𝐸,𝑁 ⊂ ⋃

𝛼∈𝐴
𝑁
𝛼
, and {𝑁

𝛼
}(𝛼 ∈

𝐴) are pairwise disjoint closed invariant sets. Furthermore,
we propose the following hypothesis and Lemma. (𝐻

1
) All

𝑁
𝛼
are isolated invariant sets of the flow F. (𝐻

2
), {𝑁
𝛼
}
𝛼∈𝐴

is acyclic; that is, any finite subset of {𝑁
𝛼
}
𝛼∈𝐴

does not form
a cycle. (𝐻

3
) Any compact subset of 𝜕𝐸 contains, at most,

finitely many sets of {𝑁
𝛼
}
𝛼∈𝐴

[22].

Lemma 5 (see [22,Theorem 4.3]). Let 𝐸 be a closed positively
invariant subset ofΩ on which a continuous flowF is defined.
Suppose there is a constant 𝜀 > 0 such that F is point dis-
sipative on 𝑆[𝜕𝐸, 𝜀]⋂𝐸0 and the assumption (𝐻

1
–𝐻
3
) holds.

Then the flow F is uniformly persistent, if and only if
𝑊
+
(𝑁
𝛼
)⋂ 𝑆[𝜕𝐸, 𝛼]⋂𝐸

0
= 𝜙. For any 𝛼 ∈ 𝐴, where

𝑊
+
(𝑁
𝛼
) = {𝑦 ∈ Ω, 𝜔(𝑦) ⊂ 𝑁

𝛼
}, 𝑆[𝜕𝐸, 𝜀] = {𝑥 : 𝑥 ∈

Ω, 𝑑(𝑥, 𝜕𝐸) ≤ 𝜀}, and 𝐸0 is interior of set 𝐸.

By this lemma, we can show the uniform persistence of
disease when 𝑅

0
> 1, and similar to the proof ofTheorem 2.3

in [13], we have the following.

Theorem6. In system (3), assume that𝑅
0
> 1, and the disease

is initially present, then the disease is uniformly persistent; that
is, there is a constant 𝑘 > 0 such that lim inf

𝑡→+∞
𝑥
1
(𝑡) ≥ 𝑘,

lim inf
𝑡→+∞

𝑥
2
(𝑡) ≥ 𝑘, and lim inf

𝑡→+∞
𝑦(𝑡) ≥ 𝑘.

Proof. We set 𝐸 = {(𝑥
1
, 𝑥
2
, 𝑦) ∈ R3

+
| 0 ≤ 𝑥

1
+ 𝑥
2
≤ 1, 0 ≤

𝑦 ≤ 1}, 𝜕𝐸 = {(𝑥
1
, 𝑥
2
, 𝑦) ∈ 𝐸 | 𝑥

1
= 0}; we will prove

below that the conditions of Lemma 5 are satisfied. Clearly
𝑁
𝛼
= 𝐸
0
= (0, 0, 0) is isolated. Hence, the covering is simply

𝑁 = 𝐸
0
, which is acyclic.Thus, the condition (𝐻

1
–𝐻
3
) holds.
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Figure 2: 𝑅
0
< 1, the disease-free equilibrium, 𝐸

0
, is globally asymptotically stable.

We also can obtain F is point dissipative by Lemma 1. Now
we show that𝑊+(𝐸

0
)⋂𝐸
0
= 𝜙; suppose this is not true, then

there exists a solution (𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑦(𝑡)) ∈ 𝐸

0 such that:
lim
𝑡→+∞

𝑥
1
(𝑡) = 0, lim

𝑡→+∞
𝑥
2
(𝑡) = 0, lim

𝑡→+∞
𝑦(𝑡) = 0.

For any sufficiently small constant 𝜀 > 0, there exists a
positive constant 𝑇 = 𝑇(𝜀) such that 𝑥

1
(𝑡) < 𝜀, 𝑥

2
(𝑡) <

𝜀, 𝑦(𝑡) < 𝜀, for all 𝑡 ≥ 𝑇.
Noting that

𝑑𝑥
1

𝑑𝑡
≥ − (𝛾 + 𝜇) 𝑥

1
+ 𝜌
2
𝑥
2
+ 𝑞𝛽𝑦,

𝑑𝑥
2

𝑑𝑡
= 𝛾𝑥
1
− (𝜌
+
𝜌
2
+ 𝜇) 𝑥

2
,

𝑑𝑦

𝑑𝑡
≥ 𝛼
1
𝑥
1
+ 𝛼
2
𝑥
2
− 𝜂𝑦.

(27)

Therefore, if 𝑥
1
, 𝑥
2
, 𝑦 → 0, as 𝑡 → ∞, then by a standard

comparison argument and the nonnegativity, the solution
𝑥
1
, 𝑥
2
, 𝑦 of

𝑑𝑥
1

𝑑𝑡
= − (𝛾 + 𝜇) 𝑥

1
+ 𝜌
2
𝑥
2
+ 𝑞𝛽𝑦,

𝑑𝑥
2

𝑑𝑡
= 𝛾𝑥
1
− (𝜌
+
𝜌
2
+ 𝜇) 𝑥

2
,

𝑑𝑦

𝑑𝑡
= 𝛼
1
𝑥
1
+ 𝛼
2
𝑥
2
− 𝜂𝑦,

(28)

with initial data 𝑥
1
(𝑇) = 𝑥

1
(𝑇), 𝑥

2
(𝑇) = 𝑥

2
(𝑇), 𝑦(𝑇) = 𝑦(𝑇),

converges to (0, 0, 0) as well. Thus lim𝑊(𝑡) = 0, where
𝑊(𝑡) > 0, is defined by

𝑑𝑊

𝑑𝑡
= 𝑘
1
[− (𝛾 + 𝜇) 𝑥

1
+ 𝜌
2
𝑥
2
+ 𝑞𝛽𝑦]

+ 𝑘
2
[𝛾𝑥
1
− (𝜌
+
𝜌
2
+ 𝜇) 𝑥

2
]

+𝑘
3
[𝛼
1
𝑥
1
+ 𝛼
2
𝑥
2
− 𝜂𝑦] .

(29)

Here, 𝑘
1
= 𝛼
1
(𝜌
1
+ 𝜌
2
+ 𝜇) + 𝛼

2
𝛾, 𝑘
2
= 𝛼
2
(𝛾 + 𝜇) + 𝜌

2
𝜌, 𝑘
3
=

(𝛾 + 𝜇)(𝜌
1
+ 𝜌
2
+ 𝜇) − 𝛾𝜌

2
. The derivative of𝑊(𝑡) is given by

𝑑𝑊

𝑑𝑡
= [(𝛾 + 𝜇) (𝜌

1
+ 𝜌
2
+ 𝜇) − 𝛾𝜌

2
] (𝑅
2

0
− 1) 𝑦 ≥ 0. (30)

Therefore,𝑊(𝑡) goes to either infinity or some positive num-
ber as 𝑡 → ∞, which is a contradiction to lim

𝑡→+∞
𝑊(𝑡) =

0. Thus, we have 𝑊+(𝐸
0
)⋂𝐸
0
= 𝜙. Then, we obtain

lim inf
𝑡→+∞

𝑥
1
(𝑡) ≥ 𝑘

1
, for some constant 𝑘

1
> 0. By the

second and third equations of (3) and the use of Lemma 1, we
have 𝑘

2
= 𝛾𝑘
1
/(𝜌
1
+ 𝜌
2
+ 𝜇), 𝑘

3
= (𝛼
1
𝑘
1
+ 𝛼
2
𝑘
2
)/𝜂, such that

lim inf
𝑡→+∞

𝑥
2
(𝑡) ≥ 𝑘

2
, lim inf

𝑡→+∞
𝑦(𝑡) ≥ 𝑘

3
. Denote 𝑘 =

min{𝑘
1
, 𝑘
2
, 𝑘
3
}, lim inf

𝑡→+∞
𝑥
1
(𝑡) ≥ 𝑘, lim inf

𝑡→+∞
𝑥
2
(𝑡) ≥

𝑘, lim inf
𝑡→+∞

𝑦(𝑡) ≥ 𝑘. Then the proof of Theorem 6 is
completed.

4. Numerical Simulation

To illustrate the analytical results obtained above, we give
some simulations using the parameter values in Table 2.
Numerical results are displayed in Figures 2–5. First, we
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Table 2: The parameters values of malaria model.

𝛼
1

From an infectious human to a susceptible mosquito, transmission rate in mosquitoes 0.8333 (day−1) [7]
𝛼
2

From a recovered human to a susceptible mosquito, transmission rate in mosquitoes 8.333 ∗ 10
−2 (day−1) [7]

𝛽 From an infectious mosquito to a susceptible human, transmission rate in humans 2.000 ∗ 10
−2 (day−1) [7]

𝑁 The total size of human population Estimated
𝑀 The total size of mosquito population 𝑞𝑁 [9]
𝜇 Natural birth and death rate of humans 1/70 (year−1) [9]
𝛾 Treatment rate 3.704 ∗ 10

−3 (day−1) [7]
𝜌
1

Recovery rate Estimated
𝜌
2

Relapse rate Estimated
𝜂 Natural birth and death rate of mosquitoes 0.1429 (day−1) [7]
𝑞 The number of mosquitoes per individual 1-2 [9]
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Figure 3: 𝑅
0
> 1, the disease is uniformly persistent.

choose 𝜌
2
= 0.004, 𝜌

1
= 0.0146, and 𝑞 = 1.5, numerical sim-

ulation gives 𝑅
0
= 0.6940 < 1, then the disease-free equilib-

rium 𝐸
0
is globally asymptotically stable (Figure 2). Second,

we choose 𝜌
2
= 0.04, 𝜌

1
= 0.0146, and 𝑞 = 1.5, numerical

simulation gives 𝑅
0
= 1.1254 > 1, the disease is uniformly

persistent (Figure 3).
Finally, for showing the effect of relapse and recover rate

to the basic reproduction number, we give the relation bet-
ween𝑅

0
and 𝜌
2
(Figure 4), and the relation between𝑅

0
and 𝜌
1

(Figure 5) in the numerical simulation. From Figures 4 and 5,
we know that 𝑅

0
is increasing with respect to the relapse rate,

while it is decreasing with respect to the recovery rate.

5. Discussion

An ordinary differential equation for the transmission of
malaria is formulated in this paper. The model exhibits two
equilibria, that is, the disease-free equilibrium and endemic
equilibrium. By constructing Lyapunov function and persis-
tence theory of dynamical system, it is shown that if 𝑅

0
≤ 1,

then the disease-free equilibrium point 𝐸
0
is globally stable,

and if 𝑅
0
> 1, the disease is uniformly persistent. Some num-

erical simulations for 𝑅
0
in terms of relapse rate and recover

rate are performed.𝑅
0
is increasingwith respect to the relapse

rate while it is decreasing with respect to the recovery rate.
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Our results strongly suggest that to control and eradicate the
malaria, it is very necessary for the government to decrease
the relapse rate and increase the recovery rate.
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An SIRS model incorporating a general nonlinear contact function is formulated and analyzed. When the basic reproduction
numberR

0
< 1, the disease-free equilibrium is locally asymptotically stable. There is a unique endemic equilibrium that is locally

asymptotically stable if R
0
> 1. Under some conditions, the endemic equilibrium is globally asymptotically stable. At last, we

conduct numerical simulations to illustrate some results which shed light on themedia report that may be the very effectivemethod
for infectious disease control.

1. Introduction

Media coverage has an enormous impact on the spread and
control of infectious diseases [1–6]. The paper [7] considered
that the evidence shows that, faced with lethal or novel
pathogens, people will change their behavior to try to reduce
their risk.

In [8], the authors studied the effect of media coverage on
the spreading of disease by using the following model:

𝑑𝑆 (𝑡)

𝑑𝑡
= Λ − 𝜇𝑆 −

(𝛽
1
− 𝛽
2
𝑓 (𝐼)) 𝑆𝐼

(𝑆 + 𝐼)
+ 𝛾𝐼,

𝑑𝐼 (𝑡)

𝑑𝑡
=
(𝛽
1
− 𝛽
2
𝑓 (𝐼)) 𝑆𝐼

(𝑆 + 𝐼)
− (𝜇 + 𝛼 + 𝛾) 𝐼,

(1)

where the authors proposed an 𝑆𝐼𝑆 model with the general
nonlinear contact function 𝛽(𝐼) = 𝛽

1
− 𝛽
2
𝑓(𝐼) and 𝛽

1

and 𝛽
2
are positive constants. Here, 𝛽

1
is the usual contact

rate without considering the infective individuals and 𝛽
2

is the maximum reduced contact rate due to the presence
of the infected individuals. Everyone cannot avoid contact
with others in every case so it is assumed 𝛽

1
> 𝛽
2
. When

infective individuals appear in a region, people reduce their
contact with others to avoid being infected when they are
aware of the potential danger of being infected, and the
more infective individuals being reported, the less contact the
susceptible will make with others. Therefore, it is assumed
that 𝑓(𝐼) ≥ 0. The limited power of the infection due to

contact is reflected by the saturating function lim
𝐼→∞

𝑓(𝐼) =

1. In summary, the functional 𝑓(𝐼) satisfies 𝑓(0) = 0, 𝑓(𝐼) ≥
0, lim

𝐼→∞
𝑓(𝐼) = 1.

In this paper, using the same contact function as [8], we
study an 𝑆𝐼𝑅𝑆model with media coverage. Let 𝑆(𝑡), 𝐼(𝑡), and
𝑅(𝑡) denote the number of susceptible individuals, infected
individuals, and recovered individuals at time 𝑡, respectively.
The ordinary differential equation with nonnegative initial
conditions is as follows:

𝑑𝑆 (𝑡)

𝑑𝑡
= Λ − 𝜇𝑆 − (𝛽

1
− 𝛽
2
𝑓 (𝐼)) 𝑆𝐼 + 𝜎𝑅,

𝑑𝐼 (𝑡)

𝑑𝑡
= (𝛽
1
− 𝛽
2
𝑓 (𝐼)) 𝑆𝐼 − (𝛼 + 𝜇 + 𝜆) 𝐼,

𝑑𝑅 (𝑡)

𝑑𝑡
= 𝜆𝐼 − (𝜇 + 𝜎) 𝑅.

(2)

Here, all the variables and parameters of the model are
nonnegative. Λ is the recruitment rate, 𝜇 represents the
natural death rate, 𝜎 is the loss of constant immunity rate, 𝛼
is the diseases induced constant death rate, and 𝜆 is constant
recovery rate.

We have 𝑑𝑆/𝑑𝑡|
𝑆=0,𝑅≥0

> 0, 𝑑𝐼/𝑑𝑡|
𝐼=0
= 0, 𝑑𝑅/𝑑𝑡|

𝑅=0,𝐼≥0
≥

0, and 𝑑(𝑆 + 𝐼 + 𝑅)/𝑑𝑡|
𝑆+𝐼+𝑅=Λ/𝜇

≤ 0. So,

Ω = {(𝑆, 𝐼, 𝑅) ∈ R
3

+
: 𝑆 + 𝐼 + 𝑅 ≤

Λ

𝜇
} (3)

is a positive invariant set of (2).
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2. The Existence of the Equilibria

It is easy to see that model (2) always has a disease-free
equilibrium 𝐸

0
= (𝑆
0
, 0, 0), where 𝑆

0
= Λ/𝜇. Let 𝑥 =

(𝐼, 𝑆, 𝑅)
⊤. Then model (2) can be written as

𝑑𝑥

𝑑𝑡
= F (𝑥) −V (𝑥) , (4)

where

F (𝑥) = (

(𝛽
1
− 𝛽
2
𝑓 (𝐼)) 𝑆𝐼

0

0

) ,

V (𝑥) = (

(𝛼 + 𝜇 + 𝜆) 𝐼

−Λ + 𝜇𝑆 + (𝛽
1
+ 𝛽
2
𝑓 (𝐼)) 𝑆𝐼 − 𝜎𝑅

−𝜆𝐼 + (𝜇 + 𝜎) 𝑅

) .

(5)

According to Theorem 2 in [9], the basic reproduction
number of model (2) is

R
0
=

𝛽
1
𝑆
0

𝛼 + 𝜇 + 𝜆
=

𝛽
1
Λ

𝜇 (𝛼 + 𝜇 + 𝜆)
. (6)

In the following, the existence and uniqueness of the
endemic equilibrium is established when R

0
> 1. The

components of the endemic equilibrium𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) satisfy

Λ − 𝜇𝑆
∗
− (𝛽
1
− 𝛽
2
𝑓 (𝐼
∗
)) 𝑆
∗
𝐼
∗
+ 𝜎𝑅
∗
= 0,

(𝛽
1
− 𝛽
2
𝑓 (𝐼
∗
)) 𝑆
∗
− (𝛼 + 𝜇 + 𝜆) = 0,

𝜆𝐼
∗
− (𝜇 + 𝜎) 𝑅

∗
= 0

(7)

which gives

𝑅
∗
=
𝜆𝐼
∗

𝜇 + 𝜎
, (8)

𝑆
∗
=

𝛼 + 𝜇 + 𝜆

𝛽
1
− 𝛽
2
𝑓 (𝐼
∗
)
, (9)

Λ − 𝜇𝑅
∗
− 𝜇𝑆
∗
− (𝜇 + 𝛼) 𝐼

∗
= 0. (10)

Substituting (8) and (9) into (10), we get 𝜙(𝐼∗) = 0, where

𝜙 (𝐼) = Λ −
𝜇𝜆𝐼

𝜇 + 𝜎
−
𝜇 (𝛼 + 𝜇 + 𝜆)

𝛽
1
− 𝛽
2
𝑓 (𝐼)

− (𝛼 + 𝜇) 𝐼. (11)

Hence, if an endemic equilibrium exists, its coordinate must
be a root of 𝜙(𝐼) = 0 in the interval 𝐼 ∈ (0, Λ/𝜇).

Note that

𝜙

(𝐼) = −

𝜇𝜆

𝜇 + 𝜎
−
𝛽
2
𝜇 (𝛼 + 𝜇 + 𝜆)𝑓


(𝐼)

(𝛽
1
− 𝛽
2
𝑓(𝐼))
2

− 𝛼 − 𝜇 < 0.

(12)

Hence, 𝜙(𝐼) is monotonically decreasing for 𝐼 > 0.
Besides,

𝜙(
Λ

𝜇
) = −

𝜆Λ

𝜇 + 𝜎
−
𝜇 (𝛼 + 𝜇 + 𝜆)

𝛽
1
− 𝛽
2
𝑓 (Λ/𝜇)

−
(𝛼 + 𝜇)Λ

𝜇
< 0,

𝜙 (0) =
𝜇 (𝛼 + 𝜇 + 𝜆) (R

0
− 1)

𝛽
1

.

(13)

Therefore, when R
0
> 1, 𝜙(0) > 0, 𝜙(𝐼) has unique positive

root 𝐼∗ in the interval 𝐼 ∈ (0, Λ/𝜇). 𝑆∗ and 𝑅∗ are uniquely
determined by 𝐼∗.Therefore, model (2) has a unique endemic
equilibrium 𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) if R

0
> 1. Otherwise, there is no

endemic equilibrium.

3. Stability of the Disease-Free Equilibrium

Theorem 1. The disease-free equilibrium 𝐸
0
is locally asymp-

totically stable forR
0
< 1 and unstable forR

0
> 1.

Proof . The Jacobian matrix of system (2) at𝑋 = 𝐸
0
is

𝐽 (𝐸
0
) = (

−𝜇
𝛽
1
Λ

𝜇
𝜎

0
𝛽
1
Λ

𝜇
− (𝛼 + 𝜇 + 𝜆) 0

0 𝜆 − (𝜇 + 𝜎)

) . (14)

The eigenvalues of the matrix 𝐽(𝐸
0
) are given by

𝜉
1
= −𝜇, 𝜉

2
=− (𝜇 + 𝜎) , 𝜉

3
= (𝛼 + 𝜇 + 𝜆) (R

0
− 1) .

(15)

If R
0
< 1, then 𝜉

3
< 0. Thus, using the Routh-Hurwitz

criterion, all eigenvalues of 𝐽(𝐸
0
) have negative real parts, and

𝐸
0
is locally asymptotically stable for system (2).

4. Stability of the Endemic Equilibrium

Theorem 2. IfR
0
> 1, 𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) is locally asymptotically

stable.

Proof. Let

𝐴 = (𝛽
1
− 𝛽
2
𝑓 (𝐼
∗
)) 𝐼
∗
> 0,

𝐵 = 𝛽
2
𝑓

(𝐼
∗
) 𝑆
∗
𝐼
∗
> 0.

(16)

The Jacobian matrix at 𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) is

𝐽 (𝐸
∗
) = (

−𝜇 − 𝐴 𝐵 − (𝛼 + 𝜇 + 𝜆) 𝜎

𝐴 −𝐵 0

0 𝜆 − (𝜇 + 𝜎)

) . (17)

The characteristic polynomial of the matrix 𝐽(𝐸∗) is given by

det (𝛿𝐼 − 𝐽 (𝐸∗)) = 𝑎
0
𝛿
3
+ 𝑎
1
𝛿
2
+ 𝑎
2
𝛿 + 𝑎
3
, (18)

where

𝑎
0
= 1,

𝑎
1
= 𝐴 + 𝐵 + 𝜎 + 2𝜇 > 0,

𝑎
2
= 2𝐵𝜇 + 𝜇𝜎 + 𝜇

2
+ 𝐵𝜎 + 𝐴𝜎 + 𝐴𝛼 + 𝐴𝜆

+ 2𝐴𝜇 > 0,
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𝑎
3
= 𝐴𝛼𝜎 + 𝐵𝜇

2
+ 𝐵𝜇𝜎 + 𝐴𝜇 (𝜇 + 𝜎 + 𝛼 + 𝜆) > 0,

𝑎
1
𝑎
2
− 𝑎
3
= 𝜎(𝐴 + 𝐵)

2
+ 𝐴𝜆𝜎 + 5𝐴𝜇𝜎 + 𝐴𝜇𝜆

+ 4𝐵𝜇𝜎 + 5𝐴𝐵𝜇 + 𝐴𝜇𝛼 + 4𝐵𝜇
2
+ 6𝐴𝜇

2
+ 2

⋅ 𝐵
2
𝜇 + 3𝐴

2
𝜇 + 𝜇𝜎

2
+ 3𝜎𝜇

2
+ 𝐵𝜎
2
+ 𝐴𝜎
2

+ 2𝜇
3
+ 𝐴𝐵𝛼 + 𝐴𝐵𝜆 + Φ

2
𝛼 + 𝐴

2
𝜆 > 0.

(19)

Thus, using Routh-Hurwitz criterion, all eigenvalues of 𝐽(𝐸∗)
have negative real parts which means 𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) is locally
asymptotically stable.

Theorem 3. If R
0
> 1, 𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) is globally asymptoti-

cally stable, provided that inequalities 𝜇 > 𝜎 and 𝜇 > 𝜆 hold
true.

In order to study the global stability of 𝐸∗(𝑆∗, 𝐼∗, 𝑅∗),
we use the geometrical approach which is developed in the
papers of Smith [10] and Li and Muldowney [11]. We obtain
simple sufficient conditions that 𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) is globally
asymptotically stable when R

0
> 1. At first, we give a brief

outline of this geometrical approach.
Let 𝑥 → 𝑓(𝑥) ∈ 𝑅

𝑛 be a 𝐶1 function for 𝑥 in an open set
𝐷 ∈ 𝑅

𝑛. Consider the differential equation

𝑥

= 𝑓 (𝑥) . (20)

Denote by 𝑥(𝑡, 𝑥
0
) the solution to (20) such that 𝑥(0, 𝑥

0
). We

make the following two assumptions.

(i) There exists a compact absorbing set 𝐾 ⊂ 𝐷.
(ii) Equation (20) has a unique equilibrium 𝑥 in𝐷.

The equilibrium 𝑥 is said to be globally stable in 𝐷 if it is
locally stable and all trajectories in𝐷 converge to 𝑥.

The following general global stability principle is estab-
lished in [11].

Let 𝑥 → 𝑃(𝑥) be an ( 𝑛2 )×( 𝑛2 )matrix-valued function that
is 𝐶1 for 𝑥 ∈ 𝐷. Assume that 𝑃−1(𝑥) exists and is continuous
for 𝑥 ∈ 𝐾, the compact absorbing set. A quantity 𝑞 is defined
as

𝑞 = lim sup
𝑡→∞

sup
𝑥∈𝐾

1

𝑡
∫

𝑡

0

𝜇 (𝑄 (𝑥 (𝑠, 𝑥
0
))) 𝑑𝑠, (21)

where

𝑄 = 𝑃
𝑓
𝑃
−1
+ 𝑃𝐽
[2]
𝑃
−1 (22)

and 𝐽[2] is the second additive compound matrix of the
Jacobianmatrix 𝐽.Thematrix𝑃

𝑓
is obtained by replacing each

entry 𝑝
𝑖𝑗
of 𝑃 by its derivative in the direction of 𝑓, 𝑝

𝑖𝑗
𝑓, and

𝜇(𝑄) is the Lozinskĭı measure of 𝑄 with respect to a vector
norm | ⋅ | in 𝑅𝑁 (where𝑁 = ( 𝑛2 )) defined by [12]

𝜇 (𝑄) = lim
ℎ→0

+

|𝐼 + ℎ𝑄| − 1

ℎ
. (23)

It is shown in [11] that, if𝐷 is simply connected, the condition
𝑞 < 0 rules out the presence of any orbit that gives rise to
a simple closed rectifiable curve that is invariant for (20),
such as periodic orbits, homoclinic orbits, and heteroclinic
cycles. As a consequence, the following global stability result
is proved inTheorem 3.5 of [11].

Lemma 4. Assume that 𝐷 is simply connected and that the
assumptions (i) and (ii) hold. Then, the unique equilibrium 𝑥
of (20) is globally asymptotically stable in 𝐷 if 𝑞 < 0.

We now apply Lemma 4 to proveTheorem 3.

Proof. The paper [13] showed that the existence of a compact
set which is absorbing in the interior of Ω is equivalent to
proving that (2) is uniformly persistent, which means that
there exits 𝑐 > 0 such that every solution (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)) of
(2) with (𝑆(0), 𝐼(0), 𝑅(0)) in the interiorΩ satisfies

lim inf
𝑡→∞

|(𝑆 (𝑡) , 𝐼 (𝑡) , 𝑅 (𝑡))| ≥ 𝑐. (24)

In fact, when R
0
> 1, then 𝐸

0
is unstable. The instability of

𝐸
0
, together with 𝐸

0
∈ 𝜕Ω, implies the uniform persistence

[14].Thus, (i) is verified.Moreover, as previously shown,𝐸∗ is
the only equilibrium in the interior ofΩ, so that (ii) is verified,
too. Let 𝑥 = (𝑆, 𝐼, 𝑅) and 𝑓(𝑥) denote the vector field of (2).
The Jacobian matrix 𝐽 = 𝜕𝑓/𝜕𝑥 associated with a general
solution 𝑥(𝑡) of (2) is

𝐽 = (

−𝜇 − Φ Ψ − (𝛼 + 𝜇 + 𝜆) 𝜎

Φ −Ψ 0

0 𝜆 − (𝜇 + 𝜎)

) , (25)

where

Φ = (𝛽
1
− 𝛽
2
𝑓 (𝐼)) 𝐼 > 0,

Ψ = 𝛽
2
𝑓

(𝐼) 𝑆𝐼 > 0,

(26)

and its second additive compound matrix 𝐽[2] is

𝐽
[2]
= (

−𝜇 − Φ − Ψ 0 −𝜎

𝜆 −Φ − 2𝜇 − 𝜎 Ψ − (𝛼 + 𝜇 + 𝜆)

0 Φ −Ψ − 𝜇 − 𝜎

) .

(27)

Set the function 𝑃(𝑥) = 𝑃(𝑆, 𝐼, 𝑅) = diag{𝐼/𝑅, 𝐼/𝑅, 𝐼/𝑅}; then

𝑃
𝑓
𝑃
−1
= diag{𝐼



𝐼
−
𝑅


𝑅
,
𝐼


𝐼
−
𝑅


𝑅
,
𝐼


𝐼
−
𝑅


𝑅
} , (28)

and the matrix 𝑄 = 𝑃
𝑓
𝑃
−1
+ 𝑃𝐽
[2]
𝑃
−1 can be written in block

form

𝑄 = (
𝑄
11
𝑄
12

𝑄
21
𝑄
22

) , (29)
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Figure 1: The tendency of the infected population varies. The solid line represents the case when 𝛽
2
= 0.0018, and the dashed line represents

the case when 𝛽
2
= 0.
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Figure 2: Variation of the number of infected under different Λ.
The solid line represents the case when Λ = 5, and the dashed line
represents the case when Λ = 2.

where

𝑄
11
= −

𝑅


𝑅
− 𝜇 − Φ − Ψ,

𝑄
12
= (0, −𝜎) ,

𝑄
21
= (
𝜆

0
) ,

𝑄
22
= (

𝐼


𝐼
−
𝑅


𝑅
− Φ − 2𝜇 − 𝜎 Ψ − 𝛼 − 𝜇 − 𝜆

Φ
𝐼


𝐼
−
𝑅


𝑅
− Ψ − 𝜇 − 𝜎

) .

(30)

The vector norm | ⋅ | in𝑅3 ≅ 𝑅(
3

2
) is chosen as |(𝑢, V, 𝑤)| =

sup{|𝑢|, |V| + |𝑤|} and let 𝜇(⋅) be the Lozinskĭı measure with
respect to this norm. Following the method in [15], we have

𝜇 (𝑄) ≤ sup {𝑔
1
, 𝑔
2
} , (31)

where

𝑔
1
= 𝜇
1
(𝑄
11
) +
𝑄12

 ,

𝑔
2
= 𝜇
1
(𝑄
22
) +
𝑄21

 .

(32)

|𝑄
12
| and |𝑄

21
| being the matrix norm with respect to the 𝑙

1

vector norm. More specifically,

𝜇
1
(𝑄
11
) = −

𝑅


𝑅
− 𝜇 − Φ − Ψ,

𝑄12
 = 𝜎,

𝑄21
 = 𝜆.

(33)

To calculate 𝜇
1
(𝑄
22
), add the absolute value of the off-

diagonal elements to the diagonal one in each column of 𝑄
22

and then take the maximum of two sums. We thus obtain

𝜇
1
(𝑄
22
) =

𝐼


𝐼
−
𝑅


𝑅
− 2𝜇 − 𝜎. (34)

Therefore, we have

𝑔
1
= 𝜇
1
(𝑄
11
) +
𝑄12

 = 𝜎 −
𝑅


𝑅
− 𝜇 − Φ − Ψ,

𝑔
2
= 𝜇
1
(𝑄
22
) +
𝑄21

 = 𝜆 +
𝐼


𝐼
−
𝑅


𝑅
− 2𝜇 − 𝜎.

(35)

This leads to

𝜇 (𝑄) ≤
𝐼


𝐼
− 𝜇 +max {𝜎, 𝜆} . (36)
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Table 1: Parameters for the simulation.

Figure Parameter values
Λ 𝜇 𝛽

1
𝛽
2

𝛼 𝜆 𝜎

Figure 1(a) 5 0.02 0.002 0.0018, 0 0.1 0.05 0.01
Figure 1(b) 5 0.2 0.002 0.0018, 0 0.1 0.05 0.01
Figure 2 5, 2 0.02 0.002 0.0018 0.1 0.05 0.01
Figure 3 5 0.02 0.002 0.0018 0.1 0.05, 0.5 0.01

We can deduce that if

𝜇 > 𝜎,

𝜇 > 𝜆

(37)

hold, then

𝜇 (𝑄) ≤
𝐼


𝐼
− 𝑑, (38)

where

𝑑 = min {𝜇 − 𝜎, 𝜇 − 𝜆} > 0. (39)

Along each solution (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)) of system (2) for which
(𝑆(0), 𝐼(0), 𝑅(0)) ∈ Ω, we have

𝑞 = lim sup
𝑡→∞

sup
𝑥
0
∈Ω

1

𝑡
∫

𝑡

0

𝜇 (𝑄 (𝑥 (𝑠, 𝑥
0
))) 𝑑𝑠

≤ −
𝑑

2
< 0.

(40)

According to Lemma 4, ifR
0
> 1, then the endemic equilib-

rium 𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝑅
∗
) of system (2) is globally asymptotically

stable inΩ.

5. Simulation Study and Discussion

To complement the mathematical analysis carried out in the
previous section, using the Runge-Kutta method, we now
investigate some numerical properties of (2). Choose 𝑓(𝐼) =
𝐼/(𝑏 + 𝐼), 𝑏 > 0, and 𝑏 reflects the reactive velocity of people
and media coverage to the disease. Related parameter values
are listed in Table 1.

Figure 1(a) shows that, whenR
0
= 2.941 > 1, the number

of infected individuals is asymptotically stable, and themedia
coverage is beneficial to decrease the number of infected
individuals. Figure 1(b) shows that, when R

0
= 0.029 < 1,

the number of infected individuals tends to zero point, and
the media coverage can quicken the extinction of infectious
disease.

Furthermore, the analysis of the impact of related param-
eters on the infectious disease progression is fairly important.
From the definition ofR

0
, it can be seen that

𝜕R
0

𝜕Λ
=

𝛽
1

𝜇 (𝛼 + 𝜇 + 𝜆)
> 0,

𝜕R
0

𝜕𝜆
= −

𝛽
1
Λ

𝜇(𝛼 + 𝜇 + 𝜆)
2
< 0.

(41)
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Figure 3: Variation of the number of infected under different 𝜆.The
solid line represents the case when 𝜆 = 0.05, and the dashed line
represents the case when 𝜆 = 0.5.

Hence,R
0
is an increasing function of Λ and is a decreasing

function of 𝜆. The mathematical results show that the basic
reproduction number R

0
satisfies a threshold property.

When R
0
< 1, it has been proved that the disease-

free equilibrium 𝐸
0
is locally asymptotically stable, and the

diseases will be eliminated from the community. And, when
R
0
> 1, the unique endemic equilibrium 𝐸

∗ is globally
asymptotically stable, and the diseases persist. This shows
that R

0
reduces to a value less than unity by reducing Λ or

increasing 𝜆, so as to control the spread of infectious diseases.
From Figure 2, we can find that the number of infected

individuals decreases as the recruitment rate (Λ) decreases.
Organized measures such as limitation of travel, closure
of public places, or isolation are beneficial to lessen the
recruitment rate to control the spreading of infectious dis-
eases. Figure 3 reveals that the number of infected individuals
decreases as the recovery rate (𝜆) increases. So timely and
effective treatment is regarded as one good method in
managing infectious diseases.

Based on the obtained results, we can get that media
coverage has an effective impact on the control and spread of
infectious diseases. It is hoped that these control strategies we
considered may offer some useful suggestions for authorities.
In addition, we can generalize the current model by incorpo-
rating some control methods, such as isolation and treatment
strategies. A more realistic model deserves to be considered.
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To study the relationship between antimicrobial resistance and the concentration of antibiotics, a competitive population dynamical
model is proposed between the susceptible strain and the resistant strain with antibiotic exposure.The strict mathematical analysis
is performed, and the results indicate that long-term high strength antibiotic treatment and prevention can induce the extinction
of susceptible strain.Thus, the prescribed dose of antibiotics must be strictly controlled during the treatment and prevention of the
infections in clinics.

1. Introduction

It was thought that the war against infectious diseases has
been won in the initial stages of the discovery of antibiotics
and their widespread introduction [1]. However, during the
multiplication process of bacteria, there are high degrees of
individuality or phenotypic heterogeneity in populations of
genetically identical cells [2–5]. As a result of the cell-to-cell
variation, a high probability of the selection of antimicrobial
resistance is particularly prone to occur. Thus, the overuse of
antibiotic therapy may result in the prevalence of antibiotic-
resistant bacteria and an apparently inexorable advent of
a postantibiotic era or a super wicked challenge [6–9]. In
fact, antimicrobial resistance has now become an unfolding
catastrophe [1] and the new strategy and action plan has
been proposed by the Department of Health in the United
Kingdom [9].

To extend the life of existing antibiotics, it is necessary
to analyze the molecular mechanism of antibiotic resistance
and strategize about slowdown and avoid antibiotic resis-
tance during anti-infective therapy. In the process numerous
research articles have highlighted that bothmolecular biology
and computational biology, including mathematical mod-
eling, are vitally important methods [5, 10–15]. Especially,
recent biological study has confirmed that the signaling

nucleotide (p)ppGpp can control bacterial persistence by
stochastic induction of toxin-antitoxin activity, and there is
a special resistant strain, which can switch into slow growth
through the changes of (p)ppGpp level in high antibiotic
concentration [5]. However, under different concentrations
of antibiotic, the long-term competitive ending between the
susceptible strain and the resistant strain remains unknown.

In this paper, based on the above mentioned mechanism
of bacterial antibiotic resistance within the host, a compet-
itive population dynamical model is proposed to explore
the competitive interactions between the susceptible strain
and the resistant strain with antibiotic exposure. The focus
is the relationship between antibiotic resistance and the
concentration of antibiotics, which may be added to the host
by injection, orally, or by transfusion.The organization of this
paper is as follows. In the next section, the proposed model is
described and the global dynamics is obtained. In Section 3,
some numerical simulations are performed. Finally, a brief
discussion is given to conclude this work.

2. Model and Its Dynamical Behaviors

2.1. Description of the Model. According to the pharmacoki-
netic, we know that the concentration of the drugwithin-host

Hindawi Publishing Corporation
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will tend to be approximately constant after multiple dosing.
Thus, it is reasonable to assume that the plasma concentration
of the antibiotics is a constant, which is denoted as 𝑆

0
. In

addition, let 𝑥(𝑡) be the number of susceptible strains, and let
𝑦(𝑡) be the number of resistant strains at time 𝑡, respectively.
The following differential equations can be used to describe
the basic dynamics of the interaction between 𝑥(𝑡) and 𝑦(𝑡):

d𝑥 (𝑡)
d𝑡
= 𝑥 (𝑡) (𝑟1 − 𝛿11𝑥 (𝑡) − 𝛿12𝑦 (𝑡) − 𝛽𝑆0) ≜ 𝐹1 (𝑥, 𝑦) ,

d𝑦 (𝑡)
d𝑡
= 𝑦 (𝑡) (𝑟

2
𝑒
−𝜇𝑆
0 − 𝛿
21
𝑥 (𝑡) − 𝛿

22
𝑦 (𝑡)) ≜ 𝐹

2
(𝑥, 𝑦) ,

(1)

where the natural growth rates and death rates of susceptible
strain and resistant strain are 𝑟

1
, 𝑟
2
, 𝛿
11
𝑥(𝑡), and 𝛿

22
𝑦(𝑡),

respectively. Parameter 𝛽 is the coefficient of the effect of
destroying susceptible bacteria by antibiotics, and function
𝑒
−𝜇𝑆
0 denotes the decline of growth rate of resistant strain

by the signaling nucleotide (p)ppGpp. For biological consis-
tency, all parameters are positive constants, 𝑟

1
> 𝛽𝑆
0
and the

initial values of system (1) are 𝑥(0) > 0 and 𝑦(0) > 0.

2.2. Mathematical Analysis. Because of the biological mean-
ing of the components (𝑥(𝑡), 𝑦(𝑡)), we focus on the model in
the first octant of R2. To study the dynamics of system (1),
we first show that that model (1) is biologically well behaved
and dissipative; that is, all solutions of model (1) in R2

+
are

ultimately bounded and the solutions with positive initial
values are positive.

Theorem 1. Under the given initial conditions, all solutions of
system (1) are positive and system (1) is dissipative.

This theorem is clear to be seen, thus, the detailed proof
is omitted for the sake of simplicity.

In order to obtain the global dynamics of system (1), we
first have the following result regarding the nonexistence of
periodic orbits in system (1).

Theorem 2. System (1) does not have nontrivial periodic
orbits.

Proof. Consider system (1) for 𝑥 > 0 and 𝑦 > 0. Take a Dulac
function:

𝐷(𝑥, 𝑦) =
1

𝑥𝑦
. (2)

We have

𝜕𝐷 (𝑥, 𝑦) 𝐹
1
(𝑥, 𝑦)

𝜕𝑥
+
𝜕𝐷 (𝑥, 𝑦) 𝐹

2
(𝑥, 𝑦)

𝜕𝑦
= −
𝛿
11

𝑦
−
𝛿
22

𝑥
< 0.

(3)

The conclusion follows from Dulac criterion [16, 17].

We now consider the existence of equilibria of system (1).
Let𝐹
1
(𝑥, 𝑦) = 0 and let𝐹

2
(𝑥, 𝑦) = 0. Clearly, when the plasma

concentration of the antibiotics 𝑆
0
< 𝑟
1
/𝛽, model (1) always

has three equilibria: one is 𝐸
0
= (0, 0), meaning that both

bacteria become extinct and the others are 𝐸
1
= (𝑥
1
, 0) and

𝐸
2
= (0, 𝑦

2
), in which

𝑥
1
=
𝑟
1
− 𝛽𝑆
0

𝛿
11

, 𝑦
2
=
𝑟
2
𝑒
−𝜇𝑆
0

𝛿
22

, (4)

which are corresponding to the extinction of resistant strain
and susceptible strain, respectively. Furthermore, we have
the positive equilibrium 𝐸

+
= (𝑥
∗
, 𝑦
∗
), corresponding to

coexistence of susceptible strain and resistant strain, that is
given by intersections of the zero growth isoclines:

𝑙
1
: 𝑟
1
− 𝛿
11
𝑥 (𝑡) − 𝛿12𝑦 (𝑡) − 𝛽𝑆0 = 0,

𝑙
2
: 𝑟
2
𝑒
−𝜇𝑆
0 − 𝛿
21
𝑥 (𝑡) − 𝛿

22
𝑦 (𝑡) = 0.

(5)

Apparently, the isoclines 𝑙
1
and 𝑙
2
pass through the points

𝐸
1
, (0, 𝑦
1
) and (𝑥

2
, 0), 𝐸

2
, respectively. Here

𝑦
1
=
𝑟
1
− 𝛽𝑆
0

𝛿
11

, 𝑥
2
=
𝑟
2
𝑒
−𝜇𝑆
0

𝛿
21

. (6)

According to the position relation between 𝑙
1
and 𝑙
2
, we know

that there are four cases (Figure 1) depending on the size of
parameters 𝐴

1
, 𝐴
2
, 𝐴
3
, and 𝐴

4
, in which

𝐴
1
= 𝑟
2
𝛿
12
𝑒
−𝜇𝑆
0 + 𝛽𝛿

22
𝑆
0
, 𝐴

2
= 𝑟
1
𝛿
22
,

𝐴
3
= 𝑟
2
𝛿
11
𝑒
−𝜇𝑆
0 + 𝛽𝛿

21
𝑆
0
, 𝐴

4
= 𝑟
1
𝛿
21
.

(7)

The object of the next analysis is to study the asymptotical
stabilizability of the equilibria. Since 𝑙

1
and 𝑙
2
are the isoclines

of system (1), 𝑙
1
and 𝑙
2
divide the first octant into several

subregions, and the derivative of 𝑥 and 𝑦 keeps a fixed sign
in each subregion as indicated in Figure 1. By the combina-
tion of Theorem 1, Theorem 2, and the Poincaré-Bendixson
theorem, with the help of the fixed sign in each subregion
(Figure 1), we have the complete dynamical behaviors of
system (1), which is summarized in Table 1.

3. Simulations

FromTable 1, we know that equilibrium𝐸
2
is globally asymp-

totically stable in the case of (IV); that is, the susceptible
strain will extinct and the resistant strain will persist, which
means that antimicrobial resistance occurs. What is the
relationship between the concentration of antibiotics and
the phenomenon of antimicrobial resistance? In this section,
we will give some qualitative analyses from a numerical
simulation standpoint.

Let

𝑟
1
= 1.5, 𝑟

2
= 3.5, 𝛿

11
= 2.0,

𝛿
22
= 12.0, 𝛽 = 1.0, 𝜇 = 0.5.

(8)

When 𝛿
12
= 4.0 and 𝛿

21
= 3.0, if there is no antibiotics,

that is, 𝑆
0
= 0, after a simple calculation, we have 𝐴

1
< 𝐴
2

and 𝐴
3
> 𝐴
4
. Thus, Case (I) occurs (Figure 2(a)). Increasing
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Table 1: Dynamical behaviors of system (1).

Case Conditions Dynamics
I 𝐴

1
< 𝐴
2
and 𝐴

3
> 𝐴
4 𝐸

0
, 𝐸
1
, and 𝐸

2
are unstable, and 𝐸

+
is globally asymptotically stable

II 𝐴
1
> 𝐴
2
and 𝐴

3
< 𝐴
4

𝐸
0
and 𝐸

+
are unstable; 𝐸

1
and 𝐸

2
are locally stable dependent on the

initial conditions
III 𝐴

1
< 𝐴
2
and 𝐴

3
< 𝐴
4 𝐸

0
and 𝐸

2
are unstable, and 𝐸

1
is globally asymptotically stable

IV 𝐴
1
> 𝐴
2
and 𝐴

3
> 𝐴
4 𝐸

0
and 𝐸

1
are unstable, and 𝐸

2
is globally asymptotically stable

O
x

y

y2

y1

E0 E1

E2 E+

x2x1

(−, +)

(−, −)(+, −)

(+, +)

I

(a)

O

y

y1

y2

E0 E1

E2

E+

xx1x2

(−, +) (−, −)

(+, −)
(+, +)

II

(b)

y

O

y

y2

1

E0 E1

E2

xx1x2

(−, −)
(+, −)

(+, +)

III

(c)

O

y

y1

y2

E0 E1

E2

xx2x1

(−, +)

(−, −)

(+, +)

IV

(d)

Figure 1: Illustration of the equilibria and the vector field of system (1). (I) 𝐴
1
< 𝐴
2
and 𝐴

3
> 𝐴
4
; (II) 𝐴

1
> 𝐴
2
and 𝐴

3
< 𝐴
4
; (III) 𝐴

1
< 𝐴
2

and 𝐴
3
< 𝐴
4
; (IV) 𝐴

1
> 𝐴
2
and 𝐴

3
> 𝐴
4
. Each equilibrium is represented by a closed cycle (∙), and the sign of the derivative of 𝑥, 𝑦 in each

subregion is denoted by (𝑎, 𝑏), where 𝑎 is the sign of the derivative of 𝑥 and 𝑏 is the sign of the derivative of 𝑦. Note that the expressions of
𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
, 𝐴
1
, 𝐴
2
, 𝐴
3
, and 𝐴

4
are shown in (4), (6), and (7).

the concentration of antibiotics, 𝑆
0
= 0.1, the inequalities

remain valid. However, when the concentration of antibiotics
increase to 𝑆

0
= 0.9, we find that the inequalities become

𝐴
1
> 𝐴
2
, 𝐴
3
> 𝐴
4
, and Case (IV) occurs, which is

also shown in Figure 2(a). Thereby long-term high strength
antibiotic treatment and prevention can induce the extinction
of susceptible strain and accelerate the phenomenon of
antimicrobial resistance.

By changing the parameter 𝛿
21

to 6.0, because 𝐴
1
<

𝐴
2
and 𝐴

3
< 𝐴
4
are valid, we can obtain the extinction

of resistant strain and persistence of susceptible strain if
there is no antibiotics or low strength antibiotic treatment
(Figure 2(b), Case (III) in Table 1). Similarly, when there is a
high strength antibiotic treatment, 𝑆

0
= 0.9, the inequalities

change to 𝐴
1
> 𝐴
2
and 𝐴

3
> 𝐴
4
(Case (IV) in Table 1) and

the simulated time series is shown in Figure 2(b). Thus, the
serious consequences of the abuse of antibiotic were proved
afresh during the treatment and prevention of the infections.

Holding 𝛿
21
= 6.0 and changing the parameter 𝛿

12
to 5.5,

the inequalities 𝐴
1
> 𝐴
2
and 𝐴

3
< 𝐴
4
are valid if 𝑆

0
= 0.0

or 𝑆
0
= 0.1 (Case (II) in Table 1). Thus, both extinction and

persistence of the resistant strain may happen in course of

the competition because 𝐸
1
and 𝐸

2
are locally stable depen-

dent on the initial conditions (Figures 2(c) and 2(d)). How-
ever, when the concentration of antibiotics increase to 𝑆

0
=

0.9, the resistant strain is survived since the inequalities
change to 𝐴

1
> 𝐴
2
and 𝐴

3
> 𝐴
4
(Case (IV) in Table 1) and

the equilibrium 𝐸
2
is globally asymptotically stable (Figures

2(c) and 2(d)), which alsomeans that it is necessary to control
the dose of antibiotics. Otherwise, antimicrobial resistance
will occur.

4. Discussion

According to the latest mechanism of bacterial antibiotic
resistance within the host [5], a competitive population
model (1) between the susceptible strain and resistant strain
is proposed under the circumstance of antibiotic exposure.
Based on the global dynamics of system (1), the relationship
is explored between antimicrobial resistance and the concen-
tration of antibiotics by numerical simulations. The results
indicate that the resistant strain will ultimately survive along
with the long-term high strength antibiotic treatment and
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Figure 2: Time series of the susceptible strain (𝑥(𝑡)) and resistant strain (𝑦(𝑡)) within host as predicted by the model (1). 𝛿
12
= 4.0 and

𝛿
21
= 3.0 in (a); 𝛿

12
= 4.0 and 𝛿

21
= 6.0 in (b); 𝛿

12
= 5.5 and 𝛿

21
= 6.0 in (c) and (d). The initial condition is (𝑥(0), 𝑦(0)) = (0.8, 0.2) in (a),

(b), and (c), and (𝑥(0), 𝑦(0)) = (0.2, 0.8) in (d). Other parameters are shown in (8).

prevention, which has been found in many recurrent and
chronic infections [18–20].

Note that the assumption that infections can be prevented
or treated has become the backbone of the whole modern
healthcare [1].Thus, resistance is not just an infectious disease
issue, it is also a surgical issue, a cancer issue, and a health
system issue [1]. Antimicrobial prescribing needs to be more
evidence based and more efficiently targeted [9]. In particu-
lar, in order to inhibit or decelerate resistance to antibiotics,
the prescribed dose of antibiotics must be strictly controlled
during the treatment and prevention of the infections in

clinics. Otherwise, a postantibiotic era or a super wicked
challenge is likely to occur [6–9]. Though the risk-benefit
balance for antibiotic prescribing is becoming even more
complex [9],mathematicalmodelingmay be a useful research
tool because it can involve and integrate a wide range of
subjects, including biology, medicine, and economics.
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An SIR epidemic model with nonlinear incidence rate and time delay is investigated. The disease transmission function and the
rate that infected individuals recovered from the infected compartment are assumed to be governed by general functions 𝐹(𝑆, 𝐼)
and 𝐺(𝐼), respectively. By constructing Lyapunov functionals and using the Lyapunov-LaSalle invariance principle, the global
asymptotic stability of the disease-free equilibrium and the endemic equilibrium is obtained. It is shown that the global properties
of the system depend on both the properties of these general functions and the basic reproductive number 𝑅

0
.

1. Introduction

The mechanism of transmission is usually qualitatively
known for most diseases from epidemiological point of
view. For modeling the spread process of infectious diseases
mathematically and quantitatively, many classical epidemic
models have been proposed and studied, such as SIR, SIS,
SEIR, and SIRSmodels. Recently, considerable attention have
been paid to study the dynamics of epidemic models with
epidemiological meaningful time delays.

The fundamental assumption in epidemic models is that
the population can be divided into distinct groups. The
most common groups are the susceptible (𝑆) which contains
individuals that may be infected by the disease; the infected
(𝐼) which contains individuals that are already infected and
can spread the disease to susceptible individuals; the removed
(𝑅) which contains individuals that have the immunity and
cannot be infected. Therefore such models are referred to
SIR models. The simplest forms of these models are ordinary
differential equations (ODEs).

It is well known that the disease transmission progress
plays an important role in the epidemic dynamics; that is,
applying different incidence rates can potentially change the
behaviors of the system. In many epidemic models, following
incidence functions with delay or without delay are widely
used in different epidemiological backgrounds.

(1) The bilinear incidence rate 𝛽𝑆𝐼 (e.g., [1–8]), where
𝛽 is the average number of contacts per infected
individual per day.

(2) The standard incidence rate 𝛽𝑆𝐼/𝑁 ([9–12]), where
𝑁 = 𝑆 + 𝐼 + 𝑅.

(3) The Holling type incidence rate of the form 𝛽𝑆𝐼/(1 +

𝛼
1
𝑆) ([13–15]), where 𝛼

1
is a positive constant.

(4) The saturated incidence rate of the form 𝛽𝑆𝐼/(1+𝛼
2
𝐼)

([16–21]), where 𝛼
2
is a positive constant.

(5) The saturated incidence rate of the form𝛽𝑆𝐼/(1+𝛼
1
𝑆+

𝛼
2
𝐼) ([22–25]), where 𝛼

1
, 𝛼
2
is a positive constant.

The bilinear incidence rate in (1) is based on the law of
mass action, which is more appropriate for communicable
diseases, such as influenza, but not suitable for sexually
transmitted diseases. It has been pointed out that standard
incidence rate in (2) may be a good approximation when the
number of available partners is large enough and everybody
could notmakemore contacts than that is practically feasible.
In fact, the infection probability per contact is likely influ-
enced by the number of infective individuals, because more
infective individuals can increase the infection risk.

In the incidence rates in (3) and (4), 𝛽𝑆𝐼 measures the
infection force of the disease and 1/(1 + 𝛼

1
𝑆), 1/(1 + 𝛼

2
𝐼)

measure the inhibition effect from the behavioral changes of
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the susceptible individuals when their number increases or
from the crowding effect of the infective individuals. In these
incidence rates, the number of effective contacts between
infectived and susceptible individuals may saturate at high
infective levels. These incidence rates seem more reasonable
than the bilinear incidence rate 𝛽𝑆𝐼, because they include the
behavioral changes of susceptible individuals and crowding
effect of the infective individuals which prevent the unbound-
edness of the contact rate by choosing suitable parameters.

Obviously, the incidence rate in (5) includes the former
three incidence rates: the bilinear incidence rate 𝛽𝑆𝐼 (when
𝛼
1
= 0, 𝛼

2
= 0), the Holling type incidence rate 𝛽𝑆𝐼/(1 +𝛼

1
𝑆)

(when 𝛼
2
= 0), and the saturated incidence rate 𝛽𝑆𝐼/(1+𝛼

2
𝐼)

(when 𝛼
1
= 0).

The incidence rate can also be modeled by many other
kinds of more general functions. It is interesting that whether
the functional form of the incidence rate can change the
epidemic dynamics or not. Korobeinikov studied the global
properties for epidemiologicalmodels with various nonlinear
incidence rates, such as 𝑓(𝑠)𝑔(𝑖) in [26], 𝑓(𝑠, 𝑖) in [27–29].
By constructing Lyapunov functions, [27, 28] established the
global stability for ordinary differential equations models
of epidemiological dynamics with nonlinear incidence rate
𝑓(𝑠, 𝑖) under some conditions.

These models have not included time delays, which are
usually used to model the fact that an individual may not
be infectious until some time after becoming infected. In the
context of epidemiology, delays can be caused by a variety
of factors. The most common reasons for a delay are (i) the
latency of the infection in a vector and (ii) the latency of the
infection in an infected host [30]. In these cases, some time
should elapse before the level of infection in the infected host
or the vector reaching a sufficiently high level to transmit the
infection further.

Motivated by all the above, we present a model described
by delay differential equations (DDEs) with two general
nonlinear terms as follows:

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝜆 − 𝜇𝑆 (𝑡) − 𝐹 (𝑆 (𝑡) , 𝐼 (𝑡)) ,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝑒
−𝜇𝜏
𝐹 (𝑆 (𝑡 − 𝜏) , 𝐼 (𝑡 − 𝜏)) − (𝜇 + 𝛼) 𝐼 (𝑡) − 𝐺 (𝐼 (𝑡)) ,

𝑑𝑅 (𝑡)

𝑑𝑡
= 𝐺 (𝐼 (𝑡)) − 𝜇𝑅 (𝑡) ,

(1)

where 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡), as mentioned above, represent the
population of the susceptible, the infected, and the removed
at time 𝑡, respectively. The parameters in the equations are
explained as below. The positive 𝜆 is the recruitment rate of
the population, 𝜇 is the natural death rate of the population,
𝛼 is the death rate due to disease, all 𝜏 ≥ 0 is the latent
period. The term 0 ≤ 𝑒

−𝜇𝜏
< 1 represents the survival rate of

population and the time they take to become infectious is 𝜏.
We assume that the force of infection at any time 𝑡 is given by
the general function 𝐹(𝑆(𝑡), 𝐼(𝑡)), and the recovered infected
individuals at any time 𝑡 is given by the function 𝐺(𝐼(𝑡)).

Since 𝑅(𝑡) does not appear in equations for 𝑑𝑆(𝑡)/𝑑𝑡 and
𝑑𝐼(𝑡)/𝑑𝑡, it is sufficient to analyze the behaviors of solutions
of (1) by the following system of DDEs:

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝜆 − 𝜇𝑆 (𝑡) − 𝐹 (𝑆 (𝑡) , 𝐼 (𝑡)) ,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝑒
−𝜇𝜏
𝐹 (𝑆 (𝑡 − 𝜏) , 𝐼 (𝑡 − 𝜏)) − (𝜇 + 𝛼) 𝐼 (𝑡) − 𝐺 (𝐼 (𝑡)) .

(2)

The initial conditions for system (2) take the form

𝑆 (𝜃) = 𝜙
1
(𝜃) , 𝐼 (𝜃) = 𝜙

2
(𝜃) ,

𝜙
1
(𝜃) ≥ 0, 𝜙

2
(𝜃) ≥ 0, 𝜃 ∈ [−𝜏, 0] ,

𝜙
1
(0) > 0, 𝜙

2
(0) > 0,

(3)

where 𝜙 = (𝜙
1
(𝜃), 𝜙
2
(𝜃)) ∈ 𝐶

+
× 𝐶
+. Here 𝐶 denotes the

Banach space 𝐶 = 𝐶([−𝜏, 0],R) of continuous functions
mapping the interval [−𝜏, 0] into R, equipped with the
supremum norm. The nonnegative cone of 𝐶 is defined as
𝐶
+
= 𝐶([−𝜏, 0],R+).
The organization of this paper is as follows. In Section 2,

we study the existence of a positive equilibrium. In Section 3,
we show that the global asymptotic stability of the disease-
free equilibrium and the endemic equilibrium of model (2)
depend only on the basic reproductive number under some
hypotheses. A brief discussion is given in the last section to
conclude this paper.

2. The Existence of Positive Equilibrium

In this section, we prove the existence of a positive equilib-
rium. We assume that 𝐹(𝑆, 𝐼) and 𝐺(𝐼) are always positive,
continuously differentiable, andmonotonically increasing for
all 𝑆 > 0 and 𝐼 > 0. That is, they satisfy the following
conditions:

(H1) 𝐹(𝑆, 𝐼) > 0, 𝐹
𝑆
(𝑆, 𝐼) > 0, 𝐹

𝐼
(𝑆, 𝐼) > 0 for 𝑆 > 0 and

𝐼 > 0.
(H2) 𝐹(𝑆, 0) = 𝐹(0, 𝐼) = 0, 𝐹

𝑆
(𝑆, 0) = 0, 𝐹

𝐼
(𝑆, 0) > 0 for

𝑆 > 0 and 𝐼 > 0.
(H3) 𝐺(0) = 0. 𝐺(𝐼) > 0 for 𝐼 ≥ 0.

Global behaviors of system (2) may depend on the basic
reproduction number 𝑅

0
, which is the average number of

secondary cases produced by a single infective individual
introduced into an entirely susceptible population. The basic
reproductive number for system (2) can be computed as

𝑅
0
=
𝑒
−𝜇𝜏
𝐹


𝐼
(𝑆
0
, 0)

𝜇 + 𝛼 + 𝐺 (0)
, (4)

where 𝑆
0
= 𝜆/𝜇. Usually, 𝑅

0
< 1 implies that the number of

infected individuals will tend to zero and 𝑅
0
> 1 implies that

the number will increase.
The epidemiologically natural condition 𝐹(𝑆, 0) = 0

ensures that system (2) always has a disease-free equilibrium
𝐸
0
= (𝑆
0
, 0). And it may also admit an endemic equilibrium
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𝐸
∗
= (𝑆
∗
, 𝐼
∗
) which depends on 𝑅

0
. And 𝑆∗, 𝐼∗ satisfy the

following equations:

𝜆 − 𝜇𝑆
∗
= 𝐹 (𝑆

∗
, 𝐼
∗
) ,

𝐹 (𝑆
∗
, 𝐼
∗
) = 𝑒
𝜇𝜏
[(𝜇 + 𝛼) 𝐼

∗
+ 𝐺 (𝐼

∗
)] .

(5)

Wewill show that under certain epidemiologically reasonable
conditions, the existence of the positive equilibrium state 𝐸∗
is ensured. We have the following theorem.

Theorem 1. Assume that 𝐹(𝑆, 𝐼) satisfies (H1) and (H2), and
𝐺(𝐼) satisfies (H3). Then system (2) has a positive equilibrium
state 𝐸∗ = (𝑆∗, 𝐼∗) if 𝑅

0
> 1.

Proof. Let the right-hand sides of the three equations in
system (2) equal zero; we have that

𝜆 − 𝜇𝑆 = 𝐹 (𝑆, 𝐼) = 𝑒
𝜇𝜏
[(𝜇 + 𝛼) 𝐼 + 𝐺 (𝐼)] . (6)

Substituting the expression of 𝑆 by 𝐼, we obtain the following
equation for 𝐼:

𝐻(𝐼) = 𝐹(
𝜆 − 𝑒
𝜇𝜏
[(𝜇 + 𝛼) 𝐼 + 𝐺 (𝐼)]

𝜇
, 𝐼)

− 𝑒
𝜇𝜏
[(𝜇 + 𝛼) 𝐼 + 𝐺 (𝐼)] .

(7)

It is obvious that 𝐻(0) = 0, and we can compute that there
exists a positive 𝐼

0
such that 𝜆 = 𝑒𝜇𝜏[(𝜇+𝛼)𝐼

0
+𝐺(𝐼
0
)]. Hence

𝐻(𝐼
0
) = 𝐹 (0, 𝐼

0
) − 𝜆 = −𝜆 < 0. (8)

Andwhen 𝐼 ≥ 0, since𝐻(𝐼) is continuously differentiable, we
have

𝐻

(0) = lim

𝐼→0
+

𝐻(𝐼) − 𝐻 (0)

𝐼 − 0

= 𝐹


𝐼
(𝑆
0
, 0) − 𝑒

𝜇𝜏
[𝜇 + 𝛼 + 𝐺


(0)] 𝐹



𝑆
(𝑆
0
, 0)

− 𝑒
𝜇𝜏
[𝜇 + 𝛼 + 𝐺


(0)]

= 𝐹


𝐼
(𝑆
0
, 0) − 𝑒

𝜇𝜏
[𝜇 + 𝛼 + 𝐺


(0)]

= 𝑒
𝜇𝜏
[𝜇 + 𝛼 + 𝐺


(0)] (𝑅

0
− 1) .

(9)

Thus, 𝑅
0
> 1 ensures that𝐻(0) > 0. And𝐻(𝐼) is continuous

on [0, 𝐼
0
]; then there exists some 𝐼∗ ∈ (0, 𝐼

0
) such that

𝐻(𝐼
∗
) = 0. Since𝐺(𝐼) is strictlymonotonically increasing, we

have 𝑒𝜇𝜏[(𝜇+𝛼)𝐼∗+𝐺(𝐼∗)] < 𝑒𝜇𝜏[(𝜇+𝛼)𝐼
0
+𝐺(𝐼
0
)].Therefore

𝑆
∗
= (𝜆−𝑒

𝜇𝜏
[(𝜇+𝛼)𝐼

∗
+𝐺(𝐼
∗
)])/𝜇 > 0, andwehave proved the

existence of the endemic equilibrium𝐸
∗
= (𝑆
∗
, 𝐼
∗
) for system

(2) under condition 𝑅
0
> 1. This completes the proof.

3. Global Dynamics of the Model

In this section, we will analyze the global dynamics of system
(2) and show the global asymptotic stability of the disease-free
equilibrium and the endemic equilibrium.

3.1. Stability of the Disease-Free Equilibrium. In this subsec-
tion, we will study the global stability of the disease-free
equilibrium 𝐸

0
= (𝑆
0
, 0) of system (2). We propose the

following conditions:

(H4) 𝐹
𝐼
(𝑆, 0) is increasing with respect to 𝑆 > 0.

(H5) 𝐹(𝑆, 𝐼) ≤ 𝐼 ⋅ (𝜕𝐹(𝑆, 0)/𝜕𝐼) with respect to 𝐼 > 0.
(H6) 𝐺(0) ≤ 𝐺(𝐼)/𝐼 with respect to 𝐼 > 0.

By (H4), the following inequalities hold true:

𝐹


𝐼
(𝑆
0
, 0)

𝐹


𝐼
(𝑆, 0)

> 1 for 𝑆 ∈ (0, 𝑆
0
) ,

𝐹


𝐼
(𝑆
0
, 0)

𝐹


𝐼
(𝑆, 0)

< 1 for 𝑆 > 𝑆
0
.

(10)

Under these conditions, we have the following theorems.

Theorem 2. Suppose that conditions (H1)–(H3) are satisfied.
Then the disease-free equilibrium 𝐸

0
= (𝑆
0
, 0) of system (2) is

locally asymptotically stable for any 𝜏 > 0 if 𝑅
0
< 1; 𝐸

0
=

(𝑆
0
, 0) is unstable if 𝑅

0
> 1.

Proof. The characteristic equation of system (2) at 𝐸
0
=

(𝑆
0
, 0) is

(𝜆 + 𝑢) (𝜆 − 𝑒
−𝜏(𝜆+𝜇)

𝐹


𝐼
(𝑆
0
, 0) + 𝜇 + 𝛼 + 𝐺


(0)) = 0. (11)

It has a negative real root 𝜆
1
= −𝜇. Moreover, it has a root of

𝜆 − 𝑒
−𝜏(𝜆+𝜇)

𝐹


𝐼
(𝑆
0
, 0) + 𝜇 + 𝛼 + 𝐺


(0) = 0. (12)

In (12), if 𝜏 = 0, 𝑅
0
< 1 becomes 𝑅

01
= 𝐹


𝐼
(𝑆
0
, 0)/[𝜇 + 𝛼 +

𝐺

(0)] < 1; one can see that 𝜆

2
= [𝜇+𝛼+𝐺


(0)](𝑅

01
−1) < 0.

Hence the 𝐸
0
= (𝑆
0
, 0) is locally asymptotically stable. In (12),

if 𝜏 > 0, 𝑥 > 0, 𝑦 ̸= 0, 𝜆 = 𝑥 + 𝑖 ⋅ 𝑦 is a root of (12), then we
have

𝑥 + 𝜇 + 𝛼 + 𝐺

(0) = 𝑒

−𝜏(𝑥+𝜇)
𝐹


𝐼
(𝑆
0
, 0) cos (𝑦𝜏) ,

𝑦 = −𝑒
−𝜏(𝑥+𝜇)

𝐹


𝐼
(𝑆
0
, 0) sin (𝑦𝜏) .

(13)

Further we have

[𝑥 + 𝜇 + 𝛼 + 𝐺

(0)]
2

+ 𝑦
2
= [𝑒
−𝜏(𝑥+𝜇)

𝐹


𝐼
(𝑆
0
, 0)]
2

≤ [𝑒
−𝜇𝜏
𝐹


𝐼
(𝑆
0
, 0)]
2

,

(14)

which is a contradiction. Hence the 𝐸
0
= (𝑆
0
, 0) is locally

asymptotically stable.
If 𝑅
0
> 1, let ℎ(𝜆) = 𝜆 − 𝑒−𝜏(𝜆+𝜇)𝐹

𝐼
(𝑆
0
, 0) + 𝜇 + 𝛼 + 𝐺


(0);

then we have

ℎ (0) = [𝜇 + 𝛼 + 𝐺

(0)] (1 − 𝑅

0
) < 0,

lim
𝜆→+∞

ℎ (𝜆) = +∞.

(15)

And when 𝜆 ≥ 0, since ℎ(𝜆) is continuously, then ℎ(𝜆) = 0
has at least one positive root. Hence 𝐸

0
= (𝑆
0
, 0) is unstable.

This completes the proof.
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Theorem 3. Suppose that conditions (H1)–(H6) are satisfied.
Then the disease-free equilibrium 𝐸

0
= (𝑆
0
, 0) of system (2) is

globally asymptotically stable for any 𝜏 > 0 if 𝑅
0
≤ 1.

Proof. Define a Lyapunov functional

𝑉
1
(𝑡) = 𝑈

1
(𝑡) + 𝑈

2
(𝑡) , (16)

where

𝑈
1
(𝑡) = 𝑆 (𝑡) − 𝑆

0
− ∫

𝑆(𝑡)

𝑆
0

lim
𝐼→0
+

𝐹 (𝑆
0
, 𝐼 (𝑡))

𝐹 (𝜃, 𝐼 (𝑡))
𝑑𝜃 + 𝑒

𝜇𝜏
𝐼 (𝑡) ,

𝑈
2
(𝑡) = ∫

𝜏

0

𝐹 (𝑆 (𝑡 − 𝜂) , 𝐼 (𝑡 − 𝜂)) 𝑑𝜂.

(17)

By (H1)–(H6), it is obvious that𝑉
1
is defined and continu-

ously differentiable for all 𝑆(𝑡), 𝐼(𝑡) > 0, and 𝑉
1
= 0 at 𝐸

0
=

(𝑆
0
, 0). The system (2) at 𝐸

0
= (𝑆
0
, 0) has 𝜆 = 𝜇𝑆

0
. The time

derivative of 𝑈
1
along the solutions of system (2) is given by

𝑑𝑈
1 (𝑡)

𝑑𝑡

= 𝑆

(𝑡) − lim
𝐼→0
+

𝐹 (𝑆
0
, 𝐼 (𝑡))

𝐹 (𝑆 (𝑡) , 𝐼 (𝑡))
⋅ 𝑆

(𝑡) + 𝑒

𝜇𝜏
𝐼

(𝑡)

= (1 − lim
𝐼→0
+

𝐹 (𝑆
0
, 𝐼 (𝑡))

𝐹 (𝑆 (𝑡) , 𝐼 (𝑡))
) [𝜆 − 𝜇𝑆 (𝑡) − 𝐹 (𝑆 (𝑡) , 𝐼 (𝑡))]

+ 𝐹 (𝑆 (𝑡 − 𝜏) , 𝐼 (𝑡 − 𝜏)) − 𝑒
𝜇𝜏
[(𝜇 + 𝛼) 𝐼 (𝑡) + 𝐺 (𝐼 (𝑡))]

= 𝜇𝑆 (𝑡) (
𝑆
0

𝑆 (𝑡)
− 1)(1 − lim

𝐼→0
+

𝐹 (𝑆
0
, 𝐼 (𝑡))

𝐹 (𝑆 (𝑡) , 𝐼 (𝑡))
)

− 𝐹 (𝑆 (𝑡) , 𝐼 (𝑡)) + 𝐹 (𝑆 (𝑡) , 𝐼 (𝑡)) ⋅ lim
𝐼→0
+

𝐹 (𝑆
0
, 𝐼 (𝑡))

𝐹 (𝑆 (𝑡) , 𝐼 (𝑡))

+ 𝐹 (𝑆 (𝑡 − 𝜏) , 𝐼 (𝑡 − 𝜏)) − 𝑒
𝜇𝜏
[(𝜇 + 𝛼) 𝐼 (𝑡) + 𝐺 (𝐼 (𝑡))] .

(18)

Further, we have

𝑑𝑈
2
(𝑡)

𝑑𝑡
=
𝑑

𝑑𝑡
∫

𝜏

0

𝐹 (𝑆 (𝑡 − 𝜂) , 𝐼 (𝑡 − 𝜂)) 𝑑𝜂

= 𝐹 (𝑆 (𝑡) , 𝐼 (𝑡)) − 𝐹 (𝑆 (𝑡 − 𝜏) , 𝐼 (𝑡 − 𝜏)) .

(19)

Thus

𝑑𝑉
1
(𝑡)

𝑑𝑡
=
𝑑𝑈
1
(𝑡)

𝑑𝑡
+
𝑑𝑈
2
(𝑡)

𝑑𝑡

= 𝜇𝑆 (𝑡) (
𝑆
0

𝑆 (𝑡)
− 1)(1 − lim

𝐼→0
+

𝐹 (𝑆
0
, 𝐼 (𝑡))

𝐹 (𝑆 (𝑡) , 𝐼 (𝑡))
)

+ 𝐹 (𝑆 (𝑡) , 𝐼 (𝑡)) ⋅ lim
𝐼→0
+

𝐹 (𝑆
0
, 𝐼 (𝑡))

𝐹 (𝑆 (𝑡) , 𝐼 (𝑡))

− 𝑒
𝜇𝜏
[(𝜇 + 𝛼) 𝐼 (𝑡) + 𝐺 (𝐼 (𝑡))] .

(20)

By (10), we have

(
𝑆
0

𝑆 (𝑡)
− 1)(1 − lim

𝐼→0
+

𝐹 (𝑆
0
, 𝐼 (𝑡))

𝐹 (𝑆 (𝑡) , 𝐼 (𝑡))
)

= (
𝑆
0

𝑆 (𝑡)
− 1)(1 −

𝐹


𝐼
(𝑆
0
, 0)

𝐹


𝐼
(𝑆 (𝑡) , 0)

) ≤ 0.

(21)

Note that 𝐹
𝐼
(𝑆
0
, 0)/𝐹



𝐼
(𝑆, 0) ̸= 1, for 𝑆 ̸= 𝑆

0
, 𝑆 > 0, and by

𝐹


𝐼
(𝑆, 0) > 0 and (H4), the equality in (21) holds if and only if

𝑆 = 𝑆
0
. Furthermore, (H5) and (H6) imply that

𝐹 (𝑆 (𝑡) , 𝐼 (𝑡)) ⋅ lim
𝐼→0
+

𝐹 (𝑆
0
, 𝐼 (𝑡))

𝐹 (𝑆 (𝑡) , 𝐼 (𝑡))

− 𝑒
𝜇𝜏
[(𝜇 + 𝛼) 𝐼 (𝑡) + 𝐺 (𝐼 (𝑡))]

= 𝐹 (𝑆 (𝑡) , 𝐼 (𝑡)) ⋅
𝐹


𝐼
(𝑆
0
, 0)

𝐹


𝐼
(𝑆 (𝑡) , 0)

− 𝑒
𝜇𝜏
[(𝜇 + 𝛼) 𝐼 (𝑡) + 𝐺 (𝐼 (𝑡))]

≤ 𝐼 (𝑡) ⋅ [𝐹


𝐼
(𝑆
0
, 0) − 𝑒

𝜇𝜏
(𝜇 + 𝛼 + 𝐺


(0))]

= 𝑒
𝜇𝜏
(𝜇 + 𝛼 + 𝐺


(0)) 𝐼 (𝑡) (𝑅

0
− 1) .

(22)

Therefore, 𝑅
0
≤ 1 ensures that 𝑑𝑉

1
/𝑑𝑡 ≤ 0 for all 𝑆(𝑡) ≥ 0,

𝐼(𝑡) ≥ 0, where 𝑑𝑉
1
/𝑑𝑡 = 0 holds only for 𝑆 = 𝑆

0
. It is easy

to verify that the disease-free equilibrium 𝐸
0
is the only fixed

point of the systems on the plane 𝑆 = 𝑆
0
and hence it is easy to

show that the largest invariant set in {(𝑆(𝑡), 𝐼(𝑡)) | 𝑑𝑉
1
/𝑑𝑡 =

0} is the singleton {𝐸
0
}. By the Lyapunov-LaSalle asymptotic

stability theorem in [31], 𝐸
0
is globally asymptotically stable

for any 𝜏 > 0. This completes the proof.

3.2. Global Stability of the Endemic Equilibrium. In this
subsection, we will study the global stability of the endemic
equilibrium 𝐸

∗
= (𝑆
∗
, 𝐼
∗
) of system (2) by the Lyapunov

direct method. We propose the following hypotheses:
(H7) 𝐼/𝐼∗ ≤ 𝐹(𝑆, 𝐼)/𝐹(𝑆, 𝐼

∗
) for 𝐼 ∈ (0, 𝐼

∗
), 𝐹(𝑆, 𝐼)/

𝐹(𝑆, 𝐼
∗
) ≤ 𝐼/𝐼

∗ for 𝐼 ≥ 𝐼∗.
(H8) 𝐺(𝐼)/𝐺(𝐼∗) ≤ 𝐼/𝐼∗ for 𝐼 ∈ (0, 𝐼∗), 𝐼/𝐼∗ ≤ 𝐺(𝐼)/𝐺(𝐼∗)

for 𝐼 ≥ 𝐼∗.
Based on these, we have the following theorem.

Theorem 4. Suppose that conditions (H1)–(H3) and (H7)-
(H8) are satisfied. Then the endemic equilibrium 𝐸

∗
= (𝑆
∗
, 𝐼
∗
)

of system (2) is globally asymptotically stable for any 𝜏 > 0 if
𝑅
0
> 1.

Proof. Define a Lyapunov functional
𝑉
2
(𝑡) = 𝑊

1
(𝑡) + 𝑊

2
(𝑡) , (23)

where

𝑊
1
(𝑡) = 𝑆 (𝑡) − 𝑆

∗
− ∫

𝑆(𝑡)

𝑆
∗

𝐹 (𝑆
∗
, 𝐼
∗
)

𝐹 (𝜑, 𝐼∗)
𝑑𝜑

+ 𝑒
𝜇𝜏
(𝐼 (𝑡) − 𝐼

∗
− 𝐼
∗ ln 𝐼 (𝑡)

𝐼∗
) .
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𝑊
2
(𝑡) = 𝐹 (𝑆

∗
, 𝐼
∗
) ∫

𝜏

0

(
𝐹 (𝑆 (𝑡 − 𝜉) , 𝐼 (𝑡 − 𝜉))

𝐹 (𝑆
∗, 𝐼∗)

− 1

− ln 𝐹 (𝑆 (𝑡 − 𝜉) , 𝐼 (𝑡 − 𝜉))
𝐹 (𝑆
∗, 𝐼∗)

) 𝑑𝜉.

(24)

By (H1)–(H6), 𝑉
2
(𝑡) = 𝑊

1
(𝑡) + 𝑊

2
(𝑡) is defined and

continuously differentiable for all 𝑆(𝑡), 𝐼(𝑡) > 0. And 𝑉
2
(0) =

0 at 𝐸∗ = (𝑆∗, 𝐼∗). At 𝐸∗ = (𝑆∗, 𝐼∗), system (2) has

𝜆 − 𝜇𝑆
∗
= 𝐹 (𝑆

∗
, 𝐼
∗
) ,

𝐹 (𝑆
∗
, 𝐼
∗
) = 𝑒
𝜇𝜏
[(𝜇 + 𝛼) 𝐼

∗
+ 𝐺 (𝐼

∗
)] .

(25)

The time derivative of𝑊
1
along the solutions of system (2) is

given by

𝑑𝑊
1
(𝑡)

𝑑𝑡

= 𝑆

(𝑡) −

𝐹 (𝑆
∗
, 𝐼
∗
)

𝐹 (𝑆 (𝑡) , 𝐼
∗
)
𝑆

(𝑡) + 𝑒

𝜇𝜏
𝐼

(𝑡) (1 −

𝐼
∗

𝐼 (𝑡)
)

= (1 −
𝐹 (𝑆
∗
, 𝐼
∗
)

𝐹 (𝑆 (𝑡) , 𝐼
∗
)
) [𝜇𝑆

∗
− 𝜇𝑆 (𝑡) + 𝐹 (𝑆

∗
, 𝐼
∗
)

− 𝐹 (𝑆 (𝑡) , 𝐼 (𝑡))]

+ (1 −
𝐼
∗

𝐼 (𝑡)
) [𝐹 (𝑆 (𝑡 − 𝜏) , 𝐼 (𝑡 − 𝜏)) − 𝐹 (𝑆

∗
, 𝐼
∗
)
𝐼 (𝑡)

𝐼∗

+ 𝑒
𝜇𝜏
𝐺 (𝐼
∗
)
𝐼 (𝑡)

𝐼∗
− 𝑒
𝜇𝜏
𝐺 (𝐼 (𝑡))]

= 𝜇𝑆
∗
(1 −

𝐹 (𝑆
∗
, 𝐼
∗
)

𝐹 (𝑆 (𝑡) , 𝐼
∗
)
) (1 −

𝑆 (𝑡)

𝑆∗
)

+ 𝐹 (𝑆
∗
, 𝐼
∗
) (1 −

𝐹 (𝑆
∗
, 𝐼
∗
)

𝐹 (𝑆 (𝑡) , 𝐼
∗
)
+
𝐹 (𝑆 (𝑡) , 𝐼 (𝑡))

𝐹 (𝑆 (𝑡) , 𝐼
∗
)
)

+ 𝐹 (𝑆
∗
, 𝐼
∗
) (1 −

𝐼 (𝑡)

𝐼∗
−
𝐼
∗

𝐼 (𝑡)
⋅
𝐹 (𝑆 (𝑡 − 𝜏) , 𝐼 (𝑡 − 𝜏))

𝐹 (𝑆
∗, 𝐼∗)

)

+ 𝑒
𝜇𝜏
𝐺 (𝐼
∗
) [
𝐼 (𝑡)

𝐼∗
− 1 −

𝐺 (𝐼 (𝑡))

𝐺 (𝐼
∗
)
+
𝐺 (𝐼 (𝑡))

𝐺 (𝐼
∗
)
⋅
𝐼
∗

𝐼 (𝑡)
]

− 𝐹 (𝑆 (𝑡) , 𝐼 (𝑡)) + 𝐹 (𝑆 (𝑡 − 𝜏) , 𝐼 (𝑡 − 𝜏)) .

(26)

Further, we have

𝑑𝑊
2
(𝑡)

𝑑𝑡

= 𝐹 (𝑆
∗
, 𝐼
∗
) ⋅
𝑑

𝑑𝑡
∫

𝜏

0

(
𝐹 (𝑆 (𝑡 − 𝜉) , 𝐼 (𝑡 − 𝜉))

𝐹 (𝑆
∗, 𝐼∗)

− 1

− ln 𝐹 (𝑆 (𝑡 − 𝜉) , 𝐼 (𝑡 − 𝜉))
𝐹 (𝑆
∗, 𝐼∗)

) 𝑑𝜉

= 𝐹 (𝑆 (𝑡) , 𝐼 (𝑡)) − 𝐹 (𝑆 (𝑡 − 𝜏) , 𝐼 (𝑡 − 𝜏))

+ 𝐹 (𝑆
∗
, 𝐼
∗
) ln 𝐹 (𝑆 (𝑡 − 𝜏) , 𝐼 (𝑡 − 𝜏))

𝐹 (𝑆 (𝑡) , 𝐼 (𝑡))
.

(27)

Then we have

𝑑𝑉
2 (𝑡)

𝑑𝑡
=
𝑑𝑊
1 (𝑡)

𝑑𝑡
+
𝑑𝑊
2 (𝑡)

𝑑𝑡

= 𝜇𝑆
∗
(1 −

𝐹 (𝑆
∗
, 𝐼
∗
)

𝐹 (𝑆 (𝑡) , 𝐼
∗
)
) (1 −

𝑆 (𝑡)

𝑆∗
)

+ 𝐹 (𝑆
∗
, 𝐼
∗
) (1 −

𝐹 (𝑆
∗
, 𝐼
∗
)

𝐹 (𝑆 (𝑡) , 𝐼
∗
)
+
𝐹 (𝑆 (𝑡) , 𝐼 (𝑡))

𝐹 (𝑆 (𝑡) , 𝐼
∗
)
)

+ 𝐹 (𝑆
∗
, 𝐼
∗
) (1 −

𝐼 (𝑡)

𝐼∗
−
𝐼
∗

𝐼 (𝑡)

⋅
𝐹 (𝑆 (𝑡 − 𝜏) , 𝐼 (𝑡 − 𝜏))

𝐹 (𝑆
∗, 𝐼∗)

+ ln 𝐹 (𝑆 (𝑡 − 𝜏) , 𝐼 (𝑡 − 𝜏))
𝐹 (𝑆 (𝑡) , 𝐼 (𝑡))

)

+ 𝑒
𝜇𝜏
𝐺 (𝐼
∗
) [
𝐼 (𝑡)

𝐼∗
− 1 −

𝐺 (𝐼 (𝑡))

𝐺 (𝐼
∗
)

+
𝐺 (𝐼 (𝑡))

𝐺 (𝐼
∗
)
⋅
𝐼
∗

𝐼 (𝑡)
]

= 𝜇𝑆
∗
(1 −

𝐹 (𝑆
∗
, 𝐼
∗
)

𝐹 (𝑆 (𝑡) , 𝐼
∗
)
) (1 −

𝑆 (𝑡)

𝑆∗
)

+ 𝐹 (𝑆
∗
, 𝐼
∗
) (1 −

𝐹 (𝑆
∗
, 𝐼
∗
)

𝐹 (𝑆 (𝑡) , 𝐼
∗
)
+ ln

𝐹 (𝑆
∗
, 𝐼
∗
)

𝐹 (𝑆 (𝑡) , 𝐼
∗
)
)

+ 𝐹 (𝑆
∗
, 𝐼
∗
) (1 −

𝐼
∗

𝐼 (𝑡)
⋅
𝐹 (𝑆 (𝑡 − 𝜏) , 𝐼 (𝑡 − 𝜏))

𝐹 (𝑆
∗, 𝐼∗)

+ ln 𝐼
∗

𝐼 (𝑡)
⋅
𝐹 (𝑆 (𝑡 − 𝜏) , 𝐼 (𝑡 − 𝜏))

𝐹 (𝑆
∗, 𝐼∗)

)

+ 𝐹 (𝑆
∗
, 𝐼
∗
) (1 −

𝐼 (𝑡)

𝐼∗
⋅
𝐹 (𝑆 (𝑡) , 𝐼

∗
)

𝐹 (𝑆 (𝑡) , 𝐼 (𝑡))

+ ln 𝐼 (𝑡)
𝐼∗

⋅
𝐹 (𝑆 (𝑡) , 𝐼

∗
)

𝐹 (𝑆 (𝑡) , 𝐼 (𝑡))
)

+ 𝐹 (𝑆
∗
, 𝐼
∗
) (
𝐼 (𝑡)

𝐼∗
−
𝐹 (𝑆 (𝑡) , 𝐼 (𝑡))

𝐹 (𝑆 (𝑡) , 𝐼
∗
)
)

× (
𝐹 (𝑆 (𝑡) , 𝐼

∗
)

𝐹 (𝑆 (𝑡) , 𝐼 (𝑡))
− 1)

+ 𝑒
𝜇𝜏
𝐺 (𝐼
∗
) (
𝐺 (𝐼 (𝑡))

𝐺 (𝐼
∗
)
−
𝐼 (𝑡)

𝐼∗
)(

𝐼
∗

𝐼 (𝑡)
− 1) .

(28)
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The function 𝐹(𝑆, 𝐼) is monotonically increasing for any 𝑆 >
0; hence the following inequality holds:

(1 −
𝐹 (𝑆
∗
, 𝐼
∗
)

𝐹 (𝑆 (𝑡) , 𝐼
∗
)
) (1 −

𝑆 (𝑡)

𝑆∗
) ≤ 0. (29)

And by the properties of the function 𝑔(𝑥) = 1 − 𝑥 + ln𝑥,
(𝑥 > 0), we note that 𝑔(𝑥) has its global maximum 𝑔(1) = 0.
Hence 𝑔(𝑥) ≤ 0 when 𝑥 > 0 and the following inequalities
hold true:

1 −
𝐹 (𝑆
∗
, 𝐼
∗
)

𝐹 (𝑆 (𝑡) , 𝐼
∗
)
+ ln

𝐹 (𝑆
∗
, 𝐼
∗
)

𝐹 (𝑆 (𝑡) , 𝐼
∗
)
≤ 0,

1 −
𝐼
∗

𝐼 (𝑡)
⋅
𝐹 (𝑆 (𝑡 − 𝜏) , 𝐼 (𝑡 − 𝜏))

𝐹 (𝑆
∗, 𝐼∗)

+ ln 𝐼
∗

𝐼 (𝑡)
⋅
𝐹 (𝑆 (𝑡 − 𝜏) , 𝐼 (𝑡 − 𝜏))

𝐹 (𝑆
∗, 𝐼∗)

≤ 0,

1 −
𝐼 (𝑡)

𝐼∗
⋅
𝐹 (𝑆 (𝑡) , 𝐼

∗
)

𝐹 (𝑆 (𝑡) , 𝐼 (𝑡))
+ ln 𝐼 (𝑡)

𝐼∗
⋅
𝐹 (𝑆 (𝑡) , 𝐼

∗
)

𝐹 (𝑆 (𝑡) , 𝐼 (𝑡))
≤ 0.

(30)

Furthermore, by (H7) the following inequality holds:

(
𝐼 (𝑡)

𝐼∗
−
𝐹 (𝑆 (𝑡) , 𝐼 (𝑡))

𝐹 (𝑆 (𝑡) , 𝐼
∗
)
)(

𝐹 (𝑆 (𝑡) , 𝐼
∗
)

𝐹 (𝑆 (𝑡) , 𝐼 (𝑡))
− 1) ≤ 0. (31)

And by (H8) we have the following inequality:

(
𝐺 (𝐼 (𝑡))

𝐺 (𝐼
∗
)
−
𝐼 (𝑡)

𝐼∗
)(

𝐼
∗

𝐼 (𝑡)
− 1) ≤ 0. (32)

By (29)–(32), we see that 𝑑𝑉
2
/𝑑𝑡 ≤ 0 for all 𝑆(𝑡) ≥ 0,

𝐼(𝑡) ≥ 0. It is easy to verify that the largest invariant set
in {(𝑆(𝑡), 𝐼(𝑡)) | 𝑑𝑉

2
/𝑑𝑡 = 0} is the singleton {𝐸∗}. By the

Lyapunov-LaSalle asymptotic stability theorem in [31], 𝐸∗ is
globally asymptotically stable for any 𝜏 > 0. This completes
the proof.

4. Discussion and Conclusion

In this paper, we formulated an SIR epidemic model with
delay and two general functions, one is 𝐹(𝑆, 𝐼) which rep-
resents the incidence rate, and the other is 𝐺(𝐼) which rep-
resents the recovered infected individuals from the infected
compartment. We studied the global asymptotic stability of
disease-free equilibrium and endemic equilibrium of system
(2), respectively. We showed that in Theorem 2 the disease-
free equilibrium 𝐸

0
= (𝑆
0
, 0) is locally asymptotically for

any 𝜏 > 0 if the basic reproduction number 𝑅
0
< 1 and

𝐸
0
= (𝑆
0
, 0) are unstable if 𝑅

0
> 1; in Theorem 3 the disease-

free equilibrium𝐸
0
= (𝑆
0
, 0) is globally asymptotically for any

𝜏 > 0 if 𝑅
0
≤ 1, while inTheorem 4, the endemic equilibrium

𝐸
∗
= (𝑆
∗
, 𝐼
∗
) is globally asymptotically for any 𝜏 > 0 if𝑅

0
> 1.

In order to obtain the global properties of the system (2),
we proposed assumptions (H1)–(H8) for functions of 𝐹(𝑆, 𝐼)
and𝐺(𝐼). Conditions (H1)–(H3) are some basic assumptions;
for example, (H1) implies that the function 𝐹(𝑆, 𝐼) is a non-
negative differentiable function on nonnegative quadrant and

is positive if and only if both arguments are positive. We used
(H4)–(H6), (H7)-(H8) to establish the global asymptotic
stability of disease-free equilibrium and endemic equilibrium
of system (2), respectively. These hypotheses seem to be
mathematical techniques; however, they may be obviously
true for many concrete forms of the functions of 𝐹(𝑆, 𝐼) and
𝐺(𝐼) in previous studies.

A special case of system (2) is that when𝐺(𝐼) = 𝛾𝐼, 𝛾 is the
recovery rate of the infective individuals. System (2) becomes
the following DDEs:

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝜆 − 𝜇𝑆 (𝑡) − 𝐹 (𝑆 (𝑡) , 𝐼 (𝑡)) ,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝑒
−𝜇𝜏
𝐹 (𝑆 (𝑡 − 𝜏) , 𝐼 (𝑡 − 𝜏)) − (𝜇 + 𝛼 + 𝛾) 𝐼 (𝑡) .

(33)

The basic reproductive number for system (33) is presented
as

𝑅


0
=
𝑒
−𝜇𝜏
𝐹


𝐼
(𝑆
0
, 0)

𝜇 + 𝛼 + 𝛾
. (34)

Using Theorems 3 and 4, we can easily obtain the global
asymptotic stability of the disease-free equilibrium and the
endemic equilibrium of system (33). Regarding to system
(33), we now give examples of incidence function 𝐹(𝑆, 𝐼) that
satisfies the required hypotheses obviously.

Example 5. Without delay: let 𝜏 = 0, 𝜆 = 𝜇 and 𝛿 = 𝜇+𝛼+𝛾.
Then system (33) becomes to the SIR model studied in [27].

Example 6. Holling type II incidence rate: let 𝐹(𝑆, 𝐼) =

V
𝑚
𝑆𝐼/(𝐶

ℎ
+ 𝑆) for some constant V

𝑚
, 𝐶
ℎ
> 0. Then the

hypotheses on 𝐹(𝑆, 𝐼) are satisfied and the global properties
are determined by the basic reproductive number.Thismodel
was introduced by [32, 33] for considering delays in the
standard bacterial growth model in a chemostat. Its global
dynamics were first proved by [32] by the fluctuation lemma
and a different proof was given in [34, Theorem 5.16] by
comparison.

Example 7. Saturate incidence rate: let𝐹(𝑆, 𝐼) = 𝛽𝑆𝐼/(1+𝛼
1
𝑆+

𝛼
2
𝐼) for some constant 𝛼

1
> 0, 𝛼

2
> 0. Then hypotheses

about 𝐹(𝑆, 𝐼) are also satisfied and the global properties are
determined by the basic reproductive number.The behaviors
of this model were previously studied in [23, 24]. In [23],
the local stability of disease-free equilibrium and endemic
equilibrium was obtained. And in [24], the global stability
of disease-free equilibrium and endemic equilibrium was
studied.

From these Examples 5–7, we can see that system (2)
is reasonably established and it can contain many classical
epidemic models and imply their global dynamics as special
cases.
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This paper investigates the dynamic behavior of a viral infection model with general contact rate between susceptible host cells and
free virus particles. If the basic reproduction number of the virus is less than unity, by LaSalle’s invariance principle, the disease-
free equilibrium is globally asymptotically stable. If the basic reproduction number of the virus is greater than unity, then the virus
persists in the host and the endemic equilibrium is locally asymptotically stable.

1. Introduction

Viral infection within-host, such as hepatitis B virus (HBV),
hepatitis C virus (HCV), and human immunodeficiency
virus (HIV) infections, is a complicated kinetic process, and
mathematical model is always important, which can give a
hand to understand the complexity between the responses of
the body and variant conditions [1–6].

The basic viral infection model contains three variables,
susceptible host cells (𝑥), infected host cells (𝑦), and free
virus particles (V), which can be formulated by the following
differential equations [7, 8]:

d𝑥
d𝑡

= 𝑟 − 𝑚𝑥 − 𝛽𝑥V,

d𝑦
d𝑡

= 𝛽𝑥V − 𝑎𝑦,

dV
d𝑡

= 𝑘𝑦 − 𝑢V,

(1)

in which susceptible host cells are produced at a constant rate,
𝑟, die at the rate of 𝑚𝑥, and become infected with the rate of
𝛽𝑥V. Infected host cells are produced at the rate of𝛽𝑥V and die
at the rate of 𝑎𝑦. Free virus particles are released from infected
host cells at the rate of 𝑘𝑦 anddie at the rate of𝑢V. It is assumed
that parameters 𝑟, 𝑚, 𝛽, 𝑎, 𝑘, and 𝑢 are all positive constants.

Note that there is an assumption that the infection term
is based on themass-action principle, which means that there
is a constant contact rate (𝛽) between susceptible host cells
and virus particles in (1). However, many experiments of
microparasitic infections suggest the infection rate may be
a nonlinear relationship [3, 9–11], such as dose-dependent
infection rate. Thus, to meet more biological practice, we
replace the constant contact rate (𝛽) with a general contact
rate (𝑓(V)) between susceptible cells and virus particles and
obtain the following modified viral infection model:

d𝑥
d𝑡

= 𝑟 − 𝑚𝑥 − 𝑓 (V) 𝑥V,

d𝑦
d𝑡

= 𝑓 (V) 𝑥V − 𝑎𝑦,

dV
d𝑡

= 𝑘𝑦 − 𝑢V,

(2)

where the contact rate function 𝑓(V) satisfy the following
assumption (H1):

(H1) 𝑓(V) : R
+

→ R
+
, continuous and differentiable,

𝑓(0) = 𝛽, 𝑓(V) < 0 and 𝑓(∞) = 0.

The primary goal of this paper is to carry out amathemat-
ical analysis of system (2) and predict whether the infection
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disappears or survives. The organization of this paper is as
follows. In the next section, some preliminary results are
given, including the dissipativity of system (2), the definition
of basic reproduction number of the virus, and the existence
of the disease-free equilibrium and endemic equilibrium.
In Section 3, by analyzing the corresponding characteristic
equations, we study the local stability of the equilibria. In
Section 4, by using suitable Lyapunov function and LaSalle’s
invariance principle [12], we first prove that if the basic
reproduction number is less than unity, the disease-free
equilibrium is globally asymptotically stable. Then using
Theorem 4.6 in [13], we obtain the uniform persistence of (2)
if the basic reproduction number is greater than unity. A brief
discussion is given in Section 5 to conclude this work.

2. Preliminary Results

In this section, we first show that all solutions of system
(2) are positive and ultimately bounded. Then the existence
of feasible equilibria is given under the condition of basic
reproduction number of the virus.

Because of the biological meaning of the components
(𝑥(𝑡), 𝑦(𝑡), V(𝑡)), we focus on the model in the first octant of
R3 and consider system (2) with initial conditions

𝑥 (0) > 0, 𝑦 (0) > 0, V (0) > 0. (3)

The following result shows that system (2) is dissipative.

Theorem 1. Under the initial conditions (3), all solutions of
system (2) are positive for 𝑡 > 0 and there exists a constant
𝑀 > 0, such that all solutions satisfy 𝑥(𝑡) < 𝑀, 𝑦(𝑡) < 𝑀, and
V(𝑡) < 𝑀 for all sufficiently large 𝑡.

Proof. Note that 𝑥

|
𝑥=0

= 𝑟 > 0, 𝑦

|
𝑦=0

= 𝑓(V)𝑥V and
𝑉

|V=0 = 𝑘𝑦. This implies that (𝑥(𝑡), 𝑦(𝑡), V(𝑡)) ∈ R3

+
for all

𝑡 > 0, provided that (𝑥(0), 𝑦(0), V(0)) ∈ R3
+
. Suppose that 𝑥(𝑡)

is not always positive. Let 𝜏 > 0 be the first time such that
𝑥(𝜏) = 0. By the first equation of (2) we have 𝑥


(𝜏) = 𝑟 > 0,

which implies 𝑥(𝑡) < 0 for 𝑡 ∈ (𝜏 − 𝜀, 𝜏) for sufficiently small
𝜀 > 0, a contradiction. Thus, 𝑥(𝑡) is positive for all 𝑡 > 0.
In addition, by the second and third equations of (2), we
have

𝑦 (𝑡) = (𝑦 (0) + ∫

𝑡

0

𝑓 (V (𝑠)) 𝑥 (𝑠) V (𝑠) 𝑒
𝑎𝑠
𝑑𝑠) 𝑒
−𝑎𝑡

≥ 𝑦 (0) 𝑒
−𝑎𝑡

> 0,

V (𝑡) = (V (0) + ∫

𝑡

0

𝑘𝑦 (𝑠) 𝑒
𝑢𝑠
𝑑𝑠) 𝑒
−𝑢𝑡

≥ V (0) 𝑒
−𝑢𝑡

> 0,

(4)

for all 𝑡 > 0. Therefore, it is easy to see that 𝑦(𝑡) and V(𝑡) are
positive with initial conditions (3).

Next, we sketch the arguments for ultimate boundedness
of solution of (2). Let𝑁

1
(𝑡) = 𝑥(𝑡)+𝑦(𝑡),𝑁

2
(𝑡) = 𝑥(𝑡)+𝑦(𝑡)+

(𝑎V(𝑡)/𝑘), 𝑑
1

= min{𝑚, 𝑎}, and 𝑑
2

= min{𝑚, 𝑎, 𝑢}. Since all
solutions of (2) are positive, we have

𝑁


1
= 𝑟 − 𝑚𝑥 − 𝑎𝑦 < 𝑟 − 𝑑

1
𝑁
1
,

𝑁


2
= 𝑟 − 𝑚𝑥 −

𝑎𝑢

𝑘
V < 2𝑟 − 𝑑

2
𝑁
2
.

(5)

Therefore, 𝑁
1
(𝑡) < 2𝑟/𝑑

1
and 𝑁

2
(𝑡) < 3𝑟/𝑑

2
for all suffi-

ciently large 𝑡, and hence, 𝑥(𝑡), 𝑦(𝑡), and V(𝑡) are ultimately
bounded by some positive constant 𝑀.

Note that a free virus particle has an average lifetime of
1/𝑢 and parameter 𝑘 is the burst size, which means the total
number of virions produced by an infected cell during its
life span. Thus, at the beginning of the infectious process,
the average number of newly virus particles generated from
one virus particle, which is the basic reproduction number of
virus by [14, 15], can be defined as

𝑅
0
=

𝑟𝑘𝑓 (0)

𝑎𝑢𝑚
=

𝑟𝑘𝛽

𝑎𝑢𝑚
. (6)

Now, we begin to find the equilibria of model (2) by the
following algebraic system

𝑟 − 𝑚𝑥 − 𝑓 (V) 𝑥V = 0,

𝑓 (V) 𝑥V − 𝑎𝑦 = 0,

𝑘𝑦 − 𝑢V = 0.

(7)

Solving the third algebraic equation of (7), we can obtain
𝑦 = 𝑢V/𝑘. By combining this equality with the second
equation of (7), we have 𝑥 = 𝑎𝑢/𝑘𝑓(V) or V = 0. When
V = 0, it is easy to have 𝑦 = 0 and 𝑥 = 𝑟/𝑚 by the third and
first equations of (7); that is, system (2) always has a disease-
free equilibrium state, denoted as 𝐸

0
= (𝑟/𝑚, 0, 0). If V ̸= 0,

substituting 𝑥 = 𝑎𝑢/𝑘𝑓(V) in the first equation of (7), we have

𝜑
1
(V) ≡ 𝑟 −

𝑎𝑢

𝑘
V =

𝑎𝑚𝑢

𝑘𝑓 (V)
≡ 𝜑
2
(V) . (8)

Note that

𝜑
1 (0) = 𝑟, 𝜑

2 (0) =
𝑎𝑢𝑚

𝑘𝛽
, 𝜑



1
(V) = −

𝑎𝑢

𝑘
< 0,

𝜑


2
(V) = −

𝑎𝑢𝑚𝑘𝑓

(V)

(𝑘𝑓 (V))2
> 0.

(9)

Thus, if 𝜑
1
(0) > 𝜑

2
(0), that is, 𝑅

0
> 1, there is a unique

positive root for (8).
We summarize the above analyses in the following result.

Proposition 2. For system (2), the disease-free equilibrium
𝐸
0

= (𝑟/𝑚, 0, 0) always exists. Furthermore, the unique
endemic equilibrium 𝐸

1
= (𝑥
∗
, 𝑦
∗
, V∗) exists only if 𝑅

0
> 1;

here 𝑥
∗

= 𝑎𝑢/𝑘𝑓(V∗), 𝑦
∗

= 𝑢V∗/𝑘, and V∗ is the unique
positive root of (8).
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3. Local Stability

In this section, we study the local stability of each of feasible
equilibria of system (2) by analyzing the corresponding
characteristic equations, respectively.

The Jacobian matrix 𝐽 of (2) at (𝑥, 𝑦, V) is

𝐽 =
[
[
[

[

−𝑚 − V𝑓 (V) 0 −𝑥𝑓 (V) − 𝑥V𝑓 (V)

𝑓 (V) V −𝑎 𝑥𝑓 (V) + 𝑥V𝑓 (V)

0 𝑘 −𝑢

]
]
]

]

. (10)

At disease-free equilibrium 𝐸
0
,

𝐽
𝐸
0

=

[
[
[
[
[
[

[

−𝑚 0 −
𝛽𝑟

𝑚

0 −𝑎
𝛽𝑟

𝑚

0 𝑘 −𝑢

]
]
]
]
]
]

]

. (11)

Clearly, the determinant of the lower right-hand 2 × 2matrix
is positive and its trace is negative only if 𝑅

0
< 1, so its

eigenvalues have negative real parts in this case. Thus, 𝐸
0
is

locally asymptotically stable if and only if 𝑅
0
< 1.

When 𝑅
0
> 1, the endemic equilibrium 𝐸

1
exists, and the

Jacobian matrix at 𝐸
1
is

𝐽
𝐸
1

=
[
[
[

[

−𝑚 − V∗𝑓 (V∗) 0 −𝑥
∗
𝑓 (V∗) − 𝑥

∗V∗𝑓 (V∗)

𝑓 (V∗) V∗ −𝑎 𝑥
∗
𝑓 (V∗) + 𝑥

∗V∗𝑓 (V∗)

0 𝑘 −𝑢

]
]
]

]

.

(12)

The characteristic equation of (12) is given by

𝜆
3
+ 𝐴
1
𝜆
2
+ 𝐴
2
𝜆 + 𝐴

3
= 0, (13)

in which

𝐴
1
= 𝑎 + 𝑢 + 𝑚 + V∗𝑓 (V∗) > 0,

𝐴
2
= 𝑎𝑢 + (𝑎 + 𝑢) (𝑚 + V∗𝑓 (V∗))

− 𝑘 (𝑥
∗
𝑓 (V∗) + 𝑥

∗V∗𝑓 (V∗))

= (𝑎 + 𝑢) (𝑚 + V∗𝑓 (V∗)) − 𝑘𝑥
∗V∗𝑓 (V∗) > 0,

𝐴
3
= 𝑎𝑢 (𝑚 + V∗𝑓 (V∗)) − 𝑚𝑘 (𝑥

∗
𝑓 (V∗) + 𝑥

∗V∗𝑓 (V∗))

= 𝑎𝑢V∗𝑓 (V∗) − 𝑚𝑘𝑥
∗V∗𝑓 (V∗) > 0.

(14)

Here, we used 𝑥
∗
𝑓(V∗) = 𝑎𝑢/𝑘 and the assumption (H1); that

is, 𝑓(V) < 0.
Because 𝐴

1
and 𝐴

3
are both positive, by Routh-Hurwitz

criterion, 𝐸
1
is locally asymptotically stable if and only if

𝐴
1
𝐴
2
−𝐴
3
> 0. After a simple algebraic calculation, we have

that

𝐴
1
𝐴
2
− 𝐴
3

= 𝑎𝑢𝑚 − 𝑎𝑘𝑥
∗V∗𝑓 (V∗) + (𝑚 + V∗𝑓 (V∗)) (𝑎2 + 𝑎𝑢 + 𝑚𝑢)

+ (𝑢 + V∗𝑓 (V∗)) ((𝑎 + 𝑢) (𝑚 + V∗𝑓 (V∗)) − 𝑘𝑥
∗V∗𝑓 (V∗))

(15)

is positive because 𝑓

(V) < 0. Thus, 𝐸

1
is locally asymptoti-

cally stable if and only if 𝑅
0
> 1.

We summarize the above results and Proposition 2 in the
following theorem.

Theorem 3. If 𝑅
0

< 1, then only disease-free equilibrium 𝐸
0

exists and is locally asymptotically stable. When 𝑅
0
> 1, 𝐸

0
is

unstable and the endemic equilibrium 𝐸
1
appears and is locally

asymptotically stable.

4. Global Stability and Disease Persistence

For the global stability of the equilibria, we first have the
following.

Theorem4. Thedisease-free equilibrium𝐸
0
is globally asymp-

totically stable if only 𝐸
0
exists; that is, 𝑅

0
< 1.

Proof. Define a Lyapunov function

𝑉 = 𝑥 −
𝑟

𝑚
− ln 𝑚𝑥

𝑟
+ 𝑦 +

𝑎

𝑘
V. (16)

Along the trajectories of system (2), we have

𝑉
(2)

= (1 −
𝑟

𝑚𝑥
)𝑥

+ 𝑦

+

𝑎

𝑘
V

= (1 −
𝑟

𝑚𝑥
) (𝑟 − 𝑚𝑥 − 𝑓 (V) 𝑥V)

+ 𝑓 (V) 𝑥V − 𝑎𝑦 + 𝑎𝑦 −
𝑎𝑢

𝑘
V

= −
𝑚

𝑥
(𝑥 −

𝑟

𝑚
)

2

−
𝑎𝑢

𝑘
(1 −

𝑘𝑟𝑓 (V)
𝑎𝑢𝑚

) V.

(17)

Based onTheorem 1, we know that all solutions of system
(2) are positive for 𝑡 > 0. Taking 𝜑(V) = 1 − 𝑘𝑟𝑓(V)/𝑎𝑢𝑚, we
have𝜑(0) = 1−𝑅

0
,𝜑(V) = −𝑘𝑟𝑓


(V)/𝑎𝑢𝑚 > 0; that is,𝜑(V) is a

monotone increasing function.Thus, 𝜑(V) > 0 is always valid
if 𝑅
0

< 1. Consequently, all terms of the right hand side of
(17) are nonpositive when 𝑅

0
< 1, which implies that 𝑉|

(2)
≤

0 and 𝑉

|
(2)

= 0 if and only if 𝑥 = 𝑟/𝑚 and V = 0. As a
result, the maximal invariant set in {(𝑥, 𝑦, V) : 𝑉


|
(2)

= 0} is
the singleton {𝐸

0
}. According to the results inTheorem 3 and

LaSalle’s invariance principle [12], we have that 𝐸
0
is globally

asymptotically stable if 𝑅
0
< 1.

Next, we investigate the uniform persistence of (2) and
have the following result.
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Theorem 5. If 𝑅
0
> 1, then system (2) is uniformly persistent;

that is, there exists 𝜀 > 0 (independent of initial conditions),
such that lim inf

𝑡→+∞
𝑥(𝑡) > 𝜀, lim inf

𝑡→+∞
𝑦(𝑡) > 𝜀, and

lim inf
𝑡→+∞

V(𝑡) > 𝜀 for all solutions of (2) with initial
conditions (3).

Proof. The result follows from an application ofTheorem 4.6
in [13], with 𝑋

1
= int(R3

+
) and 𝑋

2
= bd(R3

+
). Since the proof

is similar to that of Lemma 3.5 in [16], here we only sketch
the modifications that 𝐸

0
is a weak repeller for 𝑋

1
.

Since 𝑅
0

> 1, that is, 𝑎𝑢 < 𝑟𝑘𝑓(0)/𝑚, together with
the continuity of the function 𝑓(V), there exists a sufficiently
small constant 𝜖 > 0 such that 𝑎𝑢 < 𝑘(𝑟/𝑚 − 𝜖)𝑓(𝜖) is valid.
Suppose that there exists a solution (𝑥(𝑡), 𝑦(𝑡), V(𝑡)) such that
(𝑥(𝑡), 𝑦(𝑡), V(𝑡)) → (𝑟/𝑚, 0, 0). Thus, when 𝑡 is sufficiently
large, we have

𝑟

𝑚
− 𝜖 < 𝑥 (𝑡) <

𝑟

𝑚
+ 𝜖, 𝑦 (𝑡) ≤ 𝜖, V (𝑡) ≤ 𝜖. (18)

By the second equation of (2), we have

d𝑦
d𝑡

= 𝑓 (V) 𝑥V − 𝑎𝑦 ≥ 𝑓 (𝜖) (
𝑟

𝑚
− 𝜖) V − 𝑎𝑦. (19)

Take an auxiliary system of (2) as

d𝑦
d𝑡

= 𝑓 (𝜖) (
𝑟

𝑚
− 𝜖) V − 𝑎𝑦,

dV
d𝑡

= 𝑘𝑦 − 𝑢V.
(20)

Clearly, (0, 0) is the unique equilibrium of (20) and the
Jacobian matrix 𝐽 of (20) is given by

𝐽 = [

[

−𝑎 𝑓 (𝜖) (
𝑟

𝑚
− 𝜖)

𝑘 −𝑢

]

]

. (21)

After a simple calculation, we have that the determinant of
matrix (21)

det (𝐽) = 𝑎𝑢 − 𝑘 (
𝑟

𝑚
− 𝜖)𝑓 (𝜖) < 0 (22)

is valid for some sufficiently small constant 𝜖 > 0 if 𝑅
0

> 1.
Thus, (0, 0) is unstable in this case. This is a contradiction to
that (𝑦(𝑡), V(𝑡)) → (0, 0). As a result, 𝐸

0
is a weak repeller for

𝑋
1
.

5. Discussion

Considering the biological practice during viral or micropar-
asitic infection [3, 9–11], we proposed a viral infection model
with general contact rate between susceptible cells and virus
particles, which is a generalization of the basic viral infection
model [7, 8]. The biological meaning of the assumption (H1)
is that the accumulation of free virus particles can affect
the contact rate between susceptible cells and virus particles,
and the contact function is gradually weaker along with the
increasing of free virus particles.

200
400

600
800

1000

0
200

400
600

800
0

1

2

3

4

5

6

E1 = (9.68E2, 1.61E1, 1.20E3)

(x0, y0, �0) = (900, 100, 10)

(x0, y0, �0) = (300, 700, 10)

(x0, y0, �0) = (500, 500, 1000)

(x0, y0, �0) = (200, 800, 1500)

(x0, y0, �0) = (900, 100, 10)

(x0, y0, �0) = (300, 700, 10)

(x0, y0, �0) = (500, 500, 1000)

(x0, y0, �0) = (200, 800, 1500)

×10
4

Fr
ee

 v
iru

s p
ar

tic
le

s(
�
(t
))

Infected cells (y(t)) Susceptible cells (x(t
))

Figure 1: Phase diagram of system (2) under different initial
conditions. Here 𝑓(V) = 𝛽/(1 + 𝑏V) and 𝑟 = 10.0, 𝑚 = 0.01,
𝛽 = 3.60 × 10

−6, 𝑎 = 0.02, 𝑏 = 0.01, 𝑘 = 50, and 𝑢 = 0.67.

Though the rigorous analysis of stability of equilibria
is obtained in [17] for the basic model, it is usually very
complicated [18] and we cannot obtain the global stabil-
ity of the endemic equilibrium 𝐸

1
. However, we have the

conditions of globally asymptotic stability of the disease-
free equilibrium and persistence of virus. In addition, the
phase diagram of system (2) indicates that all solutions tend
to the unique disease steady state 𝐸

1
under different initial

conditions (Figure 1). Thus, we conjecture that 𝐸
1
is globally

asymptotically stable only if it exists even though the rigorous
mathematical proof remains open.
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We analyze the influence of stochastic perturbations on a single-species logistic model with the population’s nonlinear diffusion
among 𝑛 patches. First, we show that this system has a unique positive solution.Then we obtain sufficient conditions for stochastic
permanence and persistence in mean, stationary distribution, and extinction. Finally, we illustrate our conclusions through
numerical simulation.

1. Introduction

Spatial factors which play a fundamental role in persistence
and evolution of species can be modeled by a diffusion
process. We have two typical equations to model the dif-
fusion process. One is semilinear parabolic equations, that
is, reaction-diffusion systems, where the populations are
continuously spread out in space. The other is discrete
diffusion systems, where several species are distributed over
an interconnected network of multiple patches and there
are population migrations among patches. Allen [1] studied
and investigated the logistic nonlinear directed diffusion
model

̇𝑥
𝑖
= 𝑥
𝑖
(𝑎
𝑖
− 𝑏
𝑖
𝑥
𝑖
) +

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝑑
𝑖𝑗
(𝑥
2

𝑗
− 𝛼
𝑖𝑗
𝑥
2

𝑖
) , 𝑖 = 1, 2, . . . , 𝑛,

(1)

where 𝑥
𝑖
denotes the density dependent growth rate in patch

𝑖. The constants 𝑑
𝑖𝑗
(𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑗 ̸= 𝑖) are the dispersal

rate from the 𝑗th patch to the 𝑖th patch, and the nonnegative
constant 𝛼

𝑖𝑗
can be selected to represent different boundary

conditions [2]. Allen proved that the system (1) has a unique
positive solution on a maximal interval (see [3]) and is
strongly persistent and the population size can increase
without bound or bounded under reversed conditions (see
[1]). The fundamental tools to prove these results are the
cooperative system theory and the cooperative matrix [1–4].
For system (1), Lu and Takeuchi [2, Theorem 3] extended
Allen’s results and obtained the following necessary and
sufficient conditions.

(i) The system (1) possesses a globally stable positive
equilibriumpoint (𝑥∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑛
), if the largest eigen-

value of the cooperative negative matrix𝐴 is less than
0.

(ii) Every solution of the system is unbounded, if the
above condition is not satisfied.
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Here

𝐴 =

(
(
(
(
(
(
(

(

𝑏
1
+

𝑛

∑

𝑗=1,𝑗 ̸= 1

𝑑
1𝑗
𝛼
1𝑗

−𝑑
12

⋅ ⋅ ⋅ −𝑑
1𝑛

−𝑑
21

𝑏
2
+

𝑛

∑

𝑗=1,𝑗 ̸= 2

𝑑
2𝑗
𝛼
2𝑗
⋅ ⋅ ⋅ −𝑑

2𝑛

...
... d ⋅ ⋅ ⋅

−𝑑
𝑛1

−𝑑
𝑛2

⋅ ⋅ ⋅ 𝑏
𝑛
+

𝑛

∑

𝑗=1,𝑗 ̸= 𝑛

𝑑
𝑛𝑗
𝛼
𝑛𝑗

)
)
)
)
)
)
)

)

. (2)

Deterministic models are often subject to stochastic
perturbations, and it is useful to reveal how the noise affects
the population system. There are many papers which study
differential equations with stochastic perturbations (see [5–
10] and the references therein). Li et al. [7] studied the
stochastic logistic populations system under regime switch-
ing and analyzed the asymptotic properties of their model.
Jiang et al. [8, 9] investigated a logistic equation with ran-
dom perturbation and obtained many results such as global
stability and stochastic permanence. More investigations and
improvements of these stochastic models can be found in [11,
12].There is very little known on the dynamic behavior in the
single-species dispersal system with stochastic perturbation.

Nowwe introduce randomly perturbation into the intrin-
sic growth rate 𝑎

𝑖
and assume that parameters 𝑎

𝑖
are disturbed

to

𝑎
𝑖
+ 𝜎
𝑖
̇𝐵
𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 𝑛, (3)

where𝐵
𝑖
(𝑡) is mutually independent Brownianmotion and 𝜎

𝑖

is a positive constant representing the intensity of the white
noise. Then the stochastic system takes the form

𝑑𝑥
𝑖
= [

[

𝑥
𝑖
(𝑎
𝑖
− 𝑏
𝑖
𝑥
𝑖
)+

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝑑
𝑖𝑗
(𝑥
2

𝑗
− 𝛼
𝑖𝑗
𝑥
2

𝑖
)]

]

𝑑𝑡+𝜎
𝑖
𝑥
𝑖
𝑑𝐵
𝑖
(𝑡) ,

𝑖 = 1, 2, . . . , 𝑛.

(4)

For convenience, let 𝑏
𝑖
= 𝑏
𝑖
+∑
𝑛

𝑗=1,𝑗 ̸= 𝑖
𝑑
𝑖𝑗
𝛼
𝑖𝑗
and 𝑑

𝑖𝑖
= 0. Thus,

the equation is rewritten as

𝑑𝑥
𝑖
= [

[

𝑥
𝑖
(𝑎
𝑖
− 𝑏
𝑖
𝑥
𝑖
) +

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
𝑥
2

𝑗
]

]

𝑑𝑡 + 𝜎
𝑖
𝑥
𝑖
𝑑𝐵
𝑖
(𝑡) ,

𝑖 = 1, 2, . . . , 𝑛.

(5)

In this paper, we assume that 𝑑
𝑖𝑗
and 𝛼

𝑖𝑗
are nonnegative

constants, the parameters 𝑎
𝑖
, 𝑏
𝑖
are positive constants, and so

𝑏
𝑖
> 0.
The rest of the paper is arranged as follows. We will

show that there exists a unique positive global solution with
any initial positive value in Section 2. In Section 3, we will
investigate sufficient conditions for stochastic permanence

and persistence inmean which are important in an ecological
system. In a deterministic system, the global attractivity of
the positive equilibrium is studied, but it is impossible to
expect system (5) to tend to a steady state. We investigate
the stationary distribution of this system by the Lyapunov
functional technique.This can be considered asweak stability,
which appears as the solution is fluctuating in a neigh-
borhood of the point. In Section 4, we show that if the
white noise is small, there is a stationary distribution of (5)
and it has an ergodic property. Results on dynamic in a
patchy environment have largely been restricted to extinction
analysis which means that the population system will survive
or die out in the future. In Section 5, we give sufficient
conditions for extinction. In Sections 6 and 7, we make
numerical simulation to confirm the effect of white noise
intensity and the diffusion coefficient on the species and give
a conclusion. Finally, for the completeness of the paper, we
give an Appendix containing some results which will be used
in other sections.

The key method used in this paper is the analysis of
Lyapunov functions [5, 8–10, 12].

Throughout this paper, unless otherwise specified, let
(Ω, {F

𝑡
}
𝑡≥0
, 𝑃) be a complete probability space with a filtra-

tion {F
𝑡
}
𝑡≥0

satisfying the usual conditions (i.e., it is right
continuous and F

0
contains all 𝑃-null sets). Let 𝑅𝑛

+
is the

positive cone of 𝑅𝑛, namely, 𝑅𝑛
+
= {(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑅

𝑛
:

𝑥
𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛}. For convenience and simplicity in the

following discussion, denote 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))

and 𝑥
𝑖
= 𝑥
𝑖
(𝑡). If 𝐴 is a vector or matrix, its transpose is

denoted by 𝐴𝑇. By 𝐴 ≫ 0 we mean all elements of 𝐴 are
positive. If 𝐴 is a matrix, its trace norm is denoted by |𝐴| =
√trace (𝐴𝑇𝐴) whilst its operator norm is denoted by ‖𝐴‖ =
sup{|𝐴𝑥| : |𝑥| = 1}. We impose the following assumptions.

Assumption 1. 𝑏
𝑖
> ∑
𝑛

𝑗=1
𝑑
𝑗𝑖
, 𝑖 = 1, 2, . . . , 𝑛.

Assumption 2. 𝑎
𝑖
> 𝜎
2

𝑖
/2, 𝑖 = 1, 2, . . . , 𝑛.

2. Positive and Global Solutions

As the solution of SDE (5) has biological significance, it
should be nonnegative. Moreover, in order for a stochas-
tic differential equation to have a unique global (i.e., no
explosion in a finite time) solution for any given initial
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value, the coefficients of the equation are generally required
to satisfy a linear growth condition and a local Lipschitz
condition (cf. Mao [13]). However, the coefficients of SDE
(5) do not satisfy a linear growth condition, though they are
locally Lipschitz continuous. In this section, we will use a
method similar to Mao et al. [5, Theorem 2.1] to prove that
the solution of SDE (5) is nonnegative and global.

Theorem 3. Let Assumption 1 hold. For any given initial value
𝑥(0) ∈ 𝑅

𝑛

+
, there is a unique positive solution 𝑥(𝑡) of system (5),

and the solution will remain in 𝑅𝑛
+
with probability 1.

Proof. Define a 𝐶2-function 𝑉 : 𝑅𝑛
+
→ 𝑅
+
by

𝑉 (𝑥) =

𝑛

∑

𝑖=1

(𝑥
𝑖
− 1 − log𝑥

𝑖
) . (6)

The nonnegativity of this function can be observed from 𝑎 −
1 − log 𝑎 ≥ 0 on 𝑎 > 0 with equality holding if and only if
𝑎 = 1. For 𝑥 ∈ 𝑅𝑛

+
, applying Itô’s formula, we have

𝑑𝑉 (𝑥)

=

𝑛

∑

𝑖=1

[𝑑𝑥
𝑖
−
1

𝑥
𝑖

𝑑𝑥
𝑖
+
1

2𝑥
2

𝑖

(𝑑𝑥
𝑖
)
2
]

=

𝑛

∑

𝑖=1

[

[

−𝑏
𝑖
𝑥
2

𝑖
+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
𝑥
2

𝑗
+(𝑎
𝑖
+ 𝑏
𝑖
) 𝑥
𝑖
−

𝑛

∑

𝑗=1

𝑑
𝑖𝑗

𝑥
2

𝑗

𝑥
𝑖

−𝑎
𝑖
+
𝜎
2

𝑖

2

]

]

𝑑𝑡

+

𝑛

∑

𝑖=1

𝜎
𝑖
(𝑥
𝑖
− 1) 𝑑𝐵

𝑖 (𝑡)

≤

𝑛

∑

𝑖=1

[

[

(−𝑏
𝑖
+

𝑛

∑

𝑗=1

𝑑
𝑗𝑖
)𝑥
2

𝑖
+ (𝑎
𝑖
+ 𝑏
𝑖
) 𝑥
𝑖
− 𝑎
𝑖
+
𝜎
2

𝑖

2

]

]

𝑑𝑡

+

𝑛

∑

𝑖=1

𝜎
𝑖
(𝑥
𝑖
− 1) 𝑑𝐵

𝑖
(𝑡)

=: 𝐿𝑉𝑑𝑡 +

𝑛

∑

𝑖=1

𝜎
𝑖
(𝑥
𝑖
− 1) 𝑑𝐵

𝑖
(𝑡) ,

(7)

where

𝐿𝑉 =

𝑛

∑

𝑖=1

[

[

(−𝑏
𝑖
+

𝑛

∑

𝑗=1

𝑑
𝑗𝑖
)𝑥
2

𝑖
+ (𝑎
𝑖
+ 𝑏
𝑖
) 𝑥
𝑖
− 𝑎
𝑖
+
𝜎
2

𝑖

2

]

]

(8)

and by Assumption 1, we know that there exists a positive
constant number𝐾 satisfying

𝐿𝑉 ≤ 𝐾 (9)

and 𝐾 is independent of 𝑥
𝑖
and 𝑡. By a proof similar to Mao

et al. [5, Theorem 2.1], we obtain the desired assertion.

3. Stochastic Permanence and
Persistence in Mean

In this section, we will investigate the persistence under two
differentmeanings: stochastic permanence and persistence in
mean.

3.1. Stochastic Permanence. Theorem 3 shows that the solu-
tion of SDE (5) will remain in the positive cone𝑅𝑛

+
with prob-

ability 1. We now further discuss how the solution varies in
𝑅
𝑛

+
in detail. We will first give the definitions of stochastically

ultimate boundedness and stochastic permanence.

Definition 4. The SDE (5) is said to be stochastically ulti-
mately bounded, if for any 𝜖 ∈ (0, 1), there exist positive
constants 𝜒

𝑖
(= 𝜒
𝑖
(𝜖)) (𝑖 = 1, 2, . . . , 𝑛) such that for any initial

value 𝑥(0) ∈ 𝑅𝑛
+
, the solution of SDE (5) has the property that

lim sup
𝑡→∞

𝑃 {𝑥
𝑖
(𝑡) > 𝜒

𝑖
} < 𝜖, 𝑖 = 1, 2, . . . , 𝑛, (10)

where (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡)) is the solution of SDE (5) with

any initial value 𝑥(0) ∈ 𝑅𝑛
+
.

Definition 5. The SDE (5) is said to be stochastically per-
manent, if for any 𝜖 ∈ (0, 1), there are positive constants
𝜒
𝑖
(= 𝜒
𝑖
(𝜖)) and 𝛿

𝑖
(= 𝛿
𝑖
(𝜖)) (𝑖 = 1, 2, . . . , 𝑛) such that

lim inf
𝑡→∞

𝑃 {𝑥
𝑖
(𝑡) ≤ 𝜒

𝑖
} ≥ 1 − 𝜖,

lim inf
𝑡→∞

𝑃 {𝑥
𝑖
(𝑡) ≥ 𝛿

𝑖
} ≥ 1 − 𝜖,

𝑖 = 1, 2, . . . , 𝑛.

(11)

It is clear that if the system is stochastically permanent, it
must be stochastically ultimately bounded.

Lemma 6. Under Assumption 1, for any given initial value
𝑥(0) ∈ 𝑅

𝑛

+
, there exists a positive constant 𝜅(𝑝) such that the

solution 𝑥(𝑡) of SDE (5) has the following property:

𝐸(

𝑛

∑

𝑖=1

𝑥
𝑖 (𝑡))

𝑝

≤ 𝜅 (𝑝) , 𝑡 ≥ 0, 𝑝 > 1. (12)

Proof. By Theorem 3, we know that the solution 𝑥(𝑡) with
initial value 𝑥(0) ∈ 𝑅𝑛

+
will remain in 𝑅𝑛

+
with probability 1.

For any given positive constant 𝑝 > 1, define

𝑉 (𝑥 (𝑡)) = (

𝑛

∑

𝑖=1

𝑥
𝑖
(𝑡))

𝑝

. (13)
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By Itô’s formula, we find that

𝑑𝑉 = 𝑝(

𝑛

∑

𝑖=1

𝑥
𝑖
)

𝑝−1

𝑑(

𝑛

∑

𝑖=1

𝑥
𝑖
)

+
𝑝 (𝑝 − 1)

2
(

𝑛

∑

𝑖=1

𝑥
𝑖
)

𝑝−2

𝑑(

𝑛

∑

𝑖=1

𝑥
𝑖
)

2

= [

[

𝑝(

𝑛

∑

𝑖=1

𝑥
𝑖
)

𝑝−1
𝑛

∑

𝑖=1

[

[

𝑥
𝑖
(𝑎
𝑖
− 𝑏
𝑖
𝑥
𝑖
) +

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
𝑥
2

𝑗
]

]

+
𝑝 (𝑝 − 1)

2
(

𝑛

∑

𝑖=1

𝑥
𝑖
)

𝑝−2
𝑛

∑

𝑖=1

𝜎
2

𝑖
𝑥
2

𝑖
]

]

𝑑𝑡

+ 𝑝(

𝑛

∑

𝑖=1

𝑥
𝑖
)

𝑝−1
𝑛

∑

𝑖=1

𝜎
𝑖
𝑥
𝑖
𝑑𝐵
𝑖
(𝑡)

= 𝑝[

[

(

𝑛

∑

𝑖=1

𝑥
𝑖
)

𝑝−1
𝑛

∑

𝑖=1

(−𝑏
𝑖
+

𝑛

∑

𝑗=1

𝑑
𝑗𝑖
)𝑥
2

𝑖

+ 𝑝(

𝑛

∑

𝑖=1

𝑥
𝑖
)

𝑝−1
𝑛

∑

𝑖=1

(𝑎
𝑖
𝑥
𝑖
)

+
𝑝 (𝑝 − 1)

2
(

𝑛

∑

𝑖=1

𝑥
𝑖
)

𝑝−2
𝑛

∑

𝑖=1

𝜎
2

𝑖
𝑥
2

𝑖
]

]

𝑑𝑡

+ 𝑝(

𝑛

∑

𝑖=1

𝑥
𝑖
)

𝑝−1
𝑛

∑

𝑖=1

𝜎
𝑖
𝑥
𝑖
𝑑𝐵
𝑖
(𝑡)

≤ [

[

−min
1≤𝑖≤𝑛

{

{

{

𝑝(𝑏
𝑖
− ∑
𝑛

𝑗=1
𝑑
𝑗𝑖
)

𝑛

}

}

}

(

𝑛

∑

𝑖=1

𝑥
𝑖
)

𝑝+1

+ max
1≤𝑖≤𝑛

{𝑝𝑎
𝑖
+
𝑝 (𝑝 − 1)

2
𝜎
2

𝑖
}(

𝑛

∑

𝑖=1

𝑥
𝑖
)

𝑝

]

]

𝑑𝑡

+ 𝑝(

𝑛

∑

𝑖=1

𝑥
𝑖
)

𝑝−1
𝑛

∑

𝑖=1

𝜎
𝑖
𝑥
𝑖
𝑑𝐵
𝑖
(𝑡)

=: [

[

−𝛽(

𝑛

∑

𝑖=1

𝑥
𝑖
)

𝑝+1

+ ̌𝛼(

𝑛

∑

𝑖=1

𝑥
𝑖
)

𝑝

]

]

𝑑𝑡

+ 𝑝(

𝑛

∑

𝑖=1

𝑥
𝑖
)

𝑝−1
𝑛

∑

𝑖=1

𝜎
𝑖
𝑥
𝑖
𝑑𝐵
𝑖 (𝑡) ,

(14)

where 𝛽=min
1≤𝑖≤𝑛

{𝑝(𝑏
𝑖
−∑
𝑛

𝑗=1
𝑑
𝑗𝑖
)/𝑛}, and ̌𝛼=max

1≤𝑖≤𝑛
{𝑝𝑎
𝑖
+

(𝑝(𝑝 − 1)/2)𝜎
2

𝑖
}. It’s clear that ̌𝛼 > 0 and 𝛽 > 0. Hence we get

𝑑𝐸(∑
𝑛

𝑖=1
𝑥
𝑖
(𝑡))
𝑝

𝑑𝑡

≤ ̌𝛼𝐸(

𝑛

∑

𝑖=1

𝑥
𝑖
(𝑡))

𝑝

− 𝛽[𝐸(

𝑛

∑

𝑖=1

𝑥
𝑖
(𝑡))

𝑝

]

(𝑝+1)/𝑝

= 𝐸(

𝑛

∑

𝑖=1

𝑥
𝑖
(𝑡))

𝑝

{

{

{

̌𝛼 − 𝛽[𝐸(

𝑛

∑

𝑖=1

𝑥
𝑖
(𝑡))

𝑝

]

1/𝑝

}

}

}

.

(15)

Therefore, letting 𝑧(𝑡) = 𝐸(∑𝑛
𝑖=1
𝑥
𝑖
(𝑡))
𝑝, we have

𝑑𝑧 (𝑡)

𝑑𝑡
≤ 𝑧 (𝑡) [ ̌𝛼 − 𝛽𝑧

1/𝑝
(𝑡)] . (16)

Notice that the solution of equation

𝑑 𝑧 (𝑡)

𝑑𝑡
= 𝑧 (𝑡) [ ̌𝛼 − 𝛽𝑧

1/𝑝
(𝑡)] (17)

obeys

𝑧 (𝑡) → (
̌𝛼

𝛽

)

𝑝

, as 𝑡 → ∞. (18)

Thus by the comparison argument we get

lim sup
𝑡→∞

𝑧 (𝑡) ≤ (
̌𝛼

𝛽

)

𝑝

. (19)

Then we have

lim sup
𝑡→∞

𝐸(

𝑛

∑

𝑖=1

𝑥
𝑖 (𝑡))

𝑝

≤ (
̌𝛼

𝛽

)

𝑝

=: 𝐿 (𝑝) , (20)

which implies that there exists a 𝑇 > 0, such that

𝐸(

𝑛

∑

𝑖=1

𝑥
𝑖
(𝑡))

𝑝

≤ 2𝐿 (𝑝) , 𝑡 > 𝑇. (21)

In addition, 𝐸(∑𝑛
𝑖=1
𝑥
𝑖
(𝑡))
𝑝 is continuous, so we have

𝐸(

𝑛

∑

𝑖=1

𝑥
𝑖
(𝑡))

𝑝

≤ 𝐶 (𝑝) , 𝑡 ∈ [0, 𝑇] . (22)

Let 𝜅(𝑝) = max{2𝐿(𝑝), 𝐶(𝑝)}, and therefore

𝐸(

𝑛

∑

𝑖=1

𝑥
𝑖 (𝑡))

𝑝

≤ 𝜅 (𝑝) , 𝑡 ≥ 0, 𝑝 > 1. (23)

This completes the proof.

Theorem 7. Under Assumption 1, solutions of SDE (5) are
stochastically ultimately bounded.

The proof of Theorem 7 is a simple application of the
Chebyshev inequality and Lemma 6.

Since the solution of SDE (5) is positive, by the classical
comparison theorem of stochastic differential equations [14],
we can obtain the lemma.
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Lemma 8. Let Assumptions 1 and 2 hold, and 𝑥(𝑡) ∈ 𝑅𝑛
+
is the

solution of SDE (5) with initial value 𝑥(0) ∈ 𝑅𝑛
+
. Then 𝑥(𝑡) has

the property that

𝑥
𝑖
(𝑡) ≥ 𝜙

𝑖
(𝑡) , (24)

where 𝜙
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) are the solutions of the following

equations:

𝑑𝜙
𝑖
(𝑡) = 𝜙

𝑖
(𝑡) [(𝑎

𝑖
− 𝑏
𝑖
𝜙
𝑖
(𝑡)) 𝑑𝑡 + 𝜎

𝑖
𝑑𝐵
𝑖
(𝑡)] ,

𝜙
𝑖
(0) = 𝑥

𝑖
(0) ,

𝑖 = 1, 2, . . . , 𝑛.

(25)

In view of Li et al. [7, Lemma 3.6], one sees that, if
Assumption 2 holds, there exist positive constants 𝐻

𝑖
and 𝜃

such that 𝑎
𝑖
− ((𝜃 + 1)/2)𝜎

2

𝑖
> 0 (𝑖 = 1, 2, . . . , 𝑛) satisfying the

following inequalities:

lim sup
𝑡→∞

𝐸[
1

(𝜙
𝑖
(𝑡))
𝜃
] ≤ 𝐻

𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

lim inf
𝑡→∞

log𝜙
𝑖 (𝑡)

log 𝑡
≥ −

1

𝜃
a.s. 𝑖 = 1, 2, . . . , 𝑛.

(26)

These, together with Lemma 8, then we have.

Lemma 9. Under Assumptions 1 and 2, the solution 𝑥(𝑡) of
SDE (5) with any initial value 𝑥(0) ∈ 𝑅𝑛

+
has the property that

lim sup
𝑡→∞

𝐸[
1

(𝑥
𝑖 (𝑡))
𝜃
] ≤ 𝐻

𝑖
, 𝑖 = 1, 2, . . . , 𝑛, (27)

lim inf
𝑡→∞

log𝑥
𝑖
(𝑡)

log 𝑡
≥ −

1

𝜃
𝑎.𝑠. 𝑖 = 1, 2, . . . , 𝑛, (28)

where𝐻
𝑖
are positive constants and 𝜃 > 0 such that 𝑎

𝑖
− ((𝜃 +

1)/2)𝜎
2

𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛.

Theorem 10. Under Assumptions 1 and 2, SDE (5) is stochas-
tically permanent.

Proof. Let 𝑥(𝑡) be the solution of SDE (5) with any given
positive initial value 𝑥(0) ∈ 𝑅𝑛

+
. By Lemma 9, we have

lim sup
𝑡→∞

𝐸[
1

(𝑥
𝑖
(𝑡))
𝜃
] ≤ 𝐻

𝑖
, 𝑖 = 1, 2, . . . , 𝑛. (29)

For 𝑥(𝑡) ∈ 𝑅𝑛
+
and for any 𝜖 > 0, let 𝛿

𝑖
= (𝜖/𝐻

𝑖
)
1/𝜃, we get the

following:

𝑃 {𝑥
𝑖
(𝑡) < 𝛿

𝑖
} = 𝑃{

1

(𝑥
𝑖
(𝑡))
𝜃
>
1

𝛿
𝜃

𝑖

}

≤

𝐸 [1/(𝑥
𝑖
(𝑡))
𝜃
]

1/𝛿
𝜃

𝑖

≤ 𝛿
𝜃

𝑖
𝐻
𝑖
= 𝜖, 𝑖 = 1, 2, . . . , 𝑛.

(30)

Hence

lim sup
𝑡→∞

𝑃 {𝑥
𝑖
(𝑡) < 𝛿

𝑖
} ≤ 𝜖, 𝑖 = 1, 2, . . . , 𝑛, (31)

and this implies

lim inf
𝑡→∞

𝑃 {𝑥
𝑖
(𝑡) ≥ 𝛿

𝑖
} ≥ 1 − 𝜖, 𝑖 = 1, 2, . . . , 𝑛. (32)

The other part of Definition 5 follows fromTheorem 7.

3.2. Persistence in Mean. In this section, we will investigate
persistence in mean. First we introduce one definition.

Definition 11. SDE (5) is said to be persistent in mean, if there
exist positive constants 𝑚

𝑖
,𝑀
𝑖
(𝑖 = 1, 2, . . . , 𝑛) such that the

solution 𝑥(𝑡) of SDE (5) has the following property:

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

𝑥
𝑖
(𝑠) 𝑑𝑠 ≤ 𝑀

𝑖
a.s. 𝑖 = 1, 2, . . . , 𝑛,

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑥
𝑖
(𝑠) 𝑑𝑠 ≥ 𝑚

𝑖
a.s. 𝑖 = 1, 2, . . . , 𝑛.

(33)

From the result in [12], we know that

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝜙
𝑖
(𝑠) 𝑑𝑠 =

𝑎
𝑖
− 𝜎
2

𝑖
/2

𝑏
𝑖

, lim
𝑡→∞

log𝜙
𝑖
(𝑡)

𝑡
= 0

a.s. 𝑖 = 1, 2, . . . , 𝑛.
(34)

Using the above conclusions, we get the following lemmas.

Lemma 12. Suppose that Assumptions 1 and 2 are satisfied.
Then the solution 𝑥(𝑡) of SDE (5) with any initial value 𝑥(0) ∈
𝑅
𝑛

+
has the following property:

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑥
𝑖
(𝑠) 𝑑𝑠 ≥

𝑎
𝑖
− 𝜎
2

𝑖
/2

𝑏
𝑖

, lim inf
𝑡→∞

log𝑥
𝑖
(𝑡)

𝑡
≥ 0

𝑎.𝑠. 𝑖 = 1, 2, . . . , 𝑛.

(35)

Lemma 13. Let Assumption 1 hold. For any given initial value
𝑥(0) ∈ 𝑅

𝑛

+
, the solution 𝑥(𝑡) of SDE (5) has the property that

lim sup
𝑡→∞

log [∑𝑛
𝑖=1
𝑥
𝑖
(𝑡)]

log 𝑡
≤ 1 𝑎.𝑠. 𝑖 = 1, 2, . . . , 𝑛. (36)

Proof. Define 𝑉 : 𝑅𝑛
+
→ 𝑅
+
by

𝑉 (𝑥 (𝑡)) =

𝑛

∑

𝑖=1

𝑥
𝑖
(𝑡) , (37)
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and applying the Itô’s formula, one can see that

𝐸[ sup
𝑡≤𝑢≤𝑡+1

𝑉 (𝑥 (𝑢))]

≤ 𝐸 [𝑉 (𝑥 (𝑡))] + ̌𝑎∫

𝑡+1

𝑡

𝐸[

𝑛

∑

𝑖=1

𝑥
𝑖
(𝑠)] 𝑑𝑠

+ ̌𝑏∫

𝑡+1

𝑡

𝐸[

𝑛

∑

𝑖=1

𝑥
2

𝑖
(𝑠)] 𝑑𝑠

+ 𝐸[ sup
𝑡≤𝑢≤𝑡+1

∫

𝑢

𝑡

𝑛

∑

𝑖=1

𝜎
𝑖
𝑥
𝑖 (𝑠) 𝑑𝐵𝑖 (𝑠)] ;

(38)

here ̌𝑎 = max
1≤𝑖≤𝑛

{𝑎
𝑖
}, ̌𝑏 = max

1≤𝑖≤𝑛
{| − 𝑏
𝑖
+ ∑
𝑛

𝑗=1
𝑑
𝑗𝑖
|}. From

(12) of Lemma 6, we have

lim sup
𝑡→∞

𝐸 [𝑉 (𝑥 (𝑡))] = lim sup
𝑡→∞

𝐸[

𝑛

∑

𝑖=1

𝑥
𝑖 (𝑡)] ≤ [𝜅 (2)]

1/2
,

lim sup
𝑡→∞

∫

𝑡+1

𝑡

𝐸[

𝑛

∑

𝑖=1

𝑥
2

𝑖
(𝑠)] 𝑑𝑠 ≤ 𝜅 (2) .

(39)

An application of the Burkholder-Davis-Gundy inequality
(see [12, 14]) and the Hölder inequality (see [12]) yields

𝐸[ sup
𝑡≤𝑢≤𝑡+1

∫

𝑢

𝑡

𝑛

∑

𝑖=1

𝜎
𝑖
𝑥
𝑖
(𝑠) 𝑑𝐵

𝑖
(𝑠)]

≤ 3max
1≤𝑖≤𝑛

{𝜎
𝑖
} 𝐸(∫

𝑡+1

𝑡

[

𝑛

∑

𝑖=1

𝑥
2

𝑖
(𝑠)] 𝑑𝑠)

1/2

≤ 3 ̌𝜎[𝜅 (2)]
1/2
,

(40)

where ̌𝜎 = max
1≤𝑖≤𝑛

{𝜎
𝑖
}. This together with (39) yields

lim sup
𝑡→∞

𝐸[ sup
𝑡≤𝑢≤𝑡+1

𝑉 (𝑥 (𝑢))]

≤ (1 + ̌𝑎 + 3 ̌𝜎) [𝜅 (2)]
1/2
+ ̌𝑏𝜅 (2) .

(41)

We observe from (41) that there is a positive constant𝐾∗ such
that

𝐸( sup
𝑡≤𝑢≤𝑡+1

[

𝑛

∑

𝑖=1

𝑥
𝑖
(𝑢)]) ≤ 𝐾

∗
. (42)

Let 𝜖 > 0 be arbitrary. Then, by the well-known Chebyshev
inequality, we have

𝑃{ sup
𝑡≤𝑢≤𝑡+1

[

𝑛

∑

𝑖=1

𝑥
𝑖
(𝑢)] > 𝑚

1+𝜖
} ≤

𝐾
∗

𝑚1+𝜖
, 𝑚 = 1, 2, . . . .

(43)

Applying the Borel-Cantelli lemma (see [12]), for almost all
𝜔 ∈ Ω, we obtain that

sup
𝑡≤𝑢≤𝑡+1

[

𝑛

∑

𝑖=1

𝑥
𝑖
(𝑢)] ≤ 𝑚

1+𝜖 (44)

holds for all but finitely many 𝑚. Hence, we have a 𝑚
0
(𝜔)

such that (44) holds whenever𝑚 ≥ 𝑚
0
, for almost all 𝜔 ∈ Ω.

Consequently, for almost all 𝜔 ∈ Ω, if 𝑚 ≥ 𝑚
0
and 𝑚 ≤ 𝑡 ≤

𝑚 + 1, we have

log [∑𝑛
𝑖=1
𝑥
𝑖
(𝑡)]

log 𝑡
≤
(1 + 𝜖) log𝑚

log𝑚
= 1 + 𝜖. (45)

Therefore

lim sup
𝑡→∞

log [∑𝑛
𝑖=1
𝑥
𝑖
(𝑡)]

log 𝑡
≤ 1 + 𝜖 a.s. (46)

Letting 𝜖 → 0 we obtain the desired assertion (36).

Theorem 14. Under Assumptions 1 and 2, for any given initial
value 𝑥(0) ∈ 𝑅𝑛

+
, the solution 𝑥(𝑡) of SDE (5) is persistent in

mean.

Proof. Assume that 𝑉 : 𝑅𝑛
+
→ 𝑅
+
is defined as in (37). From

the inequality (28) of Lemma 9 and (36) of Lemma 13, one
can derive that

lim
𝑡→∞

log𝑉 (𝑥 (𝑡))
𝑡

= 0 a.s. (47)

By virtue of the Itô’s formula and the Cauchy inequality, we
have

𝑑 log𝑉 = 1
𝑉

𝑛

∑

𝑖=1

[

[

𝑎
𝑖
𝑥
𝑖
− (𝑏
𝑖
−

𝑛

∑

𝑗=1

𝑑
𝑗𝑖
)𝑥
2

𝑖
]

]

𝑑𝑡

−
1

2𝑉2

𝑛

∑

𝑖=1

𝜎
2

𝑖
𝑥
2

𝑖
𝑑𝑡 +

1

𝑉

𝑛

∑

𝑖=1

𝜎
𝑖
𝑥
𝑖
𝑑𝐵
𝑖
(𝑡)

= [
1

𝑉

𝑛

∑

𝑖=1

𝑎
𝑖
𝑥
𝑖
−
1

2𝑉2

𝑛

∑

𝑖=1

𝜎
2

𝑖
𝑥
2

𝑖
]𝑑𝑡

−
1

𝑉

𝑛

∑

𝑖=1

(𝑏
𝑖
−

𝑛

∑

𝑗=1

𝑑
𝑗𝑖
)𝑥
2

𝑖
𝑑𝑡 +

1

𝑉

𝑛

∑

𝑖=1

𝜎
𝑖
𝑥
𝑖
𝑑𝐵
𝑖
(𝑡)

≤ [max
1≤𝑖≤𝑛

{𝑎
𝑖
} −

∑
𝑛

𝑖=1
𝜎
2

𝑖
𝑥
2

𝑖

2 (∑
𝑛

𝑖=1
(1/𝜎
2

𝑖
)) (∑
𝑛

𝑖=1
𝜎
2

𝑖
𝑥
2

𝑖
)
] 𝑑𝑡

−
1

𝑛
min
1≤𝑖≤𝑛

{

{

{

𝑏
𝑖
−

𝑛

∑

𝑗=1

𝑑
𝑗𝑖

}

}

}

(∑
𝑛

𝑖=1
𝑥
𝑖
)
2

∑
𝑛

𝑖=1
𝑥
𝑖

𝑑𝑡

+
1

𝑉

𝑛

∑

𝑖=1

𝜎
𝑖
𝑥
𝑖
𝑑𝐵
𝑖 (𝑡)

=: ( ̌𝑎 −
�̂�
2

2
)𝑑𝑡 −

�̂�

𝑛

𝑛

∑

𝑖=1

𝑥
𝑖
𝑑𝑡 +

1

𝑉

𝑛

∑

𝑖=1

𝜎
𝑖
𝑥
𝑖
𝑑𝐵
𝑖
(𝑡) .

(48)
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Here ̌𝑎 = max
1≤𝑖≤𝑛

{𝑎
𝑖
}, �̂�2/2 = 1/(2(∑𝑛

𝑖=1
(1/𝜎
2

𝑖
))) and �̂� =

min
1≤𝑖≤𝑛

{𝑏
𝑖
− ∑
𝑛

𝑗=1
𝑑
𝑗𝑖
}. Integrating both sides of the above

inequality (48) from 0 to 𝑡 gives

log𝑉 (𝑥 (𝑡)) + �̂�
𝑛
∫

𝑡

0

𝑛

∑

𝑖=1

𝑥
𝑖
(𝑠) 𝑑𝑠

≤ log𝑉 (𝑥 (0)) + ∫
𝑡

0

( ̌𝑎 −
�̂�
2

2
)𝑑𝑠 +𝑀 (𝑡) ,

(49)

where𝑀(𝑡) is a martingale defined by

𝑀(𝑡) = ∫

𝑡

0

∑
𝑛

𝑖=1
𝜎
𝑖
𝑥
𝑖
(𝑠) 𝑑𝐵

𝑖
(𝑠)

∑
𝑛

𝑖=1
𝑥
𝑖 (𝑠)

(50)

with𝑀(0) = 0. The quadratic variation of this martingale is

⟨𝑀,𝑀⟩
𝑡
= ∫

𝑡

0

∑
𝑛

𝑖=1
𝜎
2

𝑖
𝑥
2

𝑖
(𝑠)

(∑
𝑛

𝑖=1
𝑥
𝑖
(𝑠))
2
𝑑𝑠 ≤ max
1≤𝑖≤𝑛

{𝜎
2

𝑖
} 𝑡. (51)

By the strong law of large numbers for martingales (see [11]),
we have

lim
𝑡→∞

𝑀(𝑡)

𝑡
= 0 a.s. (52)

It finally follows from (49) by dividing by 𝑡 on both sides and
then letting 𝑡 → ∞; that is,

�̂�

𝑛
lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

𝑛

∑

𝑖=1

𝑥
𝑖
(𝑠) 𝑑𝑠 ≤ ̌𝑎 −

�̂�
2

2
a.s. (53)

which implies that

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

𝑛

∑

𝑖=1

𝑥
𝑖
(𝑠) 𝑑𝑠 ≤

𝑛

�̂�

( ̌𝑎 −
�̂�
2

2
) a.s. (54)

On the other hand, from Lemma 12, we know that

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑥
𝑖
(𝑠) 𝑑𝑠 ≥

1

𝑏
𝑖

(𝑎
𝑖
−
𝜎
2

𝑖

2
) a.s. 𝑖 = 1, 2, . . . , 𝑛.

(55)

Let 𝑀
𝑖
= (𝑛/�̂�)( ̌𝑎 − (�̂�

2
/2)), 𝑚

𝑖
= (1/𝑏

𝑖
) (𝑎
𝑖
− (𝜎
2

𝑖
/2)) (𝑖 =

1, 2, . . . , 𝑛), then we have

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

𝑥
𝑖
(𝑠) 𝑑𝑠 ≤ 𝑀

𝑖
, lim inf

𝑡→∞

1

𝑡
∫

𝑡

0

𝑥
𝑖
(𝑠) 𝑑𝑠 ≥ 𝑚

𝑖

a.s. 𝑖 = 1, 2, . . . , 𝑛.
(56)

Thus the required assertion follows.

4. Stationary Distribution

In this section, we investigate that there is a stationary
distribution for SDE (5) instead of asymptotically stable
equilibria. In order to ensure that system (1) has a globally
stable positive equilibrium point 𝑥∗ = (𝑥∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑛
), we

need to introduce the following lemmas.

Lemma 15 (Mao and Yuan [11, Lemma 5.3]). If 𝐵 = (𝑏
𝑖𝑗
) ∈

𝑍
𝑛×𝑛 has all of its row sums positive,

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
> 0 ∀1 ≤ 𝑖 ≤ 𝑛, (57)

then det𝐵 > 0, where 𝑍𝑛×𝑛 = {𝐵 = (𝑏
𝑖𝑗
)
𝑛×𝑛
: 𝑏
𝑖𝑗
≤ 0, 𝑖 ̸= 𝑗}.

Lemma 16 (Mao and Yuan [11, Theorem 2.10]). If 𝐵 ∈ 𝑍𝑛×𝑛,
then the following statements are equivalent:

(a) 𝐵 is a nonsingular𝑀-matrix;
(b) for any 𝑦 ≫ 0 in 𝑅𝑛, the linear equation 𝐵𝑥 = 𝑦 has a

unique solution 𝑥 ≫ 0;
(c) all of the principal minors of 𝐵 are positive; that is,

𝐿
𝐵
=



𝑏
11
𝑏
12
. . . 𝑏
1𝑘

𝑏
21
𝑏
22
. . . 𝑏
2𝑘

...
... d . . .

𝑏
𝑘1
𝑏
𝑘2
. . . 𝑏
𝑘𝑘



> 0 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑘 = 1, 2, . . . , 𝑛;

(58)

(d) 𝐵 is positive stable; that is, the real part of each eigen-
value of 𝐵 is positive.

Let the matrix 𝐴 be defined as in Section 1 which can be
simply written as

𝐴 =(

𝑏
1

−𝑑
12
. . . −𝑑

1𝑛

−𝑑
21

𝑏
2
. . . −𝑑

2𝑛

...
... d . . .

−𝑑
𝑛1

𝑑
𝑛2

. . . 𝑏
𝑛

). (59)

Lemma 17. If Assumption 1 holds, then both 𝐴 and 𝐴𝑇 are
nonsingular𝑀-matrices.

Proof. We can obtain by Lemma 15 that if 𝑏
𝑖
> ∑
𝑛

𝑗=1
𝑑
𝑗𝑖
(𝑖 =

1, 2, . . . , 𝑛), then all of the principal minors of𝐴𝑇 are positive,
and from (a) and (c) of Lemma 16, we know that 𝐴𝑇 is a
nonsingular M-matrix.

Since all of the principalminors of𝐴 and𝐴𝑇 are the same,
so 𝐴 is also a nonsingular𝑀-matrix.

From Lemma 17, we know that if 𝐴 is a nonsingular
𝑀-matrix, then the real part of each eigenvalue of 𝐴 is
positive based on (a) and (d) of Lemma 16, and we can
also deduce that the maximum of the real part eigenvalues
of negative matrix 𝐴 is less than 0. This together with
Theorem 3 of [2] stated in Section 1, we know that system (1)
possesses a globally stable positive equilibrium point 𝑥∗ =
(𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑛
) satisfying the equations

𝑎
𝑖
𝑥
∗

𝑖
− 𝑏
𝑖
𝑥
∗

𝑖

2
+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
𝑥
∗

𝑗

2
= 0, 𝑖 = 1, 2, . . . , 𝑛, (60)

where 𝑥∗
𝑖
are positive constants.
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Theorem 18. Let Assumption 1 hold. Let 𝛿
2
= (1/2)∑

𝑛

𝑖=1
𝜎
2

𝑖
𝑥
∗

𝑖

and 𝛿
2
< min

1≤𝑖≤𝑛
{(𝑏
𝑖
− ∑
𝑛

𝑖=1
𝑑
𝑗𝑖
)𝑥
∗

𝑖

2
}. Then there is a station-

ary distribution 𝜇(⋅) for SDE (5) and it has the ergodic property.

Proof. Define 𝑉 : 𝐸
𝑙
= 𝑅
𝑛

+
→ 𝑅
+
by

𝑉 (𝑥) =

𝑛

∑

𝑖=1

(𝑥
𝑖
− 𝑥
∗

𝑖
− 𝑥
∗

𝑖
log

𝑥
𝑖

𝑥
∗

𝑖

) . (61)

By Itô’s formula, we have

𝐿𝑉 =

𝑛

∑

𝑖=1

[

[

(𝑥
𝑖
− 𝑥
∗

𝑖
)(𝑎
𝑖
− 𝑏
𝑖
𝑥
𝑖
+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗

𝑥
2

𝑗

𝑥
𝑖

) +
1

2
𝜎
2

𝑖
𝑥
∗

𝑖
]

]

.

(62)

From (60), we know that

𝑎
𝑖
= 𝑏
𝑖
𝑥
∗

𝑖
−

𝑛

∑

𝑗=1

𝑑
𝑖𝑗

𝑥
∗

𝑗

2

𝑥
∗

𝑖

. (63)

Substituting (63) into (62) one sees that

𝐿𝑉 =

𝑛

∑

𝑖=1

((𝑥
𝑖
− 𝑥
∗

𝑖
)

× [

[

𝑏
𝑖
(𝑥
∗

𝑖
− 𝑥
𝑖
) +

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
(

𝑥
𝑗

2

𝑥
𝑖

−

𝑥
∗

𝑗

2

𝑥
∗

𝑖

)]

]

+
1

2
𝜎
2

𝑖
𝑥
∗

𝑖
)

=

𝑛

∑

𝑖=1

[

[

− 𝑏
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
)
2

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
(𝑥
𝑗

2
−

𝑥
𝑖
𝑥
∗

𝑗

2

𝑥
∗

𝑖

−

𝑥
∗

𝑖
𝑥
𝑗

2

𝑥
𝑖

+ 𝑥
∗

𝑗

2
)

+
1

2
𝜎
2

𝑖
𝑥
∗

𝑖
]

]

.

(64)

Using the inequality 𝑎2+𝑏2 ≥ 2𝑎𝑏, we compute−(𝑥
𝑖
𝑥
∗

𝑗

2
/𝑥
∗

𝑖
)−

(𝑥
∗

𝑖
𝑥
𝑗

2
/𝑥
𝑖
) ≤ −2𝑥

𝑗
𝑥
∗

𝑗
, and from the above inequality, we have

𝐿𝑉 ≤

𝑛

∑

𝑖=1

[

[

− 𝑏
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
)
2

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
(𝑥
𝑗

2
− 2𝑥
𝑗
𝑥
∗

𝑗
+ 𝑥
∗

𝑗

2
) +

1

2
𝜎
2

𝑖
𝑥
∗

𝑖
]

]

=

𝑛

∑

𝑖=1

[

[

−𝑏
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
)
2
+

𝑛

∑

𝑗=1

𝑑
𝑗𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
)
2
+
1

2
𝜎
2

𝑖
𝑥
∗

𝑖
]

]

= −

𝑛

∑

𝑖=1

(𝑏
𝑖
−

𝑛

∑

𝑗=1

𝑑
𝑗𝑖
)(𝑥
𝑖
− 𝑥
∗

𝑖
)
2
+

𝑛

∑

𝑖=1

1

2
𝜎
2

𝑖
𝑥
∗

𝑖

=: −

𝑛

∑

𝑖=1

(𝑏
𝑖
−

𝑛

∑

𝑗=1

𝑑
𝑗𝑖
)(𝑥
𝑖
− 𝑥
∗

𝑖
)
2
+ 𝛿
2
,

(65)

where 𝛿
2
= ∑
𝑛

𝑖=1
(1/2)𝜎

2

𝑖
𝑥
∗

𝑖
. By Assumption 1, we know that

the quadratic coefficients are less than zero. The following
proof of ergodicity is similar toTheorem 3.2 in [10]. Note that
𝛿
2
< min

1≤𝑖≤𝑛
{(𝑏
𝑖
− ∑
𝑛

𝑖=1
𝑑
𝑗𝑖
)𝑥
∗

𝑖

2
}; then the ellipse

−

𝑛

∑

𝑖=1

(𝑏
𝑖
−

𝑛

∑

𝑗=1

𝑑
𝑗𝑖
)(𝑥
𝑖
− 𝑥
∗

𝑖
)
2
+ 𝛿
2
= 0 (66)

lies entirely in 𝑅𝑛
+
.

We can take 𝑈 to be a neighborhood of the ellipsoid
with 𝑈 ⊂ 𝐸

𝑙
= 𝑅
𝑛

+
, so for 𝑥 ∈ 𝐸

𝑙
\ 𝑈, 𝐿𝑉 ≤ −𝑁

(𝑁 is a positive constant), which implies that the condition
(B2) in Assumption A.1 (see the Appendix) is satisfied. By
Remark A.3 and Lemma A.4 and using the similar method
as [10], we can prove that (A1) is also satisfied (see page
349 of [15]). Therefore, the stochastic system (5) has a stable
stationary distribution 𝜇(⋅) and it is ergodic.

5. Extinction

We know that, if Assumption 1 holds, the solution of ODE (1)
converges to a positive equilibrium point or is unbounded, so
the population will not become extinct, and by Theorem 10,
we note that if the condition 𝑎

𝑖
> 𝜎
2

𝑖
/2 (𝑖 = 1, 2, . . . , 𝑛) is

also satisfied, that is, the white noise intensity is smaller, then
the species will be stochastically permanent and persistent
in mean. We will show in this section that if the noise is
sufficiently large, the solution to the associated SDE (5) will
become extinct with probability 1.

Theorem 19. Let Assumption 1 hold. Let ̌𝑎 = max
1≤𝑖≤𝑛

{𝑎
𝑖
} and

�̂�
2
/2 = 1/(2(∑

𝑛

𝑖=1
(1/𝜎
2

𝑖
))). For any given initial value 𝑥(0) ∈

𝑅
𝑛

+
, the solution of the SDE (5) has the property that

lim sup
𝑡→∞

log (∑𝑛
𝑖=1
𝑥
𝑖
(𝑡))

𝑡
≤ ̌𝑎 −

�̂�
2

2
𝑎.𝑠. (67)

Particularly, if ̌𝑎 − (�̂�2/2) < 0, then lim
𝑡→∞

𝑥(𝑡) = 0 𝑎.𝑠.

Proof. Define 𝑉 : 𝑅𝑛
+
→ 𝑅
+
as in (37). Using Itô’s formula,

one can derive that

𝑑𝑉 =

𝑛

∑

𝑖=1

[

[

𝑎
𝑖
𝑥
𝑖
− (𝑏
𝑖
−

𝑛

∑

𝑗=1

𝑑
𝑗𝑖
)𝑥
2

𝑖
]

]

𝑑𝑡 +

𝑛

∑

𝑖=1

𝜎
𝑖
𝑥
𝑖
𝑑𝐵
𝑖
(𝑡) .

(68)



Abstract and Applied Analysis 9

0 50 100
0

0.5

1

1.5

t

0 50 100
0

0.5

1

1.5

t

x
1
(t

)
x
2
(t

)

(a)

0 0.5 1
0

500

1000

1500

0 0.5 1
0

500

1000

1500

t

t

x
1
(t

)
x
2
(t

)

(b)

−5 0 5
0.2

0.4

0.6

0.8

1

Standard normal quantiles

Q
ua

nt
ile

s o
f i

np
ut

 sa
m

pl
e

QQ plot of sample data versus 
standard normal

−5 0 5
0.4

0.6

0.8

1

Standard normal quantiles

Q
ua

nt
ile

s o
f i

np
ut

 sa
m

pl
e

QQ plot of sample data versus 
standard normal

(c)

Figure 1: The pictures on the left are the solutions of stochastic system (73) and the corresponding undisturbed system, and the blue lines
and the black lines represent them, respectively. The middle of the subgraphs is the histogram of stochastic system (73) and the subgraphs on
the right are normal quantile-quantile plots of the values of the paths 𝑥

1
(𝑡) and 𝑥

2
(𝑡). The stochastic system is stochastically permanent and

has a stationary distribution. 𝜎
1
= 0.1, 𝜎

2
= 0.09.

Following the scaling method of (48) and applying the
Cauchy inequality and Assumption 1, we find

𝑑 log𝑉 = 1
𝑉

𝑛

∑

𝑖=1

[

[

𝑎
𝑖
𝑥
𝑖
− (𝑏
𝑖
−

𝑛

∑

𝑗=1

𝑑
𝑗𝑖
)𝑥
2

𝑖
]

]

𝑑𝑡

−
1

2𝑉2

𝑛

∑

𝑖=1

𝜎
2

𝑖
𝑥
2

𝑖
𝑑𝑡 +

1

𝑉

𝑛

∑

𝑖=1

𝜎
𝑖
𝑥
𝑖
𝑑𝐵
𝑖 (𝑡)

≤ [
1

𝑉

𝑛

∑

𝑖=1

𝑎
𝑖
𝑥
𝑖
−
1

2𝑉2

𝑛

∑

𝑖=1

𝜎
2

𝑖
𝑥
2

𝑖
]𝑑𝑡

+
1

𝑉

𝑛

∑

𝑖=1

𝜎
𝑖
𝑥
𝑖
𝑑𝐵
𝑖
(𝑡)

= ( ̌𝑎 −
�̂�
2

2
)𝑑𝑡 +

1

𝑉

𝑛

∑

𝑖=1

𝜎
𝑖
𝑥
𝑖
𝑑𝐵
𝑖
(𝑡) .

(69)

Integrating both sides of the above inequality (69) from 0 to
𝑡 gives

log𝑉 (𝑥 (𝑡)) ≤ log𝑉 (𝑥 (0)) + ∫
𝑡

0

( ̌𝑎 −
�̂�
2

2
)𝑑𝑠 +𝑀 (𝑡) ,

(70)

where 𝑀(𝑡) is a martingale defined in the proof of
Theorem 14. By the strong law of large numbers for martin-
gales (see [11]), we have

lim
𝑡→∞

𝑀(𝑡)

𝑡
= 0 a.s. (71)

It finally follows from (70) by dividing by 𝑡 on both sides and
then letting 𝑡 → ∞; that is,

lim sup
𝑡→∞

log𝑉
𝑡

≤ lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

( ̌𝑎 −
�̂�
2

2
)𝑑𝑠 = ̌𝑎 −

�̂�
2

2
a.s.

(72)

Thus the required assertion follows.

6. Numerical Simulation

For the purpose of discussing the results, we consider the
single-species nonlinear dispersal systemwith 𝑛 = 2. Assume
that 𝛼

𝑖𝑗
= 1 (𝑖, 𝑗 = 1, 2) and then 𝑏

1
= 𝑏
1
+ 𝑑
12
, 𝑏
2
= 𝑏
2
+ 𝑑
21
,

so the SDE (5) becomes

𝑑𝑥
1
= [𝑥
1
(𝑎
1
− 𝑏
1
𝑥
1
) + 𝑑
12
𝑥
2

2
] 𝑑𝑡 + 𝜎

1
𝑥
1
𝑑𝐵
1 (𝑡) ,

𝑑𝑥
2
= [𝑥
2
(𝑎
2
− 𝑏
2
𝑥
2
) + 𝑑
21
𝑥
2

1
] 𝑑𝑡 + 𝜎

2
𝑥
2
𝑑𝐵
2 (𝑡) .

(73)
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Figure 2: The subgraphs are defined as in Figure 1. 𝜎
1
= 0.2, 𝜎

2
= 0.3. The stochastic system is stochastically permanent and persistent in

mean and has a stationary distribution.

We numerically simulate the solution of (73). By the
method mentioned in [16], we consider the discretized
equation

𝑥
1,𝑘+1

= 𝑥
1,𝑘
+ [𝑥
1,𝑘
(𝑎
1
− 𝑏
1
𝑥
1,𝑘
) + 𝑑
12
𝑥
2

2,𝑘
] ℎ

+ 𝜎
1
𝑥
1,𝑘
√ℎ𝜉
1,𝑘
+
1

2
𝜎
2

1
𝑥
1,𝑘
(ℎ𝜉
2

1,𝑘
− ℎ) ,

𝑥
2,𝑘+1

= 𝑥
2,𝑘
+ [𝑥
2,𝑘
(𝑎
2
− 𝑏
2
𝑥
2,𝑘
) + 𝑑
21
𝑥
2

1,𝑘
] ℎ

+ 𝜎
2
𝑥
2,𝑘
√ℎ𝜉
2,𝑘
+
1

2
𝜎
2

2
𝑥
2,𝑘
(ℎ𝜉
2

2,𝑘
− ℎ) .

(74)

We will use the numerical simulation method and the
help of Matlab software to illustrate our results. Choose 𝑎

1
=

0.3, 𝑎
2
=0.4, 𝑏

1
=𝑏
2
=0.6. Assume that 𝑑

12
=0.6, 𝑑

21
= 0.5, 𝑏

1
=

1.2, 𝑏
2
= 1.1 in Figures 1, 2, 3, 4, 6(a), and 7 except in Figures 5

and 6(b) (in Figures 5 and 6(b), we choose 𝑑
12
= 0.01, 𝑑

21
= 0

for the purpose of illustrating the impact of different diffusion
coefficients on population), the initial value (𝑥

1
(0), 𝑥
2
(0)) =

(0.58, 0.60), and time step ℎ = 0.01. Then Assumption 1
is satisfied, so the corresponding deterministic model has

a globally stable positive equilibrium point 𝑥∗ = (𝑥∗
1
, 𝑥
∗

2
) ≐

(0.5734, 0.6090). Obviously, by Theorem 3, system (73) has
a unique positive solution. The following discussion will be
divided into two cases.

Case 1. The effect of different white noise intensity on the
population.

In Figure 1, we choose 𝜎
1
= 0.1, 𝜎

2
= 0.09. Obviously

Assumption 2 holds and the SDE (73) is stochastically perma-
nent and persistent in mean. We compute 𝛿

2
= (1/2)𝜎

2

1
𝑥
∗

1
+

(1/2)𝜎
2

2
𝑥
∗

2
≐ 5.3334 ∗ 10

−3, and min{(𝑏
1
− 𝑑
21
)(𝑥
∗

1
)
2
, (𝑏
2
−

𝑑
12
)(𝑥
∗

2
)
2
} ≐ 0.18544, so the condition 𝛿

2
< min{(𝑏

1
−

𝑑
21
)(𝑥
∗

1
)
2
, (𝑏
2
− 𝑑
12
)(𝑥
∗

2
)
2
} is also satisfied. Therefore, by

Theorem 18, there is a stationary distribution (see the middle
histogram in Figure 1). The left pictures in Figure 1 show
that the stochastic system imitate the deterministic system.
The right subgraphs are the normal quantile-quantile plots
of the values of the paths 𝑥

1
(𝑡) and 𝑥

2
(𝑡), and they are

similar to the straight lines. This means that the distribution
is approximately standard normal distribution. The scatter
plot of 𝑥

1
(𝑡) and 𝑥

2
(𝑡) is Figure 3(a); we find that almost all
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Figure 3: Population distribution of stochastic system (73) around the deterministic model’s positive equilibrium 𝑥
∗
≐ (0.5734, 0.6090).

𝜎
1
= 0.1, 𝜎

2
= 0.09 in left subgraph (a) and 𝜎

1
= 0.2, 𝜎

2
= 0.3 in the right subgraph (b).
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Figure 4: The pictures on the left are the solutions of stochastic system (73) and the corresponding undisturbed system, and the blue lines
and the black lines represent them, respectively.The right subgraphs are the histogram of stochastic system (73). 𝜎

1
= 0.2, 𝜎

2
= 0.8. 𝑑

12
= 0.6,

𝑑
21
= 0.5.

population distribution lies in a small neighborhood, which
can be imagined as a circular or elliptic region centered
at (𝑥∗
1
, 𝑥
∗

2
). Hence, although there is no equilibrium of the

stochastic system (73) as the deterministic system, it is
stochastically permanent, persistent in mean and has the
ergodic property byTheorems 10, 14, and 18.

In Figure 2, we choose 𝜎
1
= 0.2, 𝜎

2
= 0.3. The pop-

ulations of 𝑥
1
and 𝑥

2
suffer relatively large white noise. By

comparing Figure 1, we can see that in Figure 2 the left curves
fluctuations are more violent, the histogram distribute in
relatively large regions and the curves of QQ plots slightly
deviate from the straight line. Comparing with Figure 3(a),
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Figure 5:The subgraphs are defined as in Figure 4. Because there is no diffusion, 𝑥
2
is isolated and will die out; 𝜎

1
= 0.2, 𝜎

2
= 0.8; 𝑑

12
= 0.01,

𝑑
21
= 0.
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Figure 6: Population distribution of stochastic system (73); 𝜎
1
= 0.2, 𝜎

2
= 0.8, 𝑑

12
= 0.6, and 𝑑

21
= 0.5 in the left subgraph (a) and 𝜎

1
= 0.2,

𝜎
2
= 0.8, 𝑑

12
= 0.01, and 𝑑

21
= 0 in the right subgraph (b).

its scatter distributes in a larger area (see the scatter picture in
Figure 3(b)), but we can find an ellipse to meet the condition
𝛿
2
≐ 3.8873 × 10

−2
< min{(𝑏

1
− 𝑑
21
)(𝑥
∗

1
)
2, (𝑏
2
− 𝑑
12
)(𝑥
∗

2
)
2
} ≐

0.18544; by Theorems 10, 14, and 18, we know that SDE
(73) is stochastically permanent, persistent in mean and has
stationary distribution.

Comparing with small white noise as in Figures 1 and 2,
we choose𝜎

1
= 0.9,𝜎

2
= 1.0 in Figure 7. Both𝑥

1
and𝑥
2
suffer

large white noise. We find that 𝑎
𝑖
< (1/2)𝜎

2

𝑖
(𝑖 = 1, 2), 𝛿

2
≐

0.5367 > min{(𝑏
1
− 𝑑
21
)(𝑥
∗

1
)
2
, (𝑏
2
− 𝑑
12
)(𝑥
∗

2
)
2
} ≐ 0.18544, so

the conditions ofTheorems 10, 14, and 18 are not satisfied and
the extinction conditions in Theorem 19 are satisfied, that is,
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Figure 7: The subgraphs are defined as in Figure 4; 𝜎
1
= 0.9, 𝜎

2
= 1. The populations of 𝑥

1
and 𝑥

2
will become extinct.

̌𝑎 − (�̂�
2
/2) ≐ −4.75 × 10

−2
< 0; as the case in Theorem 19

expected, the species 𝑥
1
and 𝑥

2
will become extinct although

the deterministic system is globally asymptotic stable.

Case 2. The effect of different diffusion coefficient on the
population.

In Figure 4, we select 𝜎
1
= 0.2, 𝜎

2
= 0.8.The conditions of

Theorems 10, 14, and 18 are satisfied. 𝑥
2
suffers relatively large

white noise. From the left pictures of 𝑥
1
(𝑡) in Figures 2 and

4, we see that the fluctuations of the two curves are different
and the reason is that larger white noise of 𝑥

2
impacts 𝑥

1
in

Figure 4. In other words, due to the presence of diffusion, the
relatively big white noise intensity in the individual patches
will be evenly distributed to the other patches, which reduces
the risk of extinction of the population.Therefore, system (73)
is stochastically permanent and has a stationary distribution.

In Figure 5, we choose 𝑑
12
= 0.01, 𝑑

21
= 0, 𝜎

1
= 0.2, and

𝜎
2
= 0.8. Figures 4 and 5 have the same white noise intensity

but have different diffusion coefficients. Because there is no
diffusion effects, we can see that 𝑥

2
will die out from Figure 5

and the scatter plot Figure 6(b), that is to say, the isolated
patches may become extinct if the white noise is large.

7. Conclusion

In this paper, we study the stochastic logistic single-species
model with nonlinear directed diffusion among 𝑛 patches.

First, we divide the white noise intensity into small,
medium, and large three cases, and through numerical
simulation, we can more clearly understand the important
role played by the white noise in biological populations.
From these figures, we find that when the white noise is
small, system (73) imitates its deterministic system and it is

stochastically permanent and persistent in mean and has a
stationary distribution (see Figures 1 and 3(a)). When the
white noise is relatively large in some groups, it will bring
relatively large deviation (see Figures 2, 3(b), 4, and 6(a)) but
will not bring the species extinction due to the presence of
diffusion. But, when the noise is sufficiently large in all the
groups (see Figure 7), the species will become extinct even if
diffusion exists. We also study the effect of different diffusion
coefficient on the species and we find that isolated plaque
affected by bigwhite noisemay become extinct if the diffusion
coefficient is very small or equals zero (see Figures 5 and
6(b)).

In the real world, the large white noise may be bad
weather, serious epidemic, which can be considered as the
decisive factor responsible for the extinction of populations.
Diffusion phenomena, however, play a crucial role in the
development of biological populations, and human activities
without control will affect the biological diffusion process
which is likely to cause fatal consequences. Therefore, our
research and analysis on population have great practical
significance.

Appendix

In this section, we list some results about the stationary
distribution (see [15, 17]) which will be used in the previous
sections.

Let 𝑋(𝑡) be a homogeneous Markov process in 𝐸
𝑙
(𝐸
𝑙

denotes 𝑙-space) described by the stochastic equation

𝑑𝑋 (𝑡) = 𝑏 (𝑋) 𝑑𝑡 +

𝑘

∑

𝑟=1

𝑔
𝑟
(𝑋) 𝑑𝐵

𝑟
(𝑡) . (A.1)
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The diffusion matrix is

Λ (𝑥) = (𝜆
𝑖𝑗
(𝑥)) , 𝜆

𝑖𝑗
(𝑥) =

𝑘

∑

𝑟=1

𝑔
𝑖

𝑟
(𝑥) 𝑔
𝑗

𝑟
(𝑥) . (A.2)

Assumption A.1. There exists a bounded domain𝑈 ⊂ 𝐸
𝑙
with

regular boundary Γ, having the following properties.

(A1) In the domain 𝑈 and some neighborhood thereof,
the smallest eigenvalue of the diffusion matrix 𝐴(𝑥)
is bounded away from zero.

(B2) If 𝑥 ∈ 𝐸
𝑙
\𝑈, the mean time 𝜏 at which a path starting

from 𝑥 reaches the set𝑈 is finite, and sup
𝑥∈𝐾
𝐸
𝑥
𝜏 < ∞

for every compact subset 𝐾 ⊂ 𝐸
𝑙
.

Lemma A.2 (see [17]). If Assumption A.1 holds, then the
Markov process 𝑋(𝑡) has a stationary distribution 𝜇(𝐴). Let
𝑓(⋅) be a function integrablewith respect to themeasure𝜇.Then

𝑃
𝑥
{ lim
𝑇→∞

1

𝑇
∫

𝑇

0

𝑓 (𝑋 (𝑡)) 𝑑𝑡 = ∫
𝐸
𝑙

𝑓 (𝑥) 𝜇 (𝑑𝑥)} = 1 (A.3)

for all 𝑥 ∈ 𝐸
𝑙
.

Remark A.3. Theorem 3 shows that there exists a unique
positive solution 𝑥(𝑡) of SDE (5). Also from the proof of
Theorem 3, we obtain

𝐿𝑉 ≤ 𝐾. (A.4)

Now define 𝑉 = 𝑉 + 𝐾; then

𝐿𝑉 ≤ 𝑉, (A.5)

and we can get

𝑉
𝑅
= inf
𝑥∈𝑅
𝑛

+
\𝐷
𝑚

𝑉 (𝑥) → ∞ as 𝑚 → ∞, (A.6)

where𝐷
𝑚
= (1/𝑚,𝑚)× (1/𝑚,𝑚)× ⋅ ⋅ ⋅ × (1/𝑚,𝑚). By [17], we

can obtain that the solution 𝑥(𝑡) is a homogeneous Markov
process in 𝑅𝑛

+
.

Lemma A.4 (see [17]). Let 𝑥(𝑡) be a regular temporally
homogeneous Markov process in 𝐸

𝑙
. If 𝑥(𝑡) is recurrent relative

to some bounded domain 𝑈, then it is recurrent relative to any
nonempty domain in 𝐸

𝑙
.
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We consider an SIR endemic model in which the contact transmission function is related to the number of infected population. By
theoretical analysis, it is shown that the model exhibits the bistability and undergoes saddle-node bifurcation, the Hopf bifurcation,
and the Bogdanov-Takens bifurcation. Furthermore, we find that the threshold value of disease spreading will be increased, when
the half-saturation coefficient ismore than zero, whichmeans that it is an effective intervention policy adopted for disease spreading.
However, when the endemic equilibria exist, we find that the disease can be controlled as long as we let the initial values lie in the
certain range by intervention policy. This will provide a theoretical basis for the prevention and control of disease.

1. Introduction

The classical SIR model for disease transmission has been
widely studied. It is one of the most important issues that the
dynamical behaviors are changed by the different incidence
rate in epidemic system. For the incidence rate, we divided
into two categories: one is that Capasso and Serio [1] pro-
posed the infection forcewhich is a saturated curve, described
“crowding effect” or “protection measures;” the other is the
infection force that describes the effect of “intervention
policy,” for example, closing schools and restaurants and
postponing conferences (see Figure 1). For the model with
the saturated infection force, 𝑎𝐼2/(𝑏 + 𝐼

2
), which is one of

the typical infection forces, the rich dynamical behaviorswere
founded by Ruan andWang [2] and Tang et al. [3].Themodel
with the incidence rate can be suited for many infectious
diseases, including measles, mumps, rubella, chickenpox,
and influenza. For more research literatures about nonlinear
infection rate see [4–9]. However, for some parasite-host
models, by observing macro- and microparasitic infections,
one finds that the infection rate is an increasing function of
the parasite dose, usually sigmoidal in shape [10, 11]. So we
will build a model with sigmoidal incidence rate which is
taken into account “crowding effect” and “saturated effect.”

According to the parasite-host model which is proposed by
Anderson and May (1979) [12, 13], the model is as follows:

𝑑𝑆

𝑑𝑡
= 𝐴 − 𝑑𝑆 − 𝛽 (𝐼) 𝑆,

𝑑𝐼

𝑑𝑡
= 𝛽 (𝐼) 𝑆 − (𝑑 + 𝛾 + 𝜖) 𝐼,

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝑑𝑅,

(1)

where 𝑆, 𝐼, 𝑅 are susceptible hosts, infected hosts, and
removed hosts, respectively. 𝐴 is the birth rate of susceptible
host, 𝑑 is the natural death rate of a population, 𝛾 is the
removal rate, and 𝜖 is the per capita infection-related death
rate. If we denote infection force 𝛽(𝐼) = 𝑔(𝐼)𝐼, 𝑔(𝐼) can be
explained as the rate of valid contact. At the beginning of
disease, most people have poor awareness of prevention, then
the rate of valid contact 𝑔(𝐼) can be first increasing then tends
to a certain value. As the time flies, people are gradually aware
of the seriousness and take measures to prevent and control
development of the disease and will reduce to be contact with
infected, so the rate of contact 𝑔(𝐼) is first increasing then
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𝛽(I)

𝛽

O I

(a) Case 0 ≤ 𝑎

𝛽(I)

𝛽

O I1/a

(b) Case −2√𝑏 < 𝑎 < 0

Figure 1: The plotting for the contact transmission function 𝛽(𝐼).

decreasing. In short time, it does not tend to zero, but tends
to a nonzero constant. To simplify the study, we take

𝑔 (𝐼) =
𝛽𝐼
2

𝑏 + 𝑎𝐼 + 𝐼2
, (2)

where 𝑏 > 0 and −2√𝑏 < 𝑎. If 𝑎 ≥ 0, 𝑔(𝐼) is increasing
monotonically and tends to 𝛽. If −2√𝑏 < 𝑎 < 0, 𝑔(𝐼) is first
increasing then decreasing and tends to 𝛽 (see Figure 1).

Then model (1) becomes

𝑑𝑆

𝑑𝑡
= 𝐴 − 𝑑𝑆 −

𝛽𝑆𝐼
3

𝑏 + 𝑎𝐼 + 𝐼2
,

𝑑𝐼

𝑑𝑡
=

𝛽𝑆𝐼
3

𝑏 + 𝑎𝐼 + 𝐼2
− (𝑑 + 𝛾 + 𝜖) 𝐼,

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝑑𝑅,

(3)

where 𝛽 is the valid contact coefficient.
When 𝑎 = 0 and 𝑏 = 0, model (3) becomes

𝑑𝑆

𝑑𝑡
= 𝐴 − 𝑑𝑆 − 𝛽𝑆𝐼,

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝜇𝐼,

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝑑𝑅,

(4)

where 𝜇 = 𝑑 + 𝛾 + 𝜖.
We know that 𝑅

0
= 𝛽𝐴/𝑑𝜇 is the basic reproduction

number of (4). It is easy to see that there is a unique positive
equilibrium 𝐼

∗ in system (4) when 𝑅
0
> 1 and there is no

positive equilibrium when 𝑅
0
≤ 1. In the next sections, we

will study that parameters 𝑎 and 𝑏 would have any effect on
the dynamic behaviors of model (3).

The organization of this paper is as follows. In the next
section, we analyze the existence and stability of the endemic
equilibria for model (3). Then we discuss conditions for
the Hopf bifurcation and the Bogdanov-Takens bifurcation
in Sections 3. Section 4 presents numerical simulations to
indicate dynamical behaviors and bifurcation structures, and
gives with a brief discussion.

2. Existence and Stability of Equilibria

We consider the positive equilibria of (3). Setting the right
hand sides of system (3) to zero, we find that the first and
second equations of system (3) do not include 𝑅, so we only
consider

𝐴 − 𝑑𝑆 −
𝛽𝑆𝐼
3

𝑏 + 𝑎𝐼 + 𝐼2
= 0,

𝛽𝑆𝐼
3

𝑏 + 𝑎𝐼 + 𝐼2
− 𝜇𝐼 = 0.

(5)

From the above two equations, except for the disease-free
equilibrium (DFE) at (𝐴/𝑑, 0), any endemic equilibrium
(EE), if exists, is the intersection of the following two curves
in the positive quadrant

𝑆 =
𝐴 − 𝜇𝐼

𝑑
,

𝑆 =

𝜇 (𝑏 + 𝑎𝐼 + 𝐼
2
)

𝛽𝐼2
.

(6)

From (6), 𝐼must satisfy the following equation:

𝐻(𝐼) := 𝛽𝐼
3
+ 𝑑 (1 − 𝑅

0
) 𝐼
2
+ 𝑑𝑎𝐼 + 𝑑𝑏 = 0. (7)

Thus the intersection of two curves (6) is transformed into
the positive root of (7).

The derivative of𝐻(𝐼) is

𝐻

(𝐼) := 3𝛽𝐼

2
+ 2𝑑 (1 − 𝑅

0
) 𝐼 + 𝑑𝑎. (8)

In the following, we consider three cases according to
the sign of 𝑎. By calculation, we have the following three
theorems.

Set

𝑎
1
= 𝑑
2
(1 − 𝑅

0
)
2
− 3𝛽𝑎𝑑,

𝑎
2
= 27𝛽

2
𝑑𝑏 − 𝑑𝑏 (1 − 𝑅

0
) (3𝛽𝑎𝑑 − 2𝑎

1
) .

(9)

Theorem 1. Suppose 𝑎 > 0. Then we have the following.

(a) If 𝑅
0
≤ 1 + √3𝛽𝑎/𝑑, then system (3) has no endemic

equilibrium.
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(b) If 𝑅
0
> 1 + √3𝛽𝑎/𝑑, then we have the following.

(i) When 2𝑎
3/2

1
< 𝑎
2
, system (3) has no endemic

equilibrium.
(ii) When 2𝑎3/2

1
= 𝑎
2
, system (3) has a unique endem-

ic equilibrium.
(iii) When 2𝑎3/2

1
> 𝑎
2
, system (3) has two endemic

equilibria 𝐸
1
(𝑆
1
, 𝐼
1
), 𝐸
2
(𝑆
2
, 𝐼
2
).

Theorem 2. Suppose 𝑎 = 0. Then we have the following.

(a) If𝑅
0
< 1+

3

√27𝛽2𝑏/4𝑑2, then system (3) has no endem-
ic equilibrium.

(b) If 𝑅
0
= 1 +

3

√27𝛽2𝑏/4𝑑2, then system (3) has a unique
endemic equilibrium.

(c) If 𝑅
0
> 1 +

3

√27𝛽2𝑏/4𝑑2, then system (3) has two
endemic equilibria 𝐸

1
(𝑆
1
, 𝐼
1
), 𝐸
2
(𝑆
2
, 𝐼
2
).

Theorem 3. Suppose −2√𝑏 < 𝑎 < 0. Then we have the
following.

(a) If 2𝑎3/2
1

< 𝑎
2
, then system (3) has no endemic equi-

librium.
(b) If 2𝑎3/2

1
= 𝑎
2
, then system (3) has a unique endemic

equilibrium 𝐸
∗
(𝑆
∗
, 𝐼
∗
).

(c) If 2𝑎3/2
1

> 𝑎
2
, then system (3) has two endemic

equilibria 𝐸
1
(𝑆
1
, 𝐼
1
), 𝐸
2
(𝑆
2
, 𝐼
2
), where 𝐼

1
< 𝐼
∗
< 𝐼
2
.

Remark 4. FromTheorems 1 and 2, we can find that the basic
reproduction number for themodel (3) is less than that of the
standard model. It means that the disease will spread more
easily. For Theorem 3, it is obvious that the disease can exist
if 𝑅
0
< 1.

For disease-free equilibrium (DFE), it is easy to calculate
that the Jacobian matrix of system (3) at DFE has eigenvalues
𝜆
1
= −𝑑 and 𝜆

2
= −𝜇. Hence, DFE is always stable.

In the following, the stability of the endemic equilibrium
in system (3) will be studied. Firstly, evaluating the Jacobian
matrix of system (3) at 𝐸(𝑆, 𝐼) gives

𝐽 = (
𝑗
11

𝑗
12

𝑗
21

𝑗
22

)

(𝑆,𝐼)

, (10)

where

𝑗
11
= −𝑑 −

𝛽𝐼
3

𝑏 + 𝑎𝐼 + 𝐼2
, 𝑗

12
= −𝜇 −

𝜇 (2𝑏 + 𝑎𝐼)

𝑏 + 𝑎𝐼 + 𝐼2
,

𝑗
21
=

𝛽𝐼
3

𝑏 + 𝑎𝐼 + 𝐼2
, 𝑗

22
=
𝜇 (2𝑏 + 𝑎𝐼)

𝑏 + 𝑎𝐼 + 𝐼2
.

(11)

Its characteristic equation is

𝑃 (𝜆) = 𝜆
2
− tr (𝐽) 𝜆 + det (𝐽) = 0, (12)

where

det (𝐽) =
𝛽𝜇𝐼
3
− 𝑑𝑎𝜇𝐼 − 2𝑑𝑏𝜇

𝑏 + 𝑎𝐼 + 𝐼2
, (13)

tr (𝐽) =
−𝛽𝐴𝐼

2
+ 𝑎𝜇
2
𝐼 + 2𝑏𝜇

2

𝜇 (𝑏 + 𝑎𝐼 + 𝐼2)
. (14)

It is easy to calculate

𝛽𝜇𝐼
∗3
− 𝑑𝑎𝜇𝐼

∗
− 2𝑑𝑏𝜇 = 𝜇 [𝐼

∗
𝐻

(𝐼
∗
) − 2𝐻 (𝐼

∗
)] = 0;

(15)

that is, det(𝐽)|
𝐼=𝐼
∗ = 0.

Now suppose that the model has two endemic equilibria
𝐸
1
(𝑆
1
, 𝐼
1
), 𝐸
2
(𝑆
2
, 𝐼
2
), with 𝐼

1
< 𝐼
∗
< 𝐼
2
< 𝐴/𝜇; that is, in

Theorem 1, the item (b) (iii) holds or Theorems 2 and 3, the
item 𝑐 holds. If 𝐽

𝑖
(𝑖 = 1, 2) is the Jacobian matrix at (𝑆

𝑖
, 𝐼
𝑖
),

then (13) gives

det (𝐽
𝑖
) =

𝛽𝜇𝐼
3
− 𝑑𝑎𝜇𝐼 − 2𝑑𝑏𝜇

𝑏 + 𝑎𝐼 + 𝐼2

𝐼=𝐼
𝑖

. (16)

Thus, it is easily obtained that det(𝐽
1
) is negative and det(𝐽

2
)

is positive. We can immediately conclude that the endemic
equilibrium 𝐸

1
with low number of infected individuals is

always a saddle, and that the endemic equilibrium 𝐸
2
with

high number of infected individuals is a node or focus but
the stability of𝐸

2
is determined by tr(𝐽

2
). From (14), we notice

that the sign of the trace of 𝐽
2
is determined by

tr 1 := −𝛽𝐴𝐼2 + 𝑎𝜇2𝐼 + 2𝑏𝜇2. (17)

Set

𝑏
0
:=

𝑎𝜇
2
+ 𝜇√𝑎2𝜇2 + 8𝛽𝐴𝑏

2𝛽𝐴
,

𝑏
1
:=
−𝑑 (1 − 𝑅

0
) + √𝑎1

3𝛽𝜇
,

𝑟
0
:= 𝛽𝐴 (𝑎𝑏

0 (𝐴 + 1) + 𝐴𝑏) ,

𝑟
1
:= 𝑑 (𝑅

0
− 1) (2 + 𝐴) (𝑎 + 2𝑏

0
(1 − 𝑅

0
)) .

(18)

Theorem 5. Assume that (3) has two endemic equilibria.Then
𝐸
2
is asymptotically stable if one of the following is satisfied.

(a) 𝑏
0
< 𝑏
1
;

(b) 𝑏
0
> 𝑏
1
and 𝑟
0
> 𝑟
1
.

Further, 𝐸
2
is unstable if 𝑏

0
> 𝑏
1
and 𝑟
0
< 𝑟
1
.

Proof. If 𝑏
0
< 𝑏
1
, then −𝛽𝐴𝐼∗2 + 𝑎𝜇2𝐼∗ + 2𝑏𝜇2 < 0. It follows

from 𝐼
2
> 𝐼
∗ that tr 1 < 0. Hence, 𝐸

2
is asymptotically stable

in this case. If 𝑏
0
> 𝑏
1
, we have 𝑏

0
> 𝐼
∗. By direct calculations

we see that 𝑟
0
> 𝑟
1
implies 𝐼

2
> 𝑏
0
, which leads to tr 1 < 0.

Therefore, 𝐸
2
is asymptotically stable if condition (b) holds.

Similarly, if 𝑏
0
< 𝑏
1
and 𝑟
0
< 𝑟
1
, we have 𝐼

2
> 𝑏
0
, which leads

to tr 1 > 0. It follows that 𝐸
2
is unstable.
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Figure 2: The bifurcation curves the palne of (𝐼, 𝑅
0
).

3. Bifurcation of the System

3.1. Hopf Bifurcation. When the condition (b) (ii) in Theo-
rem 1 and the condition (b) inTheorems 2 and 3 hold and 𝑟

0
=

𝑟
1
, there are a pair of purely imaginary eigenvalues (Figure 2).

Thus for suitable parameter values a Hopf bifurcation may
occur, which means that there is a periodic solution around
the larger nontrivial equilibrium. In order to determine the
type of the Hopf bifurcation, we set

𝑞
1
:=

𝜌𝑝
3
(3𝛽𝑏𝐴 + 𝑎

2
− 4𝑏)

(2𝑏𝜇𝑝 + 𝑎𝜌𝐴)
2

,

𝑞
2
:=

−2𝛽𝑆
2
[(𝑎
2
− 𝑏) 𝑏𝐼

4

2
+ 4𝑎𝑏𝐼

3

2
+ 6𝑏
2
𝐼
2

2
− 𝑏
3
]

(𝑏 + 𝑎𝐼
2
+ 𝐼
2
)
4

.

(19)

Then we consider the transformation 𝑋 = 𝑆 − 𝑆
2
, 𝑌 = 𝐼 − 𝐼

2

to move (𝑆
2
, 𝐼
2
) to the origin of (𝑋, 𝑌). After some manip-

ulations, the model can be transformed into the following
equations:

𝑑𝑋

𝑑𝑡
= 𝑎
11
𝑋 + 𝑎

12
𝑌 − 𝐶 (𝑋, 𝑌) ,

𝑑𝑌

𝑑𝑡
= 𝑏
11
𝑋 + 𝑏
12
𝑌 + 𝐶 (𝑋, 𝑌) ,

(20)

where 𝐶(𝑋, 𝑌) represents the higher order terms and

𝑎
11
= −𝑑 −

𝛽𝐼
3

2

𝑏 + 𝑎𝐼
2
+ 𝐼
2

2

, 𝑎
12
= −𝜇 −

𝜇 (2𝑏 + 𝑎𝐼
2
)

𝑏 + 𝑎𝐼
2
+ 𝐼
2

2

,

𝑏
11
=

𝛽𝐼
3

2

𝑏 + 𝑎𝐼
2
+ 𝐼
2

2

, 𝑏
12
=
𝜇 (2𝑏 + 𝑎𝐼

2
)

𝑏 + 𝑎𝐼
2
+ 𝐼
2

2

.

(21)

Suppose 𝑟
0
= 𝑟
1
. Then

tr (𝐽) = −𝑑 −
𝛽𝐼
3

2

𝑏 + 𝑎𝐼
2
+ 𝐼
2

2

+
𝜇 (2𝑏 + 𝑎𝐼

2
)

𝑏 + 𝑎𝐼
2
+ 𝐼
2

2

= 0. (22)

By defining 𝜌 = 𝛽𝐼3
2
/(𝑏 + 𝑎𝐼

2
+ 𝐼
2

2
) and 𝑝 = 𝜇(2𝑏 + 𝑎𝐼

2
)/(𝑏 +

𝑎𝐼
2
+ 𝐼
2

2
), it can be seen that

𝑎
11
= −𝑑 − 𝜌, 𝑎

12
= −𝜇 − 𝑝, 𝑏

11
= 𝜌,

𝑏
12
= 𝑝, 𝑑 = 𝑝 − 𝜌.

(23)

Set

𝜔 = √det (𝐽
2
) = √𝜇𝜌 − 𝑑𝑝. (24)

Then the eigenvalues of 𝐽
2
are 𝜆
1
= 𝜔𝑖 and 𝜆

2
= −𝜔𝑖.

Now, using the transformation 𝑢 = 𝑋, V = −(1/𝜔)(𝑎
11
𝑋+

𝑎
12
𝑌) to (20), we obtain

𝑑𝑢

𝑑𝑡
= −𝜔V + 𝐹

1
(𝑢, V) ,

𝑑V
𝑑𝑡

= 𝜔𝑢 + 𝐹
2
(𝑢, V) ,

(25)

where

𝐹
1
(𝑢, V) = −𝐶(𝑢,

𝜔V − 𝑝𝑢
𝜇 + 𝑝

) ,

𝐹
2
(𝑢, V) =

𝜇

𝜔
𝐶(𝑢,

𝜔V − 𝑝𝑢
𝜇 + 𝑝

) .

(26)

If

𝜎 =
1

16
[
𝜕
3
𝐹
1

𝜕𝑢3
+

𝜕
3
𝐹
2

𝜕𝑢 𝜕V2
+
𝜕
3
𝐹
2

𝜕𝑢2𝜕V
+
𝜕
3
𝐹
2

𝜕V3
]

+
1

16𝜔
[
𝜕
2
𝐹
1

𝜕𝑢 𝜕V
(
𝜕
2
𝐹
1

𝜕𝑢2
+
𝜕
2
𝐹
1

𝜕V2
)−

𝜕
2
𝐹
2

𝜕𝑢 𝜕V
(
𝜕
2
𝐹
2

𝜕𝑢2
+
𝜕
2
𝐹
2

𝜕V2
)

−
𝜕
2
𝐹
1

𝜕𝑢2

𝜕
2
𝐹
2

𝜕𝑢2
+
𝜕
2
𝐹
1

𝜕V2
𝜕
2
𝐹
2

𝜕V2
]

𝑢=0,V=0
,

(27)

by some tedious calculations, we see that the sign of 𝜎 is
determined by 𝜉, where

𝜉 = 𝐴
2
𝑞
1
(2𝑑𝜌𝑞

1
+ 𝜇𝑝
2
(2𝑑𝑝 − 𝜇𝜌 − 4𝑝

2
))

+ 𝑝
2
(𝑝
3
(𝜇 + 𝑑) (𝜇 + 𝑝)

2
− 3𝑞
2
𝜌𝐴
2
𝜔
2
) .

(28)

By the results in [14], the direction of theHopf bifurcation
is determined by the sign of 𝜎. Therefore, we have the
following result.

Theorem 6. Suppose one condition of (c) inTheorem (6) holds
and 𝑟

0
= 𝑟
1
. If 𝜉 ̸= 0, then a curve of periodic solutions

bifurcates from the endemic equilibrium 𝐸
2
such that
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(i) for 𝜉 < 0, system (3) undergoes a supercritical Hopf
bifurcation;

(ii) for 𝜉 > 0, system (3) undergoes a subcritical Hopf
bifurcation.

Remark 7. Theorems 5 and 6 imply the occurrence of the
Allee effect because endemic equilibrium 𝐸

2
and the disease-

free equilibrium can be stable at the same time, or a stable
limit cycle and the disease-free equilibrium can be stable at
the same time.

3.2. Bogdanov-Takens Bifurcations. The purpose of this
subsection is to study the Bogdanov-Takens bifurcation of
(3) when there is a unique degenerate positive equilibrium.
Assume that

(H1)

(1) 𝑎 > 0, 𝑅
0
> 1 + √3𝛽𝑎/𝑑 and 2𝑎3/2

1
= 𝑎
2
;

(2) 𝑎 = 0 and 𝑅
0
= 1 +

3

√27𝛽2𝑏/4𝑑2;

(3) 𝑎 < 0 and 2𝑎3/2
1

= 𝑎
2
.

Then system (3) admits a unique positive equilibrium
(𝑆
∗
, 𝐼
∗
) if one of (H1) is satisfied.

The Jacobian matrix of (3) at this point is

𝐽 = (

−𝑑 −
𝛽𝐼
∗3

𝑏 + 𝑎𝐼∗ + 𝐼∗2
−𝜇 −

𝜇 (2𝑏 + 𝑎𝐼
∗
)

𝑏 + 𝑎𝐼∗ + 𝐼∗2

𝛽𝐼
∗3

𝑏 + 𝑎𝐼∗ + 𝐼∗2

𝜇 (2𝑏 + 𝑎𝐼
∗
)

𝑏 + 𝑎𝐼∗ + 𝐼∗2

). (29)

Since we are interested in codimension 2 bifurcations, we
assume further

(H2) 𝑟
0
= 𝑟
1

By (15), we have

det (𝐽) =
𝛽𝜇𝐼
∗3
− 𝑑𝑎𝜇𝐼

∗
− 2𝑑𝑏𝜇

𝑏 + 𝑎𝐼∗ + 𝐼∗2
= 0. (30)

Furthermore, (H2) implies that

tr (𝐽) =
−𝛽𝐴𝐼

∗2
+ 𝑎𝜇
2
𝐼
∗
+ 2𝑏𝜇

2

𝜇 (𝑏 + 𝑎𝐼∗ + 𝐼∗2)
= 0. (31)

Thus, (H1) and (H2) imply that the Jacobian matrix has a
zero eigenvalue withmultiplicity 2.This suggests that (3) may
admit a Bogdanov-Takens bifurcation.The next theorem will
confirm this.

Theorem 8. Suppose that (H1) and (H2) hold. Then the
equilibrium (𝑆

∗
, 𝐼
∗
) of (3) is a cusp of codimension 2; that is, it

is a Bogdanov-Takens singularity.

Proof. In order to translate the interior equilibrium (𝑆
∗
, 𝐼
∗
)

to the origin, we set 𝑥 = 𝑆 − 𝑆
∗
, 𝑦 = 𝐼 − 𝐼

∗. Expanding the

right-hand side of the system (3) in a Taylor series about the
origin, we obtain

𝑑𝑥

𝑑𝑡
= 𝑎
11
𝑥 + 𝑎
12
𝑦 + 𝑎
21
𝑥𝑦 + 𝑎

22
𝑦
2
+ 𝑃
1
(𝑥, 𝑦) ,

𝑑𝑦

𝑑𝑡
= −

𝑎
2

11

𝑎
12

𝑥 − 𝑎
11
𝑦 − 𝑎
21
𝑥𝑦 − 𝑎

22
𝑦
2
+ 𝑃
2
(𝑥, 𝑦) ,

(32)

where 𝑃
𝑖
(𝑥, 𝑦) is a smooth function in (𝑥, 𝑦) at least of order

three and

𝑎
11
= −𝑑 −

𝛽𝐼
∗3

𝑏 + 𝑎𝐼∗ + 𝐼∗2
< 0,

𝑎
12
= −𝜇 −

𝜇 (2𝑏 + 𝑎𝐼
∗
)

𝑏 + 𝑎𝐼∗ + 𝐼
∗2

2

< 0,

𝑎
21
=

−𝛽𝐼
∗2
(3𝑏 + 2𝑎𝐼

∗
+ 𝐼
∗2
)

(𝑏 + 𝑎𝐼∗ + 𝐼∗2)
2

< 0,

𝑎
22
=

−2𝛽𝑆
∗
𝐼
∗
[3𝑏
2
+ 3𝑎𝑏𝐼

∗
+ (𝑎
2
− 𝑏) 𝐼

∗2
]

(𝑏 + 𝑎𝐼∗ + 𝐼∗2)
3

.

(33)

Set𝑋 = 𝑥, 𝑌 = 𝑎
11
𝑥+ 𝑎
12
𝑦. Then (32) is transformed into

𝑑𝑋

𝑑𝑡
= 𝑌 + 𝑐

1
𝑋
2
+ 𝑐
2
𝑋𝑌 + 𝑐

3
𝑌
2
+ 𝑄
1
(𝑋, 𝑌) ,

𝑑𝑌

𝑑𝑡
= −𝑑
1
𝑋
2
+ 𝑑
2
𝑋𝑌 + 𝑑

3
𝑌
2
+ 𝑄
2 (𝑋, 𝑌) ,

(34)

where𝑄
𝑖
are smooth functions in (𝑋, 𝑌) at least of order three

and

𝑐
1
=
𝑎
11
(𝑎
11
𝑎
22
− 𝑎
12
𝑎
21
)

𝑎
2

12

,

𝑑
1
=
𝑎
11
(𝑎
12
𝑎
21
− 𝑎
11
𝑎
22
) (𝑎
11
− 𝑎
12
)

𝑎
2

12

,

𝑐
2
=
𝑎
12
𝑎
21
− 2𝑎
11
𝑎
22

𝑎
2

12

,

𝑑
2
=
(𝑎
12
𝑎
21
− 2𝑎
11
𝑎
22
) (𝑎
11
− 𝑎
12
)

𝑎
2

12

,

𝑐
3
=
𝑎
22

𝑎
2

12

,

𝑑
3
=
𝑎
22
(𝑎
11
− 𝑎
12
)

𝑎
2

12

.

(35)

Change the variables one more time by letting 𝑋 = 𝑋, 𝑃 =

𝑌 + 𝑐
3
𝑌
2; we have

𝑑𝑋

𝑑𝑡
= 𝑃 + 𝑐

1
𝑋
2
+ 𝑐
2
𝑋𝑌 + 𝑄

3
(𝑋, 𝑃) ,

𝑑𝑃

𝑑𝑡
= −𝑑
1
𝑋
2
+ 𝑑
2
𝑋𝑃 + 𝑑

3
𝑃
2
+ 𝑄
4
(𝑋, 𝑃) .

(36)
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Let𝑋 = 𝑋,𝑍 = 𝑃 − 𝑑
3
𝑋𝑃. Then system (36) becomes

𝑑𝑋

𝑑𝑡
= 𝑍 + 𝑐

1
𝑋
2
+ (𝑐
2
+ 𝑑
3
)𝑋𝑍 + 𝑄

5
(𝑋, 𝑍) ,

𝑑𝑍

𝑑𝑡
= −𝑑
1
𝑋
2
+ 𝑑
2
𝑋𝑍 + 𝑄

6 (𝑋, 𝑍) .

(37)

In order to obtain the canonical normal forms, we perform
the transformation of variables by

𝑢 = 𝑋 −
𝑐
2
+ 𝑑
3

2
𝑋
2
, V = 𝑍 + 𝑐

1
𝑋
2
. (38)

Then, we obtain

𝑑𝑢

𝑑𝑡
= V + 𝑅

1
(𝑢, V) ,

𝑑V
𝑑𝑡

= −𝑑
1
𝑢
2
+ (𝑑
2
+ 2𝑐
1
) 𝑢V + 𝑅

2 (𝑢, V) ,
(39)

where 𝑅
𝑖
are smooth functions in (𝑢, V) at least of the third

order.
Note that 𝑑

1
> 0 and

𝑑
2
+ 2𝑐
1
=
−𝑎
11
𝑎
21
− 𝑎
21
𝑎
12
+ 2𝑎
22
𝑎
11

𝑎
12

. (40)

In addition, by (30) and (31), it is obtained that

𝑎
11
= −

𝐴

𝑆∗
, 𝑎

12
= −𝜇 −

𝐴

𝑆∗
,

𝑎
21
=
𝜇𝐼
∗

𝑆∗
, 𝑎

22
=
𝐴

𝑆∗
,

𝐴
2

𝑆∗2
=
𝜇𝐼
∗

𝑆∗
(𝜇 +

𝐴

𝑆∗
) .

(41)

So

𝑑
2
+ 2𝑐
1
=
−𝑎
11
𝑎
21
− 𝑎
21
𝑎
12
+ 2𝑎
22
𝑎
11

𝑎
12

=
1

𝑎
12

𝐴 (𝜇𝐼
∗
− 𝐴)

𝑆∗2
> 0.

(42)

It follows that (3) admits that a Bogdanov-Takens bifurcation
from [15, 16] or [17].

4. Simulations and Conclusions

In the following, we use numerical simulations, based upon
theMatCont package [18], to reveal how parameters 𝑎 induce
bifurcations and limit cycles in system (3). Firstly, by fixing
𝐴 = 2, 𝑑 = 0.1, 𝛽 = 0.8, 𝑏 = 2.4, 𝜖 = 0.6, 𝛾 = 0.2, we plot a
2D-plot of variable 𝐼 versus parameter 𝑎 shown in Figure 3.
We find a Hopf bifurcation at 𝑎 = −0.090429, a limit point
(fold) bifurcation at 𝑎 = 2.378982. The Lyapunov coefficient
is 1.68171 × 10−2, which means that the periodic orbits are
unstable. Furthermore, 𝑎 is fixed −0.13; we observe the orbits
of system (3) is how to vary with 𝑡. From Figure 4, we can find
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Figure 3: Bifurcation curves in (𝑎, 𝐼) plane by fixed 𝐴 = 2, 𝑑 =

0.1, 𝛽 = 0.8, 𝑏 = 2.4, 𝜖 = 0.6, 𝛾 = 0.2, where H denotes the Hopf
bifurcation, LP is the limit point (flod) bifurcation.

4 6 8 10 12 14 16 18 20

0
0.5

1
1.5

2

0

50

S

I

t

−300

−250

−200

−150

−100

−50

Figure 4: Phase trajectory in system (3) by fixed𝐴 = 2, 𝑑 = 0.1, 𝛽 =

0.8, 𝑏 = 2.4, 𝜖 = 0.6, 𝛾 = 0.2, 𝑎 = −0.13.

that the periodic orbits will occur, but the disease will die out
when 𝑡 → +∞, though there exist the positive equilibria
for system (3). Furthermore, we take 𝑅

0
and 𝑎 as bifurcation

parameters; from Figure 5, we can show that the system has
no positive equilibrium when 𝑅

0
and 𝑎 lie in the left side of

red curve and two endemic equilibria when they are in the
right side of red curve. If parameters 𝑅

0
and 𝑎 are between

red and green curves, we find that system will undergo Hopf
bifurcation.

In the paper, we built a model with contact transmission
function and obtained the dynamical behaviors. From the
analysis, we find that the threshold value of disease spreading
will be larger. It means that it is an effective intervention
policy adopted for disease spreading. For the disease-free
equilibrium is always locally stable and when a positive
equilibrium exist and is stable, we can control the disease as
long as we let the initial values be in the certain range by
intervention policy. If the positive equilibrium is unstable, the
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Figure 5: Bifurcation figure when 𝑅
0
and 𝑎 are taken as bifurcation

parameters in system (3) by fixed𝐴 = 2, 𝑑 = 0.1, 𝛽 = 0.8, 𝑏 = 2.4, 𝜖 =

0.6, 𝛾 = 0.2.

diseasewill die out.Thiswill provide a theoretical basis for the
prevention and control of disease.
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A discrete-time-delay differential mathematical model that describedHIV infection of CD4+ T cells with drugs therapy is analyzed.
The stability of the two equilibria and the existence ofHopf bifurcation at the positive equilibrium are investigated. Using the normal
form theory and center manifold argument, the explicit formulas which determine the stability, the direction, and the period of
bifurcating periodic solutions are derived. Numerical simulations are carried out to explain the mathematical conclusions.

1. Introduction

Recently there has been a substantial effort in the mathemat-
ical modelling of virus dynamics [1–8]. These models focus
on uninfected target cells, infected cells that are producing
virus, and virus. A basic mathematical model describing HIV
infection dynamic model is of the following form which has
been studied in [5, 9]:

𝑑𝑇 (𝑡)

𝑑𝑡
= 𝑠 − 𝜇

1
𝑇 (𝑡) − 𝑘𝑇 (𝑡) 𝑉 (𝑡) ,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝑘𝑇 (𝑡) 𝑉 (𝑡) − 𝛿𝐼 (𝑡) ,

𝑑𝑉 (𝑡)

𝑑𝑡
= 𝑁𝛿𝐼 (𝑡) − 𝑐𝑉 (𝑡) .

(1)

In system (1), the following variables are includes: 𝑇(𝑡)
uninfected cells at time 𝑡 (unit is cells mm−3), 𝐼(𝑡) infected
cells at time 𝑡 (unit is cells mm−3), and 𝑉(𝑡) virus at time 𝑡
(unit is virions mm−3). Parameters 𝜇

1
, 𝛿, and 𝑐 are the death

rates of the uninfected 𝑇 cells, the infected 𝑇 cells, and the
virus particles, respectively. 𝑘 is the contact rate between
uninfected 𝑇 cells and the virus particles. 𝑁 is the average
number of virus particles produced by an infected 𝑇 cell.

Reverse transcriptase inhibitors (RTIs) are a class of
antiretroviral drugs used to treat HIV infection. RTIs

inhibitors work by inhibiting the action of reverse tran-
scriptase. RTIs inhibit the activity of reverse transcriptase,
a viral DNA polymerase enzyme that retroviruses need to
reproduce. In [10], Srivastava et al. developed a mathematical
model for primary infection with RTIs. They subdivided the
infected cells class in two subclasses: pre-RT (denoted by
𝐼
1
(𝑡)) and post-RT (denoted by 𝐼

2
(𝑡)). They assumed that a

virus enters a resting CD4+ T cell, the viral RNA may not be
completely reverse transcribed into DNA, the unintegrated
virus may decay with time and partial DNA transcripts are
labile and degrade quickly [11, 12]. And they also assumed
that a fraction of cells 𝜂𝑎𝐼

1
(𝑡) in pre-RT class reverts back

to uninfected class and the remaining (1 − 𝜂)𝑎𝐼
1
(𝑡) proceeds

to post-RT class and becomes productively infected due to
presence of RT inhibitors. The model of Srivastava et al. is as
follows

𝑑𝑇 (𝑡)

𝑑𝑡
= 𝑠 − 𝜇

1
𝑇 (𝑡) − 𝑘𝑇 (𝑡) 𝑉 (𝑡) + (𝜂𝑎 + 𝑏) 𝐼

1
(𝑡) ,

𝑑𝐼
1
(𝑡)

𝑑𝑡
= 𝑘𝑇 (𝑡) 𝑉 (𝑡) − (𝑑 + 𝑎 + 𝑏) 𝐼

1
(𝑡) ,

𝑑𝐼
2 (𝑡)

𝑑𝑡
= (1 − 𝜂) 𝑎𝐼

1
(𝑡) − 𝛿𝐼

2
(𝑡) ,

𝑑𝑉 (𝑡)

𝑑𝑡
= 𝑁𝛿𝐼

2
(𝑡) − 𝑐𝑉 (𝑡) ,

(2)
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where 0 < 𝜂 < 1 is the efficacy of reverse transcriptase
inhibitors (RTIs), 𝑎 is the transition rate from pre-RT (i.e.,
𝐼
1
(𝑡)) infected CD4+ T cells class to productively post-RT

(i.e., 𝐼
2
(𝑡)) which is a productively infected class, and 𝑏 is

the reverting rate of infected cells to uninfected class due to
noncompletion of reverse transcription [11, 12].

Protease inhibitors (PIs) are a class of drugs used to treat
or prevent infection by viruses, including HIV and hepatitis
C. PIs prevent viral replication by inhibiting the activity of
HIV-1 protease, an enzyme used by the viruses to cleave
nascent proteins for final assembly of new virus. The new
virous are noninfectious. Virions that were created prior to
drug treatment remain infectious. Thus, in the presence of a
protease inhibitor, two types of virus particles (i.e., infectious
virions and noninfectious virions) should be considered [5].
We need the drug to be highly effective if we use single drug
to treat. Hence, combination anti-HIV therapy is now the
standard of care for people with HIV. So far as we know, there
are fewmathematicalmodels about the effects of combination
anti-HIV therapy [7, 13].Therefore, considering the effects of
both RTIs and PIs, model (2) can be modified to

𝑑𝑇 (𝑡)

𝑑𝑡
= 𝑠 − 𝜇

1
𝑇 (𝑡) − 𝑘𝑇 (𝑡) 𝑉

1
(𝑡) + (𝜂𝑎 + 𝑏) 𝐼

1
(𝑡) ,

𝑑𝐼
1
(𝑡)

𝑑𝑡
= 𝑘𝑇 (𝑡) 𝑉

1
(𝑡) − (𝑑 + 𝑎 + 𝑏) 𝐼

1
(𝑡) ,

𝑑𝐼
2
(𝑡)

𝑑𝑡
= (1 − 𝜂) 𝑎𝐼

1 (𝑡) − 𝛿𝐼
2 (𝑡) ,

𝑑𝑉
1
(𝑡)

𝑑𝑡
= (1 − 𝑝)𝑁𝛿𝐼

2
(𝑡) − 𝑐𝑉

1
(𝑡) ,

𝑑𝑉
2
(𝑡)

𝑑𝑡
= 𝑝𝑁𝛿𝐼

2 (𝑡) − 𝑐𝑉
2 (𝑡) ,

(3)

where variables 𝑉
1
(𝑡) and 𝑉

2
(𝑡) denote infectious and non-

infectious virus at time 𝑡, respectively. And 𝑉(𝑡) = 𝑉
1
(𝑡) +

𝑉
2
(𝑡) is the total virus concentration at time 𝑡. Parameter 𝑝 ∈

[0, 1] denotes the effectiveness of PIs with𝑝 = 1meaning that
the therapy with PIs is 100% effective and no newly infectious
virus particles will be produced [5].

In the real situation, there may be a delay between the
time target cells which are contacted by the virus particles
and the time the contacted cells become actively affected
meaning that the contacting virions enter cells. Hence, time
delays of one type or another have been incorporated into
viral dynamical models by many authors. The first model
that included this type “intracellular” delay was developed by
Herz et al. [14] and assumed that cells became productively
infected time units after HIV initial infection. Nelson et al.
[15] extend the development of delaymodels ofHIV infection
and treatment to the general case of combination antiviral
therapy that is less than completely efficacious. Recently, in
studying the viral clearance rates, Perelson et al. [9] assumed
that there are two types of delays that occur between the
administration of drug and the observed decline in viral load:
a pharmacological delay that occurs between the ingestion of
drug and its appearancewithin cells and an intracellular delay
that is between initial infection of a cell byHIVand the release

of new virions. Furthermore, the growth of CD4+ T cells in
humans is not well understood.

Recently, studies in various fields such as biology, control,
economy, chemistry, and electrodynamics have shown that
delay differential equations play an important role in explain-
ing many different phenomena [16–20]. Srivastava et al. [10]
proposed and analyzed amathematicalmodel for the effect of
RTIs on the dynamics of HIV. In [21], Culshaw andRuan have
considered that the basic model of HIV infection in host was
extended to incorporate logistic growth and an intracellular
delay. However, none of these models have incorporated
antiretroviral therapy, logistic growth of the CD4+ T cell,
and intracellular delay. Here, we build on the basic model of
HIV pathogenesis in host, adding the effects of antiretroviral
therapy, logistic growth of the CD4+ T cell, and intracellular
delay. Hence, we can obtain the following model:

𝑑𝑇 (𝑡)

𝑑𝑡
= 𝑠 + 𝑟𝑇 (𝑡) (1 −

𝑇 (𝑡)

𝑇max
) − 𝜇

1
𝑇 (𝑡)

− 𝑘𝑇 (𝑡) 𝑉
1
(𝑡) + (𝜂𝑎 + 𝑏) 𝐼

1
(𝑡) ,

𝑑𝐼
1
(𝑡)

𝑑𝑡
= 𝑘𝑇 (𝑡 − 𝜏)𝑉1 (𝑡 − 𝜏) − (𝑑 + 𝑎 + 𝑏) 𝐼1 (𝑡) ,

𝑑𝐼
2
(𝑡)

𝑑𝑡
= (1 − 𝜂) 𝑎𝐼

1
(𝑡) − 𝛿𝐼

2
(𝑡) ,

𝑑𝑉
1
(𝑡)

𝑑𝑡
= (1 − 𝑝)𝑁𝛿𝐼

2 (𝑡) − 𝑐𝑉
1 (𝑡) ,

𝑑𝑉
2 (𝑡)

𝑑𝑡
= 𝑝𝑁𝛿𝐼

2
(𝑡) − 𝑐𝑉

2
(𝑡) .

(4)

In model (4), 𝑇(𝑡), 𝐼
1
(𝑡), 𝐼

2
(𝑡), 𝑉

1
(𝑡), and 𝑉

2
(𝑡) represent the

density of susceptible CD4+ T cells, infected CD4+ T cells
before reverse transcription (i.e., those infected cells which
are in pre-RT class), infected CD4+ T cells in which reverse
transcription is completed (post-RT class), infectious virus,
and noninfectious virus at time 𝑡, respectively. The meaning
of the parameters are as follows: 𝑠 is the source term for
uninfected CD4+ T cell, 𝑘 is the rate at which CD4+ T cell
becomes infected with virus, 𝜇

1
is the death rate of healthy

CD4+ T cell, 𝜂 is the efficacy of RTIs, 𝑎 is the transition rate
from pre-RT infected CD4+ T cells to productively post-RT,
𝑏 is the reverting rate of infected cells to uninfected class, 𝑑 is
the death rate of infected 𝑇 cells, 𝛿 is the death rate of actively
infected 𝑇 cells 𝐼

2
, 𝑁 is the number of virions produced by

infected CD4+ T cells, 𝑐 is the clearance rate of virus, 𝑟 is
the maximum proliferation rate, 𝑇max is the 𝑇 cell population
density at which proliferation shuts off, 𝑝 is the efficacy of
protease inhibitor, and 𝜏 is the “intracellular” delay.

Note that the non-infectious HIV virus 𝑉
2
(𝑡) does not

appear in the first four equations of system (4). Thus, we can
consider the following subsystem of system (4):

𝑑𝑇 (𝑡)

𝑑𝑡
= 𝑠 + 𝑟𝑇 (𝑡) (1 −

𝑇 (𝑡)

𝑇max
) − 𝜇

1
𝑇 (𝑡) − 𝑘𝑇 (𝑡) 𝑉

1
(𝑡)

+ (𝜂𝑎 + 𝑏) 𝐼
1
(𝑡) ,
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𝑑𝐼
1
(𝑡)

𝑑𝑡
= 𝑘𝑇 (𝑡 − 𝜏)𝑉1 (𝑡 − 𝜏) − (𝑑 + 𝑎 + 𝑏) 𝐼1 (𝑡) ,

𝑑𝐼
2
(𝑡)

𝑑𝑡
= (1 − 𝜂) 𝑎𝐼

1
(𝑡) − 𝛿𝐼

2
(𝑡) ,

𝑑𝑉
1
(𝑡)

𝑑𝑡
= (1 − 𝑝)𝑁𝛿𝐼

2 (𝑡) − 𝑐𝑉
1 (𝑡) .

(5)

In this paper, we will discuss the dynamics of model
(5). This paper is organized as follows. In Section 2, we
present some preliminaries about system (5), for example,
the positivity of solutions and the expression of equilibria.
We discuss the local stability of the uninfected equilibrium
in Section 3. In Section 4, we discuss the local stability and
Hopf bifurcation at the infected equilibrium. In Section 5,
the direction and stability of the local Hopf bifurcation are
established. In Section 6, some numerical simulations are
performed to illustrate the analytical results found. A brief
discussion is presented in the last section.

2. Preliminaries

System (5) is a system of delay differential equations. For
such a system, initial functions need to be specified and well-
posedness needs to be addressed.We denote byC the Banach
space of continuous functions 𝜑 : [−𝜏, 0] → R4 with norm

𝜑
 = sup

−𝜏≤𝜍≤0

{
𝜑1 (𝜍)

 ,
𝜑2 (𝜍)

 ,
𝜑3 (𝜍)

 ,
𝜑4 (𝜍)

} , (6)

where 𝜑 = (𝜑
1
, 𝜑

2
, 𝜑

3
, 𝜑

4
). As usual, the initial condition of

(5) is given as

𝑇 (𝜍) = 𝜑
1
(𝜍) , 𝐼

1
(0) = 𝜑

2
(0) , 𝐼

2
(0) = 𝜑

3
(0) ,

𝑉
1
(𝜍) = 𝜑

4
(𝜍) , 𝜍 ∈ [−𝜏, 0] ,

(7)

where the initial function 𝜑 = (𝜑
1
, 𝜑

2
, 𝜑

3
, 𝜑

4
) belongs to the

Banach space C = C([−𝜏, 0],R4
) of continuous functions

mapping the initial [−𝜏, 0] intoR4. For biological reasons, the
initial functions are assumed as

𝑇 (𝜍) = 𝜑
1
(𝜍) ≥ 0,

𝜍 ∈ [−𝜏, 0] , 𝜑
1
(0) > 0;

𝐼
1 (0) = 𝜑

2 (0) > 0;

𝐼
2
(0) = 𝜑

3
(0) > 0;

𝑉
1 (𝜍) = 𝜑

4 (𝜍) ≥ 0, 𝜍 ∈ [−𝜏, 0] , 𝜑
4 (0) > 0.

(8)

In this paper, we will discuss the dynamical behavior of sys-
tem (5) with the initial conditions in (8). By the fundamental
theory of functional differential equations [22], we know that
there is a unique solution (𝑇(𝑡), 𝐼

1
(𝑡), 𝐼

2
(𝑡), 𝑉

1
(𝑡)) to system

(5) with initial conditions (8).
Firstly, we present the positivity of the solutions. System

(5) can be put into the matrix form

𝑋(𝑡) = 𝐺 (𝑋 (𝑡)) , (9)

where 𝑋(𝑡) = (𝑇(𝑡), 𝐼
1
(𝑡), 𝐼

2
(𝑡), 𝑉

1
(𝑡))

⊤
∈ R4 and 𝐺(𝑋(𝑡)) is

given by

𝐺 (𝑋 (𝑡))

= (

𝐺
1 (𝑋 (𝑡))

𝐺
2 (𝑋 (𝑡))

𝐺
3
(𝑋 (𝑡))

𝐺
4
(𝑋 (𝑡))

)

= (

𝑠 + 𝑟𝑇 (𝑡) (1 −
𝑇(𝑡)

𝑇max
) − 𝜇1𝑇 (𝑡) − 𝑘𝑇(𝑡)𝑉1 (𝑡) + (𝜂𝑎 + 𝑏) 𝐼1 (𝑡)

𝑘𝑇 (𝑡 − 𝜏)𝑉1 (𝑡 − 𝜏) − (𝑑 + 𝑎 + 𝑏) 𝐼1 (𝑡)

(1 − 𝜂) 𝑎𝐼1 (𝑡) − 𝛿𝐼2 (𝑡)

(1 − 𝑝)𝑁𝛿𝐼2 (𝑡) − 𝑐𝑉1 (𝑡)

).

(10)

Let R4

+
= [0, +∞) × [0, +∞) × [0, +∞) × [0, +∞) be the

nonnegative octant in R4; 𝐺 : R4+1

+
→ R4, 𝐺 ∈ C∞

(R4
)

(where 𝐺 is a function of the variable 𝑋(𝑡) ∈ R4

+
) is locally

Lipschitz and satisfies the condition

𝐺
𝑖 (𝑋 (𝑡))

𝑥
𝑖
(𝑡)=0,𝑋(𝑡)∈R4

+

≥ 0, (11)

where 𝑥
1
(𝑡) = 𝑇(𝑡), 𝑥

2
(𝑡) = 𝐼

1
(𝑡), 𝑥

3
(𝑡) = 𝐼

2
(𝑡), and 𝑥

4
(𝑡) =

𝑉
1
(𝑡).
Due to lemma in [23] any solution of (9) with𝑋(𝜍) ∈ C

+
,

say𝑋(𝑡) = 𝑋(𝑡, 𝑋(𝜍)), is such that𝑋(𝑡) ∈ R4

+
for all 𝑡 ≥ 0.

System (5) has an uninfected (boundary) equilibrium and
an infected (positive) steady state. The uninfected equilib-
rium is 𝐸

0
(𝑇

0
, 0, 0, 0), where

𝑇
0
=
𝑇max
2𝑟

[𝑟 − 𝜇
1
+ √(𝑟 − 𝜇

1
)
2
+

4𝑟𝑠

𝑇max
] . (12)

The infected equilibrium is 𝐸∗(𝑇∗
, 𝐼

∗

1
, 𝐼

∗

2
, 𝑉

∗

1
), where

𝑇
∗
=

𝑐 (𝑑 + 𝑎 + 𝑏)

(1 − 𝑝) (1 − 𝜂) 𝑘𝑁𝑎
,

𝐼
∗

1
=

1

𝑑 + (1 − 𝜂) 𝑎
[𝑠 − 𝑑𝑇

∗
+ 𝑟𝑇

∗
(1 −

𝑇
∗

𝑇max
)] ,

𝐼
∗

2
=

(1 − 𝜂) 𝑎

𝛿 [𝑑 + (1 − 𝜂) 𝑎]
[𝑠 − 𝑑𝑇

∗
+ 𝑟𝑇

∗
(1 −

𝑇
∗

𝑇max
)] ,

𝑉
∗

1
=
(1 − 𝑝) (1 − 𝜂)𝑁𝑎

𝑐 [𝑑 + (1 − 𝜂) 𝑎]
[𝑠 − 𝑑𝑇

∗
+ 𝑟𝑇

∗
(1 −

𝑇
∗

𝑇max
)] .

(13)

The basic reproductive number is given as R
0
= 𝑇

0
/𝑇

∗.
The basic reproductive number R

0
measures the average

number virus-producing target cells produced by an single
virus-producing target cell during its entire infectious period
in an entirely uninfected targeT cell population [24, 25]. It is
easy to see that R

0
> 1 ensures the existence of the infected

equilibrium 𝐸
∗.

3. Stability of Uninfected Equilibrium 𝐸
0

In this section, we will discuss the stability of the uninfected
equilibrium 𝐸

0
(𝑇

0
, 0, 0, 0).
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Let 𝐸(𝑇, 𝐼
1
, 𝐼

2
, 𝑉

1
) be any arbitrary equilibrium. To study

the stability of the steady state 𝐸, let us define

𝑥 (𝑡) = 𝑇 (𝑡) − 𝑇, 𝑦
1
(𝑡) = 𝐼

1
(𝑡) − 𝐼

1
,

𝑦
2
(𝑡) = 𝐼

2
(𝑡) − 𝐼

2
, 𝑧 (𝑡) = 𝑉

1
(𝑡) − 𝑉

1
.

(14)

Then, the linearized system of (5) around the equilibrium 𝐸

is given by

𝑑

𝑑𝑡
(

𝑥 (𝑡)

𝑦
1
(𝑡)

𝑦
2
(𝑡)

𝑧 (𝑡)

) = 𝐴
1
(

𝑥(𝑡)

𝑦
1
(𝑡)

𝑦
2
(𝑡)

𝑧 (𝑡)

) + 𝐴
2
(

𝑥(𝑡 − 𝜏)

𝑦
1
(𝑡 − 𝜏)

𝑦
2
(𝑡 − 𝜏)

𝑧 (𝑡 − 𝜏)

) , (15)

where 𝐴
1
and 𝐴

2
are 4 × 4matrices given by

𝐴
1
= (

−𝜇
1
+ 𝑟 −

2𝑟𝑇

𝑇max
− 𝑘𝑉

1
𝜂𝑎 + 𝑏 0 −𝑘𝑇

0 −𝑎 − 𝑏 − 𝑑 0 0

0 (1 − 𝜂) 𝑎 −𝛿 0

0 0 (1 − 𝑝)𝑁𝛿 −𝑐

),

𝐴
2
= (

0 0 0 0

𝑘𝑉
1
0 0 𝑘𝑇

0 0 0 0

0 0 0 0

) .

(16)

Hence, the characteristic equation of system (5) at 𝐸 is given
by

det (𝐴 + 𝐵𝑒
−𝜆𝜏

− 𝜆I) = 0, (17)

whereI is a 4 × 4 identity matrix that is,



−𝜇1 + 𝑟 −
2𝑟𝑇

𝑇max
− 𝑘𝑉1 − 𝜆 𝜂𝑎 + 𝑏 0 −𝑘𝑇

𝑘𝑉1𝑒
−𝜆𝜏

−𝑎 − 𝑏 − 𝑑 − 𝜆 0 𝑘𝑇𝑒
−𝜆𝜏

0 (1 − 𝜂) 𝑎 −𝛿 − 𝜆 0

0 0 (1 − 𝑝)𝑁𝛿 −𝑐 − 𝜆



= 0.

(18)

Theorem 1. (1) If R
0
< 1, 𝐸

0
is locally asymptotically stable

for any time delay 𝜏 ≥ 0. (2) IfR
0
> 1, 𝐸

0
is unstable for any

time delay 𝜏 ≥ 0. (3) IfR
0
= 1, it is a critical case.

Proof. For uninfected equilibrium 𝐸
0
, (18) reduces to

(𝑟 − 𝜇
1
−
2𝑟𝑇

0

𝑇max
− 𝜆) [𝜆

3
+ 𝑏

1
𝜆
2
+ 𝑏

2
𝜆 + 𝑏

3
+ 𝑐

3
𝑒
−𝜆𝜏

] = 0,

(19)

where

𝑏
1
= 𝑎 + 𝑏 + 𝑑 + 𝛿 + 𝑐,

𝑏
2
= (𝑎 + 𝑏 + 𝑑) (𝑐 + 𝛿) + 𝑐𝛿,

𝑏
3
= (𝑎 + 𝑏 + 𝑑) 𝑐𝛿,

𝑐
3
= − (1 − 𝑝) (1 − 𝜂) 𝑎𝑘𝑁𝛿𝑇

0
.

(20)

It is clear that (19) has the characteristic root 𝜆
1
= 𝑟−𝜇

1
−

(2𝑟𝑇
0
/𝑇max) = −√(𝑟 − 𝜇

1
)
2
+ 4𝑟𝑠/𝑇max < 0.

Next, we will consider the transcendental polynomial

𝜆
3
+ 𝑏

1
𝜆
2
+ 𝑏

2
𝜆 + 𝑏

3
+ 𝑐

3
𝑒
−𝜆𝜏

= 0. (21)

For 𝜏 = 0, we have that

𝜆
3
+ 𝑏

1
𝜆
2
+ 𝑏

2
𝜆 + 𝑏

3
+ 𝑐

3
= 0. (22)

Obviously, 𝑏
1
> 0, 𝑏

2
> 0, and 𝑏

3
+ 𝑐

3
> 0 since R

0
< 1. We

also get

𝑏
1
𝑏
2
− (𝑏

3
+ 𝑐

3
) = (𝑎 + 𝑏 + 𝑑)

2
(𝑐 + 𝛿)

+ (𝑎 + 𝑏 + 𝑑) (𝑐 + 𝛿)
2
+ 𝑐𝛿 (𝑐 + 𝛿)

+ (1 − 𝑝) (1 − 𝜂) 𝑎𝑘𝑁𝛿𝑇
0
> 0.

(23)

This shows that all the roots of (22) have negative real parts
for 𝜏 = 0 by using Routh-Hurwitz theorem.

In the following, we investigate the existence of purely
imaginary roots 𝜆 = 𝑖𝜔, 𝜔 > 0, of (21). If 𝜏 > 0 and 𝜆 = 𝑖𝜔

with 𝜔 > 0 is a solution of (21), then separating the real and
imaginary parts gives

𝜔
3
− 𝑏

2
𝜔 = −𝑐

3
sin (𝜔𝜏) ,

𝑏
1
𝜔
2
− 𝑏

3
= 𝑐

3
cos (𝜔𝜏) .

(24)

Squaring and adding both equations of (24) yields

𝑓 (𝜔, 𝜏) = 𝜔
6
+ 𝑚

1
𝜔
4
+ 𝑚

2
𝜔
2
+ 𝑏

2

3
− 𝑐

2

3
= 0, (25)

where

𝑚
1
= (𝑎 + 𝑏 + 𝑑)

2
+ 𝑐

2
+ 𝛿

2
> 0,

𝑚
2
= (𝑎 + 𝑏 + 𝑑)

2
(𝑐

2
+ 𝛿

2
) + (𝑎 + 𝑏 + 𝑑)

2
𝑐𝛿

+ (𝑐𝛿)
2
+ 𝑐𝛿 (𝑐 + 𝛿) (𝑎 + 𝑏 + 𝑑) > 0.

(26)

Letting 𝑦 = 𝜔
2 yields

𝑦
3
+ 𝑚

1
𝑦
2
+ 𝑚

2
𝑦 + 𝑏

2

3
− 𝑐

2

3
= 0. (27)

If R
0
< 1, then 𝑏

2

3
− 𝑐

2

3
> 0. Therefore, by claim 1 in

[21], it is evident that (27) has no positive real roots. This
shows that (21) cannot have a purely imaginary root for any
𝜏 > 0. Therefore, the uninfected equilibrium 𝐸

0
is locally

asymptotically stable for any 𝜏 ≥ 0 provided thatR
0
< 1.

IfR
0
= 1, the transcendental polynomial (21) becomes

𝜆
3
+ 𝑏

1
𝜆
2
+ 𝑏

2
𝜆 + 𝑏

3
− 𝑏

3
𝑒
−𝜆𝜏

= 0. (28)

It is clear that 𝜆 = 0 is a simple root of (28). We further show
that any root of (28)must have negative real part except𝜆 = 0.

In fact, if (28) has imaginary root 𝑢 ± 𝑖𝜔 for some 𝑢 ≥ 0,
𝜔 ≥ 0, and 𝜏 ≥ 0, from (28) we have

𝑢
3
− 3𝑢𝜔

2
+ 𝑏

1
𝑢
2
− 𝑏

1
𝜔
2
+ 𝑏

2
𝑢 + 𝑏

3
= 𝑏

3
𝑒
−𝑢𝜏 cos (𝜔𝜏) ,

−𝜔
3
+ 3𝑢

2
𝜔 + 𝑏

2
𝜔 + 2𝑏

1
𝑢𝜔 = −𝑏

3
𝑒
−𝑢𝜏 sin (𝜔𝜏) ,

(29)
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which, together with 𝑢 ≥ 0, implies that

[𝑢
3
− 3𝑢𝜔

2
+ 𝑏

1
𝑢
2
− 𝑏

1
𝜔
2
+ 𝑏

2
𝑢 + 𝑏

3
]
2

+ [−𝜔
3
+ 3𝑢

2
𝜔 + 𝑏

2
𝜔 + 2𝑏

1
𝑢𝜔]

2

= 𝑏
2

3
𝑒
−2𝑢𝜏

≤ 𝑏
2

3
.

(30)

However, it is easy to check that the previous inequality is not
true. Hence, it shows that any root of (28) has negative real
part except 𝜆 = 0, which implies that the trivial solution of
(5) is stable for any time delay 𝜏 ≥ 0.

IfR
0
> 1, let

𝑓 (𝜆) = 𝜆
3
+ 𝑏

1
𝜆
2
+ 𝑏

2
𝜆 + 𝑏

3
+ 𝑐

3
𝑒
−𝜆𝜏

= 0. (31)

Note that𝑓(0) = 𝑏
3
+𝑐

3
< 0 since𝑅

0
> 1 and lim

𝜆→+∞
𝑓(𝜆) =

+∞. It follows from the continuity of the function 𝑓(𝜆) on
(−∞, +∞) that equation 𝑓(𝜆) = 0 has at least one positive
root. Hence, characteristic equation (19) has at least one
positive. Thus, 𝐸

0
is unstable. Therefore, our results in this

theorem are proved.

4. Dynamical Behavior of
Endemic Equilibrium 𝐸

∗

In general, the nonlinear delay system will undergo a Hopf
bifurcation when the delay passes through a critical value
of the delay, for which the stability of the existing equi-
librium changes from stable status to unstable status and
a self-excited limit cycle emerges at this moment. Under
certain conditions, the existence of a Hopf bifurcation can be
determined from linear stability analysis; it requires that at
the bifurcation point, the characteristic function has exactly
one pair of conjugate roots on the imaginary axis, and as
the delay passes through the bifurcation point, this pair of
characteristic roots cross from the left-half complex plane
to the right-half complex plane or vice verse [19, 26]. The
crossing direction is the same as that mentioned previously
in linear stability analysis. Thus, the determination of the
crossing direction is very important for both stability analysis
and Hopf bifurcation. In this section, we will consider
the dynamical behavior of endemic equilibrium 𝐸

∗. Some
conditions for Hopf bifurcation around equilibrium 𝐸

∗ to
occur are obtained by using the time delay 𝜏 as a bifurcation
parameter.

For endemic equilibrium 𝐸
∗
(𝑇

∗
, 𝐼

∗

1
, 𝐼

∗

2
, 𝑉

∗

1
), (18) reduces

to


−𝜇
1
+ 𝑟 −

2𝑟𝑇
∗

𝑇max
− 𝑘𝑉
∗

1
− 𝜆 𝜂𝑎 + 𝑏 0 −𝑘𝑇

∗

𝑘𝑉
∗

1
𝑒
−𝜆𝜏

−𝑎 − 𝑏 − 𝑑 − 𝜆 0 𝑘𝑇
∗
𝑒
−𝜆𝜏

0 𝑎 (1 − 𝜂) −𝛿 − 𝜆 0

0 0 (1 − 𝑝)𝑁𝛿 −𝑐 − 𝜆



= 0;

(32)

that is,

𝜆
4
+ 𝑝

1
𝜆
3
+ 𝑝

2
𝜆
2
+ 𝑝

3
𝜆 + 𝑝

4
− (𝑞

2
𝜆
2
+ 𝑞

3
𝜆 + 𝑞

4
) 𝑒

−𝜆𝜏
= 0,

(33)

where
𝑝
1
= 𝑎 + 𝑏 + 𝑑 + 𝑐 + 𝛿 − Ω,

𝑝
2
= −Ω (𝑎 + 𝑏 + 𝑑) + (𝑐 + 𝛿) (𝑎 + 𝑏 + 𝑑 − Ω) + 𝑐𝛿,

𝑝
3
= − (𝑐 + 𝛿)Ω (𝑎 + 𝑏 + 𝑑) + 𝑐𝛿 (𝑎 + 𝑏 + 𝑑 − Ω) ,

𝑝
4
= −𝑐𝛿Ω (𝑎 + 𝑏 + 𝑑) ,

𝑞
2
= (𝜂𝑎 + 𝑏) 𝑘𝑉

∗

1
,

𝑞
3
= (𝑐 + 𝛿) (𝜂𝑎 + 𝑏) 𝑘𝑉

∗

1
+ (1 − 𝑝) (1 − 𝜂)𝑁𝛿𝑎𝑘𝑇

∗
,

𝑞
4
= 𝑐𝛿 (𝜂𝑎 + 𝑏) 𝑘𝑉

∗

1
− (1 − 𝑝) (1 − 𝜂)𝑁𝛿𝑎𝑘𝑇

∗
(Ω + 𝑘𝑉

∗

1
) ,

Ω = −𝜇
1
+ 𝑟 −

2𝑟𝑇
∗

𝑇max
− 𝑘𝑉

∗

1
< 0.

(34)

Obviously, 𝑝
1
> 0. In addition, in view of Routh-Hurwitz

criteria, we can easily know that all roots of (33) with 𝜏 = 0

have negative real parts if the following condition holds:

(H) : 𝑝
4
− 𝑞

4
> 0, 𝑝

3
− 𝑞

3
> 0,

𝑝
1
[(𝑝

3
− 𝑞

3
) (𝑝

2
− 𝑞

2
) − 𝑝

1
(𝑝

4
− 𝑞

4
)] > (𝑝

1
− 𝑞

3
)
2
.

(35)

Let us consider 𝜏 ̸= 0 and assume 𝜆(𝜏) = 𝜙(𝜏) + 𝑖𝜓(𝜏),
where 𝜙(𝜏), 𝜓(𝜏) ∈ 𝑅. Substituting 𝜆(𝜏) = 𝜙(𝜏) + 𝑖𝜓(𝜏) and
rewriting (33) in terms of its real and imaginary parts, we
obtain

𝜐
4
+ 𝜔

4
− 6𝜐

2
𝜔
2
+ 𝑝

1
(𝜐

3
− 3𝜐𝜔

2
) + 𝑝

2
(𝜐

2
− 𝜔

2
) + 𝑝

3
𝜐 + 𝑝

4

= 𝑒
−𝜏𝜐

{𝑞
2
[(𝜐

2
− 𝜔

2
) cos (𝜏𝜔) + 2𝜐𝜔 sin (𝜏𝜔)]

+𝑞
3 [𝜐 cos (𝜏𝜔) + 𝜔 sin (𝜏𝜔)] + 𝑞

4
cos (𝜏𝜔) } ,

(36a)

4𝜐𝜔 (𝜐
2
− 𝜔

2
) + 𝑝

1
(3𝜐

2
𝜔 − 𝜔

3
) + 𝑝

2 (2𝜐𝜔) + 𝑝
3
𝜔

= 𝑒
−𝜏𝜐

{𝑞
2
[(−𝜐

2
+ 𝜔

2
) sin (𝜏𝜔) + 2𝜐𝜔 cos (𝜏𝜔)]

+𝑞
3 [−𝜐 sin (𝜏𝜔) + 𝜔 cos (𝜏𝜔)] + 𝑞

4 [− sin (𝜏𝜔)] } .
(36b)

Let 𝜏∗
1
be such that 𝜐(𝜏∗

1
) = 0 and 𝜔(𝜏

∗

1
) = 𝜔(𝜏

∗
); then

(36a) and (36b) reduce to

𝜔
∗4

1
− 𝑝

2
𝜔
∗2

1
+ 𝑝

4
= (−𝑞

2
𝜔
∗2

1
+ 𝑞

4
) cos (𝜏∗

1
𝜔
∗

1
)

+ 𝑞
3
𝜔
∗

1
sin (𝜏∗

1
𝜔
∗

1
) ,

(37a)

−𝑝
1
𝜔
∗3

1
+ 𝑝

3
𝜔
∗

1
= 𝑞

3
𝜔
∗

1
cos (𝜏∗

1
𝜔
∗

1
)

+ (𝑞
2
𝜔
∗2

1
− 𝑞

4
) sin (𝜏∗

1
𝜔
∗

1
) .

(37b)

Eliminating 𝜏, we have

𝜔
∗8

1
+ (𝑝

2

1
− 2𝑝

2
) 𝜔

∗6

1
+ (𝑝

2

2
+ 2𝑝

4
− 2𝑝

1
𝑝
3
− 𝑞

2

2
) 𝜔

∗4

1

+ (𝑝
2

3
− 2𝑝

2
𝑝
4
+ 2𝑞

2
𝑞
4
− 𝑞

2

3
) 𝜔

∗2

1
+ (𝑝

2

4
− 𝑞

2

4
) = 0.

(38)
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Suppose that𝜔∗

1
is the last positive simple root of (38).We

will now show that, with this value of 𝜔∗

1
, there is a 𝜏∗

1
such

that 𝜐(𝜏∗
1
) = 0 and𝜔(𝜏∗

1
) = 𝜔

∗

1
. Given𝜔∗

1
, (37a) and (37b) can

be written as

𝑈 = Φ cos (𝜏∗
1
𝜔
∗

1
) + Ψ sin (𝜏∗

1
𝜔
∗

1
) , (39a)

𝑉 = Ψ cos (𝜏∗
1
𝜔
∗

1
) − Φ sin (𝜏∗

1
𝜔
∗

1
) , (39b)

where

Φ = −𝑞
2
𝜔
∗2

1
+ 𝑞

4
, Ψ = 𝑞

3
𝜔
∗

1
,

𝑈 = 𝜔
∗4

1
− 𝑝

2
𝜔
∗2

1
, 𝑉 = −𝑝

1
𝜔
∗3

1
+ 𝑝

3
𝜔
∗

1
,

Φ
2
+ Ψ

2
= 𝑈

2
+ 𝑉

2
= 𝐻

2
,

(40)

where𝐻 > 0.
Equations

Φ = 𝐻 cos 𝜃, Ψ = 𝐻 sin 𝜃 (41)

determine a unique 𝜃 ∈ [0, 2𝜋). With this value of 𝜃,

𝐻 cos (𝜏∗
1
𝜔
∗

1
) cos 𝜃 + 𝐻 sin (𝜏∗

1
𝜔
∗

1
) sin 𝜃 = 𝑈, (42a)

𝐻 cos (𝜏∗
1
𝜔
∗

1
) sin 𝜃 − 𝐻 sin (𝜏∗

1
𝜔
∗

1
) cos 𝜃 = 𝑉. (42b)

Hence,

𝐻 cos (𝜏∗
1
𝜔
∗

1
− 𝜃) = 𝑈, (43a)

𝐻 sin (𝜏∗
1
𝜔
∗

1
− 𝜃) = −𝑉. (43b)

Equations (43a) and (43b) determine 𝜏∗
1
𝜔
∗

1
− 𝜃 uniquely in

[0, 2𝜋) and hence 𝜏∗
1
uniquely in [𝜃/𝜔∗

1
, (𝜃+2𝜋)/𝜔

∗

1
). To apply

the Hopf bifurcation theorem as stated in [27], we state the
following lemma.

Lemma 2 (see [28]). Suppose (38) has at least one simple
positive root and 𝜔

∗

1
is the last such root. Then, 𝑖𝜔(𝜏∗

1
) = 𝑖𝜔

∗

1

is a simple root of (33) and 𝜐(𝜏) + 𝑖𝜔(𝜏) is differentiable with
respect to 𝜏 in a neighbourhood of 𝜏 = 𝜏

∗

1
.

Next, to establish Hopf bifurcation at 𝜏
1
= 𝜏

∗

1
, we need to

verify the transversality condition

𝑑𝜐

𝑑𝜏

𝜏=𝜏∗
1

̸= 0. (44)

Differentiating equations (36a) and (36b) with respect to 𝜏,
setting 𝜐 = 0 and 𝜔 = 𝜔

∗

1
, solving for 𝑑𝜐/𝑑𝜏|

𝜏=𝜏
∗

1

and
𝑑𝜔/𝑑𝜏|

𝜏=𝜏
∗

1

, and using (37a) and (37b), we obtain

𝑑𝜐

𝑑𝜏

𝜏=𝜏∗
1

=
1

Γ
2

1
+ Γ

2

2

{𝜔
∗2

1
[4𝜔

∗6

1
+ 3𝜔

∗4

1
(𝑝

2

1
− 2𝑝

2
)

+ 2𝜔
∗2

1
(𝑝

2

2
+ 2𝑝

4
− 2𝑝

1
𝑝
3
− 𝑞

2

2
)

+ 𝑝
2

3
− 𝑞

2

3
− 2𝑝

2
𝑝
4
+ 2𝑞

2
𝑞
4
]} .

(45)

Here,

Γ
1
= −4𝜔

∗3

1
+ 2𝑝

2
𝜔
∗

1
+ 𝜏

∗

1
(−𝑝

1
𝜔
∗3

1
+ 𝑝

3
𝜔
∗

1
)

+ 𝑞
3
sin (𝜏∗

1
𝜔
∗

1
) − 2𝑞

2
𝜔
∗

1
cos (𝜏∗

1
𝜔
∗

1
) ,

Γ
2
= −3𝑝

1
𝜔
∗2

1
+ 𝑝

3
+ 𝜏

∗

1
(𝜔

∗4

1
− 𝑝

2
𝜔
∗2

1
+ 𝑝

4
)

+ (−2𝑞
2
𝜔
∗

1
) sin (𝜏∗

1
𝜔
∗

1
) − 𝑞

3
cos (𝜏∗

1
𝜔
∗

1
) ,

Γ
2

1
+ Γ

2

2
> 0,

(46)

as 𝑖𝜔(𝜏∗
1
) is a simple root of (33). Let 𝜍 = 𝜔

∗2

1
; then (38) reduces

to ](𝜍) = 0, where

] (𝜍) = 𝜍
4
+ (𝑝

2

1
− 2𝑝

2
) 𝜍

3
+ (𝑝

2

2
+ 2𝑝

4
− 2𝑝

1
𝑝
3
− 𝑞

2

2
) 𝜍

2

+ (𝑝
2

3
− 2𝑝

2
𝑝
4
+ 2𝑞

2
𝑞
4
− 𝑞

2

3
) 𝜍 + (𝑝

2

4
− 𝑞

2

4
) .

(47)

Hence,

𝑑]
𝑑𝜍

= 4𝜍
3
+ 3𝜍

2
(𝑝

2

1
− 2𝑝

2
) + 2𝜍 (𝑝

2

2
+ 2𝑝

4
− 2𝑝

1
𝑝
3
− 𝑞

2

2
)

+ (𝑝
2

3
− 𝑞

2

3
− 2𝑝

2
𝑝
4
+ 2𝑞

2
𝑞
4
) .

(48)

If 𝜔∗2

1
is the first positive simple root of (38), then

𝑑]
𝑑𝜍

𝜍=𝜔∗2
1

> 0. (49)

Hence, using (45) and (48) we deduce that

𝑑𝜐

𝑑𝜏

𝜏=𝜏∗
1

> 0. (50)

Theorem 3. Suppose that (38) has at least one simple positive
root and 𝜔

∗

1
is the last such root. Then, there is a Hopf

bifurcation for the system (5) as 𝜏 passes upwards through 𝜏
∗

1

leading to a periodic solution that bifurcates from 𝐸
∗.

Next, we will give the sensible conditions that the Hopf
bifurcation occurs around equilibrium 𝐸

∗. Firstly, we need
the following important lemma.

Define 𝑓
1
= 𝑝

2

1
− 2𝑝

2
, 𝑓

2
= 𝑝

2

2
+ 2𝑝

4
− 2𝑝

1
𝑝
3
− 𝑞

2

2
, 𝑓

3
=

𝑝
2

3
− 2𝑝

2
𝑝
4
+ 2𝑞

2
𝑞
4
− 𝑞

2

3
, 𝑓

4
= 𝑝

2

4
− 𝑞

2

4
, and 𝜍 = 𝜔

∗2

1
, then (38)

becomes

𝜍
4
+ 𝑓

1
𝜍
3
+ 𝑓

2
𝜍
2
+ 𝑓

3
𝜍 + 𝑓

4
= 0. (51)

Lemma 4 (see [28]). If 𝑓
4
< 0, then the quartic equation

] (𝜍) = 𝜍
4
+ 𝑓

1
𝜍
3
+ 𝑓

2
𝜍
2
+ 𝑓

3
𝜍 + 𝑓

4
= 0 (52)

has a strictly positive triple root 𝑘
1
if and only if

(1) 3𝑓2

1
≥ 8𝑓

2
;

(2) 𝑓
1
< 0 or 𝑓

2
< 0;
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(3) 𝛽
1
satisfies the equation 6𝛽

2
+ 3𝑓

1
𝛽 + 𝑓

2
= 0;

(4) 𝑓
3
= 𝛽

2

1
(3𝑓

1
+ 8𝛽

1
);

(5) 𝑓
4
= 𝛽

3

1
(−𝑓

1
− 3𝛽

1
).

We also need the following mild condition.

Condition 1. Either

(i) 8𝑓
2
> 3𝑓

2

1
;

(ii) 𝑓
1
≥ 0 and 𝑓

2
≥ 0;

(iii) or if 3𝑓2

1
≥ 8𝑓

2
and also either 𝑓

1
< 0 or 𝑓

2
< 0,

then if 𝛽
1
is a strictly positive root of the quadratic

equation, 6𝛽2+3𝑓
1
𝛽+𝑓

2
= 0; either𝑓

3
̸=𝛽
2

1
(3𝑓

1
+8𝛽

1
)

or 𝑓
4

̸=𝛽
3

1
(−𝑓

1
− 3𝛽

1
).

Equation (38) has at least one positive real root for 𝜔∗2

1
if

|𝑝
4
| < |𝑞

4
|. By Lemma 2, this is a simple root if Condition

1 is satisfied.Thus, from Lemma 2 andTheorem 3, we can get
the following theorem.

Theorem 5. Suppose that

(i) R
0
> 1 and the unique endemic equilibrium 𝐸

∗ exists;
and

(ii) Condition 1 holds and |𝑝
4
| < |𝑞

4
| so 𝑓

4
< 0.

Then, there is a Hopf bifurcation for the system (5) as 𝜏
passes upwards through 𝜏

∗

1
leading to a periodic solution that

bifurcates from 𝐸
∗.

Remark 6. If (38) has a positive root𝜔∗

1
, from (37a) and (37b)

we can obtain

𝜏
∗

𝑗
=

1

𝜔
∗

1

arcsin [ ( (−𝑞
3
𝜔
∗

1
(𝜔

∗4

1
− 𝑝

2
𝜔
∗2

1
+ 𝑝

4
)

+ (𝑝
1
𝜔
∗3

1
− 𝑝

3
𝜔
∗

1
) (𝑞

2
𝜔
∗2

1
− 𝑞

4
))

× ((𝑞
∗4

3
𝜔
∗

1
)
2

+ (𝑞
2
𝜔
∗2

1
− 𝑞

4
)
2

)

−1

)

+2𝑗𝜋] , 𝑗 = 0, 1, 2, . . . .

(53)

5. Direction and Stability of
the Hopf Bifurcation

In the previous section, we obtain the conditions underwhich
a family of periodic solutions bifurcates from the positive
equilibrium 𝐸

∗ at the critical value of 𝜏∗
1
. As pointed out in

Hassard et al. [29], it is interesting to determine the direction,
stability, and period of the periodic solutions bifurcating from
the positive equilibrium 𝐸

∗. Following the ideas of Hassard
et al., we derive the explicit formulas for determining the
properties of the Hopf bifurcation at the critical value of 𝜏∗

1

by using the normal form and the center manifold theory.
Throughout this section, we always assume that system (5)
undergoes Hopf bifurcation at the positive equilibrium 𝐸

∗

for 𝜏 = 𝜏
∗

1
, and then ±𝑖𝜔

∗

1
is corresponding purely imaginary

roots of the characteristic equation at the positive equilibrium
𝐸
∗. In the this section, for convenience, we use 𝜏

∗ and 𝜔
∗

instead of 𝜏∗
1
and 𝜔

∗

1
, respectively.

Let 𝑥
1
(𝑡) = 𝑇(𝑡)−𝑇

∗, 𝑥
2
(𝑡) = 𝐼

1
(𝑡)−𝐼

∗

1
, 𝑥

3
(𝑡) = 𝐼

2
(𝑡)−𝐼

∗

2
,

𝑥
4
(𝑡) = 𝑉

1
(𝑡) − 𝑉

∗

1
, 𝑥

𝑖
(𝑡) = 𝑥

𝑖
(𝜏𝑡), (𝑖 = 1, 2, 3, 4), and 𝜏 =

𝜏
∗
+𝜇; system (5) is transformed into an functional differential

equation (FDE) in C = C([−1, 0],R4
) as

𝑑𝑥

𝑑𝑡
= 𝐿

𝜇
(𝑥

𝑡
) + 𝑓 (𝜇, 𝑥

𝑡
) , (54)

where 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥

2
(𝑡), 𝑥

3
(𝑡), 𝑥

4
(𝑡))

⊤
∈ R4 and 𝐿𝜇 : C →

R,𝑓 : R × C → R are given, respectively, by

𝐿
𝜇
(𝜙) = (𝜏

∗
+ 𝜇)

×(

Ω 𝜂𝑎 + 𝑏 0 −𝑘𝑇
∗

0 −𝑎 − 𝑏 − 𝑑 0 0

0 𝑎 (1 − 𝜂) −𝛿 0

0 0 (1 − 𝑝)𝑁𝛿 −𝑐

)

×(

𝜙
1 (0)

𝜙
2 (0)

𝜙
3 (0)

𝜙
4
(0)

)

+ (𝜏
∗
+ 𝜇)(

0 0 0 0

𝑘𝑉
∗

1
0 0 𝑘𝑇

∗

0 0 0 0

0 0 0 0

)(

𝜙
1 (−1)

𝜙
2 (−1)

𝜙
3 (−1)

𝜙
4 (−1)

) ,

(55)

𝑓 (𝜇, 𝜙) = (𝜏
∗
+ 𝜇)(

−
𝑟

𝑇max
𝜙
2

1
(0) − 𝑘𝜙

1
(0) 𝜙

4
(0)

𝑘𝜙
1
(−1) 𝜙

4
(−1)

0

0

) .

(56)

By the Riesz representation theorem, there exists a function
𝜂(𝜃, 𝜇) of bounded variation for 𝜃 ∈ [−1, 0], such that

𝐿
𝜇
𝜙 = ∫

0

−1

𝑑𝜂 (𝜃, 0) 𝜙 (𝜃) , (57)

for 𝜙 ∈ C.
In fact, we can choose

𝜂 (𝜃, 𝜇)

= (𝜏
∗
+ 𝜇)(

Ω 𝜂𝑎 + 𝑏 0 −𝑘𝑇
∗

0 −𝑎 − 𝑏 − 𝑑 0 0

0 𝑎 (1 − 𝜂) −𝛿 0

0 0 (1 − 𝑝)𝑁𝛿 −𝑐

)𝛿 (𝜃)
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− (𝜏
∗
+ 𝜇)(

0 0 0 0

𝑘𝑉
∗

1
0 0 𝑘𝑇

∗

0 0 0 0

0 0 0 0

)𝛿 (𝜃 + 1) ,

(58)

where 𝛿 is the Dirac delta function. For 𝜙 ∈ C
([−1, 0],R4

),
define

𝐴 (𝜇) 𝜙 =

{{{

{{{

{

𝑑𝜙 (𝜃)

𝑑𝜃
, 𝜃 ∈ [−1, 0) ,

∫
0

−1
𝑑𝜂 (𝜇, 𝑠) 𝜙 (𝑠) , 𝜃 = 0,

𝑅 (𝜇) 𝜙 = {
0, 𝜃 ∈ [−1, 0) ,

𝑓 (𝜇, 𝜙) , 𝜃 = 0.

(59)

Then, system (54) is equivalent to
̇𝑥
𝑡
= 𝐴 (𝜇) 𝑥

𝑡
+ 𝑅 (𝜇) 𝑥

𝑡
, (60)

where 𝑥
𝑡
(𝜃) = 𝑥(𝑡 + 𝜃) for 𝜃 ∈ [−1, 0].

For 𝜓 ∈ C1
([−1, 0], (R4

)
∗
), define

𝐴
∗
𝜓 (𝑠) =

{

{

{

−
𝑑𝜓 (𝑠)

𝑑𝑠
, 𝑠 ∈ (0, 1] ,

∫
0

−1
𝑑𝜂

𝑇
(𝑡, 0) 𝜓 (−𝑡) , 𝑠 = 0,

(61)

and a bilinear inner product

⟨𝜓 (𝑠) , 𝜙 (𝜃)⟩ = 𝜓 (0) 𝜙 (0)

− ∫

0

−1

∫

𝜃

𝜁−𝜃

𝜓 (𝜁 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜁) 𝑑𝜁,

(62)

where 𝜂(𝜃) = 𝜂(𝜃, 0). Then, 𝐴(0) and 𝐴
∗ are adjoint oper-

ators. By the discussion in Section 4, we know that ±𝑖𝜔∗
𝜏
∗

are eigenvalues of 𝐴(0). Thus, they are also eigenvalues of
𝐴
∗. We first need to compute the eigenvector of 𝐴(0) and 𝐴∗

corresponding to +𝑖𝜔∗
𝜏
∗ and −𝑖𝜔

∗
𝜏
∗, respectively.

Suppose that 𝑞(𝜃) = (1, 𝑎, 𝛽, 𝛾)
⊤
𝑒
𝑖𝜔
∗
𝜏
∗
𝜃 is the eigen-

vector of 𝐴(0) corresponding to +𝑖𝜔
∗
𝜏
∗; then 𝐴(0)𝑞(𝜃) =

𝑖𝜔
∗
𝜏
∗
𝑞(𝜃). It follows from the definition of 𝐴(0) and (55),

(57), and (58) that

𝜏
∗
(

𝑖𝜔
∗
− Ω −𝜂𝑎 − 𝑏 0 𝑘𝑇

∗

−𝑘𝑉
∗

1
𝑒
−𝑖𝜔
∗
𝜏
∗

𝑖𝜔
∗
+ 𝑎 + 𝑏 + 𝑑 0 −𝑘𝑇

∗
𝑒
−𝑖𝜔
∗
𝜏
∗

0 −𝑎 (1 − 𝜂) 𝑖𝜔
∗
+ 𝛿 0

0 0 − (1 − 𝑝)𝑁𝛿 𝑖𝜔
∗
+ 𝑐

)

× 𝑞 (0) = (

0

0

0

0

) .

(63)

Thus, we can easily obtain 𝑞(0) = (1, 𝛼, 𝛽, 𝛾)
⊤, where

𝛼 =
(𝑖𝜔

∗
− Ω − 𝑘𝑉

∗

1
) 𝑒

−𝑖𝜔
∗
𝜏
∗

(𝜂𝑎 + 𝑏) 𝑒−𝑖𝜔
∗
𝜏
∗

− (𝑖𝜔
∗ + 𝑎 + 𝑏 + 𝑑)

,

𝛾 =
1

𝑘𝑇∗
[(𝜂𝑎 + 𝑏) 𝛼 − 𝑖𝜔

∗
+ Ω] , 𝛽 =

(𝑖𝜔
∗
+ 𝑐) 𝛾

(1 − 𝑝)𝑁𝛿
.

(64)

Similarly, let 𝑞
∗
(𝑠) = 𝐷(1, 𝛼

∗
, 𝛽

∗
, 𝛾

∗
)𝑒
𝑖𝜔
∗
𝜏
∗
𝑠 be the

eigenvector of𝐴∗ corresponding to −𝑖𝜔∗
𝜏
∗. By the definition

of 𝐴∗ and (55)–(57), we can compute

𝛼
∗
=

𝑖𝜔
∗
− Ω

𝑘𝑉
∗

1
𝑒−𝑖𝜔
∗
𝜏
∗
,

𝛽
∗
=
−𝜂𝑎 − 𝑏 + (𝑖𝜔

∗
+ 𝑎 + 𝑏 + 𝑑) 𝛼

∗

𝑎 (1 − 𝜂)
,

𝛾
∗
=
𝛼
∗
𝑘𝑇

∗
𝑒
−𝑖𝜔
∗
𝜏
∗

− 𝑘𝑇
∗

𝑖𝜔∗ + 𝑐
.

(65)

In order to assure ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 1, we need to determine
the value of𝐷. From (62), we have
⟨𝑞

∗
(𝑠) , 𝑞 (𝜃)⟩

= 𝐷(1, 𝛼
∗
, 𝛽

∗
, 𝛾

∗
) (1, 𝛼, 𝛽, 𝛾)

⊤

−∫

0

−1

∫

𝜃

𝜁=0

𝐷(1, 𝛼∗, 𝛽∗, 𝛾∗) 𝑒
−𝑖𝜔
∗
𝜏
∗
(𝜁−𝜃)

𝑑𝜂 (𝜃) (1, 𝛼, 𝛽, 𝛾)
⊤

𝑒
𝑖𝜔
∗
𝜏
∗
𝜁

𝑑𝜁

= 𝐷{1 + 𝛼𝛼∗ + 𝛽𝛽∗ + 𝛾𝛾∗

− ∫

0

−1

(1, 𝛼∗, 𝛽∗, 𝛾∗) 𝜃𝑒
𝑖𝜔
∗
𝜏
∗
𝜃

𝑑𝜂 (𝜃) (1, 𝛼, 𝛽, 𝛾)
⊤

}

= 𝐷{1 + 𝛼𝛼∗ + 𝛽𝛽∗ + 𝛾𝛾∗ + 𝜏
∗

𝑒
−𝑖𝜔
∗
𝜏
∗

(𝛼
∗

𝑘𝑉
∗

1
+ 𝛼
∗

𝑘𝑇
∗

𝛾)} .

(66)
Thus, we can choose𝐷 as

𝐷 =
1

1 + 𝛼𝛼∗ + 𝛽𝛽∗ + 𝛾𝛾∗ + 𝜏∗𝑒𝑖𝜔
∗
𝜏
∗

(𝑘𝑉
∗

1
𝛼∗ + 𝑘𝑇∗𝛼∗𝛾)

.

(67)

In the remainder of this section, we use the same nota-
tions as in [29]; we first compute the coordinates to describe
the center manifoldC

0
at 𝜇 = 0. Let 𝑥

𝑡
be the solution of (60)

when 𝜇 = 0. Define
𝑍 (𝑡) = ⟨𝑞

∗
, 𝑥

𝑡
⟩ , 𝑊 (𝑡, 𝜃) = 𝑥

𝑡 (𝜃) − 2Re {𝑧 (𝑡) 𝑞 (𝜃)} .
(68)

On the center manifold C
0
, we have

𝑊(𝑡, 𝜃) = 𝑊 (𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃) , (69)

where

𝑊(𝑧, 𝑧, 𝜃) = 𝑊
20
(𝜃)

𝑧
2

2
+𝑊

11
(𝜃) 𝑧𝑧 +𝑊

02
(𝜃)

𝑧
2

2

+𝑊
30
(𝜃)

𝑧
3

6
+ ⋅ ⋅ ⋅ ,

(70)

𝑧 and 𝑧 are local coordinates for center manifold C
0
in the

direction of 𝑞∗ and 𝑞∗. Note that 𝑊 is real if 𝑥
𝑡
is real. We

only consider real solutions. For solution 𝑥
𝑡
∈ C

0
of (60),

since 𝜇 = 0, we have

̇𝑧 (𝑡) = 𝑖𝜔
∗
𝜏
∗
𝑧 + 𝑞∗ (0) 𝑓 (0,𝑊 (𝑧, 𝑧, 𝜃) + 2Re {𝑧𝑞 (𝜃)})

= 𝑖𝜔
∗
𝜏
∗
𝑧 + 𝑞∗ (0) 𝑓

0
(𝑧, 𝑧) .

(71)
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We rewrite this equation as

̇𝑧 (𝑡) = 𝑖𝜔
∗
𝜏
∗
𝑧 (𝑡) + 𝑔 (𝑧, 𝑧) , (72)

where

𝑔 (𝑧, 𝑧) = 𝑞∗ (0) 𝑓
0
(𝑧, 𝑧)

= 𝑔
20

𝑧
2

2
+ 𝑔

11
𝑧𝑧 + 𝑔

02

𝑧
2

2
+ 𝑔

21

𝑧
2
𝑧

2
+ ⋅ ⋅ ⋅ .

(73)

It follows from (68) and (70) that

𝑥
𝑡 (𝜃)

= 𝑊 (𝑡, 𝜃) − 2Re {𝑧 (𝑡) 𝑞 (𝑡)}

= 𝑊
20 (𝜃)

𝑧
2

2
+𝑊

11 (𝜃) 𝑧𝑧 +𝑊
02 (𝜃)

𝑧
2

2

+ (1, 𝛼, 𝛽, 𝛾)
𝑇
𝑒
𝑖𝜔
∗
𝜏
∗
𝜃
𝑧 + (1, 𝛼, 𝛽, 𝛾)

𝑇

𝑒
−𝑖𝜔
∗
𝜏
∗
𝜃
𝑧 + ⋅ ⋅ ⋅ .

(74)

It follows together with (56) that

𝑔 (𝑧, 𝑧)

= 𝑞∗ (0) 𝑓
0
(𝑧, 𝑧)

= 𝑞∗ (0) 𝑓 (0, 𝑥
𝑡
)

= 𝜏
𝑘
𝐷(1, 𝛼∗, 𝛽∗, 𝛾∗)(

−
𝑟

𝑇max
𝜙
2

1
(0) − 𝑘𝜙

1
(0) 𝜙

4
(0)

𝑘𝜙
1
(−1) 𝜙

4
(−1)

0

0

)

= −𝜏
∗
𝐷

𝑟

𝑇max
[𝑧 + 𝑧 +𝑊

(1)

20
(0)

𝑧
2

2

+𝑊
(1)

11
(0) 𝑧𝑧 +𝑊

(1)

02
(0)

𝑧
2

2
+ 𝑜 (


(𝑧, 𝑧)

3
)]

2

− 𝜏
∗
𝐷𝑘[𝑧 + 𝑧 +𝑊

(1)

20
(0)

𝑧
2

2
+𝑊

(1)

11
(0) 𝑧𝑧

+𝑊
(1)

02
(0)

𝑧
2

2
+ 𝑜 (


(𝑧, 𝑧)

3
)]

× [𝛾𝑧 + 𝛾𝑧 +𝑊
(4)

20
(0)

𝑧
2

2

+𝑊
(4)

11
(0) 𝑧𝑧 +𝑊

(4)

02
(0)

𝑧
2

2
+ 𝑜 (|𝑧, 𝑧|

3
)]

+ 𝜏
∗
𝐷𝛼

∗
𝑘 [𝑒

−𝑖𝜔
∗
𝜏
∗

𝑧 + 𝑒
𝑖𝜔
∗
𝜏
∗

𝑧 +𝑊
(1)

20
(−1)

𝑧
2

2

+𝑊
(1)

11
(−1) 𝑧𝑧 +𝑊

(1)

02
(−1)

𝑧
2

2
+ 𝑜 (|𝑧, 𝑧|

3
)]

× [𝛾𝑒
−𝑖𝜔
∗
𝜏
∗

𝑧 + 𝛾𝑒
𝑖𝜔
∗
𝜏
∗

𝑧 +𝑊
(4)

20
(−1)

𝑧
2

2

+𝑊
(4)

11
(−1) 𝑧𝑧 +𝑊

(4)

02
(−1)

𝑧
2

2
+ 𝑜 (|𝑧, 𝑧|

3
)] .

(75)
Comparing the coefficients with (73), we have

𝑔
20

= 2𝜏
∗
𝐷[−

𝑟

𝑇max
− 𝑘𝛾 + 𝑘𝛼

∗
𝛾𝑒

−2𝑖𝜔
∗
𝜏
∗

] ,

𝑔
11

= 2𝜏
∗
𝐷[−

𝑟

𝑇max
− 𝑘Re 𝛾 + 𝑘𝛼

∗ Re 𝛾] ,

𝑔
02

= 2𝜏
∗
𝐷[−

𝑟

𝑇max
− 𝑘𝛾 + 𝑘𝛼

∗
𝛾𝑒

2𝑖𝜔
∗
𝜏
∗

] ,

𝑔
21

= 𝜏
∗
𝐷𝑘𝛼

∗

× [−
𝑟

𝑇max
(4𝑊

(1)

11
(0) + 2𝑊

(1)

20
(0))

− 𝑘 (2𝑊
(4)

11
(0) + 𝑊

(4)

20
(0) + 𝛾𝑊

(1)

20
(0) + 2𝛾𝑊

(1)

11
(0))

+ 𝑘𝛼
∗
(2𝑒

−𝑖𝜔
∗
𝜏
∗

𝑊
(4)

11
(−1) + 𝑒

𝑖𝜔
∗
𝜏
∗

𝑊
(4)

20
(−1)

+𝛾𝑒
𝑖𝜔
∗
𝜏
∗

𝑊
(1)

20
(−1) + 2𝛾𝑒

−𝑖𝜔
∗
𝜏
∗

𝑊
(1)

11
(−1)) ] .

(76)
Since there are𝑊

20
(𝜃) and𝑊

11
(𝜃) in 𝑔

21
, we still need to

compute them. From (60) and (68), we have

𝑊 = ̇𝑥
𝑡
− ̇𝑧𝑞 − ̇𝑧 𝑞

= {
𝐴𝑊 − 2Re {𝑞∗ (0) 𝑓

0
𝑞 (𝜃)} , 𝜃 ∈ [−1, 0) ,

𝐴𝑊 − 2Re {𝑞∗ (0) 𝑓
0
𝑞 (𝜃)} + 𝑓

0
, 𝜃 = 0,

≜ 𝐴𝑊 +𝐻 (𝑧, 𝑧, 𝜃) ,

(77)

where

𝐻(𝑧, 𝑧, 𝜃) = 𝐻
20 (𝜃)

𝑧
2

2
+ 𝐻

11 (𝜃) 𝑧𝑧 + 𝐻
02 (𝜃)

𝑧
2

2
+ ⋅ ⋅ ⋅ .

(78)

Substituting the corresponding series into (77) and compar-
ing the coefficients, we obtain
(𝐴 − 2𝑖𝜔

∗
𝜏
∗
)𝑊

20
(𝜃) = −𝐻

20
, 𝐴𝑊

11
(𝜃) = −𝐻

11
, . . . .

(79)

From (77), we know that for 𝜃 ∈ [−1, 0),

𝐻(𝑧, 𝑧, 𝜃) = −𝑞∗ (0) 𝑓
0
𝑞 (𝜃) − 𝑞

∗
(0) 𝑓

0
𝑞 (𝜃)

= −𝑔 (𝑧, 𝑧) 𝑞 (𝜃) − 𝑔 (𝑧, 𝑧) 𝑞 (𝜃) .

(80)
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Comparing the coefficients with (78) gives

𝐻
20
(𝜃) = −𝑔

20
𝑞 (𝜃) − 𝑔

02
𝑞 (𝜃) , (81)

𝐻
11
(𝜃) = −𝑔

11
𝑞 (𝜃) − 𝑔

11
𝑞 (𝜃) . (82)

From (79), (81), and the definition of 𝐴, it follows that

𝑊
20

= 2𝑖𝜔
∗
𝜏
∗
𝑊

20
(𝜃) + 𝑔

20
𝑞 (𝜃) + 𝑔

02
𝑞 (𝜃) . (83)

Notice that 𝑞(𝜃) = (1, 𝛼, 𝛽, 𝛾)
⊤
𝑒
𝑖𝜔
∗
𝜏
∗
𝜃; hence,

𝑊
20
(𝜃) =

𝑖𝑔
20

𝜔∗𝜏∗
𝑞 (0) 𝑒

𝑖𝜔
∗
𝜏
∗
𝜃
+

𝑖𝑔
02

3𝜔∗𝜏∗
𝑞 (0) 𝑒

−𝑖𝜔
∗
𝜏
∗
𝜃

+ 𝐸
1
𝑒
2𝑖𝜔
∗
𝜏
∗
𝜃
,

(84)

where 𝐸
1
= (𝐸

(1)

1
, 𝐸

(2)

1
, 𝐸

(3)

1
, 𝐸

(4)

1
) ∈ R4 is a constant vector.

Similarly, from (79) and (82), we obtain

𝑊
11 (𝜃) = −

𝑖𝑔
11

𝜔∗𝜏∗
𝑞 (0) 𝑒

𝑖𝜔
∗
𝜏
∗
𝜃
+

𝑖𝑔
11

𝜔∗𝜏∗
𝑞 (0) 𝑒

−𝑖𝜔
∗
𝜏
∗
𝜃
+ 𝐸

2
,

(85)

where 𝐸
2

= (𝐸
(1)

2
, 𝐸

(2)

2
, 𝐸

(3)

2
, 𝐸

(4)

2
) ∈ R4 is also a constant

vector.
In what follows, we will seek appropriate 𝐸

1
and 𝐸

2
. From

the definition of 𝐴 and (79), we obtain

∫

0

−1

𝑑𝜂 (𝜃)𝑊20 (𝜃) = 2𝑖𝜔
∗
𝜏
∗
𝑊

20 (𝜃) − 𝐻
20 (𝜃) , (86)

∫

0

−1

𝑑𝜂 (𝜃)𝑊11 (𝜃) = −𝐻
11 (𝜃) , (87)

where 𝜂(𝜃) = 𝜂(0, 𝜃). By (77), we have

𝐻
20 (𝜃) = −𝑔

20
𝑞 (0) − 𝑔

20
𝑞 (0) + 2𝜏

∗
(

−
𝑟

𝑇max
− 𝑘𝛾

𝑘𝛾𝑒
−2𝑖𝜔
∗
𝜏
∗

0

0

),

(88)

𝐻
11
(𝜃) = −𝑔

11
𝑞 (0) − 𝑔

11
𝑞 (0) + 2𝜏

∗
(

−
𝑟

𝑇max
− 𝑘Re 𝛾

𝑘Re 𝛾
0

0

) .

(89)

Substituting (83) and (88) into (86), we obtain

(2𝜔
∗
𝜏
∗
𝐼 − ∫

0

−1

𝑒
2𝑖𝜔
∗
𝜏
∗
𝜃
𝑑𝜂 (𝜃))𝐸

1
= 2𝜏

∗
(

−
𝑟

𝑇max
− 𝑘𝛾

𝑘𝛾𝑒
−2𝑖𝜔
∗
𝜏
∗

0

0

),

(90)

which leads to

(

2𝑖𝜔
∗
− Ω −𝜂𝑎 − 𝑏 0 𝑘𝑇

∗

−𝑘𝑉
∗

1
𝑒
−2𝑖𝜔
∗
𝜏
∗

2𝑖𝜔
∗
+ 𝑎 + 𝑏 + 𝑑 0 −𝑘𝑇

∗
𝑒
−2𝑖𝜔
∗
𝜏
∗

0 −𝑎 (1 − 𝜂) 2𝑖𝜔
∗
+ 𝛿 0

0 0 − (1 − 𝑝)𝑁𝛿 2𝑖𝜔
∗
+ 𝑐

)

× 𝐸
1
= 2 (

−
𝑟

𝑇max
− 𝑘𝛾

𝑘𝛾𝑒
−2𝑖𝜔
∗
𝜏
∗

0

0

).

(91)

It follows that

𝐸
(1)

1

=
2

Δ



−
𝑟

𝑇max
− 𝑘𝛾 −𝜂𝑎 − 𝑏 0 𝑘𝑇

∗

𝑘𝛾𝑒
−2𝑖𝜔
∗
𝜏
∗

2𝑖𝜔
∗
+ 𝑎 + 𝑏 + 𝑑 0 −𝑘𝑇

∗
𝑒
−2𝑖𝜔
∗
𝜏
∗

0 −𝑎 (1 − 𝜂) 2𝑖𝜔
∗
+ 𝛿 0

0 0 − (1 − 𝑝)𝑁𝛿 2𝑖𝜔
∗
+ 𝑐



,

𝐸
(2)

1

=
2

Δ



2𝑖𝜔
∗
− Ω −

𝑟

𝑇max
− 𝑘𝛾 0 𝑘𝑇

∗

−𝑘𝑉
∗

1
𝑒
−2𝑖𝜔
∗
𝜏
∗

𝑘𝛾𝑒
−2𝑖𝜔
∗
𝜏
∗

0 −𝑘𝑇
∗
𝑒
−2𝑖𝜔
∗
𝜏
∗

0 −𝑎 (1 − 𝜂) 2𝑖𝜔
∗
+ 𝛿 0

0 0 − (1 − 𝑝)𝑁𝛿 2𝑖𝜔
∗
+ 𝑐



,

𝐸
(3)

1

=
2

Δ



2𝑖𝜔
∗
− Ω −𝜂𝑎 − 𝑏 −

𝑟

𝑇max
− 𝑘𝛾 𝑘𝑇

∗

−𝑘𝑉
∗

1
𝑒
−2𝑖𝜔
∗
𝜏
∗

2𝑖𝜔
∗
+ 𝑎 + 𝑏 + 𝑑 𝑘𝛾𝑒

−2𝑖𝜔
∗
𝜏
∗

−𝑘𝑇
∗
𝑒
−2𝑖𝜔
∗
𝜏
∗

0 0 𝛿 0

0 0 0 2𝑖𝜔
∗
+ 𝑐



,

𝐸
(4)

1

=
2

Δ



2𝑖𝜔
∗
− Ω −𝜂𝑎 − 𝑏 0 −

𝑟

𝑇max
− 𝑘𝛾

−𝑘𝑉
∗

1
𝑒
−2𝑖𝜔
∗
𝜏
∗

2𝑖𝜔
∗
+ 𝑎 + 𝑏 + 𝑑 0 𝑘𝛾𝑒

−2𝑖𝜔
∗
𝜏
∗

0 −𝑎 (1 − 𝜂) 2𝑖𝜔
∗
+ 𝛿 0

0 0 − (1 − 𝑝)𝑁𝛿 0



,

(92)

where

Δ =



2𝑖𝜔
∗
− Ω −𝜂𝑎 − 𝑏 0 𝑘𝑇

∗

−𝑘𝑉
∗

1
𝑒
−2𝑖𝜔
∗
𝜏
∗

2𝑖𝜔
∗
+ 𝑎 + 𝑏 + 𝑑 0 −𝑘𝑇

∗
𝑒
−2𝑖𝜔
∗
𝜏
∗

0 −𝑎 (1 − 𝜂) 2𝑖𝜔
∗
+ 𝛿 0

0 0 − (1 − 𝑝)𝑁𝛿 2𝑖𝜔
∗
+ 𝑐



.

(93)

Similarly, substituting (85) and (89) into (87), we can get

(

−Ω −𝜂𝑎 − 𝑏 0 𝑘𝑇
∗

−𝑘𝑉
∗

1
𝑎 + 𝑏 + 𝑑 0 −𝑘𝑇

∗

0 −𝑎 (1 − 𝜂) 𝛿 0

0 0 − (1 − 𝑝)𝑁𝛿 𝑐

)𝐸
2

= (

−
𝑟

𝑇max
− 𝑘Re 𝛾

𝑘Re 𝛾
0

0

) ,

(94)
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Figure 1: When 𝜏 = 0.8 < 𝜏
∗, the positive equilibrium 𝐸

∗ is stable.

and hence

𝐸
(1)

2
=

2

Δ
1

×



−
𝑟

𝑇max
− 𝑘Re 𝛾 −𝜂𝑎 − 𝑏 0 𝑘𝑇

∗

𝑘Re 𝛾 𝑎 + 𝑏 + 𝑑 0 −𝑘𝑇
∗

0 −𝑎 (1 − 𝜂) 𝛿 0

0 0 − (1 − 𝑝)𝑁𝛿 𝑐



,

𝐸
(2)

2
=

2

Δ
1



−Ω −
𝑟

𝑇max
− 𝑘Re 𝛾 0 𝑘𝑇

∗

−𝑘𝑉
∗

1
𝑘Re 𝛾 0 −𝑘𝑇

∗

0 0 𝛿 0

0 0 − (1 − 𝑝)𝑁𝛿 𝑐



,

𝐸
(3)

2
=

2

Δ
1



−Ω −𝜂𝑎 − 𝑏 −
𝑟

𝑇max
− 𝑘Re 𝛾 𝑘𝑇

∗

−𝑘𝑉
∗

1
𝑎 + 𝑏 + 𝑑 𝑘Re 𝛾 −𝑘𝑇

∗

0 −𝑎 (1 − 𝜂) 0 0

0 0 0 𝑐



,

𝐸
(4)

2
=

2

Δ
1



−Ω −𝜂𝑎 − 𝑏 0 −
𝑟

𝑇max
− 𝑘Re 𝛾

−𝑘𝑉
∗

1
𝑎 + 𝑏 + 𝑑 0 𝑘Re 𝛾

0 −𝑎 (1 − 𝜂) 𝛿 0

0 0 − (1 − 𝑝)𝑁𝛿 0



,

(95)

where

Δ
1
=



−Ω −𝜂𝑎 − 𝑏 0 𝑘𝑇
∗

−𝑘𝑉
∗

1
𝑎 + 𝑏 + 𝑑 0 −𝑘𝑇

∗

0 −𝑎 (1 − 𝜂) 𝛿 0

0 0 − (1 − 𝑝)𝑁𝛿 𝑐



. (96)

Thus, we can determine 𝑊
20
(𝜃) and 𝑊

11
(𝜃) from (83)

and (85). Furthermore, 𝑔
21

in (75) can be expressed by the
parameters and delay. Then, we can compute the following
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Figure 2: When 𝜏 = 2.4 > 𝜏
∗, the positive equilibrium 𝐸

∗ losses its stability and periodic solution occurs.

values:

𝑐
1
(0) =

𝑖

2𝜔∗𝜏∗
(𝑔

20
𝑔
11
− 2

𝑔11


2
−

𝑔02


2

3
) +

𝑔
21

2
,

𝜇
2
= −

Re {𝑐
1 (0)}

Re {𝜆 (𝜏∗)}
,

𝛽
2
= 2Re {𝑐

1
(0)} ,

𝑇
2
= −

Im {𝑐
1
(0)} + 𝜇

2
Im {𝜆


(𝜏

∗
)}

𝜔∗𝜏∗
.

(97)

By the result of Hassard et al. [29], we have the following.

Theorem 7. In (97), the sign of 𝜇
2
determined the direction of

Hopf bifurcation: if𝜇
2
> 0 (𝜇

2
< 0), then theHopf bifurcation is

supercritical (subcritical) and the bifurcating periodic solution

exists for 𝜏 > 𝜏
∗ (𝜏 < 𝜏

∗). 𝛽
2
determines the stability of the

bifurcating periodic solution: the bifurcating periodic solution
is stable (unstable) if 𝛽

2
< 0 (𝛽

2
> 0), and 𝑇

2
determines the

period of the bifurcating periodic solution: the period increases
(decreases) if 𝑇

2
> 0 (𝑇

2
< 0).

6. Numerical Simulation

In the previous sections, we introduced the analytical tools
proposed and used for a qualitative analysis of the system
obtaining some results about the dynamics of the system. In
this section, we perform a numerical analysis of the model
based on the previous results.

Our model involves 13 parameters, including the delay
𝜏. In the following, we choose a set of parameters in
Table 1. Correspondingly, R

0
= 17.68614487 > 1 and

𝐸
∗
(72.94117647, 167.1814866, 94.73617573, 21315.63954).
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Table 1: Variables and parameters for viral spread.

Variables and meaning parameters Values

𝑇
Uninfected CD4+ T-cell population
size 1000mm−3

𝐼
1

Pre-RT 0mm−3

𝐼
2

Post-RT 0mm−3

𝑉
1

Infectious virus 10−3 mm−3

𝑠
Source term for uninfected CD4+
T-cell 5 day −1 mm−3

𝑘
Rate at which CD4+ T-cell becomes
infected with virus 0.00005mm3 day−1

𝜇
1

Death rate of healthy CD4+ T-cell 0.01 day−1

𝜂 Efficacy of RTIs 0.15

𝑎
Transition rate from pre-RT infected
CD4+ T cells to productively post-RT 0.4 day−1

𝑏
Reverting rate of infected cells to
uninfected class 0.05 day−1

𝑑 Death rate of infected T-cells 0.015 day−1

𝛿 Death rate of actively infected T-cells𝐼
2

0.6 day−1

𝑁
Number of virions produced by
infected CD4+ T-cells 1000 virions cell−1

𝑐 Clearance rate of virus 2.4 day−1

𝑟 Growth rate of T-cells 0.8 day−1

𝑇max Carrying capacity of T-cells 1300mm3

𝑝 Protease inhibitor efficacy 0.1

We can compute that 𝜔
∗

= 0.3205862054, and 𝜏
∗

=

1.201514430. By Theorem 5, equilibrium 𝐸
∗ is locally

asymptotically stable when 𝜏 < 𝜏
∗ (see Figure 1), and

Hopf bifurcation occurs at 𝜏 = 𝜏
∗; a periodic solution

exists when 𝜏 > 𝜏
∗ (see Figure 2). Furthermore, we

compute 𝑐
1
(0) = −13.62874664 − 2.28357223𝑖. Therefore,

Re(𝑐
1
(0)) < 0. By Theorem 7, we know that the Hopf

bifurcation is supercritical: the bifurcating periodic solutions
exist for 𝜏 > 𝜏

∗ and they are orbitally asymptotically stable.
The ranges of time delay 𝜏 are reported in [30, 31], are

between 0 and 2 days. By the theory of Hopf bifurcation,
we have shown that sustained oscillations are possible in
the realistic parameter space. This shows that our model is
reasonable.

7. Discussion

We have considered a mathematical model for drugs therapy
to the infection of CD4+ T cells in vivo by HIV. The model
incorporates the effects of antiretroviral therapy, logistic
growth of the CD4+ T cell, and intracellular delay. We
have carried out a rigorous mathematical analysis of global
dynamics of the model and have shown that the time delay
can destabilize the positive equilibrium and lead to periodic
solutions through Hopf bifurcation.

If we cannot consider the effect of “intracellular” delay,
the viral oscillation will not occur [10]. Intracellular delay
can induce rich dynamics in the viral system. Moreover, in
system (5), we used a logistic term to model the generation

and death of target cells. In fact, we can find the logistic term
to model the generation by using simulation. And Li and Su
have studied that both the “intracellular” delay and target cell
can proliferate on virus dynamics [32]. All in all, based on
the analytic and simulation results, we can conclude that both
the “intracellular” delay and logistic termmay give rise to the
viral oscillation in the host. Hence, the oscillation behaviors
of virus population can be understood in these ways. We will
discuss the effect of the “intracellular” delay and logistic term
in theory in the future.

It is well to know that current treatment regimens cannot
eradicate the virus. And the single drug may be highly effec-
tive. From the expression of the basic reproductive number
R

0
= 𝑇

0
/𝑇

∗
= (𝑇max[𝑟−𝜇1+√(𝑟 − 𝜇

1
)
2
+ 4𝑟𝑠/𝑇max]/2𝑟)((1−

𝑝)(1−𝜂)𝑘𝑁𝑎/𝑐(𝑑+𝑎+𝑏)), we can find thatR
0
is a decreasing

function for 𝑝. The value ofR
0
is smaller for a larger 𝑝. That

is to say, PIs are positive for the treatment of HIV. Hence, our
results show that we need a combination therapy to obtain the
better results of drug therapy.

Finally, if we assume a constant death rate 𝑚 for infected
but not yet virus-producing cells, the probability of surviving
from time 𝑡 − 𝜏 to time 𝑡 is just 𝑒−𝑚𝜏 [14]. Thus the refined
model can be rewritten as (4). Hence, we have the following
system:

𝑑𝑇

𝑑𝑡
= 𝑠 + 𝑟𝑇(1 −

𝑇

𝑇max
) − 𝜇

1
𝑇 − 𝑘𝑇𝑉

1
+ (𝜂𝑎 + 𝑏) 𝐼

1
,

𝑑𝐼
1

𝑑𝑡
= 𝑘𝑒

−𝑚𝜏
𝑇 (𝑡 − 𝜏)𝑉1 (𝑡 − 𝜏) − (𝑑 + 𝑎 + 𝑏) 𝐼1,

𝑑𝐼
2

𝑑𝑡
= (1 − 𝜂) 𝑎𝐼

1
− 𝛿𝐼

2
,

𝑑𝑉
1

𝑑𝑡
= (1 − 𝑝)𝑁𝛿𝐼

2
− 𝑐𝑉

1
,

𝑑𝑉
2

𝑑𝑡
= 𝑝𝑁𝛿𝐼

2
− 𝑐𝑉

2
.

(98)

It is easy to obtain that the characteristic equation about
the positive equilibrium of model (98) is delay dependent
coefficients. We can deduce that the stability switches around
the positive equilibrium may occur. We leave it in the future.
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We investigated a nonlinearmodel of the interaction between nutrients and plankton, which was addressed using a pair of reaction-
advection-diffusion equations. Based on numerical analysis, we studied amodel without diffusion and sinking terms, and we found
that the phytoplankton density (a stable state) increased with the increase of nutrient density. We analyzed the model using a linear
analysis technique and found that the sinking of phytoplankton could affect the system. If the sinking velocity exceeded a certain
critical value, the stable state became unstable and the wavelength of phytoplankton increased with the increase of sinking velocity.
Furthermore, band patterns were also produced by our model, which was affected by the diffusion and sinking of phytoplankton.
Thus, the change in the diffusion and sinking of phytoplankton led to different spatial distributions of phytoplankton. All of these
results are expected to be useful in the study of plankton dynamics in aquatic ecosystems.

1. Introduction

Plankton play an important role in the ecology of the ocean
and climate because of their participation in the global
carbon cycle at the base of the food chain [1]. In certain
environmental conditions, lakes, reservoir, andmarinewaters
may experience plankton or algal blooms [2, 3]. However, the
local and global impacts of plankton blooms on water quality,
carbon cycling, and climate may be damaging. If nutrient
source is abundant, and some conditions are satisfied, blooms
may become long-term events that affect ecosystems. Plank-
ton blooms can change the types of species present at the base
of the aquatic food web and affect human health. Thus, the
study of plankton dynamics is currently of major interest.

In the past years, there were many researches on the
model between nutrient and phytoplankton and zooplankton
[4–6]. A larger number of researchers have attempted to
model the relationship between nutrient and phytoplankton
and zooplankton, to investigate the dynamics in plankton
model. Truscott and Brindley [7] presented a model for the
evolution of phytoplankton and zooplankton populations
which resembles models for the behavior of excitable media.

Luo [8] investigated phytoplankton-zooplankton dynamics
in periodic environments, where eutrophication was consid-
ered. El Saadi and Bah [9] modeled phytoplankton aggre-
gation using numerical treatment and explored the asymp-
totic behavior of the model. Banerjee and Venturino [10]
studied a phytoplankton-toxic phytoplankton-zooplankton
model and found that the toxic phytoplankton does not
drive the zooplankton population towards extinction under
a certain mechanism. The result is very important for study
on plankton. These works make contributions for the study
on plankton.

In recent years, many ecologists have paid increasing
attention to spatial processes in a wide variety of practical
contexts [11]. For example, theoretical community ecologists
have explored ecosystems, including vegetation systems [12]
and phytoplankton systems [13]. In particular, the modeling
of plankton systems is becoming increasingly important
because of their roles in carbon cycling and temperature
control, particularly their major impacts on global climate
change [14]. These modeling strategies are focused on two
areas: (i) studies of large and complex systems, which are
eventually used to fit field data or to forecast future changes;
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and (ii) studies of skeleton models for various mechanisms,
which canprovide insights or stimulate new experiments [14].

The present study belongs to the latter area. We propose a
model on phytoplankton using a pair of reaction-advection-
diffusion equations, which allow spatial phenomena, such
as sinking, and turbulence to be described directly, thereby
enabling spatial structures to be studied. It is known that
the sinking and mixing of phytoplankton have pronounced
effects on the tendency of different phytoplankton to increase.
Experimental studies indicated thatmost fresh water diatoms
and other phytoplankton sink in undisturbed water [15].
Theoretical results also demonstrated the importance of
sinking, mixing, and diffusion [16, 17]. Theoretical models
predicted that a process with reduced vertical mixing may
induce oscillations and chaos in the phytoplankton of the
deep chlorophyll maxima, which leads to differences in the
timescale between the sinking flux of phytoplankton and
the upward flux of nutrients [18]. A remarkable finding was
the survival of a sinking phytoplankton population even
when the diffusivity in the deep layers could not prevent
population washout [19–21]. Mellard et al. demonstrated how
externally imposed heterogeneity in the form of resource
gradients and mixing interacted with internally generated
heterogeneity in the form of competition, population dynam-
ics, and movement to determine the spatial distribution of
phytoplankton [22]. Ryabov et al. showed that the upper
mixed layer was an important factor that had the potential
to shape the spatial distribution and species composition
of phytoplankton, but it also provided insights with general
ecological importance [23]. van de Koppel et al. studied self-
organized spatial patterning in an algae-mussel model, where
regular spatial patterns were formed in young mussel beds
on soft sediments in the Wadden Sea [24]. Self-organized
spatial patterns are of considerable interest to theoretical
biology [25–30] because of the basic paper by Turing [31] on
the role of nonequilibrium reaction-diffusion prepatterns in
biomorphogenesis. Furthermore, recent modeling studies of
plankton support the self-organized spatial patterns, such as
patchiness [32, 33] and bands [25, 34, 35].

The rest of this paper is organized as follows. In the next
section, we present a model based on the theoretical ecology
and partial differential equations, which is addressed using a
pair of reaction-advection-diffusion equations. In Section 3,
we analyze stable behavior of the nonspatial system firstly.
What is more, the stable behavior of the spatial system is
analyzed. And we obtain the condition under which the
steady state becomes unstable. Finally, a series of simulations
are given.Using simulation,we investigate the effect of critical
factor on the system. In Section 4, discussion and conclusion
are presented.

2. The Model

Natural ecosystems of plankton exhibit great variability in
space and time. The growth of phytoplankton is depen-
dent mainly on nutrients and light. After the mortality
of phytoplankton, nutrients are returned to the system
over short time scales with minimal losses [39] through

microbial decomposition. In addition, biological factors
such as higher predation and physical factors such as the
sinking of phytoplankton into the water column also affect
the ecosystem, which has been examined previously [40].
Turbulence also affects these systems [3, 19, 41]. Vertical
mixing brings nutrients from the lower layers of the ocean
into the mixed layer. Based on the previous analysis, the
following general structure is obtained:

𝜕𝑁

𝜕𝑡
= input − uptake + recycling +mixing, (1a)

𝜕𝑃

𝜕𝑡
= growth −mortality − predation − sinking +mixing,

(1b)

where 𝑁 is the nutrient density and 𝑃 is the phytoplankton
population density.

Dugdale proposed the use of Michaelis-Menten enzyme
kinetics to describe nutrient-phytoplankton interactions
[42]. The Michaelis-Menten equations have the same form
as the well-known Monod equations [43], which are used
in the Droop equations, and they have formed the basis
of a number of modeling studies that aimed to simulate
phytoplankton blooms [44]. Thus, we employed Michaelis-
Menten kinetics in terms of “uptake.” Furthermore, a Holling
type II functional response has been used widely to describe
zooplankton predation in various theoretical studies [45, 46].
It has also been reported that the Holling type II functional
response shows good concordance with experimental data
[33, 47, 48]. Hence, in the present paper, Holling II functional
response is adopted to describe zooplankton grazing on
phytoplankton.Therefore, a pair of specific models is defined
as follows:

𝜕𝑁

𝜕𝑡
= 𝑓 (𝑁, 𝑃) + 𝑑

𝑁
Δ𝑁 = 𝑘 (𝑁

0
− 𝑁)

− 𝛼𝛽
𝑁

𝐻
𝑁
+ 𝑁

𝑃 + 𝜀𝑚𝑃 + 𝑑
𝑁
Δ𝑁,

(2a)

𝜕𝑃

𝜕𝑡
= 𝑔 (𝑁, 𝑃) − V

𝜕𝑃

𝜕𝑧
+ 𝑑
𝑃
Δ𝑃 = 𝛽

𝑁

𝐻
𝑁
+ 𝑁

𝑃

− 𝑚𝑃 − 𝑓
𝑃

𝑃

𝐻
𝑃
+ 𝑃

− V
𝜕𝑃

𝜕𝑧
+ 𝑑
𝑃
Δ𝑃,

(2b)

where a vertical water column is considered. Let 𝑧 indicate
the depth in the water column; 𝑥 is the width in the
water column. For vertical mixing, we assume that 𝑁

0
is a

constant concentration, which includes the nutrient input
flowing into the system and the nutrient from below the
mixed layer, 𝑘 is the rate of exchange between the lower
and upper layers, 𝛼 is the nutrient content of phytoplankton,
𝛽 denotes the maximum growth rate of phytoplankton,
𝐻
𝑁

is the half-saturation constant for nutrients, 𝐻
𝑃
is the

half-saturation constant for phytoplankton, 𝑓
𝑃
denotes the

maximum predation rate of zooplankton on phytoplankton,
𝑚 is the mortality of phytoplankton, 𝜀 is the proportion of
nutrients in dead phytoplankton that is recycled, V is the
sinking velocity of phytoplankton, and 𝑑

𝑁
and 𝑑

𝑃
are the
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diffusion rates of nutrients and phytoplankton, respectively,
which are caused by mixing and turbulence. In addition,
Δ is the Laplacian operator. Table 1 provides the parameter
values used and their units, which is obtained from published
studies [19, 36–38].

3. Results

3.1. Stable Behavior of the Nonspatial System. In the nonspa-
tial system (i.e., system (2a), (2b) without spatial derivatives),
according to𝑓(𝑥, 𝑦) = 0 and𝑔(𝑥, 𝑦) = 0, vertical isocline and
horizontal isocline can be obtained, respectively, as follows.
Vertical isocline 𝑙

1
: 𝑃 = (𝑘(𝑁

0
−𝑁)(𝐻

𝑁
+𝑁))/((𝛼𝛽−𝜀𝑚)𝑁−

𝜀𝑚𝐻
𝑁
). Horizontal isocline 𝑙

2
: 𝑃 = (𝑓

𝑃
(𝐻
𝑁
+ 𝑁)/((𝛽 −

𝑚)𝑁 − 𝑚𝐻
𝑁
)) − 𝐻

𝑃
. Obviously, the line, 𝑁 = 𝜀𝑚𝐻

𝑁
/

(𝛼𝛽 − 𝜀𝑚), is asymptote of vertical isocline 𝑙
1
, and the line,

𝑁 = (𝑚𝐻
𝑁
)/(𝛽 − 𝑚), is asymptote of horizontal isocline 𝑙

2
.

In the following discussion, it is assumed that the condition
𝛽 > 𝑚 always holds; otherwise phytoplankton become extinct
eventually. For vertical isocline 𝑙

1
, 𝑃 = ((𝜀𝑚 − 𝛼𝛽)𝑁

2
+

2𝜀𝑚𝐻
𝑁
𝑁 + (𝜀𝑚𝐻

𝑁
− 𝛼𝛽𝑁

0
)𝐻
𝑁
)/((𝜀𝑚 − 𝛼𝛽)𝑁 + 𝜀𝑚𝐻

𝑁
)
2,

which is derivative. There are two roots in 𝑃


= 0

when the condition 𝜀𝑚 > 𝛼𝛽 holds, root is 𝑁 =

(𝜀𝑚𝐻
𝑁
±√𝛼𝛽𝐻

𝑁
(𝜀𝑚𝐻

𝑁
+ (𝜀𝑚 − 𝛼𝛽)𝑁

0
))/(𝛼𝛽− 𝜀𝑚). Then,

it is obvious that the asymptote, 𝑁 = 𝜀𝑚𝐻
𝑁
/(𝛼𝛽 − 𝜀𝑚), is

on the left of line 𝑁 = 0. Therefore, the vertical isocline 𝑙
1
is

continuous when 𝑁 > 0. And 𝑃 > 0 holds when 𝑁 > 𝑁
0
;

𝑃 < 0 holds when 0 < 𝑁 < 𝑁
0
. From the horizontal isocline

𝑙
2
, if 𝑓
𝑃
> 𝐻
𝑃
(𝛽 − 𝑚), then there is a positive equilibrium in

the nonspatial system at least; if𝑓
𝑃
< 𝐻
𝑃
(𝛽−𝑚), then there is

a positive equilibrium in the nonspatial system at least when
the condition𝑚𝐻

𝑁
/(𝛽 − 𝑚) > 𝑁

0
holds.

When the condition 𝜀𝑚 < 𝛼𝛽 holds, there is no root in
𝑃

= 0 if𝑁

0
> (𝜀𝑚𝐻

𝑁
/(𝛼𝛽 − 𝜀𝑚)). From 𝑃

, vertical isocline
𝑙
1
is monotone decreasing when 𝑁 > (𝜀𝑚𝐻

𝑁
/(𝛼𝛽 − 𝜀𝑚)),

and 𝑃 < 0 holds when 𝑁 ∈ (0, (𝜀𝑚𝐻
𝑁
/(𝛼𝛽 − 𝜀𝑚))); 𝑃 > 0

holds when 𝑁 ∈ ((𝜀𝑚𝐻
𝑁
/(𝛼𝛽 − 𝜀𝑚)),𝑁

0
). According to

horizontal isocline 𝑙
2
, if 𝑓
𝑃
> 𝐻
𝑃
(𝛽 − 𝑚), then there is a

positive equilibrium in the nonspatial system at least when
the condition (𝑚/𝛽)𝜀 < 𝛼 < 𝜀 holds; if 𝑓

𝑃
< 𝐻
𝑃
(𝛽 − 𝑚),

then there is no positive equilibrium in the nonspatial system
when the condition (𝑚𝐻

𝑁
/(𝛽 − 𝑚)) > 𝑁

0
holds.

When the condition 𝜀𝑚 < 𝛼𝛽 holds, there are two roots in
𝑃

= 0 if𝑁

0
< (𝜀𝑚𝐻

𝑁
/(𝛼𝛽−𝜀𝑚)). From𝑃

, vertical isocline 𝑙
1

is monotone increasing, when𝑁 ∈ (𝑁
0
, (𝜀𝑚𝐻

𝑁
/(𝛼𝛽−𝜀𝑚))).

And 𝑃 < 0 holds, when 𝑁 ∈ (0,𝑁
0
) ∪ ((𝜀𝑚𝐻

𝑁
/(𝛼𝛽 − 𝜀𝑚)),

+∞); 𝑃 > 0 holds, when 𝑁 ∈ (𝑁
0
, (𝜀𝑚𝐻

𝑁
/(𝛼𝛽 − 𝜀𝑚))).

According to horizontal isocline 𝑙
2
, if 𝑓
𝑃
> 𝐻
𝑃
(𝛽 − 𝑚),

then there is a positive equilibrium state in the nonspatial
system at least when the condition (𝑚/𝛽)𝜀 < 𝛼 < 𝜀 holds;
if 𝑓
𝑃
< 𝐻
𝑃
(𝛽 −𝑚), then there is no positive equilibrium state

in the nonspatial system when the condition 𝛼 > 𝜀 holds.
It is noted that these conditions only confirm that there

exists positive equilibrium state in the nonspatial system
when these conditions are satisfied. It does not mean that
there must be no positive equilibrium state in the nonspatial
system when these conditions are not satisfied. In addition, it
is not difficult to find that there is always a trivial steady state,

Table 1: Parameter values used.

Symbol Value Unit
𝑁
0

0.5 g⋅m−3

𝑘 0.08 day−1

𝛼 0.02 dimensionless
𝛽 0.5 day−1

𝜀 0.01 dimensionless
𝑚 0.24 day−1

𝑓
𝑃

2 g⋅m−2⋅day−1

𝐻
𝑁

0.005 g⋅m−2

𝐻
𝑃

4 g⋅m−2

V 1.008 m⋅day−1

𝑑
𝑁

1.038 m2
⋅day−1

𝑑
𝑃

1.038 m2
⋅day−1

Note: parameter value 𝜀 was estimated, parameter value 𝐻𝑃 was estimated
based on de Angelis et al. [36], and the other parameter values were derived
from previous studies [19, 36–38].

𝐸
0
= (𝑁

0
, 0), consisting of bare nutrients without phyto-

plankton in the nonspatial model. The Jacobian matrix of
nonspatial system at the equilibrium 𝐸

0
= (𝑁
0
, 0) is

𝐴 = (

−𝑘 𝜀𝑚 −
𝛼𝛽𝑁
0

𝐻
𝑁
+ 𝑁
0

0
(𝛽 − 𝑚)𝑁

0
− 𝑚𝐻

𝑁

𝐻
𝑁
+ 𝑁
0

−
𝑓
𝑃

𝐻
𝑃

). (3)

It is obvious that the index of equilibrium 𝐸
0
is +1, when

the condition𝛽𝑁
0
𝐻
𝑃
< (𝑚𝐻

𝑃
+𝑓
𝑃
)(𝑁
0
+𝐻
𝑁
) holds, which is

stable. In particular, when the conditions 𝜀𝑚 < 𝛼𝛽 and 𝑓
𝑃
<

𝐻
𝑃
(𝛽−𝑚) hold, if (𝑚𝐻

𝑁
/(𝛽−𝑚)) > 𝑁

0
> (𝜀𝑚𝐻

𝑁
/(𝛼𝛽−𝜀𝑚))

or 𝑁
0
< (𝜀𝑚𝐻

𝑁
/(𝛼𝛽 − 𝜀𝑚)) and 𝛼 > 𝜀, then there is

no positive equilibrium in nonspatial system. Under these
conditions, equilibrium 𝐸

0
is locally asymptotically stable.

Furthermore, equilibrium𝐸
0
is globally asymptotically stable

inΩ = [0, +∞)×[0, +∞]. Because first quadrant is a positive
invariant set according to𝑓(𝑥, 𝑦) and𝑔(𝑥, 𝑦), there is no limit
cycle because there is no equilibrium in first quadrant.

Based on previous discussion, there exists positive equi-
librium in the nonspatial model under some conditions,
which is defined by 𝐸

∗
= (𝑁
∗
, 𝑃
∗
). The Jacobian matrix of

nonspatial model at the equilibrium 𝐸
∗
= (𝑁
∗
, 𝑃
∗
) is

𝑇 = (

−𝑘 −
𝛼𝛽𝐻
𝑁
𝑃
∗

(𝐻
𝑁
+ 𝑁
∗
)
2

𝑘 (𝑁
∗
− 𝑁
0
)

𝑃
∗

𝛽𝐻
𝑁
𝑃
∗

(𝐻
𝑁
+ 𝑁
∗
)
2

𝑓
𝑃
𝑃
∗

(𝐻
𝑃
+ 𝑃
∗
)
2

). (4)

From 𝑇, it is easy to find that the equilibrium 𝐸
∗
= (𝑁
∗
,

𝑃
∗
) is unstable when𝑁

∗
> 𝑁
0
, which is saddle. When𝑁

∗
<

𝑁
0
, the index of equilibrium 𝐸

∗
is +1 when the condition

𝑘𝛽𝐻
𝑁
(𝑁
0
−𝑁
∗
)(𝐻
𝑃
+𝑃
∗
)
2
> (𝑘(𝐻

𝑁
+𝑁
∗
)
2
+𝛼𝛽𝐻

𝑁
𝑃
∗
)𝑓
𝑃
𝑃
∗

holds, and it is locally asymptotically stable using Roth-
Hurwitz criterion when the condition (𝑓

𝑃
𝑃
∗
/(𝐻
𝑃
+ 𝑃
∗
)
2
) <

𝑘 + (𝛼𝛽𝐻
𝑁
𝑃
∗
/(𝐻
𝑁
+ 𝑁
∗
)
2
) holds.
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Figure 1: The existence and stability of an equilibrium versus the parameter𝑁
0
(a, b) and parameter 𝜀 (c, d). The other parameters are given

in Table 1.

Although the expression of equilibrium 𝐸
∗
can hardly

be obtained, the stable behavior of the nonspatial system is
determined when some parameters are given in Table 1. In
the present paper, our interest is how some factors, such as
the nutrient concentration 𝑁

0
and nutrient cycling effect 𝜀,

affect the system. Hence, the stable behavior of the nonspatial
system is analyzed using the graph (see Figure 1). In Figure 1,
when the nutrient concentration𝑁

0
or nutrient cycling effect

𝜀 increases, there is always a trivial equilibrium consisting
of bare nutrients without phytoplankton. In Figures 1(a) and
1(b), when the nutrient concentration is 0 ≤ 𝑁

0
< 0.489,

there is only a trivial steady state in the nonspatial system.
When the nutrient concentration 0.489 < 𝑁

0
< 0.609,

there were two other steady states: one is always unstable
(green dashed, saddle), while the other is stable (red solid line,
focus). When the nutrient concentration is 0.609 < 𝑁

0
< 2,

the focus disappears, and a node emerges (blue line, node).
In Figures 1(c) and 1(d), a similar analysis is obtained, and the
difference among Figures 1(a), 1(b), 1(c), and 1(d) is indicated
by the grey zone. The trivial steady state and saddle coexist
in the grey zone. In the following discussion, the nontrivial
homogeneous steady state (focus or node) is defined by 𝐸∗ =
(𝑁
∗
, 𝑃
∗
).

3.2. Stable Behavior of the Spatial System. In this section, we
consider the sensitivity of the system (2a), (2b) to change in
the parameter values. A linear analysis technique is employed
to focus on the parameters essential for the system behavior

[49].Our interest is how the nutrient concentration𝑁
0
, nutri-

ent cycling effect 𝜀, sinking velocity V, and the diffusion rate
of phytoplankton 𝑑

𝑃
affect the system. Symmetry breaking

occurred when the stationary homogeneous solution, 𝐸∗ =
(𝑁
∗
, 𝑃
∗
), is linearly unstable to small spatial perturbations in

the presence of diffusion and advection, but that is linearly
stable to perturbations in the absence of the diffusion and
advection terms. To analyze the spatial system and determine
how a small heterogeneous perturbation of the homogeneous
steady state developed within a large time period, the follow-
ing perturbation is considered [41]:

(
𝑁

𝑃
) = (

𝑁
∗

𝑃
∗) + 𝛿(

𝑁
0

𝑃
0

) exp (𝜆𝑡 + 𝑖𝑘𝑧) + 𝑐.𝑐. + 𝑂 (𝜀2) ,

(5)

where 𝜆 is the perturbation growth rate, 𝑘 is the wave-
number, and 𝑖 is an imaginary unit (𝑖2 = −1). Substituting
expression (5) into (2a), (2b) and neglecting all nonlinear
terms in 𝑁 and 𝑃, the following characteristic equation is
obtained for the eigenvalues 𝜆:



𝑎
11
− 𝑘
2
𝑑
𝑁
− 𝜆 𝑎

12

𝑎
21

𝑎
22
− 𝑘
2
𝑑
𝑃
− 𝑖V𝑘 − 𝜆



= 0, (6)
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Figure 2: (a) An illustration of 𝑎
22
> 0 versus 𝜀 and𝑁

0
. The other parameters are given in Table 1. (b) An illustration of the sign of Δ

𝑘
versus

𝑑
𝑃
and𝑁

0
, V = 0.6 (m⋅day−1).

where the elements of the Jacobian determinant of the
nonspatial system are taken at the stationary homogeneous
solution 𝐸∗ = (𝑁∗, 𝑃∗), as follows:

𝐽 = (

−𝑘 −
𝛼𝛽𝐻
𝑁
𝑃
∗

(𝐻
𝑁
+ 𝑁∗)

2

𝑘 (𝑁
∗
− 𝑁
0
)

𝑃∗

𝛽𝐻
𝑁
𝑃
∗

(𝐻
𝑁
+ 𝑁∗)

2

𝑓
𝑃
𝑃
∗

(𝐻
𝑃
+ 𝑃∗)

2

) = (

𝑎
11

𝑎
12

𝑎
21

𝑎
22

) .

(7)

By 𝐽, it is not difficult to find that 𝑎
11
< 0, 𝑎

21
> 0, and

𝑎
22
> 0, when 𝐸∗ is positive equilibrium. When 𝑁∗ < 𝑁

0
,

𝑎
12
< 0. The characteristic equation (8) can be described as

𝜆
2
− (tr
𝑘
− 𝑖V𝑘) 𝜆 + Δ

𝑘
+ 𝑖V𝑘 (𝑘2𝑑

𝑁
− 𝑎
11
) = 0, (8)

where tr
𝑘
= (𝑎
11
+ 𝑎
22
) − (𝑑

𝑁
+ 𝑑
𝑃
)𝑘
2 and Δ

𝑘
= 𝑎
11
𝑎
22
−

𝑎
21
𝑎
12
−𝑘
2
(𝑎
11
𝑑
𝑃
+𝑎
22
𝑑
𝑁
)+𝑘
4
𝑑
𝑁
𝑑
𝑃
. In the previous analysis,

the parameters 𝑁
0
, 𝜀, V, and 𝑑

𝑃
are allowed to vary, but the

other parameters are fixed in Table 1. In Figure 2(a), the value
of 𝑎
22

is given when the parameters 𝑁
0
and 𝜀 are changed.

In addition, in Figure 2(b), in zone III, 𝑎
11
𝑑
𝑃
+ 𝑎
22
𝑑
𝑁
< 0,

so Δ
𝑘
> 0 for 𝑘 > 0; in zone II, 𝑎

11
𝑑
𝑃
+ 𝑎
22
𝑑
𝑁
> 0, but

min(Δ
𝑘
) > 0 for 𝑘 > 0, soΔ

𝑘
> 0; in zone I, 𝑎

11
𝑑
𝑃
+𝑎
22
𝑑
𝑁
> 0,

and min(Δ
𝑘
) < 0 for 𝑘 > 0. In zone I, to determine the sign

ofΔ
𝑘
for different values of𝑁

0
and 𝑑
𝑃
, we need to analyzeΔ

𝑘

further because of the min(Δ
𝑘
) < 0 for 𝑘 > 0.

From expression (8), we can obtain

𝜆 =
1

2
[tr
𝑘
− 𝑖V𝑘 ± √Φ + 𝑖Θ] , (9)

whereΦ = tr2
𝑘
−V2𝑘2−4Δ

𝑘
andΘ = −2(tr

𝑘
+2(𝑘
2
𝑑
𝑁
−𝑎
11
))V𝑘.

To analyze the spatial system, the real and imaginary parts
of the eigenvalues must be obtained, which are described as
follows:

Re (𝜆) = 1

2
[tr
𝑘
+ 𝑗√

1

2
(√Φ2 + Θ2 + Φ)] , (10a)

Im (𝜆) =
1

2
[−V𝑘 + 𝑗 sign (Φ)√1

2
(√Φ2 + Θ2 − Φ)] ,

(10b)

where 𝑗 = ±1. The solution is stable when the real parts of all
eigenvalues are less than zero; that is, Re(𝜆) < 0. The solution
is unstable when one of the real parts with a finite wave
number 𝑘 > 0 is greater than zero at least. The critical point
is got when Re(𝜆) = 0. However, the analytical expression
for the critical point is difficult to be obtained. Indeed, we
only need to consider the maximum value of Re(𝜆).Thus, the
critical condition can be obtained using Re(𝜆) = 0, as follows:

V2 =
tr2
𝑘
Δ
𝑘

(𝑘2𝑑
𝑁
− 𝑎
11
) (𝑎
22
− 𝑑
𝑃
𝑘2) 𝑘2

. (11)

In expression (11), the solution is unstable if the right-
hand side of the equal sign is always less than zero. Otherwise,
a necessary condition for expression (11) to hold is that
Δ
𝑘
(𝑎
22
− 𝑑
𝑃
𝑘
2
) > 0. We consider the following case: the

nutrient concentration 𝑁
0
is allowed to vary, but the values

of other parameters are in Table 1. Then, the sinking velocity
V is a function related to the nutrient concentration 𝑁

0
and

the wave number 𝑘. By Figure 2(b), if the diffusion rate of
phytoplankton, 𝑑

𝑃
, is larger than 0.2 cm2⋅s−1, then Δ

𝑘
> 0.

Thus, the right-hand side of expression (11) is positive within
0 < 𝑘 < √𝑎

22
/𝑑
𝑃
, and the sinking velocity V has a minimum

V
𝑐
at the point 𝑘 = 𝑘

𝑐
. Figure 3(a) confirms expression (11).

In Figure 3(a), the neutral curve is convex with a unique
minimum in the range 0 < 𝑘 < √𝑎

22
/𝑑
𝑃
.



6 Abstract and Applied Analysis

30

20

10

0

0 0.2 0.4 0.6

k

�

N0 = 0.7

N0 = 0.6

N0 = 0.5

(a)

0

0

0

0

0.5

15

30

45

1

1 2

N0

I
II

III

�

200

400

(b)

0

0.0

0.25 0.50 0.75

−0.2

−0.1

Re(𝜆)
Im(𝜆)

(c)

Figure 3: (a) A typical neutral curve V, defined using expression (11) for different values of𝑁
0
. (b) Numerical calculation of the stability on

(V, 𝑁
0
) space. (c) An illustration of the dispersion relation (Re(𝜆), Im(𝜆) versus the wave number 𝑘), where 𝑑

𝑃
= 0.3 (m2⋅day−1) and the

other parameters are given in Table 1. Blue line: V = 0.6 > V
𝑐
≈ 0.358 (m⋅day−1); red line: V = V

𝑐
≈ 0.358 (m⋅day−1); green line: V = 0.1 < V

𝑐
≈

0.358 (m⋅day−1).

The effects of sinking velocity V and nutrient concen-
tration 𝑁

0
on the behavior of system (2a), (2b) are shown

in Figure 3(b), which shows the transition from a no
phytoplankton state through a banded phytoplankton state
to a homogeneous phytoplankton state when the nutrient
concentration𝑁

0
increases and the sinking velocity V is fixed.

However, when the nutrient concentration 𝑁
0
is fixed, a

homogeneous phytoplankton state becomes a banded phyto-
plankton state with the increase of sinking velocity V, that is, a
banded self-organized spatial pattern emerges because of the
sinking velocity V.

In zone I of Figure 3(b), there is only a trivial steady
state, that is, no phytoplankton. In zone II, the steady state
is stable, while the steady state becomes unstable in zone III

because of the effect of sinking velocity of phytoplankton,
which is further confirmed by Figure 3(c), where V

𝑐
≈

0.358 (m⋅day−1) and 𝑘
𝑐
≈ 0.283. It is obvious that the

maximal real part of 𝜆 is larger than zero when the sinking
velocity of phytoplankton is larger than the critical value of
the sinking velocity of phytoplankton; that is, the instability
of the steady state will occur. The imaginary value of 𝜆 is
not equal to zero. In Figure 3(b), the red line represents
the critical value of the sinking velocity of phytoplankton.
The critical value of the sinking velocity of phytoplankton
increases with the increase of nutrient concentration 𝑁

0
;

that is, when the nutrient concentration 𝑁
0
increases, the

sinking velocity V cannot affect the stability of the stable
state.
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3.3. Effects of the Parameters on the Wavelength of the
Banded Pattern. Section 3.2 has described how a banded
phytoplankton state emerges when the sinking velocity V
has reached a certain critical value. The determination of
the wavelength of the banded pattern is a key issue. In
particular, how do the parameters, such as the nutrient
concentration𝑁

0
, and the sinking velocity V, affect the change

of wavelength? The relationships among the wavelength, the
nutrient concentration 𝑁

0
, and the sinking velocity V are

shown in Figure 4, which shows that thewavelength increases
when the sinking velocity V exceeds the critical value V

𝑐
, but

thewavelength decreaseswhen the nutrient concentration𝑁
0

increases.

3.4. The Simulation. In the previous sections, we discussed
the effects of parameters, including the nutrient concentra-
tion 𝑁

0
and the sinking velocity V, on the system (2a), (2b).

In this section, we discuss the numerical solution of the
system (2a), (2b) in one-dimensional and two-dimensional
spaces. In a one-dimensional space, a periodic boundary
condition is employed, and system (2a), (2b) is solved on a
rectangular spatial grid of 1 × 200 points. In two-dimensional
space, system (2a), (2b) is studied in a horizontal (x, z)-
plane with zero-flux boundary conditions (left and right)
and periodic boundary conditions (top and bottom), which
is solved on a rectangular spatial grid of 100 × 300 points.
The initial conditions comprise a homogeneous state which
is randomly perturbed. Furthermore, we assume that the
diffusion rate of phytoplankton is larger or smaller than
that of nutrients because of the viscosity and living of
phytoplankton. Of course, it is also feasible that the diffusion
rate of phytoplankton is equal to that of nutrients.

Firstly, the one-dimensional solution of system (2a), (2b)
is shown in Figure 5. In Figure 5, we consider a vertical
water column, where the depth of the water column is 120m
and the time is 600 days. We found that oscillations did
occur; that is, the stable state became unstable because of
spatial effects. Figure 6 shows the analysis of relationship
between nutrients and phytoplankton further. In Figure 6(a),
the relationship between the spatial distributions of nutrients
and phytoplankton is given at the 600th day, which shows
that nutrient concentration reaches the minimal value when
the density of phytoplankton reaches the maximal value. The
nutrient concentration affects the density of phytoplankton,
and the density of phytoplankton increases with the increases
of nutrient concentration. Thus, eutrophication may explain
phytoplankton blooms. Furthermore, the effects of phyto-
plankton sinking on the relative maxima for nutrients and
phytoplankton are shown in Figure 6(b). The relative max-
ima of phytoplankton increase with the increase of sinking
velocity, whereas the relative maxima of nutrients decrease
with the increase of sinking velocity. Therefore, the sinking
flux has an important role in the increase of the density of
phytoplankton.

To further analyze the dynamic behavior of system
(2a), (2b), we consider the solution of system (2a), (2b)
in two-dimensional space. The band patterns are observed
in the field, as shown in Figure 7. Figures 7(a), 7(b), and
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Figure 4: An illustration of the variation in the pattern wavelength
with V and𝑁
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, where the symbol (◼) represents the critical value of

the sinking velocity V, 𝑑
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= 0.3 (m2⋅day−1), and the other parameters

are given in Table 1.
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Figure 5: Model simulations based on depth and time: (a) nutrient
density (unit g⋅m−3); (b) phytoplankton density (unit g⋅m−3), where
𝑑
𝑃
= 1.2 (m2⋅day−1), V = 1.2 (m⋅day−1), and the other parameters

are given in Table 1.
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Figure 6: (a) Spatial distributions of the nutrient density and phytoplankton density on the 600th day, where the left vertical axis denotes the
nutrient density, the right vertical axis denotes the phytoplankton density, 𝑑

𝑃
= 0.3 (m2⋅day−1), V = 1.2 (m⋅day−1), and the other parameters

are given in Table 1. (b) Relationship between nutrient density, phytoplankton density, and the sinking velocity V, where the right vertical axis
denotes the maximal nutrient density, and the left vertical axis denotes the maximal phytoplankton density. The purple field shows that the
equilibrium state is stable, where𝑁
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Figure 7: Simulation in two-dimensional space. The figures show the density levels of the phytoplankton on the 1000th day, where the width
is 100m and the depth is 300m. (a) 𝑑

𝑃
= 0.3 (m2⋅day−1) and V = 0.9 (m⋅day−1). (b) 𝑑
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= 1.038 (m2⋅day−1) and V = 1.2 (m⋅day−1). (c)

𝑑
𝑃
= 1.038 (m2⋅day−1) and V = 0.9 + 0.25 ∗ sin(4 ∗ 𝜋 ∗ 𝑥/100). The other parameters are given in Table 1.

7(c) show the patterns of phytoplankton at the 1000th day
in the two-dimensional space. As discussed in Section 3.2,
our numerical results confirm the predictions of the linear
analysis that a band pattern of phytoplankton occurs if
the nutrient concentration 𝑁

0
and the sinking velocity of

phytoplankton satisfy some conditions. Figure 7(a) shows the
emergence of parallel and crossed patterns, which indicate
that band patterns with different speeds coexist in the system

(2a), (2b) where the wavelength of patterns is different. By
contrast, the patterns in Figure 7(b) are much more regular
and almost parallel. In the real world, the sinking velocity of
phytoplankton varies at different spatial points. Thus, to add
more realism to the system, we forced the model to undergo
periodic changes in the sinking velocity of phytoplankton,
that is, V = V

∗
+𝐴× sin(4𝜋×𝑥/𝐿), where 𝐿 denotes the width

of water column. The results are shown in Figure 7(c), where
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the values of the parameters are the same as those used in
Figures 7(a) and 7(b), except the sinking velocity V. However,
it is obvious that the patterns in Figure 7(c) are very different
from those in Figures 7(a) and 7(b). Thus, the sinking flux of
phytoplankton has an important role in the system.

4. Discussion and Conclusion

Banded patterns have been described in several resource-
limited ecosystems around the world. In the real world,
numerous population patterns have been observed, including
banded vegetation, patches, and spiral waves, which can be
regular or irregular. Physical factors may cause these types
of pattern, such as wind, water flow, and turbulence. Internal
factors in populations also force these patterns to occur.

In the present study, we used a nutrient-plankton model
with both diffusion and advection to investigate the interac-
tion between nutrient and plankton. Our model was simple
because it was only an abstraction of real-world phenom-
ena but the model reproduced many features of real-world
phenomena. Our explanation focuses on a predator-prey
interaction between phytoplankton and their nutrient source.
In particular, how do the sinking of phytoplankton and
the input of nutrients affect the interaction? Our analytical
results showed that the homogeneous steady state became
unstable because of the sinking of phytoplankton.The critical
value of the sinking phytoplankton led to an instability
in the homogeneous steady state, which depended on the
input of nutrients. Our numerical results showed that the
homogeneous steady statewas unstable against small spatially
heterogeneous perturbations.

Figure 1(b) shows that when the nutrient concentration
𝑁
0
increased beyond a critical value, the increase in the

concentration of phytoplankton was stable; that is, the con-
centration of phytoplankton tended toward a certain stable
state. Spatial effects did not influence the stable state when
the sinking flux was below a critical value, as shown in
Figure 3(b). Thus, an abundance of nutrient inputs flowed
into the system, which led to the high-level reproduction of
phytoplankton, which may trigger phytoplankton blooms.

Figures 5 and 7 show that oscillation could occur because
of the sinking flux. In particular, Figure 5 shows that both
spatial and temporal oscillations arose in the nutrients
and the phytoplankton. The sinking of phytoplankton can
also lead to the increase in the phytoplankton density and
wavelength when the input of nutrients is fixed. It is possible
that the phytoplankton sinks from the surface of water until
it reaches a depth where the nutrient conditions are suitable
for growth. Figure 6(a) shows that the relationship between
phytoplankton and nutrients is mutually constrained. Thus,
abundant nutrition leads to the mass propagation of phy-
toplankton, which consumes large amounts of nutrient,
thereby depleting the nutrient levels. Thus, the sinking of
phytoplankton and the input of nutrients can change the
spatial distribution of phytoplankton under these conditions,
which may promote the increase of phytoplankton density.
In particular, eutrophication may promote phytoplankton
blooms.
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[3] M. Sandulescu, C. López, and U. Feudel, “Plankton blooms in
vortices: the role of biological and hydrodynamic timescales,”
Nonlinear Processes in Geophysics, vol. 14, no. 4, pp. 443–454,
2007.

[4] C. J. Dai, M. Zhao, and L. S. Chen, “Bifurcations and periodic
solutions for an algae-fish semicontinuous system,”Abstract and
Applied Analysis, vol. 2013, Article ID 619721, 11 pages, 2013.

[5] S. Abbas, M. Banerjee, and N. Hungerbühler, “Existence,
uniqueness and stability analysis of allelopathic stimulatory
phytoplankton model,” Journal of Mathematical Analysis and
Applications, vol. 367, no. 1, pp. 249–259, 2010.

[6] J. F. Zhang and D. Zhang, “Hopf-Pitchfork bifurcation in a
phytoplankton-zooplankton model with delays,” Abstract and
Applied Analysis, vol. 2013, Article ID 340174, 5 pages, 2013.

[7] J. E. Truscott and J. Brindley, “Ocean plankton populations as
excitable media,” Bulletin of Mathematical Biology, vol. 56, no.
5, pp. 981–998, 1994.

[8] J. H. Luo, “Phytoplankton-zooplankton dynamics in periodic
environments taking into account eutrophication,”Mathemati-
cal Biosciences, vol. 245, pp. 126–136, 2013.

[9] N. El Saadi and A. Bah, “Numerical treatment of a nonlocal
model for phytoplankton aggregation,” Applied Mathematics
and Computation, vol. 218, no. 17, pp. 8279–8287, 2012.

[10] M. Banerjee and E. Venturino, “A phytoplankton-toxic
phytoplankton-zooplankton model,” Ecological Complexity,
vol. 8, no. 3, pp. 239–248, 2011.

[11] E. E. Holmes, M. A. Lewis, J. E. Banks, and R. R. Veit,
“Partial differential equations in ecology: spatial interactions
andpopulation dynamics,”Ecology, vol. 75, no. 1, pp. 17–29, 1994.

[12] C. A. Klausmeier, “Regular and irregular patterns in semiarid
vegetation,” Science, vol. 284, no. 5421, pp. 1826–1828, 1999.

[13] A.D. Barton, S.Dutkiewicz, G. Flierl, J. Bragg, andM. J. Follows,
“Patterns of diversity in marine phytoplankton,” Science, vol.
327, no. 5972, pp. 1509–1511, 2010.

[14] H. Malchow, “Spatio-temporal pattern formation in nonlinear
non-equilibrium plankton dynamics,” Proceedings of the Royal
Society B, vol. 251, no. 1331, pp. 103–109, 1993.



10 Abstract and Applied Analysis

[15] D. A. Bella, “Simulating the effect of sinking and vertical mixing
on algal population dynamics,” Journal of the Water Pollution
Control Federation, vol. 42, no. 5, pp. 140–152, 1970.

[16] O. Kerimoglu, D. Straile, and F. Peeters, “Role of phytoplankton
cell size on the competition for nutrients and light in incom-
pletely mixed systems,” Journal of Theoretical Biology, vol. 300,
pp. 330–343, 2012.

[17] R. K. Upadhyay, N. Kumari, and V. Rai, “Wave of chaos in a
diffusive system: generating realistic patterns of patchiness in
plankton-fish dynamics,” Chaos, Solitons and Fractals, vol. 40,
no. 1, pp. 262–276, 2009.

[18] J. Huisman, N. N. Pham Thi, D. M. Karl, and B. Sommei-
jer, “Reduced mixing generates oscillations and chaos in the
oceanic deep chlorophyll maximum,”Nature, vol. 439, no. 7074,
pp. 322–325, 2006.

[19] N. Shigesada andA.Okubo, “Effects of competition and shading
in planktonic communities,” Journal of Mathematical Biology,
vol. 12, no. 3, pp. 311–326, 1981.

[20] D. C. Speirs and W. S. C. Gurney, “Population persistence in
rivers and estuaries,” Ecology, vol. 82, no. 5, pp. 1219–1237, 2001.

[21] A. V. Straube and A. Pikovsky, “Mixing-induced global modes
in open active flow,” Physical Review Letters, vol. 99, no. 18,
Article ID 184503, 2007.

[22] J. P. Mellard, K. Yoshiyama, E. Litchman, and C. A. Klausmeier,
“The vertical distribution of phytoplankton in stratified water
columns,” Journal of Theoretical Biology, vol. 269, no. 1, pp. 16–
30, 2011.

[23] A. B. Ryabov, L. Rudolf, and B. Blasius, “Vertical distribution
and composition of phytoplankton under the influence of an
upper mixed layer,” Journal of Theoretical Biology, vol. 263, no.
1, pp. 120–133, 2010.

[24] J. van de Koppel, M. Rietkerk, N. Dankers, and P. M. J. Herman,
“Scale-dependent feedback and regular spatial patterns in
youngmussel beds,”TheAmerican Naturalist, vol. 165, no. 3, pp.
66–77, 2005.

[25] W.M.Wang, Z. G. Guo, R. K. Upadhyay, and Y. Z. Lin, “Pattern
formation in a cross-diffusive Holling-Tanner model,” Discrete
Dynamics in Nature and Society, vol. 2012, Article ID 828219, 12
pages, 2012.

[26] M. P. Hassell, H. N. Comins, and R. M. May, “Spatial structure
and chaos in insect population dynamics,” Nature, vol. 353, no.
6341, pp. 255–258, 1991.

[27] R. K. Upadhyay, N. K. Thakur, and V. Rai, “Diffusion-
driven instabilities and spatio-temporal patterns in an aquatic
predator-prey system with Beddington-Deangelis type func-
tional response,” International Journal of Bifurcation and Chaos,
vol. 21, no. 3, pp. 663–684, 2011.

[28] J. von Hardenberg, E. Meron, M. Shachak, and Y. Zarmi,
“Diversity of vegetation patterns and desertification,” Physical
Review Letters, vol. 87, no. 19, Article ID 198101, 4 pages, 2001.

[29] M. Rietkerk, S. C. Dekker, P. C. De Ruiter, and J. Van De
Koppel, “Self-organized patchiness and catastrophic shifts in
ecosystems,” Science, vol. 305, no. 5692, pp. 1926–1929, 2004.

[30] A. I. Borthagaray,M. A. Fuentes, and P. A.Marquet, “Vegetation
pattern formation in a fog-dependent ecosystem,” Journal of
Theoretical Biology, vol. 265, no. 1, pp. 18–26, 2010.

[31] A. M. Turing, “The chemical basis of morphogenesis,” Philo-
sophical Transactions of the Royal Society B, vol. 237, pp. 37–72,
1952.

[32] R. Reigada, R. M. Hillary, M. A. Bees, J. M. Sancho, and
F. Sagués, “Plankton blooms induced by turbulent flows,”

Proceedings of the Royal Society B, vol. 270, no. 1517, pp. 875–880,
2003.

[33] H. Serizawa, T. Amemiya, and K. Itoh, “Patchiness in aminimal
nutrient—phytoplankton model,” Journal of Biosciences, vol. 33,
no. 3, pp. 391–403, 2008.

[34] R.-H. Wang, Q.-X. Liu, G.-Q. Sun, Z. Jin, and J. Van De Koppel,
“Nonlinear dynamic and pattern bifurcations in a model for
spatial patterns in young mussel beds,” Journal of the Royal
Society Interface, vol. 6, no. 37, pp. 705–718, 2009.

[35] Q. X. Liu, E. J. Weerman, P. M. J. Herman et al., “Alternative
mechanisms alter the emergent properties of self-organization
in mussel beds,” Proceedings of the Royal Society B, vol. 279, no.
1739, pp. 2744–2753, 2012.

[36] D. L. de Angelis, S. M. Bartell, and A. L. Brenkert, “Effects
of nutrient recycling and food-chain length on resilience,”
American Naturalist, vol. 134, pp. 778–805, 1989.

[37] A. M. Edwards, “Adding detritus to a nutrient-phytoplankton-
zooplankton model: a dynamical-systems approach,” Journal of
Plankton Research, vol. 23, no. 4, pp. 389–413, 2001.

[38] G. L. Bowie and W. B. Mills, Rates, Constants, and Kinetics
Formulations in Surface Water Quality Modeling, US Enviton-
mental Protection Agency, Athens, Greece, 2nd edition, 1985.

[39] M. Ramin, G. Perhar, Y. Shimoda, and G. B. Arhonditsis,
“Examination of the effects of nutrient regeneration mech-
anisms on plankton dynamics using aquatic biogeochemical
modeling,” Ecological Modelling, vol. 240, pp. 139–155, 2012.

[40] A. Huppert, B. Blasius, and L. Stone, “Amodel of phytoplankton
blooms,” American Naturalist, vol. 159, no. 2, pp. 156–171, 2002.
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Based on Mawhin’s coincidence degree theory, sufficient conditions are obtained for the existence of at least two positive periodic
solutions for a plant-hare model with toxin-determined functional response (nonmonotone). Some new technique is used in this
paper, because standard arguments in the literature are not applicable.

1. Introduction

In the past few decades, the classical predator-prey model
has been well studied. Such classical predator-prey model
has, however, been questioned by several biologists (e.g., see
[1, 2]). Based on experimental data, Holling [3] has proposed
several types of monotone functional responses 𝑔(𝑥) =
𝑐(𝑡)𝑥, 𝑐(𝑡)𝑥/(𝑚+𝑥), 𝑐(𝑡)𝑥

2
/(𝑚+𝑥

2
), 𝑐(𝑡)𝑥/(𝑚+𝑎𝑥+𝑥

2
) for

these and othermodels. However, this will not be appropriate
if we explore the impact of plant toxicity on the dynamics
of plant-hare interactions [4]. Recently, Gao and Xia [5]
considered a nonautonomous plant-hare dynamical system
with a toxin-determined functional response given by

𝑁(𝑡) = 𝑟 (𝑡)𝑁 (𝑡) [1 −
𝑁 (𝑡)

𝐾
] − 𝐶 (𝑁 (𝑡)) 𝑃 (𝑡) ,

̇𝑃 (𝑡) = 𝐵 (𝑡) 𝐶 (𝑁 (𝑡)) 𝑃 (𝑡) − 𝑑 (𝑡) 𝑃 (𝑡) ,

(1)

where

𝐶 (𝑁 (𝑡)) = 𝑓 (𝑁 (𝑡)) [1 −
𝑓 (𝑁 (𝑡))

4𝐺
] ,

𝑓 (𝑁 (𝑡)) =
𝑒𝛿𝑁 (𝑡)

1 + ℎ𝑒𝛿𝑁 (𝑡)
.

(2)

Here, 𝑁(𝑡) denotes the density of plant at time 𝑡, 𝑃(𝑡)
denotes the herbivore biomass at time 𝑡, 𝑟(𝑡) is the plant

intrinsic growth rate at time 𝑡, 𝑑(𝑡) is the per capita rate of
herbivore death unrelated to plant toxicity at time 𝑡,𝐵(𝑡) is the
conversion rate at time 𝑡, 𝑒 is the encounter rate per unit plant,
𝛿 is the fraction of food items encountered that the herbivore
ingests, 𝐾 is the carrying capacity of plant, 𝐺 measures the
toxicity level, and ℎ is the time for handing one unit of plant.
The functions 𝑟(𝑡),𝑑(𝑡), and𝐵(𝑡) are continuous, positive, and
periodic with period 𝜔, and 𝑒, 𝛿,𝐾, 𝐺, and ℎ are positive real
constants. For any continuous 𝜔-periodic function 𝐹, we let

𝐹 =
1

𝜔
∫

𝜔

0

𝐹 (𝑡) d𝑡. (3)

The topological degree of amapping has long been known
to be a useful tool for establishing the existence of fixed points
of nonlinear mappings. In particular, a powerful tool to study
the existence of periodic solution of nonlinear differential
equations is the coincidence degree theory (see [6]). Many
papers study the existence of periodic solutions of biological
systems by employing the topological degree theory; see,
for example, [7–12] and references cited therein. However,
most of them investigated the classical predator-prey model
or the models with Holling functional responses; see [7–
10]. There is no paper studying the functional responses in
model (1) except for [5]. Gao and Xia [5] have obtained
some sufficient conditions for the existence of at least one
positive periodic solution for the system (1). Unlike the
traditional Holling Type II functional response, systems with
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nonmonotone functional responses are capable of supporting
multiple interior equilibria and bistable attractors. Thus, for
nonautonomous system (1), it is possible to find two periodic
solutions of (1). However, to date there is no work done on
the existence of multiple periodic solutions of (1). Therefore,
in this paper we will establish the existence of at least two
positive periodic solutions of (1). We will be using the con-
tinuation theorem of Mawhin’s coincidence degree theory; to
this end some novel estimation technique will be employed
to obtain a priori bounds of unknown solutions to some
operator equation, as the standard estimation techniques
used in the literature are not applicable to the system (1) due
to the term 𝐶(𝑁(𝑡)). We will elaborate this in Remark 3.

2. Existence of Multiple Positive
Periodic Solutions

In this section, we will establish sufficient conditions for the
existence of at least two positive periodic solutions of (1).
We will first summarize in the following a few concepts and
results from [6] that will be required later.

Let 𝑋,𝑌 be normed vector spaces, 𝐿 : Dom𝐿 ⊂ 𝑋 → 𝑌

a linear mapping, and 𝑁 : 𝑋 → 𝑌 a continuous mapping.
The mapping 𝐿 is called a Fredholm mapping of index zero if
dimKer𝐿 = codim Im 𝐿 < +∞ and Im 𝐿 is closed in 𝑌. If 𝐿
is a Fredholm mapping of index zero, there exist continuous
projectors 𝑃 : 𝑋 → 𝑋 and 𝑄 : 𝑌 → 𝑌 such that
Im𝑃 = Ker 𝐿 and Ker𝑄 = Im 𝐿 = Im(𝐼 − 𝑄). It follows
that 𝐿 | dom 𝐿 ∩ Ker𝑃 : (𝐼 − 𝑃)𝑋 → Im 𝐿 is invertible. We
denote the inverse of that map by𝐾

𝑝
. IfΩ is an open bounded

subset of 𝑋, then the mapping 𝑁 will be called 𝐿-compact
on Ω if 𝑄𝑁(Ω) is bounded and 𝐾

𝑝
(𝐼 − 𝑄)𝑁 : Ω → 𝑋 is

compact. Since Im𝑄 is isomorphic to Ker 𝐿, there exists an
isomorphism 𝐽 : Im𝑄 → Ker 𝐿.

Lemma 1 (see [6]). Let Ω ⊂ 𝑋 be an open bounded set. Let 𝐿
be a Fredholm mapping of index zero and𝑁 𝐿-compact onΩ.
Assume

(a) for each 𝜆 ∈ (0, 1), 𝑥 ∈ 𝜕Ω ∩ Dom𝐿, 𝐿𝑥 ̸= 𝜆𝑁𝑥;
(b) for each 𝑥 ∈ 𝜕Ω ∩ Ker 𝐿, 𝑄𝑁𝑥 ̸= 0;
(c) deg{𝐽𝑄𝑁,Ω ∩ Ker 𝐿, 0} ̸= 0.

Then 𝐿𝑥 = 𝑁𝑥 has at least one solution inΩ ∩ Dom𝐿.

To proceed, we note that (1) is equivalent to

𝑁(𝑡) = 𝑁 (𝑡) [𝑟 (𝑡) (1 −
𝑁 (𝑡)

𝐾
)

−
4𝐺𝑒𝛿𝑃 (𝑡) + (4𝐺ℎ − 1) 𝑒

2
𝛿
2
𝑁(𝑡) 𝑃 (𝑡)

4𝐺(1 + ℎ𝑒𝛿𝑁(𝑡))
2

] ,

̇𝑃 (𝑡) = 𝑃 (𝑡) [
4𝐺𝑒𝛿𝐵 (𝑡)𝑁 (𝑡) + (4𝐺ℎ − 1) 𝑒

2
𝛿
2
𝐵 (𝑡)𝑁

2
(𝑡)

4𝐺(1 + ℎ𝑒𝛿𝑁(𝑡))
2

−𝑑 (𝑡) ] .

(4)

Throughout, we assume the following:

(𝐴
1
) 1/4ℎ < 𝐺 < 1/3ℎ;

(𝐴
2
) 4ℎ𝑑 exp(2𝑟𝜔) < 𝐵 < 4𝐺𝑑ℎ2/(4𝐺ℎ − 1).

We further introduce six positive numbers which will be
used later as follows:

ℎ
±
=

(𝑒𝛿𝐵 exp (−2𝑟𝜔) − 2ℎ𝑒𝛿𝑑) ± √Δ 1
2𝑑ℎ2𝑒2𝛿2

,

𝑙
±
=

[4𝐺ℎ
2
𝑒𝛿𝐵 exp (2𝑟𝜔)− 2ℎ𝑒𝛿 (4𝐺ℎ2𝑑 − (4𝐺ℎ − 1) 𝐵)] ± √Δ

2

2ℎ2𝑒2𝛿2 [4𝐺ℎ2𝑑 − (4𝐺ℎ − 1) 𝐵]

,

𝑢
±
=

(4𝐺𝑒𝛿𝐵 − 8𝐺ℎ𝑒𝛿𝑑) ± √Δ
3

2 [4𝐺𝑑ℎ2𝑒2𝛿2 − (4𝐺ℎ − 1) 𝑒
2𝛿2𝐵]

,

(5)

where

Δ
1
= [𝑒𝛿𝐵 exp(−2𝑟𝜔) − 2ℎ𝑒𝛿𝑑]

2

− 4𝑑
2

ℎ
2
𝑒
2
𝛿
2
,

Δ
2
= [4𝐺ℎ

2
𝑒𝛿𝐵 exp (2𝑟𝜔) − 2ℎ𝑒𝛿 (4𝐺ℎ2𝑑 − (4𝐺ℎ − 1) 𝐵)]

2

− 4ℎ
2
𝑒
2
𝛿
2
[4𝐺ℎ
2
𝑑 − (4𝐺ℎ − 1) 𝐵]

2

,

Δ
3
= (4𝐺𝑒𝛿𝐵 − 8𝐺ℎ𝑒𝛿𝑑)

2

− 16𝐺𝑑 [4𝐺𝑑ℎ
2
𝑒
2
𝛿
2
− (4𝐺ℎ − 1) 𝑒

2
𝛿
2
𝐵] .

(6)

Under assumptions (𝐴
1
) and (𝐴

2
), it is not difficult to show

that

𝑙
−
< 𝑢
−
< ℎ
−
< ℎ
+
< 𝑢
+
< 𝑙
+
. (7)

Theorem 2. In addition to (𝐴
1
) and (𝐴

2
), suppose that

(𝐴
3
) 1 − (1/𝐾) exp(ln 𝑙

+
+ 2𝑟𝜔) > 0.

Then system (4) has at least two positive 𝜔-periodic solutions.

Proof. Since we are concerned with positive solutions of
system (4), we make use of the change of variables

𝑁(𝑡) = exp (𝑢
1
(𝑡)) , 𝑃 (𝑡) = exp (𝑢

2
(𝑡)) . (8)

Then, system (4) can be rewritten as

̇𝑢1 (𝑡) = 𝑟 (𝑡) −
𝑟 (𝑡)

𝐾
exp (𝑢1 (𝑡))

−
4𝐺𝑒𝛿 exp (𝑢2 (𝑡)) + (4𝐺ℎ − 1) 𝑒2𝛿2 exp (𝑢1 (𝑡) + 𝑢2 (𝑡))

4𝐺(1 + ℎ𝑒𝛿 exp(𝑢1(𝑡)))
2

,

̇𝑢2 (𝑡) = −𝑑 (𝑡)

+
4𝐺𝑒𝛿𝐵 (𝑡) exp (𝑢1 (𝑡)) + (4𝐺ℎ − 1) 𝑒2𝛿2𝐵 (𝑡) exp (2𝑢1 (𝑡))

4𝐺(1 + ℎ𝑒𝛿 exp(𝑢1(𝑡)))
2

.

(9)
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Take

𝑋 = 𝑌 = {𝑥 = (𝑢
1
, 𝑢
2
)
𝑇
∈ 𝐶 (R,R

2
) | 𝑥 (𝑡 + 𝜔) = 𝑥 (𝑡)}

(10)

and define

‖𝑥‖ = max
𝑡∈[0,𝜔]

𝑢1 (𝑡)
 + max
𝑡∈[0,𝜔]

𝑢2 (𝑡)
 ,

𝑥 = (𝑢
1
, 𝑢
2
)
𝑇
∈ 𝑋 or 𝑌.

(11)

Here | ⋅ | denotes the Euclidean norm. Then 𝑋 and 𝑌 are
Banach spaces with the norm ‖ ⋅ ‖. For any 𝑥 = (𝑢

1
, 𝑢
2
)
𝑇
∈ 𝑋,

by means of the periodicity assumption, we can easily check
that

𝑟 (𝑡) −
𝑟 (𝑡)

𝐾
exp (𝑢1 (𝑡))

−
4𝐺𝑒𝛿 exp (𝑢2 (𝑡)) + (4𝐺ℎ − 1) 𝑒2𝛿2 exp (𝑢1 (𝑡) + 𝑢2 (𝑡))

4𝐺(1 + ℎ𝑒𝛿 exp(𝑢1(𝑡)))
2

:= 𝑓1 (𝑡) ∈ 𝐶(R,R) ,

−𝑑 (𝑡) +
4𝐺𝑒𝛿𝐵 (𝑡) exp (𝑢1 (𝑡)) + (4𝐺ℎ − 1) 𝑒2𝛿2𝐵 (𝑡) exp (2𝑢1 (𝑡))

4𝐺(1 + ℎ𝑒𝛿 exp(𝑢1(𝑡)))
2

:= 𝑓2 (𝑡) ∈ 𝐶(R,R)

(12)

are 𝜔-periodic.
Set

𝐿 : Dom𝐿 ∩ 𝑋, 𝐿(𝑢
1
(𝑡), 𝑢
2
(𝑡))
𝑇
= (

d𝑢
1
(𝑡)

d𝑡
,
d𝑢
2
(𝑡)

d𝑡
)

𝑇

,

(13)

where Dom𝐿 = {(𝑢
1
(𝑡), 𝑢
2
(𝑡))
𝑇
∈ 𝐶
1
(R,R2)}. Further, 𝑁 :

𝑋 → 𝑋 is defined by

𝑁(
𝑢
1

𝑢
2

) = (
𝑓
1
(𝑡)

𝑓
2
(𝑡)
) . (14)

Define

𝑃(
𝑢
1

𝑢
2

) = (
𝑢
1

𝑢
2

)

= (

1

𝜔
∫
𝜔

0
𝑢
1
(𝑡) d𝑡

1

𝜔
∫
𝜔

0
𝑢
2 (𝑡) d𝑡

) , (
𝑢
1

𝑢
2

) ∈ 𝑋 = 𝑌.

(15)

It is not difficult to show that

Ker 𝐿 = {𝑥 | 𝑥 ∈ 𝑋, 𝑥 = 𝐶
0
, 𝐶
0
∈ R
2
} ,

Im 𝐿 = {𝑦 | 𝑦 ∈ 𝑌, ∫
𝜔

0

𝑦 (𝑡) d𝑡 = 0} is closed in 𝑌,

dimKer𝐿 = codimIm𝐿 = 2,

(16)

and 𝑃 and 𝑄 are continuous projectors such that

Im𝑃 = Ker 𝐿, Ker𝑄 = Im 𝐿 = Im (𝐼 − 𝑄) . (17)

It follows that 𝐿 is a Fredholm mapping of index zero.
Furthermore, the generalized inverse (to 𝐿) 𝐾

𝑝
: Im 𝐿 →

Dom𝐿 ∩ Ker𝑃 exists and is given by

𝐾
𝑝
(𝑦) = ∫

𝑡

0

𝑦 (𝑠) d𝑠 − 1
𝜔
∫

𝜔

0

∫

𝑡

0

𝑦 (𝑠) d𝑠 d𝑡. (18)

Then 𝑄𝑁 : 𝑋 → 𝑌 and 𝐾
𝑝
(𝐼 − 𝑄)𝑁 : 𝑋 → 𝑋 are,

respectively, defined by

𝑄𝑁𝑥 = (
1

𝜔
∫

𝜔

0

𝑓
1
(𝑡)d𝑡, 1

𝜔
∫

𝜔

0

𝑓
2
(𝑡)d𝑡)

𝑇

,

𝐾
𝑝
(𝐼 − 𝑄)𝑁𝑥

= ∫

𝑡

0

𝑁𝑥 (𝑠) d𝑠

−
1

𝜔
∫

𝜔

0

∫

𝑡

0

𝑁𝑥 (𝑠) d𝑠 d𝑡 − ( 𝑡
𝜔
−
1

2
)∫

𝜔

0

𝑁𝑥 (𝑠) d𝑠.

(19)

Clearly, 𝑄𝑁 and 𝐾
𝑝
(𝐼 − 𝑄)𝑁 are continuous. By using

the Arzelà-Ascoli Theorem, it is not difficult to prove that
𝐾
𝑝
(𝐼 − 𝑄)𝑁(Ω) is compact for any open bounded setΩ ⊂ 𝑋.

Moreover,𝑄𝑁(Ω) is bounded.Therefore,𝑁 is 𝐿-compact on
Ω for any open bounded set Ω ⊂ 𝑋.

Now, we will search for two appropriate open bounded
subsets in order to apply the continuation theorem.

Corresponding to the operator equation 𝐿𝑥 = 𝜆𝑁𝑥, 𝜆 ∈
(0, 1), we have

̇𝑢
1
(𝑡)

= 𝜆[𝑟 (𝑡) −
𝑟 (𝑡)

𝐾
exp (𝑢

1
(𝑡))

−
4𝐺𝑒𝛿 exp (𝑢

2
(𝑡))+(4𝐺ℎ−1) 𝑒

2
𝛿
2 exp (𝑢

1
(𝑡)+𝑢

2
(𝑡))

4𝐺(1 + ℎ𝑒𝛿 exp (𝑢
1
(𝑡)))
2

] ,

(20)

̇𝑢
2
(𝑡)

= 𝜆[ − 𝑑 (𝑡)

+
4𝐺𝑒𝛿𝐵 (𝑡) exp (𝑢1 (𝑡))+(4𝐺ℎ−1) 𝑒

2
𝛿
2
𝐵 (𝑡) exp (2𝑢1 (𝑡))

4𝐺(1+ℎ𝑒𝛿 exp(𝑢
1
(𝑡)))
2

] .

(21)
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Suppose 𝑥 = (𝑢
1
(𝑡), 𝑢
2
(𝑡))
𝑇
∈ 𝑋 is a solution of (20) and (21)

for a certain 𝜆 ∈ (0, 1). Integrating (20), (21) over the interval
[0, 𝜔], we obtain

∫

𝜔

0

𝑟 (𝑡)

𝐾
exp (𝑢1 (𝑡)) d𝑡

+∫

𝜔

0

4𝐺𝑒𝛿 exp (𝑢2 (𝑡)) + (4𝐺ℎ − 1) 𝑒2𝛿2 exp (𝑢1 (𝑡) + 𝑢2 (𝑡))
4𝐺(1 + ℎ𝑒𝛿 exp(𝑢1(𝑡)))

2
d𝑡

= 𝑟𝜔,

(22)

∫

𝜔

0

4𝐺𝑒𝛿𝐵 (𝑡) exp (𝑢
1
(𝑡)) + (4𝐺ℎ − 1) 𝑒

2
𝛿
2
𝐵 (𝑡) exp (2𝑢

1
(𝑡))

4𝐺(1 + ℎ𝑒𝛿 exp(𝑢
1
(𝑡)))
2

d𝑡

= 𝑑𝜔.

(23)

It follows from (𝐴
1
), (20), and (22) that

∫

𝜔

0

 ̇𝑢1 (𝑡)
 d𝑡

= 𝜆∫

𝜔

0



[𝑟 (𝑡) −
𝑟 (𝑡)

𝐾
exp (𝑢1 (𝑡))

−
4𝐺𝑒𝛿 exp(𝑢2 (𝑡)) + (4𝐺ℎ − 1) 𝑒2𝛿2exp(𝑢1 (𝑡) + 𝑢2 (𝑡))

4𝐺(1 + ℎ𝑒𝛿 exp (𝑢1 (𝑡)))
2

]



d𝑡

< ∫

𝜔

0

𝑟 (𝑡) d𝑡 + ∫
𝜔

0

𝑟 (𝑡)

𝐾
exp (𝑢1 (𝑡)) d𝑡

+∫

𝜔

0

4𝐺𝑒𝛿 exp (𝑢2 (𝑡)) + (4𝐺ℎ − 1) 𝑒2𝛿2 exp (𝑢1 (𝑡) + 𝑢2 (𝑡))
4𝐺(1 + ℎ𝑒𝛿 exp (𝑢1 (𝑡)))

2
d𝑡

= ∫

𝜔

0

𝑟 (𝑡) d𝑡 + 𝑟𝜔 = 2𝑟𝜔;

(24)

that is,

∫

𝜔

0


̇𝑢
1 (𝑡)
 d𝑡 < 2𝑟𝜔. (25)

Similarly, it follows from (𝐴
1
), (21), and (23) that

∫

𝜔

0


̇𝑢
2 (𝑡)
 d𝑡 < 2𝑑𝜔. (26)

Since (𝑢
1
(𝑡), 𝑢
2
(𝑡))
𝑇
∈ 𝑋, there exist 𝜉

𝑖
, 𝜂
𝑖
∈ [0, 𝜔] such that

𝑢
𝑖
(𝜉
𝑖
) = min
𝑡∈[0,𝜔]

𝑢
𝑖
(𝑡) , 𝑢

𝑖
(𝜂
𝑖
) = max
𝑡∈[0,𝜔]

𝑢
𝑖
(𝑡) , 𝑖 = 1, 2.

(27)

From (𝐴
1
) and (23), we see that

𝑑𝜔 ≤ ∫

𝜔

0

4𝐺𝑒𝛿𝐵 (𝑡) exp (𝑢
1
(𝑡))

4𝐺(1 + ℎ𝑒𝛿 exp(𝑢
1
(𝑡)))
2
d𝑡

+ ∫

𝜔

0

(4𝐺ℎ − 1) 𝑒
2
𝛿
2
𝐵 (𝑡) exp (2𝑢

1
(𝑡))

4𝐺ℎ2𝑒2𝛿2 exp (2𝑢
1
(𝑡))

d𝑡,

(28)

which implies

𝑑 ≤
𝑒𝛿𝐵 exp (𝑢

1
(𝜂
1
))

(1 + ℎ𝑒𝛿 exp(𝑢
1
(𝜉
1
)))
2
+
(4𝐺ℎ − 1) 𝐵

4𝐺ℎ2
. (29)

So

𝑢
1
(𝜂
1
) ≥ ln

[4𝐺ℎ
2
𝑑 − (4𝐺ℎ − 1) 𝐵] (1 + ℎ𝑒𝛿 exp(𝑢

1
(𝜉
1
)))
2

4𝐺ℎ2𝑒𝛿𝐵

.

(30)

This, combined with (25), gives

𝑢
1
(𝑡) ≥ 𝑢

1
(𝜂
1
) − ∫

𝜔

0


̇𝑢
1
(𝑡)
 d𝑡

> ln
[4𝐺ℎ
2
𝑑 − (4𝐺ℎ − 1) 𝐵] (1 + ℎ𝑒𝛿 exp(𝑢

1
(𝜉
1
)))
2

4𝐺ℎ2𝑒𝛿𝐵

− 2𝑟𝜔.

(31)

In particular, we have

𝑢
1
(𝜉
1
) > ln

[4𝐺ℎ
2
𝑑 − (4𝐺ℎ − 1) 𝐵] (1 + ℎ𝑒𝛿 exp (𝑢1 (𝜉1)))

2

4𝐺ℎ2𝑒𝛿𝐵

− 2𝑟𝜔,

(32)

or

[4𝐺ℎ
2
𝑑 − (4𝐺ℎ − 1) 𝐵] ℎ

2
𝑒
2
𝛿
2 exp (2𝑢

1
(𝜉
1
))

− [4𝐺ℎ
2
𝑒𝛿𝐵 exp (2𝑟𝜔)

−2ℎ𝑒𝛿 (4𝐺ℎ
2
𝑑 − (4𝐺ℎ − 1) 𝐵)] exp (𝑢1 (𝜉1))

+ [4𝐺ℎ
2
𝑑 − (4𝐺ℎ − 1) 𝐵] < 0.

(33)

In view of (𝐴
2
), we have

ln 𝑙
−
< 𝑢
1
(𝜉
1
) < ln 𝑙

+
. (34)

Similarly, it follows from (𝐴
1
) and (23) that

𝑑𝜔 ≥ ∫

𝜔

0

4𝐺𝑒𝛿𝐵 (𝑡) exp (𝑢
1
(𝑡))

4𝐺(1 + ℎ𝑒𝛿 exp(𝑢
1
(𝑡)))
2
d𝑡, (35)

which implies

𝑑 ≥
𝑒𝛿𝐵 exp (𝑢

1
(𝜉
1
))

(1 + ℎ𝑒𝛿 exp(𝑢
1
(𝜂
1
)))
2
. (36)

So

𝑢
1
(𝜉
1
) ≤ ln

𝑑(1 + ℎ𝑒𝛿 exp(𝑢
1
(𝜂
1
)))
2

𝑒𝛿𝐵

. (37)
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This, combined with (25), gives

𝑢
1
(𝑡) ≤ 𝑢

1
(𝜉
1
) + ∫

𝜔

0


̇𝑢
1
(𝑡)
 d𝑡

< ln
𝑑(1 + ℎ𝑒𝛿 exp (𝑢

1
(𝜂
1
)))
2

𝑒𝛿𝐵

+ 2𝑟𝜔.

(38)

In particular, we have

𝑢
1
(𝜂
1
) < ln

𝑑(1 + ℎ𝑒𝛿 exp(𝑢
1
(𝜂
1
)))
2

𝑒𝛿𝐵

+ 2𝑟𝜔, (39)

or

𝑑ℎ
2
𝑒
2
𝛿
2 exp (2𝑢

1
(𝜂
1
))

− (𝑒𝛿𝐵 exp (−2𝑟𝜔) − 2ℎ𝑒𝛿𝑑) exp (𝑢1 (𝜂1)) + 𝑑 > 0.
(40)

It follows from (𝐴
2
) that

𝑢
1
(𝜂
1
) < ln ℎ

−
or 𝑢

1
(𝜂
1
) > ln ℎ

+
. (41)

From (25) and (34), we find

𝑢
1
(𝑡) ≤ 𝑢

1
(𝜉
1
) + ∫

𝜔

0


̇𝑢
1
(𝑡)
 d𝑡 < ln 𝑙

+
+ 2𝑟𝜔 ≜ 𝐻

11
. (42)

On the other hand, it follows from (𝐴
1
), (22), and (42)

that

𝑟𝜔 ≥ ∫

𝜔

0

4𝐺𝑒𝛿 exp (𝑢
2
(𝜉
2
))

4𝐺(1 + ℎ𝑒𝛿 exp(ln 𝑙
+
+ 2𝑟𝜔))

2
d𝑡, (43)

𝑟𝜔 ≤ ∫

𝜔

0

𝑟 (𝑡)

𝐾
exp (ln 𝑙

+
+ 2𝑟𝜔) d𝑡

+ ∫

𝜔

0

𝑒𝛿 exp (𝑢
2
(𝜂
2
)) d𝑡

+ ∫

𝜔

0

𝑒𝛿 exp (𝑢
2
(𝜂
2
))

2
d𝑡.

(44)

It follows from (43) that

𝑢
2
(𝜉
2
) ≤ ln

𝑟(1 + ℎ𝑒𝛿 exp(ln 𝑙
+
+ 2𝑟𝜔))

2

𝑒𝛿
. (45)

This, combined with (26), gives

𝑢
2 (𝑡) ≤ 𝑢2 (𝜉2) + ∫

𝜔

0


̇𝑢
2 (𝑡)
 d𝑡

< ln
𝑟(1 + ℎ𝑒𝛿 exp(ln 𝑙

+
+ 2𝑟𝜔))

2

𝑒𝛿
+ 2𝑑𝜔 ≜ 𝐻

21
.

(46)

Moreover, because of (𝐴
3
), it follows from (44) that

𝑢
2
(𝜂
2
) ≥ ln

2𝑟 (1 − (1/𝐾) exp (ln 𝑙
+
+ 2𝑟𝜔))

3𝑒𝛿
. (47)

This, combined with (26) again, gives

𝑢
2
(𝑡) ≥ 𝑢

2
(𝜂
2
) − ∫

𝜔

0


̇𝑢
2
(𝑡)
 d𝑡

> ln
2𝑟 (1 − (1/𝐾) exp (ln 𝑙

+
+ 2𝑟𝜔))

3𝑒𝛿
− 2𝑑𝜔 ≜ 𝐻

22
.

(48)

It follows from (46) and (48) that

max
𝑡∈[0,𝜔]

𝑢
2
(𝑡) < max {𝐻21

 ,
𝐻22
} ≜ 𝐻2. (49)

Now, let us consider 𝑄𝑁𝑥 with 𝑥 = (𝑢
1
, 𝑢
2
)
𝑇
∈ R2. Note

that

𝑄𝑁(𝑢
1
, 𝑢
2
)
𝑇

= (𝑟 −
𝑟

𝐾
exp (𝑢

1
)

−
4𝐺𝑒𝛿 exp (𝑢

2
) + (4𝐺ℎ − 1) 𝑒

2
𝛿
2 exp (𝑢

1
+ 𝑢
2
)

4𝐺(1 + ℎ𝑒𝛿 exp(𝑢
1
))
2

,

−𝑑 +
4𝐺𝑒𝛿𝐵 exp(𝑢

1
) + (4𝐺ℎ − 1)𝑒

2
𝛿
2
𝐵 exp(2𝑢

1
)

4𝐺(1 + ℎ𝑒𝛿 exp(𝑢
1
))
2

)

𝑇

.

(50)

Noting (𝐴
1
), (𝐴
2
), and (𝐴

3
), we can show that the equation

𝑄𝑁(𝑢
1
, 𝑢
2
)
𝑇
= 0 has two distinct solutions:

�̃� = (ln 𝑢
−
, ln
4𝐺 (𝑟 − (𝑟/𝐾) 𝑢

−
) (1 + ℎ𝑒𝛿𝑢

−
)
2

4𝐺𝑒𝛿 + (4𝐺ℎ − 1) 𝑒
2𝛿2𝑢
−

) ,

�̂� = (ln 𝑢
+
, ln
4𝐺 (𝑟 − (𝑟/𝐾) 𝑢+) (1 + ℎ𝑒𝛿𝑢+)

2

4𝐺𝑒𝛿 + (4𝐺ℎ − 1) 𝑒
2𝛿2𝑢
+

) .

(51)

Choose 𝐶 > 0 such that

𝐶 > max{


ln
4𝐺 (𝑟 − (𝑟/𝐾) 𝑢−) (1 + ℎ𝑒𝛿𝑢−)

2

4𝐺𝑒𝛿 + (4𝐺ℎ − 1) 𝑒
2𝛿2𝑢
−



,



ln
4𝐺 (𝑟 − (𝑟/𝐾) 𝑢

+
) (1 + ℎ𝑒𝛿𝑢

+
)
2

4𝐺𝑒𝛿 + (4𝐺ℎ − 1) 𝑒
2𝛿2𝑢
+



} .

(52)

We are now ready to define two open bounded subsets in
order to apply the continuation theorem. Let

Ω
1
= {𝑥 = (𝑢

1
, 𝑢
2
)
𝑇
∈ 𝑋 | 𝑢

1 (𝑡) ∈ (ln 𝑙−, ln ℎ−) ,

max
𝑡∈[0,𝜔]

𝑢2 (𝑡)
 < 𝐻2 + 𝐶} ,

Ω
2
= {𝑥 = (𝑢

1
, 𝑢
2
)
𝑇
∈ 𝑋 | min

𝑡∈[0,𝜔]

𝑢
1 (𝑡) ∈ (ln 𝑙−, ln 𝑙+) ,

max
𝑡∈[0,𝜔]

𝑢
1
(𝑡) ∈ (ln ℎ

+
, 𝐻
11
) , max
𝑡∈[0,𝜔]

𝑢2 (𝑡)
 < 𝐻2 + 𝐶} .

(53)
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Then both Ω
1
and Ω

2
are bounded open subsets of 𝑋. It

follows from (4) and (52) that �̃� ∈ Ω
1
and �̂� ∈ Ω

2
. With the

help of (4), (34), (41), (42), (49), and (52), it is easy to see that
Ω
1
∩ Ω
2
= 𝜙 andΩ

𝑖
satisfies the requirement (a) in Lemma 1

for 𝑖 = 1, 2.Moreover,𝑄𝑁𝑥 ̸= 0 for𝑥 ∈ 𝜕Ω∩ Ker 𝐿 = 𝜕Ω∩R2.
A direct computation gives deg{𝐽𝑄𝑁,Ω

𝑖
∩Ker 𝐿, 0} ̸= 0. Here,

𝐽 is taken as the identity mapping since Im𝑄 = Ker 𝐿. So
far we have proved that Ω

𝑖
satisfies all the assumptions in

Lemma 1. Hence, (4) has at least two 𝜔-periodic solutions.
This completes the proof of Theorem 2.

Remark 3. In the proof of Theorem 2, we have employed
some new technique to obtain a priori bounds for 𝑢

1
. Here,

the standard arguments in the literature (see, e.g., [7–12]) do
not work. Indeed, from (23) in the proof it follows that

𝑑𝜔 ≤
4𝐺𝑒𝛿𝐵𝜔 exp (𝑢

1
(𝜂
1
)) + 4𝐺ℎ𝑒

2
𝛿
2
𝐵𝜔 exp (2𝑢

1
(𝜂
1
))

4𝐺(1 + ℎ𝑒𝛿 exp(𝑢
1
(𝜉
1
)))
2

.

(54)

If we were to use the standard arguments in the literature,
then we have

[4𝑑ℎ
3
𝑒
2
𝛿
2
𝐵 − 4ℎ

2
𝑒
2
𝛿
2
𝐵
2 exp (4𝑟𝜔)] exp (2𝑢

1
(𝜉
1
))

+ [8𝑑ℎ
2
𝑒𝛿𝐵 − 4ℎ𝑒𝛿𝐵

2 exp (2𝑟𝜔)] exp (𝑢
1
(𝜉
1
))

+ 4𝑑ℎ𝐵 < 0,

(55)

where 𝑢
1
(𝜉
1
) = min

𝑡∈[0,𝜔]
𝑢
1
(𝑡) and 𝑢

1
(𝜂
1
) = max

𝑡∈[0,𝜔]
𝑢
1
(𝑡).

It follows from (55) that

�̃�
−
< exp (𝑢

1
(𝜉
1
)) < �̃�
+
, (56)

where �̃�
−
and �̃�
+
are the roots of the following equation in 𝑥:

[4𝑑ℎ
3
𝑒
2
𝛿
2
𝐵 − 4ℎ

2
𝑒
2
𝛿
2
𝐵
2 exp (4𝑟𝜔)] 𝑥2

+ [8𝑑ℎ
2
𝑒𝛿𝐵 − 4ℎ𝑒𝛿𝐵

2 exp (2𝑟𝜔)] 𝑥

+ 4𝑑ℎ𝐵 = 0.

(57)

We claim that (57) has at least a negative root; that is, at
least one of �̃�

−
, �̃�
+
is negative. Otherwise, if both �̃�

−
and �̃�
+
are

positive, then from (57) we see that

�̃�
+
⋅ �̃�
−
=

4𝑑ℎ𝐵

4𝑑ℎ3𝑒2𝛿2𝐵 − 4ℎ2𝑒2𝛿2𝐵
2 exp (4𝑟𝜔)

> 0, (58)

which implies

ℎ𝑑 > 𝐵 exp (4𝑟𝜔) . (59)

On the other hand, it follows form (57) and (58) that

�̃�
+
+ �̃�
−
= −

8𝑑ℎ
2
𝑒𝛿𝐵 − 4ℎ𝑒𝛿𝐵

2 exp (2𝑟𝜔)
4𝑑ℎ3𝑒2𝛿2𝐵 − 4ℎ2𝑒2𝛿2𝐵

2 exp (4𝑟𝜔)
< 0, (60)

which contradicts the positivity of �̃�
−
and �̃�
+
. Therefore, at

least one of �̃�
−
, �̃�
+
is negative. However, to use the standard

arguments in the literature we need both �̃�
−
and �̃�
+
to be

positive. Hence, we have illustrated that standard arguments
in the literature are not applicable to the system (4) and some
new technique should be used. To see how this problem is
handled, the reader may refer to (27)–(34) in the proof of
Theorem 2.
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We investigate a Hassell-Varley type predator-prey model with stochastic perturbations. By perturbing the growth rate of prey
population and death rate of predator population with white noise terms, we construct a stochastic differential equation model
to discuss the effects of the environmental noise on the dynamical behaviors. Applying the comparison theorem of stochastic
equations and Itô’s formula, the unique positive global solution to the model for any positive initial value is obtained. We find out
some sufficient conditions for stochastically asymptotically boundedness, permanence, persistence in mean and extinction of the
solution. Furthermore, a series of numerical simulations to illustrate our mathematical findings are presented. The results indicate
that the stochastic perturbations do not cause drastic changes of the dynamics in the deterministic model when the noise intensity
is small under some conditions, but while the noise intensity is sufficiently large, the species may die out, which does not happen
in the deterministic model.

1. Introduction

It is well known that predator-prey interaction is one of
basic interspecies relations for ecosystems, and it is also the
basic block of more complicated food chain, food web, and
biophysical network structure [1]. Because of the universal
existence of predator and prey and their importance in ecol-
ogy, the dynamical relationship between them has long been
and will continue to be one of the dominant themes [2, 3].

The classical predator-prey model has received extensive
attentions from mathematicians as well as ecologists [4–7],
and it can be expressed by a model of nonlinear ordinary
differential equations as follows:

𝑑𝑁

𝑑𝑡
= 𝑓 (𝑁)𝑁 − 𝑏𝑔 (𝑁, 𝑃) 𝑃,

𝑑𝑃

𝑑𝑡
= 𝑃 (𝑐𝑔 (𝑁, 𝑃) − 𝑑) ,

(1)

where 𝑁 = 𝑁(𝑡) and 𝑃 = 𝑃(𝑡) denote the density of prey
and predator population at time 𝑡, respectively. Parameters 𝑏,
𝑐, and 𝑑 are positive constants. 𝑏 stands for capturing rate of
prey by predator, 𝑐 is conversion rate of prey into predator,
and 𝑑 is the natural death rate of the predator. The function
𝑓(𝑁) represents the density-dependent specific growth rate

of prey in absence of predator. The amount of prey biomass
consumed by each predator per unit of time is described by
the functional response 𝑔(𝑁, 𝑃).

In this paper, we consider the usual logistic form of the
growth function for prey in the absence of predator as

𝑓 (𝑁) = 𝑟 (1 −
𝑁

𝐾
) , (2)

where 𝑟 (> 0) is the natural growth rate of prey and𝐾 (> 0) is
the environmental carrying capacity.The functional response
𝑔(𝑁, 𝑃) is taken as

𝑔 (𝑁, 𝑃) =
𝑁

𝑁 + 𝑚𝑃𝛼
, (3)

which is called the Hassell-Varley type functional response
and 𝛼 ∈ (0, 1) is the Hassell-Varley constant [8] and 𝑚 (> 0)

stands for half capturing saturation constant. The predator-
prey model with Hassell-Varley type functional response has
been studied in the ecological literature [6, 9–11].

For more biological motivation in population dynamics,
we take into account the density-dependence of predator
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population. And the correspondingHassell-Varley type pred-
ator-prey model is described by the following form:

𝑑𝑁

𝑑𝑡
= 𝑟𝑁(1 −

𝑁

𝐾
) −

𝑏𝑁𝑃

𝑁 + 𝑚𝑃𝛼
,

𝑑𝑃

𝑑𝑡
= 𝑃(

𝑐𝑁

𝑁 + 𝑚𝑃𝛼
− 𝑑 − ℎ𝑃) ,

𝑁 (0) = 𝑁0 > 0, 𝑃 (0) = 𝑃0 > 0,

(4)

where ℎ𝑃 stands for the density-dependence of the predator
population and ℎ > 0.

On the other hand, most natural phenomena do not fol-
low strictly deterministic laws but rather oscillate randomly
about some average. So that the population density never
attains a fixed value with the advancement of time but rather
exhibits continuous oscillation around some average values
[12, 13]. In fact, there are many benefits to be gained by using
stochastic models because real life is full of random fluctua-
tions (i.e., the effects of noise), which undeniably arise from
either environmental variability or internal species.The basic
mechanism and factors of population growth like resources
and vital rates—birth, death, immigration, and emigration—
change nondeterministically due to continuous fluctuations
in the environment (e.g., variation in intensity of sunlight,
temperature, water level, etc.) [2, 3, 14]. Recent advances
in stochastic differential equations enable a lot of authors
to introduce noise into the model of physical phenomena,
whether it is a random noise in the system of differential
equations or environmental fluctuations in parameters [15–
31]. So far as our knowledge is concerned, the work of a mod-
ified Hassell-Varley type predator-prey model with stochastic
perturbations seems rare. Motivated by these, we attempt to
study the stochastic behaviors of the modified Hassell-Varley
type predation model in a random fluctuating environment.

The organization of this paper is as follows. In Section 2,
we present a stochasticmodel corresponding to the determin-
istic model (4) and discuss it in detail. In Section 3, we use
numerical simulations to reveal the influence of noise on the
dynamical behaviors of the model. A brief discussion is given
in Section 4.

2. The Stochastic Model and Analysis

In this section, we investigate the effects of fluctuating envi-
ronments on the dynamical behaviors of model (4). Assum-
ing that random fluctuations in the environment would
display themselves as fluctuations in the growth rate of prey
population𝑁 and in the death rate of predator population 𝑃,
then the parameters 𝑟 and 𝑑 in model (4) can be replaced by

𝑟 → 𝑟 + 𝜎
1
̇𝐵
1
(𝑡) , −𝑑 → −𝑑 + 𝜎

2
̇𝐵
2
(𝑡) . (5)

In this way, model (4) will be reduced to the following form:

𝑑𝑁 = 𝑁(𝑟 −
𝑟

𝐾
𝑁 −

𝑏𝑃

𝑁 + 𝑚𝑃𝛼
)𝑑𝑡 + 𝜎

1
𝑁𝑑𝐵
1
(𝑡) ,

𝑑𝑃 = 𝑃(
𝑐𝑁

𝑁 + 𝑚𝑃𝛼
− 𝑑 − ℎ𝑃)𝑑𝑡 + 𝜎

2
𝑃𝑑𝐵
2 (𝑡) ,

(6)

where 𝜎2
1
and 𝜎2
2
are known as the intensities of environmen-

tal noise and ̇𝐵
𝑖
(𝑡) (𝑖 = 1, 2) is a standard white noise; that

is, 𝐵
𝑖
(𝑡) (𝑖 = 1, 2) is a Brownian motion defined in a com-

plete probability space (Ω,F,P) with a filtration {F
𝑡
}
𝑡∈𝑅
+

satisfying the usual conditions (i.e., it is right continuous and
increasing whileF

0
contains all P-null sets) [14].

2.1. Positive and Global Solution. For model (6), there is a
positive local solution.

Lemma 1. There is a unique local solution (𝑁(𝑡), 𝑃(𝑡)) for 𝑡 ∈
[0, 𝜏
𝑒
) tomodel (6) almost surely for initial value (𝑁

0
, 𝑃
0
) ∈ 𝑅
2

+
,

where 𝜏
𝑒
is the explosion time.

The proof of this lemma is rather standard and hence is
omitted.

Lemma 1 only tells us that there is a unique positive local
solution to model (6). Next, we show that this solution is
global which is more interesting.

In particular, let us consider the one-dimensional sto-
chastic population model

𝑑𝑁 (𝑡) = 𝑟𝑁 (𝑡) (1 −
𝑁 (𝑡)

𝐾
)𝑑𝑡 + 𝜎

1
𝑁(𝑡) 𝑑𝐵

1
(𝑡) , 𝑡 ≥ 0,

𝑁 (0) = 𝑁
0
;

(7)

there is an explicit solution

𝑁(𝑡) = exp{(𝑟 −
𝜎
2

1

2
) 𝑡 + 𝜎

1
𝐵
1 (𝑡)}

× (
1

𝑁
0

+
𝑟

𝐾
∫

𝑡

0

exp {(𝑟 −
𝜎
2

1

2
) 𝑠

+𝜎
1
𝐵
1 (𝑠) } 𝑑𝑠)

−1

.

(8)

From model (6), we have

𝑑𝑁 (𝑡) ≤ 𝑟𝑁 (𝑡) (1 −
𝑁 (𝑡)

𝐾
)𝑑𝑡 + 𝜎

1
𝑁(𝑡) 𝑑𝐵

1
(𝑡) . (9)

By the comparison theorem of stochastic equations [14], we
have𝑁(𝑡) ≤ 𝑁(𝑡) a.s. 𝑡 ∈ [0, 𝜏

𝑒
).

Besides, for the following equation

𝑑𝑁 (𝑡) = 𝑁 (𝑡) (𝑟 −
𝑏

𝑚
−
𝑟

𝐾
𝑁 (𝑡)) 𝑑𝑡

+ 𝜎
1
𝑁(𝑡) 𝑑𝐵

1
(𝑡) , 𝑁 (0) = 𝑁

0
,

(10)

there is a unique solution as

𝑁(𝑡) = exp{(𝑟 − 𝑏

𝑚
−
𝜎
2

1

2
) 𝑡 + 𝜎

1
𝐵
1
(𝑡)}

× (
1

𝑁
0

+
𝑟

𝐾
∫

𝑡

0

exp {(𝑟 − 𝑏

𝑚
−
𝜎
2

1

2
) 𝑠

+𝜎
1
𝐵
1 (𝑠) })

−1

.

(11)
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In model (6), for 𝛼 ∈ (0, 1), we can get

𝑑𝑁 (𝑡) ≥ 𝑁 (𝑡) (𝑟 −
𝑏

𝑚
−
𝑟

𝐾
𝑁 (𝑡)) 𝑑𝑡

+ 𝜎
1
𝑁(𝑡) 𝑑𝐵

1
(𝑡) ;

(12)

then𝑁(𝑡) ≥ 𝑁(𝑡) a.s. 𝑡 ∈ [0, 𝜏
𝑒
).

Consequently, we obtain

𝑁(𝑡) ≤ 𝑁 (𝑡) ≤ 𝑁 (𝑡) a.s. 𝑡 ∈ [0, 𝜏
𝑒
) . (13)

On the other hand, the equation

𝑑𝑃 (𝑡) = 𝑃 (𝑡) (𝑐 − 𝑑 − 𝑐𝑚 − ℎ𝑃 (𝑡)) 𝑑𝑡 + 𝜎
2
𝑃 (𝑡) 𝑑𝐵

2
(𝑡) ,

𝑃 (0) = 𝑃
0
,

(14)

has a unique solution as follows:

𝑃 (𝑡) = exp{(𝑐 − 𝑑 − 𝑐𝑚 −
𝜎
2

2

2
) 𝑡 + 𝜎

2
𝐵
2 (𝑡)}

× (
1

𝑃
0

+ ℎ∫

𝑡

0

exp {(𝑐 − 𝑑 − 𝑐𝑚 −
𝜎
2

2

2
) 𝑠

+𝜎
2
𝐵
2
(𝑠) } 𝑑𝑠)

−1

.

(15)

Considering the predator population 𝑃(𝑡) in model (6), we
have

𝑑𝑃 (𝑡) ≤ 𝑃 (𝑡) (𝑐 − 𝑑) 𝑑𝑡 + 𝜎
2
𝑃 (𝑡) 𝑑𝐵

2
(𝑡) ,

𝑑𝑃 (𝑡) = 𝑃 (𝑡) (𝑐 − 𝑑 −
𝑐𝑚𝑃
𝛼
(𝑡)

𝑁 (𝑡) + 𝑚𝑃
𝛼
(𝑡)

− ℎ𝑃 (𝑡)) 𝑑𝑡

+ 𝜎
2
𝑃 (𝑡) 𝑑𝐵

2
(𝑡)

≥ 𝑃 (𝑡) (𝑐 − 𝑑 − 𝑐𝑚 − ℎ𝑃 (𝑡)) 𝑑𝑡 + 𝜎
2
𝑃 (𝑡) 𝑑𝐵

2
(𝑡) .

(16)

By the comparison theorem, we obtain 𝑃(𝑡) ≥ 𝑃(𝑡) a.s. 𝑡 ∈
[0, 𝜏
𝑒
); then

𝑃 (𝑡) ≤ 𝑃 (𝑡) ≤ 𝑃
0
exp{(𝑐 − 𝑑 −

𝜎
2

2

2
) 𝑡 + 𝜎

2
𝐵
2
(𝑡)}

= 𝑃 (𝑡) a.s. 𝑡 ∈ [0, 𝜏
𝑒
) .

(17)

From the representation of solutions𝑁(𝑡),𝑁(𝑡),𝑃(𝑡), and
𝑃(𝑡), we can see that they are all existence for 𝑡 ∈ [0,∞);
that is, 𝜏

𝑒
= ∞. Therefore, we have the following theorem to

show that the positive solution of model (6) is global, which
is essential for a population system.

Theorem 2. There is a unique positive solution (𝑁(𝑡), 𝑃(𝑡))
of model (6) almost surely for any initial value (𝑁

0
, 𝑃
0
) ∈

𝑅
2

+
. Moreover there exist functions 𝑁(𝑡), 𝑁(𝑡), 𝑃(𝑡), and 𝑃(𝑡)

defined as (8), (11), (15), and (17) such that

𝑁(𝑡) ≤ 𝑁 (𝑡) ≤ 𝑁 (t) ,

𝑃 (𝑡) ≤ 𝑃 (𝑡) ≤ 𝑃 (𝑡) a.s. 𝑡 ≥ 0.
(18)

2.2. Stochastic Boundedness. In this subsection, we show that
the solution (𝑁(𝑡), 𝑃(𝑡)) of model (6) with any positive initial
value is uniformly bounded in mean.

Theorem 3. The solution (𝑁(𝑡), 𝑃(𝑡)) of model (6) with any
positive initial value has the property that

lim sup
𝑡→∞

E [𝑁 (𝑡)] ≤ 𝐾,

lim sup
𝑡→∞

E [𝑃 (𝑡)] ≤ 𝑐𝐾(𝑟 + 𝑑)
2

4𝑟𝑏𝑑
.

(19)

Proof. From (7), we obtain

lim sup
𝑡→∞

E [𝑁 (𝑡)] ≤ 𝐾; (20)

combining𝑁(𝑡) ≤ 𝑁(𝑡), then

lim sup
𝑡→∞

E [𝑁 (𝑡)] ≤ 𝐾. (21)

Set

𝑀(𝑡) = 𝑁 (𝑡) +
𝑏

𝑐
𝑃 (𝑡) ; (22)

then

𝑑𝑀(𝑡) = (𝑟𝑁 (𝑡) (1 −
𝑁 (𝑡)

𝐾
) −

𝑏

𝑐
𝑃 (𝑡) (𝑑 + ℎ𝑃 (𝑡))) 𝑑𝑡

+ 𝜎
1
𝑁(𝑡) 𝑑𝐵1 (𝑡) +

𝜎
2
𝑏

𝑐
𝑃 (𝑡) 𝑑𝐵2 (𝑡)

= ((𝑟 + 𝑑)𝑁 (𝑡) −
𝑟

𝐾
𝑁
2
(𝑡) −

𝑏ℎ

𝑐
𝑃
2
(𝑡) − 𝑑𝑀 (𝑡)) 𝑑𝑡

+ 𝜎
1
𝑁(𝑡) 𝑑𝐵

1
(𝑡) +

𝜎
2
𝑏

𝑐
𝑃 (𝑡) 𝑑𝐵

2
(𝑡) .

(23)

Integrating the above equation from 0 to 𝑡, we obtain

𝑀(𝑡) = 𝑀 (0) + ∫

𝑡

0

( (𝑟 + 𝑑)𝑁 (𝑠)

−
𝑟

𝐾
𝑁
2
(𝑠) −

𝑏ℎ

𝑐
𝑃
2
(𝑠) − 𝑑𝑀 (𝑠)) 𝑑𝑠

+ 𝜎
1
∫

𝑡

0

𝑁(𝑠) 𝑑𝐵1 (𝑠) +
𝜎
2
𝑏

𝑐
∫

𝑡

0

𝑃 (𝑠) 𝑑𝐵2 (𝑠) ,

(24)

and taking expectations leads to

E [𝑀 (𝑡)] = 𝑀 (0) + ∫

𝑡

0

E [(𝑟 + 𝑑)𝑁 (𝑠) − 𝑟

𝐾
𝑁
2
(𝑠)

−
𝑏ℎ

𝑐
𝑃
2
(𝑠) − 𝑑𝑀 (𝑠)] 𝑑𝑠;

(25)
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then

𝑑E [𝑀 (𝑡)]

𝑑𝑡
= (𝑟 + 𝑑)E [𝑁 (𝑡)]

−
𝑟

𝐾
E [𝑁2 (𝑡)] − 𝑏ℎ

𝑐
E [𝑃2 (𝑡)] − 𝑑E [𝑀 (𝑡)]

≤ (𝑟 + 𝑑)E [𝑁 (𝑡)] − 𝑟

𝐾
(E [𝑁 (𝑡)])2

−
𝑏ℎ

𝑐
(E [𝑃 (𝑡)])2 − 𝑑E [𝑀 (𝑡)]

≤
𝐾(𝑟 + 𝑑)

2

4𝑟
− 𝑑E [𝑀 (𝑡)] .

(26)

By the comparison theorem, we can get

lim sup
𝑡→∞

E [𝑀 (𝑡)]

= lim sup
𝑡→∞

(E [𝑁 (𝑡)] + 𝑏
𝑐
E [𝑃 (𝑡)]) ≤ 𝐾(𝑟 + 𝑑)

2

4𝑟𝑑
.

(27)

Therefore, we obtain

lim sup
𝑡→∞

E [𝑃 (𝑡)] ≤ 𝑐𝐾(𝑟 + 𝑑)
2

4𝑟𝑏𝑑
. (28)

This completes the proof.

2.3. The Long Time Behavior. It is well known that the
property of permanence is more desirable since it means
the long time survival in a population dynamics. Now, the
definition of stochastic permanence will be given below [32,
33].

Definition 4. The solution (𝑁(𝑡), 𝑃(𝑡)) of model (6) is said to
be stochastically permanent, if, for any 𝜀 ∈ (0, 1), there exists
a pair of positive constants 𝛿 = 𝛿(𝜀) and 𝜒 = 𝜒(𝜀) such that,
for any initial value (𝑁

0
, 𝑃
0
) ∈ 𝑅
2

+
, the solution (𝑁(𝑡), 𝑃(𝑡)) to

model (6) has the properties that

lim inf
𝑡→∞

P {|𝑁 (𝑡) , 𝑃 (𝑡)| ≥ 𝛿} ≥ 1 − 𝜀,

lim inf
𝑡→∞

P {|𝑁 (𝑡) , 𝑃 (𝑡)| ≤ 𝜒} ≥ 1 − 𝜀.
(29)

Lemma 5. For any initial value (𝑁
0
, 𝑃
0
) ∈ R2

+
, the solution

(𝑁(𝑡), 𝑃(𝑡)) satisfies that

lim sup
𝑡→∞

E [(𝑁2 + 𝑃2)
−𝜃/2

] ≤
𝐶

𝑘
, (30)

where 𝐶 = 𝐶(𝜃) is a positive constant and 𝜃, 𝑘 are arbitrary
positive constants satisfying

𝜃min{𝑟 − 𝑏

𝑚
, 𝑐 − 𝑑} >

𝜃 (𝜃 + 1)

2
max {𝜎2

1
, 𝜎
2

2
} + 𝑘. (31)

Proof. Set a function

𝑉 (𝑁, 𝑃) =
1

𝑁 + 𝑃
, (32)

for (𝑁(𝑡), 𝑃(𝑡)) ∈ 𝑅2
+
; using Itô’s formula, we have

𝑑𝑉 = − 𝑉
2
[𝑁(𝑟 −

𝑟

𝐾
𝑁 −

𝑏𝑃

𝑁 + 𝑚𝑃𝛼
)

+𝑃(
𝑐𝑁

𝑁 + 𝑚𝑃𝛼
− 𝑑 − ℎ𝑃) ] 𝑑𝑡

+ 𝑉
3
[𝜎
2

1
𝑁
2
+ 𝜎
2

2
𝑃
2
] 𝑑𝑡 − 𝑉

2
[𝜎
1
𝑁𝑑𝐵
1
+ 𝜎
2
𝑃𝑑𝐵
2
] .

(33)

Choosing a positive constant 𝜃 and by Itô’s formula, we get

L(1 + 𝑉)𝜃 = 𝜃(1 + 𝑉)𝜃−1 {−𝑉2 [𝑁(𝑟 − 𝑟

𝐾
𝑁 −

𝑏𝑃

𝑁 + 𝑚𝑃𝛼
)

+𝑃(
𝑐𝑁

𝑁 + 𝑚𝑃𝛼
− 𝑑 − ℎ𝑃) ]

+𝑉
3
[𝜎
2

1
𝑁
2
+ 𝜎
2

2
𝑃
2
] }

+
𝜃 (𝜃 − 1)

2
𝑉
4
(1 + 𝑉)

𝜃−2
[𝜎
2

1
𝑁
2
+ 𝜎
2

2
𝑃
2
] .

(34)

Let 𝑘 > 0 be sufficiently small such that it satisfies (31); by
Itô’s formula, then

Le𝑘𝑡(1 + 𝑉)𝜃

= e𝑘𝑡(1 + 𝑉)𝜃−2 {𝑘(1 + 𝑉)2 − 𝜃𝑉2

× [𝑁(𝑟 −
𝑟

𝐾
𝑁 −

𝑏𝑃

𝑁 + 𝑚𝑃𝛼
)

+𝑃(
𝑐𝑁

𝑁 + 𝑚𝑃𝛼
− 𝑑 − ℎ𝑃) ]

− 𝜃𝑉
3
[𝑁(𝑟 −

𝑟

𝐾
𝑁 −

𝑏𝑃

𝑁 + 𝑚𝑃𝛼
)

+𝑃(
𝑐𝑁

𝑁 + 𝑚𝑃𝛼
− 𝑑 − ℎ𝑃) ]

+ 𝜃𝑉
3
[𝜎
2

1
𝑁
2
+ 𝜎
2

2
𝑃
2
]

+
𝜃 (𝜃 − 1)

2
𝑉
4
[𝜎
2

1
𝑁
2
+ 𝜎
2

2
𝑃
2
]} .

(35)

Based on the following inequality,

𝑉
3
(𝜎
2

1
𝑁
2
+ 𝜎
2

2
𝑃
2
) ≤ max {𝜎2

1
, 𝜎
2

2
}𝑉. (36)
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Therefore, we obtain

Le𝑘𝑡(1 + 𝑉)𝜃

≤ e𝑘𝑡(1 + 𝑉)𝜃−2 [𝑘(1 + 𝑉)2

− 𝜃𝑉
2
(𝑁(𝑟 −

𝑟

𝐾
𝑁 −

𝑏𝑃

𝑁 + 𝑚𝑃𝛼
)

+ 𝑃(
𝑐𝑁

𝑁 + 𝑚𝑃𝛼
− 𝑑 − ℎ𝑃))

− 𝜃𝑉
3
(𝑁(𝑟 −

𝑟

𝐾
𝑁 −

𝑏𝑃

𝑁 + 𝑚𝑃𝛼
)

+𝑃(
𝑐𝑁

𝑁 + 𝑚𝑃𝛼
− 𝑑 − ℎ𝑃))

+ 𝜃𝑉max {𝜎2
1
, 𝜎
2

2
}

+
𝜃 (𝜃 − 1)

2
𝑉
2max {𝜎2

1
, 𝜎
2

2
}]

= e𝑘𝑡(1 + 𝑉)𝜃−2 [𝑘 + (2𝑘 − 𝜃𝑉2

× (𝑟𝑁 −
𝑟

𝐾
𝑁
2
−

𝑏𝑁𝑃

𝑁 + 𝑚𝑃𝛼

+
𝑐𝑁𝑃

𝑁 + 𝑚𝑃𝛼
− 𝑑𝑃 − ℎ𝑃

2
)

+𝜃max {𝜎2
1
, 𝜎
2

2
} )𝑉

− (𝜃(𝑟𝑁 −
𝑟

𝐾
𝑁
2
−

𝑏𝑁𝑃

𝑁 + 𝑚𝑃𝛼

+
𝑐𝑁𝑃

𝑁 + 𝑚𝑃𝛼
− 𝑑𝑃 − ℎ𝑃

2
)

−
𝜃 (𝜃 − 1)

2
max {𝜎2

1
, 𝜎
2

2
})𝑉
2
]

≤ e𝑘𝑡(1 + 𝑉)𝜃−2

× [𝑘 + 𝜃𝑉
2
(
𝑟

𝐾
𝑁
2
+ ℎ𝑃
2
)

+ (2𝑘 + 𝜃𝑉
2
(
𝑟

𝐾
𝑁
2
+ ℎ𝑃
2
) − 𝜃𝑉

2

× (𝑟𝑁 −
𝑏𝑁𝑃

𝑁 + 𝑚𝑃𝛼
+

𝑐𝑁𝑃

𝑁 + 𝑚𝑃𝛼
− 𝑑𝑃)

+ 𝜃max {𝜎2
1
, 𝜎
2

2
} )𝑉

− (𝜃(𝑟𝑁 −
𝑏𝑁𝑃

𝑁 + 𝑚𝑃𝛼
+

𝑐𝑁𝑃

𝑁 + 𝑚𝑃𝛼
− 𝑑𝑃)

−
𝜃 (𝜃 − 1)

2
max {𝜎2

1
, 𝜎
2

2
} − 𝑘)𝑉

2
]

≤ e𝑘𝑡(1 + 𝑉)𝜃−2 [ (𝑘 + 𝜃max { 𝑟
𝐾
, ℎ})

+ (2𝑘 + 𝜃max { 𝑟
𝐾
, ℎ}

− 𝜃min{𝑟 − 𝑏

𝑚
, 𝑐 − 𝑑}

+ 𝜃max {𝜎2
1
, 𝜎
2

2
} )𝑉

− (𝜃min{𝑟 − 𝑏

𝑚
, 𝑐 − 𝑑}

−
𝜃 (𝜃 − 1)

2
max {𝜎2

1
, 𝜎
2

2
} − 𝑘)𝑉

2
] .

(37)

There exists a positive constant 𝐶
0
such that Le𝑘𝑡(1 + 𝑉)𝜃 ≤

𝐶
0
e𝑘𝑡; then

E [e𝑘𝑡(1 + 𝑉)𝜃] ≤ (1 + 𝑉 (0))𝜃 + 𝐶0
𝑘
e𝑘𝑡. (38)

So, we can get

lim sup
𝑡→∞

E𝑉𝜃 (𝑡) ≤ lim sup
𝑡→∞

E(1 + 𝑉 (𝑡))𝜃 ≤ 𝐶0
𝑘
. (39)

In addition, we know that (𝑁 + 𝑃)
𝜃
≤ 2
𝜃
(𝑁
2
+ 𝑃
2
)
𝜃/2;

consequently,

lim sup
𝑡→∞

E [(𝑁2 + 𝑃2)
−𝜃/2

] ≤ 2
𝜃lim sup

t→∞
E𝑉𝜃 (𝑡) ≤ 2

𝜃
𝐶
0

𝑘
≜
𝐶

𝑘
.

(40)

The proof is complete.

Based on the results of Theorem 3, Lemma 5, and the
Chebyshev inequality [14], we can obtain the following the-
orem.

Theorem6. Assume thatmax{𝜎2
1
, 𝜎
2

2
} < 2min{𝑟−𝑏/𝑚, 𝑐−𝑑};

the solution of model (6) is stochastically permanent.

In a view of ecology, the coexistence of species may be
a good situation. In the following, we consider the stochas-
tic persistence (i.e., stochastic persistence in mean) of the
species.

Theorem 7. Assume that 𝑟 − 𝜎2
1
/2 > 𝑏/𝑚 holds, for any initial

value 𝑁
0
> 0; then the solution 𝑁(𝑡) to model (6) has the

property

𝐾(𝑟 − 𝑏/𝑚 − 𝜎
2

1
/2)

𝑟

≤ lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑁(𝑠) d𝑠

≤ lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

𝑁(𝑠) d𝑠 ≤
𝐾 (𝑟 − 𝜎

2

1
/2)

𝑟
a.s.

(41)
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Proof. Denoting𝑉(𝑁) = ln𝑁 and by Itô’s formula, we obtain

𝑑𝑉 = (𝑟 −
𝑟

𝐾
𝑁 (𝑡) −

𝑏𝑃 (𝑡)

𝑁 (𝑡) + 𝑚𝑃
𝛼
(𝑡)

−
𝜎
2

1

2
)𝑑𝑡

+𝜎
1
𝑑𝐵
1
(𝑡) .

(42)

Then, we have

ln𝑁(𝑡) = ln𝑁
0
+ (𝑟 −

𝜎
2

1

2
) 𝑡 −

𝑟

𝐾
∫

𝑡

0

𝑁(𝑠) 𝑑𝑠

− 𝑏∫

𝑡

0

𝑃 (𝑠)

𝑁 (𝑠) + 𝑚𝑃
𝛼
(𝑠)
𝑑𝑠 + 𝜎

1
𝐵
1 (𝑡) .

(43)

And we get

𝑟

𝐾
∫

𝑡

0

𝑁(𝑠) 𝑑𝑠 ≤ − ln𝑁(𝑡) + ln𝑁
0
+ (𝑟 −

𝜎
2

1

2
) 𝑡 + 𝜎

1
𝐵
1 (𝑡) .

(44)

Dividing 𝑡 on both sides of the previouslymentioned inequal-
ity yields

𝑟

𝐾

1

𝑡
∫

𝑡

0

𝑁(𝑠) 𝑑𝑠 ≤ −
ln𝑁(𝑡)
𝑡

+
ln𝑁
0

𝑡
+ (𝑟 −

𝜎
2

1

2
) +

𝜎
1
𝐵
1
(𝑡)

𝑡
.

(45)

Letting 𝑡 → ∞, we know that

lim
𝑡→∞

ln𝑁(𝑡)
𝑡

= 0 a.s.; (46)

Then we obtain

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

𝑁(𝑠) 𝑑𝑠 ≤

𝐾 (𝑟 − 𝜎
2

1
/2)

𝑟
a.s. (47)

On the other hand,
𝑟

𝐾
∫

𝑡

0

𝑁(𝑠) 𝑑𝑠 ≥ − ln𝑁(𝑡) + ln𝑁
0

+ (𝑟 −
𝜎
2

1

2
) 𝑡 −

𝑏

𝑚
𝑡 + 𝜎
1
𝐵
1 (𝑡) ;

(48)

dividing 𝑡 on both sides and letting 𝑡 → ∞, then

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑁(𝑠) 𝑑𝑠 ≥

𝐾 (𝑟 − 𝑏/𝑚 − 𝜎
2

1
/2)

𝑟
. (49)

From the above results, inequality (41) holds.

Theorem 8. Assume that 𝑐 − 𝑑 − 𝜎2
2
/2 > 0 holds and that

(𝑁(𝑡), 𝑃(𝑡)) is the solution of model (6) for any initial value
(𝑁
0
, 𝑃
0
) ∈ 𝑅
2

+
; then

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑁(𝑠)

𝑁 (𝑠) + 𝑚𝑃
𝛼
(𝑠)
𝑑𝑠 ≥

𝑑 + 𝜎
2

2
/2

𝑐
,

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

𝑃
𝛼
(𝑠)

𝑁 (𝑠) + 𝑚𝑃
𝛼
(𝑠)
𝑑𝑠 ≤

𝑐 − 𝑑 − 𝜎
2

2
/2

𝑐𝑚
,

(50)

which are stable in time average.

Proof. Denoting 𝑉(𝑃) = ln𝑃 and by Itô’s formula, we have

𝑑𝑉 = (
𝑐𝑁 (𝑡)

𝑁 (𝑡) + 𝑚𝑃
𝛼
(𝑡)

− 𝑑 − ℎ𝑃 (𝑡) −
𝜎
2

2

2
)𝑑𝑡 + 𝜎

2
𝑑𝐵
2
(𝑡) .

(51)

Then,

𝑐 ∫

𝑡

0

𝑁(𝑠)

𝑁 (𝑠) + 𝑚𝑃
𝛼
(𝑠)
𝑑𝑠

= ln𝑃 (𝑡) − ln𝑃
0
+ (𝑑 +

𝜎
2

2

2
) 𝑡 + ℎ∫

𝑡

0

𝑃 (𝑠) 𝑑𝑠 − 𝜎
2
𝐵
2
(𝑡)

≥ ln𝑃 (𝑡) − ln𝑃
0
+ (𝑑 +

𝜎
2

2

2
) 𝑡 − 𝜎

2
𝐵
2
(𝑡) .

(52)

Dividing 𝑡 on both sides yields

𝑐

𝑡
∫

𝑡

0

𝑁(𝑠)

𝑁 (𝑠) + 𝑚𝑃
𝛼
(𝑠)
𝑑𝑠

≥
ln𝑃 (𝑡)
𝑡

−
ln𝑃
0

𝑡
+ 𝑑 +

𝜎
2

2

2
−
𝜎
2
𝐵
2
(𝑡)

𝑡
;

(53)

we obtain

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑁(𝑠)

𝑁 (𝑠) + 𝑚𝑃
𝛼
(𝑠)
𝑑𝑠 ≥

𝑑 + 𝜎
2

2
/2

𝑐
. (54)

Furthermore,

𝑑𝑉 = (𝑐 −
𝑐𝑚𝑃
𝛼
(𝑡)

𝑁 (𝑡) + 𝑚𝑃
𝛼
(𝑡)

− 𝑑 − ℎ𝑃 (𝑡) −
𝜎
2

2

2
)𝑑𝑡

+ 𝜎
2
𝑑𝐵
2
(𝑡) ;

(55)

then we can get

𝑐𝑚∫

𝑡

0

𝑃
𝛼
(𝑠)

𝑁 (𝑠) + 𝑚𝑃
𝛼
(𝑠)
𝑑𝑠

= − ln𝑃 (𝑡) + ln𝑃
0
+ (𝑐 − 𝑑 −

𝜎
2

2

2
) 𝑡

− ℎ∫

𝑡

0

𝑃 (𝑠) 𝑑𝑠 + 𝜎
2
𝐵
2
(𝑡)

≤ − ln𝑃 (𝑡) + ln𝑃
0
+ (𝑐 − 𝑑 −

𝜎
2

2

2
) 𝑡 + 𝜎

2
𝐵
2
(𝑡) .

(56)

Dividing 𝑡 on both sides, we obtain

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

𝑃
𝛼
(𝑠)

𝑁 (𝑠) + 𝑚𝑃
𝛼
(𝑠)
𝑑𝑠 ≤

𝑐 − 𝑑 − (𝜎
2

2
/2)

𝑐𝑚
. (57)
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2.4. Extinction. From (17), if 𝑐 − 𝑑 − 𝜎
2

2
/2 < 0, then

lim
𝑡→∞

𝑃(𝑡) = 0 a.s. Moreover, from Theorem 7 and (49),
we know that if 𝑟 − 𝑏/𝑚 − 𝜎2

1
/2 > 0 holds, then

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑁(𝑠) 𝑑𝑠 ≥

𝐾 (𝑟 − 𝑏/𝑚 − 𝜎
2

1
/2)

𝑟
a.s., (58)

which implies that there are a 𝑇
0
> 0 and a positive constant

𝑛
0
such that 𝑁(𝑡) > 𝑛

0
a.s. for 𝑡 ≥ 𝑇

0
. Besides, for all 𝜀 > 0,

there are 𝑇 > 𝑇
0
and Ω

𝜀
such that P(Ω

𝜀
) ≥ 1 − 𝜀 and

𝑏𝑃(𝑡)/𝑁(𝑡) ≤ 𝜀 for 𝑡 ≥ 𝑇. Then we obtain

𝑑𝑁 (𝑡) = 𝑁 (𝑡) (𝑟 −
𝑟

𝐾
𝑁 (𝑡) −

𝑏𝑃 (𝑡)

𝑁 (𝑡) + 𝑚𝑃
𝛼
(𝑡)
) 𝑑𝑡

+ 𝜎
1
𝑁(𝑡) 𝑑𝐵1 (𝑡)

≥ 𝑁 (𝑡) (𝑟 −
𝑟

𝐾
𝑁 (𝑡) −

𝑏𝑃 (𝑡)

𝑁 (𝑡)
) 𝑑𝑡 + 𝜎

1
𝑁(𝑡) 𝑑𝐵1 (𝑡)

≥ 𝑁 (𝑡) (𝑟 −
𝑟

𝐾
𝑁 (𝑡) − 𝜀) 𝑑𝑡 + 𝜎1𝑁(𝑡) 𝑑𝐵1 (𝑡) ,

(59)

which implies that

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑁(𝑠) 𝑑𝑠 ≥

𝐾 (𝑟 − 𝜀 − 𝜎
2

1
/2)

𝑟
> 0. (60)

FromTheorem 7 and (47), we have

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

𝑁(𝑠) 𝑑𝑠 ≤

𝐾 (𝑟 − 𝜎
2

1
/2)

𝑟
a.s. (61)

Therefore, by the arbitrary of 𝜀, we get

lim
𝑡→∞

1

𝑡
∫

𝑡

0

𝑁(𝑠) 𝑑𝑠 =

𝐾 (𝑟 − 𝜎
2

1
/2)

𝑟
a.s. (62)

Combining the above arguments, we can get the theorem
as follows.

Theorem 9. Let (𝑁(𝑡), 𝑃(𝑡)) be the solution of model (6) with
any initial value (𝑁

0
, 𝑃
0
) ∈ 𝑅

2

+
. If 𝑟 − 𝑏/𝑚 − 𝜎

2

1
/2 > 0 and

𝑐 − 𝑑 − 𝜎
2

2
/2 < 0, then

lim
𝑡→∞

1

𝑡
∫

𝑡

0

𝑁(𝑠) 𝑑𝑠 =

𝐾 (𝑟 − 𝜎
2

1
/2)

𝑟
,

lim
𝑡→∞

𝑃 (𝑡) = 0.

(63)

Furthermore, set 𝑢(𝑡) = ln𝑁(𝑡) and V(𝑡) = ln𝑃(𝑡); for the
first equation of model (6) we have

𝑑𝑢 (𝑡) = (𝑟 −
𝑟

𝐾
e𝑢(𝑡) − 𝑏eV(𝑡)

e𝑢(𝑡) + 𝑚e𝛼V(𝑡)
−
𝜎
2

1

2
)𝑑𝑡

+ 𝜎
1
𝑑𝐵
1
(𝑡) ≤ (𝑟 −

𝜎
2

1

2
)𝑑𝑡 + 𝜎

1
𝑑𝐵
1
(𝑡) .

(64)

Taking the comparison theorem of stochastic equations and
the theory of diffusion processes [14], then lim

𝑡→∞
𝑢(𝑡) =

−∞ a.s.; that is,

lim
𝑡→∞

𝑁(𝑡) = 0 a.s. (65)

Similarly, we obtain

lim
𝑡→∞

𝑃 (𝑡) = 0 a.s. (66)

If not, then there is a positive constant𝐻 such that

lim sup
𝑡→∞

𝑃 (𝑡) = 𝐻 > 0 a.s. (67)

Hence, for any given 𝜀 > 0, there exist 𝑡
0
and a set Ω

𝜀
such

that P(Ω
𝜀
) ≥ 1 − 𝜀 and 𝑐𝑁(𝑡)/(𝑁(𝑡) + 𝑚𝑃𝛼(𝑡)) ≤ 𝜀 for 𝑡 ≥ 𝑡

0
.

Therefore,

− 𝑃 (𝑡) (𝑑 + ℎ𝑃 (𝑡)) 𝑑𝑡 + 𝜎
2
𝑃 (𝑡) 𝑑𝐵

2
(𝑡)

≤ 𝑑𝑃 (𝑡) ≤ 𝑃 (𝑡) (−𝑑 + 𝜀) 𝑑𝑡 + 𝜎
2
𝑃 (𝑡) 𝑑𝐵

2
(𝑡) ,

− (𝑑 + ℎ𝑃 (𝑡) +
𝜎
2

2

2
)𝑑𝑡 + 𝜎

2
𝑑𝐵
2
(𝑡)

≤ 𝑑V (𝑡) ≤ (−𝑑 + 𝜀 −
𝜎
2

2

2
)𝑑𝑡 + 𝜎

2
𝑑𝐵
2
(𝑡) .

(68)

By the same reasoning as previously stated, we can get
lim
𝑡→∞

V(𝑡) = −∞ a.s.; that is,

lim
𝑡→∞

𝑃 (𝑡) = 0 a.s. (69)

There is a contradiction; hence (66) is true.
Based on the above, we obtain the following theorem

which means that if the noise satisfies some conditions, then
both species𝑁 and 𝑃 of model (6) will die out.

Theorem 10. Let (𝑁(𝑡), 𝑃(𝑡)) be the solution of model (6)with
any initial value (𝑁

0
, 𝑃
0
) ∈ 𝑅
2

+
. If 𝑟 − 𝑏/𝑚 − 𝜎2

1
/2 < 0, then

lim
𝑡→∞

𝑁(𝑡) = 0, lim
𝑡→∞

𝑃 (𝑡) = 0. (70)

3. Numerical Simulations

In this section, we perform some numerical simulations for
model (6) with environmental noise to illustrate the pre-
viously mentioned analytical findings by referring to the
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Figure 1: Phase portrait of model (4). Other parameters are taken
as 𝑟 = 2, 𝐾 = 0.15, 𝑏 = 0.8, 𝑐 = 0.5, 𝑑 = 0.1, 𝑚 = 0.1, 𝛼 = 0.2, and
ℎ = 0.1. The horizontal axis is prey population 𝑁 and the vertical
axis is predator population 𝑃. 𝐸

0
= (0, 0) and 𝐸

1
= (0.15, 0) are two

saddle points; 𝐸∗ = (0.023, 0.2025) is stable.

method mentioned in Higham [34]. Next, we consider the
discretization equations

𝑁
𝑖+1
= 𝑁
𝑖
+ 𝑁
𝑖
(𝑟 −

𝑟

𝐾
𝑁
𝑖
−

𝑏𝑃
𝑖

𝑁
𝑖
+ 𝑚𝑃
𝑖

𝛼
)Δ𝑡

+ 𝛼𝑁
𝑖
√Δ𝑡𝜉
1𝑖
+
𝛼
2

2
𝑁
2

𝑖
(𝜉
2

1𝑖
− 1)Δ𝑡,

𝑃
𝑖+1
= 𝑃
𝑖
+ 𝑃
𝑖
(

𝑐𝑁
𝑖

𝑁
𝑖
+ 𝑚𝑃
𝑖

𝛼
− 𝑑 − ℎ𝑃

𝑖
)Δ𝑡

+ 𝛽𝑃
𝑖
√Δ𝑡𝜉
2𝑖
+
𝛽
2

2
𝑃
2

𝑖
(𝜉
2

2𝑖
− 1)Δ𝑡,

(71)

where 𝜉
1𝑖
and 𝜉
2𝑖
(𝑖 = 1, 2, . . . , 𝑛) are the Gaussian random

variables N(0, 1).
When choosing the values of parameters 𝑟 = 2, 𝐾 =

0.15, 𝑏 = 0.8, 𝑐 = 0.5, 𝑑 = 0.1, 𝑚 = 0.1, 𝛼 = 0.2,
and ℎ = 0.1 for model (4), which has three equilibria in
the positive quadrant, where 𝐸

0
= (0, 0) (total extinct) and

𝐸
1
= (0.15, 0) (extinct of the predator or prey only) are saddle

points, 𝐸∗ = (0.023, 0.2025) (coexistence of the prey and
predator) is globally asymptotically stable. The trajectory of
the prey and predator population of model (4) is shown in
Figure 1.

Figure 2 shows the time-series plots ofmodel (6) with dif-
ferent noise intensities 𝜎2

1
and 𝜎2

2
. When choosing 𝜎

1
= 𝜎
2
=

0.045 (Figure 2(a)) and 𝜎
1
= 0.12, 𝜎

2
= 0.3 (Figure 2(b)),

from Theorem 6, we know that the positive solution of
model (6) is stochastically permanent, which means that
stochastic perturbations do not change the permanence of
the deterministic model (4). Moreover, fromTheorem 7, the
model will be stochastically persistent in mean. In other
words, we can use the deterministic model (4) describing the
dynamics of the stochastic model when the noise intensities
𝜎
2

1
and 𝜎

2

2
are small. From Figure 2(b), we can observe

that the violent fluctuations appear as the noise intensities
further increase. It means that noise has strong destabilizing
effects on the model and the amplitude of the fluctuations
in population density of prey and predator species increases
obviously, implying instability of the coexisting equilibrium
point in the stochastic environment.

In Figure 3, we continue to choose different noise inten-
sities 𝜎2

1
and 𝜎2

2
to consider the effects of noise to model

(6). When choosing 𝜎
1
= 0.15 and 𝜎

2
= 0.9 (Figure 3(a)),

the conditions of Theorem 9 are satisfied; then we can find
that prey population 𝑁(𝑡) of model (6) is permanent and
predator population 𝑃(𝑡) will die out. Choosing 𝜎

1
= 0.918

and 𝜎
2
= 0.6 in Figure 3(b), which satisfies the conditions

of Theorem 10, both species 𝑁 and 𝑃 in model (6) become
extinct. That is to say, big noise can make the two species die
out. From the above numerical results and byTheorems 3, 6,
7, 9, and 10, we conclude that for some noise intensities 𝜎2

1

and 𝜎2
2
the dynamical behaviors of stochastically ultimately

boundedness, permanence, persistence in mean, and extinc-
tion can be observed in model (6).

4. Conclusions and Remarks

In this paper, we consider a stochastic Hassell-Varley type
predator-prey model. The value of this study lies in twofolds.
First, it verifies some relevant properties of the corresponding
stochastic model (6), which shows the global existence,
boundedness and stochastic permanence, persistence in
mean, and extinction of the positive solution. Second, it illus-
trates the dynamics of the model via numerical simulations,
which shows that if the noise is not large and satisfies some
conditions, the stochastic perturbations do not cause drastic
changes of the dynamics in the deterministicmodel (4), while
if the noise is sufficiently large and satisfies some conditions,
it will force two species in the model to die out.

In order to study the stochastic model (6), we perturb the
deterministic model (4) by incorporating white noise terms
in the growth rate of prey population and in the death rate of
predator population. Establishing a Lyapunov function, there
is a unique positive solution to the model for any positive
initial value. Applying Itô’s formula, we derive that, under
some conditions, the solution of model (6) is stochastically
bounded, permanent, and stochastic persistent in mean and
extinct. For the fixed parameters 𝑟, 𝐾, 𝑏, 𝑐, 𝑑, 𝑚, 𝛼, and ℎ,
some conditions depend on the intensities of noise 𝜎2

1
and

noise 𝜎2
2
. When the noise intensities satisfy some conditions

ofTheorem 9, we can find that prey population𝑁(𝑡) ofmodel
(6) is permanent and predator population 𝑃(𝑡) will die out
(see Figure 3(a)), while with the noise intensities increasing
which satisfy the conditions ofTheorem 10, from Figure 3(b),
two species 𝑁 and 𝑃 will die out. In other words, when the
noise satisfies some conditions of Theorems 6 and 7 and
is not sufficiently large, the populations 𝑁 and 𝑃 may be
stochastically permanent and persistent in mean, while large
noise satisfying the conditions ofTheorems 9 and 10will force
the population to become extinct. Our complete analysis of
the stochastic model will give some suggestions to the studies
of the population dynamics.
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Figure 2: Solutions of model (6) with different noise and other parameters are the same as those of Figure 1 and initial condition (𝑁
0
, 𝑃
0
) =

(0.05, 0.23). (a) 𝜎
1
= 𝜎
2
= 0.045 and (b) 𝜎

1
= 0.12, 𝜎

2
= 0.3.
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Figure 3: Solutions of model (6) with different noise and other parameters are the same as those of Figure 1. (a) 𝜎
1
= 0.15, 𝜎

2
= 0.9 and (b)

𝜎
1
= 0.918, 𝜎

2
= 0.6.
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We extend the classical SIRS epidemic model incorporating media coverage from a deterministic framework to a stochastic
differential equation (SDE) and focus on how environmental fluctuations of the contact coefficient affect the extinction of the
disease. We give the conditions of existence of unique positive solution and the stochastic extinction of the SDE model and discuss
the exponential 𝑝-stability and global stability of the SDE model. One of the most interesting findings is that if the intensity of
noise is large, then the disease is prone to extinction, which can provide us with some useful control strategies to regulate disease
dynamics.

1. Introduction

Recent years, a number of mathematical models have been
formulated to describe the impact of media coverage on
the dynamics of infectious diseases [1–10]. Mass media
(television, radio, newspapers, billboards, and booklets) has
been used as a way of delivering preventive health messages
as it has the potential to influence people’s behavior and
deter them from risky behavior or from taking precautionary
measures in relation to a disease outbreak [7, 11, 12]. Hence,
media coverage has an enormous impact on the spread and
control of infectious diseases [2, 3, 9].

On the other hand, for human disease, the nature of
epidemic growth and spread is inherently random due to
the unpredictability of person-to-person contacts [13], and
population is subject to a continuous spectrum of distur-
bances [14, 15]. In epidemic dynamics, stochastic differential
equation (SDE) models could be the more appropriate way
of modeling epidemics in many circumstances and many
realistic stochastic epidemic models can be derived based on
their deterministic formulations [16–28].

In [10], Liu investigated an SIRS epidemic model incor-
porating media coverage with random perturbation. He
assumed that stochastic perturbations were of white noise
type, which were directly proportional to distance susceptible
𝑆(𝑡), infectious 𝐼(𝑡), and recover 𝑅(𝑡) from values of endemic

equilibrium point (𝑆∗, 𝐼∗, 𝑅∗), influence on the 𝑑𝑆(𝑡)/𝑑𝑡,
𝑑𝐼(𝑡)/𝑑𝑡, 𝑑𝑅(𝑡)/𝑑𝑡, respectively. In fact, besides the possible
equilibrium approach in [10], there are different possible
approaches to introduce random effects in the epidemic
models affected by environmental white noise frombiological
significance and mathematical perspective [28–30]. Some
scholars [17, 28, 30, 31] demonstrated that one ormore system
parameter(s) can be perturbed stochastically withwhite noise
term to derive environmentally perturbed system.

In [10], the author proved that the endemic equilibrium
of the stochastic model is asymptotically stable in the large.
Therefore, it is natural to ask how environmental fluctuations
of the contact coefficient affect the extinction of the disease.

In this paper, wewill focus on the effects of environmental
fluctuations on the disease’s extinction through studying the
stochastic dynamics of an SIRS model incorporating media
coverage. The rest of this paper is organized as follows. In
Section 2, based on the results of Cui et al. [2] and [10], we
derive the stochastic differential SIRS model incorporating
media coverage. In Section 3, we give the conditions of
existence of unique positive solution and the stochastic
extinction of the SDE model. In Section 4, we provide some
examples to support our research results. In the last section,
we provide a brief discussion and the summary of main
results.
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2. Model Derivation and Related Definitions

2.1. Model Derivation. Let 𝑆(𝑡) be the number of susceptible
individuals, 𝐼(𝑡) the number of infective individuals, and𝑅(𝑡)
the number of removed individuals at time 𝑡, respectively.
Based on the work of Cui et al. [2] and [10], we consider
the SIRS epidemic model incorporating media coverage as
follows:

𝑑𝑆

𝑑𝑡
= Λ − 𝜇𝑆 − (𝛽

1
−

𝛽
2
𝐼

𝑏 + 𝐼
) 𝑆𝐼 + 𝜂𝑅,

𝑑𝐼

𝑑𝑡
= (𝛽
1
−

𝛽
2
𝐼

𝑏 + 𝐼
) 𝑆𝐼 − (𝜇 + 𝛼 + 𝜆) 𝐼,

𝑑𝑅

𝑑𝑡
= 𝜆𝐼 − (𝜇 + 𝜂) 𝑅,

(1)

whereΛ is the recruitment rate,𝜇 represents the natural death
rate, 𝜂 is the loss of constant immunity rate, 𝛼 is the diseases
induced constant death rate, and 𝜆 is constant recovery rate.
𝛽
1
is the usual contact rate without considering the infective

individuals and 𝛽
2
is the maximum reduced contact rate due

to the presence of the infected individuals. No one can avoid
contacting with others in every case, so it is assumed that
𝛽
1
> 𝛽
2
. The half-saturation constant 𝑏 > 0 reflects the

impact of media coverage on the contact transmission. The
function 𝐼/(𝑏 + 𝐼) is a continuous bounded function which
takes into account disease saturation or psychological effects.

For model (1), the basic reproduction number

𝑅
0
=

Λ𝛽
1

𝜇 (𝜇 + 𝛼 + 𝜆)
(2)

is the threshold of the system for an epidemic to occur.Model
(1) has a disease-free equilibrium 𝐸

0
= (Λ/𝜇, 0, 0) and the

endemic equilibrium if 𝑅
0
> 1. The disease-free equilibrium

is globally asymptotically stable if 𝑅
0
≤ 1 and unstable if 𝑅

0
>

1. The endemic equilibrium is globally asymptotically stable
if 𝑅
0
> 1. These results of model (1) were studied in [10].

If we replace the contact rate 𝛽
1
in model (1) by 𝛽

1
+

𝜎(𝑑𝐵/𝑑𝑡), where 𝑑𝐵/𝑑𝑡 is a white noise (i.e., 𝐵(𝑡) is a
Brownian motion), model (1) becomes as follows:

𝑑𝑆 = [Λ − 𝜇𝑆 − (𝛽
1
−

𝛽
2
𝐼

𝑏 + 𝐼
) 𝑆𝐼 + 𝜂𝑅] 𝑑𝑡 + 𝜎𝑆𝐼 𝑑𝐵 (𝑡) ,

𝑑𝐼 = [(𝛽
1
−

𝛽
2
𝐼

𝑏 + 𝐼
) 𝑆𝐼 − (𝜇 + 𝛼 + 𝜆) 𝐼] 𝑑𝑡 + 𝜎𝑆𝐼 𝑑𝐵 (𝑡) ,

𝑑𝑅 = (𝜆𝐼 − (𝜇 + 𝜂) 𝑅) 𝑑𝑡.

(3)

Obviously, the stochastic model (3) has the same disease-
free equilibrium 𝐸

0
= (Λ/𝜇, 0, 0) as model (1).

Throughout this paper, let (Ω,F,P) be a complete prob-
ability space with a filtration {F

𝑡
}
𝑡∈R
+

satisfying the usual
conditions (i.e., it is right continuous and increasingwhileF

0

contains all P-null sets). Define a bounded set Γ as follows:

Γ = {(𝑆, 𝐼, 𝑅) ∈ R
3

+
: 0 < 𝑆 + 𝐼 + 𝑅 <

Λ

𝜇
} ⊂ R

3

+
. (4)

2.2. Related Definitions. Consider the general 𝑛-dimensional
stochastic differential equation

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑡) 𝑑𝑡 + 𝜑 (𝑥 (𝑡) , 𝑡) 𝑑𝐵 (𝑡) (5)

on 𝑡 ≥ 0 with initial value 𝑥(0) = 𝑥
0
, the solution is denoted

by 𝑥(𝑡, 𝑥
0
). Assume that 𝑓(0, 𝑡) = 0 and 𝜑(0, 𝑡) = 0 for all

𝑡 ≥ 0, so (5) has the solution 𝑥(𝑡) = 0, which is called the
trivial solution.

Let us first recall a few definitions.

Definition 1 (see [32]). The trivial solution 𝑥(𝑡) = 0 of (5) is
said to be

(i) stable in probability if, for all 𝜀 > 0,

lim
𝑥
0
→0

P(sup
𝑡≥0

𝑥 (𝑡, 𝑥0)
 ≥ 𝜀) = 0; (6)

(ii) asymptotically stable if it is stable in probability and
moreover if

lim
𝑥
0
→0

P( lim
𝑡→∞

𝑥 (𝑡, 𝑥
0
) = 0) = 1; (7)

(iii) globally asymptotically stable if it is stable in proba-
bility and moreover if, for all 𝑥

0
∈ R𝑛

P( lim
𝑡→∞

𝑥 (𝑡, 𝑥
0
) = 0) = 1; (8)

(iv) almost surely exponentially stable if for all 𝑥
0
∈ R𝑛,

lim sup
𝑡→∞

1

𝑡
log 𝑥 (𝑡, 𝑥0)

 < 0 a.s.; (9)

(v) exponentially 𝑝-stable if there is a pair of positive
constants 𝐶

1
and 𝐶

2
such that for all 𝑥

0
∈ R𝑛,

E (
𝑥 (𝑡, 𝑥0)



𝑝
) ≤ 𝐶

1

𝑥0


𝑝
𝑒
−𝐶
2
𝑡 on 𝑡 ≥ 0. (10)

3. Dynamics of the SDE Model (3)
In what follows, we first use the method of Lyapunov func-
tions to find conditions of existence of unique positive
solution of model (3).

3.1. Existence of Unique Positive Solution of Model (3). In
this subsection, we show the existence of the unique positive
global solution of SDE model (3).

Theorem 2. Consider model (3), for any given initial value
(𝑆(0), 𝐼(0), 𝑅(0)) ∈ Γ; then there is a unique solution (𝑆(𝑡),

𝐼(𝑡), 𝑅(𝑡)) on 𝑡 ≥ 0 and it will remain in R3
+
with probability

one.

Proof. The proof is almost identical toTheorem 2 of [33], but
for completeness we repeat it here. Let (𝑆(0), 𝐼(0), 𝑅(0)) ∈ Γ.
Summing up the three equations in (3) and denoting𝑁(𝑡) =

𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡), we have

𝑑𝑁 (𝑡) = (Λ − 𝜇𝑁 (𝑡) − 𝛼𝐼 (𝑡)) 𝑑𝑡. (11)
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Then, if (𝑆(𝑠), 𝐼(𝑠), 𝑅(𝑠)) ∈ R3
+
for all 0 ≤ 𝑠 ≤ 𝑡 almost surely

(briefly a.s.), we get

(Λ − (𝜇 + 𝛼)𝑁 (𝑠)) 𝑑𝑠 ≤ 𝑑𝑁 (𝑠) ≤ (Λ − 𝜇𝑁 (𝑠)) 𝑑𝑠 a.s.
(12)

Hence, by integration, we check

Λ

𝜇 + 𝛼
+ (𝑁 (0) −

Λ

𝜇 + 𝛼
) 𝑒
−(𝜇+𝛼)𝑠

≤ 𝑁 (𝑠) ≤
Λ

𝜇
+ (𝑁 (0) −

Λ

𝜇
) 𝑒
−𝜇𝑠

.

(13)

Then, 0 < Λ/(𝜇 + 𝛼) < 𝑁(𝑠) < Λ/𝜇 a.s., so,

(𝑆 (𝑠) , 𝐼 (𝑠) , 𝑅 (𝑠)) ∈ (0,
Λ

𝜇
)

3

for all 𝑠 ∈ [0, 𝑡] a.s. (14)

Since the coefficients of model (3) satisfy the local
Lipschitz condition, there is a unique local solution on [0, 𝜏

𝑒
),

where 𝜏
𝑒
is the explosion time. Therefore, the unique local

solution to model (3) is positive by the Itô’s formula. Now,
let us show that this solution is global; that is, 𝜏

𝑒
= ∞ a.s.

Let 𝜖
0
> 0 such that 𝑆(0), 𝐼(0), 𝑅(0) > 𝜖

0
. For 𝜖 ≤ 𝜖

0
,

define the stop-times

𝜏
𝜖
= inf {𝑡 ∈ [0, 𝜏

𝑒
] : 𝑆 (𝑡) ≤ 𝜖 or 𝐼 (𝑡) ≤ 𝜖 or 𝑅 (𝑡) ≤ 𝜖} .

(15)

Then

𝜏 = lim
𝜖→0

𝜏
𝜖

= inf {𝑡 ∈ [0, 𝜏
𝑒
] : 𝑆 (𝑡) ≤ 0 or 𝐼 (𝑡) ≤ 0 or 𝑅 (𝑡) ≤ 0} .

(16)

Define a 𝐶2-function 𝑉 : R3
+
→ R
+
by

𝑉 (𝑆, 𝐼, 𝑅) = − log(
𝜇𝑆

Λ
) − log(

𝜇𝐼

Λ
) − log(

𝜇𝑅

Λ
) . (17)

By the Itô’s formula, for all 𝑡 ≥ 0, 𝑠 ∈ [0, 𝑡 ∧ 𝜏
𝜖
], we obtain

𝑑𝑉 = −
1

𝑆 (𝑠)
𝑑𝑆 +

1

2𝑆(𝑠)
2
𝑑𝑆 𝑑𝑆 −

1

𝐼 (𝑠)
𝑑𝐼

+
1

2𝐼(𝑠)
2
𝑑𝐼 𝑑𝐼 −

1

𝑅 (𝑠)
𝑑𝑅 +

1

2𝑅(𝑠)
2
𝑑𝑅𝑑𝑅

≜ 𝐿𝑉𝑑𝑠 + 𝜎 (𝐼 (𝑠) − 𝑆 (𝑠)) 𝑑𝐵 (𝑠) ,

(18)

where

𝐿𝑉 = 3𝜇 + 2𝜆 + 𝛼 + 𝛽
1
𝐼 +

𝛽
2
𝑆𝐼

𝑏 + 𝐼
+
𝜎
2

2
(𝑆
2
+ 𝐼
2
)

−
𝛽
2
𝐼
2

𝑏 + 𝐼
−
𝜂𝑅

𝑆
− 𝛽
1
𝑆 −

Λ

𝑆
−
𝛼𝐼

𝑅

≤ 3𝜇 + 2𝜆 + 𝛼 + 𝛽
1
𝐼 + 𝛽
2
𝑆 +

𝜎
2

2
(𝑆
2
+ 𝐼
2
) .

(19)

By (14) we assert that (𝑆(𝑠), 𝐼(𝑠), 𝑅(𝑠)) ∈ (0, Λ/𝜇) for all 𝑠 ∈
[0, 𝑡 ∧ 𝜏

𝜖
] a.s. Hence

𝐿𝑉 ≤ 3𝜇 + 2𝜆 + 𝛼 +
Λ

𝜇
(𝛽
1
+ 𝛽
2
+
𝜎
2
Λ

𝜇
) := 𝑀. (20)

Substituting this inequality into (18), we see that

𝑑𝑉 (𝑆, 𝐼, 𝑅) ≤ 𝑀𝑑𝑠 + 𝜎 (𝐼 − 𝑆) 𝑑𝐵 (𝑠) , (21)

which implies that

∫

𝑡∧𝜏
𝜖

0

𝑑𝑉 (𝑆 (𝑠) , 𝐼 (𝑠) , 𝑅 (𝑠))

≤ ∫

𝑡∧𝜏
𝜖

0

𝑀𝑑𝑠 + 𝜎∫

𝑡∧𝜏
𝜖

0

(𝐼 (𝑠) − 𝑆 (𝑠)) 𝑑𝐵 (𝑠) .

(22)

Taking the expectations of the above inequality leads to

E𝑉 (𝑆 (𝑡 ∧ 𝜏
𝜖
) , 𝐼 (𝑡 ∧ 𝜏

𝜖
) , 𝑅 (𝑡 ∧ 𝜏

𝜖
))

≤ 𝑉 (𝑆 (0) , 𝐼 (0) , 𝑅 (0)) + 𝑀𝑡.

(23)

On the other hand, in view of (14), we have 𝑉(𝑆(𝑡 ∧

𝜏
𝜖
), 𝐼(𝑡 ∧ 𝜏

𝜖
), 𝑅(𝑡 ∧ 𝜏

𝜖
)) > 0. It then follows that

E𝑉 (𝑆 (𝑡 ∧ 𝜏
𝜖
) , 𝐼 (𝑡 ∧ 𝜏

𝜖
) , 𝑅 (𝑡 ∧ 𝜏

𝜖
))

= E [I
(𝜏
𝜖
≤𝑡)
𝑉 (𝑆 (𝑡 ∧ 𝜏

𝜖
) , 𝐼 (𝑡 ∧ 𝜏

𝜖
) , 𝑅 (𝑡 ∧ 𝜏

𝜖
))]

+ E [I
(𝜏
𝜖
>𝑡)
𝑉 (𝑆 (𝑡 ∧ 𝜏

𝜖
) , 𝐼 (𝑡 ∧ 𝜏

𝜖
) , 𝑅 (𝑡 ∧ 𝜏

𝜖
))]

≥ E [I
(𝜏
𝜖
≤𝑡)
𝑉 (𝑆 (𝜏

𝜖
) , 𝐼 (𝜏

𝜖
) , 𝑅 (𝜏

𝜖
))] ,

(24)

where I
𝐴
is the indicator function of 𝐴. Note that there is

some component of (𝑆(𝜏
𝜖
), 𝐼(𝜏
𝜖
), 𝑅(𝜏
𝜖
)) equal to 𝜖; therefore,

𝑉(𝑆(𝜏
𝜖
), 𝐼(𝜏
𝜖
), 𝑅(𝜏
𝜖
)) ≥ − log(𝜇𝜖/Λ) > 0. Thereby

E𝑉 (𝑆 (𝑡 ∧ 𝜏
𝜖
) , 𝐼 (𝑡 ∧ 𝜏

𝜖
) , 𝑅 (𝑡 ∧ 𝜏

𝜖
)) ≥ − log(

𝜇𝜖

Λ
)P (𝜏 ≤ 𝑡) .

(25)

Combining (23) with (25) gives, for all 𝑡 ≥ 0,

P (𝜏 ≤ 𝑡) ≤ −
𝑉 (𝑆 (0) , 𝐼 (0) , 𝑅 (0)) + 𝑀𝑡

log (𝜇𝜖/Λ)
. (26)

Let 𝜖 → 0; we obtain, for all 𝑡 ≥ 0, P(𝜏 ≤ 𝑡) = 0. Hence,
P(𝜏 = ∞) = 1. As 𝜏

𝑒
≥ 𝜏, then 𝜏

𝑒
= 𝜏 = ∞ a.s. which

completes the proof of the theorem.

FromTheorem 2 and (14), we can conclude the following
corollary.

Corollary 3. The set Γ is almost surely positive invariant of
model (3); that is, if (𝑆(0), 𝐼(0), 𝑅(0)) ∈ Γ, then P((𝑆(𝑡), 𝐼(𝑡),

𝑅(𝑡)) ∈ Γ) = 1 for all 𝑡 ≥ 0.
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3.2. Stochastic Extinction of Model (3). In this subsection, we
investigate stochastic stability of the disease-free equilibrium
𝐸
0
= (Λ/𝜇, 0, 0) in almost sure exponential and exponential

𝑝 stability by using the suitable Lyapunov function and other
techniques of stochastic analysis.

The following theorem gives a sufficient condition for
the almost surely exponential stability of the disease-free
equilibrium 𝐸

0
= (Λ/𝜇, 0, 0) of model (3).

Theorem4 (almost sure exponential stability). If𝜎2 > 𝛽
2

1
/2𝜇,

then disease-free 𝐸
0
= (Λ/𝜇, 0, 0) of model (3) is almost surely

exponentially stable in Γ.

Proof. Define a function 𝑉 by

𝑉 (𝑆, 𝐼, 𝑅) = log(Λ
𝜇
− 𝑆 + 𝐼 + 𝑅) . (27)

Using the Itô’s formula, we have

𝑑𝑉 =
𝜕𝑉

𝜕𝑆
𝑑𝑆 +

𝜕𝑉

𝜕𝐼
𝑑𝐼 +

𝜕𝑉

𝜕𝑅
𝑑𝑅

+
1

2
(
𝜕
2
𝑉

𝜕𝑆2
𝑑𝑆 𝑑𝑆 +

𝜕
2
𝑉

𝜕𝐼2
𝑑𝐼 𝑑𝐼 +

𝜕
2
𝑉

𝜕𝑅2
𝑑𝑅𝑑𝑅)

+
𝜕
2
𝑉

𝜕𝑆𝜕𝐼
𝑑𝑆 𝑑𝐼 +

𝜕
2
𝑉

𝜕𝑆𝜕𝑅
𝑑𝑆 𝑑𝑅 +

𝜕
2
𝑉

𝜕𝐼𝜕𝑅
𝑑𝐼 𝑑𝑅

=
1

(Λ/𝜇) − 𝑆 + 𝐼 + 𝑅
(−𝑑𝑆 + 𝑑𝐼 + 𝑑𝑅)

−
1

2((Λ/𝜇) − 𝑆 + 𝐼 + 𝑅)
2
(𝑑𝑆 𝑑𝑆 + 𝑑𝐼 𝑑𝐼)

+
1

((Λ/𝜇) − 𝑆 + 𝐼 + 𝑅)
2
𝑑𝑆 𝑑𝐼

=
1

(Λ/𝜇) − 𝑆 + 𝐼 + 𝑅

× (−Λ + 𝜇𝑆 + 2𝛽
1
𝑆𝐼 −

2𝛽
2
𝑆𝐼
2

𝑏 + 𝐼

− (𝜇 + 𝛼) 𝐼 − (𝜇 + 2𝜂) 𝑅)𝑑𝑡

−
2𝜎
2
𝑆
2
𝐼
2

((Λ/𝜇) − 𝑆 + 𝐼 + 𝑅)
2
𝑑𝑡 +

2𝜎𝑆𝐼

(Λ/𝜇) − 𝑆 + 𝐼 + 𝑅
𝑑𝐵

= (2𝛽
1
𝑍 − 2𝜎

2
𝑍 − 𝜇) 𝑑𝑡 + 2𝜎 𝑑𝐵𝑍

−
1

(Λ/𝜇) − 𝑆 + 𝐼 + 𝑅
(
2𝛽
2
𝑆𝐼
2

𝑏 + 𝐼
+ 𝛼𝐼 + 2𝜂𝑅)𝑑𝑡

≤ (2𝛽
1
𝑍 − 2𝜎

2
𝑍 − 𝜇) 𝑑𝑡 + 2𝜎𝑍𝑑𝐵,

(28)

where𝑍(𝑆, 𝐼, 𝑅) = 𝑆𝐼/((Λ/𝜇)−𝑆+𝐼+𝑅). Since 2𝛽
1
𝑍−2𝜎

2
𝑍−

𝜇 = −2𝜎
2
(𝑍 − (𝛽

1
/2𝜎
2
)) + (𝛽

2

1
− 2𝜎
2
𝜇)/2𝜎

2, we obtain

𝑑𝑉 ≤
𝛽
2

1
− 2𝜎
2
𝜇

2𝜎2
𝑑𝑡 + 2𝜎𝑍𝑑𝐵. (29)

Hence,

log(Λ
𝜇
− 𝑆 (𝑡) + 𝐼 (𝑡) + 𝑅 (𝑡))

≤ log(Λ
𝜇
− 𝑆 (0) + 𝐼 (0) + 𝑅 (0)) +

𝛽
2

1
− 2𝜎
2
𝜇

2𝜎2
𝑡 + 𝐺 (𝑡) ,

(30)

where 𝐺(𝑡) is a martingale defined by 𝐺(𝑡) = 2𝜎 ∫
𝑡

0
𝑍𝑑𝐵(𝑠).

In virtue of Corollary 3, the solution of model (3) remains in
Γ. It then follows that

⟨𝐺, 𝐺⟩
𝑡
= 4𝜎
2
∫

𝑡

0

𝑍
2
𝑑𝑠 ≤ 𝐶𝑡, (31)

where 𝐶 is a positive constant which is dependent on Λ, 𝜇.
By the strong law of large numbers for martingales [16], we
have lim sup

𝑡→∞
𝐺(𝑡)/𝑡 = 0 a.s. It finally follows from (30)

by dividing 𝑡 on the both sides and then letting 𝑡 → ∞ that

lim sup
𝑡→∞

1

𝑡
log(Λ

𝜇
− 𝑆 + 𝐼 + 𝑅) ≤

𝛽
2

1
− 2𝜎
2
𝜇

2𝜎2
< 0 a.s.

(32)

which is the required assertion.

We now consider the concept of exponential 𝑝-stability.
The following lemma gives sufficient conditions for exponen-
tial 𝑝-stability of stochastic systems in terms of the Lyapunov
functions (see [32]).

Lemma 5 (see [32]). Suppose that there exists a function
𝑉(𝑧, 𝑡) ∈ 𝐶

2
(Ω) satisfying the following inequalities:

𝐾
1|𝑧|
𝑝
≤ 𝑉 (𝑧, 𝑡) ≤ 𝐾

2|𝑧|
𝑝
, (33)

𝐿𝑉 (𝑧, 𝑡) ≤ −𝐾
3|𝑧|
𝑝
, (34)

where 𝑝 > 0 and 𝐾
𝑖
(𝑖 = 1, 2, 3) is positive constant. Then

the equilibrium of mode (3) is exponentially 𝑝-stable for 𝑡 ≥ 0.
When 𝑝 = 2, it is usually said to be exponentially stable in
mean square and the the equilibrium is globally asymptotically
stable.

From the above Lemma,we obtain the following theorem.

Theorem 6 (exponential 𝑝-stability). Let 𝑝 ≥ 2. If the
conditions 𝑅

0
= 𝛽
1
Λ/𝜇(𝜇 + 𝛼 + 𝜆) < 1 and 𝑅𝑠

0
:= 𝑅
0
+ ((𝑝 −

1)Λ
2
𝜎
2
/2𝜇
2
(𝜇 + 𝛼 + 𝜆)) < 1 hold, the disease-free equilibrium

𝐸
0
= (Λ/𝜇, 0, 0) of model (3) is 𝑝th moment exponentially

stable in Γ.
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Proof. Let 𝑝 ≥ 2 and (𝑆(0), 𝐼(0), 𝑅(0)) ∈ Γ; in view of
Corollary 3, the solution of model (3) remains in Γ. We define
the Lyapunov function 𝑉(𝑆, 𝐼, 𝑅) as follows:

𝑉 = 𝑐
1
(
Λ

𝜇
− 𝑆)

𝑝

+
1

𝑝
𝐼
𝑝
+ 𝑐
2
𝑅
𝑝
, (35)

where 𝑐
1
> 0 and 𝑐

2
> 0 are real positive constants that are

to be chosen later. It is easy to check that inequalities (33) are
true.

Furthermore, by the Itô’s formula, it follows from 𝑆, 𝐼, 𝑅 ∈

(0, Λ/𝜇) that

𝐿𝑉 = −𝑐
1
𝑝(

Λ

𝜇
− 𝑆)

𝑝−1

(Λ − 𝜇𝑆 − 𝛽
1
𝑆𝐼 +

𝛽
2
𝑆𝐼
2

𝑏 + 𝐼
+ 𝜂𝑅)

+
1

2
𝑝 (𝑝 − 1) 𝑐

1
𝜎
2
𝑆
2
𝐼
2
(
Λ

𝜇
− 𝑆)

𝑝−2

+ 𝐼
𝑝−1

(𝛽
1
𝑆𝐼 −

𝛽
2
𝑆𝐼
2

𝑏 + 𝐼
− (𝜇 + 𝛼 + 𝜆) 𝐼)

+
1

2
(𝑝 − 1) 𝜎

2
𝑆
2
𝐼
𝑝
+ 𝑐
2
𝑝𝑅
𝑝−1

(𝜆𝐼 − (𝜇 + 𝜂) 𝑅)

≤ −𝑐
1
𝜇𝑝(

Λ

𝜇
− 𝑆)

𝑝

+
𝑐
1
𝛽
1
𝑝Λ

𝜇
(
Λ

𝜇
− 𝑆)

𝑝−1

𝐼

+
1

2𝜇2
𝑝 (𝑝 − 1) 𝑐

1
𝜎
2
Λ
2
(
Λ

𝜇
− 𝑆)

𝑝−2

𝐼
2

− (𝜇 + 𝛼 + 𝜆 −
𝛽
1
Λ

𝜇
−

1

2𝜇2
(𝑝 − 1) 𝜎

2
Λ
2
) 𝐼
𝑝

− 𝑐
2
𝑝 (𝜇 + 𝜂) 𝑅

𝑝
+ 𝑐
2
𝑝𝜆𝐼𝑅
𝑝−1

.

(36)

Using the fact that

(
Λ

𝜇
− 𝑆)

𝑝−1

𝐼 ≤
𝑝 − 1

𝑝
𝜀(

Λ

𝜇
− 𝑆)

𝑝

+
1

𝑝
𝜀
1−𝑝

𝐼
𝑝
,

(
Λ

𝜇
− 𝑆)

𝑝−2

𝐼
2
≤
𝑝 − 2

𝑝
𝜀(

Λ

𝜇
− 𝑆)

𝑝

+
2

𝑝
𝜀
(2−𝑝)/2

𝐼
𝑝
,

𝑅
𝑝−1

𝐼 ≤
𝑝 − 1

𝑝
𝜀𝑅
𝑝
+
1

𝑝
𝜀
1−𝑝

𝐼
𝑝
,

(37)

we get

𝐿𝑉 ≤ −𝐴
1
(
Λ

𝜇
− 𝑆)

𝑝

− 𝐴
2
𝐼
𝑝
− 𝐴
3
𝑅
𝑝
, (38)

where

𝐴
1
= (𝜇𝑝 − (

𝛽
1
Λ (𝑝 − 1)

𝜇
+
𝜎
2
Λ
2
(𝑝 − 1)

2𝜇2
) 𝜀) 𝑐

1
,

𝐴
2
= 𝜇 + 𝛼 + 𝜆 −

𝛽
1
Λ

𝜇
−

1

2𝜇2
(𝑝 − 1) 𝜎

2
Λ
2

− (
𝛽
1
Λ

𝜇
𝜀
1−𝑝

+
𝜎
2
Λ
2
(𝑝 − 1)

𝜇2
𝜀
(2−𝑝)/2

) 𝑐
1
− 𝑐
2
𝜆𝜀
1−𝑝

𝐴
3
= 𝑐
2
(𝑝 (𝜇 + 𝜂) − 𝜆 (𝑝 − 1) 𝜀) .

(39)

In view of 𝑅
0
+ ((𝑝 − 1)Λ

2
𝜎
2
/2𝜇
2
(𝜇 + 𝛼 + 𝜆)) < 1, we have

𝜇+𝛼+𝜆−(𝛽
1
Λ/𝜇)−(1/2𝜇

2
)(𝑝−1)𝜎

2
Λ
2
> 0. Hence, we chose 𝜀

sufficiently small and 𝑐
1
, 𝑐
2
are positive such that𝐴

1
, 𝐴
2
, 𝐴
3
>

0. According to Lemma 5 the proof is completed.

Under Lemma 5 andTheorems 6, we have in the case 𝑝 =

2 the following corollary.

Corollary 7 (globally asymptotically stable). If the conditions
𝑅
0
= 𝛽
1
Λ/𝜇(𝜇 + 𝛼 + 𝜆) < 1 and 𝑅𝑠

0
:= 𝑅
0
+ (Λ
2
𝜎
2
/2𝜇
2
(𝜇 +

𝛼 + 𝜆)) < 1 hold, the disease-free equilibrium 𝐸
0
= (Λ/𝜇, 0, 0)

of model (3) is globally asymptotically stable in Γ.

4. Numerical Simulations and
Dynamics Comparison

In this section, as an example, we give some numerical
simulations to show different dynamic outcomes of the
deterministic model (1) versus its stochastic version (3) with
the same set of parameter values by using the Milstein
method mentioned in Higham [34]. In this way, model (3)
can be rewritten as the following discretization equations:

𝑆
𝑘+1

= 𝑆
𝑘
+ (Λ − 𝜇𝑆

𝑘
− 𝛽
1
𝑆
𝑘
𝐼
𝑘
+
𝛽
2
𝑆
𝑘
𝐼
2

𝑘

𝑏 + 𝐼
𝑘

+ 𝜂𝑅
𝑘
)Δ𝑡

+ 𝜎𝑆
𝑘
𝐼
𝑘
√Δ𝑡𝜉
𝑘
+
𝜎
2

2
𝑆
𝑘
𝐼
𝑘
(𝜉
2

𝑘
− 1)Δ𝑡,

𝐼
𝑘+1

= 𝐼
𝑘
+ (𝛽
1
𝑆
𝑘
𝐼
𝑘
−
𝛽
2
𝑆
𝑘
𝐼
2

𝑘

𝑏 + 𝐼
𝑘

− (𝜇 + 𝛼 + 𝜆) 𝐼
𝑘
)Δ𝑡

+ 𝜎𝑆
𝑘
𝐼
𝑘
√Δ𝑡𝜉
𝑘
+
𝜎
2

2
𝑆
𝑘
𝐼
𝑘
(𝜉
2

𝑘
− 1)Δ𝑡,

𝑅
𝑘+1

= 𝑅
𝑘
+ (𝜆𝐼
𝑘
− (𝜇 + 𝜂) 𝑅

𝑘
) Δ𝑡,

(40)

where 𝜉
𝑘
, 𝑘 = 1, 2, . . . , 𝑛, are the Gaussian random variables

𝑁(0, 1).
For the deterministic model (1) and its stochastic model

(3), the parameters are taken as follows:

Λ = 1, 𝜇 = 0.03, 𝛽
1
= 0.02, 𝛽

2
= 0.018,

𝜂 = 0.01, 𝛼 = 0.1, 𝜆 = 0.05, 𝑏 = 10.

(41)
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Figure 1: The paths of 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡) for the deterministic model (1) with initial values (𝑆(0), 𝐼(0), 𝑅(0)) = (9, 1, 0). The parameters are
taken as (41) (𝑅

0
= 7.407).
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(b) 𝜎 = 0.02

Figure 2:The paths of 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡) for the stochastic model (3) with initial values (𝑆(0), 𝐼(0), 𝑅(0)) = (9, 1, 0).The parameters are taken
as (41) (𝑅

0
= 7.407).

(1) The Endemic Dynamics of the Deterministic Model (1). For
the deterministic model (1), 𝑅

0
= 𝛽
1
Λ/𝜇(𝜇 + 𝛼 + 𝜆) =

7.407 > 1; thus, it admits a unique endemic equilibrium
𝐸
∗
= (8.1035, 9.7664, 12.2080) which is globally stable for

any initial values (𝑆(0), 𝐼(0), 𝑅(0)) ∈ Γ according to [10] (see,
Figure 1).

(2)The Stochastic Dynamics ofModel (3). For the correspond-
ing stochastic model (3), we choose 𝜎 = 0.1; then, we have
0.01 = 𝜎

2
> 𝛽
2

1
/2𝜇 = 0.007. Thus, from Theorem 4, we

can conclude that for any initial value (𝑆(0), 𝐼(0), 𝑅(0)) ∈ Γ,
disease-free 𝐸

0
= (Λ/𝜇, 0, 0) of model (3) is almost surely

exponentially stable in Γ (see Figure 2(a)).
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To see the disease dynamics of model (3) more, we
decrease the noise intensity 𝜎 to be 0.02 and keep the other
parameters unchanged. Then, we have 0.0004 = 𝜎

2
<

𝛽
2

1
/2𝜇 = 0.007. Therefore, the condition of Theorem 4 is not

satisfied. In this case, our simulations suggest that model (3)
is stochastically persistent (see Figure 2(b)).

5. Concluding Remarks

In this paper, we propose an SIRS epidemic model with
media coverage and environment fluctuations to describe
disease transmission. It is shown that the magnitude of
environmental fluctuations will have an effective impact on
the control and spread of infectious diseases. In a nutshell,
we summarize our main findings as well as their related
biological implications as follows.

Theorem 4 and [10] combined with numerical simula-
tions (see Figures 1 and 2) provide us with a full picture on the
dynamics of the deterministicmodel (1) and stochasticmodel
(3). In [10], the authors showed that the deterministic model
(1) admits a unique endemic equilibrium𝐸

∗ which is globally
asymptotically stable if its basic reproduction number 𝑅

0
> 1

(see Figure 1). If the magnitude of the intensity of noise 𝜎 is
large, that is, 𝜎2 > 𝛽

2

1
/2𝜇, the extinction of disease in the

stochasticmodel (3) occurswhether𝑅
0
is greater than 1 or less

than 1 (see Figure 2(a)). While the magnitude of the intensity
of noise 𝜎 is small, one of our most interesting findings is that
disease may persist if 𝑅

0
> 1, (see Figure 2(b)).

Needless to say, both equilibrium possible approach and
parameter possible approach in the present paper have their
important roles to play. Obviously, our results in the present
paper may be a useful supplement for [10].
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We investigate the disease’s dynamics of a reaction-diffusion epidemic model. We first give a priori estimates of upper and lower
bounds for positive solutions to model and then give the conditions of the existence and nonexistence of the positive nonconstant
steady states, which guarantees the existence of the stationary patterns.

1. Introduction

Infectious diseases are the second leading cause of death
worldwide, after heart disease, and are responsible for more
deaths annually than cancer [1]. Since the pioneer work of
Kermark and McKendrick [2], mathematical models have
been contributing to improve our understanding of infectious
disease dynamics and help us develop preventive measures to
control infection spread qualitatively and quantitatively.

Many studies indicate that spatial epidemiology with self-
diffusion has become a principal scientific discipline aiming
at understanding the causes and consequences of spatial
heterogeneity in disease transmission [3]. In these studies,
reaction-diffusion equations have been intensively used to
describe spatiotemporal dynamics. In particular, the spatial
spread of infections has been studied by analyzing traveling
wave solutions and calculating spread rates [4–10].

Besides, there has been some research on pattern for-
mation in the spatial epidemic model, starting with Turing’s
seminal paper [11]. Turing’s revolutionary idea was that the
passive diffusion could interact with chemical reaction in
such away that even if the reaction by itself has no symmetry-
breaking capabilities, diffusion can destabilize the symmetric
solutions with the result that the system with diffusion has
them [12]. In these studies [3, 13–20], via standard linear
analysis, the authors obtained the conditions of Turing insta-
bility, and, via numerical simulation, they showed the pattern

formation induced by self-diffusion or cross-diffusion and
found that model dynamics exhibits a diffusion controlled
formation growth to stripes, spots, and coexistence or chaos
pattern replication.

Recently, the researchers are interested in research on the
stationary patterns due to the existence and nonexistence
nonconstant solutions of the reaction-diffusion model [21–
29]. But the research on the existence and nonexistence
nonconstant solutions of reaction-diffusion epidemic model,
seems rare [3].

In this paper, we will focus on the disease’s dynamics
through studying the existence of the constant and noncon-
stant steady states of a simple reaction-diffusion epidemic
model.

The rest of this paper is organized as follows. In Section 2,
we derive a reaction-diffusion epidemic model. In Section 3,
we give a priori estimates of upper and lower bounds
for positive solutions to model. In Section 4, we give the
main results on the existence and nonexistence of positive
nonconstant steady states of the model. The paper ends with
a brief discussion in Section 5.

2. Basic Model

In [30], Berezovsky and coworkers introduced a simple
epidemic model through the incorporation of variable pop-
ulation, disease induced mortality, and emigration into the
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classic model of Kermark and McKendrick [2]. The total
population (𝑁) is divided into two groups susceptible (𝑆) and
infectious (𝐼); that is, 𝑁 = 𝑆 + 𝐼. The model describing the
relations between the state variables is

𝑑𝑆

𝑑𝑡
= 𝑟𝑁(1 −

𝑁

𝐾
) − 𝛽

𝑆𝐼

𝑁
− (𝜇 + 𝜃) 𝑆,

𝑑𝐼

𝑑𝑡
= 𝛽

𝑆𝐼

𝑁
− (𝜇 + 𝑑) 𝐼,

(1)

where the birth process incorporates density dependent
effects via a logistic equation with the intrinsic growth rate
𝑟 and the carrying capacity𝐾; 𝑆(𝑡), 𝐼(𝑡) represent population
densities of susceptible and infected population, respectively;
𝛽 denotes the transmission rate (the infection rate constant);
𝜇 is the natural mortality; 𝑑 denotes the disease-induced
mortality; 𝜃 is the per-capita emigration rate of noninfective.

For model (1), the epidemic threshold of basic reproduc-
tion number 𝑅

0
is then computed as

𝑅
0
=

𝛽

𝜇 + 𝑑
. (2)

The basic demographic reproductive number 𝑅
𝑑
is given

by

𝑅
𝑑
=

𝑟

𝜇 + 𝜃
. (3)

For simplicity, rescalling the model (1) by letting 𝑆 →

𝑆/𝐾, 𝐼 → 𝐼/𝐾, and 𝑡 → 𝑡/(𝜇 + 𝑑) leads to the following
model:

𝑑𝑆

𝑑𝑡
= ]𝑅
𝑑
(𝑆 + 𝐼) (1 − (𝑆 + 𝐼)) − 𝑅

0

𝑆𝐼

𝑆 + 𝐼
− ]𝑆,

𝑑𝐼

𝑑𝑡
= 𝑅
0

𝑆𝐼

𝑆 + 𝐼
− 𝐼,

(4)

where ] = (𝜇 + 𝜃)/(𝜇 + 𝑑) defined by the ratio of the average
life-span of susceptibles to that of infections and 𝑆 + 𝐼 ≤ 1.

See [30] for more details.
Assume that the habitat Ω ⊂ R𝑚 (𝑚 ≥ 1) is a bounded

domainwith smooth boundary 𝜕Ω (when𝑚 > 1), andn is the
outward unit normal vector on 𝜕Ω.We consider the following
reaction-diffusion 𝑆𝐼 epidemic model:

𝜕𝑆

𝜕𝑡
− 𝑑
𝑆
Δ𝑆 = ]𝑅

𝑑
(𝑆 + 𝐼) (1 − (𝑆 + 𝐼))

− 𝑅
0

𝑆𝐼

𝑆 + 𝐼
− ]𝑆, 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝐼

𝜕𝑡
− 𝑑
𝐼
Δ𝐼 = 𝑅

0

𝑆𝐼

𝑆 + 𝐼
− 𝐼, 𝑥 ∈ Ω, 𝑡 > 0,

𝑆 (𝑥, 0) = 𝑆
0 (𝑥) > 0, 𝐼 (𝑥, 0) = 𝐼

0 (𝑥) ≥ 0, 𝑥 ∈ Ω,

𝜕𝑆

𝜕n
=

𝜕𝐼

𝜕n
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

(5)

where the nonnegative constants 𝑑
𝑆
and 𝑑

𝐼
are the diffu-

sion coefficients of 𝑆 and 𝐼, respectively. The symbol Δ is

the Laplacian operator. The homogeneous Neumann bound-
ary condition implies that the above model is self-contained
and there is no infection across the boundary.

The corresponding kineticmodel (5) with𝑚 = 2 has been
investigated by Wang et al. [20].

In this paper, we concentrated on the steady states of
model (5) which satisfy

− 𝑑
𝑆
Δ𝑆 = ]𝑅

𝑑 (𝑆 + 𝐼) (1 − (𝑆 + 𝐼)) − 𝑅
0

𝑆𝐼

𝑆 + 𝐼
− ]𝑆, 𝑥 ∈ Ω,

− 𝑑
𝐼
Δ𝐼 = 𝑅

0

𝑆𝐼

𝑆 + 𝐼
− 𝐼, 𝑥 ∈ Ω,

𝜕𝑆

𝜕n
=

𝜕𝐼

𝜕n
= 0, 𝑥 ∈ 𝜕Ω.

(6)

Throughout this paper, the positive solution (𝑆, 𝐼) satisfy-
ing model (6) refers to a classical one with 𝑆 > 0, 𝐼 > 0 on
Ω. Clearly, model (6) has a unique positive constant solution
(endemic equilibrium) 𝐸∗ = (𝑆

∗
, 𝐼
∗
) if 𝑅
𝑑
> (] + 𝑅

0
− 1)/𝑅

0
]

and 𝑅
0
> 1, where

𝑆
∗
=
]𝑅
0
𝑅
𝑑
− 𝑅
0
+ 1 − ]

]𝑅2
0
𝑅
𝑑

, 𝐼
∗
= (𝑅
0
− 1) 𝑆

∗
. (7)

3. A Priori Estimates for Positive
Solutions to Model (6)

Themain purpose of this section is to give a priori upper and
lower positive bounds for positive solution of model (6). To
this aim, we first cite two known results.The first is due to Lin
et al. [31] and the second to Lou and Ni [32]. In the following,
let us denote the constants ],𝑅

𝑑
, and𝑅

0
collectively byΛ.The

positive constants 𝐶, 𝐶, 𝐶, 𝐶∗, and so forth will depend only
on the domainsΩ and Λ.

Lemma 1 (Harnack inequality [31]). Let 𝑤 ∈ 𝐶
2
(Ω) ∩ 𝐶

1
(Ω)

be a positive solution toΔ𝑤(𝑥)+𝑐(𝑥)𝑤(𝑥) = 0, where 𝑐 ∈ 𝐶(Ω),
satisfying the homogeneous Neumann boundary conditions.
Then there exists a positive constant 𝐶∗ = 𝐶

∗
(‖𝑐‖
∞
, Ω), such

that

max
Ω

𝑤 ≤ 𝐶
∗min
Ω

𝑤. (8)

Lemma 2 (maximum principle [32]). Let Ω be a bounded
Lipschitz domain in R𝑚 and 𝑔 ∈ 𝐶(Ω ×R).

(a) Assume that 𝑤 ∈ 𝐶
2
(Ω) ∩ 𝐶

1
(Ω) and satisfies

Δ𝑤 (𝑥) + 𝑔 (𝑥, 𝑤 (𝑥)) ≥ 0, 𝑥 ∈ Ω,

𝜕𝑤

𝜕n
≤ 0, 𝑥 ∈ 𝜕Ω.

(9)

If 𝑤(𝑥
0
) = max

Ω
𝑤(𝑥), then 𝑔(𝑥

0
, 𝑤(𝑥
0
)) ≥ 0.
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(b) Assume that 𝑤 ∈ 𝐶
2
(Ω) ∩ 𝐶

1
(Ω) and satisfies

Δ𝑤 (𝑥) + 𝑔 (𝑥, 𝑤 (𝑥)) ≤ 0, 𝑥 ∈ Ω,

𝜕𝑤

𝜕n
≥ 0, 𝑥 ∈ 𝜕Ω.

(10)

If 𝑤(𝑥
1
) = min

Ω
𝑤(𝑥), then 𝑔(𝑥

1
, 𝑤(𝑥
1
)) ≤ 0.

Theorem 3. If 𝑅
0
> 1, then the positive solution (𝑆(𝑥), 𝐼(𝑥))

of model (6) satisfies

max
Ω

𝑆 (𝑥) <
1

4
𝑅
𝑑
, max

Ω

𝐼 (𝑥) <
1

4
𝑅
𝑑
(𝑅
0
− 1) . (11)

Proof. Assume that (𝑆(𝑥), 𝐼(𝑥)) is a positive solution ofmodel
(6). We set

𝑆 (𝑥
1
) = max
Ω

𝑆 (𝑥) , 𝐼 (𝑥
2
) = max
Ω

𝐼 (𝑥) . (12)

By applying Lemma 2, we have

1

4
𝑅
𝑑
− ]𝑆 (𝑥

1
)

≥ ]𝑅
𝑑
(𝑆 (𝑥
1
) + 𝐼 (𝑥

1
)) (1 − (𝑆 (𝑥

1
) + 𝐼 (𝑥

1
))) − ]𝑆 (𝑥

1
)

≥
𝑅
0
𝑆 (𝑥
1
) 𝐼 (𝑥
1
)

𝑆 (𝑥
1
) + 𝐼 (𝑥

1
)

> 0,

(13)

and 𝑅
0
𝑆(𝑥
2
)𝐼(𝑥
2
)/(𝑆(𝑥

2
) + 𝐼(𝑥

2
)) ≥ 𝐼(𝑥

2
). This clearly gives

𝑆 (𝑥
1
) <

1

4
𝑅
𝑑
, 𝐼 (𝑥

2
) ≤ (𝑅

0
− 1) 𝑆 (𝑥

2
) <

1

4
𝑅
𝑑
(𝑅
0
− 1) .

(14)

Theorem 4. Assume that 𝑅
𝑑

> 1 and 𝑅
0

> 1. Let 𝑑 and 𝐷

be fixed positive constants.Then there exists a positive constant
𝐶 = 𝐶(Λ, 𝑑) such that, if 𝑑

𝑆
, 𝑑
𝐼

> 𝑑, every positive solution
(𝑆(𝑥), 𝐼(𝑥)) of model (6) satisfies

min
Ω

𝑆 (𝑥) > 𝐶, min
Ω

𝐼 (𝑥) > 𝐶. (15)

Proof. Let

𝑐
1
(𝑥) =

1

𝑑
𝑆

(]𝑅
𝑑
(1 +

𝐼

𝑆
) (1 − (𝑆 + 𝐼)) −

𝑅
0
𝐼

𝑆 + 𝐼
− ]) ,

𝑐
2 (𝑥) =

1

𝑑
𝐼

(
𝑅
0
𝑆

𝑆 + 𝐼
− 1) .

(16)

In view of Theorem 3, there exists a positive constant 𝐶 =

𝐶(Λ) such that ‖𝑐
1
(𝑥)‖
∞

≤ 𝐶, ‖𝑐
2
(𝑥)‖
∞

≤ 𝐶 provided that
𝑑
𝑆
, 𝑑
𝐼
> 𝑑. As 𝑆 and 𝐼 satisfy

Δ𝑆 (𝑥) + 𝑐
1 (𝑥) 𝑆 = 0, 𝑥 ∈ Ω,

Δ𝐼 (𝑥) + 𝑐
2
(𝑥) 𝐼 = 0, 𝑥 ∈ Ω,

𝜕𝑆

𝜕n
=

𝜕𝐼

𝜕n
= 0, 𝑥 ∈ 𝜕Ω.

(17)

It follows from Lemma 1 that there exists a positive constant
𝐶
∗
= 𝐶
∗
(Λ, 𝑑) such that

max
Ω

𝑆 ≤ 𝐶
∗min
Ω

𝑆, max
Ω

𝐼 ≤ 𝐶
∗min
Ω

𝐼 (18)

for 𝑑
𝑆
, 𝑑
𝐼
≥ 𝑑.

Now, on the contrary, suppose that (15) is not true,
then there exist sequences {𝑑

𝑆,𝑖
}
∞

𝑖=1
, {𝑑
𝐼,𝑖
}
∞

𝑖=1
with (𝑑

𝑆,𝑖
, 𝑑
𝐼,𝑖
) ∈

[𝑑,∞) × [𝑑,∞) and the positive solution (𝑆
𝑖
, 𝐼
𝑖
) of model (6)

corresponding to (𝑑
𝑆
, 𝑑
𝐼
) = (𝑑

𝑆,𝑖
, 𝑑
𝐼,𝑖
), such that

min
Ω

𝑆
𝑖
(𝑥) → 0 or min

Ω

𝐼
𝑖
(𝑥) → 0 as 𝑖 → ∞.

(19)

It follows from Lemma 1 that

𝑆
𝑖
(𝑥) → 0 or 𝐼

𝑖
(𝑥) → 0

uniformly on Ω as 𝑖 → ∞.

(20)

(𝑆
𝑖
, 𝐼
𝑖
) satisfies

− 𝑑
𝑆,𝑖
Δ𝑆
𝑖
= ]𝑅
𝑑
(𝑆
𝑖
+ 𝐼
𝑖
) (1 − (𝑆

𝑖
+ 𝐼
𝑖
))

−
𝑅
0
𝑆
𝑖
𝐼
𝑖

𝑆
𝑖
+ 𝐼
𝑖

− ]𝑆
𝑖
, 𝑥 ∈ Ω,

− 𝑑
𝐼,𝑖
Δ𝐼
𝑖
=

𝑅
0
𝑆
𝑖
𝐼
𝑖

𝑆
𝑖
+ 𝐼
𝑖

− 𝐼
𝑖
, 𝑥 ∈ Ω,

𝜕𝑆
𝑖

𝜕n
=

𝜕𝐼
𝑖

𝜕n
= 0, 𝑥 ∈ 𝜕Ω.

(21)

Integrating by parts, we obtain that, for 𝑖 = 1, 2, . . .,

∫
Ω

(]𝑅
𝑑
(𝑆
𝑖
+ 𝐼
𝑖
) (1 − (𝑆

𝑖
+ 𝐼
𝑖
)) −

𝑅
0
𝑆
𝑖
𝐼
𝑖

𝑆
𝑖
+ 𝐼
𝑖

− ]𝑆
𝑖
)𝑑𝑥 = 0,

∫
Ω

𝐼
𝑖
(

𝑅
0
𝑆
𝑖

𝑆
𝑖
+ 𝐼
𝑖

− 1)𝑑𝑥 = 0.

(22)

By the regularity theory for elliptic equations [33], we see that
there exist a subsequence of {(𝑆

𝑖
, 𝐼
𝑖
)}
∞

𝑖
, which we will still

denote by {(𝑆
𝑖
, 𝐼
𝑖
)}
∞

𝑖
, and two nonnegative functions 𝑆, 𝐼 ∈

𝐶
2
(Ω), such that (𝑆

𝑖
, 𝐼
𝑖
) → (𝑆, 𝐼) in [𝐶

2
(Ω)]
2 as 𝑖 → ∞. By

(20), we have that 𝑆 ≡ 0 or 𝐼 ≡ 0.
Letting 𝑖 → ∞ in (22) we obtain that

∫
Ω

(]𝑅
𝑑
(𝑆 + 𝐼) (1 − (𝑆 + 𝐼)) −

𝑅
0
𝑆𝐼

𝑆 + 𝐼

− ]𝑆)𝑑𝑥 = 0,

∫
Ω

𝐼 (
𝑅
0
𝑆

𝑆 + 𝐼

− 1)𝑑𝑥 = 0.

(23)

Case 1 (𝑆 ≡ 0, 𝐼 ̸≡ 0 or 𝑆 ≡ 0, 𝐼 ≡ 0). Since 𝐼
𝑖
satisfies the

second inequality of (18), 𝐼
𝑖
> 0 on Ω. Therefore, 𝑅

0
𝑆
𝑖
/(𝑆
𝑖
+

𝐼
𝑖
) − 1 → −1 < 0 on Ω as 𝑖 → ∞. Hence, ∫

Ω
𝐼
𝑖
(𝑅
0
𝑆
𝑖
/(𝑆
𝑖
+

𝐼
𝑖
) − 1)𝑑𝑥 < 0 for sufficiently large 𝑖 which contradicts the

second integral identity of (22).
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Case 2 (𝐼 ≡ 0, 𝑆 ̸≡ 0). As above, 𝑆 > 0 on Ω. It follows from
the first integral identity of (23) that

∫
Ω

𝑆 (]𝑅
𝑑
(1 − 𝑆) − ]) 𝑑𝑥 = 0. (24)

This fact combines with 0 < 𝑆 ≤ (1/4)𝑅
𝑑
yielding to 𝑆 =

1 − 1/𝑅
𝑑
, which implies that 𝑅

0
𝑆
𝑖
/(𝑆
𝑖
+ 𝐼
𝑖
) → 𝑅

0
uniformly

on Ω as 𝑖 → ∞, since 𝐼
𝑖
→ 0 uniformly on Ω. As 𝑅

0
> 1,

this contradicts the second integral identity of (23) and the
fact that 𝐼

𝑖
> 0. This completes the proof.

4. Existence and Nonexistence of Positive
Nonconstant Steady States

In this section, we provide some sufficient conditions for the
existence and nonexistence of nonconstant positive solution
of model (6) by using the Leray-Schauder degree theory [34].
From now on, we denote by

0 = 𝜇
0
< 𝜇
1
< 𝜇
2
< 𝜇
3
< ⋅ ⋅ ⋅ (25)

the eigenvalues of the operator −Δ on Ω with the zero-flux
boundary conditions.

4.1. Nonexistence for Positive Nonconstant Steady States to
Model (6). This section is devoted to the consideration of the
nonexistence for the nonconstant positive solutions of model
(6), and, in the following results, the diffusion coefficients do
play a significant role.

Theorem 5. Assume that 𝑅
0

> 1. Let 𝐷
2
be a fixed positive

constant with 𝐷
2

> (𝑅
0

− 1)/𝜇
1
. Then there exists a

positive constant𝐷
1
(Λ,𝐷
2
) such that model (6) has no positive

nonconstant solution provided that 𝑑
𝑆
≥ 𝐷
1
and 𝑑

𝐼
≥ 𝐷
2
.

Proof. Let (𝑆(𝑥), 𝐼(𝑥)) be any positive solution of model (6)
and denote 𝑔 = |Ω|

−1
∫
Ω
𝑔𝑑𝑥. Then, multiplying the first

equation of model (6) by (𝑆−𝑆), integrating overΩ, by virtue
of Theorem 3, we have that

𝑑
𝑆
∫
Ω

|∇𝑆|
2
𝑑𝑥

= ∫
Ω

(𝑆 − 𝑆)

× (]𝑅
𝑑
(𝑆 + 𝐼) (1 − (𝑆 + 𝐼)) −

𝑅
0
𝑆𝐼

𝑆 + 𝐼
− ]𝑆) 𝑑𝑥

= ∫
Ω

(𝑆 − 𝑆)
2

× (] (𝑅
𝑑
− 1) − ]𝑅

𝑑
(𝑆 + 𝑆) + 2]𝑅

𝑑
𝐼 −

𝑅
0
𝐼𝐼

(𝑆 + 𝐼) (𝑆 + 𝐼)

)𝑑𝑥

+ ∫
Ω

(]𝑅
𝑑
(1 − (𝐼 + 𝐼) + 2𝑆) −

𝑅
0
𝑆𝑆

(𝑆 + 𝐼) (𝑆 + 𝐼)

)

× (𝑆 − 𝑆) (𝐼 − 𝐼) 𝑑𝑥,

≤ 𝐶
1
∫
Ω

(𝑆 − 𝑆)
2

+ 𝐶
2
∫
Ω


𝑆 − 𝑆




𝐼 − 𝐼


𝑑𝑥,

(26)

where 𝐶
1
, 𝐶
2
depend only on Λ. In a similar manner, we

multiply the second equation in model (6) by (𝐼 − 𝐼) to have

𝑑
𝐼
∫
Ω

|∇𝐼|
2
𝑑𝑥

= ∫
Ω

(𝐼 − 𝐼) (
𝑅
0
𝑆𝐼

𝑆 + 𝐼
− 𝐼) 𝑑𝑥

= ∫
Ω

(𝐼 − 𝐼)
2

(−1 +
𝑅
0
𝑆𝑆

(𝑆 + 𝐼) (𝑆 + 𝐼)

)𝑑𝑥

+ ∫
Ω

𝑅
0
𝐼𝐼

(𝑆 + 𝐼) (𝑆 + 𝐼)

(𝑆 − 𝑆) (𝐼 − 𝐼) 𝑑𝑥

≤ (𝑅
0
− 1)∫

Ω

(𝐼 − 𝐼)
2

𝑑𝑥

+ 𝑅
0
∫
Ω


𝑆 − 𝑆




𝐼 − 𝐼


𝑑𝑥.

(27)

It follows from (26), (27) and the 𝜀-Young inequality that

∫
Ω

(𝑑
𝑆|∇𝑆|
2
+ 𝑑
𝐼 |∇𝐼|
2
) 𝑑𝑥

≤ ∫
Ω

((𝐶
1
+

𝐶

2𝜀
) (𝑆 − 𝑆)

2

+ (𝑅
0
− 1 +

𝜀𝐶

2
) (𝐼 − 𝐼)

2

)𝑑𝑥,

(28)

where 𝐶 = 𝐶
2
+ 𝑅
0
. It follows from the well-known Poincaré

inequality that

∫
Ω

(𝑑
𝑆|∇𝑆|
2
+ 𝑑
𝐼 |∇𝐼|
2
) 𝑑𝑥

≤
1

𝜇
1

(𝐶
1
+

𝐶

2𝜀
)∫
Ω

|∇𝑆|
2
𝑑𝑥

+
1

𝜇
1

(𝑅
0
− 1 +

𝜀𝐶

2
)∫
Ω

|∇𝐼|
2
𝑑𝑥.

(29)

Since 𝑑
𝐼
𝜇
1

> 𝑅
0
− 1 from the assumption, we can find a

sufficiently small 𝜀
0
such that 𝑑

𝐼
𝜇
1
≥ 𝑅
0
−1+𝜀𝐶/2. Finally, by

taking𝐷
1
:= (1/𝜇

1
)(𝐶
1
+ 𝐶/2𝜀

0
) one can conclude that 𝑆 = 𝑆

and 𝐼 = 𝐼, which asserts our results.

4.2. Existence for Positive Nonconstant Steady States to Model
(6). In this section, we discuss the global existence of
nonconstant positive classical solutions to model (6), which
guarantees the existence of the stationary patterns [21, 24, 26,
27].
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Unless otherwise specified, in this section, we always
require that 𝑅

𝑑
> (] + 𝑅

0
− 1)/𝑅

0
] and 𝑅

0
> 1, which

guarantees that model (6) has one positive constant steady
state 𝐸

∗. From now on, let us denote

u = (𝑆, 𝐼) ,

u∗ = (𝑆
∗
, 𝐼
∗
) = (

]𝑅
0
𝑅
𝑑
− 𝑅
0
+ 1 − ]

]𝑅2
0
𝑅
𝑑

, (𝑅
0
− 1) 𝑆

∗
) .

(30)

Let X = {u ∈ [𝐶
2
(Ω)]
2
| 𝜕u/𝜕n = 0, 𝑥 ∈ 𝜕Ω} and X+ =

{u ∈ X | 𝑆, 𝐼 > 0, 𝑥 ∈ Ω}. Then we write model (6) in the
form

− Δu = G (u) , 𝑥 ∈ Ω,

𝜕u
𝜕n

= 0, 𝑥 ∈ 𝜕Ω,

(31)

where

G (u) = (

1

𝑑
𝑆

(]𝑅
𝑑
(𝑆 + 𝐼) (1 − (𝑆 + 𝐼)) −

𝑅
0
𝑆𝐼

𝑆 + 𝐼
− ]𝑆)

1

𝑑
𝐼

(
𝑅
0
𝑆𝐼

𝑆 + 𝐼
− 𝐼)

) .

(32)

Define a compact operatorF : X+ → X+ by

F (u) := (I − Δ)
−1

{G (u) + u} , (33)

where (I − Δ)
−1 is the inverse operator of I − Δ subject to the

zero-flux boundary condition.Then u is a positive solution of
model (31) if and only if u satisfies

(I −F) u = 0, 𝑥 ∈ Ω. (34)

To apply the index theory, we investigate the eigenvalue
of the problem

− (I −Fu (u∗)) Ψ = 𝜆Ψ, Ψ ̸= 0, (35)

where Ψ = (Ψ
1
, Ψ
2
)
𝑇 andFu(u∗) = (I − Δ)

−1
(I + A) with

A = (

4𝑅
0
+ 2] − 𝑅

2

0
− ]𝑅
0
𝑅
𝑑
− ]𝑅
0
− 3

𝑑
𝑆
𝑅
0

−
]𝑅
0
𝑅
𝑑
+ 3 − 2𝑅

0
− 2]

𝑑
𝑆
𝑅
0

(𝑅
0
− 1)
2

𝑑
𝐼
𝑅
0

−
𝑅
0
− 1

𝑑
𝐼
𝑅
0

)

:= (

𝑑
−1

𝑆
𝑎
1

−𝑑
−1

𝑆
𝑎
2

𝑑
−1

𝐼
𝑎
3

−𝑑
−1

𝐼
𝑎
4

) .

(36)

𝜆 is an eigenvalue of (35) if and only if𝜆 is an eigenvalue of the
matrix (𝜇

𝑖
+1)
−1

(𝜇
𝑖
I−A) for any 𝑖 ≥ 0. Therefore, I−Fu(u∗)

is invertible if and only if, for any 𝑖 ≥ 0, the matrix

𝑀
𝑖
:= 𝜇
𝑖
I − A = (

𝜇
𝑖
− 𝑑
−1

𝑆
𝑎
1

𝑑
−1

𝑆
𝑎
2

−𝑑
−1

𝐼
𝑎
3

𝜇
𝑖
+ 𝑑
−1

𝐼
𝑎
4

) (37)

is invertible. A straightforward computation yields

det (𝑀
𝑖
) = 𝑑
−1

𝑆
𝑑
−1

𝐼

× (𝑑
𝑆
𝑑
𝐼
𝜇
2

𝑖
+ (𝑑
𝑆
𝑎
4
− 𝑑
𝐼
𝑎
1
) 𝜇
𝑖
+ 𝜌) ,

(38)

where 𝜌 = (1/𝑅
0
)(]𝑅
0
𝑅
𝑑
− 𝑅
0
+ 1 − ])(𝑅

0
− 1) > 0. For the

sake of convenience, we denote

𝐻(𝑑
𝑆
, 𝑑
𝐼
, 𝜇) = 𝑑

𝑆
𝑑
2
𝜇
2

𝑖
+ (𝑑
𝑆
𝑎
4
− 𝑑
𝐼
𝑎
1
) 𝜇
𝑖
+ 𝜌. (39)

Then𝐻(𝑑
𝑆
, 𝑑
𝐼
, 𝜇) = 𝑑

𝑆
𝑑
2
det(𝑀

𝑖
).

If (𝑑
𝑆
𝑎
4
− 𝑑
𝐼
𝑎
1
)
2
> 4𝑑
𝑆
𝑑
2
𝜌, then𝐻(𝑑

𝑆
, 𝑑
𝐼
, 𝜇) = 0 has two

real roots 𝜇± given by

𝜇
+
(𝑑
𝑆
, 𝑑
𝐼
)

=
1

2𝑑
𝑆
𝑑
2

(𝑑
𝐼
𝑎
1
− 𝑑
𝑆
𝑎
4
+ √(𝑑

𝑆
𝑎
4
− 𝑑
𝐼
𝑎
1
)
2
− 4𝑑
𝑆
𝑑
2
𝜌) ,

𝜇
−
(𝑑
𝑆
, 𝑑
𝐼
)

=
1

2𝑑
𝑆
𝑑
2

(𝑑
𝐼
𝑎
1
− 𝑑
𝑆
𝑎
4
− √(𝑑

𝑆
𝑎
4
− 𝑑
𝐼
𝑎
1
)
2
− 4𝑑
𝑆
𝑑
2
𝜌) .

(40)

Set 𝐵 := 𝐵(𝑑
𝑆
, 𝑑
𝐼
) = {𝜇 : 𝜇 ≥ 0, 𝜇

−
(𝑑
𝑆
, 𝑑
𝐼
) < 𝜇 <

𝜇
+
(𝑑
𝑆
, 𝑑
𝐼
)}, 𝑆
𝑝

= {𝜇
0
, 𝜇
1
, 𝜇
2
, . . .}, and 𝑚(𝜇

𝑖
) the multiplicity

of 𝜇
𝑖
.
To compute index (I−F, u∗), we can assert the following

conclusion by Pang and Wang [22].

Lemma 6 (see [22]). Suppose 𝐻(𝑑
𝑆
, 𝑑
𝐼
, 𝜇
𝑖
) ̸= 0 for all 𝜇

𝑖
∈ 𝑆
𝑝
.

Then

𝑖𝑛𝑑𝑒𝑥 (I −F, u∗) = (−1)
𝜎
, (41)
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where

𝜎 =
{

{

{

∑

𝜇∈𝐵∩𝑆
𝑗

𝑚(𝑢
𝑖
) , 𝑖𝑓 𝐵 ∩ 𝑆

𝑝
̸= 0,

0, 𝑖𝑓 𝐵 ∩ 𝑆
𝑝
= 0.

(42)

In particular, if 𝐻(𝑑
𝑆
, 𝑑
𝐼
, 𝜇) > 0 for all 𝜇 ≥ 0, then 𝜎 = 0.

From Lemma 6, we see that to calculate the index of
index(I − F, u∗), the key step is to determine the range of
𝜇 for which𝐻(𝑑

𝑆
, 𝑑
𝐼
, 𝜇) < 0.

Theorem 7. Assume that 𝑅
𝑑

> max{1, (] + 𝑅
0
− 1)/𝑅

0
]}. If

4𝑅
0
+2]−𝑅

2

0
− ]𝑅
0
𝑅
𝑑
− ]𝑅
0
−3 > 0, (4𝑅

0
+2]−𝑅

2

0
− ]𝑅
0
𝑅
𝑑
−

]𝑅
0
− 3)/𝑑

𝑆
𝑅
0
∈ (𝜇
𝑗
, 𝜇
𝑗+1

) for some 𝑗 ≥ 1, and ∑
𝑗

𝑖=1
𝑚(𝜇
𝑖
) is

odd, then there exists a positive constant 𝑑∗ such that model (6)
has at least one nonconstant solution if 𝑑

𝐼
> 𝑑
∗.

Proof. Since 4𝑅
0

+ 2] − 𝑅
2

0
− ]𝑅
0
𝑅
𝑑

− ]𝑅
0

− 3 > 0,
equivalently, 𝑎

1
> 0, it follows that if 𝑑

𝐼
is large enough, then

(𝑑
𝑆
𝑎
4
− 𝑑
𝐼
𝑎
1
)
2

> 4𝑑
𝑆
𝑑
𝐼
𝜌 and 0 < 𝜇

−
(𝑑
𝑆
, 𝑑
𝐼
) < 𝜇

+
(𝑑
𝑆
, 𝑑
𝐼
).

Furthermore,

𝜇
−
(𝑑
𝑆
, 𝑑
𝐼
) → 0, 𝜇

+
(𝑑
𝑆
, 𝑑
𝐼
) →

𝑎
1

𝑑
𝑆

, as 𝑑
𝐼
→ ∞.

(43)

Since 𝑎
1
/𝑑
𝑆
∈ (𝜇
𝑗
, 𝜇
𝑗+1

) for some 𝑗 ≥ 1, there exists 𝑑
0
≫ 1

such that

𝜇
+
(𝑑
𝑆
, 𝑑
𝐼
) ∈ (𝜇

𝑗
, 𝜇
𝑗+1

) , 0 < 𝜇
−
(𝑑
𝑆
, 𝑑
𝐼
) < 𝜇
1
,

∀𝑑
𝐼
≥ 𝑑
0
.

(44)

ByTheorem 5, we know that there exists 𝑑 > 𝑑
0
such that

model (6) with diffusion coefficients 𝑑
𝑆
= 𝑑 and 𝑑

𝐼
≥ 𝑑 has

no nonconstant solutions.Moreover, we can choose𝑑 so large
that 𝑎

1
/𝑑 < 𝜇

1
. It follows that there exists 𝑑∗ > 𝑑 such that

0 < 𝜇
−
(𝑑
𝑆
, 𝑑
𝐼
) < 𝜇
+
(𝑑
𝑆
, 𝑑
𝐼
) < 𝜇
1
, ∀𝑑

𝐼
≥ 𝑑
∗
. (45)

We shall prove that, for any𝑑
𝐼
≥ 𝑑
∗, model (6) has at least one

nonconstant positive solution. On the contrary, suppose that
this assertion is not true for some 𝑑

∗

𝐼
> 𝑑
∗. In the following,

wewill derive a contradiction by using a homotopy argument.
By virtue of Theorems 3 and 4, there exists a positive

constant 𝐶 = 𝐶(Λ, 𝑑, 𝑑
𝑆
, 𝑑
∗
, 𝑑
𝐼

∗
) such that the positive

solution (𝑆(𝑥), 𝐼(𝑥)) of model (6) satisfies 𝐶−1 < 𝑆, 𝐼 < 𝐶.
Set

M = {(𝑆, 𝐼) ∈ 𝐶 (Ω) × 𝐶 (Ω) : 𝐶
−1

< 𝑆, 𝐼 < 𝐶, 𝑥 ∈ Ω} ,

(46)

and define

Φ : M × [0, 1] → 𝐶(Ω) × 𝐶 (Ω) (47)

by

Φ (u, 𝜃) = (I − Δ)
−1

{G (u, 𝜃) + u} , (48)

where

G (u, 𝜃)

=(

(𝜃𝑑
𝑆
+(1 − 𝜃) 𝑑)

−1
(]𝑅
𝑑 (𝑆+𝐼) (1− (𝑆+𝐼))−

𝑅
0
𝑆𝐼

𝑆 + 𝐼
− ]𝑆)

(𝜃𝑑
𝐼
+ (1 − 𝜃) 𝑑

∗
)
−1

(
𝑅
0
𝑆𝐼

𝑆 + 𝐼
− 𝐼)

) .

(49)

It is clear that finding the positive solution ofmodel (31) is
equivalent to finding the fixed point ofΦ(u, 1) inM. Further,
by virtue of the definition ofM, we have thatΦ(u, 𝜃) = 0 has
no fixed point in 𝜕M for all 0 ≤ 𝜃 ≤ 1.

Since Φ(u, 𝑡) is compact, the Leray-Schauder topological
degree deg(I − Φ(u, 𝜃),M, 0) is well defined. From the
invariance of Leray-Schauder degree at the homotopy, we
deduce

deg (I − Φ (u, 1) ,M, 0) = deg (I − Φ (u, 0) ,M, 0) . (50)

In view of 𝜇− ∈ (𝜇
𝑖
, 𝜇
𝑖+1

) and 𝜇
+

∈ (𝜇
𝑗
, 𝜇
𝑗+1

), we have
𝐵(𝑑
𝑆
, 𝑑
𝐼
)∩𝑆
𝑗
= {𝜇
𝑖+1

, 𝜇
𝑖+2

, . . . , 𝜇
𝑝
}. Clearly, I−Φ(u, 1) = I−F.

Thus, if model (6) has no other solutions except the constant
one u∗, then Lemma 6 shows that

deg (I − Φ (u, 1) ,M, 0)

= index (I −F, u∗) = (−1)
∑
𝑗

𝑖=1
𝑚(𝑢
𝑖
)
= −1.

(51)

On the contrary, by the choice of 𝑑 and 𝑑
∗, we have that

𝐵(𝑑
1
, 𝑑
2
) ∩ 𝑆
𝑝
= 0 and u∗ is the only fixed point ofΦ(u, 0). It

therefore follows from Lemma 6 that

deg (I − Φ (u, 0) ,M, 0)

= index (I −F, u∗) = (−1)
0

= 1.

(52)

From (50)–(52), we get a contradiction.Therefore, there exists
a nonconstant solution of model (6). The proof is completed.

5. Discussion

In this paper, we investigate the disease’s dynamics through
studying the existence and nonexistence positive constant
steady states of a reaction-diffusion epidemic model. We give
a priori estimates for positive solutions to model and show
that the nonconstant positive steady states exist due to the
emergence of diffusion, which demonstrates that stationary
patterns can be found as a result of diffusion. The numerical
results about the stationary patterns for model (5) can be
found in [20].

On the other hand, there are plenty of papers which focus
on the pattern formation of reaction-diffusion population
models via standard linear analysis method and numerical
simulations. But there is little literature analytically concern-
ing the existence of a stationary patterns via theory and
methods of partial differential equations infrequently. The
methods and results in the present paper may enrich the
research of pattern formation in the spatial epidemic model.
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