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Personalized medicine is one of the main objectives of both
basic and translational cancer research. Nevertheless, it has
become clear that the creation of personalized therapeutic
protocols requires synergistic, transdisciplinary compe-
tencies. Indeed, novel approved therapies rarely take into
account both the interindividual variability and the ap-
titude of cancer cells to undergo those genetic and mo-
lecular adaptation involved in the drug resistance
phenomenon. In spite of recent and promising biomedical
and biomarker discoveries, individually tailored medical
care is still far from reality, and molecules which are output
by preclinical trials are very rarely translatable to evalu-
ation for the diagnostic or therapeutical potential. #e
discrepancy between experimental data on new anticancer
molecules and the opportunity to actually employ them in
both diagnosis and therapy is due to multiple factors such
as biological differences between human diseases and
animal models, inconsistence of experimental plans, and/
or incorrect interpretation of experimental results. For
example, several preclinical studies lack data validation
performed by pathologists with long-term experience in
cancer animal models. In view of the above, it appears
evident that working towards personalized medicine in

oncology requires the synergic combination of several
disciplines such as nuclear medicine and anatomic pa-
thology, which represent two complementary approaches
to diagnosis, prognosis, and evaluation of therapeutic
response.

#e focus of this special issue is the alliance between
Imaging Diagnostic (i.e., Nuclear Medicine and Radiology)
and Anatomic Pathology, in the belief that a structured
collaboration model between these disciplines can speed up
the achievement of a medical paradigm that takes into ac-
count the uniqueness of every human being.

Out of a total of nineteen submissions, after two rounds
of rigorous review, fifteen contributions were accepted for
publications. Among them, four papers are focused on the
breast cancer, four on lung cancer, three on prostate cancer,
and three on the early detection of lymphoma. In addition,
in several studies, the authors reported artificial intelligence
applications for the diagnosis of tumor lesions; for example,
a deep neural network architecture is able to discriminate
malignant breast cancer lesions in mammographic images.

In conclusion, we felt that the novelties highlighted in
this special issue can provide the scientific rationale for
further investigations in translational medicine based on the
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combination between Pathology and Diagnostic Imaging
data.
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Breast cancer is one of the most common cancers in women, with more than 1,300,000 cases and 450,000 deaths each year
worldwide. In this context, recent studies showed that early breast cancer detection, along with suitable treatment, could
significantly reduce breast cancer death rates in the long term. X-ray mammography is still the instrument of choice in breast
cancer screening. In this context, the false-positive and false-negative rates commonly achieved by radiologists are extremely
arduous to estimate and control although some authors have estimated figures of up to 20% of total diagnoses or more. &e
introduction of novel artificial intelligence (AI) technologies applied to the diagnosis and, possibly, prognosis of breast cancer
could revolutionize the current status of the management of the breast cancer patient by assisting the radiologist in clinical image
interpretation. Lately, a breakthrough in the AI field has been brought about by the introduction of deep learning techniques in
general and of convolutional neural networks in particular. Such techniques require no a priori feature space definition from the
operator and are able to achieve classification performances which can even surpass human experts. In this paper, we design and
validate an ad hoc CNN architecture specialized in breast lesion classification from imaging data only. We explore a total of 260
model architectures in a train-validation-test split in order to propose a model selection criterion which can pose the emphasis on
reducing false negatives while still retaining acceptable accuracy. We achieve an area under the receiver operatic characteristics
curve of 0.785 (accuracy 71.19%) on the test set, demonstrating how an ad hoc random initialization architecture can and should
be fine tuned to a specific problem, especially in biomedical applications.

1. Introduction

Breast cancer is one of the most common cancers in
women, with more than 1,300,000 cases and 450,000 deaths
each year worldwide [1]. In the era of precision medicine
[2], the identification and stratification of breast lesions in
the early stage of cancer development is an essential

starting point for increasing the probability of therapeutic
success. In this context, early detection of breast lesions
through mammography has been seen to be associated with
an extremely high probability of cure, with a 97% survival
in five years [3]. To date, however, identification of breast
cancer lesions is affected by an unsatisfactory rate of false-
positive results.
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Currently, X-ray mammography represents the standard
breast screening technique. &e false-positive and false-
negative rates resulting by mammography are relatively
high, especially for patients with very dense breasts [4, 5].
&e sensitivity of mammography is further influenced by age
and ethnicity of patients, personal history, implementation
and (especially) expertise, and experience of the radiologist
performing the exam. In addition, the mammographic exam
does not provide any indication about probable disease
evolution and/or outcome (and neither does it provide clues
about possibly appropriate therapeutic choices). In this
context, it is not surprising that the rate of false-negative or
-positive results for mammography described in the liter-
ature is extremely variable. While it is evident that possibly
high rates of false-negative results are critical, false positives
also carry significant consequences. A recent retrospective
investigation of registry data concerning 405,191 women
aged 40 to 89 years, screened with digital mammography
between 2003 and 2011, reported a rate of 12.12% of false-
positive results. However, others studies indicate a rate of
false positive of up to 20% in specific centers [6]. While a
single study computed a very low rate of false-negative
results (0.1 to 0.5%) regardless of the patient’s age, several
retrospective analyses indicated that mammographic ex-
aminations are associated with a high false-negative rate
(between 8 and 16%), which is often quoted as an average
15%. &ese results, apparently controversial, can be
explained by the numerous factors that influence the in-
terpretation of mammographic images such as quality of
instrumentation, radiologist’s experience, and the avail-
ability of a second opinion [7–11]. Also, false-positive
mammograms are often associated with increased short-
term anxiety but no long-term anxiety and no measurable
health utility decrement [11]. In a recent study, a false-
positive result increased women’s motivation to undergo
future breast cancer screening, whilst it did not increase their
self-reported motivation to travel to avoid a false-positive
mammogram [12]. Also, in presence of false-positive cases,
patients are frequently subjected to repeated invasive
(bioptic examination) and/or stringent follow-up programs,
such as additional mammography exams mammography or
equivalent medical procedures which, on top of possibly
generating health detriment on their own, also carry sig-
nificant financial burden. &e direct breast-care costs in the
year following a false-positive screening mammogram are
approximately 500$ higher than in the case of a true-
negative result [13].

In view of the above, the introduction of novel artificial
intelligence (AI) technologies applied to the diagnosis and
possibly prognosis of breast cancer could revolutionize the
current status of the management of the breast cancer pa-
tient. &e support of AI in the diagnostic path of breast
cancer patients can potentially both reduce the healthcare
costs due to misdiagnosis and promote the achievement of
new precision medicine protocols [14]. In this context, the
disruptive innovation in computer vision brought about
through what is known as deep learning [15–17], and in
particular, a class of methods known as deep convolutional
neural networks (CNNs) [18] is very quickly making its way

into the world of medical imaging. Accordingly, in a pre-
liminary study, Chougrad et al. [13] described a CAD based
on deep CNN able to discriminate between malignant and
benignant breast mass in mammographic images with high
accuracy. Likewise, other papers employed massive transfer
learning approaches (GoogleNet and AlexNet) [19–21] and
compared them to in-house, random initialization models
showing that the latter achieves fairly poor performance.
Other authors focused on a relatively small dataset and an
“in-house” architecture measuring the relationship between
network depth and model performance [22]. Still, published
results are often hard to validate and replicate also due to the
lack of a shared, standard curated dataset of informative
mammographic images, and transfer learning approaches
may not perform equally well when applied to datasets
which are too distant in nature from the application at hand.

&e main aim of this study was to design an ad hoc
random initialization “in-house” deep neural network ar-
chitecture to classify/detect breast lesion and explore
whether satisfactory performance can be obtained without
having to include the inaccurately trained, albeit powerful,
public models currently available for transfer learning.
Given the strong dependence of CNN performance on the
specific task, we aimed to distill what are the key charac-
teristics of a CNN suitable for breast lesion classification. We
based our investigation on the recently released Curated
Breast Imaging Subset of the Digital Database for Screening
Mammography, which is curated by trained radiologists as
well as pathologists.

2. Methods

2.1. Dataset. &e training and testing of our CNN is done
over the Curated Breast Imaging Subset of DDSM Digital
Database for Screening Mammography (CBIS-DDSM)
[23, 24], which is a collection of mammograms from sev-
eral sources (Massachusetts General Hospital, Wake Forest
University School of Medicine, Sacred Heart Hospital, and
Washington University of St. Louis School of Medicine).&e
database collects both mediolateral oblique (MLO) and
craniocaudal (CC) views of each breast. Each breast view is
annotated with regions of interest (ROIs) for masses
manually drawn (freehand) by expert radiologists and au-
tomatically included in a rectangular section of the image.
Other annotations include the Breast Imaging Reporting and
Data System (BI-RADS) descriptors for mass shape, mass
margin, and breast density; overall BI-RADS assessment
ranged from 0 to 5; rating of the subtlety of the abnormalities
ranged from 1 to 5. Table 1 provides summary of the an-
notations available for each image.

2.2. Workflow and Architecture Overview. Our model was
developed by combining the TensorFlow [25] and Keras [26]
libraries; the whole workflow (Figure 1) consists of the
following: (i) image preprocessing as described above; (ii)
data augmentation; (iii) CNN training; (iv) performance
evaluation with respect to a validation set, which allows to
compare models trained on the training set; and (v) final
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evaluation of the best model on the test set. &e CNN
training is further composed of several steps (which also
depends on the specific CNN architecture which can be
grouped in (1) convolutional layers and (2) neural layers).
Each step is described in the following paragraphs.

2.2.1. Image Preprocessing. Every mass/ROI (Figure 2) is
labeled either as “benign” or “malignant” according to
pathological findings. As input, we employed all the pre-
segmented ROIs containing images of masses, retaining only
the “benign”-“malignant” label and hence stripping any
other information (Figure 1). Starting from a training set of
1318 images and a test set of 378 images, we created a
training set of 1158 images, a validation set of 160 images,
and retained the original test set of 378 images.

2.2.2. Data Augmentation. It is common practice to syn-
thetically increase the information available to the CNN by
applying multiple transformations to the training set [27].
&is practice is called “augmentation” and serves the
purpose of providing the learning algorithm with as many
informative images as possible in order to prevent over-
fitting (i.e., an excessive specialization of the CNN to the
data at hand, which occurs when the training dataset is not
sufficiently large to allow for generalization). Accordingly,
for each extracted ROI, we perform data augmentation by
transforming the training images employing random ro-
tations, rescalings, and shear deformations (it is important
to note that since CNNs are not invariant for affine
transformation, this process is actually able to inject new
training information into the dataset). Figure 3 shows an
example of a batch of images resulting from the aug-
mentation process.

2.2.3. Training. &e process of training consists in tuning
the weights of the model (see following paragraphs), to
maximize the loss function of the model and hence the
accuracy of the automatic classification/diagnosis formu-
lated by themodel. Batches of images from the CNN training
set are fed into the algorithm, and the weights of the model
are found by a trial and error in the attempt to improve its
accuracy. Each “attempt” is commonly called “epoch”. After
each epoch, the weights of the model are updated.

(1) Convolutional Layers. Convolutional layers are the first
stages of the actual image processing pipeline (Figure 4), and
their role is to distill information regarding spatially cor-
related features of the input image. Convolutional layers
function in a way that resembles the physiology of early
pathways of the visual cortical areas in humans, where
neurons respond to simple tuning—e.g., a neuron might be
sensitive to vertical contrasts while another to horizontal
contrasts. For example, convolution processes may highlight
edges, or smooth the image, or make contrasts in a specific
direction more prominent. At each layer, convolved images
are subsampled to reduce resolution and passed to the next
layer. Each convolutional layer extracts features using as
input a linear combination of the outputs of the previous
layer. Recursively, more and more (but smaller and smaller)
images are produced, each containing information about an
intricate combination of features. To the human eye, the
images produced after the last layers typically look com-
pletely unrelated to the original input. A more technical
description of this process can found in [29]. &e con-
volutional part of the CNN is described by the number of
convolutional layers, the number of convolutional kernels in
each layer and their sizes, the details of the activation
functions, and other image processing steps (e.g., how the
subsampling is done and whether there is a global-
normalization step).

(2) Neural Layers. &e output of the last convolutional layer
is the input to a series of one or few layers of neuronal arrays.
A neuronal array is a set of weighted switch-like

Test set Validation set

Validation

Final figure of merit

Selected final model

Training set

Training

Data augmentation

Figure 1: Workflow of our method. &e original training set
provided by CBIS-DDSM is further divided into a new “training
set” and a “validation set.” &e new training set is employed to fit
themodel parameters, and the validation set is employed to validate
and compare the performance of each model on an unbiased set of
images. &e final model is chosen accordingly to its performance of
the validation set and its performance quantified in an unbiased
manner on the test set. Overall, the split was as follows: training set
(1158 images), validation set (160 images), and test set (378 images).

Table 1: Summary of the annotations available for each image in
the CBIS-DDSM dataset. As all these annotations are derived from
the image, none of these features were imputed into our classifier.
Patient_id Anonymous alphanumeric code
Breast_density 4 (153), 2 (757), 3 (449), 1 (337)
Left or right
breast Left (817), right (879)

Image view CC(784), MLO(912)

Abnormality id
1 (1570), 2 (84), 4 (10), 3 (28), 5 (2), 6 (2)

(integer index used to label multiple
lesions within the same image)

Abnormality
type Mass (1696)

Mass shape

Irregular (526), round (169), lobulated (399),
oval (423), architectural_distortion(158),

asymmetric_breast_tissue(26),
lymph_node(45)

Mass margins

Focal_asymmetric_density (27), n/a (4),
spiculated (407), circumscribed (455),
ill_defined (472), obscured (308),
microlobulated (143), n/a (60)

Assessment 5 (374), 4 (702), 0 (162), 3 (364), 2 (91), 1 (3)

Pathology Malignant (784), benign (771),
benign_without_callback (141)

Subtlety 5 (687), 4 (453), 2 (141), 3 (358), 1 (55), 0 (2)
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discriminators that, much like to the firing of a neuron
excited by a suprathreshold stimulus, activate when a certain
combination of features is active. Again, stacking two or
more neuronal layers allows to extract more and more
sophisticated combinations of features. Such neural layers
are called “fully-connected” because each neuron is linked a
priori with any element (a voxel in an image or a neuron) of

the previous layer. &e weights of those links are tuned
during the training process. In our model, the very last layer
is composed by a single neuron with a sigmoid activation,
i.e., its output is a number between 0 and 1, which describes
the algorithm’s educated guess regarding the malignancy of
(the mass depicted in) the image (0: completely benign, 1:
completely malignant). Varying the threshold on this

Figure 2: Example whole raw images and ROI extraction to be passed to image augmentations.

Figure 3: Example of a batch of 16 images from the training set. &e ROI from which each image has been generated has been randomly
rescaled (independently over the two axes), rotated by a random angle, randomly flipped, and resampled to fit into a pixel frame with aspect
ratio 1. Any remaining area not filled by the image is padded with an array of pixels drawn from the edge of the image.

Feature maps Feature maps Fully connected 1

Outputs

Pooling 2Pooling 1Input Convolutional
layer 1

Convolutional
layer 2

p(y | x)

Pooled
feature maps

Pooled
feature maps

Figure 4: Overall architecture of the model (adapted from [28]).
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continuous sigmoid function allows the construction of
receiver operating characteristic (ROC) curves.

2.2.4. Performance Evaluation during Model Training and
Model Selection. At each epoch, we test the diagnostic ac-
curacy of the model on a separate validation set (see above)
which, importantly, is not used (i.e., it is completely “un-
seen”) for training, thus providing an unbiased evaluation
tool. For example, a high accuracy on the training set
coupled with a low accuracy on the validation set is a good
indication of overfitting has occurred.

It is important to note that, for real-life problems, there is
no simple way to choose the best model architecture. Very
similar architectures can perform differently, while very
different architectures in terms of depth, number of layers,
or number of parameters perform could perform almost
equally. In this paper, we heuristically explored the space of
number of possible architectures and trained them in order
to gain insights into what an optimal CNN architecture for
classification of breast lesions may be. In particular, we
explored (though not exhaustively) the space of the fol-
lowing parameters: number of convolutional layers (2–5),
size of the input image (from 78 to 612 pixels, depending on
architecture and dimensions of images after the last con-
volutional layer, which in turn ranged from 1 to 8 pixels),
number of convolutional kernels per each layer (from 4 to
64, not necessary identical on every layer), size of the
convolutional kernel (from 3 to 11, not necessary iden-
tical on every layer), size of pooling (from 2 to 4,
depending on the image size and kernel size), method for
the last layer vectorization (global mean, global max, or
flattening), number of fully connected layers before the
last single-neuron layer (from 1 to 3), and numbers of
neurons in each fully connected layer (from 200 to 5,
typically decreasing with depth of the layer), for a total of
260 tested architectures. Every architecture was evaluated
according to its performance on the validation set
according to two separate criteria: (a) highest area under
the ROC curve (AUC) (“model 1”) and (b) best F2 score
amongst all best F2 statistics attained by every single
architecture (“model 2”). &e F2 score is defined as
F2 � 5∗ precision∗ recall/4∗precision + recall. Within each
model, the optimal operating point was chosen according to
the F1 score (i.e., maximizing the harmonic average of pre-
cision and sensitivity, a commonly adopted criterion which
compromises between sensitivity and the ability to discrim-
inate a true positive result) for model 1 and F2 score for
model 2.

3. Results

Both “model 1” and “model 2” happened to share the same
convolutional architecture: 3 convolutional layers with 64
kernels each; size of kernels in each layer was 7× 7, 5× 5, and
3× 3, respectively; the parameter dropout factor on each
convolution was 25%; after rectified linear unit (ReLU)
activation, on each layer, a max pooling method with size
4× 4, 3× 3, and 2× 2 (and same stride) was employed.

“Model 1” and “model 2” differed only in terms of the size of
the input images and of the neuronal architecture: “model 1”
had an input image of 238× 238 pixels and fully connected
neuronal layers composed by 50 and 10 neurons each before
the last single-neuron layer. “Model 2” had an input image of
286× 286 pixels and fully connected neuronal layers com-
posed by 50 and 20 neurons each before the last single-
neuron layer. Training the models took approximately
78 hours (4000 training epochs) on a 40-CPU dedicated HP
bladesystem. Examples of our result on the validation set as
well as final performance of our best models on the test set
are shown in Figure 5. Examples of images which are “easy”
to classify correctly are shown in Figure 6. Examples of
images which are “difficult” to classify correctly are shown in
Figure 7.

Our final “model 1” achieved an AUC of 0.785. Detailed
performance statistics for this model when selecting an
optimal operating point according to the best F1 score
method are presented in Table 2. Our final “model 2”
achieved an AUC curve of 0.774. Detailed performance
statistics for this model when selecting an optimal operating
point according to the best F2 score (which is a weighted
average between sensitivity—which is emphasized 4-
fold—and positive predictive value (PPV)) method are also
presented in Table 2.

4. Discussion

While the classical machine learning (ML) paradigm is based
on providing a result (i.e., a classification) given a human-
defined set of features extracted from input data, CNNs are
able to capture intricate relations between image features
that are typically invisible to the human eye. Moreover, CNN
architectures need not to be problem specific. However, their
adaptability with respect to the image classification tasks,
and their complete independence from the burden as well as
possible bias of human-defined features, comes with the cost
of a vast number of parameters which, in turns, require a
large amount of training data. Given a certain CNN ar-
chitecture, if the demand of training data is not met, the
performance of the algorithm in terms of classification
accuracy might plunge to chance levels. In this pilot study,
we have explored the possibility of designing ad hoc CNN
architecture with random initialization while studying
heuristically which characteristics, out of the multitude of
CNN varieties, may be important for breast lesion classifi-
cation and may warrant further investigation. We employed
rigorous validation and test set splits and achieved an area
under the ROC curve of 0.78. Additionally, the optimal
cutoff point as calculated with an F1 statistics was associated
with 62.44% specificity and 84.4% sensitivity. Given the
health as well as psychological implications of a false-
negative diagnosis in breast cancer (see Introduction), we
also strived to select a model which could pose more em-
phasis on avoided false negatives while still being selected
rigorously. We therefore evaluated our model performance
at an operating point determined by maximizing the F2
statistic, obtaining a sensitivity of 99.7%. While the speci-
ficity of this model may seem low, it is important to note
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that, when performing model as well as operating point
(i.e., cutoff) selection, it is critical to keep the end-user’s
needs and priorities in mind. We therefore put forward that,
in a condition like breast cancer where a false negative may
have devastating consequences which are overall muchmore
burdensome than those of a false positive, a criterion like the
F2 statistic (or similar) may be the instrument of choice.

As noted in the introduction, a few papers based al-
most exclusively on transfer learning have obtained
comparable or higher performance on breast cancer
classification as compared to our results. While transfer
learning can provide steeper learning rates and asymp-
totically higher performance when approaching a new
classification task and a small training set, it is likely that a
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Figure 5: (a) Receiver operating characteristic (ROC) curves for a subsample of the architectures tested on the validation set (AUCs
obtained on the validation set are shown in the legend). (b) ROC curve related to our best performing model (model 1: selected according to
AUC on the validation set and model 2: selected according to F2 statistics on the validation set) when evaluated on the test set.

(a) (b)

Figure 6: Example images that are easy to classify: (a) image of a benign lesion that is easily categorized as a benign lesion (score 2.2×10−9

from model 1 on a scale from 0 to 1); (b) image of a malignant lesion that is easily categorized as a malignant lesion (score 1.0 from model 1
on a scale from 0 to 1).
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dedicated learning framework would reach asymptotically
higher performance when a large enough training set is
made available. Further, one might speculate that the type
of background knowledge and the realm of the application
are also influential: for a lesion detection problem in
mammograms, an architecture well-trained to distinguish
(say) cars from the pedestrian might make a worse transfer
learning source than, for example, an equally well-trained
architecture to distinguish benign from malignant lung
nodules.

Of note, the capabilities of a CNN in particular, and of
deep learning in general, can, e.g., also be extended to predict
molecular alterations (e.g., genetic changes) as long as the
training data has been annotated both clinically and
genomically in an accurate manner [30]. &is could greatly
enhance the management of breast cancer patients, in which
the choice of therapeutic strategy is currently based on
molecular characteristics of breast tumors, which in turn
established by histological analysis of biopsies or surgical
samples. Specifically, immunohistochemical reactions allow
to evaluate the expression of targets for biological (cerB2),
antihormonal (estrogen receptor), or radiochemical thera-
pies (Ki67) [31–33]. &erefore, one can envisage an algo-
rithm able to predict the molecular features of breast cancer
tissues by the analysis of digital mammographic images,
which could be conceivably realized by training a CNN
jointly with histopathological and molecular data. &e

introduction of this type of diagnostic approaches has the
potential to introduce radical changes in the organization of
imaging diagnostic, anatomic pathology, as well as oncology
departments. Specifically, the possibility to provide oncol-
ogists with possible molecular profiles and/or treatment
options at the time of mammography could significantly
reduce the need for bioptic investigation, hence optimizing
the overall resources available to the healthcare facility. Most
importantly, such CAD frameworks could ameliorate the
patient’s quality of life by reducing both the number of
invasive procedures such as (often repeated) biopsies as well
as the average wait before therapy inception. Also, deep
learning has the potential to seamlessly integrate data from
multimodal imaging of breast cancer, such as mammog-
raphy and molecular imaging (PET, CT, and MR), with
digitalized histological images. &e algorithms could be
trained to emphasize and highlight morphological signs
whose identification is commonly time-consuming to the
naked eye but may result in diagnostically actionable items
(e.g., microvessel density, neoangiogenesis, lymphovascular
invasion, chromatin alteration, or mitotic figures). &is type
of workflow would not only render pathology and imaging
work quick and more accurate but also redefine the role of
pathologists to experts able to agglomerate and interpret
genetic/molecular, morphological, and imaging information
to produce a more integrated and accurate diagnosis
[34, 35].

(a) (b)

Figure 7: Example images that are very difficult to classify: (a) image of a benign lesion that is falsely categorized as a malignant lesion (score
0.99992 from model 1 on a scale from 0 to 1); (b) image of a malignant lesion that is falsely categorized as a benign lesion (score .0133 from
model 1 on a scale from 0 to 1).

Table 2: Performance statistics for our best performing models as evaluated on the test set.
Model 1 (best AUC overall on tde validation set, point witd best F1 score on tde test set)

Accuracy PPV
(precision) FDR TPR (recall,

sensitivity)
FNR

(missrate) FPR (fall out) TN
(specificity)

F1
score

F2
score

F5
score

71.19% 59.80% 40.20% 84.40% 15.60% 37.56% 62.44% 70.00% 77.98% 63.50%
Model 2 (best F2 score overall on the validation set, point with best F2 score on the test set)

Accuracy PPV
(precision) FDR TPR (recall,

sensitivity)
FNR

(missrate) FPR (fallout) TN
(specificity)

F1
score

F2
score

F5
score

55.93% 47.40% 52.60% 97.16% 2.84% 71.36% 28.64% 63.72% 80.30% 52.81%
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In summary, our pilot study can lay the foundation for
the development of new multimodal and multidisciplinary
diagnostic tools able to move yet another step towards the
goal of realizing a true personalized medicine approach able
to take into account the unique peculiarities of every human
being.
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Background. Our purpose was to elucidate possible correlations between histogram parameters derived from dynamic contrast-
enhanced MRI (DCE-MRI) with several histopathological features in head and neck squamous cell carcinomas (HNSCC).
Methods. +irty patients with primary HNSCC were prospectively acquired. Histogram analysis was derived from the DCE-
MRI parameters: Ktrans, Kep, and Ve. Additionally, in all cases, expression of human papilloma virus (p16) hypoxia-inducible
factor-1-alpha (Hif1-alpha), vascular endothelial growth factor (VEGF), epidermal growth factor receptor (EGFR), and tumor
suppressor protein p53 were estimated. Results. Kep kurtosis was significantly higher in p16 tumors, and Ve min was sig-
nificantly lower in p16 tumors compared to the p16 negative tumors. In the overall sample, Kep entropy correlated well with
EGFR expression (p � 0.38, P � 0.04). In p16 positive carcinomas, Ktrans max correlated with VEGF expression (p � 0.46,
P � 0.04), Ktrans kurtosis correlated with Hif1-alpha expression (p � 0.46, P � 0.04), and Ktrans entropy correlated with EGFR
expression (p � 0.50, P � 0.03). Regarding Kep parameters, mode correlated with VEGF expression (p � 0.51, P � 0.02), and
entropy correlated with Hif1-alpha expression (p � 0.47, P � 0.04). In p16 negative carcinomas, Kep mode correlated with Her2
expression (p � −0.72, P � 0.03), Ve max correlated with p53 expression (p � −0.80, P � 0.009), and Ve p10 correlated with
EGFR expression (p � 0.68, P � 0.04). Conclusion. DCE-MRI can reflect several histopathological features in HNSCC. As-
sociations between DCE-MRI and histopathology in HNSCC depend on p16 status. Kep kurtosis and Ve min can differentiate
p16 positive and p16 negative carcinomas.

1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is a
frequently occurring malignancy [1]. Previously, the role of
imaging modalities was to locate the primary tumor and
detect infiltration of bordering body structures and distant
metastasis [2]. However, modern imaging modalities can
also provide valuable information regarding tumor micro-
structure and might be able to predict several histopatho-
logical features in tumors [3, 4].

Dynamic contrast-enhanced MRI (DCE-MRI) is a
functional imaging technique, which is able to assess tumor

vascularization by measurement of sequential changes of
signal intensity over time after contrast media application
[5, 6]. In DCE-MRI, quantitative parameters like Ktrans
(volume transfer constant in min−1), Ve (volume fraction of
the extravascular extracellular space which is dimension-
less), and Kep (rate constant in min−1) can be obtained [6].

Previous reports suggested that DCE-MRI can reflect tu-
mor vessel density [6]. However, besides perfusion, DCE-MRI
is also linked to cellularity, as well as to proliferation index
[7, 8]. Furthermore, it has been shown that DCE-MRI can
predict survival and treatment response to radiochemotherapy
in HNSCC [5, 9–11]. Additionally, it can predict tumor
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recurrence [12] and metastatic spread [13]. Besides the prog-
nostic information, DCE-MRI can also aid in discrimination
between benign and malignant head and neck tumors [14].

Histogram analysis is used to analyze radiological images.
By using this technique, every voxel of a region of interest
(ROI) is issued into a histogram.+ereby, a broad spectrum of
new parameters can be estimated: minimum, mean, maxi-
mum, median, mode, percentiles, kurtosis, skewness, and
entropy. According to the literature, heterogeneity of the
histogram might also display heterogeneity of the tumor [15].

Several histopathological parameters play an important
role in HNSCC. For example, p16 expression, associated with
human papilloma virus, is one of the most important
prognostic factors in HNSCC [16]. Other parameters, such as
vascular endothelial growth factor (VEGF), hypoxia-
inducible factor-1-alpha (Hif1-alpha), epidermal growth
factor receptor (EGFR), and tumor suppressor protein p53
expression, are also of prognostic relevance and might aid in
treatment response prediction in HNSCC [17, 18]. Pre-
sumably, imaging might also be able to reflect these ex-
pression profiles, especially by using the more advanced
histogram-based analysis. Recently, a first promising study
identified statistical differences between p16 positive and p16
negative carcinomas using histogram-based parameters de-
rived from diffusion-weighted imaging [19]. Previously, only
two studies analyzed relationships between DCE-MRI and
histopathological parameters like the proliferation index Ki 67
and/or tumor cellularity in HNSCC using conventional ROI-
based analysis [7, 20]. Presumably, histogram-based DCE
parameters may show more associations with histopathology.

+erefore, the aim of this study was to estimate whole
lesion histogram parameters derived from DCE-MRI and to
elucidate possible correlations with several clinically relevant
histopathological features in HNSCC.

2. Materials and Methods

+is prospective study was approved by the institutional
review board (Ethics committee of the University of Leipzig,
study codes 180-2007, 201-10-12072010, and 341-15-
05102015). All methods were performed in accordance with
the relevant guidelines and regulations. All patients gave
their written informed consent.

2.1. Patients. For this study, 30 patients (22 men and 8
women; mean age 57.0 ± 10.6 years; range 33–77 years) with
histopathological proven primary HNSCCwere included into
the present study. Different tumor localizations were iden-
tified: the oropharynx in 46.7% of cases, tongue in 23.3%,
hypopharynx in 10%, larynx in 16.7%, and nasopharynx in
3.3% of cases. +ere were T3 staged cancers in 33.3% and T4
in 40% cases and only 26.7% with T1 and T2 cancers. 90% of
cases were nodal positive and 10% of patients without any
nodal metastases. Well and moderately differentiated tumors
were identified in 36.7% of patients and poorly differentiated
in 63.3%. All patients did not receive any form of cancer
treatment before the investigation.

2.2. DCE-MRI. In all patients, dynamic contrast-enhanced
(DCE) imaging was performed using T1w DCE sequences
according to a imaging protocol, as reported previously (TR/
TE 2.47/0.97ms, flip angle 8°, voxel size 1.2 × 1.0 × 5.0mm,
and slice thickness 5mm) [7, 21]. +e sequence included
forty scans at 6 seconds. +e contrast application of
0.1mmol gadobutrol per kg of bodyweight (Gadovist®,Bayer Healthcare, Leverkusen, Germany) started after the
fifth scan with a rate of 3ml per second (Spectris Solaris,
Medrad, Bayer Healthcare, Leverkusen, Germany). +e
acquired images were further analyzed with Tissue 4D
(Siemens Medical Systems, Erlangen, Germany), which uses
a population-based technique for the arterial input function
(AIF). +e AIF was modelled to the gadolinium dose and
according to the biexponential model of Tofts and Kermode.
Finally, Ktrans, Ve, and Kep were calculated (for exemplary
parameter images, see Figures 1 and 2).

2.3. Histogram Analysis. +e acquired DCE-MRI data were
processed with a Matlab-based application (Mathworks,
Natick, MA, USA). On theKtrans,Kep, andVe maps, a volume
of interest was drawn inside the tumor boundary using all
slices with visible tumor areas and thus providing a whole
lesion measurement. All measures were performed by one
experienced author (AS, 15 years of general radiological
experience). +e following parameters were estimated for
Ktrans, Kep, and Ve: mean, maximum, minimum, median,
mode, 10th, 25th, 75th, and 90th percentiles, as well as kur-
tosis, skewness, and entropy.

2.4. Histopathological Findings. In every patient, the di-
agnosis was confirmed by tumor biopsy. +e histological
specimens were deparaffinized, rehydrated, and cut into
5 μm slices. Moreover, the histological slices were stained by
the epidermal growth factor receptor (EGFR, EMERGO
Europe, clone 111.6, dilution 1 : 30), vascular endothelial
growth factor (VEGF, EMERGO Europe, clone VG1, di-
lution 1 : 20), tumor suppressor protein p53 (DakoCyto-
mation, Glostrup, Denmark; clone DO-7, dilution 1 :100),
hypoxia-inducible factor-1 (Hif1-alpha) (Biocare Medical,
60 Berry Dr Pacheco, CA 94553; clone EP1215Y, dilution 1 :
100), and p16 (p16 expression, CINtec Histology, Roche,
Germany), as performed in our previous study [22].

Pannoramic microscope scanner (Pannoramic SCAN,
3DHISTECH Ltd., Budapest, Hungary) with Carl Zeiss
objectives up to 41x bright field magnification by default was
used to digitalize all specimens. In the used bottom-up
technique, the whole sample was acquired at a high reso-
lution. All slides were analyzed with Pannoramic Viewer
1.15.4 (open source software, 3D HISTECH Ltd., Budapest,
Hungary), and three representative images with a magni-
fication of ×200 were extracted from each patient.

+e histopathological images were further investigated
by using the ImageJ software 1.48v (National Institutes of
Health Image program). +e tumors were divided according
to the p16 status.

Finally, expression of EGFR, VEGF, HIF1-alpha, and
p53 (Figures 1 and 2) was semiautomatically estimated as a
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Figure 1: Continued.
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sum of stained areas (in µm2) by using a brightness
threshold. Figure 1 displays a p16 negative, and Figure 2
shows a p16 positive carcinoma.

2.5. Statistical Analysis. Statistical analysis was performed
using GraphPad Prism (GraphPad Software, La Jolla, CA,
USA). Collected data were evaluated by means of descriptive
statistics.

Spearman’s correlation coefficient (ρ) was used to an-
alyze associations between investigated imaging and histo-
pathology parameters. Mann–Whitney U test was used for
discrimination between p16 groups. P values below 0.05
were considered statistically significant.

3. Results

+ere were 10 (33.3%) p16 negative and 20 (66.7%) p16
positive tumors. Kep kurtosis was significantly higher in p16
tumors, and Ve min was significantly lower in p16 positive
tumors compared to the p16 negative tumors, P � 0.049 and
P � 0.044, respectively (Figure 3).

In the overall sample, the correlation analysis revealed
only one statistically significant correlation between Kep
entropy and EGFR expression (ρ � 0.38, P � 0.04) (Figure 4).

In the p16 positive carcinomas, Ktrans max correlated
with VEGF expression (ρ � 0.46, P � 0.04), Ktrans kurtosis
correlated with Hif1-alpha expression (ρ � 0.46, P � 0.04)
and Ktrans entropy correlated with EGFR expression (ρ �

(g) (h)

(i) (j)

(k)

Figure 1: DCE-MRI and histopathological findings in a patient with histologically proven squamous cell carcinoma of the oropharynx.+e
p16 status is negative for this patient. (a) Ktrans map of the tumor. (b) Histogram of Ktrans values. +e histogram analysis parameters (min−1)
are as follows: mean � 0.25, min � 0.05, max � 0.80, p10 � 0.10, p25 � 0.16, p75 � 0.32, p90 � 0.40, median � 0.24, mode � 0.27, kurtosis � 4.5,
skewness � 0.93, and entropy � 3.17. (c) Kep map of the tumor. (d) Histogram of Kep values. Estimated histogram analysis parameters
(min−1) are as follows: mean � 0.63, min � 0.23, max � 1.0, p10 � 0.38, p25 � 0.46, p75 � 0.80, p90 � 0.92, median � 0.62, mode � 0.57,
kurtosis � 1.89, skewness � 0.11, and entropy � 3.86. (e) Ve map of the tumor. (f ) Histogram of Ve values. Estimated histogram analysis
parameters are as follows: mean � 0.40, min � 0.08, max � 0.91, p10 � 0.18, p25 � 0.27, p75 � 0.53, p90 � 0.64, median � 0.39, mode � 0.25,
kurtosis � 2.37, skewness � 0.29, and entropy � 3.72. (g) EGFR staining, 106866 µm2 stained area. (h) Her2 staining, 57694 µm2 stained area.
(i) VEGF staining, 1177 µm2 stained area. (j) Hif1-alpha staining, 27708 µm2 stained area. (k) P53 staining, no staining is detectable in the
carcinoma.
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(g) (h)

(i) (j)

(k)

Figure 2: A p16 positive oropharyngeal HNSCC. (a) Ktrans map of the tumor. (b) Histogram of Ktrans values. +e histogram analysis
parameters (min−1) are as follows: mean � 0.42, min � 0.09, max � 0.70, p10 � 0.24, p25 � 0.35, p75 � 0.50, P90 � 0.57, median � 0.42, mode �

0.47, kurtosis � 2.78, skewness � −0.18, and entropy � 3.29. (c) Kep map of the tumor. (d) Histogram of Kep values. Estimated histogram
analysis parameters (min−1) are as follows: mean � 0.60, min � 0.18, max � 1.04, p10 � 0.38, p25 � 0.45, p75 � 0.75, p90 � 0.88, median � 0.58,
mode � 0.45, kurtosis � 2.20, skewness � 0.24, and entropy � 2.93. (e) Ve map of the tumor. (f ) Histogram ofVe values. Estimated histogram
analysis parameters are as follows: mean � 0.71, min � 0.22, max � 0.99, p10 � 0.49, p25 � 0.58, p75 � 0.86, p90 � 0.92, median � 0.73, mode �

0.63, kurtosis � 2.33, skewness � −0.38, and entropy � 2.68. (g) EGFR staining, 49020 µm2 stained area. (h) Her2 staining, 56207 µm2 stained
area. (i) VEGF staining, 42720 µm2 stained area. (j) Hif1-alpha staining, 11134 µm2 stained area. (k) P53 staining, 45011 µm2 stained area.
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Figure 3: (a) Comparison between p16 and p16 negative tumors. Kep kurtosis was significantly higher in p16 positive tumors
(Mann–Whitney U test, p � 0.049). (b) Ve min was significantly lower in p16 positive tumors (Mann–Whitney U test, p � 0.044).
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0.50, P � 0.03). Regarding Kep parameters, mode correlated
with VEGF expression (ρ � 0.51, P � 0.02), and entropy
correlated with Hif1-alpha expression (ρ � 0.47, P � 0.04).
None of the Ve values were associated with the analyzed
histochemical parameters.

In the p16 negative group, the following associations
could be identified: Kep mode correlated with Her2 ex-
pression (ρ � −0.72, P � 0.03), Ve max correlated with p53
expression (ρ � −0.80, P � 0.009), and Ve p10 correlated
with EGFR expression (ρ � 0.68, P � 0.04).

4. Discussion

+is present study identified statistically significant associ-
ations between histogram parameters derived from DCE-
MRI and different histopathological features in HNSCC.
Furthermore, it showed that these relationships depended
on the p16 status.

+ere is increasing evidence that MRI, especially using
functional imaging modalities, is able to reflect tumor mi-
crostructure and to predict tumor behavior [3, 7, 8, 20]. It is
widely acknowledged that DCE-MRI is associated with
vascularity in tissues, especially with microvessel density as
the most investigated parameter. For example, significant
associations between DCE-MRI and microvessel density
have been reported in experimental [23] as well as in clinical
investigations [7, 24, 25].

Notably, it has been shown that different DCE param-
eters might also reflect different aspects of tumor micro-
structure [7]. So, Ve might also be strongly associated with
cellularity because it reflects the amount of extracellular
space, as it was exemplarily shown in a glioma model [8].
+is might be one reason for the different correlations
identified in the present study.

Several studies elucidated possible correlations between
imaging and histopathology in HNSCC. For example, it has
been shown that diffusion-weighted imaging (DWI) corre-
lated with Ki 67 expression as well with nucleic areas [3, 26]. In
another study,Ktrans correlated inversely with Ki 67 expression
(r � −0.62), whereas Ve tended to correlate with the cell count
[7]. Furthermore, Jansen et al. showed that Kep correlated
statistically significant with VEGF expression (r � 0.808) [20].

In the present study, Kep mode correlated with VEGF
expression in p16 positive patients. Interestingly, also

Ktrans max correlated in a similar fashion with VEGF
expression. Furthermore, Ktrans max also showed a sig-
nificant association with Hif1-alpha. Presumably, the
maximum value of Ktrans may reflect tumor areas with the
highest vessel density. +erefore, the observed correlation
between Ktrans max and expression of VEGF is logical. Our
results are in agreement with some previous reports. For
example, in gliomas, also a positive correlation between
VEGF and Ktrans was observed [27–29].

However, some studies did not find significant associ-
ations between DCE-MRI and histopathology. For example,
in breast cancer, no correlations between histogram pa-
rameters derived from DCE-MRI and VEGF expression
could be identified [24].

Rasmussen et al. found associations between standardized
uptake values (SUV) derived from positron emission to-
mography (PET) with 2-deoxy-2-[18F]fluoro-D-glucose
(FDG) and histopathology in HNSCC [30]. +ere were
negative correlations for Bcl-2 and p16 and positive with
β-tubulin-1 index. Moreover, in another study, SUV was only
associated with VEGF expression, whereas no association was
found for GLUT-1, Ki 67, P53, CD68, Hif1-alpha, and CD31
[31]. Our results indicate that DCE-MRI might be more
sensitive than FDG PET for prediction of histopathological
features.

It is believed that the histogram-based analysis of radio-
logical images can better reflect tumor than conventional ROI-
based analysis [15]. For example, it was shown that histogram
analysis of DCE and DWI can identify more correlations
between parameters of these imaging modalities [32].

+e present study showed that kurtosis values derived
from Kep and Ve min were significantly different in p16
positive compared to p16 negative tumors. +is novel
finding might be caused by several underlying tissue
characteristics. In a recent study by de Perrot et al., his-
togram analysis derived from the ADC map was used to
differentiate between p16 positive and p16 negative
HNSCSS [19]. Ve is a parameter, which might be related to
ADC values and cellularity [8, 30]. Interestingly, Ve min
that represents voxels with the lowest extracellular space,
and, presumably, areas with the highest cell density, was
lower in p16 positive lesions. +is finding may suggest that
p16 positive tumors may show a higher cell density than
p16 negative tumors. In the study by de Perrot et al., also
kurtosis derived from ADC maps could distinguish p16
positive and p16 negative carcinomas [19].

+ese findings might be related to several causes. As
reported previously, p16 positive cancers were more often
nonkeratinizing and had a high Ki 67 expression [19].
Moreover, expression profiles of p16 positive and p16
negative cancers might differ significantly emphasizing
their different tumor behavior. So, it was shown that ex-
pression of Eps8 is different in these subtypes of HNSCC
[33]. +is EGFR substrate contributes to the carcino-
genesis and might be involved in invasiveness in HNSCC
[31]. Interestingly, the expression of Eps8 correlated with
the tumor stage and p16 status but not with anatomical
localization of tumors [33]. Moreover, the expression of
other histopathological parameters such as EGFR, VEGF,
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Figure 4: Correlation analysis between Kep entropy and EGFR
expression in the overall patient sample. Spearman’s correlation
coefficient (p � 0.38, P � 0.04).
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and NOTCH1 differ between p16 positive and negative
tumors, which suggest differences in tumor angiogenesis
in these entities [34]. +is might be also a reason for the
identified influence of p16 expression on association be-
tween imaging and histopathology.

Furthermore, it is known that p16 expression is one of
the most important prognostic factors in HNSCC with a
more favorable outcome for p16 positive cancers [16]. +e
other investigated histopathological features are also of
clinical importance. So, EGFR is involved in the regulation
of many cellular pathways, including cell proliferation,
apoptosis, and cellular differentiation [35]. It was identified
that EGFR expression is a good prognostic parameter in
HNSCC [35, 36]. Furthermore, p53 regulates the activity of
pathways, which lead to cell cycle arrest, senescence, or
apoptosis [37]. Another parameter, namely, VEGF predicts
outcome in HNSCC. VEGF overexpression has been re-
ported as a poor indicator for patients with head and neck
cancer [38]. Finally, Hif1-alpha characterizes cellular re-
sponses to hypoxic stress and is related to the neoangio-
genesis [39]. Overexpression of Hif1-alpha was also
significantly associated with poor survival in HNSCC [39].
+erefore, the possibility to characterize HNSCC based on
imaging is very important. +e identified associations be-
tween DCE-MRI parameters and several histopathological
markers can be used in clinical practice.

+ere are several limitations of this study to address.
Firstly, our patient sample size is small yet good comparable
to similar studies. Secondly, we performed a whole tumor
measurement for the DCE-MRI images, whereas the his-
topathology was investigated only on a small part of the
tumor, which might limit our correlation results. Further
prospective studies are needed to confirm our preliminary
results.

In conclusion, the present study identified statistically
significant correlations between histogram parameters de-
rived from DCE-MRI and expression of VEGF, EGFR, p53,
and Hif1-alpha in HNSCC. Associations between DCE-MRI
and histopathology in HNSCC depend on the p16 status.
Furthermore, Kep kurtosis and Ve minimum can differen-
tiate p16 positive and p16 negative carcinomas.
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)e purpose of the present study was to demonstrate an in vitro proof of principle that spectral photon-counting CTcan measure
gold-labelled specific antibodies targeted to specific cancer cells. A crossover study was performed with Raji lymphoma cancer
cells and HER2-positive SKBR3 breast cancer cells using a MARS spectral CTscanner. Raji cells were incubated with monoclonal
antibody-labelled gold, rituximab (specific antibody to Raji cells), and trastuzumab (as a control); HER2-positive SKBR3 breast
cancer cells were incubated with monoclonal antibody-labelled gold, trastuzumab (specific antibody to HER2-positive cancer
cells), and rituximab (as a control). )e calibration vials with multiple concentrations of nonfunctionalised gold nanoparticles
were used to calibrate spectral CT. Spectral imaging results showed that the Raji cells-rituximab-gold and HER2-positive cells-
trastuzumab-gold had a quantifiable amount of gold, 5.97mg and 0.78mg, respectively. In contrast, both cell lines incubated with
control antibody-labelled gold nanoparticles had less gold attached (1.22mg and 0.15mg, respectively). )ese results demonstrate
the proof of principle that spectral molecular CT imaging can identify and quantify specific monoclonal antibody-labelled gold
nanoparticles taken up by Raji cells and HER2-positive SKBR3 breast cancer cells.)e present study reports the future potential of
spectral molecular imaging in detecting tumour heterogeneity so that treatment can be tuned accordingly, leading to more
effective personalised medicine.

1. Introduction

)e current molecular imaging modalities, such as positron
emission tomography (PET), single-photon emission-
computed tomography (SPECT), magnetic resonance imag-
ing (MRI), and optical coherence tomography (OCT), have
come a long way towards the observation of biological pro-
cesses at molecular and cellular levels. However, each of these
modalities has its limitations that contribute to an inability in
measuring specific biomarkers of cancer in patients [1–4].
PETand SPECT, although sensitive, are slow, nonspecific, and

require radioactive tracers. MRI provides excellent soft tissue
contrast but is slow, has poor spatial resolution, and cannot be
used for patients with claustrophobia or metallic implants.
OCT is sensitive and specific, but its limited penetration depth
prevents it from being translated to most clinical tasks. To
overcome the limitations associated with current biomedical
imaging techniques, we aim to use new imaging technology at
clinical X-ray energy ranges, with the inclusion of monoclonal
antibody-functionalised gold nanoparticles.

)e advent of the energy-discriminating photon-
counting spectral detector [5] has opened the door to
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radically new approaches to medical investigation and
monitoring. Like a prism splitting white light into a rainbow,
a spectral detector captures full information in multiple
X-ray energy bins. Spectral CT imaging combines the high-
resolution anatomical detail of standard CT with the ability
to characterise and quantify components of the tissue. As
each material has a specific measurable X-ray spectrum,
spectroscopic imaging can simultaneously measure several
biomarkers of biological processes at the cellular and mo-
lecular level, using simultaneously acquired data for multiple
energy bins. )e combination of high spatial and spectral
resolution with specific identification and quantification of
multiple tissue components, noninvasively, is unique to
specific cells and molecules. )is cellular and molecular-
specific CT imaging is known as spectral molecular CT
imaging.As an emerging revolution in X-ray-based imaging,
spectral molecular CT promises to complement the existing
molecular imaging modalities and to be a potential tool for
delivering personalised medicine [6–10]. Preclinical results
with spectral molecular CT have been very encouraging and
indicate that the specific identification and quantification of
tissue types and nanoparticles is possible, such as imaging of
vulnerable plaque [11, 12], soft tissue quantification [13],
reduction in metal-related CT artefacts [14, 15], crystal-
induced arthropathies [16, 17], quantitative imaging of
excised osteoarthritic cartilage [18], and K-edge imaging of
high-Z (atomic number) biomedical nanoparticles [19, 20].

Laboratory and preclinical results with spectral molecular
CT have been very encouraging, but the question of how
spectral molecular CT imaging could be used in clinical
practice still remains. Given the evidence so far, spectral CT
has the capability of determining drug delivery and host
immune response to cancer, a clinical area that is not yet met
by current clinical imaging modalities. In recent years, ad-
vances in nanotechnology and nanomedicine have focussed
on targeting tumours for diagnosis and therapy [21–23].
Nanoparticles possess desirable physiochemical properties for
chemical and biological detection, including improving signal
strength in imaging, high surface area to volume ratio, and
easily tuneable surface chemistry [23–25]. Nanoparticle-based
drug delivery systems for systemic applications have signif-
icant advantages and have the potential to be more effective
compared to their nonformulated, free drug counterparts, as
surface chemistry allows the attachment of functional groups
which recognise biological cues for improved specificity [26].

Among metal nanoparticles, engineered gold nano-
particles (AuNPs) are increasingly utilised in various bio-
medical applications due to their inert nature, low size
dispersity (size distribution), high stability, comparably easy
synthesis, noncytotoxic nature, and biocompatibility [27].
AuNPs have ideal properties for use as a targeted nano-
contrast material for imaging cancer [28–35]. Spectral mo-
lecular CT integrated with nanoparticle technology may solve
limitations faced by current molecular imaging modalities
and facilitate drug discovery. )e present study will employ
AuNPs to label monoclonal antibodies for the reasons stated.

)e aim of the present research is to test the ability of
spectral molecular CT to detect and quantify the delivery of
drugs to tumours, using targeted gold-labelled monoclonal

antibodies.We are reporting for the first timeMARS spectral
photon-counting CT imaging of Herceptin-modified AuNPs,
specific to HER2-positive breast cancer cells, as a way of
establishing a novel multifunctional platform that allows for
the identification of pathology and assessment of treatment.
Moreover, rituximab, specific to Raji lymphoma cancer cells,
will provide a crossover experiment. A negative control is an
ideal scenario for a preclinical “proof of principle” showing
the ability of MARS spectral CT imaging technology to
distinguish and quantify specifically labelled cells.

2. Materials and Methods

2.1. Spectral Photon-Counting CT Imaging

2.1.1. MARS Spectral CT Scanner Setup. MARS spectral CT
is enabled by the properties of the photon-processing de-
tector, Medipix3RX (Medipix3RX Collaboration, CERN),
within the MARS spectral scanner [13]. Multiple energy
windows or bins of the energy-resolving detector provide
sufficient data to separate several materials in a single X-ray
exposure [19]. )e spectral CT technology has been reported
to differentiate and quantify multiple different high-Z ma-
terials in a single scan by sampling the material-specific
attenuation curves within multiple narrow energy bins,
allowing the detection of element-specific K-edge discon-
tinuities of the photoelectric cross section [36, 37].

Medipix3RX detector can be operated in either the single
pixel mode (SPM) or charge summing mode (CSM) [38]. To
cover the K-edge of Au, energy thresholds were set: 18, 30,
45, and 75 keV in CSM. Acquired data were reconstructed in
four narrow CSM energy bins (18–30, 30–45, 45–75, and
75–118 keV) by a 3D algebraic reconstruction algorithm [39]
(Table 1).

2.1.2. Image Processing. Prior to scanning the samples, the
MARS system creates a pixel mask by acquiring 20 dark-field
(without X-rays) and 200 flat-field (open beam) images. )is
mask was applied to remove noisy pixels, including non-
functional and high and low sensitivity pixels [37, 40, 41].
For each study, the calibration vials (2, 4, and 8mg/mL
AuCl3·xH2O) were placed within a phantom holder, along
with the cell vials, and scanned. )e assessment of the
reconstructed images involved measuring the linear atten-
uation for each material and converting linear attenuation
into Hounsfield units (HU). Using an in-house programme
that uses the calculated effective mass attenuation of the
calibration vials [20, 39], material decomposition (MD) was
applied to the energy images and quantification of the
trastuzumab and rituximab was performed bymeasuring the
amount of gold in the cell clumps.

2.1.3. Cancer Cell Phantoms. 200 µL Eppendorf tubes of
each material (Table 2) were placed in a polymethyl
methacrylate (PMMA) phantom holder. One vial with
SKBR3 was incubated with trastuzumab-gold nanoparticle
complex (Her-AuNP). As a control, SKBR3 incubated with
rituximab gold nanoparticle complex (Rit-AuNP) was
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included. Raji lymphoma cells were treated with the same
protocol, incubated with Her-AuNP and Rit-AuNP, in a
separate PMMA phantom holder. Water, lipid, and 3
concentrations of AuNPs (2, 4, and 8mg/mL) were used for
calibration purposes in both phantoms.

2.2. Gold Nanoparticles. )e streptavidin-modified gold
nanoparticles of size 40 nm were purchased from Fitzgerald
Industries, Acton, MA, and characterised by the UV-visible
spectrophotometer and dynamic light scattering (Malvern
Nano Zetasizer ZS) to confirm the material, size, and size
distribution.

)e absorption spectrum of gold nanoparticles caused by
surface plasmon absorption is directly related to the
nanoparticle size. Surface plasmon resonance (SPR) is the
coherent excitation of all free electrons within the con-
duction band. As particle size increases, the wavelength of
SPR related to absorption shifts to longer, redder wave-
lengths [42, 43]. SPR is important as it allows the AuNP size
to be specifically identified so that it is the gold added to the
experiment which is being measured.

2.3. Antibodies and Labelling

2.3.1. Antibodies. Trastuzumab (Herceptin, Roche Pharma-
ceuticals, Mississauga, ON, Canada) binds exclusively to
HER2-positive human breast cancer cells, and rituximab
(Mabthera) binds to CD20 antigen on human B-cell lym-
phomas and are humanised chimeric therapeutic monoclonal

antibodies with a human Fc domain. Both drugs were made
and supplied by Roche Pharmaceuticals, Mississauga, ON,
Canada. Goat antihuman IgGFc-biotin was from Fitzgerald
Industries, Acton, MA, and streptavidin peroxidase was
supplied by Jackson Immunoresearch Laboratories, West
Grove, PA.

2.3.2. Biotinylation of Antibodies. Rituximab and trastuzu-
mab were both dialysed, and then each were diluted to
2.5mg/mL with 0.1M borate buffer, pH 8.8, 1/20th volume
of biotinamidocaproate N hydroxysuccinamide ester in
DMSO (10mg/mL) added (goat antihuman IgGFc-biotin,
Fitzgerald Industries, Acton, MA) and then mixed for four
hours at 200°C. Unreacted biotin ester was blocked by the
addition of 1M ammonium chloride. Following exhaustive
dialysis against phosphate-buffered saline (PBS), the ma-
terial was clarified by centrifugation and concentration
adjusted to 2mg/mL.

2.4. In Vitro Studies

2.4.1. Cell Lines. )e HER2-positive human breast cancer
line SKBR3 and the CD20-positive human B-cell line Raji
cells were obtained from frozen stocks held by the Steroid
and Immunobiochemistry Laboratory, Canterbury Health
Laboratories, Christchurch, New Zealand. )ey were cul-
tured in flasks in RPMI 1640 supplemented with 10% foetal
calf serum (FCS) media and grown at 37°C in 5% CO2. )e
SKBR3 cells were harvested at confluency and the Raji cells
during log phase growth. Following harvest, the cells were
centrifuged and washed twice with PBS. )e cells were then
used for cell-based ELISA experiments to optimise in-
cubation and labelling conditions for subsequent labelling
with antibody-AuNPs and analysis by spectral CT scanning.
)e use of both SKBR3 and Raji cells allowed crossover
control experiments for each monoclonal antibody as
SKBR3 HER2 positive but CD20 negative; and Raji cells are
CD20 positive but HER2 negative.

2.4.2. Cell-Based Enzyme-Linked Immunosorbent Assay
(ELISA). Washed cells were suspended into 11mL of PBS
and plated across the wells (100 µL/well containing 20,000
cells) of a 96-well, flat-bottomed, microtiter plate. )e plate
was centrifuged for 5 minutes to sediment the cells, and the
PBS was carefully aspirated. Cells were fixed for 30 minutes
at 20°C by adding 2% paraformaldehyde into the PBS
(100 µL/well). )e paraformaldehyde was then carefully
aspirated, and the plate was dried under a gentle stream of
air. )e plate was then blocked with assay buffer containing
1% FCS for 30 minutes at 20°C (200 µL/well). Following
blocking, the buffer was decanted, and the plate was blot
dried by inversion. 2mg/mL dilutions of either rituximab,
trastuzumab, biotinylated rituximab, or biotinylated tras-
tuzumab were added for 30 minutes at 20°C. )e wells were
then washed three times (200 µL/well). For the rituximab
and trastuzumab series, antihuman IgGFc-biotin was added
for another 30 minutes at 20°C (1 :1000 in PBS containing
1% FCS and 100 µL/well). For the biotinylated rituximab and

Table 2: Summary of phantom setup.

Raji phantom SKBR3 phantom
AuNPs 2, 4, and 8mg/mL

AuNPs 2, 4,
and 8mg/mL

AuNPs size by DLS: 50 nm
(expected 40 nm)
AuNPs absorbance: 530 nm
Water, lipid Water, lipid
Raji cells with Her-AuNP (control) SKBR3 with Her-AuNP

Raji cells with Rit-AuNP SKBR3 with Rit-AuNP
(control)

Her, trastuzumab or Herceptin; Rit, rituximab.

Table 1: Summary of MARS spectral CT scanner experimental
setup.

Parameter Value
Scan type Continuous
Tube voltage 118 kVp
Tube current 12 µA
Exposure time 300ms
Sample diameter 38mm
Energy (CSM) 18, 30, 45, and 75 keV
Circular projections 720 over 360°
Flat fields 720
Voxel size 1 × 1 × 1mm3

SDD, SOD 250mm, 200mm
Filtration 2mm Al + 1.8mm Al intrinsic
SDD: source-to-detector distance; SOD: source-to-object distance.
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biotinylated trastuzumab series, the plates were washed and
100 µL/well of 1 :1000 dilution of streptavidin peroxidase
(Fitzgerald Industries, Acton,MA) was added for 30minutes
at 20°C, followed by washing and addition of tetrame-
thylbenzidine substrate (100 µL/well). Following the addi-
tion of antihuman IgGFc-biotin rituximab and Herceptin
series, the plates were washed and incubated with 1:1000
streptavidin peroxidase for 30 minutes at 20°C prior to the
final washing and the addition of tetramethylbenzidine
substrate (100 µL/well). Following colour development, the
reaction was stopped by the addition of 1M HCl (100 µL/
well), and the absorbance was read at 450 nm. )e ab-
sorption reading gives an indication of the particle size.

2.4.3. Gold Labelling of Cells. SKBR3 (20–100 million) and
Raji (20–100 million) cells were harvested, washed as de-
scribed, and each cell type was divided into two portions.
Each portion was incubated with either Herceptin or rit-
uximab (1 :100 of 2mg/mL in PBS containing 1% FCS) for
30 minutes at 20°C in 1.5mL Eppendorf tubes and con-
tinually mixed. )e cells were then washed and antihuman
IgGFc-biotin (1 :100 in PBS containing 1% FCS) was added
for 30minutes at 20°C. Following three washes in PBS,
streptavidin-Au was added (1 :10 in PBS containing 1% FCS)
for a further 30 minutes at 20°C. )e cells were finally
washed three times in PBS and transferred to 0.5mL
Eppendorf tubes and pelleted for MARS scanning.

3. Results

3.1. Gold Nanoparticle Characterisation. )e streptavidin-
modified AuNPs of size 40 nm showed the lambda max peak
at 530 nm. Similar observations have been reported in lit-
erature, concluding the expected size as 40 nm [44]. )e
dynamic light scattering (DLS) confirmed the NPs hydro-
dynamic size to be 50 nm (expected 40 nm). )e standard
absorbance graph obtained has been included in supporting
information along with a typical size distribution graph by
dynamic light scattering (Figure S1).

)e cell-based ELISA studies on the immobilised CD20-
positive Raji cell line showed higher responses with rituximab
dilutions and antihuman IgG-biotin and streptavidin per-
oxidase compared with the same dilutions of biotinylated-
rituximab and streptavidin peroxidase (open and filled circles,
respectively,, in Figure 1(a)). Similarly, cell-based ELISA
studies on immobilised confluent HER2-positive human
breast cancer cells (SKBR3) showed higher responses with the
Herceptin, antihuman IgGFc-biotin, and streptavidin per-
oxidase combination compared with the biotinylated-
Herceptin and streptavidin peroxidase combination (open
and closed triangles, respectively, in Figure 1(b)). )e tras-
tuzumab and rituximab controls are also shown in
Figures 1(a) and 1(b) and show that the two antibodies can
clearly be distinguished in a crossover study.

Hence, for the present study, the former combination,
with the addition of streptavidin-Au in the final step, was
chosen with the rationale that this combination would pro-
vide a higher gold payload for scanning. Indeed, we confirmed

this rationale by small-scale experiments and visualisation of
cell-bound gold nanoparticles (data not shown).

3.2. Spectral Photon-Counting CT Imaging. )e attenuation
signal in Hounsfield units (HU) as a function of concen-
tration data has been included in Figure 2(a). By fitting a line
that best describes the data, the linearity of attenuation for
each energy bin was established [45]. Linearity determines
the ability of a system to detect the presence or absence of
any materials. )is information directly feeds into the
material quantification. Furthermore, the spectral response
of the detector was plotted in Figure 2(b). Considering the
K-edge of gold to be 80.7 keV, and an energy threshold set at
75 keV, we observed, as expected, an enhancement of at-
tenuation in energy bin 4 (75–118 keV) for each concen-
tration of AuNPs.

Greater HU was observed for Raji cells with rituximab-
functionalised AuNPs and SKBR3 with Herceptin-
functionalised AuNPs, as shown in Figures 2(c) and 2(d),
respectively. By only observing the spectral response of the
detector, spectral CT imaging is capable of indicating the
presence of an attenuating material: the gold attached to
trastuzumab, thus showing trastuzumab uptake into the
SKBR3 cells and rituximab uptake into Raji cells. Further-
more, Figures 3(a) and 3(b) visualised, using MARS material
decomposition, the detection of AuNPs in SKBR3 cells and
Raji cells, respectively. Quantification of the resulting MD
images was performed and shown in Figures 4(a) and 4(b). A
significantly lower amount of AuNPs was detected and
quantified in the control cells. Eightfold lower in SKBR3 cells
incubated with rituximab modified AuNPs, and sixfold lower
in Raji cells incubated with Herceptin modified AuNPs.

4. Discussion

)e key outcomes of this in vitro study are first that spectral
photon-counting CT can measure gold-labelled specific
antibodies targeted to specific cancer cells; and second, that
NPs can be integrated with spectral CT to generate a
combined diagnostic imaging and a therapeutic agent, which
can be detected and monitored. )e concepts of using
AuNPs with biotin to deliver a drug are well known [46].
Rituximab has been delivered using AuNPs [47]. Herceptin
delivered by indium radiolabelled AuNPs has been shown to
be cytotoxic in vitro [48]. Methods of using biotin and
streptavidin with antibodies to target HER2-positive tu-
mours are an established way [49]. In this study, we utilised
these establishedmethodologies and demonstrated the proof
of principle that spectral molecular CT imaging can identify
and quantify specific monoclonal antibody-labelled gold
nanoparticles taken up by Raji cells and HER2-positive
SKBR3 breast cancer cells.

Medical imaging is key to the diagnosis or assessment of
disease response in many areas of medicine. Nevertheless,
measuring disease activity, host response, and the effective-
ness of treatment is frequently indirect, slow, and qualitative
unless invasive procedures are performed. SKBR3, a breast
cancer cell line which overexpresses epidermal growth factor
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receptor 2 (HER2), and Herceptin monoclonal antibody were
used to test both the molecular specific binding of func-
tionalised AuNPs and MARS spectral CT imaging. Herceptin
works by attaching to HER2 on the cancer cells and inhibiting
intracellular signalling. Crossover experiment was conducted
to further support our findings. Rituximab, a monoclonal
antibody which destroys both normal and malignant B cells
that have CD20 receptors on their surface, is used to treat
diseases that have overexpressed or dysfunctional B cells, for
instance, Raji cells. Using multiple energy thresholds, the
broad X-ray spectrum was divided into narrow energy bins to
discriminate gold, water, and lipid. Establishing linearity of
attenuation in each energy bin essentially creates multiple
monochromatic CTs from a polychromatic CT X-ray source
[45]. Accurate linearity of the system for any material (R2
value ≈ 0.99 for all four energy bins was established) validates
the quantification of that material. During the course of data
analysis, we observed hidden K-edge phenomenon [50],
which could be associated with low concentrations of AuNPs
uptake by Raji and SKBR3; no enhancement of attenuation in
energy bin 4 (Figures 2(c) and 2(d)) [50, 51]. However, our
material decomposition algorithm [50] was able to recover
this hidden information using the effective linear attenuation
for each material (for each concentration and energy bin),
which was estimated by taking the mean of respective regions
in the reconstructed data, and demonstrates the uniqueness of
spectral CT imaging [20].

Anticancer drugs are often hydrophobic, and attaching
nanoparticles is a way of transporting the toxic drugs safely
to the target site, where the drug will then be taken up by the
cell and become active [52]. Molecules are too small to image
directly; therefore, specific and sensitive contrast material is
used to overcome this limitation and enhance targeted
pathology. Nanoparticles provide unique and desirable
physiochemical properties, ideal for CT imaging. A study by
Kumar et al. suggested that size and cell type influenced the

uptake of “as prepared” AuNPs by ovarian cancer cells [53].
Optimisation of the cellular uptake of AuNPs is required for
different cell types to achieve enough payload. Functional-
isation of AuNPs, or active uptake, improves specificity and
payload. Examining molecular abnormalities of disease via
noninvasive molecular imaging has allowed earlier de-
tection, disease progression monitoring, and treatment as-
sessment. )is is achieved as molecular imaging plays a
primary role in the optimisation of pathology, locating
pathological lesions, guiding surgery and biopsy, and en-
abling more accurate diagnostic decision-making by the
oncologist. )e target-specific molecular probe is a crucial
aspect for the development of diagnostic and therapeutic
methods that address personalised treatment. Treatment
focus becomes the individual patient rather than the disease
[54]. Herceptin is often used with other chemotherapy
medication for the treatment of breast cancer. Studies have
shown slower tumour growth, which has a profound effect
on the course of disease and survival of women with ag-
gressive HER2-positive breast cancer [55–58]. Spectral
imaging is a new frontier in molecular imaging which, if,
used in conjunction with nanoparticle contrast material has
the potential to accelerate the study of pharmacokinetics and
the development of drugs for the treatment of cancer.

Distinguishing HER2-positive breast cancer cells from
other cancer cell lines with photon-counting spectral CT will
allow tumour heterogeneity to be imaged, spatially located,
andmeasured noninvasively. ER expression in breast tumours
could be targeted at the same time in future studies. It is
hypothesized that the current nonspecific imaging approach
where most cancers are staged with imaging, then reimaged to
assess tumour size to see if treatment is working, or with PET
to see if themetabolic activity has reduced, implying treatment
is working, will be transformed. Moreover, current patho-
logical methods to assess biopsy and whole breast specimens
are unable to determine tumour heterogeneity mostly because
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Figure 1: )e quantitative data collected using the ELISA kit in the form of absorbance against drug dilution. )e absorbance was read at
450 nm for (a) rituximab dilution in the case of Raji cells and (b) Herceptin dilution in the case of SKBR3.
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Figure 2: (a) Linearity of attenuation of calibration vials containing AuNP for each energy bin. R2 � 0.99 for all linearity trends. (b) Spectral
response of the detector for calibration vials. Enhancement of attenuation due to K-edge observed in energy bin 4 (75–118 keV). Insets show
material decomposed images corresponding to each concentration. (c) and (d) Spectral response of Raji and SKBR3 cells, respectively.
Standard errors are shown for spectral response data.
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Figure 3: (a) SKBR3 cell line phantom. SKBR3 cells with Herceptin-AuNPs show more volume, indicating more gold is present. Material
decomposition basis images show Au (yellow/orange, the hue represents the concentration), lipids (pink), and water-like material (grey). (b)
Raji cell line phantom; Raji cells with rituximab-AuNPs show more volume and brighter hue, indicating a high concentration of gold
present.
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specimen has to be cut into sections and sampled. Hetero-
geneity can be underreported or missed due to sampling
errors. )ese results may also pave the way towards providing
a new approach to characterise breast cancer cell types within
the specimens, where whole biopsy specimens can be used
with multiple targeted markers in conjunction with spectral
CT to map out and specifically identify the different pop-
ulations of breast cancer cells (or different cancer cells in case
of different tumour types) within the specimen, identifying
and measuring breast cancer heterogeneity.

Our results illustrate the proof of concept that spectral
molecular CT imaging in conjunction with functionalised
gold nanoparticles can provide valuable information on tu-
mour heterogeneity while providing important physiologic
data at the cellular level.)e proof of principle reported in the
current study has the potential to have a major impact on the
management of cancers that express specific biomarkers, such
as the expression of HER2. With regard to other potential
models, HER2 has also been suggested as a target for lung [59]
and colorectal cancers [60]. )is laboratory methodology is
specifically designed to translate to human imaging so that in
the future, womenwith breast cancer can have their treatment
tuned to match changes in their tumour. )e significance of
this work is that once spectral CT scanners are available for
clinical use, clinicians will in future be able to monitor HER2
receptor status of all sites of breast cancer in an individual,
detect how and where this status changes, monitor drug
delivery and disease response, and adjust treatment to keep
pace with these biological changes in breast cancer, that is, be
able to detect and respond to tumour heterogeneity. In this
context, it is important to note that spectral CT has recently
progressed to imaging the first ever human scan [61].

5. Conclusion

AuNPs are being studied and developed as a promising
multifunctional platform for imaging and drug delivery ap-
plications. )e present study successfully established in vitro
methodology that aimed to measure gold-labelled specific

monoclonal antibodies targeted to specific cancer cells;
trastuzumab and rituximab to HER2-positive SKBR3 breast
cancer and Raji B-cell lymphoma, respectively. Spectral
photon-counting CT results show that Raji cells and HER2-
positive SKBR3 breast cancer cells take up gold nanoparticles,
if the nanoparticles are conjugated with a monoclonal anti-
body specific to them. A key issue that was observed and
fulfilled during the study was to load the optimal amount of
AuNPs for quantitative and qualitative analyses using spectral
CT.)e information provided is relevant for the development
of more sensitive and specific targeted imaging tests for
various malignancies using a range of off-the-shelf, stable
functionalised nanoparticles. Spectral imaging has the po-
tential to allow accurate diagnosis of tumour type, size, and
location. )e methodology in the present study was designed
to translate to human imaging so that in the future, tumour
heterogeneity can be detected, and treatment tuned accord-
ingly, leading to more effective personalised cancer treatment.
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[18] K. Rajendran, C. Löbker, B. S. Schon et al., “Quantitative
imaging of excised osteoarthritic cartilage using spectral CT,”
European Radiology, vol. 27, no. 1, pp. 384–392, 2016.

[19] M. Moghiseh, R. Aamir, R. K. Panta et al., “Discrimination
of multiple high-Z materials by multi-energy spectral
CT–A phantom study,” JSM Biomedical Imaging Data Pa-
pers, vol. 3, 2016.

[20] A. Raja, M. Moghiseh, C. Bateman et al., “Measuring iden-
tification and quantification errors in spectral CT material
decomposition,” Applied Sciences, vol. 8, no. 3, p. 467, 2018.

[21] S.Myung, A. Solanki, C. Kim, J. Park, K. S. Kim, and K.-B. Lee,
“Graphene-encapsulated nanoparticle-based biosensor for the
selective detection of cancer biomarkers,” Advanced Mate-
rials, vol. 23, no. 19, pp. 2221–2225, 2011.

[22] X. Liu, Q. Dai, L. Austin et al., “A one-step homogeneous
immunoassay for cancer biomarker detection using gold
nanoparticle probes coupled with dynamic light scattering,”
Journal of the American Chemical Society, vol. 130, no. 9,
pp. 2780–2782, 2008.

[23] W. Zhou, X. Gao, D. Liu, X. Chen et al., “Gold nanoparticles
for in vitro diagnostics,” Chemical Reviews, vol. 115, no. 19,
pp. 10575–10636, 2015.

[24] P. C. Ray, S. A. Khan, A. K. Singh, D. Senapati, and Z. Fan,
“Nanomaterials for targeted detection and photothermal
killing of bacteria,” Chemical Society Reviews, vol. 41, no. 8,
pp. 3193–3209, 2012.

[25] G. Konvalina and H. Haick, “Sensors for breath testing: from
nanomaterials to comprehensive disease detection,” Accounts
of Chemical Research, vol. 47, no. 1, pp. 66–76, 2013.

[26] A. C. Anselmo and S. Mitragotri, “Nanoparticles in the clinic,”
Bioengineering and Translational Medicine, vol. 1, no. 1,
pp. 10–29, 2016.

[27] A. Khan et al., “Gold nanoparticles: synthesis and applications
in drug delivery,” Tropical Journal of Pharmaceutical Research,
vol. 13, no. 7, pp. 1169–1177, 2014.

[28] E. Boisselier and D. Astruc, “Gold nanoparticles in nano-
medicine: preparations, imaging, diagnostics, therapies and
toxicity,” Chemical Society Reviews, vol. 38, no. 6, pp. 1759–
1782, 2009.

[29] P. D. Howes, R. Chandrawati, and M. M. Stevens, “Colloidal
nanoparticles as advanced biological sensors,” Science,
vol. 346, no. 6205, article 1247390, 2014.

8 Contrast Media & Molecular Imaging

http://downloads.hindawi.com/journals/CMMI/2018/2136840.f1.pdf


[30] K. E. Sapsford, W. Russ Algar, L. Berti et al., “Functionalizing
nanoparticles with biological molecules: developing chemis-
tries that facilitate nanotechnology,” Chemical Reviews,
vol. 113, no. 3, pp. 1904–2074, 2013.

[31] L. E. Cole, R. D. Ross, J. M. R. Tilley, T. Vargo-Gogola, and
R. K. Roeder, “Gold nanoparticles as contrast agents in x-ray
imaging and computed tomography,” Nanomedicine, vol. 10,
no. 2, pp. 321–341, 2015.

[32] A. Ambrosi, F. Airo, and A. Merkoçi, “Enhanced gold
nanoparticle based ELISA for a breast cancer biomarker,”
Analytical Chemistry, vol. 82, no. 3, pp. 1151–1156, 2009.

[33] X. Zhang, “Gold nanoparticles: recent advances in the bio-
medical applications,” Cell Biochemistry and Biophysics,
vol. 72, no. 3, pp. 771–775, 2015.

[34] L. Dykman and N. Khlebtsov, “Biomedical applications of
multifunctional gold-based nanocomposites,” Biochemistry
(Moscow), vol. 81, no. 13, pp. 1771–1789, 2016.

[35] D. Pissuwan, T. Niidome, and M. B. Cortie, “)e forthcoming
applications of gold nanoparticles in drug and gene delivery
systems,” Journal of Controlled Release, vol. 149, no. 1,
pp. 65–71, 2011.

[36] J. Fornaro, S. Leschka, D. Hibbeln et al., “Dual- and multi-
energy CT: approach to functional imaging,” Insights into
Imaging, vol. 2, no. 2, pp. 149–159, 2011.

[37] X. Wang, D. Meier, K. Taguchi, D. J. Wagenaar, B. E. Patt, and
E. C. Frey, “Material separation in x-ray CT with energy
resolved photon-counting detectors,”Medical Physics, vol. 38,
no. 3, pp. 1534–1546, 2011.

[38] R. Ballabriga, J. Alozy, G. Blaj et al., “)e Medipix3RX: a high
resolution, zero dead-time pixel detector readout chip
allowing spectroscopic imaging,” Journal of Instrumentation,
vol. 8, no. 2, article C02016, 2013.

[39] C. Bateman, D. Knight, B. Brandwacht et al., “MARS-MD:
rejection based image domain material decomposition,”
Journal of Instrumentation, vol. 13, no. 5, article P05020, 2018.

[40] M. J. Marshall, R. J. Stopforth, and M. S. Cragg, “)erapeutic
antibodies: what have we learnt from targeting CD20 and
where are we going?,” Frontiers in immunology, vol. 8, p. 1245,
2017.

[41] R. K. Panta, M. F. Walsh, S. T. Bell, N. G. Anderson,
A. P. Butler, and P. H. Butler, “Energy calibration of the pixels
of spectral x-ray detectors,” IEEE transactions on medical
imaging, vol. 34, no. 3, pp. 697–706, 2015.

[42] D. Kumar, B. J. Meenan, and D. Dixon, “Glutathione-
mediated release of Bodipy® from PEG cofunctionalized
gold nanoparticles,” International Journal of Nanomedicine,
vol. 7, p. 4007, 2012.

[43] J. Zhao and S.-S. Feng, “Effects of PEG tethering chain length
of vitamin E TPGS with a Herceptin-functionalized nano-
particle formulation for targeted delivery of anticancer drugs,”
Biomaterials, vol. 35, no. 10, pp. 3340–3347, 2014.

[44] D. P. Clark, K. Ghaghada, E. J. Moding, D. G. Kirsch, and
C. T. Badea, “In vivo characterization of tumor vasculature
using iodine and gold nanoparticles and dual energy micro-
CT,” Physics in Medicine and Biology, vol. 58, no. 6,
pp. 1683–1704, 2013.

[45] W. A. Weber, J. Czernin, M. E. Phelps, and H. R. Herschman,
“Technology insight: novel imaging of molecular targets is an
emerging area crucial to the development of targeted drugs,”
Nature Reviews Clinical Oncology, vol. 5, no. 1, pp. 44–54, 2008.

[46] D. N. Heo, D. H. Yang, H.-J. Moon et al., “Gold nanoparticles
surface-functionalized with paclitaxel drug and biotin receptor
as theranostic agents for cancer therapy,” Biomaterials, vol. 33,
no. 3, pp. 856–866, 2012.

[47] L. Fan, D. Lou, Y. Zhang, and N. Gu, “Rituximab-Au
nanoprobes for simultaneous dark-field imaging and DAB
staining of CD20 over-expressed on Raji cells,” ;e Analyst,
vol. 139, no. 22, pp. 5660–5663, 2014.

[48] Z. Cai, N. Chattopadhyay, K. Yang et al., “In-labeled
trastuzumab-modified gold nanoparticles are cytotoxic in
vitro to HER2-positive breast cancer cells and arrest tumor
growth in vivo in athymic mice after intratumoral injection,”
Nuclear Medicine and Biology, vol. 43, no. 12, pp. 818–826,
2016.

[49] H. Wartlick, K. Michaelis, S. Balthasar, K. Strebhardt,
J. Kreuter, and K. Langer, “Highly specific HER2-mediated
cellular uptake of antibody-modified nanoparticles in tumour
cells,” Journal of Drug Targeting, vol. 12, no. 7, pp. 461–471,
2004.

[50] C. J. Bateman, “)e hidden K-edge signal in K-edge imaging,”
2015, http://arxiv.org/abs/1506.04223.

[51] M. Moghiseh, Optimization of Spectral CT Data Acquisition
for Novel Applications of Nanoparticles, in Department of
Bioengineering, University if Otago, Christchurch, New
Zealand, 2018.

[52] V. Guarneri, M. V. Dieci, and P. Conte, “Enhancing in-
tracellular taxane delivery: current role and perspectives of
nanoparticle albumin-bound paclitaxel in the treatment of
advanced breast cancer,” Expert Opinion on Pharmacother-
apy, vol. 13, no. 3, pp. 395–406, 2012.

[53] D. Kumar, I. Mutreja, K. Chitcholtan, and P. Sykes, “Cyto-
toxicity and cellular uptake of different sized gold nano-
particles in ovarian cancer cells,” Nanotechnology, vol. 28,
no. 47, p. 475101, 2017.

[54] L. Mansi, V. Cuccurullo, and R. Grassi, “Diagnostic imaging
and pathology,” in Advanced Imaging Techniques in Clinical
Pathology, F. M. Sacerdoti, A. Giordano, and C. Cavaliere,
Eds., pp. 107–111, Springer New York, New York, NY, USA,
2016.

[55] T. Tian, J. Ye, and S. Zhou, “Effect of pertuzumab, trastu-
zumab, and docetaxel in HER2-positive metastatic breast
cancer: A meta-analysis,” International Journal of Clinical
Pharmacology and ;erapeutics, vol. 55, 2017.

[56] G. Bianchini and L. Gianni, “)e immune system and re-
sponse to HER2-targeted treatment in breast cancer,” ;e
Lancet Oncology, vol. 15, no. 2, pp. e58–e68, 2014.

[57] S. M. Swain, S.-B. Kim, J. Cortés et al., “Pertuzumab, tras-
tuzumab, and docetaxel for HER2-positive metastatic breast
cancer (CLEOPATRA study): overall survival results from a
randomised, double-blind, placebo-controlled, phase 3
study,” ;e Lancet Oncology, vol. 14, no. 6, pp. 461–471, 2013.

[58] N. E. Buckley, C. Forde, D. G. McArt et al., “Quantification of
HER2 heterogeneity in breast cancer–implications for iden-
tification of sub-dominant clones for personalised treatment,”
Scientific Reports, vol. 6, no. 1, p. 23383, 2016.

[59] G. Cox, M. Vyberg, B. Melgaard, J. Askaa, A. Oster, and
K. J. O’Byrne, “Herceptest: Her2 expression and gene am-
plification in non-small cell lung cancer,” International
Journal of Cancer, vol. 92, no. 4, pp. 480–483, 2001.

[60] M. Greally, C. Kelly, and A. Cercek, “HER2: an emerging
target in colorectal cancer,” Current Problems in Cancer, 2018,
In press.

[61] P. A. H. Butler, “First living human images from a MARS
photon-counting 8-energy CT,” in IEEE NSS-MIC, IEEE,
Sydney, Australia, 2018.

Contrast Media & Molecular Imaging 9

http://arxiv.org/abs/1506.04223


Research Article
Prostate Osteoblast-Like Cells: A Reliable Prognostic
Marker of Bone Metastasis in Prostate Cancer Patients

Manuel Scimeca ,1,2 Nicoletta Urbano,3 Bonfiglio Rita ,4 Sarah Natalia Mapelli,5

Carlo Vittorio Catapano,5 Giuseppina Maria Carbone,5 Sara Ciuffa,4 Mario Tavolozza,3

Orazio Schillaci,1,6 Alessandro Mauriello ,4 and Elena Bonanno 4,7

1Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, Rome 00133, Italy
2University San Raffaele, Via di Val Cannuta 247, 00166 Rome, Italy
3Nuclear Medicine, Policlinico “Tor Vergata”, Rome, Italy
4Department of Experimental Medicine and Surgery, University “Tor Vergata”, Via Montpellier 1, Rome 00133, Italy
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'e main aim of this study was to investigate the putative association among the presence of prostate cancer cells, defined as
prostate osteoblast-like cells (POLCs), and showing the expression of typical morphological and molecular characteristics of
osteoblasts, the development of bone metastasis within 5 years of diagnosis, and the uptake of 18F-choline evaluated by PET/CT
analysis. To this end, prostate biopsies (n � 110) were collected comprising 44 benign lesions and 66 malignant lesions. Malignant
lesions were further subdivided into two groups: biopsies from patients that had clinical evidence of bonemetastasis (BM+, n � 23)
and biopsies from patients that did not have clinical evidence of bone metastasis within 5 years (BM−, n � 43). Paraffin serial
sections were obtained from each specimen to perform histological classifications and immunohistochemical (IHC) analysis.
Small fragments of tissue were used to perform ultrastructural and microanalytical investigations. IHC demonstrated the ex-
pression of markers of epithelial-to-mesenchymal transition (VIM), bonemineralization, and osteoblastic differentiation (BMP-2,
PTX-3, RUNX2, RANKL, and VDR) in prostate lesions characterized by the presence of calcium-phosphate microcalcifications
and highmetastatic potential. Ultrastructural studies revealed the presence of prostate cancer cells with osteoblast phenotype close
to microcalcifications. Noteworthy, PET/CT analysis showed higher uptake of 18F-choline in BM+ lesions with high positivity
(≥300/500 cells) for RUNX2 and/or RANKL immunostaining. Although these data require further investigations about the
molecular mechanisms of POLCs generation and role in bone metastasis, our study can open new and interesting prospective in
the management of prostate cancer patients.'e presence of POLCs along with prostate microcalcifications may become negative
prognostic markers of the occurrence of bone metastases.

1. Introduction

Metastasis to bone is a common feature in advanced prostate
cancer (PCa) patients. PCa is one of the most frequent
cancer in men and represents a great public health problem,
with a total of 265,000 new diagnosis every year in both
Europe and United States of America [1]. Frequently,

prostate cancer patients show bone osteoblastic metastatic
lesions at diagnosis [1, 2]. 'e evidence that prostate cancer
cells in patients enter the circulation in large numbers but
still preferentially colonise to the bone has a number of
implications. Prostate cancer cells have the ability to adhere
at the main proteins of the extracellular matrix or at the bone
marrow [2]. Also, the colonisation bone by prostate cancer
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cells suggests that metastatic cells have morphological and/
or molecular characteristics that make them capable to
survive in the bone [2–4].

'e type of bone metastases formed in prostate cancer is
a reflection of the local interaction between tumour cells
and the bone remodeling system—a complex mechanism
which remains to be fully characterized. Bone metastases in
prostate cancer are most often osteoblastic (involving the
deposition of newly formed bone), but can also be osteolytic
(characterized by destruction of normal bone) or mixed.'e
development of either osteolytic or osteoblastic lesions re-
sults from functional interactions between tumour cells and
osteoclasts or osteoblasts, respectively [5]. However, the
mechanisms responsible for the formation of prostate cancer
metastasis to bone are complex and certainly involve both
osteoclasts and osteoblasts activity [6]. In this context, the
binary classification between osteoblastic and osteolytic
lesions represents two extremes of a continuum which in-
volves dysregulation of the normal bone remodeling process
and which is yet to be fully understood. A detailed char-
acterization of the osteoblastic-osteolytic spectrum and of
premetastatic tumour cells could therefore pave the way for
both the identification of early markers for bone metastasis
and of novel drug targets to improve quality of life of pa-
tients with advanced prostate cancer.

As concerns the origin of metastatic cells, different hy-
potheses have been formulated. For a long time, the main
theories of the formation of bone metastases contemplated
the occurrence of specific genetics change in primary cancer
cells that thus acquired the ability to spread to and thrive in
distant organs [7, 8]. In this context, the epithelial-to-
mesenchymal transition (EMT) could represent the key bi-
ological process adopted by epithelial cancer cells to promote
tissue dissemination [9]. On note, in our recent study, we
demonstrated a putative association between the occurrence
of EMTand the development of breast cancer cells showing an
osteoblast-like cells phenotype in lesions with micro-
calcifications [10, 11]. In addition, we observed that the
presence of breast osteoblast-like cells (BOLCs) in breast
infiltrating cancer was associated with the formation of bone
metastatic lesions within 5 years from diagnosis [12, 13].

'emain aim of this study was to investigate the putative
association among the presence of prostate cancer cells,
defined as prostate osteoblast-like cells (POLCs), and
showing the expression of typical morphological and mo-
lecular characteristics of osteoblasts, the development of
bone metastasis within 5years of diagnosis, and the uptake of
18F-choline evaluated by PET/CT analysis.

2. Materials and Methods

2.1. Collection of Prostate Samples. In this study, we enrolled
110 patients undergoing prostate biopsies. From this se-
lection, we collected prostate biopsies from each patient and,
when available, data of PET/CT analysis. 'e study was
approved by Institutional Ethical Committee of the “Poli-
clinico Tor Vergata.” Experimental procedures here reported
were performed in agreement with the'e Code of Ethics of
the World Medical Association (Declaration of Helsinki).

All patients have signed the informed consent prior to
surgical procedures. From each sample, paraffin serial sec-
tions were used for both histological and immunohisto-
chemical investigation. Also, 1mm3 of tissue were studied
by transmission electron microscopy and microanalytical
analysis. Exclusion criteria were history of previously or
concomitant other neoplastic diseases, autoimmune dis-
eases, viral chronic infections (HBV, HCV, and HIV), and
any antitumoral treatment received before biopsy.

2.2.Histology. Fixation and haematoxylin and eosin staining
were performed as previously described [14].

2.3. Immunohistochemistry. To study the immunopheno-
typical profile of prostate metastatic cells, we performed
immunohistochemical reactions to investigate the expres-
sion of the following biomarkers: vimentin (EMT), BMP-2,
PTX-3, RUNX2, RANKL, and VDR (mineralization pro-
cess). For antigen retrieval, 3 μm thick paraffin sections were
treated with citrate pH 6.0 or EDTA citrate pH 7.8 buffers
(95°C for 30min). 'en, primary antibodies listed in Table 1
were incubated for 1 hour at room temperature. HRP-DAB
Detection Kit (UCS Diagnostic, Rome, Italy) was used to
reveal the reaction of primary antibodies with their specific
target. Immunohistochemical signal was assessed in-
dependently by two investigators by counting the number of
positive cancer cells (out of a total of 500 in randomly se-
lected regions).

2.4. Transmission Electron Microscopy (TEM) and Energy
Dispersive X-Ray (EDX) Microanalysis. Small fragment of
prostate tissue (1mm3) was fixed in 4% paraformaldehyde
and postfixed in 2% osmium tetroxide.'en, the sample was
dehydrated in alcohol and infiltrated with propylene oxide
before being embedded in Epon (Agar Scientific, Stansted
CM24 8GF, Essex, United Kingdom) [15]. Eighty-
micrometer ultrathin sections were cut by ultramicrotome
and mounted on copper grids. All samples were examined
with a transmission electron microscope (Model JEM-1400,
JEOL) [16–18].

For EDX microanalysis, 80 µm ultrathin sections were
mounted on copper grids. Hydroxyapatite crystals were
identified by EDX detector ('ermo Scientific, Waltham,
MA, USA) at an acceleration voltage of 75KeV and mag-
nification of 12.000 [16–18]”.

2.5.18F-Choline PET/CTAnalysis. Among patients enrolled
in the study, 11 were subjected to 18F-methylcholine (18F-
choline) PET/CT analysis. Results of 18F-choline PET/CT
were collected to verify a possible correlation between 18F-
choline uptake in prostate tumours and the presence of
POLCs. 18F-choline PET/CT analysis was performed as
previously described [19, 20]. From each patient, stan-
dardized uptake value (SUV) max and SUV average were
recorded.
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2.6. Retrieval and Analysis of Gene Expression Datasets.
Gene expression data from two studies in prostate cancer
patients [21, 22] were retrieved from the cBioPortal plat-
form. Expression of the selected genes was compared be-
tween primary tumours and metastatic CRPC and, for the
second dataset, among primary and different metastatic
sites. Heatmaps show the results of unsupervised hierar-
chical clustering based on the gene set expression.

2.7. Statistical Analysis. We performed groupwise com-
parisons of the expression of analysed biomarkers through
nonparametric Kruskal–Wallis test (KW) (p< 0.05). Post
hoc testing was performed by the Mann–Whitney test [12].

3. Results

3.1. Histological Classification. Prostate biopsies were clas-
sified in 44 benign lesions (BL) and 66 malignant lesions
according to EAU-ESTRO-SIOG Guidelines 2017 [23]. We
subdivided the malignant lesions in those (BM+, n � 23)
taken from patients with clinical evidence of bone metastasis
and those (BM−, n � 43) from patients without clinical
evidence of bone metastasis after 5 years from diagnosis.
From radiological point of view, all metastatic sites showed
typical characteristics of osteoblastic lesions. Calcifications
were present in 38 out of 110 prostate biopsies. In particular,
we observed psammoma bodies in 32% of BL, 87% of BM+,
and 79% of BM−. Patient baseline characteristics are re-
ported in Table 2.

3.2. EMT Characterization. Immunohistochemical analysis
of vimentin expression was performed in order to evaluate
the number of prostate cells that acquire mesenchymal
phenotype (Figure 1(a)–1(c)). As shown in a recent study
[24], significant group effect was detected in the rate of
vimentin-positive prostate cells (p � 0.0025), and post hoc
testing showed a significantly higher rate of vimentin-
positive prostate cells in BM+ (274.4 ± 30.76) compared
to both BL (90.79 ± 14.82) and BM− (198.8 ± 22.8) (BL vs
BM− p � 0.0298; BL vs BM+ p< 0.0001; BM− vs BM+
p � 0.047).

3.3. Expression of Bone Markers in Prostate Tissues. Our
results showed a significant group effect on BMP-2 ex-
pression (p � 0.0494), and post hoc testing showed in-
creased BMP-2 expression in BM− (349.8 ± 13.13) compared
to BL (BL 209.2 ± 39.22) (BL vs BM−p� 0.0083)
(Figures 1(d)–1(f )). No other significant differences were

found (BM+ 335.1 ± 22.05). Our results show that prostate
cells, especially cancer cells, express PTX-3, an innate-
immune protein. We observed a significant group effect
on PTX-3 (p � 0.0076). Post hoc testing showed very strong
expression of PTX-3 in the cytoplasm of BM+ (321.77 ±
21.10) compared to both BL (154.1 ± 23.16) and to BM−
(205.8 ± 28.51) (BL vs BM− p � 0.2205; BL vs BM+
p< 0.0001; BM− vs BM+ p � 0.0158) (Figures 1(g)–1(i)).

3.4. Immunophenotypic Characterization of POLCs. A sig-
nificant group effect was observed on the number of
RUNX2-positive cancer cells (p � 0.0187), after which post
hoc testing showed significantly in BM− (375.4 ± 20.97)
respect to BL (273.3 ± 27.14) (p � 0.0006). No other sig-
nificant differences were found (BM+ 338.2 ± 31.84)
(Figures 2(a)–2(c)). RANKL exhibited a significant group
effect (p< 0.0001), and in post hoc testing, its expression was
significantly higher in BM+ (386.7 ± 32.26) with respect to
both BL (169.6 ± 25.74) and BM− (278.3 ± 15.24) (BM+ vs
BL p � 0.0011; BM+ vs BM− p � 0.0014) (Figures 2(d)–
2(f )). Also, significant differences were observed by com-
paring BL and BM− groups (p< 0.0001). VDR exhibited a
similar group effect (p< 0.0001) (Figure 2(g)–2(i)). In ad-
dition, we detected significantly higher VDR expression
when comparing BM+ (357 ± 25.59) to both BL (3.58 ± 2.03)
and BM− (229.5 ± 15.55) (BL vs BM− p< 0.0001; BL vs BM+
p< 0.0001; BM− vs BM+ p � 0.0002) (Figure 2(g)). In
particular, the signal in BM+ appeared very intense both in
nucleus and in cytoplasm (Figure 2(h)), while it was less
intense and mainly nuclear in BM− (Figure 2(i)).

3.5. Expression of POLC Biomarkers in Gene Expression
Datasets. We examined expression of the EMT and bone
markers studied by IHC in public datasets comprising gene
expression profiling data from patients with primary tu-
mours or metastatic castration-resistant prostate cancer
(CRPC). Individual gene comparisons did not show a
univocal behaviour (Figure 3(a)). Only VDR expression was

Table 1: List of primary antibodies.

Antibody Characteristics Dilution Retrieval
Antivimentin Mouse monoclonal clone V9; Ventana, Tucson, AZ, USA Prediluted EDTA citrate pH 7.8
Anti-BMP-2 Rabbit monoclonal clone N/A; Novus Biologicals, Littleton, CO, USA 1 : 250 Citrate pH 6.0
Anti-PTX-3 Rat monoclonal clone MNB1; AbCam, Cambridge, UK 1 :100 Citrate pH 6.0
Anti-RUNX2 Mouse monoclonal clone EPR14334; AbCam, Cambridge, UK 1 :100 Citrate pH 6.0
Anti-RANKL Rabbit monoclonal clone 12A668; AbCam, Cambridge, UK 1 :100 EDTA citrate pH 7.8
Anti-VDR Rabbit polyclonal clone NBP1-19478; Novus Biologicals, Littleton, CO, USA 1 :100 Citrate pH 6.0

Table 2: Baseline characteristics of patients.

n Age
≤55

Age
≥55

Gleason
≤6

Gleason
7

Gleason
≥8

PSA
(ngml–1)

BL 44 20 24 / / / /

BM+ 23 5 18 4 4 15 1122.11 ±
1348.02

BM− 43 13 30 13 6 25 1001.09 ±
147938
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significantly upregulated in CRPC compared to primary
tumours. Interestingly, however, the small set of genes was
able to discriminate most of the primary tumours from
metastatic CRPCs in unsupervised clustering (Figure 3(b)).
Furthermore, analysis of a second dataset with annotated
metastatic sites showed that the gene set expression was
remarkably higher in tumour specimens taken from bone
metastases compared to primary tumours and other met-
astatic sites (Figure 3(c)).

3.6. Prostate Calcifications. In order to verify if the presence
of prostate microcalcifications was linked to the expression
of mineralization factors, we subdivided our samples in

prostate lesions with (Micro+) or without (Micro−) calci-
fications, independently from the type of lesion. We ob-
served significantly higher expression of BMP-2 in Micro+
respect to Micro− (Micro+ 431.60 ± 23.35 vs Micro− 288.30
± 18.00; p � 0.0017) (Figure 4(a)). We found an increase of
PTX-3-positive prostate cells in Micro+ as compared to
Micro− (Micro+ 234.20 ± 18.40 vs Micro− 120.7 ± 25.82;
p � 0.0045) (Figure 4(b)). Conversely, no significant dif-
ference was observed for the analysis of RUNX2-positive
prostate cells (Micro+ 331.50±20.52 vs Micro− 281.50 ±
26.65; p � 0.1980) (Figure 4(c)). Analysis of RANKL showed
a significant difference between the presence of RANKL-
positive prostate cells between Micro+ and Micro− (Micro+
283.70 ± 24.23 vs Micro− 216.60 ± 18.07; p � 0.0252)
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Figure 1: Immunohistochemical analysis of vimentin, BMP-2, and PTX-3. (a) Graph shows the number of vimentin-positive prostate cells
in BL, BM+, and BM− lesions. (b) Vimentin-positive prostate cancer cells in BM− lesions (scale bar represents 50 µm). (c) Image shows
numerous vimentin-positive prostate cancer cells in BM+ lesions (scale bar represents 50 µm). (d) Graph shows the number of BMP-2-
positive prostate cells in BL, BM+, and BM− lesions. (e) BM+ lesion displaying numerous BMP-2-positive cancer cells (scale bar represents
50 µm). (f ) BMP-2-positive prostate cancer cells in BM+ lesions (scale bar represents 50 µm). (g) Graph shows the number of PTX-3-positive
prostate cells in BL, BM+, and BM− lesions. (h) Rare PTX-3-positive cells in BM− lesions (scale bar represents 50 µm). (i) Image shows
several PTX-3-positive prostate cancer cells in BM+ (scale bar represents 50 µm).
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(Figure 4(d)). Finally, significant differences in VDR ex-
pression were observed (Micro+ 192.00 ± 18.02 vs Micro−
109.30 ± 19.14; p � 0.001) (Figure 4(e)).

3.7. Ultrastructural Characterization of Prostate Cancer Cells.
TEM analysis allowed us to characterize ultrastructure of
prostate cells in malignant lesions. Specifically, we observed
both cuboidal and large spindle-shaped cells with abundant
clear cytoplasm in BM+ (Figure 5(a)). Moreover, in these
lesions, we identified several calcifications and prostate
cancer cells with morphological appearance of osteoblasts
containing cytoplasmic electrondense granules made of HA
(Figure 5(b)). In addition, EDX microanalysis demonstrated

that all calcifications here detected were made of calcium-
phosphate (hydroxyapatite) (Figure 5(b)).

3.8. 18F-Choline PET/CT Analysis. We collected PET/CT
data of 11 patients: 5 BM+ and 6 BM− (Figure 5(c)). Despite
the low number of patients, we found significant differences
between both SUVmax and SUV average between BM+ and
BM− (Figure 5(d), 5(e)). Noteworthy, the cancer lesions with
higher value of SUV max (BM+ patients) (Figure 5(f )) were
characterized by the presence of calcium-phosphate calci-
fications and a higher number (>300) of RUNX2-positive
(Figure 5(g)) and RANKL-positive (Figure 5(h)) prostate
cancer cells.
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Figure 2: Expression of bonemarkers in prostate cells. (a) Graph shows the number of RUNX2-positive prostate cells in BL, BM+, and BM−
lesions. (b) Numerous nuclear RUNX2-positive cancer cells in BM− lesions (scale bar represents 50 µm). (c) Nuclear RUNX″ expression in
prostate cancer cells of a BM+ patient (scale bar represents 50 µm). (d) Graph displays the number of RANKL-positive prostate cells in BL,
BM−, and BM+ lesions. (e) RANKL expression in a case of BM− patient (scale bar represents 50 µm). (f ) Numerous prostate cancer cells
expressing RANKL in BM+ (scale bar represents 50 µm). (g) Graph shows the number of nuclear VDR-positive prostate cells in BL, BM−,
and BM+ lesions. (h) VDR-positive prostate cancer cells in a BM− lesion (scale bar represents 50 µm). (i) Several nuclear VDR-positive
prostate cancer cells in a BM+ lesion (scale bar represents 50 µm).
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Figure 3: Continued.
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4. Discussion

Prostate metastasis to the bone more often results in oste-
oblastic lesions, though it is known that prostate bone
metastases can display both blastic and lytic characteristics
during the early phases of their formation [25]. In addition,
there is evidence that during the early phases of osteoblastic
metastases formation, it is possible to observe osteolytic
lesions, suggesting an overall increase of bone remodeling at
these sites. 'e pathophysiology of bone metastases is fre-
quently explained by the theory of the vicious cycle proposed
for the first time byMundy and Guise [26]. According to this
theory, cancer cells resident in bone cause bone destruction
because they are capable to stimulate osteoclast activity. In
return, cancer cells receive positive feedbacks from humoral
factors released by the bone microenvironment during bone
destruction and remodeling [27]. Indeed, it is widely ac-
cepted that the bone microenvironment is crucial to the
success of cancer cells in bone.

In a recent study, we described for the first time the
characteristics of prostate cells involved in the production of

prostate calcifications demonstrating their similarity with
osteoblasts [24]. In addition, our research group described
the presence of osteoblast-like cells in breast cancer (BOLCs)
showing a correlation between the appearance of BOLCs in
primary lesions and development of bone metastases. Based
on these studies, the main aim of this study was to investigate
the possible correlation between the presence of prostate
cancer cells showing expression of typical morphological
and molecular markers of osteoblasts and the development
of bone metastasis in prostate cancer patients within 5 years
from diagnosis of primary lesion. To this end, we collected
110 prostate biopsies (44 benign and 66 malignant lesions).
Malignant lesions were subdivided in biopsies from patients
with clinical evidence of bone metastasis (BM+, n � 23) and
those from patients without clinical evidence of bone me-
tastasis (BM−, n � 43).

As already reported by Scimeca et al., we found a sig-
nificant correlation between vimentin expression, one of the
most important markers of mesenchymal cells [14], and the
presence of prostate osteoblast-like cells (POLCs). Specifi-
cally, our data showed a significant increase of positive cells
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Figure 3: Expression of bone markers in prostate cancer patient datasets. (a) Graphs show the mRNA levels of the genes VDR, RUNX2,
vimentin, TNFSF11, BMP-2, and PTX3 in metastatic castration resistant prostate cancer (CRPC) and primary prostate tumours (primary).
(b) Unsupervised hierarchical clustering of metastatic (WA) and primary (T) prostate cancers based on expression of the indicated gene set.
Metastatic samples are labelled in red; primary samples are labelled in black. (c) Unsupervised hierarchical clustering of primary (prostate)
and metastatic prostate cancers at the indicated distinct metastatic sites. Primary/localized samples are indicated in black; distal metastases
are indicated in red.
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in prostate cancer of BM+ group as compared with BM−. In
addition, we proved that primary prostate cancer lesions of
BM+ patients were characterized by the expression of os-
teogenic molecules able to induce osteoblast differentiation
and to increase osteoblast function such as mineralization.
Among them, BMP-2 is a potent inducer of bone formation
through the stimulation of osteoblast differentiation. BMP-2
exerts this effect via two types of serine/threonine kinase
receptors: BMP-2 binds the type II receptor, which sub-
sequently activates the type I receptor by a direct association
[28]. Our results showed an increase of BMP-2 expression in
prostate malignant lesions. Conversely, the absence of sig-
nificant differences of BMP-2 expression between BM+ and
BM− suggests that it could be involved in the early phases of
cancer transformation rather than during metastatic pro-
cess. In support of this, several studies demonstrated the
ability of BMP-2 to induce malignant transformation of
epithelial tissues [29–31]. However, we also demonstrated
the association between BMP-2 expression and the presence
of prostate calcifications, regardless of the lesion type. 'us,
BMP-2, in association to EMTphenomenon, can participate
to induce mesenchymal-like cells to acquire osteoblast
phenotype. As concerns PTX-3, PTX-3 is a multifunctional
glycoprotein produced by a variety of cells [32, 33]; our
results displayed a significant correlation between the
presence of PTX-3-positive prostate cells and bone metas-
tasis formation. Also, it is important to emphasize that BM−
group showed the same number of PTX-3-positive cells of
BL, suggesting that the presence of PTX-3-positive cells
could represent a reliable predictive element for the de-
velopment of bone metastasis from prostate cancer.

'ese data are in line with recent studies that demonstrated
the involvement of PTX-3 in osteoblast proliferation, dif-
ferentiation and function [34–36], and bone metastasis from
breast cancer formation.

To further characterize the phenotype of POLCs, we
investigate the expression of the main markers of osteoblasts,
RUNX2, RANKL, and VDR. RUNX2 is the first transcription
factor required for the determination of the osteoblast lineage
[37]. In particular, RUNX2 is detected first in preosteoblasts
and its expression is upregulated during the early phases of
osteoblast differentiation. In line with this, our results dis-
played an increase of RUNX2-positive prostate cells in ma-
lignant lesions respect to BL, but no difference was observed
between BM+ and BM−.'erefore, the acquisition of RUNX2
expression by prostate cells seems to be linked to cancer
transformation rather than to metastatic process.

In agreement with the physiological role of RUNX2 in
osteoblast function [38], we did not observe an increase of
RUNX2-positive cells in Micro+ with respect to Micro− le-
sions. Indeed, mature osteoblasts lose the expression of
RUNX2 during the mineralization phase of bone formation.
Conversely, analysis of RANKL and VDR showed a putative
correlation among the presence of RANKL and/or VDR
positive prostate cancer cells, bone metastasis formation, and
microcalcifications. As regards the formation of bone me-
tastasis, the presence of RANKL-positive prostate cancer cells
can trigger osteoclast activity by binding to the osteoclast
receptor RANK [39]. Indeed, RANKL is a type II membrane
protein expressed by osteoblasts that is able to induce oste-
oclasts proliferation and function. In addition, at the primary
lesion site, RANKL expression can reflect the presence of cells
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Figure 4: Expression of bonemarkers in prostate lesions with or without calcification. (a) Graph shows the number of BMP-2-positive prostate
cells in Micro+ and Micro− lesions. (b) Graph displays the number of PTX-3-positive prostate cells in Micro− and Micro+ lesions. (c) Graph
shows the number of RUNX2-positive prostate cells in Micro+ andMicro−lesions. (d) Graph displays the number of RANKL-positive prostate
cells in Micro+ and Micro−lesions. (e) Graph shows the number of VDR-positive prostate cells in Micro+ and Micro− lesions.
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responsible for microcalcification production. Similar to what
occurs during bone mineralization, our data support the
hypothesis that the nuclear translocation of VDR participates
in production of microcalcifications in prostate lesions. 'us,
nuclear translocation of VDR could be considered amarker of

POLCs since it could be linked to bone metastasis formation.
Notably, nuclear VDR is the only protein that we did not find
expressed in BL, among all proteins studied here. 'is evi-
dence candidates nuclear VDR as a reliable prognostic and/or
predictive marker of prostate cancer occurrence. Combined
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Figure 5: Ultrastructural and molecular imaging analysis. (a) Electronmicrograph shows prostate cancer cells of a BM− biopsy. (b) Prostate
cancer cells next to calcium-phosphate calcification in a BM+ lesion. SUVmax and SUV average of BM+ and BM− lesions. (c) Graph shows
significant difference between the SUV max value of BM+ and BM−patients. (d) Graph shows significant difference between the SUV
average value of BM+ and BM− patients. (e) Graph shows significant difference between the SUV max value of BM+ and BM− patients. (f )
Dual fusion 18F-choline PET/CTimage of BM+ patients. (g) Image displays numerous RUNX2-positive prostate cancer cells in BM+ patient
of (e) (scale bar represents 50 µm). (h) Image displays numerous RANKL-positive prostate cancer cells in BM+ patient of (e) (scale bar
represents 50 µm).
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analysis of this set of genes in patients with primary and
metastatic prostate cancer further showed that deregulated
expression of these markers of EMT, bone mineralization,
and osteoblastic differentiation occurred preferentially in the
setting of metastatic disease and particularly at metastases in
bone, further supporting their relevance as adverse prognostic
markers.

It is important to highlight that in this study, POLCs
were also characterized from the ultrastructural point of
view. In particular, we observed the presence of cytoplasmic
vesicles containing HA granules in prostate cancer cells
showing osteoblast phenotype (POLCs) [24, 40–42].

Of note, although preliminary, our data showed a sig-
nificant correlation between the uptake of 18F-choline PET/
CT and the presence of POLCs in prostate cancer tissues. If
confirmed in a larger patient cohort, this evidence could
provide the scientific rationale for the development of al-
gorithms able to predict the metastatic potential of primary
prostate cancer lesions by 18F-choline PET/CTanalysis [43].

'is study proposes a new cell type generated by a
process of cell transdifferentiation and related to formation
of bone metastasis: the POLCs. Although our data require
further investigations about the molecular mechanisms of
both POLCs generation andmetastasization to the bone, this
study opens new and interesting prospective for the man-
agement of prostate cancer patients. 'e presence of POLCs
could become prognostic markers for occurrence of bone
metastatic disease.

5. Conclusion

'e clinical course of metastatic bone disease in prostate
cancers is often long, with patients experiencing sequential
skeletal complications over a period of several years. 'ese
include bone pain, fractures, hypercalcemia, and spinal cord
compression, all of which may profoundly impair patient’s
quality of life. In addition, once prostate tumour cells are
engrafted in the skeleton, curative therapy is no longer pos-
sible and palliative treatment becomes the only option. 'us,
the identification of early markers of bone metastasis and
especially the characterization of the cells involved in the
metastatic process can lay the foundation for the identification
of new tools for monitoring, prevention, or cure of bone
metastatic diseases and providing support to the physicians in
the management of prostate patients. In this context, positron
emission tomography (PET)/computed tomography (CT) has
emerged as a significant and promising staging modality for
primary, recurrent, and metastatic prostate cancer. Much
more important, the identification of highly sensitive and
specific radiotracers can implement the therapeutic/diagnostic
perspectives for prostate cancer patients “opening the way” for
the development of new theranostic approaches. PSMA PET/
CT ligands labelled with 18F and 68Ga have certainly revo-
lutionized the management of metastatic prostate cancer
selecting patients who may benefit from targeted systemic
radionuclide therapy. In a nuclear oncology theranostic de-
sign, 68Ga-PSMA already constitutes the diagnostic positron-
emitting of beta− emitter Lutetium-177 PSMA (177Lu-PSMA)
[44] and alpha-emitter Actinium-225 PSMA (225Ac-PSMA)

[45]. Finally, the results reported here about the phenotypic
characterization of POLCs could provide a scientific rationale
for the development of theranostic anti-POLC radiomolecules
for the cure and prevention of prostate cancer bonemetastasis.
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Background. Debio 1143, a potent orally available SMACmimetic, targets inhibitors of apoptosis proteins (IAPs) members and is
currently in clinical trials. In this study, nuclear imaging evaluated the effects of Debio 1143 on tumor cell death andmetabolism in
a triple-negative breast cancer (TNBC) cell line (MDA-MB-231)-based animal model.Methods. Apoptosis induced by Debio 1143
was assessed by FACS (caspase-3, annexin 5 (A5)), binding of 99mTc-HYNIC-Annexin V, and a cell proliferation assay. 99mTc-
HYNIC-Annexin V SPECTand [18F]-FDG PETwere also performed in mice xenografted with MDA-MB-231 cells. Results. Debio
1143 induced early apoptosis both in vitro and in vivo 6 h after treatment. Debio 1143 inhibited tumor growth, which was
associated with a decreased tumor [18F]-FDG uptake when measured during treatment. Conclusions. +is imaging study
combining SPECT and PET showed the early proapoptotic effects of Debio 1143 resulting in a robust antitumor activity in
a preclinical TNBC model. +ese imaging biomarkers represent valuable noninvasive tools for translational and clinical research
in TNBC.

1. Background

+e World Health Organization (WHO) reported that 1.7
million women were diagnosed with breast cancer in 2012
with a global number of 6.3 million women diagnosed with
breast cancer between 2008 and 2012 [1]. Since the lastWHO
report in 2008, breast cancer incidence and mortality have
increased by more than 20% and 14%, respectively. Breast
cancer is also the leading cause of cancer-related death
among women (522,000 deaths in 2012) and the most fre-
quently diagnosed cancer in 140 of 184 countries worldwide
[1]. +e combination of surgery, radiation therapy,

chemotherapy, and hormone therapy represents the com-
mon therapeutic strategies used nowadays in clinic to treat
breast cancer. Clinical and pathologic features (based on
conventional histology and immunohistochemistry) allow
breast cancer classification as hormone-receptor positive
(estrogen receptor (ER) and progesterone receptor (PR)),
HER2 (human epidermal growth factor receptor 2) positive,
and triple negative (ER, PR, and HER2 negative). +is
classification process is currently necessary for prognosis
evaluation and individualized selection of therapy. Triple-
negative breast cancer (TNBC) is a heterogeneous disease
associated with a high risk of recurrence and poor prognosis.
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+erapeutic options for TNBC are currently limited to
cytotoxic therapy, whereas other types of breast cancer
expressing receptors are eligible for targeted therapies such
as antihormonal or anti-HER2 therapies. +erefore, TNBC
is considered as a real challenging disease since no targeted
therapies has been approved yet. In this context, numerous
new targets are currently under investigations for phar-
macological purposes such as Notch signaling, Wnt/β-cat-
enin, and Hedgehog pathways; EGFR, PARP1, mTOR, TGF-
β, and angiogenesis inhibitors [2]. +e targeting of the in-
hibitors of apoptosis proteins (IAPs), which are key negative
regulators of programmed cell death, represents another
promising approach in managing TNBC. Indeed, IAPs have
been reported to be upregulated in most cancer types
contributing to tumor cell survival and resistance to cancer
therapy [3]. Among IAPs, four of them, namely, XIAP,
cIAP1, cIAP2, and ML-IAP, negatively regulate apoptosis by
downregulating the activity of caspases [4]. In addition to
apoptosis, IAPs also influence a multitude of other cellular
processes, such as ubiquitin-dependent signaling events that
regulate activation of the nuclear factor κB (NFκB), which in
turn drive the expression of genes important for in-
flammation, immunity, cell migration, and cell survival. It
has been reported that XIAP protein expression was sig-
nificantly correlated with a more aggressive tumor pheno-
type and decreased overall and disease-free survival,
suggesting a prognostic value of XIAP for invasive ductal
breast cancer with triple-negative phenotype [5]. IAPs are
antagonized by the endogenous Second Mitochondria-
derived Activator of Caspases (SMAC), also called DIA-
BLO (Direct IAP-Binding Protein with Low PI). SMAC is
released from mitochondria into the cytosol when mito-
chondria are damaged by apoptotic stimuli such as UV
radiation [4]. Such a mechanism has paved the way for the
design of SMAC-mimetic agents to promote apoptosis in
cancer cells by antagonizing the activity of IAPs and create
conditions in which apoptosis can proceed. A number of
SMAC mimetics have been advanced into early clinical
development for cancer treatment as single agent or in
combination. Interestingly, it has been proposed that TNBC
may be more sensitive to SMAC-mimetic drugs than other
malignancies, suggesting that SMAC-mimetic could repre-
sent a targeted therapy of TNBC which remains to be
discovered [4]. Recently, Debio 1143, a new potent orally
available monovalent SMAC mimetic targeting multiple
IAPsmember, has been developed and is currently in clinical
trials for cancer treatment [6]. Molecular imaging certainly
represents a reliable technique to improve such a drug
development since it is recognized to expedite cancer drug
discovery, predict responders versus nonresponders to
specific treatments, and help determine the overall effec-
tiveness of therapies longitudinally [7]. In oncology, mo-
lecular imaging of glucidic metabolism with [18F]-FDG PET
has already a crucial impact on several aspects from
detection/staging to monitoring/predicting therapeutic ef-
fects in both preclinical and clinical settings, so that it re-
mains a gold standard procedure in management of various
malignancies. Nevertheless, even if [18F]-FDG uptake re-
flects the viable tumor cell fraction, it also accumulates in

noncancer tissues (e.g., inflammatory lesions, brain, and
heart) what can induce pitfalls in images interpretation. +e
combination of [18F]-FDG imaging with other modalities
and/or probes able to image a specific biomarker related to
the mechanism of action of the anticancer drugs to be tested
is then a reliable way to circumvent these drawbacks. Most of
anticancer drugs typically induce cell death through in-
duction of apoptosis which can be noninvasively imaged
with molecular imaging probe such as 99mTc-HYNIC-
Annexin V. Such a noninvasive imaging measure of apo-
ptosis would therefore be helpful for demonstrating the
efficacy of apoptosis-inducing treatments (e.g., Debio 1143)
without requiring tissue sampling. As [18F]-FDG, 99mTc-
HYNIC-Annexin V is a well-known radiotracer and has
been extensively assessed in preclinical and clinical settings,
making it a safe and reliable probe in spite of a certain lack of
specificity since it also labels necrosis [8]. In the current
study, we combined SPECT and PET imaging techniques as
pharmacodynamic biomarkers to measure the early pro-
apoptotic and antitumor effects of Debio 1143 in a pre-
clinical TNBC model. Using MDA-MB-231 xenografted
mice, we successfully demonstrated that Debio 1143 induces
apoptosis (99mTc-HYNIC-Annexin V) at early time points
and reduced glucidic metabolism ([18F]-FDG PET) over
time, which was accompanied by a robust antitumor activity.
+ese imaging biomarkers represent valuable noninvasive
tools for translational research and might be useful for
SMAC mimetic clinical development in TNBC.

2. Materials and Methods

Materials and methods are available in detail in Supple-
mental Methods.

2.1. Cell Culture (MDA-MB-231). Breast adenocarcinoma
MDA-MB-231 cells (European Collection of Authenticated
Cell Cultures (ECACC), Salisbury, UK) have been cultured
as a monolayer in RPMI 1640 containing 2mM of L-glu-
tamine (Lonza, Verviers, Belgium) supplemented with 10%
fetal bovine serum (Lonza) at 37°C in a humidified atmo-
sphere (5% CO2).

2.2.MTSAssay. MDA-MB-231 cells were plated in 190 µL of
medium per well in flat-bottom 96-well plates (Dutscher,
Brumath, France). Plates were incubated in a drug-free
culture medium at 37°C in a humidified atmosphere (5%
CO2) for 24 hours before experiments. +en, cells have been
incubated for 72 h with 10 increasing concentrations of
Debio 1143 (5 pM to 10 µM) and paclitaxel (0.5 pM to 1 µM).
Paclitaxel and Debio 1143 have been diluted in 0.3% DMSO.
See details in Supplemental Methods.

2.3. Flow Cytometry. MDA-MB-231 cells were plated in 6-
well flat-bottom plates (Dutscher) in 3.8ml of RPMI 1640
and incubated at 37°C in a humidified atmosphere (5% CO2)
for 24 hours before treatments. Debio 1143 (final concen-
tration 0.3, 1, and 3 µM in 0.3% DMSO) or staurosporine
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(final concentration 0.3, 1, and 3 µM in 0.3% DMSO) was
added to the corresponding wells, and control (vehicle) cells
received 0.3% DMSO alone and incubated for 6 hours at 37°C
in a humidified atmosphere (5% CO2). +e effect of Debio
1143 and staurosporine on plasmatic membrane disruption
was evaluated using an Annexin V-FITC/7-AAD KIT
(BeckmanCoulter, Roissy, France). Alternatively, the caspase-
3 activity of MDA-MB-231 cells treated 24 h with Debio 1143
or staurosporine (both at a final concentration of 0.3, 1, and
3 µM in 0.3% DMSO) was evaluated by FACS. Cells were
plated in 25 cm2 flat-bottom flasks (Dutscher) in 9.5ml of
RPMI 1640 and incubated at 37°C under 5% CO2 for 24 hours
before treatment. After incubation, cells were detached from
the culture flask using trypsin, transferred to FACS tubes, and
stained with PE Active Xaspase-3 Apoptosis KIT (BD
Pharmigen, France). See details in Supplemental Methods.

2.4. 99mTc-HYNIC-Annexin V. Annexin-V (A5) was func-
tionalized with a bifunctional chelating agent (HYNIC) and
was radiolabeled with technetium 99m (99mTc) according
to an existing standardized protocol. Briefly, HYNIC-
Annexin-V was provided by NIH and shipped frozen and
stored at −80°C until use. Gamma-counting results are
represented as the percentage of radioactivity bound to the
apoptotic cells and will be determined according to %Bound
� (A/A + B) × 100 (A: activity of the cell pellet; B: activity of
the supernatant). See details in Supplemental Methods.

2.5. Animal Experiments. All animal experiments were
performed according to the guidelines of the Ministère de la
Recherche (Paris, France). All experiments were approved by
the ethical committee of the “centre George François Leclerc”
(Dijon, France). Tumors were induced subcutaneously by
injecting 5.106 of MDA-MB-231 cells in 200 µL of RPMI 1640
containingmatrigel (50 : 50, v : v, BD Biosciences, France) into
the right shoulder of female SCID mice.

In vivo evaluation of apoptosis was performed with
SPECT-CT imaging (99mTc-HYNIC-Annexin V). When
tumors reached a mean volume of 340mm3, 99mTc-HYNIC-
Annexin V SPECT-CT imaging was performed 6 and 24
hours after a single administration of vehicle (p.o., n � 8),
Debio 1143 (p.o., 100mg/kg, n � 8), or paclitaxel (IV,
7.5mg/kg, n � 8, Taxol®, 6mg/mL, Bristol-Myers Squibb
SpA, France). Mice were anesthetized through isoflurane
inhalation for intravenous injection (tail vein) of 10–20MBq
of 99mTc-HYNIC-Annexin V one hour prior the imaging
study. At the end of the last image acquisition, the animals
were sacrificed, and tumors were harvested and used for
gamma counting in order to confirm image analyses.

In vivo evaluation of antitumor activity was performed
with [18F]-FDG PET-CT. Treatments started when the tu-
mors reached a mean volume of 100–200mm3. +e animals
from group 1 (n � 4) received daily p.o. administrations of
vehicle for 14 consecutive days (D11 to D25), the animals
from group 2 (n � 4) received daily p.o. administrations of
Debio 1143 at 100mg/kg for 14 consecutive days (D11 to
D25), and the animals from group 3 (n � 4) received one IV
injection of paclitaxel at 7.5mg/kg every 7 days for a total of

2 injections (D18 and D25). [18F]-FDG-PET-CT imaging
was performed in overnight fasted mice at one week of
treatment (D18), two weeks of treatment (D25), and one
week after last treatment (D32). Mice were anesthetized
through isoflurane inhalation for intravenous injection (tail
vein) of 15–20MBq of [18F]-FDG 30 minutes prior the
imaging study. Alternatively, mice receiving vehicle, Debio
1143, or paclitaxel received an intravenous injection (tail
vein) of 15–20MBq of [18F]-FDG and were immediately
imaged by dynamic PET-CT for 240 seconds to evaluate
tracer circulation and tumor perfusion.

At the end of the last imaging, the mice were in-
traperitoneally injected with an overdose of pentobarbital for
euthanasia and tumors harvested for gamma counting
(Perkin Elmer, France). See details in Supplemental Methods.

2.6. Statistical Analysis. All results are presented as mean ±
SEM. Statistical analysis was determined using one-way
(99mTc-HYNIC-Annexin V experiments) or two-way
ANOVA ([18F]-FDG PET-CT). Analysis was performed
with GraphPad Prism 6.0 (GraphPad Software Inc.), and in
all cases, a p value less than 0.05 was considered significant.

3. Results

3.1. <e Cytotoxic Activity of Debio 1143 on Human Breast
Adenocarcinoma Cells Is Comparable to Paclitaxel. +e in-
cubation of MDA-MB-231 cells with increasing concen-
tration of Debio 1143 and paclitaxel demonstrated a dose-
dependent cytotoxic activity of both drugs on human breast
adenocarcinoma cells.+emean IC50 of D1143 was 137 nM,
while the mean IC50 of paclitaxel was 7.44 nM (Figure 1(a)).
Our results confirm the findings of previous studies which
report an IC50 of 144 nM for Debio 1143 [9].

3.2. Debio 1143 Induces Apoptosis of Human Breast Adeno-
carcinoma Cells. After 6 hours of incubation of MDA-MB-
231 cells with Debio 1143, a significant dose-dependent
increase of cells in early apoptosis (Annexin-V+/7-AAD-)
was observed compared to vehicle-treated cells (Figure 1(b)).
+is increase in early apoptosis was observed starting at
0.3 µM with a maximal effect at 3 µM of Debio 1143.
Staurosporine, used as positive control in this experiment,
also induced a significant increase in early apoptosis in
MDA-MB-231 cells (Figure 1(b)). Interestingly, Debio 1143
also induced a significant increase in late apoptosis/necrosis
(Annexin-V+/7-AAD+) of MDA-MB-231 cells starting at
1 µM and increased with dose (Figure 1(b)). +ese results
were confirmed by a dose-dependent increase in proportion
of cells harboring active caspase-3, the major effector of
apoptosis, after Debio 1143 treatment (Figure 1(c)). Fur-
thermore, gamma counting of MDA-MB-231 cells after
staining with 99mTc-HYNIC-Annexin V, which specifically
stains Annexin-V positive cells, demonstrated that Debio
1143 (3 µM) induced an increase in cells presenting
Annexin-V (Figure 1(d)). All together, these results high-
light the proapoptotic effects of Debio 1143 on human breast
adenocarcinoma cells.
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3.3. Debio 1143 Induces Tumor-Apoptosis In Vivo in
a Human Breast Adenocarcinoma Murine Model.
99mTc-HYNIC-Annexin V SPECT-CT imaging experiments
were carried out when tumors reached a mean volume of

340mm3. Imaging was performed at 6 h after treatment for
vehicle-treated mice and at 6 and 24 h after treatment for
paclitaxel- and Debio 1143-treated mice. One hour after
99mTc-HYNIC-Annexin V administration, mice from all
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Figure 1: D1143 induces apoptosis of human breast adenocarcinoma cells. (a) Viable MDA-MB-231 cells (%) after treatment with
increasing concentration of paclitaxel (left panel) or D1143 (right panel) for 72 h. Paclitaxel and D1143 are expressed as log[con-
centration] for IC50 determination. Results are presented as mean ± SEM; n � 8. (b) Annexin-V+/7-AAD- (left panel) and Annexin-V
+/7-AAD+ (right panel) MDA-MB-231 cells (%) after treatment with D1143 (0.3 µM, 1 µM, and 3 µM) or staurosporine (3 µM) for 6 h.
Results are presented as mean ± SEM; n � 4; ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001. (c) Active caspase-3 positiveMDA-MB-231 cells (%) after
treatment with D1143 (0.3 µM, 1 µM, and 3 µM) or staurosporine (3 µM) for 6 h. Results are presented as mean ± SEM; n � 4; ∗∗p< 0.01,
∗∗∗p< 0.001. (d) Bound/Total 99mTc-HYNIC-Annexin VMDA-MB-231 cells (%) after treatment with D1143 (0.3 µM, 1 µM, and 3 µM) or
staurosporine (3 µM) for 6h. Results are presented as mean ± SEM; n � 4; ∗p< 0.05.
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group showed an apparent similar whole body distribu-
tion of radioactivity localized mainly in kidneys, bladder,
and liver concentrating more than 80% of overall radio-
active signal as previously described in the literature ([8];
Figures 2(a) and 2(b)). A weak 99mTc-HYNIC-Annexin V
signal was observed in tumors from vehicle-treated mice,
comparable with signal observed in paclitaxel-treated mice.
Interestingly, a significant increase in tumor 99mTc-HYNIC-
Annexin V signal was observed at 6h following Debio 1143
treatment (Figures 2(c) and 2(d)). An increase in 99mTc-
HYNIC-Annexin V signal was also observed after 24 h of
paclitaxel although not significant (Figure 2(d)). +ese results
were consistent with ex vivo gamma counting of tumors with
an increase of 99mTc-HYNIC-Annexin V tumor uptake 6 h
after Debio 1143 compared to vehicle-treated mice (Figure 2
(e)). All together, these results demonstrate that Debio 1143
specifically induces tumor apoptosis in vivo in a human breast
adenocarcinoma murine model.

3.4. InVivoEvaluationof theAntitumorActivity ofDebio1143
by [18F]-FDGPET-CT. After tumor induction, mice received
vehicle, Debio 1143, or paclitaxel for 2 weeks. Treatment
started when mean tumor volume reached approximately
120–170mm3 (D11). Mice received corresponding treatment
from D11 to D25 (2 weeks) and were left untreated for
another week up to D32. While mice receiving vehicle
continued to gain weight throughout the experiment, pac-
litaxel and Debio 1143 induced a slight and transient decrease
of body weight recovered once treatments ended (Figure 3
(a)). Tumor volume increased regularly and similarly in
vehicle-treated mice from D11 (treatment initiation) to D32
(end of experiment; Figure 3(b)). Paclitaxel did not induce
any decrease in tumor growth throughout the experiment,
while Debio 1143 displayed a significant antitumor activity
after 2 weeks of treatment (D25) that was sustained up to D32
(Figure 3(b)). [18F]-FDG PET-CT was performed on D18 (1
week of treatment), D25 (2 weeks of treatment), and D32 (1
week after treatment end). [18F]-FDG uptake measured by
SUV (standardized uptake values) max and mean SUV was
significantly lower in Debio 1143-treated mice compared to
vehicle at D18 (Figures 3(c)–3(e)). [18F]-FDG uptake
remained lower in Debio 1143-treated mice compared to
vehicle throughout the experiment but not significantly at
D25 and D32 (Figures 3(c)–3(e)). Paclitaxel also reduced not
significantly [18F]-FDG uptake as compared to vehicle-
treated mice (Figures 3(c)–3(e)). Interestingly, gamma
counting performed on tumors at D32 (1 week after treat-
ment end) confirmed our imaging results with a significant
lower tumor [18F]-FDG uptake in Debio 1143 and paclitaxel-
treated mice compared to vehicle (Figure 3(f)). We also
performed dynamic [18F]-FDG PET-CT imaging for 4
minutes after injection on all groups at D18, D25, and D32 to
evaluate tumor perfusion. Interestingly, dynamic monitoring
of mean tumor SUV (every 5 seconds for 240 seconds)
showed a significant decrease in tumor perfusion in mice
treated with Debio 1143 and paclitaxel at D18 and D32 and
only in mice treated with D1143 at D25 (Figures 4(a)–4(c)).
No changes were observed in mean aorta SUV (control

[18F]-FDG SUV). All together, these results demonstrate the
antitumor activity of Debio 1143 and highlight [18F]-FDG
PET-CT imaging as a reliable method to follow the activity of
Debio 1143 in human breast adenocarcinoma tumors in
a noninvasive manner.

4. Discussion

In order to improve the management of malignancies, it is
now well established that an early and reliable assessment of
therapy response is a crucial issue. It allows guidance of the
oncologist to the best options for the patients: modulations
of the doses, treatment switching, or treatment combina-
tions. In the current study, using two different molecular
imaging modalities (SPECT-CT and PET-CT), we assessed
the effect of Debio 1143, a new potent oral SMAC mimetic,
as a single agent in a preclinical model of TNBC, in im-
munodeficient mice xenografted with MDA-MB-231 cells.
+e xenografted models still constitute a major preclinical
screen for the development of novel cancer therapeutics,
included human-targeted therapies. Despite limitations,
these models have identified clinically efficacious agents,
suggesting that they are still a “workhorse” of the phar-
maceutical industry [10]. TNBC represents 15–20% of breast
cancers and remains a challenging disease regarding its
aggressive nature, its poor prognosis, and the lack of targeted
therapies. As no well-defined molecular targets have been
described so far, cytotoxic chemotherapy is currently the
only treatment option for TNBC whose major drawback is
an unacceptable deterioration in the quality of life. Cur-
rently, paclitaxel is commonly used in clinical practice to
treat TNBC. However, the clinical efficacy of paclitaxel has
been weakened by the development of drug resistance and
the emergence of side-effects, including neutropenia and
neurotoxicity [11]. Paclitaxel induces apoptosis by targeting
microtubules and resulting in cell cycle arrest [12]. Although
paclitaxel has been shown to eliminate most tumor cells
including TNBC, paclitaxel resistance has been estimated to
cause treatment failure in more than 90% of patients [13].
+erefore, the development of alternative therapeutic
strategies is essential. Inhibitor of apoptosis proteins (IAPs)
play key roles in resistance to cell death induced by a variety
of anticancer drugs in various indications including in
TNBC, and thus are promising drug targets [4]. Debio 1143
(a.k.a. AT-406 or SM-406) is a monovalent, orally available,
small molecule antagonist of IAPs in clinical development
that has demonstrated potent single-agent antitumor ac-
tivity in multiple models of human cancer such as lung
adenocarcinoma [14, 15], head and neck squamous cell
carcinoma [16], and TNBC [9, 17]. Debio 1143 has also been
shown to work synergistically with conventional chemo-
therapeutic agents (such as taxanes) or radiotherapy RT in
nonclinical cancer models [14, 16]. SMAC mimetics have
been shown to promote apoptosis by inhibiting IAP-
mediated caspase repression [18]. In vitro SMAC-
mimetics treatment has been shown to increase Annexin-
V positive cells and activate caspases-3 and -8 in various
cancer cell lines [16, 19, 20]. Our results are in line with
previous studies and confirm the increase in Annexin-V and
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activation of caspase-3 after Debio 1143 treatment in MDA-
MB-231 cells. Our results also demonstrate that, this increase
in Annexin-V can be measured in tumor in vivo in a pre-
clinical model of breast adenocarcinoma with radiolabelled
99mTc-HYNIC-Annexin V. +is tool could represent a reli-
able way to monitor early apoptosis induced by anticancer

agents in order to evaluate early treatment efficacy and allow
improvement of therapeutic strategies.

Interestingly, Debio 1143 presented a higher antitumor
activity in vivo in comparison with paclitaxel despite an
apparent higher intrinsic cytotoxic activity of paclitaxel in
vitro suggesting that targeting IAPs may offer the potential
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Figure 2: D1143 induces tumor apoptosis in vivo in a human breast adenocarcinoma murine model. (a) In vivo biodistribution of 99mTc-
HYNIC-Annexin V in tumor (MDA-MB-231 cells) bearing SCID mice (tumor in the right shoulder) 6 h and 24 h after receiving paclitaxel
(iv), D1143 (po), or vehicle as control. Liver/spleen, kidneys, bladder, spine, and tumor activity are expressed as % ID/mm3. Results are
presented as mean ± SEM; n � 8. (b) Representative SPECT pictures of 99mTc-HYNIC-Annexin V in tumor (MDA-MB-231 cells) bearing
SCIDmice 6 h and 24 h after receiving paclitaxel (iv), D1143 (po), or vehicle as control. (c) Representative tumor-centered SPECTpictures of
tumor (MDA-MB-231 cells) bearing SCID mice 6 h after receiving D1143 (po). (d) Specific 99mTc-HYNIC-Annexin V tumor activity (%
ID/mm3) of tumor- (MDA-MB-231 cells-) bearing SCIDmice (tumor in the right shoulder) 6 h and 24 h after receiving paclitaxel (iv), D1143
(po), or vehicle as control. Results are presented as mean ± SEM; n � 8; ∗p< 0.05. (e) Gamma counting of 99mTc-HYNIC-Annexin V in
tumors in SCID mice 6h and 24h after receiving paclitaxel (iv), D1143 (po), or vehicle as control (%ID/g). Results are presented as mean ±
SEM; n � 8 and n � 2 for the paclitaxel group 6 h, ∗p< 0.05.
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Figure 3: In vivo evaluation of the antitumor activity of D1143 by [18F]-FDG PET-CT. (a) Weight loss (g) monitoring of tumor-bearing
SCID mice receiving D1143, paclitaxel, or vehicle as control. Treatment started at D11 and ended at D25. Mice were sacrificed at D32.
Results are presented as mean ± SEM; n � 8. (b) Tumor volume (mm3) of tumor-bearing SCID mice receiving D1143, paclitaxel, or
vehicle as control. Treatment started at D11 and ended at D25. Results are presented as mean ± SEM; n � 8; ∗∗p< 0.01, ∗∗∗p< 0.01. (c)
Representative [18F]-FDG PET-CT picture of tumor-bearing SCID mice (tumor in the right shoulder) receiving vehicle at D32. (d)
Representative [18F]-FDG PET-CTpicture of tumor-bearing SCID mice (tumor in the right shoulder) receiving vehicle or D1143 at D32.
(e) Tumor [18F]-FDG uptake in SCID mice receiving vehicle, D1143, or paclitaxel. Measures have been performed at D18 (1 week of
treatment), D25 (2 weeks of treatment), and D32 (1 week after treatment). Results are expressed as mean SUV (left panel) and SUV max
(right panel). Results are presented as mean ± SEM; n � 8, ∗p< 0.05. (f ) Gamma counting of [18F]-FDG in tumors of SCIDmice receiving
paclitaxel (iv), D1143 (po), or vehicle as control (%ID/g). Results are presented as mean ± SEM; n � 8; ∗p< 0.05.
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for a greater therapeutic window than conventional che-
motherapy in vivo. In addition, our results show that Debio
1143 and placlitaxel presented differentiated proapoptotic
effects over time in vivo. Debio 1143 induced an earlier and
stronger cancer cell apoptosis as early as 6 h after treatment,

whereas paclitaxel induced-apoptosis was only detectable
(although not significant) 24 h after treatment. Apoptosis
is an early event expected to occur after successful che-
motherapy and is highly predictive of treatment success.
+us, apoptosis quantification represents a major way to
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Figure 4: In vivo dynamic [18F]-FDG PET-CT. (a) Dynamic [18F]-FDG PET-CTperformed on tumor-bearing SCIDmice receiving paclitaxel,
D1143, or vehicle at D18 (1 week of treatment). Mean aorta SUV (left panel) and mean tumor SUV (right panel) have been measured every 5
seconds for 240 seconds. (b) Dynamic [18F]-FDG PET-CTperformed on tumor-bearing SCID mice receiving paclitaxel, D1143, or vehicle at
D25 (week of treatment). Mean aorta SUV (left panel) andmean tumor SUV (right panel) have beenmeasured every 5 seconds for 240 seconds.
(c) Dynamic [18F]-FDG PET-CT performed on tumor-bearing SCID mice receiving paclitaxel, D1143, or vehicle at D32 (1 week after
treatment). Mean aorta SUV (left panel) and mean tumor SUV (right panel) have been measured every 5 seconds for 240 seconds.
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assess therapy response. Annexin V (A5) has been widely
used in basic and clinical research as an apoptosis marker in
conjunction with propidium iodide to distinguish be-
tween apoptotic and necrotic cells. +erefore, it has been
labeled with radionuclides for measuring apoptosis in vitro
and in vivo in animal models and patients [8, 21, 22]. 99mTc-
HYNIC-Annexin V, used in the current study, is the most
widely applied probe in preclinical and clinical settings
for A5 imaging [23]. Kemerink et al. demonstrated that
highest uptake of 99mTc-HYNIC-Annexin V in humans
was observed in the kidneys followed by the liver and spleen
[24]. +ese results are in accordance with our findings in
mice where the highest uptake was found in the kidney at 6h
and 24h.

Moreover, 99mTc-HYNIC-Annexin V showed a fast
blood clearance with more than 90% of the tracer cleared
with a half-life of 24min [24], allowing imaging at 6 h after
injection. +erefore, 99mTc-HYNIC-Annexin V has been
used successfully to assess therapy response in patients after
radiation therapy or chemotherapy [25–27]. 99mTc-HYNIC-
Annexin V uptake has also been demonstrated to predict
prognostic value and efficacy of anticancer therapies. In our
study, Debio 1143 induced a significantly higher tumor
(MDA-MB-231) uptake of 99mTc-HYNIC-Annexin V
compared to vehicle and paclitaxel. In parallel, Debio 1143
showed an improved efficacy in preventing tumor growth
compared to vehicle and paclitaxel after 1 and 2 weeks of
treatment and remained 1 week after treatment arrest
confirming the predictive value of 99mTc-HYNIC-Annexin
V tumor uptake on therapy efficacy. Unexpectedly, pacli-
taxel did not induce a strong in vivo apoptosis in our study
and, in parallel, did not prevent tumor growth. Despite some
controversy, MDA-MB-231 has been demonstrated to be
rather insensitive to paclitaxel compared to other TNBC
cells [28–30]. Interestingly, Panayotopoulou et al. identified,
by high throughput screening, that SMAC mimetics were
able to eliminate MDA-MB-231 short-term paclitaxel re-
sistance suggesting a benefit of such drugs for TNBC patients
[31]. Similar results have also been found in other cancer
types including ovarian cancer [32], non-small cell lung
cancer [14], and breast cancer [33], in which SMAC mi-
metics were able to potentiate the effect of standard che-
motherapy, including paclitaxel [14, 34, 35]. However, this
study did not evaluate the efficacy of the combination of
SMAC mimetics and paclitaxel with [18F]-FDG PET im-
aging. Moreover, Panayotopoulou et al. identified that long-
term paclitaxel was associated with desensitization to SMAC
mimetics. +erefore, combination therapy of SMAC mi-
metics and short-term paclitaxel could be an effective
therapeutic strategy for TNBC.

Most interestingly, the effect of the SMAC mimetic
birinapant on caspase-3 activation has recently been in-
vestigated by in vivo imaging [36]. In this study, Yang et al.
used a specific caspase-3 PET radiotracer, [18F]ICMT-11,
and demonstrated that birinapant induced in vitro a rapid
and transient activation of caspase-3 on MDA-MB-231 cells
6 h after treatment. Moreover, a similar activation of
caspase-3 was also shown in vivo in a preclinical model of
colon cancer. +ese results are in accordance with Debio

1143 presented in the current study using 99mTc-HYNIC-
Annexin V. In addition, Yang et al. also observed a decrease
[18F]-FDG uptake and a delay in tumor growth in vivo after
birinapant treatment similarly to what was observed with
Debio 1143 in our study. Interestingly, the in vivo activation
of caspase-3 and decrease in [18F]-FDG uptake induced by
birinapant was only transient and returned to baseline 24 h
and 48 h after treatment highlighting the need of multiple
dosing of SMAC mimetics to elicit antitumor activity as
monotherapy.

5. Conclusions

[18F]-FDG PET is nowadays the main tool for detection,
staging, and monitoring of tumor clinically. However, [18F]-
FDG uptake accumulates in noncancer tissues and can be
influenced by physiologic uptake of FDG (for example,
infection and inflammation) [37].

Moreover, some adenocarcinoma are characterized by
low-grade or absence of FDG uptake [38, 39]. In our study,
we demonstrate that both 99mTc-HYNIC-Annexin V and
[18F]-FDG PET data can be associated to predict therapy
efficacy and outcome. +erefore, the combination of [18F]-
FDG PET and 99mTc-HYNIC-Annexin V appears as a reli-
able and noninvasive way to monitor early therapy efficacy
and subsequent tumor activity in TNBC patients.
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SPECT/CT images in patients have demonstrated the ability of [99mTc]Tc-EDDA/HYNIC-Lys(Nal)-Urea-Glu ([99mTc]Tc-iPSMA)
to detect tumors and metastases of prostate cancer. Considering that theranostics combines the potential of therapeutic and
diagnostic radionuclides in the same molecular probe, the aim of this research was to estimate the biokinetics and dosimetry of
177Lu-DOTA-HYNIC-Lys(Nal)-Urea-Glu (177Lu-iPSMA) in healthy subjects and analyze the response in patients receiving 177Lu-
iPSMA therapeutic doses. 177Lu-iPSMA was obtained from lyophilized formulations with radiochemical purities >98%. Whole-
body images from five healthy subjects were acquired at 20min, 6, 24, 48, and 120 h after 177Lu-iPSMA administration (185MBq).
,e image sequence was used to extrapolate the 177Lu-iPSMA time-activity curves of each organ to adjust the biokinetic model and
calculate the total number of disintegrations (N) that occurred in the source regions.N data were the input for the OLINDA/EXM
code to calculate internal radiation doses. Ten patients (median age: 68 y; range 58–86 y) received from 1 to 4 cycles of 177Lu-
iPSMA (3.7 or 7.4 GBq) every 8–10 weeks. Response was evaluated using the 68Ga-PSMA-ligand-PET/CT or 99mTc-iPSMA-
SPECT/CTdiagnostic images and serum PSA levels before and after 177Lu-iPSMA treatment.,e blood activity showed a half-life
value of 1.1 h for the fast component (T1/2α � ln2/0.614), 9.2 h for the first slow component (T1/2β � ln2/0.075), and 79.6 h for the
second slow component (T1/2c � ln2/0.008). ,e average absorbed doses were 0.23, 0.28, 0.88, and 1.17Gy/GBq for the spleen,
liver, kidney, and salivary glands. A total of 18 cycles were performed in 10 patients. A PSA decrease and some reduction of the
radiotracer uptake (SUV) in tumor lesions occurred in 60% and 70% of the patients, respectively. 177Lu-iPSMA obtained from kit
formulations showed high tumor uptake with good response rates in patients. ,e results obtained in this study warrant further
clinical studies to establish the optimal number of treatment cycles and for evaluating the effect of this therapeutic agent on
survival of patients.

1. Introduction

Prostate-specific membrane antigen (PSMA) is a metal-
lopeptidase overexpressed predominantly in prostate cancer

(PCa) cells [1]. ,e therapeutic application of two different
lutetium-177-labeled PSMA inhibitors ([177Lu]Lu-PSMA-
617 and [177Lu]Lu-PSMA-I&T) has shown a decrease of
>50% in the prostate antigen (PSA) levels and a significant
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survival increase in 70% of patients with metastatic PCa
[2–4]. However, before any radiotherapeutic treatment, the
radiopharmaceutical uptake in tumors must be evaluated by
nuclear imaging to confirm whether the treatment will be
useful for the patient.

Because of their high sensitivity and specificity, several
68Ga-PSMA inhibitors for PET/CT imaging of prostate
cancer are currently used in clinical trials [5–7]. However,
technetium-99m is still the most widely used radionuclide
for diagnostic imaging. Recently, our group reported the
preparation and biokinetics and dosimetry of [99mTc]Tc-
EDDA/HYNIC-iPSMA ([99mTc]Tc-ethylenediamine-N,N′-
diacetic acid (EDDA)/hydrazinonicotinyl(HYNIC)-Lys
(Nal)-Urea-Glu) as a radiopharmaceutical with the ability
to specifically detect PSMA expression in tumors of prostate
cancer by SPECT/CT imaging [8–10].

Considering that theranostics combines the potential of
therapeutic and diagnostic radionuclides in the same mo-
lecular probe, we have also reported the synthesis, prepa-
ration, and preclinical studies of the therapeutic
radiopharmaceutical 177Lu-DOTA-HYNIC-iPSMA [177Lu-
(1,4,7,10-tetraazacyclododecane-N,N′,N″,N‴-tetraacetic
acid)-HYNIC-Lys(Nal)-Urea-Glu] in order to develop a new
theranostic 99mTc/177Lu pair, useful in prostate cancer
(Figure 1) [11, 12].

,e aim of this study was to estimate the biokinetics and
dosimetry of 177Lu-DOTA-HYNIC-iPSMA (177Lu-iPSMA)
in five healthy subjects and analyze the response in ten
patients with histologically confirmed prostate cancer that
received therapeutic doses of 177Lu-iPSMA.

2. Materials and Methods

2.1. Reagents. ,e DOTA-HYNIC-iPSMA peptide conjugate
(1,4,7,10-tetraazacyclododecane-N,N′,N″,N‴-tetraacetic acid-
hydrazinonicotinyl-Lys(Nal)-Urea-Glu derivative, MW
1038 g/mol) was designed at ININ, and the synthesis was
requested from Ontores Biotechnology Co., Ltd (Zhejiang,
China), with a purity > 98% as analyzed by reversed-phase
HPLC (RP-HPLC) and mass spectroscopy. Lutetium (177Lu)
chloride was obtained from ITG, Germany (EndolucinBeta
40GBq/mL, in sterile 0.04M HCl solution, noncarrier-
added). All the other reagents were purchased from Sigma-
Aldrich Chemical Co. and were used as received.

2.2. Preparation of 177Lu-iPSMA. Lutetium-177-labeled
iPSMA (177Lu-iPSMA) was prepared from a multidose ly-
ophilized formulation under aseptic conditions in a GMP-
certified facility according to the method described by Luna-
Gutierrez et al. [11]. For the radiochemical synthesis, the
177LuCl3 vial (40GBq/mL) was vented with a needle and
1.0–1.5mL of the 1M acetate buffer (pH 5.0) was added.,e
total volume was withdrawn using a sterile syringe and was
afterwards employed for the reconstitution of the DOTA-
HYNIC-iPSMA lyophilized kit. ,e reconstituted vial was
heated in a dry bath at 95°C for 30min. After cooling to
room temperature, the vial was vented with a needle and the
volume was taken up to 10mL with 0.9% saline solution

(Pisa, Mexico), using a sterile syringe. ,e dosing step was
carried out directly in delivery syringes using a dosing GMP
module (Musa, Comecer, Italy). In this way, 177Lu-iPSMA
was obtained from lyophilized formulations after re-
constitution with sterile solutions of 177LuCl3 without the
need to perform further purification or sterilization pro-
cesses and without the need of using commercially available
radiochemical synthesizers. For the quality control, pa-
rameters such as color, appearance, pH, sterility, bacterial
endotoxins, and radiochemical purity (reversed-phase
HPLC) were evaluated in accordance with the Mexican
Pharmacopoeia [11].

68Ga was obtained from a 68Ge/68Ga generator (Isotope
Technologies, Garching) and Glu-CO-Lys(Ahx)-HBED-CC
(PSMA-11, GMP) from ABX advanced biomedical com-
pounds. ,e synthesis of 68Ga-PSMA-11 or 68Ga-iPSMA
(68Ga-DOTA-HYNIC-iPSMA) was carried out on an iQS
Ga-68 Fluidic Labeling Module (Isotope Technologies,
Garching). ,e [99mTc]Tc-pertechnetate was obtained from
a GETEC 99Mo/99mTc generator (ININ-Mexico). [99mTc]Tc-
EDDA/HYNIC-iPSMA ([99mTc]Tc-ethylenediamine-N,N′-
diacetic acid (EDDA)/hydrazinonicotinyl(HYNIC)-Lys
(Nal)-Urea-Glu) was prepared from a lyophilized formu-
lation (ININ-Mexico) as previously reported [8].

2.3. Evaluation of Radiochemical Purity. Radiochemical
purity analyses were performed by reversed-phase high-
performance liquid chromatography (HPLC) with a Wa-
ters instrument running Empower software with both
radioactivity and UV-photodiode array in-line detectors
and a µBondapak C18 column (5 µm, 3.9 × 300mm). A
gradient using 0.1% TFA/water as solvent A and 0.1%
TFA/acetonitrile as solvent B was used at a flow rate of
1mL/min. ,e gradient began at 100% solvent A for 3min,
changed to 50% solvent A over 10min and was maintained
for 10min, changed to 30% solvent A over 3min and fi-
nally returned to 100% solvent A over 4min. In this
system, retention times for free 177LuCl3 and 177Lu-iPSMA
were 3–4min and 14–15min, respectively. ,e same sys-
tem was used for [99mTc]Tc-iPSMA (tR � 13–14min; tR �

3–4min for [99mTc]TcO4Na) and 68Ga-PSMA-11/68Ga-
iPSMA (tR � 10–12min; tR � 3-4min for 68GaCl3) ra-
diochemical purities (RPs) assessment in order to verify RP
over 95%.

2.4. Healthy Subjects and Patients. Five healthy subjects
(mean age ±SD, 47 ± 7 y; age range, 36–53 y; 5 men) were
included. Prescreening consisted of a detailed review of
medical history and a physical examination. Subjects with
evidence of clinical disease or a history of organ-removal
surgery were excluded. ,e mean (±SD) subject weight was
74 ± 8 kg (range, 64–82 kg). All subjects signed a consent
form after receiving detailed information regarding the aims
of the study and agreed to the collection of data that is
necessary for a complete biokinetic study. ,e activity ad-
ministered to healthy subjects was 185 MBq (from 3 to 5 µg
of DOTA-HYNIC-iPSMA peptide).
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Ten patients (median age: 68 y; range 58–86 y) with
histologically confirmed prostate cancer were enrolled in
this study and received from 1 to 4 cycles of 177Lu-iPSMA
(3.7 or 7.4 GBq, from 60 to 120 µg of DOTA-HYNIC-iPSMA
peptide) every 8–10 weeks.,e activity to be administered in
each treatment was established according to the tumor
volume estimated by the SPECT/CT or PET/CT diagnostic
study. For example, patients with greater bone tumor load
were initially treated with 3.7 GBq due to the higher
probability of myelotoxicity, with gradual scaling. ,e cri-
terion to determine the number of cycles to be administered
was the biochemical and imaging progression. In Tables 1
and 2, the patient characteristics before 177Lu-iPSMA
treatments and the radiotracer used in each patient for
evaluation of the therapy effect are shown. Response was
evaluated using the 68Ga-PSMA-11 PET/CTor 68Ga-iPSMA
PET/CT or [99mTc]Tc-iPSMA-SPECT/CT diagnostic images
and serum PSA levels before and after 177Lu-iPSMA treat-
ment. Renal scintigraphy using [99mTc]Tc-MAG3 was per-
formed in all patients. Additional renal laboratory
parameters and blood counts were performed to rule out
clinically relevant impairment of renal or hepatic function
and bone marrow depression. Written informed consent
was obtained from each patient. Immediately after radio-
pharmaceutical administration, healthy subjects and pa-
tients were hydrated with 500mL of pure water and they

voided the bladder before the image acquisition. ,e study
was approved by the hospital’s Medical Ethics Committee,
taking into account the following aspects: (a) the ethical
standards of the responsible committee on human experi-
mentation (institutional and national) and with the Helsinki
Declaration of 1975, as revised in 2008, (b) the GMP cer-
tificate issued by COFEPRIS (Federal Commission for
Protection against Health Risks, the regulatory authority in
Mexico) to ININ, (c) the clinical background of PSMA
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Figure 1: Schematic structure of the theranostic pair: (a) [99mTc]Tc-EDDA/HYNIC-iPSMA ([99mTc]Tc-iPSMA) and (b) 177Lu-DOTA-
HYNIC iPSMA (177Lu-iPSMA). (c) Radio-HPLC analysis of 177Lu-iPSMA obtained from a multidose lyophilized kit before injection to
patients with high radiochemical purity (>99%).

Table 1: Patient characteristics before 177Lu-iPSMA treatments.

Site of metastases
Patients (18
treatments)
N %

Bone 6 60
Lymph nodes 10 100
Liver 4 40
Lung 1 10
Prior therapies
Radical prostectomy 8 80
Radiation therapy (prostate region) 8 80
Docetaxel 7 70
Cabazitaxel, abiraterone, and/or enzalutamide 7 70
Radium-223 1 10
Radiation therapy to bone 2 20
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inhibitors for imaging and therapy, (d) the techno-
surveillance report of the [99mTc]Tc-EDDA/HYNIC-
iPSMA and 177Lu-DOTA-peptides that ININ distributes
with the approval of COFEPRIS for clinical use, (e) the
complete preclinical studies of 177Lu-iPSMA and (f ) the
basis of microdosing studies.

2.5. Acquisition of Images. 177Lu-iPSMA images were ob-
tained to calculate the biokinetic and dosimetry parameters
with a dual head gamma camera (Symbia TruePoint
SPECT/CT, Siemens), equipped with medium energy gen-
eral purpose collimators. ,e scan velocity was 12 cm/min.
For all acquisitions, a matrix size of 256 × 1024 pixels was
used and a symmetric 15% window was set at 208 keV. For
scatter corrections, the dual-energy window method was
used by simultaneous acquisition in a lower scatter window
centered on 176 keV with 15% width [13]. Transmission
factors for the chest and abdomen were calculated using the
ratio of the count rates I/I0 obtained with a 37 MBq 177Lu-
filled flood source with (I) and without (I0) the patient in
position, from which the regional attenuation of the body
was calculated. In healthy subjects, whole-body anterior and
posterior scintigraphy was performed at 20min, 6, 24, 48,
and 120 h after radiopharmaceutical administration.

In patients, whole-body planar scintigraphy 177Lu-
iPSMA images (anterior and posterior) were obtained at
24 h after radiopharmaceutical administration. 68Ga-PSMA-

11-PET/CT or 68Ga-iPSMA-PET/CT images before (basal)
and after 177Lu-iPSMA therapy (40–50 d after therapy) were
acquired in four patients and two patients, respectively.
Studies were performed on an mCT Excel 20 PET/CT
scanner (Siemens Medical Solutions). ,e acquisition pa-
rameters of the helical CT scan were 120 kVp, 180mAs, and
5mm slice thickness. After intravenous injection of 68Ga-
PSMA-11 or 68Ga-iPSMA, whole-body emission scans were
acquired at 60min. ,e whole-body PET scans were ob-
tained from the vertex to mid thighs, at 2–3min per bed
position in the 3-dimensional mode. PET images were
reconstructed using a 2-dimensional ordered-subset ex-
pectation maximization algorithm. ROIs were drawn, and
the maximum standardized uptake values (SUVmax) were
calculated. [99mTc]Tc-EDDA/HYNIC-iPSMA SPECT/CT
images before and after 177Lu-iPSMA treatment (40–50 d
after therapy) were obtained from four patients at 3 h
posttracer injection. A 360-degree rotation with a non-
circular orbit continuous technique, 128×128 matrix,
window of 15% centered on 140 keV with scattering cor-
rection, 120 images of 10 seconds in all acquisitions, were
used. CT images were acquired from the skull to the middle
third of thighs, obtaining an attenuation correction map
using low-dose CT parameters. Reconstruction of raw data
was carried out using the iterative method by the order of
sets and subsets (8 iterations/4 subsets) and a Butterworth
filter (0.5 cut, order 5). ROIs were drawn, and the SUVmax
were calculated.

Table 2: Description of the reported disease of patients and the radiotracer used in each case for evaluation of the response to 177Lu-iPSMA
therapy.

Patient no. Age Reported disease Radiotracer

1 86
Prostate cancer, resistant to castration, with

retroperitoneal, external, and common iliac bilateral
chains lymph node metastases

68Ga-iPSMA

2 72

Prostate cancer, resistant to castration, with bone,
lungs, liver, and lymph node metastases; right

nephrectomy and adrenalectomy with resection of
the diaphragm by tumor infiltration

[99mTc]Tc-iPSMA

3 71 Prostate cancer, resistant to castration, with bone and
lymph node metastases [99mTc]Tc-iPSMA

4 61 Prostate cancer with lymph node metastasis [99mTc]Tc-iPSMA

5 60

Prostate cancer, resistant to castration, diabetes
mellitus type 2, chronic kidney disease, kidney

transplant, with liver, retroperitoneal, and left iliac
chain lymph nodes and vertebral T6 metastases

[99mTc]Tc-iPSMA

6 72
Prostate cancer, resistant to castration, with inguinal
lymph nodes and bone metastases; kidney cancer

with left nephrectomy; gastric cancer

68Ga-PSMA-11

7 58

Prostate cancer, resistant to castration, with right
sacrum bone metastasis; retroperitoneal, iliac

bilateral chains, inguinal, and gluteus lymph node
metastases, bladder and liver metastases (Ra-223

treatment)

68Ga-PSMA-11

8 65 Prostate cancer with liver and lymph node metastases 68Ga-PSMA-11

9 66 Prostate cancer, resistant to castration, with multiple
bone metastases (radiotherapy treatment)

68Ga-PSMA-11

10 74 Prostate cancer, resistant to castration, with multiple
lymph node metastases (brachytherapy treatment)

68Ga-iPSMA
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2.6. 177Lu-iPSMA Biokinetics. For scattering correction, the
images obtained by the dual-energy window method were
archived in DICOM (Digital imaging and Communication
inMedicine) format and processed with the ImageJ Software
(Image Processing and Analysis in Java, Version 1.51i). ROIs
were drawn around source organs (heart, breast, lungs,
kidneys, liver, spleen, intestine, bladder, salivary glands,
lacrimal glands, and whole body) in each time frame. ,e
same set of ROIs was used for all scans, and the counts in
each ROI were corrected by attenuation using the trans-
mission factors (I/I0) experimentally calculated as described
above, in agreement with the conjugate-view counting
method for additional scattering correction as follows
[9, 13]:

A �
I

I0

��
IA


IP, (1)

where A represents the compartment activity in counts and
IA/IP are the anterior/posterior view counting rates, re-
spectively. Counts were also corrected by physical decay and
by the background correction factor, in accordance with the
Buijs method [14].

Each organ activity was divided by the whole-body (WB)
activity obtained from the first image acquired (100% of
injected activity), in order to determine the fraction of the
injected activity (IA) in each source organ as follows:

%IAsource organ �
Asource organ

AWBat the first image acquisition
× 100. (2)

,e image sequence was used to derive 177Lu time-
activity curves in each organ. As the heart does not over-
express PSMA, its activity was considered as having blood
activity kinetics. ,e blood activity curve was derived from
the heart activity by fitting the heart data to a function with
three exponential terms.,e OLINDA/EXM code allows the
user to enter kinetic data for each source organ (% IA at
different times) and fit it to one or more exponential terms
[15]. ,e activity was integrated over time to calculate the
total number of disintegrations (N) expressed per unit of
initial activity in the source region (MBq.h/MBq). ,e ICRP
30 GI tract model included in the OLINDA/EXM code was
used for the excretion model, assuming an activity fraction
of 0.034–0.080 entering the small intestine, as images
revealed that 5.9 ± 2.9% of the total activity was excreted into
the intestine at 20min after injection. ,e estimated bladder
activity (% IA in urine) was input data for the
OLINDA/EXM code. Total urine excretion at 24 h was es-
timated from the acquired images as follows:

urine excretion �
AWBat 24 h, corrected by decay

AWBat the first image acquisition
× 100 

−(%hepatobiliary excretion).

(3)

2.7.177Lu-iPSMA-AbsorbedDoseCalculations. ,e absorbed
dose to organs was evaluated according to the following
equation as previously reported [9]:

Dtarget⟵source � 
sources

Nsource × DFtarget⟵source, (4)

where Dtarget⟵source is the mean absorbed dose to a target
organ from a source region, Nsource represents the total
number of nuclear transitions that occurred in the source
region, and DFtarget←source is a dose factor that is specific for
the isotope, source, and target configuration. In this study,
the equivalent absorbed dose estimates were obtained by
entering the experimental N values for all source organs into
the OLINDA/EXM code [15], but the effective doses were
calculated according to the ICRP 103, in which salivary and
lacrimal glands are included. ,e mass and DF-values of the
salivary and lacrimal glands were obtained according to Liu
et al. [16].

3. Results and Discussion

,e radiochemical purity of 177Lu-iPSMA (Figure 1) ob-
tained from multidose lyophilized kits was 99 ± 1%, as
obtained by HPLC analyses without postlabeling purifica-
tion. ,e average molar activity was 70 GBq/µmol before
injection to patients.

None of the five healthy subjects reported adverse re-
actions such as nausea, vomiting, dyspnea, bronchospasm,
decreased blood pressure, itching, flushing, hives, chills,
coughing, bradycardia, muscle cramps, or dizziness after
the radiopharmaceutical was administered. No significant
change in hemoglobin and the blood cell count was ob-
served after therapy in patients, and there was no evidence
of nephrotoxicity (Figure 2). Patients 2, 5, and 6 had ab-
normal creatinine values before the treatment which did
not change after therapy. ,e same behavior was observed
with the GFR values, which were in the normal range
(72–89mL/min) before and after treatments except in
patients with renal complications (patient 2, 5, and 6, GFR
range of 58–62mL/min).,ree patients (30%) showedmild
reversible xerostomia following treatment. Fatigue was
a side effect in two patients (20%), and nausea was observed
in one man treated with a 177Lu-iPSMA therapeutic dose
(10%) at 24 h. One patient reported complete pain relief
(patient 6).

,e 177Lu-iPSMA blood activity was fitted to a triexpo-
nential function as follows as follows (Figure 3):

A(t) � 2.11e
0.614t

+ 0.88e
0.075t

+ 0.13e
0.0081t

. (5)

,e half-life value was 1.1 h for the fast component
(T1/2α � ln2/0.614), 9.2 h for the first slow component (T1/2β
� ln2/0.075), and 79.6 h for the second slow component
(T1/2c � ln2/0.008) (Figure 2). ,e activity was mainly ac-
cumulated in the kidneys, liver, and parathyroid, salivary,
and lacrimal glands (Figure 4). Twenty minutes after ra-
diopharmaceutical administration, the mean percentage of
the injected activity in the kidneys was 17.58 ± 7.13% and
after 24 h, it decreased to 7.01 ± 3.36%. Twenty-four hours
after the administration of 177Lu-iPSMA, the total activity
excreted in urine was 63.99 ± 10.58%.

,e radiation-absorbed doses for the main source organs
are shown in Table 3. 177Lu-iPSMA showed to have similar
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pharmacokinetics, dosimetry, and therapeutic response
compared to other 177Lu-PSMA inhibitors previously in-
formed [17, 18]. ,e mean radiation-absorbed doses of
177Lu-iPSMA in the kidney (0.88Gy/GBq) and liver
(0.28Gy/GBq) were slightly different from that reported for
[177Lu]Lu-PSMA-I&T (kidney � 0.75Gy/GBq, liver �

0.12Gy/GBq) and quite comparable with those of [177Lu]Lu-
PSMA-617 (kidney � 0.82Gy/GBq, liver � 0.13Gy/GBq)
[17, 18]. Patient no. 1, who received 4 cycles of 177Lu-iPSMA
with a total activity of 18.5 GBq (Table 4), had the highest
mean radiation dose of 16.28Gy to the kidney, which is safe
considering that the maximum tolerated dose or dose limit
is 28 Gy (50% probability of developing severe late kidney
damage within 5 y) [19]. Absorbed doses for lacrimal and
salivary glands in patient 1 were 21.6 and 24.4 Gy, re-
spectively, which have been stated as well tolerated by
patients. For example, using external-beam radiation
therapy, doses to glands below 26Gy were reported
safe [20].
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Figure 2: Hemoglobin levels, blood cell count, and creatinine values of patients before and after 177Lu-iPSMA therapy.
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All patients showed high 177Lu-iPSMA uptake in the
prostate cancer metastases (Figures 5 and 6) with an average
tumor/background ratio of 6.3 ± 1.7 at 24 h. 177Lu-iPSMA
was able to target both soft tissue tumors and bone meta-
static lesions of the prostate cancer (Figure 6). A total of 18
cycles were performed in 10 patients. A PSA decrease and
some reduction of the radiotracer uptake in tumor lesions

(SUVmax) occurred in 60% and 70% of the patients, re-
spectively (4/10 patients with a PSA decrease ≥50% and 2/10
with a PSA decrease ≤42%) (Table 4). Baum et al. [4] found
that 80% of all men (n � 56) treated with [177Lu]Lu-PSMA-
I&T had a PSA decrease. ,erefore, differences with our
preliminary study could be related with the total number of
enrolled patients and the total cycles of 177Lu-iPSMA
therapies. Furthermore, Rahbar et al. [21] reported that
a relevant number of patients treated with [177Lu]Lu-PSMA-
617 showed a delayed response, even if they did not respond
to the first cycle of the therapy.

,ree patients (30%) that showed a decrease in SUVs of
soft tissue tumor lesions (visceral or lymph nodes) had
a progressive disease mainly with an increase in bone me-
tastases (Table 4, Figure 7). Bone metastases appeared to
respond to treatment with 177Lu-iPSMA less well than
visceral or lymph nodal disease in agreement with previous
clinical studies [22]. ,is fact could be related with the
inability of 177Lu-PSMA inhibitors to specifically target the
homing process in the bone (bone microenvironment which
promotes homing of a cancer cell to the bone) [23].

Decrease in PSA levels or SUV values were not related
with previous therapeutic treatments. One patient (10%) had
complete response (Figure 5).

Progressive disease despite 177Lu-iPSMA treatment oc-
curred in 30% of patients (Table 4). As others have reported,
this can be related to the different density expression of the
PSMA receptor in all cells. Heterogeneity of PSMA receptor
activity within the tumor population may mean that some
sites will not respond to treatment with 177Lu-iPSMA, which
will manifest as disease progression and a rising serum PSA
level [22].

It is important to mention that, although the evaluation of
68Ga-iPSMA for diagnostic images was not the aim of this
research, results also evidenced the feasibility of using the
68Ga-iPSMA/177Lu-iPSMA pair in theranostic applications
and that 68Ga-PSMA-11 and 68Ga-iPSMA tracers have
comparable ability to target the PSMA protein. Nevertheless,
a complete clinical comparative study between 68Ga-PSMA-11
and 68Ga-iPSMA is needed before generating any conclusion.

Several 68Ga-PSMA inhibitors for PET/CT imaging in
prostate carcinoma are being used in the clinical practice

20 min 6 h 24 h 48 h 120 h

Anterior Anterior Anterior Anterior AnteriorPosterior Posterior Posterior Posterior Posterior

Figure 4: Anterior and posterior whole-body images of a healthy volunteer (man) at 20min, 6, 24, 48, and 120 h after 177Lu-iPSMA
administration (185 MBq).

Table 3: Average total number of disintegrations (N) in source
organs, organ-absorbed doses, and effective dose of 177Lu-iPSMA,
calculated from five healthy subjects (men).

Target organ N (mean ± SD)
Organ doses
(Gy/GBq)

(MBq·h/MBq) Average SD
Adrenals — 0.030 0.007
Brain — 0.024 0.005
Breasts — 0.024 0.004
Gallbladder wall — 0.032 0.006
LLI wall — 0.041 0.011
Small intestine 0.300 ± 0.018 0.027 0.006
Stomach wall — 0.027 0.006
ULI wall — 0.044 0.010
Heart wall — 0.049 0.005
Kidneys 2.953 ± 0.475 0.880 0.040
Liver 6.322 ± 0.352 0.280 0.090
Lungs 0.400 ± 0.098 0.030 0.010
Muscle — 0.025 0.006
Ovaries — 0.040 0.010
Pancreas — 0.030 0.007
Red marrow — 0.030 0.010
Osteogenic cells — 0.077 0.017
Skin — 0.024 0.004
Spleen 0.450 ± 0.036 0.232 0.070
Testes — 0.025 0.006
,ymus — 0.025 0.004
,yroid — 0.024 0.007
Salivary glands 0.225 ± 0.005 1.170 0.310
Lacrimal glands 0.041 ± 0.013 1.321 0.091
Urinary bladder wall — 0.249 0.103
Urinary bladder 1.369 ± 0.441 — —
Uterus — 0.028 0.007
Remainder of the body 19.380 ± 1.550 — —
Total body — 0.040 0.021
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[5–7]. However, a single elution from a 68Ge/68Ga generator
is only sufficient to prepare 68Ga-PSMA ligand for a few
patients.,is limits the number of studies that can be carried
out in a single day. Technetium-99m can be produced with
large activities from 99Mo/99mTc generators to be used in the
preparation of [99mTc]Tc-PSMA inhibitors (SPECT/CT
images) for a multitude of patients every day [24]. Fur-
thermore, there are fewer PET cameras installed worldwide
than SPECT systems. ,at is the reason why we developed
a lyophilized formulation for the preparation of [99mTc]Tc-
EDDA/HYNIC-iPSMA, in which hydrazinonicotinamide
(HYNIC) was proposed to act as a critical chemical group in
the increase of the lipophilicity of the molecule for the

coupling to hydrophobic sites of PSMA [10]. ,e new 177Lu-
DOTA-HYNIC-iPSMA (177Lu-iPSMA) therapeutic radio-
pharmaceutical can potentially work as the theranostic pair
of the [99mTc]Tc-EDDA/HYNIC-iPSMA ([99mTc]Tc-
iPSMA) diagnostic agent previously reported [8, 9].

PSMA activity in tumor cells is measured by assessing
the SUV values with 68Ga-PSMA-11, 68Ga-PSMA-617, or
68Ga-PSMA-I&T PET/CT before 177Lu-PSMA inhibitor
therapies. ,e use of [99mTc]Tc-iPSMA/177Lu-iPSMA
theranostic pair (similar active molecular sequence)
could be useful to establish cutoffs of SUVs with [99mTc]Tc-
iPSMA below which 177Lu-iPSMA therapy may not be
effective.

Table 4: PSA levels in patients before and after treatment.

Patient no. (no. of cycles, total activity administered
(GBq))

PSA levels (ng/mL) (SUVmax in soft tissue tumor lesions)
Before treatment After treatment

1 (4, 18.5) 58 (73) 4 (1)
2 (2, 7.4) 53 (32) 55 (14)
3 (2, 7.4) 20 (33) 30 (17)
4 (1, 5.5) 31 (46) 18 (4)
5 (1, 7.4) 101 (38) 45 (16)
6 (2, 7.4) 46 (33) 25 (19)∗∗
7 (2, 7.4) 217 (56) 322 (21)∗∗
8 (2, 7.4) 34 (47) 11 (26)
9 (1, 7.4) 37 (101) 40 (33)∗∗
10 (1, 3.7) 182 (79) 76 (28)
∗∗Progressive disease: bone metastases.

68Ga-iPSMA

Basal PET A�er first therapy PET A�er second therapy PET

177Lu-iPSMA 177Lu-iPSMA

Uptake a�er the first therapy Uptake a�er the second therapy

Anterior AnteriorPosterior Posterior

A�er third therapy PET

Figure 5: Treatment response evaluated using the 68Ga-iPSMA-PET/CT diagnostic images (upper images) after three cycles with 177Lu-
iPSMA (bottom: images at 24 h after the first cycle and 6 d after the second cycle with 177Lu-iPSMA) (patient 1, complete response).
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Although 177Lu-iPSMA obtained from kit formulations
showed high tumor uptake with good response rates in
patients, further clinical studies in randomized trials are
necessary for evaluating the effect of this therapeutic agent
on the survival of patients.

4. Conclusions

,is preliminary study suggests that radioligand therapy with
177Lu-iPSMA is safe, well-tolerated, and has a considerable

effect on PSA levels in patients with advanced prostate cancer.
Further studies are needed to evaluate response and toxicity
after several therapy cycles and to determine the optimal
number of cycles, as well as to assess the effect of this
therapeutic agent on the survival of patients.

Data Availability

,e data used to support the findings of this study are in-
cluded within the article.
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Figure 6: Treatment response evaluated using the [99mTc]Tc-iPSMA-SPECT diagnostic images (right and left, anterior and posterior
images) after the therapy with 177Lu-iPSMA (middle: anterior and posterior images at 24 h after the first cycle with 177Lu-iPSMA) (patient 4,
partial response).

68Ga-PSMA-11 68Ga-PSMA-11Anterior

Basal PET Uptake a�er the first therapy A�er first therapy PET

Posterior

177Lu-iPSMA

Figure 7: Treatment response evaluated using the 68Ga-PSMA-11-PET/CT diagnostic images (right and left anterior images) after the
therapy with 177Lu-iPSMA (middle: anterior and posterior images at 24 h after the first cycle with 177Lu-iPSMA) (patient 7, partial response
in soft tissue lesions but progressive disease in bone).
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Results of PET/CTexaminations are communicated as text-based reports which are frequently not fully structured. Incomplete or
missing staging information can be a significant source of staging and treatment errors. We compared standard text-based reports
to a manual full 3D-segmentation-based approach with respect to TNM completeness and processing time. TNM information was
extracted retrospectively from 395 reports. Moreover, the RIS time stamps of these reports were analyzed. 2995 lesions using a set
of 41 classification labels (TNM features + location) were manually segmented on the corresponding image data. Information
content and processing time of reports and segmentations were compared using descriptive statistics and modelling. *e
TNM/UICC stage was mentioned explicitly in only 6% (n � 22) of the text-based reports. In 22% (n � 86), information was
incomplete, most frequently affecting T stage (19%, n � 74), followed by N stage (6%, n � 22) and M stage (2%, n � 9). Full
NSCLC-lesion segmentation required a median time of 13.3min, while the median of the shortest estimator of the text-based
reporting time (R1) was 18.1min (p � 0.01). Tumor stage (UICC I/II: 5.2min, UICC III/IV: 20.3min, p< 0.001), lesion size
(p< 0.001), and lesion count (n � 1: 4.4min, n � 12: 37.2min, p< 0.001) correlated significantly with the segmentation time, but
not with the estimators of text-based reporting time. Numerous text-based reports are lacking staging information. A
segmentation-based reporting approach tailored to the staging task improves report quality with manageable processing time and
helps to avoid erroneous therapy decisions based on incomplete reports. Furthermore, segmented data may be used for
multimedia enhancement and automatization.

1. Introduction

Non-small-cell lung cancer (NSCLC) is a common malig-
nant tumor and the leading cause of cancer-related death
worldwide [1]. NSCLC is staged according to the American
Joint Committee on Cancer (AJCC) and the Union for
International Cancer Control (UICC) manuals that

implement current medical knowledge to optimize patient
survival [2]. 18F-fluorodeoxyglucose (FDG) PET/CT is
currently considered the standard imaging procedure for
noninvasive staging of NSCLC [3].

Accurate image-based staging is key for further di-
agnostic workup and therapy management. However, the
discordance between preoperative staging using PET/CT
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and surgical pathology is considerable: according to Cerfolio
and Bryant, approximately 32% of patients are preoperatively
understaged [4]. Furthermore, patients with predicted stage
IA have a pathological confirmation of this stage in only 65%
[5]. Sources of misclassification may be biological and
technical limitations [6], but the process chain from image
acquisition, interpretation, and reporting may be error-prone
as well [7]. *is has not yet been quantified in the context of
NSCLC staging. Such misclassification might be reduced by
introduction of more structured text reports [8].

Next to the discordance as shortcoming of the current
reading process, it can be argued that this process does not
extract all potentially relevant information from imaging data.
Despite being only partially reflected in the current staging
system, factors like tumor burden are of great prognostic
relevance for patients with NSCLC. Oh et al. have shown that,
in patients with brain metastases, the overall survival is in-
versely correlated with the volume of all metastases [9].
Moreover, the number of positive lymph nodes has been
identified as an independent prognostic factor of survival in
patients with stage N1 disease. Furthermore, a recent study by
He et al. pointed out that advanced NSCLC can be further
divided into 3 prognostic subgroups: according to the ge-
notype, number of metastatic organ sites, and metastasis
lesions [10]. Such detailed information is neither included in
regular text-based reports nor covered by structured reporting
tools. Contrarily, new applications such as multimedia en-
hancement and image segmentation can capture this in-
formation [11]. However, in the light of health-care cost
savings, personnel shortages, and subsequently decreasing
available reporting time [12], investment into such new ap-
proaches requires careful consideration.

*e aim of this study was to quantify the amount of TNM
information missing in conventional text-based PET/CT re-
ports for staging of NSCLC, to outline an implementation for
structured, multimedia-enhanced segmentation-based
reporting of imaging findings in NSCLC, and to compare
this approach to conventional, text-based reporting in terms
of staging accuracy and processing time.

2. Materials and Methods

2.1.PatientPopulation. *e local ethics committee approved
this retrospective, observational study. All work was con-
ducted in accordance with the Declaration of Helsinki
(1964).

From 1327 FDG-PET/CTs examinations that were
performed with the ICD-10 diagnosis code C34 between
01/2008 and 12/2016, 395 were selected according to the
inclusion criteria “histologically proven NSCLC” and “pri-
mary staging situation.” Exclusion criteria are listed in
Figure 1.

2.2. Imaging Protocol and Reporting. PET/CT examinations
were performed on an integrated PET/CT system with
16-slice CT (Discovery STE, GE Healthcare, Chalfont St
Giles, UK) from 01/2008 to 11/2015 and on a PET/CT with
128-slice CT (Biograph mCT-X RT Pro Edition, Siemens

Healthineers, Erlangen, Germany) from 12/2015 to 12/2016.
Before tracer injection, patients were fasting for at least 6 h.
Scans were obtained 1 h after intravenous injection of 5MBq
FDG/kg body weight at glycaemic levels below 10mmol/L.
All text-based reports were created by a resident in nuclear
medicine in daily clinical practice using electronic reports
with findings structured by anatomic regions [13] and were
reviewed and signed by a board-certified radiologist and
a board nuclear medicine physician in consensus.

2.3. Report-Based TNM Extraction. A dual-board-certified
radiologist and nuclear medicine physician (G.S.) inter-
preted and extracted the TNM stage by analyzing the text-
based reports for T (1–4), N (0–3), and M (0-1) descriptors
or other text information that are stage defining without
access to other clinical information or PET/CT images. It
was also recorded whether the TNM or UICC stage was
mentioned in the report explicitly. *e descriptor was re-
ported as missing when neither the TNM descriptor nor
equivalent stage-defining information such as tumor size
was found. From the extracted TNM, we derived the UICC
(7th edition) stage.

2.4. TNM Annotation and Image Segmentation. For each
patient, the PET/CT image dataset was loaded to a 3D Slicer-
based segmentation software (version 4.6.2, BSD-style open
source license, Slicer Python Interactor 2.7.11, http://www.
slicer.org, Boston, USA) [14]. *is software was modified in
order to support direct-structured annotation using a set of
labels that represent predefined features of lesions according
to the TNM classification (7th edition) (Table 1). More de-
tailed information about the subcategories can be found in the
supplementary material (Tables S1–S3). Annotation and
volumetric image segmentation with reference to the report
was performed manually in random order by a dual-board-
certified radiologist and nuclear medicine physician (A.S.,
reader 1, n � 168) with 9 years’ experience in PET/CTreading
as well as a supervised radiology resident with 2 years of
professional experience (T.W., reader 2, n � 227). Each lesion
was segmented as a 3D volume defined by multiple 2D re-
gions of interest (ROIs) that were drawn on contiguous
transversal slices of the CT component of the dataset. Fused
PET information was used in addition whenever the
boundaries of a lesion were not clearly definable on CT.

Output files were saved as JavaScript Object Notation
(JSON) files, including time measurement registries and
annotations (3007 lesions in total). From these, TNM and
UICC were automatically derived.

2.5. Data Analysis. For comparison, we focused on
TNM/UICC stage as qualitative and on time as quantitative
measures.

2.6. TNM/UICC. *e TNM information extracted from the
text-based reports was analyzed for the frequency of missing
information using Excel 2010 (14.0, Microsoft Corporation,
Redmond, USA).

2 Contrast Media & Molecular Imaging

http://www.slicer.org/
http://www.slicer.org/


2.7. Estimators of Text-Based Reporting Time. *e RIS
timestamps were recorded since 05/2010 and registered in
393 of 395 cases. Since reporting time cannot be derived
directly from RIS time entries, we used three timestamps for
estimation: starting speech recognition, first saving, and

saving for second reading.*e consistency between RIS time
entries and real-time was confirmed by testing 5 sample
reports.

As a lower estimator of the text-based reporting time, we
defined the time between starting speech recognition and

PET/CTs with ICD C34
01/2008-12/2016 (n = 1327)

Selected cases (n = 395) 

Exclusion criteria:

Dictation = starting speech
recognition until first saving 

R1 (n = 118)

Reporting = first timestamp until
saving for second-reading 

R2 (n = 248)

TNM report extraction 

TNM annotation &
segmentation

Segmentation time (n = 395)

Exclusion criteria:
(i) No timestamps (n = 2) 

Exclusion criteria: Exclusion criteria:

No signs of NSCLC (n = 390)
Recurrence (n = 165)
Under treatment (n = 21)
Reporting performed in
external institution (n = 356) 

(i)
(ii)

(iii)
(iv)

No speech recognition used
(n = 257) 

(i)

Overnights (>800 min, n = 18)(ii)

Only one timestamp (n = 47)
Overnights (>800 min, n = 98)

(i)
(ii)

Figure 1: Study flowchart. 395 (30%) NSCLC patients that underwent PET/CTfor primary staging were selected.*ese cases were included
for both TNM extraction and segmentation.

Table 1: Description of label sets. *e specific T-label stage is followed by a morphological descriptor that is stage defining. *e N-label is
defined by stage (first) and region (second) according to the IASLC lymph node map [35]. *eM-label is defined by M stage and metastasis
location. Additional findings that are non-NSCLC-related: T_benign referred to a benign lesion, T_other is another primary tumor,
N_inflammation is an inflammatory/reactive lymph node, N_other is a nodal metastasis from another primary tumor.

T descriptor N descriptor M descriptor Additional findings
T1 N1_10-11i M1a_contralat T_benign
T2 N1_12-15i M1a_pleura T_other
T2_main_bronchus N2_2i M1b_adrenal N_inflammation
T2_visc_pleura N2_3 M1b_brain N_other
T2_obstr_lobe N2_4i M1b_liver
T3_Inv_chest_wall N2_5i M1b_bone
T3_main_bronchus N2_6 M1b_node
T3_obstr_lung N2_7 M1b_other

T3_nodule_same_lobe N2_8i
N2_9

T4_inv_mediastinum N3_1
N3_2c

T4_nodule_diff_lobe

N3_4c
N3_5c
N3_8c
N3_9c

N3_10-11c
N3_12-15c
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first saving as R1. Cases in which no speech recognition was
used (n � 257) and registries >800min (� overnight, n � 18)
were excluded.

As an upper estimator of the text-based reporting time,
we defined the time between the start of speech recognition
or first saving until the saving for second reading as R2.
Cases without speech recognition which were only saved
once (n � 47) and registries >800min (� overnight, n � 98)
were excluded.

To evaluate if these estimators are representative, we
used all oncological PET/CTs from 05/2010 to 01/2018
(n � 14239) (Table S4). A model based on expectation-
maximization (EM) algorithm [15] was applied for outlier
detection and simulation of lower (R1) and upper (R2)
boundaries for verification. Using a Gaussian mixture
model, we identified registries >800min as outliers.*en, we
developed a mathematical simulation using R (3.4.3, R Core
Team, GNU GPL//RStudio, 1.1.414, RStudio Inc., Boston,
USA) to differentiate interruptions from real reporting time
(R1 and R2). *is model was used to test the upper (R2) and
lower estimators (R1). Further information including the R
code can be found in SupplementaryMaterials modelling for
reporting time estimation.

2.8. Segmentation Time. Segmentation time per lesion was
extracted from the JSON file. 99.6% (2995/3007) lesions were
segmented in <175min. 12 lesions segmented in >800min
were excluded as outliers. Registries were analyzed regarding
reader, lesion count, TNM, and UICC. Statistically signifi-
cant impact factors of segmentation time were tested on RIS
time registries for comparison.

2.9. Statistical Analysis. For descriptive statistics, median,
arithmetic mean, and median test were used. For statis-
tical analysis of segmentation, we pooled the data from
readers 1 and 2. For outlier detection, we utilized mixture
modelling with maximum likelihood estimation for RIS
time registries. Spearman’s rank correlation (rs) co-
efficient was used for ordinal (e.g., UICC with time) and
Pearson’s correlation coefficient (r) for interval-scaled
data (e.g., lesion count) to evaluate correlation. For lin-
ear models, we used ANOVA (analysis of variance; R2, F)
to show significance. To evaluate multifactorial impact, we
used automatic linear modelling in SPSS (IBM Statistics
22.0.0.0, IBM Corporation, New York, USA). To include
impact factors, we used a 95% confidence level and Akaike
information criterion (AIC). We used the Wilcoxon
signed-rank test to compare two related samples such as
dictation and segmentation time of the same patient. For
differences in distribution, we used Mann–Whitney U test
(U) for independent samples like reader dependency or
incomplete versus complete reports and Kruskal–Wallis if
there were more than two variables. To test normal dis-
tribution, Kolmogorov–Smirnov was used. *e t-test was
used to determine significant differences in normal dis-
tributed samples. P< 0.05 was set as the level for statistical
significance.

3. Results

Our NSCLC study population (n � 395) comprised 28%
female and 72% male patients with ages between 38 and 97
years (71.7 ± 10.5 years). An example of the annotation and
segmentation process of NSCLC lesions is shown in Figure 2
for a 71-year-old male patient case suffering from T4 N3 M1
squamous cell carcinoma. *e distribution of the T/N/M
stages according to the text-based reports and segmentations
is presented in Figure 3. Table 2 gives an overview of de-
scriptive time statistics for both segmentation and text-based
reporting.

3.1. Completeness of TNM Information in Text-Based Reports.
Due to lack of information, TNM extraction was not possible
for 86 out of 395 text-based reports (22%). Of these, the T
stage was most frequently affected (n � 74, 19%) as shown in
Figure 3. Stage identification information was missing in 6%
for the N (n � 22) and in 2% (n � 9) for the M descriptor. In
four cases (1%), TNM information was missing completely.
An explicit mention of the absence of metastasis was present
in 20% for nodal (n � 80) and in 32% (n � 126) for distant
metastasis. A statement on the specific TNM or UICC stage
was made in only 6% (n � 22) of the text-based reports.

3.2. Analysis of Text-Based Reporting Time. *e reporting
time of the extracted RIS reports was estimated from R1 as
the lower benchmark and R2 as the upper benchmark. *e
median total time was 18.1min for R1 (n � 118) and
151.6min for R2 (n � 248) (Table 2). To assess the general
applicability of this approach, a simulation was done based
on a larger number of non-disease-specific PET/CT exam-
inations performed between 05/2010 and 01/2018 (Table S4).
Here, a median of 26.6min (n � 3700) for R1 as the lower
benchmark and 146.1min for R2 (n � 7190) as the upper
benchmark were found (Table 2). *ere was no significant
difference between the sampled and modeled R1s
(F � 10.34, p � 0.603) but between the sampled and mod-
eled R2s (F � 25.918, p � 0.010). UICC stage and lesion
count were neither correlated with R1 (UICC: rs � 0.002,
p � 0.986; lesion count: r � −0.042, p � 0.652) nor with R2
(UICC: rs � 0.031, p � 0.649; lesion count: r � 0.119,
p � 0.061) (Figure 4). *ose text-based reports where
report-based TNM extraction was possible due to sufficient
information (78%) took longer (R1: 19.5min) than text-
based reports with no or incomplete TNM information (R1:
14.8min).

3.3. Analysis of Segmentation Time. In contrast to the text-
based reports, TNM andUICC could be defined readily in all
cases by annotation and segmentation. Reader 1 (experi-
enced reader, 168 cases, 1172 lesions) required a median of
13.8min, and reader 2 (resident, 227 cases, 1835 lesions)
needed a median of 17.2min per case. *e median test
(p � 0.184) showed no significant difference, even if the
differences in distribution show a slightly faster segmenta-
tion by reader 1 (U � 22113 p � 0.002). *e central
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tendencies regarding T (U � 0.091 p � 0.927), N
(U � −0.881, p � 0.378), and UICC (U � −1.161, p � 0.246)
stages and age (t � 1.01, p � 0.312) do not differ significantly
between both readers. M stage shows that reader 2 (36.6%)
segmented more cases with distant metastases than reader 1
(U � −2.1, p � 0.035), which in part explains longer seg-
mentation time periods. Results from both readers were used
for further analysis.

*e segmentation required a median of 13.3min for the
staging of NSCLC and 3.8min extra, if there were additional
findings (Figure 5). For segmentation of one lesion, a median
of 1.5min was needed.

*e time registries showed that segmentation-based
staging was dependent on the lesion count and tumor
stage. As the lesion count increased, the total segmentation
time increased linearly (R2 � 0.361, F � 221.536, p< 0.001),

N2_4i
N3_4c

T4_inv_mediastinum

N2_6
N2_4i
N2_7

M1b_bone

(a)

(b)

(d)

(c)

Figure 2: Example of a three-dimensional annotation and segmentation of NSCLC lesions from FDG-PET/CTdata of a 71-year-old male
patient with squamous cell carcinoma. (a) After selecting the label from the toolbar, (b) the lesions were manually segmented. (c) Tumor
lesions as a visual report of primary staging including stage information and location. (d) Detailed view of the infiltrating primary tumor
(yellow), lymph node metastasis (green), and pleural metastasis (purple).
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Figure 3: Completeness of TNM information and stage distribution.*e T (a), N (b), andM (c) stages of the different TNM descriptors (7th
edition), as well as their frequency in segmentation and the text-based reports, are shown.
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whereas time per lesion slightly decreased (R2 � 0.01,
F � 32.4, p< 0.001) (Figure 5). According to linear re-
gression, an average of 2.1min was needed for each addi-
tional lesion. In addition, lesion size (independent from the
lesion type) showed a positive correlation with segmentation
time (R2 � 0.284, F � 1106.466, p< 0.001).

Table 3 gives an overview of the relationship between
diameter and segmentation time per lesion. *e average T
lesion diameter was 18.1mm. *e median time required per
T lesion was 2.9min and, according to linear regression,
each additional T lesion led to an increase by 0.84min
(F � 13.0, p< 0.001) on average. In contrast to the T stage
(average count: 1.7), average N (average count: 2.9) and M
(average count: 5.6) lesion counts were higher. On the other
hand, average diameters of N (12.2 ± 4.8mm) and M (13.0 ±
4.6mm) lesions were smaller. Subsequently, segmentation

times per metastatic and nodal lesion were approximately
half of T lesions (Table 3) (T vs. N lesions: p< 0.001, T vs. M
lesions: p< 0.001).

*e total time for the segmentation correlated with the T
(rS � 0.426, p< 0.001), N (rS � 0.694, p< 0.001), and M
(rS � 0.512, p< 0.001) stages and thus also with the UICC
stage (rS � 0.564, p< 0.001). N (F � 40.9, p< 0.001) and M
(F � 42.5, p< 0.001) stages have a greater impact on total
staging time as the T stage (F � 17.0, p< 0.001), estimating
67.3% for N stage, 23.4% for M stage, and only 9.3% for T
stage. A median of 5.1min segmentation time was needed
for UICC I/II versus 6.8min for UICC III/IV per T stage
(U � 32355, p< 0.001).

In contrast to the reporting times, the median seg-
mentation time for those cases with sufficient information
for TNM extraction in the text-based reports (78%) was not

Table 2: Segmentation time versus structured reporting time.

Segmentation time∗ (min)
Study population (NSCLC) Simulation (miscellaneous

oncological indications)
R1 (min) R2 (min) R1 (min) R2 (min)

Mean 25.0 31.0 181.8 29.0 154.2
Standard deviation 30.9 38.2 137.2 18.7 96.5
CI 21.9–28.0 24.0–38.0 164.6–198.9 25.6–32.4 142.1–166.3
Min 0.9 1.0 3.0 0.4 0.3
Median 16.3 18.1 151.6 26.6 146.1
Max 326.0 226.0 792.9 92.9 464.4
*e descriptive statistics for the collected and simulated data in minutes are shown. ∗Including additional lesions. CI � confidence interval; R1 � lower
estimator of the text-based reporting time; R2 � upper estimator of the text-based reporting time.
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Figure 4: Comparison of time needed for staging depending on UICC stage. *e median is indicated by a circle, accompanied by its 95%
confidence interval. (a) Segmentation time is correlated with UICC stage, whereas the medians of total time and time per lesion show an
inverse correlation. (b) Neither R2 nor R1 is related to the UICC stage. R1 � lower estimator of the text-based reporting time. R2 � upper
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Figure 5: Factors influencing the segmentation time. (a) Scatter plot of NSCLC-lesion count versus segmentation time per lesion (grey):
segmentation time per lesion slightly decreases with lesion count as shown by a linear regression line (black dotted). (b) Scatter plot of
NSCLC-lesion count versus total segmentation time: the linear regression (black dotted) shows that total segmentation time increases with
lesion count. (c) Scatter plot of lesion diameter versus segmentation time per lesion showing an increase in segmentation time with lesion
diameter. (d) Box plots displaying the required segmentation time per individual lesion depending on its main category.

Table 3: Descriptive statistics of diameter and segmentation time per lesion.

Diameter (mm) Time per lesion (min)
T N M T N M

Mean 18.2 12.2 13.0 5.7 2.3 2.1
Standard deviation 13.7 4.8 4.6 9.7 4.9 4.8
CI 17.1–19.3 12.0–12.5 12.7–13.3 4.9–6.4 2.0–2.6 1.7–2.5
Min 4.3 4.9 4.9 0.0 0.0 0.0
Median 12.8 11.0 12.3 2.8 1.4 1.3
Max 81.0 56.6 30.6 126.0 111.0 119.2
An overview of the time required for segmentation per lesion and the lesion diameter relative to the respective T/N/M descriptors are shown. Compared to N
and M lesions, T lesions have the largest diameter and highest segmentation time. CI � confidence interval.
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longer than for those with no or incomplete TNM in-
formation in the text-based reports (13.3min for each
group).

4. Discussion

Our objective was to analyze the amount of TNM in-
formation missing in text-based PET/CT reports for staging
of NSCLC and to compare this conventional reporting with
a new segmentation and annotation approach of the total
tumor burden. *e most important findings can be sum-
marized as follows: TNM stage was frequently missing in
structured text-based PET/CT reports (22%). Annotated
image segmentation always includes tumor stage and thus
enhances the quality of the diagnosis. Segmentation time
(median � 16.3min) increases with the TNM and UICC
stage as well as the lesion count, whilst text-based reporting
times (lower boundary estimator R1 � 18.1min) are neither
correlated with the tumor stage nor lesion count.

Definitions and implementations of free text versus
structured text reporting are currently under debate.
According to Weiss et al., structured reporting can be di-
vided into the following three steps [16]:

(i) Level 1: use of common headings
(ii) Level 2: use of subheadings specifying organs or

organ systems (“itemized”)
(iii) Level 3: use of standardized language (“clickable”)

Most guidelines for PET/CT suggest 3 principal style
formats of reporting: order of importance, anatomic site,
and hybrid [13]. In our institution, the preferred style is
driven by the anatomic site. In our sample, we found that in
22% of text-based level 2 structured reports the TNM stage is
missing. Since further treatment depends in particular on
the tumor stage, the absence of TNM in 22% of the examined
cases is alarmingly high. In such cases with undocumented
TNM, miscommunication and uncontrolled interpretation
might entail misstaging and wrong treatment decisions.
Furthermore, missing TNM will decrease efficiency of
multidisciplinary tumor boards. It is noteworthy that the
tumor stage is an important part of the report for the on-
cologist and missing findings, in general, are the most
common cause of malpractice suits [17].

A first approach that might come to mind as a potential
remedy is the introduction of level 3 structured reporting
approaches. However, as direct links between the text and
the image are missing, this approach offers limited options in
terms of reporting tumor burden and communicating
measurements.*erefore, according to Folio et al., the use of
image-based annotated measurements in a standardized
format would significantly improve the report quality even
beyond the results of text-based structuring alone [18].

However, as the time available per image becomes in-
creasingly shorter [19] and increasing workload can be
a source of error on its own [20], an evaluation of the re-
quired time for segmentation is of pivotal importance. In our
study, a median time of 13.3min was needed for segmen-
tation of the total NSCLC tumor burden with explicit

annotation of T, N, and M lesions. Velazquez et al. have
compared manual and semiautomatic computed tomogra-
phy- (CT-) based segmentation of primary lung tumors [21].
*e authors measured a mean segmentation time of
10.6min (range: 4.85–18.25min) for the manual slice-by-
slice delineations. Furthermore, in the Multimodal Brain
Tumor Image Segmentation Benchmark (BRATS), MRI
scans were segmented by a trained team of radiologists using
3D slicer software, taking about 60min per subject [22].
*us, in this context, our segmentation times seem to be
quite low in comparison.

To estimate the time required for normal text-based
reporting as a reference value, we used a time stamp-
based approach on the sample. Since time stamps only
give a rough estimate of the true reporting time, we tried to
fortify our estimate with a modeled timing based on an
extensive sample of PET/CTs. While the median of R1
between the two groups are comparable, R2 of the samples
differed significantly from the simulation. *is suggests the
lower benchmark (R1) to be more reliable because of the
small difference between the sample and modelling.
According to a web-based survey performed by Karantanis
et al. [23], most PET/CT readers estimate the mean reading
time between 15 and 20min, which is comparable in par-
ticular to our lower benchmark. *e duration of comparable
whole-body CT reports has been calculated based on RIS
entries at approximately 30 minutes [24]. *is is within the
range of R1–R2. Overall, based on our data, the reference
values published in literature, and from our own personal
experience, it seems justified to estimate the reading time for
a PET/CT exam in NSCLC in between 20 and 30 minutes.
Interestingly, the time requirements for conventional text-
based reporting in our analysis were independent of factors
such as lesion number or TNM stage.

We have analyzed factors that influence the time needed
for segmentation. Here, the time required can be estimated
by case complexity and is dependent on lesion number,
tumor size, infiltration, and metastasis.*e relevance of total
tumor burden, expressed as total tumor volume or lesion
count, for patient prognosis has been shown by several
studies [10, 25, 26]. *is is also recognized by the In-
ternational Association for the Study of Lung Cancer
(IASLC), who in the framework of the current 8th edition of
the TNM staging system for lung cancer, gives a strong
recommendation for physicians to record the number of
metastatic lymph nodes (or stations) in their staging reports
[25]. It follows that the process of segmentation, with the
search for all lesions and definition of each single lesion
extension, is the only possibility to capture the tumor burden
thoroughly and relate it to prognostic factors. Next, text-
based reporting is frequently only a description of the major
tumor burden and will never reflect every single lesion in full
extent. *is emphasizes the importance to develop methods
for reporting towards more dedicated tumor stage in-
formation. Furthermore, while a segmentation of raw image
data is largely independent of individual interpretations or
these are objectively traceable, level 1 and 2 reports are
commonly misinterpreted [27]. *erefore, segmentation-
based reports with supplementary interpretations would
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be desirable, because they could enhance objectivity in the
communication of radiological findings.

Beyond that, segmentation enables a multitude of new
applications. It goes without saying that these are neither
limited to NSCLC as a disease entity nor to tumor staging as
a diagnostic task. Full tumor segmentations may be used for
staging, restaging, and follow-up assessment of various kinds
of malignancies, e.g., lymphoma, breast cancer, and prostate
cancer [28–30], and other fields such as pathology reporting.
It can be used as enriched image-guidance to plan pro-
cedures, such as biopsies, surgical procedures [31], or ra-
diotherapy [32]. Segmentations might also serve as training
data sets for machine learning by creating a machine-
readable format [33]. Additional time required for seg-
mentationmay result in time-saving in the future.*erefore,
IT solutions might enhance quality of TNM staging whilst
reducing the workload for radiologists.

*ere are some limitations in our study. Evaluation of
text-based RIS reports, collection of their reporting duration,
and segmentation were retrospectively performed. *ere-
fore, there was an unavoidable selection bias. In contrast to
a prospective survey of real-time reporting, it was not
possible to evaluate external factors and interruptions
influencing the duration of a report. Since segmentation of
each case was not performed by more than one reader, inter-
reader agreement cannot be evaluated. However, given the
fact that text-based reports were previously performed in
clinical routine and served as basis for tumor segmentation,
the variability is certainly lower compared to segmentation
without clinical or radiological information. Although the
median segmentation time of both readers was comparable,
differences in distribution were found linked to slightly
different patient groups and readers’ experience. In addition,
segmentations were performed with a manual approach and
not using semi- or automatic PET or CT segmentation that
can improve the objectivity of tumor volume measurements,
e.g., in head and neck cancer [34]. Furthermore, the dif-
ferences in the reading environments with different sources
of interruption for the reading and segmentation task
complicate direct, one-to-one comparisons. Finally, the
retrospective study design did also affect the validity of our
data regarding the accuracy of the TNM staging in-
formation, as it was not possible to obtain clinical or even
pathological confirmation for each particular lesion of in-
terest in our rather large patient sample. In our opinion, this
does not represent a major limitation in terms of the purpose
of this article, as tumor stage did not serve as an endpoint of
our analysis, but was investigated only with regard to its
secondary effects on reporting and segmentation times.

5. Conclusions

In current text-based PET/CT reports, TNM staging in-
formation is frequently incomplete. Structured reporting
with annotated image segmentation provides enhanced
report quality with complete TNM information with
manageable additional workload. Moreover, annotated
image segmentation opens the door towards training

artificial intelligence algorithms and better integration of
imaging data in clinical workflows.
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Objective. To explore the diagnostic value of maximum standard uptake value (SUVmax) from 18F-FDG PET/CT images in
enlarged mediastinal lymph nodes of unknown etiology.Methods. We performed a retrospective study of patients with enlarged
mediastinal lymph nodes on 18F-FDG PET/CT scans. SUVmax and the short axis and long axis of lymph nodes were recorded.
.ese parameters were compared among the five commonest causes of mediastinal lymphadenopathy: lymphoma, metastatic
disease, sarcoidosis, tuberculosis, and lymphadenitis. Histopathologic diagnosis was recorded as the final golden standard. Results.
A total of 94 patients (62 men and 32 women; age range 7–85 y) were included with final diagnoses of 42 patients with benign
pathology and 52 patients with malignancies. .e sensitivity, specificity, and the accuracy of PET/CT in diagnosis of the benign
and malignant mediastinal lymph nodes were 94.2%, 73.8%, and 85.1%, respectively. .e SUVmax of benign and malignant
groups were 13.10 ± 5.21 and 12.59 ± 5.50, respectively, which had no statistical difference (P> 0.05). However, the long axis and
the short axis of lymph nodes in the benign and malignant groups were 2.86 ± 1.02 cm, 1.77 ± 0.60 cm and 6.04 ± 3.83 cm, 3.95 ±
2.08 cm, respectively (P< 0.05). .e diagnostic values of PET/CT were higher than those of the long or short axis. However, the
specificity of PET/CT was lower (73.8%) than that from the long or short axis (90.5% and 92.9%, respectively), although no
statistical difference existed. Among the five common causes of mediastinal lymphadenopathy, significant differences could be
seen in SUVmax and in the long axis and the short axis of lymph nodes (P< 0.05). Conclusions. SUVmax, a commonly used
semiquantitative measurement, was not helpful for differentiation between benign andmalignant lesions in patients with enlarged
mediastinal lymph nodes in this study. Many benign lesions, such as sarcoidosis and tuberculosis, had high FDG uptake, possibly
a trend that the size of the lymph nodes seems to have some diagnostic value.

1. Introduction

Unexplained mediastinal lymphadenopathy is not un-
common in clinical. Some patients visit a doctor due to
dysphagia, hoarseness, or enlarged lymph nodes occasion-
ally found in the physical examination. .e symptoms may
be caused by enlarged lymph nodes that compress the
esophagus and recurrent laryngeal nerves. Lymph nodes
may be enlarged due to benign or malignant etiologies. Early
and accurate diagnosis and characterization of the etiology

of mediastinal lymphadenopathy are essential to formulat-
ing a treatment plan.
.e mediastinum is not an organ, but an anatomical

area. In this area, there are several important tissues and
organs, such as heart, large blood vessels, esophagus, trachea,
thymus, nerves, and lymphatic tissue. .erefore, the me-
diastinal anatomy is complicated, and the tissue biopsy is
difficult. .ere are invasive methods for evaluation of ab-
normal mediastinal lymph nodes, including mediastino-
scopy (Med) [1], thoracoscopy [1], transbronchial needle
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aspiration (TBNA) [2], endobronchial ultrasound-guided
transbronchial needle aspiration (EBUS-TBNA) [3], and
endoscopic ultrasound-guided fine needle aspiration (EUS-
FNA) [4]. .e advantages of these methods are visual and
intuitive and can be obtained with accurate pathological
diagnosis. Some studies reported the sensitivity for Med,
TBNA, EBUS-TBNA, and EUS-FNA in detecting malig-
nancy were 80%, 78%, 89%, and 91%, respectively, and the
specificity were 100%, 100%, 100%, and 100%, respectively
[1–4]. .e reason for the difference of the sensitivity may be
related to the biopsy methods which could not access all the
lymph nodes in mediastinum. For example, Med and EBUS-
TBNA could not reach prevascular, subaortic, paraaortic,
paraesophageal, and pulmonary ligament nodes [5]. Al-
though these methods can obtain pathological results and
have high specificity, they are invasive and may lead to
complications. For example, TBNA can lead to mediastinal
gas, bleeding, infection, and so on, while these incidence
rates are low in EBUS-TBNA.
.e traditional noninvasive examinations, chest com-

puted tomography (CT) and magnetic resonance imaging
(MRI), are the standard imaging modalities for assessment
of mediastinal lymph nodes. However, MRI spatial reso-
lution is relatively poor due to the presence of the air in the
lungs, and the calcification of lymph nodes is often ignored
by MRI [6]. CT could detect lesions, but it is also difficult to
obtain the differential diagnosis of benign and malignant
lymph nodes [6].
Positron emission tomography/computed tomography

(PET/CT), integrating morphological imaging with func-
tional imaging, is a noninvasive imaging method based on
molecular functional imaging, which improves the di-
agnostic sensitivity and accuracy [7–9]. To some degree,
PET/CTcomplements the deficiencies of traditional imaging
and plays an important role in the workup of mediastinal
lymphadenopathy. According to Nguyen’s retrospective
study, the sensitivity and specificity of PET/CT in the di-
agnosis of the benign and malignant mediastinal lymph
nodes were 87% and 89%, respectively [10]. Also, the sen-
sitivity, specificity, and the accuracy of PET/CT (87%, 91%,
and 82%) in detecting mediastinal lymph nodes metastases
were higher than CT (68%, 61%, and 63%) based on a recent
report [11].
In the PET imaging analysis, standard uptake value

(SUV), as a semiquantitative data, points off the degree of
metabolic activity (aerobic glycolysis) in selected tissues [10].
.e maximum standardized uptake value (SUVmax) is the
maximum number of counts within the pixels in a region of
interest (ROI). SUVmean is the mean number of counts in
an ROI. SUVmax is preferred over SUVmean as there is
a variability of about 35% between observers when SUV-
mean is used, and this reduces to 3% when SUVmax is used
[12]. .e SUVmax cutoff value of 2.5 is used commonly to
differentiate between benign and malignant lesions [13].
Kumar et al.’s study of 35 cases of mediastinal lymphade-
nopathy showed that appropriately increasing the cutoff
values can improve the specificity while maintaining an
acceptable sensitivity [6]. When 2.5 or 6.2 was used as the
cutoff value, the sensitivity, specificity, positive predictive

value (PPV), negative predictive value (NPV), and accuracy
were 93%, 40%, 54%, 89%, and 63% and 87%, 70%, 68%,
87%, and 77%, respectively [6]. .ere are a significant
number of false positives (due to inflammatory diseases) and
false negatives (due to low-grade malignancies) [14].
Research on unexplained enlarged mediastinal lymph

nodes is relatively rare..is is mainly due to the complicated
mediastinal anatomy, fewer pathology results, and number
of cases, which makes the research impossible. Furthermore,
since there are different views on the clinical value of
PET/CT in evaluating enlarged mediastinal lymph nodes, it
is difficult to draw consistent conclusions. In particular, the
significance of SUVmax in diagnosing mediastinal lymph
nodes has not yet been reported in detail. Hence, we planned
to explore the clinical value of PET/CT images in enlarged
mediastinal lymph nodes of unknown etiology, especially
the diagnostic value of some quantitative and semi-
quantitative measures in the differentiation of malignant
from benign lesions, such as SUVmax and lymph node size.

2. Subjects and Methods

2.1. Patient Population. .is study was approved by the
Institutional Review Board of Union Hospital, Tongji
Medical College, Huazhong University of Science and
Technology. Patients with enlargedmediastinal lymph nodes
of unknown etiology and 18F-FDG PET/CT scans were
included in this retrospective study. .e following inclusion
criteria were used to select patients: (1) the enlarged me-
diastinal lymph nodes were defined as the long axis >1 cm or
generalized pulmonary hilar enlargement on CT images; (2)
the enlarged mediastinal lymph nodes had higher FDG
uptake than that of the adjacent blood pool; (3) the patients
had not undergone treatment; (4) clinical data were com-
plete, and formal follow-up was recorded; (5) histopatho-
logic diagnosis was recorded as the final golden standard.
Patients with diabetes were excluded.

2.2. ImageAcquisition. All patients fasted for at least 6 hours
before PET/CT examination. .e images were obtained on
a dedicated PET/CT scanner (Discovery VCT®, GE MedicalSystems, Milwaukee WI, USA) 45–60 minutes after in-
travenous injection of 3.7–5.55MBq/kg of 18F-FDG. A low-
dose CT scan was obtained for attenuation correction, using
the following parameters: tube voltage 120 kV, 80mAs, and
3.75mm slice collimation. PET images were acquired from
the level of the head to the upper part of the legs (usually 6–8
bed positions) at 3 minutes per bed position. PET data were
reconstructed with the ordered-subset expectation maxi-
mization algorithm. Both CT and PET data were sent to
a workstation (Xeleris®, GE Medical Systems) for
evaluation.

2.3. Image Analysis. Two experienced nuclear medicine
physicians, who were familiar with the patient’s clinical
history, laboratory examinations, and traditional images
(CTorMRI), independently reviewed all the PET/CT images
and gave diagnosis separately. If the diagnosis disagreement
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happened, another two physicians participated in the dis-
cussion and finally reached an agreement about the final
diagnosis from PET/CT images. An ROI was carefully drawn
on the lymph nodes, and then the SUVmax was calculated
according to the following formula:

SUV �
Tissue activity (MBq/mL tissue)

Injected dose (MBq)/body weight (g)
. (1)

According to the new lung cancer lymph node distri-
bution made by the International Association for the Study
of Lung Cancer (IASLC), we located each lymph node and
measured the long axis and short axis of the largest lymph
node. If some lymph nodes were fused together, we mea-
sured it as one node [15].

2.4. Statistical Analysis. .e data were collected and ana-
lyzed using commercial software (SPSS 19.0®, SPSS Inc.,Chicago Il, USA). .e SUVmax, the long axis, and the short
axis of benign and malignant lymph nodes were compared
using a two-sample t-test. A receiver operating character-
istics (ROC) curve was drawn to find the best differential
diagnostic point. .e chi-squared test was used for multiple
sample rates, and partitions of the χ2 method were used for
multiple comparisons. .e SUVmax, the long axis, and the
short axis of lymph nodes among common mediastinal
lymphadenopathy diseases were compared using the anal-
ysis of variance. .ese diseases included lymphoma, met-
astatic lymph nodes, sarcoidosis, tuberculosis, and
lymphadenitis. Multiple comparisons between multiple
samples were made using LSD (least significant difference),
t-test (homogeneity of variance), and the Tamhane test
(heterogeneity of variance). P values <0.05 were considered
statistically significant. P values <0.0125 were considered
statistically significant when using partitions of the χ2

method.

3. Results

.ere were 94 cases finally included in this study. Forty-two
cases were found to have benign, and 52 had malignant
etiologies on histopathology. Among the 42 benign pa-
thologies, 16 were sarcoidosis, 17 were tuberculosis, eight
were lymphadenitis, and one was Castleman disease. Among
the 52 malignant pathologies, 25 were lymphoma, 26 were
metastatic lymph nodes, and one was acute leukemic in-
filtration. .e relevant features of all cases are summarized
in Table 1.

3.1. Diagnostic Value of PET/CT, SUVmax, Long Axis, and
Short Axis of Lymph Nodes in Benign and Malignant Lesions.
.e sensitivity, specificity, PPV, NPV, and the accuracy of
FDG PET/CT in diagnosis of the benign and malignant
mediastinal lymph nodes were 94.2% (49/52), 73.8% (31/42),
81.7% (49/60), 91.2% (31/34), and 85.1% (80/94), re-
spectively. Eleven false-positive PET/CT cases and three
false-negative cases were found (Table 2). Lesions of tu-
berculosis were easily misdiagnosed as malignant lesions
among these false-positive cases. In this study, eight of 17

patients with tuberculosis were misdiagnosed as malignant
lesions, for a misdiagnosis rate of 47%. A typical case is
shown in Figure 1 (case no. 69 in Table 2).
.e SUVmax, long axis, and short axis of lymph nodes in

the two groups are listed in Table 3. No statistical difference
was seen in SUVmax between the malignant (12.59 ± 5.50,
n � 52) and benign cases (13.10 ± 5.21, n � 42)..e long axis
and the short axis of lymph nodes in the benign and ma-
lignant groups were 2.86 ± 1.02 cm, 1.77 ± 0.60 cm and 6.04
± 3.83 cm, 3.95 ± 2.08 cm, respectively (P< 0.05). .ese
results indicated that SUVmax is not useful in determining
whether the lymph nodes are benign or malignant; however,
the size of the nodes measured on CT may provide more
accurate information.
An ROC curve was drawn to find the best diagnostic

differential point of the long axis and the short axis of
lymph nodes in the distinction between benign and ma-
lignant diseases. .e optimal threshold of the long axis of
lymph nodes was calculated at 4.05 cm with 59.6% sen-
sitivity, 90.5% specificity, 73.4% accuracy, and an area
under the curve of 0.811 (95% confidence interval (CI)
0.726–0.896) (Figure 2(a)). .e optimal threshold of the
short axis of the lymph nodes was calculated at 2.55 cm
with sensitivity 73.1%, specificity 92.9%, accuracy 81.9%,
and an area under the curve 0.891 (95% CI 0.825–0.957)
(Figure 2(b)).
.e sensitivities of PET/CT, the long axis, or the short

axis used separately to detect the benign and malignant
mediastinal lymph nodes were statistically different in the
chi-squared test, as well as the specificity (P< 0.05) (Ta-
ble 4). When the sensitivities of the above three methods
were compared separately by partitions of the χ2 method,
the results were statistically significant for PET/CT and the
long axis and PET/CTand the short axis (both P< 0.00125).
.ese results indicated that the sensitivity of PET/CT was

Table 1: Patient characteristic of 94 patients.

Variable No.
Age
Range 7–85 y
Median 50 y

Sex
Male 62
Female 32

Follow-up time (d)
Range 43–1100
Median 462

Pathologic diagnosis No.
patients

Age (y)
(range/median)

Male/
female

Benign pathology 42 18–85/52 21/21
Sarcoidosis 16 28–57/50 6/10
Tuberculosis 17 19–75/50 10/7
Lymphadenitis 8 18–85/65 4/4
CD 1 53 1/0

Malignant pathology 52 7–78/47 41/11
Lymphoma 25 7–78/34 21/4
Metastatic lymph nodes 26 23–71/58 20/6
AL 1 64 0/1

CD: Castleman disease; AL: acute leukemic.
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significantly higher than that of the long axis or the short
axis used separately to detect the benign and malignant
mediastinal lymph nodes. Although the specificity of
PET/CT (73.8%) seems lower than that of the long axis
(90.5%) or short axis (92.9%), the similar pairwise com-
parison of specificities showed no statistical significance
(P> 0.0125). Taken together, the diagnostic efficacy of
PET/CT was higher than that of the long axis or the short
axis. Comparing the diagnostic efficiency of long and short
axis, the short axis measurement was superior to the long
axis measurement.

3.2. Diagnostic Value of PET/CT in Different Common Dis-
eases of Mediastinal Lymphadenopathy. SUVmax, the long
axis, and the short axis of five common causes of mediastinal
lymphadenopathy are listed in Table 5. .e three measures
of five diseases were statistically different by the analysis of
variance.
Using the LSD-t-test, the pairwise comparison of

SUVmax of five groups showed there are statistical differ-
ences. SUVmax of sarcoidosis is statistically higher than that
of tuberculosis and lymphadenitis; however, it had no sig-
nificant difference with that of lymphoma (Figure 3(a)).
Using the Tamhane test, the pairwise comparison of the

long axis of five groups showed significant differences be-
tween lymphoma and all other diseases including metastatic
lymph nodes, which indicated that the size of lymphomatous
nodes was larger than that of the other lesions. .e size of
lymphadenitis nodes was smaller compared with the other
diseases except tuberculosis (Figure 3(b)).
Using the Tamhane test, the pairwise comparison result

of the short axis of five groups is shown in Figure 3(c).
Obviously, the size of lymphoma and metastatic lymph
nodes was significantly larger than that of benign lesions.

Table 2: False positive and negative cases diagnosed by 18F-FDG PET/CT.

Case no. Sex Age SUVmax Long axis (cm) Short axis (cm) PET/CT diagnosis Pathological diagnosis
False-negative cases
31 F 44 9.1 2.9 2.3 TB Adenocarcinoma (high grade)
36 M 53 7.7 1.9 1.5 Lymphadenitis Adenocarcinoma
93 F 64 10.6 3.1 1.9 Lymphadenitis Leukemia infiltration
False-positive cases
69 F 42 24.5 2.7 2.5 Malignant disease TB
70 M 71 3.9 2.3 1.4 Malignant disease TB
71 M 19 14.8 2.6 1.6 Lymphoma TB
73 F 52 9.9 1.5 1.3 Malignant disease TB
81 M 61 6.9 4.0 2.3 Malignant disease TB
82 M 50 9.2 5.0 1.3 Malignant disease TB
83 F 32 15.5 2.6 1.6 Lymphoma TB
84 M 25 12.9 3.8 3.3 Malignant disease TB
86 F 66 16.7 2.9 1.8 Malignant disease Lymphadenitis
92 M 53 16.7 4.4 3.0 Malignant disease CD
94 F 57 11.6 1.9 1.3 Malignant disease Lymphadenitis
F: female; M: male; TB: tuberculosis; CD: Castleman disease.

(a) (b) (c)

Figure 1: A 42-year-old female patient developed dry cough without fever. (a) Chest CTaxial imaging showed enlarged lymph nodes in the
mediastinum and right hilar areas. (b) PET/CT scan showed extensive hypermetabolic activity in the mediastinal and hilar lymph nodes
(SUVmax 24.5). PET/CT indicated malignant lesions (lymphoma). .e final pathological diagnosis was tuberculosis (c).

Table 3: Comparison of the SUVmax and size of the lymph nodes
in the benign and malignant lesions.

Benign
(n � 42)

Malignant
(n � 52) t P

SUVmax 13.10 ± 5.21 12.59 ± 5.50 0.458 0.648
Long axis
(cm) 2.86 ± 1.02 6.04 ± 3.83 −5.238 <0.001

Short axis
(cm) 1.77 ± 0.60 3.95 ± 2.08 −6.573 <0.001
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.ese results indicate that the short axis of lymph nodes is
important in the distinction between benign and malignant
lesions.

4. Discussion

Enlarged mediastinal lymph nodes incidentally found on
chest X-ray or CTneed evaluation to determine their benign
or malignant etiology. Because of the complicated anatomy
of the mediastinum and the possible risk of tissue biopsy,
noninvasive methods play an important role in the diagnosis
of the benign and malignant mediastinal lymph nodes. In
this study, a total of 94 patients with pathological diagnosis
were included with 42 benign and 52malignant etiologies on
histopathology. .e sensitivity, specificity, PPV, NPV, and
accuracy of PET/CT in the diagnosis of the benign and
malignant mediastinal lymph nodes were 94.2% (49/52),
73.8% (31/42), 81.7% (49/60), 91.2% (31/34), and 85.1%
(80/94), respectively. .is indicated PET/CTseemed to have
some diagnostic value in mediastinal lymphadenopathy.
However, SUVmax had no significant relationship with the
benignity or malignancy of lesions in this set of cases. .e
long axis and the short axis of lymph nodes had a certain
diagnostic value in benign and malignant lesions, with the
risk of malignancy increasing with size.
PET/CT has been widely used for tumor diagnosis,

differential diagnosis, staging, follow-up, therapy planning,
and prognosis [16, 17]. In our cases, the accuracy of PET/CT
in the diagnosis of the benign and malignant mediastinal
lymph nodes was 85.1% combined with whole body PET/CT

imaging and clinical information. Our results are consistent
with prior research [6, 10].
.ere are a significant number of false-positive and

false-negative PET/CT findings in the evaluation of pri-
mary tumors [14]. .e major causes of false-positive lymph
nodes are lymph node involvement by underlying in-
flammatory processes such as reaction to the presence of
lung tumor, obstructive pneumonia, anthracosis, or
granulomatous inflammation [18–21]. .e major cause of
false positivity may vary from region to region. In a study
from Alabama, histoplasmosis infection was the most
common cause of false positives [19]. Silicosis has been
found to be a cause of false positives in a study from
Germany [22]. In our study, patients with tuberculosis were
easily misdiagnosed as malignant lesions among these
false-positive cases, which accounted for 72.7% (8/11) of all
misdiagnosed cases.
Mediastinal tuberculous lymphadenitis (MTL) is mostly

seen in primary tuberculosis in children; it is uncommon in
adults [23]. Absence of typical tuberculosis clinical features
during the nonsuppurative lymphadenitis phase and age
distribution characteristics makes the distinction between
MTL and lymphoma and metastatic lymph nodes difficult,
especially MTL during the active phase which has higher
FDG uptake [23]. Patients with lymphoma usually have
hyperpyrexia, hepatosplenomegaly, superficial chain
lymphadenopathy, and obvious anemia. Homogeneous
enhancement is more commonly seen in lymphoma than
tuberculosis according to contrast-enhanced CT [24]. Me-
tastases usually have a primary malignant disease. .e
commonest nodal metastases were from lung cancer, fol-
lowed by gastroenteric tumor and prostatic cancer. For most
metastases, diagnosis is not difficult after the primary disease
has emerged [25]. Patients with sarcoidosis usually have
chest, skin, and eye involvement. .e CTscan of sarcoidosis
usually shows symmetrical enlargement of bilateral hilar and
peritracheal lymph nodes, which can be used to differentiate
it from tuberculosis [24]. .e enlarged lymph nodes mainly
locate in the upper and middle zone of the mediastinum and
more in the right side than the left side [24, 26]. In our study,
the enlarged and fused lymph nodes of eight misdiagnosed
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Figure 2: ROC curves of the long axis (a) and short axis (b) of lymph nodes in the differentiation between the benign andmalignant diseases.

Table 4: Comparison of PET/CT, long axis, and short axis di-
agnostic efficacy.

Methods Sensitivity (%) Specificity (%) Accuracy (%)
PET/CT 94.2 73.8 85.1
Long axis 59.6 90.5 73.4
Short axis 73.1 92.9 81.9
χ2 17.186 7.389 4.323
P <0.001 0.025 0.115
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cases had higher FDG uptake and a lack of typical tuber-
culosis clinical features with no caseous necrosis, which did
not support tuberculosis. Hence, these findings need to be
analyzed along with the clinical symptoms and laboratory
test results.
.e common causes of false negatives in the diagnosis of

benign and malignant lesions are as follows. First, some low-
grade tumors with lower FDG uptake may give rise to false
negative results. Some researchers confirmed that the ma-
lignant tumor pathological type and degree of malignancy
are closely related to FDG uptake [27]. .ere is a direct
correlation between FDG uptake and extent of tumor in-
vasion and growth rate. High-grade malignant tumors,
bronchioloalveolar carcinoma, clear cell carcinoma, mu-
cinous cell carcinoma, cystadenocarcinoma, and carcinoid
often have low SUVmaxmeasurements [28]. Second, smaller
lymph nodes may give rise to false-negative results as well.
.e limited resolution of FDG-PET and the partial volume
effect may prevent visualization of such small tumor deposits
despite their potential accumulation of FDG [21, 29]. Several
studies have shown a positive correlation between FDG
uptake and the size of a lesion [30]. .e threshold size of
missed lesions is considered to be <8mm [30]. A study from
Takamochi showed that it was difficult for PET to detect
metastatic lymph nodes measuring <5mm [31]. In our
study, three false-negative cases were misdiagnosed as be-
nign lesions because the lymph nodes were all calcified and

not fused, with pulmonary infection, and no evidence of
a primary lesion or findings suggestive of malignancy on
laboratory tests.
Our study found SUVmax was not of significant value in

differentiating between benign and malignant mediastinal
lymph nodes. .e mean SUVmax in the benign group (13.10
± 5.21) was greater than that in the malignant group (12.59 ±
5.50), which was different from the research of Kumar et al.
With SUVmax of 6.2 as the cutoff as reported, the sensitivity,
specificity, PPV, NPV, and accuracy were 87%, 70%, 68%,
87%, and 77%, respectively [6]. In our cases, the lymph
nodes of the benign lesions had high FDG uptake, such as
sarcoidosis (SUVmax 15.90 ± 5.07, n � 16) and tuberculosis
(SUVmax 11.29 ± 5.16, n � 17). .e further analysis of five
common causes of mediastinal lymphadenopathy revealed
that there was no significant difference between malignant
lesions and sarcoidosis or tuberculosis.
SUVmax measured on PET/CT is a semiquantitative

value that indicates the degree of aerobic glycolysis in a le-
sion [32]. In clinical diagnosis, the use of SUV in FDG-PET
to diagnose cancer is an issue of ongoing controversy [10].
Interpretation of FDG PET is usually based on visual
evaluation and not on SUVmeasurements because data have
shown that the use of SUV failed to be more accurate than
the visual evaluation in predicting the presence of malig-
nancy [33, 34]. It is often assumed that FDG uptake is
primarily within the malignant tumor cells and SUVmax is
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Figure 3: .e comparison of SUVmax (a), long axis (b), and short axis (c) in five common mediastinal lymphadenopathy diseases
(∗∗P< 0.01,∗P< 0.05).

Table 5: .e comparison of SUVmax, long axis, and short axis of lymph nodes in the common causes of mediastinal lymphadenopathy.

Diseases n SUVmax Long axis (cm) Short axis (cm)
Lymphoma 25 14.36 ± 6.35 8.51 ± 4.13 5.03 ± 2.40
Metastatic lymph nodes 26 10.97 ± 4.11 3.77 ± 1.29 3.00 ± 1.00
Sarcoidosis 16 15.90 ± 5.07 3.34 ± 0.91 1.98 ± 0.47
Tuberculosis 17 11.29 ± 5.16 2.60 ± 1.04 1.74 ± 0.63
Lymphadenitis 8 10.90 ± 3.16 2.25 ± 0.59 1.28 ± 0.32
F — 3.529 23.594 21.386
P — 0.010 <0.001 <0.001
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a well-known measure indicating the aggressiveness of the
tumor [35, 36]. But other cellular components such as
normal parenchymal cells, atypical cells, inflammatory cells,
fibroblasts, or hematopoietic progenitor cells may also take
up FDG [32]. .e SUVmax cutoff value of 2.5 was used
commonly to differentiate between benign and malignant
lesions based on an early literature report [13]. Kumar et al.’s
study of mediastinal lymphadenopathy showed that ap-
propriately increasing the cutoff values can improve the
specificity while maintaining an acceptable sensitivity [6].
When 5.3 or 6.2 was used as the cutoff value, the accuracy
would be improved (74% or 77%) [6].
In this study, the long axis and the short axis of lymph

nodes were helpful in distinguishing between benign and
malignant mediastinal lymph nodes, especially the short axis.
.e bigger the lymph nodes were, the higher the possibility of
malignancy was. .e result was consistent with some other
researchers’ view of the short axis as the most accurate in-
dicator in the diagnosis of malignant lesions [37, 38]. Among
five common causes of mediastinal lymphadenopathy, the
short axis of lymphoma and metastatic lymph nodes was
larger than that of other benign lesions.
.ere is no accurate cutoff for the short axis of lymph

nodes to differentiate benign from malignant lymph nodes.
Using ROC curve analysis in our study, the optimal
threshold of the short axis of lymph nodes was 2.55 cm with
sensitivity 73.1%, specificity 92.9%, and accuracy 81.9%. .e
mean of the short axis in malignant groups (3.95 ± 2.08 cm)
was greater than that in benign groups (1.77 ± 0.60 cm). .e
malignant lymph nodes are high-grade, fast-growing, and
fuse, which leads to the increased size of malignant lymph
nodes. But there is still a certain misdiagnosis rate for the
following reasons: First, the response to the same disease
varies from person to person, such as sluggish response in
elderly, immature immune system in children, a strong
response in young adults, different response between the
strong person and the infirm person [39]. Second, early
stages of the disease are easily misdiagnosed as benign le-
sions. Hence, the short axis of lymph nodes is still not very
accurate in distinguishing benign from malignant.
In addition, digital pathology has the potential to

transform the histopathological data more and more “real,”
quantifiable and comparable to that of other disciplines such
as nuclear medicine [40]. .e examination of bioptic
samples of patients subjected to PET/CT investigation can
provide information about quantification of PET/CT targets
or even the exact localization of the radiolabeled molecules
in the tissues [40]. Taking advantage of this, a structured
collaboration model between anatomic pathology and nu-
clear medicine can play a valuable role in the management of
patients with unexplained mediastinal lymphadenopathy.
Our study showed that there was a certain value of

PET/CT imaging combined with the size and metabolism of
lymph nodes in the comprehensive evaluation of mediastinal
lymphadenopathy. Although numerous studies have con-
firmed SUVmax has some value in the diagnosis of neo-
plastic diseases, SUVmax could not be the main index to
distinguish between benign andmalignant lesions, especially
in locations where tuberculosis and other granulomatous

disease are endemic. .e integrated analysis of the PET/CT
images and case history, clinical manifestation, laboratory
tests, and a variety of imaging techniques is necessary.
However, the size of the lymph nodes seems to have some
diagnostic value, especially the short axis of lymph nodes.
Our study has some limitations. Firstly, since it is

a retrospective study and has a limited number of cases,
a study incorporating a large number of patients is needed.
Secondly, because the enhanced CT was not performed, we
were unable to accurately calculate the number of lymph
nodes. .e analysis based on lymph nodes would be much
helpful. .irdly, partial volume effect is not considered in
this study, which is important to accurately correct the
PET/CT signal in the lymph nodes. Moreover, metabolic
tumor volume (MTV) and total lesion glycolysis (TLG)
obtained from PET/CT images show more and more di-
agnosis and prognosis information. In the next work, we
may continue to conduct the research about the role of MTV
and TLG in the differential diagnosis of enlarged mediastinal
lymph nodes.

5. Conclusions

SUVmax, a commonly used semiquantitative value for the
lesion aerobic glycolytic rate, was not of significant value in
patients with enlarged mediastinal lymph nodes in this
study. Some benign lesions, such as sarcoidosis and tu-
berculosis, had high FDG uptake. Utilizing both the PET
FDG uptake and CT characteristics including size and at-
tenuation in an overall integrated report along with high
quality clinical and laboratory data in a multidisciplinary
meeting-like environment enables one more likely to reach
the overall correct diagnosis for the patient.
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Nonmass-enhancing (NME) lesions constitute a diagnostic challenge in dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) of the breast. Computer-aided diagnosis (CAD) systems provide physicians with advanced tools for analysis, assessment,
and evaluation that have a significant impact on the diagnostic performance. Here, we propose a new approach to address the challenge
of NME lesion detection and segmentation, taking advantage of independent component analysis (ICA) to extract data-driven dynamic
lesion characterizations. A set of independent sources was obtained from the DCE-MRI dataset of breast cancer patients, and the
dynamic behavior of the different tissues was described by multiple dynamic curves, together with a set of eigenimages describing the
scores for each voxel. A new test image is projected onto the independent source space using the unmixing matrix, and each
voxel is classified by a support vector machine (SVM) that has already been trained with manually delineated data. A solution to
the high false-positive rate problem is proposed by controlling the SVM hyperplane location, outperforming previously
published approaches.

1. Introduction

Accurate methods for early diagnosis of breast cancer are
pivotal and contribute to an improved prognosis and survival
outcomes in breast cancer patients. 1ere is a consensus that
dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) is the most sensitive test for breast cancer de-
tection and the backbone of any MRI protocol, enabling
simultaneous assessment of tumor morphology and en-
hancement kinetics that evaluate neoangiogenesis as a tumor-
specific feature. DCE-MRI has an excellent sensitivity and

good specificity for lesions presenting as mass enhancement
[1]. However, nonmass-enhancing (NME) lesions exhibit
a heterogeneous appearance with high variations in kinetic
characteristics and morphological patterns on DCE-MRI [2].
Consequently, DCE-MRI has reported lower specificity and
sensitivity of 35% and 73% for NME lesions, much lower than
those for mass-enhancing lesions. A set of computer-aided
diagnosis (CAD) systems for breast cancer diagnosis on DCE-
MRI has been developed with satisfactory performance re-
sults. However, in breast tumors presenting as NME lesions,
the performance with low specificity is still suboptimal.
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For a CAD system to be used in breast DCE-MRI, two
features are important to evaluate (i) the ability of the CAD
to correctly differentiate between malignant and benign
lesions and (ii) the ability of the CAD system to correctly
locate malignant lesions within the 3D spatial volume. To
evaluate the first feature, the diagnostic accuracy, specificity,
and sensitivity are usually reported. To evaluate the second
feature, commonly, the Dice similarity coefficient (DCS) is
calculated between the CAD segmentation and some other
ground truth segmentation. In most cases, a manual seg-
mentation of the lesions is performed by experienced radi-
ologists as ground truth. However, it has to be noted that even
with expert’s interpretation, visual readings are prone to
subjective errors [3], and specificity of DCE-MRI is limited
particularly in small and nonmass-enhancing lesions, resulting
in unnecessary breast biopsies [4]. In addition, CAD systems
for breast cancer diagnosis have a reported high false-positive
rate and, consequently, low specificity. However, this does not
necessarily mean that CAD systems misclassify benign lesions
as malignant. 1erefore, it is not clear whether CAD systems
can be optimized to improve lesion segmentation in-
dependently from lesion classification, or if irregardless, they
will inherently suffer from the same limitations such as the low
specificity reported in visual readings of DCE-MRI.

In this work, we examined the relationship between the
false-positive rate of CAD systems for breast cancer di-
agnosis and lesion segmentation on DCE-MRI. To achieve
our aim, we obtained rich characterization of data through
advanced processing techniques, combined with machine-
learning paradigms intended for big data analysis, and used
the resulting information to build a CAD system.We did not
introduce any a priori knowledge about the disease in the
workflow in order that all information may be completely
data driven, which thereby also enabled us to identify new
features not currently in the Breast Imaging-Reporting and
Data System (BI-RADS) classification criteria that could
potentially improve segmentation of visual readings. Both
morphological and kinetic descriptors are considered in BI-
RADS lexicons. However, in NME lesions, morphological
descriptors are hard to define, and therefore, kinetic be-
havior can be an important source of information. 1ere-
fore, using only dynamic information of the tissue, we
performed a supervised method to detect and segment
nonmass-enhanced lesions on the breast.

Lesion segmentation has been successfully achieved
using unsupervised clustering methods [5], fuzzy c-means
(FCM) [6], or improvements over FCM [7]. In un-
supervised clustering, sophisticated preprocessing must be
implemented to control the false-positive rate, with fine
tuning of parameters and/or heuristic steps. On the con-
trary, it has been demonstrated that processing of dynamic
signals provides relevant information for classification of
tissues, such as principal component analysis- (PCA-)
based decompositions closely related to the 3TP method
[8].

1us, we undertook a combination of supervised seg-
mentation and signal processing to successfully segment
NME lesions with control of the false-positive rate. In-
dependent component analysis (ICA) was used to extract

a set of independent curves that described the possible
dynamic behavior of different breast tissues. ICA has been
shown to provide richer descriptions of underlying patterns
than PCA [9, 10], and therefore, it was used for supervised
classification in our work. We also incorporated machine
learning, whereby we trained a classifier using the in-
formation encoded in a whole dataset of subjects, including
the dynamic behavior of benign and malignant tissues.
Considering features at the voxel level, the system “learned”
to characterize malignant tissues with a support vector
machine (SVM). A procedure was implemented to fix the
SVM hyperplane location, reducing and controlling the
false-positive rate. Projecting new unseen data using the
unmixing matrix allowed us to obtain the features for es-
timating the generalization capabilities in a cross-validation
scheme and compare them with visual readings of the
images reported in the literature and other CAD system
approaches.

1e methods proposed within this work demonstrate
that NME lesions can be detected with kinetic information
by using multiple enhancement curves, providing a prom-
ising approach for improving breast cancer diagnosis. Ac-
curate diagnostic methods as the one we hereby present may
have an impact not only on accurate diagnosis but also in
reducing unnecessary breast biopsies.

1.1. RelatedWork. 1e use of CAD systems to improve visual
readings of DCE-MRI in breast cancer ranges frompurely visual
methods to automatic classification.1e present work combines
visual comparison aspects with automatic classification tech-
niques, thus adding a value to purely visual comparison tech-
niques based on PCA or self-organizing map (SOM), such as in
[8, 11], and complementing pure classification approaches, such
as in [12, 13]. Specifically, the PCA approach in [8] extends the
three-point technique (3PT) by adding an eigenvector de-
composition of the time signals. However, that decomposition
does not provide an independent set of sources, but only a set of
uncorrelated ones. 1e time-intensity curve estimation in [14]
also seeks for hidden kinetics, but applies them to mass le-
sions. Concerning the automatic classification CADs, most
approaches are concentrated on the detection and classifi-
cation of mass-enhancing lesions, by combining kinetic and
morphological features [12, 13, 15, 16], like shape, margins,
and internal enhancement distribution [17], textural kinetics
[18], or more recently using deep neural networks [19, 20],
among others. 1e detection and segmentation of lesions are
usually performed as a manual or semimanual task, in which
regions of interest (ROIs) are manually defined or obtained
from seeds with manual inputs.

For automatic lesion segmentation, keeping an acceptable
false-positive rate is a common issue in DCE-MRI CAD
systems of the breast [21]. In many of these cases, un-
supervised methods for lesion segmentation, such as FCM
algorithms in [6, 22], are used, and then the features extracted
from the lesions are used for classification. Complex work-
flows that include vessel detection, whole-breast segmenta-
tion, and several preprocessing steps have been proposed to
control false-positive detection [5, 7, 23, 24].
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2. Methods

Each voxel of the DCE-MRI image has a time signal rep-
resenting the enhancement kinetics of the different con-
tributing breast tissues. A set of DCE-MRI time signals can
be analyzed in terms of the blind source separation problem,
which proposes that the different dynamic behaviors can be
expressed as a linear combination of a reduced set of sources,
making very little assumptions on the nature of that com-
bination. 1ose sources and their scores can be used as
features for classification, as depicted in Figure 1.

2.1. ICA-Based Enhancement Curve Analysis. ICA offers
a solution to the blind source separation problem estimating
a set of sources that maximize the statistical independence
between them, measured in terms of a cost function. In the
literature, several functions have been used to measure
statistical independence between signals [25]. Here, we used
the FastICA algorithm [26] with mutual information as
a measure function. Contrary to other eigenimage de-
compositions based on spatial ICA, like in face recognition
[27] and brain imaging [9, 28], the independent sources are
obtained here in the temporal domain; in other words, we
work on a voxel level.

1us, each voxel defines a temporal curve x(tj) with
t1, . . . , tN temporal points. A set of voxels xi , i � 1, . . . , M

forms an image and defines the N × M matrix X of observed
signals.1e ICA task is to find themixingmatrixA and the set
of sources S:

X � AS. (1)

1e mixing matrix A is an N × N matrix that linearly
combines the independent “images.” Contrary to other
related methods, such as PCA, ICA does not provide
a natural way to sort the N independent components.
However, it is a relevant question whether or not a reduced
set p<N of components contains noisy and discardable
information. 1e mean squared error (MSE) between the
enhancement time signals and the reconstructed signals
using the k source sk is calculated as follows:

MSE(k) �
1

Nt · Nr

i,j

xi tj − ajk · ski 
2
, (2)

and used as a parameter to measure the noise content of each
sk source, with k � 1, . . . , N.

When working at the voxel level, Equation (1) can also
be understood as a linear decomposition of each vector
x(tj) into a set of temporal sources whose coefficients
belong to the independent sources. 1erefore, each voxel
location xi  has N coefficients sji to j � 1, . . . , N, whose
values are maximally independent and measure the impor-
tance of each temporal source to recover that voxel dynamics,
by linearly combining them (Figure 1). In the rest of the
paper, we will refer to these coefficients as the scores.

It is important to stress that working on a voxel level will
allow data from different patients to be included in the
matrix set X. 1erefore, the obtained set of sources S does
not have to be restricted to represent the particular dynamic

enhancement present in a single subject but can be used to
model all the possible curves that independently characterize
each BI-RADS category.

For new unseen data x at the voxel level, the scores are
extracted from x by projecting it onto the subspace E

spanned by the signals from the matrix A. Specifically,
let a1, . . . , ap  be the basis set of temporal curves spanning
the subspace E and then A denote the N-by-p matrix of
which columns are a1, . . . , ap. Let p≤N, as some of the
signals may have been removed due to their noisy nature.
Since this basis need not be orthogonal, a well-known result
of linear algebra stated that the projection is given by

PA � A ATA 
−1
AT

, (3)

so that the application of that operator on a voxel signal x(t):

s � PAx, (4)

projects it to the subspace E, obtaining its p scores s on that
subspace.

1e independent component scores sk of the dataset are
used as feature vector inputs of a SVM to learn the different
enhancement patterns associated with malignant and benign
tissues.

2.2. False-Positive Rate Control by SVM Hyperplane
Translation. SVM is a machine-learning algorithm that
separates a given set of binary labeled training data with
a hyperplane that is maximally distant from the two classes
(known as the maximal margin hyperplane). 1e objective is
to build a function f : IRp⟶ 1, 0{ } using training data,
consisting of p dimensional patterns xi and class labels yi:

x1, y1( , x2, y2( , . . . , xM, yM(  ∈ IRp
× 1, 0{ }( , (5)

so that f will correctly classify new examples (x, y). 1e
problem of finding the maximal margin hyperplane is
usually solved by quadratic programming algorithms that
try to minimize a margin cost function J:

J w, w0, ξ(  �
1
2
‖w‖

2
+ C 

l

i�1
ξi, (6)

subject to the inequality constraints:

yi wT
xi + w0 ≥ 1− ξi, ξi ≥ 0 i � 1, 2, . . . , l, (7)

where the slack variables ξi incorporate to the optimization
of those feature vectors that are not separable (details can be
found in [29]). 1e solution to that problem can be
expressed by a linear combination of a subset of vectors,
called support vectors:

d(x) � 

NS

i�1
αiyiK si, x(  + w0, (8)

where K(., .) is the kernel function, αi is a weight constant
derived from the SVM process, and si are the NS support
vectors [29]. Taking the sign of the function leads to the
binary classification solution.
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Here, we propose an SVM hyperplane translation in
terms of the slack variables ξi to control the number of false
positives. We add a new term g(si, ξi) to the hyperplane-
defining function d(x) so that the classification solution is
now defined by

f(x) � sign d(x) + g si, ξi(  , (9)

where the function g takes the two-class average distance to the
hyperplane of those support vectors with ξi > 1, measured by
the kernel metric K. Common kernels that are used by SVM
practitioners for the nonlinear feature mapping are as follows:

(i) Polynomial function:

K(x, y) � [c(x · y) + c]
d
. (10)

(ii) Radial basis function (RBF):

K(x, y) � exp −c||x − y||
2

 , (11)

as well as the linear kernel, in which K(., .) is simplified
as a scalar product, and therefore, g in Equation (9)
would average the Euclidean distance in that particular
case.

2.3. Dataset. 1e dataset used for analysis consisted of
sixteen patients that presented with NME breast tumors at
DCE-MRI. 1is patient cohort is a subset from a larger
cohort undergoing multiparametric MRI using inclusion
criteria described in detail in [30]. All patients underwent
MRI of the breast using a 3T MRI scanner (Tim Trio;
Siemens, Erlangen, Germany) with a dedicated, bilateral, 4-
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channel breast coil in vivo (Orlando, FL), and the imaging
protocol comprised both high-spatial and -temporal reso-
lution. 1ree high-spatial resolution images were taken,
precontrast, peak, and postcontrast as a coronal T1-weighted
(3D) FLASH sequence, with water excitation and fat sup-
pression, with the following sequence parameters: TR/TE
877/3.82 milliseconds, FOVr 320mm, SI 1mm isotropic,
96 slices, flip angle 9°, matrix 320/134, 1 average, and ac-
quisition time 2 minutes. A high-temporal resolution,
contrast-enhanced, coronal T1-weighted (VIBE) sequence
was obtained with the following sequence parameters:
TR/TE 3.61/1.4 milliseconds, FOVr 320mm, SI 1.7mm
isotropic, 72 slices, flip angle 6°, matrix 192/192, 1 average,
and 13.2 seconds of acquisition time per volume leading
to 3.45 minutes for 17 measurements. A second set of
high-spatial resolution T1-weighted imaging (repeated 3D-
FLASH) was acquired after these 17 low-spatial VIBE res-
olution images, as the peak enhancement of the lesion could
be expected at the end of this time span ([30] and references
therein). Finally, high-temporal resolution (repeated VIBE
with 25 measurements, leading to an acquisition time of
5 minutes 35 seconds, and repeated 3D-FLASH for dy-
namic assessment of lesion wash-out) was performed, and
then high-spatial resolution T1-weighted images were
recorded. 1e contrast agent used was Gd-DOTA (generic
name: gadoterate meglumine; Dotarem, Guerbet, France),
injected intravenously as a bolus (0.1mmol per kilogram
body weight) and administered with a power injector
(Spectris Solaris EP; Medrad, Pittsburgh, PA) at 4mL/s
followed by a 20mL saline flush. 1e contrast agent was
injected 75 seconds after starting the first coronal T1-
weighted VIBE.

NME breast tumors were visually assessed by three
expert radiologists following the American College of
Radiology BI-RADS Atlas [31] and delineated using the
OsiriX software on the 3T high-spatial resolution volumes.
All NME lesions were classified as BI-RADS 4: suspicious,
or BI-RADS 5: highly suspicious of malignancy. Histo-
pathology was used as the standard of reference.1ere were

eleven invasive ductal carcinomas (IDCs), three ductal
carcinomas in situ (DCISs), and two invasive lobular
carcinomas (ILCs).

2.4. Preprocessing. All dynamic sequences were registered to
the precontrast volume. 1is preprocessing step was re-
quired to remove any spatial misalignments on the sequence
caused by involuntary movements of the patient. 1e al-
gorithm employed to perform this task was the SPM12 [32]
registration algorithm, which performs affine and nonaffine
transformations on the data by minimizing a similarity
measure cost function, selected to be the mutual information
metric. Afterwards, a 3D Gaussian filter of size 2FWHMwas
used to smoothen the images.

In spite of the existence of automatic and accurate
methods for performing whole-breast segmentation
[33, 34, 35, 36], we performed this task straightforwardly
finding the middle chest point as in [12], and discarding the
content of the image after this point, reducing the original
number of 192 × 192 × 72 ≈ 2.6 · 106 voxels contained in
each image to ≈1.6 · 105, and guaranteeing the exclusion of
heart and other organs’ noisy signals. Concretely, the middle
chest point was obtained by performing the following steps
(Figure 2):

(1) Compute the cross-correlation of the convolution of
the image with itself in the sagittal direction. 1e
middle sagittal plane will lie in the symmetry plane of
the body, and due to its symmetry, it will reach the
maximum convoluted cross-correlation.

(2) Compute the intensity gradient of the middle chest
slice in the coronal direction and find its maximum
my. Remove the internal part of the image that lies in
the coronal direction after the middle chest plane
y � my.

1e described procedure ensured the removal of voxels
that lie inside the thoracic cavity and the chest wall as well as
background voxels.

(a) (b)

Figure 2: Exclusion of internal organs by detection of the middle chest plane. (a) Middle sagittal plane. (b) Middle chest plane.

Contrast Media & Molecular Imaging 5



1e manual delineations of the lesions were performed
by three expert radiologists on 3T high-spatial resolution
images using the OsiriX software, recorded as a set of axial
point coordinates in mm. 1e Bresenham algorithm [37]
was used to transform the coordinate points into 3D binary
masks, and a decimation was employed to downsample the
masks to the size of the low-spatial high-temporal resolution
images. 1us, the downsampled masks were used to define
the class labels of each voxel: 1 if the voxel was in the mask,
and 0 otherwise.

3. Experiments

1e dataset was divided into three subsets: training data,
validation data, and testing. Training and validation data
comprised half of the dataset, while the test set consisted of
the other half. 1e data were considered at the voxel level.

1erefore, after discarding nonrelevant parts of the image,
a random selection of Na ≈ 5 · 103 benign voxel samples
from the pool of all nonlesion voxels of the images was
performed to balance the training set, resulting in
a 2∗Na × p training and validating data matrix.

1e voxel data were used as input to the FastICA al-
gorithm, obtaining a set of scores for each voxel that served
as feature vectors for training and validating an SVM in
a cross-validation scheme. 1e validation step is performed
in two stages:

(i) Firstly, different parameters were optimized within
a 10-fold cross-validation scheme: (i) the optimal
dimensionality of the data h and (ii) the optimal
kernel (linear, polynomial, or RFB). 1e optimal
value for h was obtained by sorting the independent
components by their MSE defined in Equation (2),
and the feature space dimension was changed by
sequentially increasing the number of components
included on the scores. 1e optimal kernel was se-
lected by comparing the classification performance,
based on the classification error.

(ii) Secondly, once the number of components and the
kernel function were fixed, the decision boundary
location of the SVM was analyzed in an enlarged test
dataset of size ≈4 · 105, that contained all the dis-
carded voxels in the validation step.

4. Results

1e scores defined in Equation (1) are depicted in two
different spaces: the 3DDCE-MRI space coregistered with
the original data (Figure 3) and the E subspace spanned by
the first two temporal sources a1 and a2 (Figure 4), sorted
according to the MSE-defined criteria. 1e representation in
the 3DDCE-MRI space shows that similar score values are
grouped together around tissues that have a similar en-
hancement. On the bottom, voxels belonging to the lesions
present a high score value, revealing that the associated
independent component encodes the malignant dynamic
information. On the top, the distribution of score values
does not concentrate on specific regions but spreads over the
breast tissues revealing a relation with normal tissue en-
hancement dynamics. 1at information complements the
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representation on the E subspace, where a clear separation
between tumor tissues represented in blue and normal
tissues in red can be inferred, although some regions of
overlapping are present. Also, the independent components
s1 and s2 are shown in Figure 5, together with other extracted
sources. It is interesting to note that being automatically
data-driven extracted, these independent components take
the form of enhancement curves: curve IC1 is a normal
enhancement, while curve IC2 has a “typical” malignant
behavior, according to model-based descriptions [1]. 1e
remaining set of independent components cannot be
assigned to any particular dynamic nor tends to form
clusters of similar enhancement when depicted in 3D,
therefore not possessing an obvious interpretation. How-
ever, the common classification into wash-out, plateau, and
permanent enhancement of dynamic curves is reduced by
ICA to only two clearly identifiable curves. 1erefore, the
ICA-based signal processing analysis reveals that dynamic
enhancement curves reaching a plateau do not behave in-
dependently in the ICA sense from wash-out curves, while
permanent enhancement curves do.

1e results of the cross-validation are shown in Figures 4
and 6 and also in the left part of Table 1. In Figure 4, the
2∗Na × p training data are shown after the SVM is trained,
and the obtained support vectors are marked with circles.
From Figure 6, the optimal number of components used to
reconstruct the signal is above 5, revealing that a simple
decomposition of signals into benign and malignant be-
haviors can be enriched with other significant components
reaching ROC values over 0.90.

Figure 7 shows the NME lesion delineated by the expert
radiologist (in red), together with a distance-to-hyperplane

map (distance d � 0 is represented by a black contour). 1e
value of each voxel in the map is defined in Equation (8). It
can be seen that hyperplane location (value d � 0) produces
big regions of false positives. 1ose regions are mostly
concentrated around the delimited lesion, but extended
regions can also be found in nonconnected regions where
benign dynamics are expected. 1e false-positive rate can be
controlled by modifying the defining value of the hyperplane
location, set to 0 by definition in SVM. Translating the
hyperplane towards the positive values produces a more
conservative definition of feature vectors belonging to the +1
class.1erefore, only score values high above the hyperplane
would be considered as malignant, while intermediate values
not clearly projecting malignant-related score values will not
be classified as lesion, decreasing the false-positive rate and
increasing specificity. However, there must be a compromise
between specificity and sensitivity, since increasing the
defining value of the decision function also has an impact on
the false-negative rate.1is trade-off requires to be very
finely tuned, as the number of benign samples is several
orders of magnitude bigger than the number of malignant
samples, producing an imbalanced classification problem. In
Figure 8, the influence of the imbalanced classes can be
perceived if compared with the scatter plot of the scores
considering only the reduced training data of Figure 4.
Although other solutions exist to the problem of imbalanced
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dataset in SVM classification, we propose here a very con-
servative approach, in which the hyperplane-defining value is
translated into the +1 class region, guaranteeing that only very
distant scores from the hyperplane are considered as ma-
lignant.1e hyperplane-defining value g is given in Equation
(9). Other values could be used to make this transformation
but are prone to be affected by outlier support vectors that
uncontrollably increase the false-negative rate. By averaging
the support vector’s distance to the hyperplane with the
condition ξi > 1, we are smoothing the effect of possible
outlier support vectors, while translating the hyperplane to
actual relevant values. Alternatively, we calculate the decision-
defining value experimentally, in the second validation on the
training data, and test both on the test set: the theoretically
derived value and the experimentally adjusted one. In the
special case in which all ξi are less than 1, we average the
support vector’s distance to the hyperplane with the condition
1> ξi > 0.

To evaluate the lesion detection performance, the DSC is
calculated as follows:

DSC � 2∗
A∩M

A∪M
, (12)

and the amount of overlap between segmentation algorithms
(A) and manually generated (M) segmentations is measured
with respect to the size of the segmented region.

Table 1 shows the validation values obtained by default
SVM at d � 0, at empirical maximum, and at the proposed
value, for 2-component PCA, ICA, and raw data using 2
kernels. Raw data are displayed for reference and correspond
to the use of dynamic curves as feature vectors for SVM,
without multicurve extraction. 1e PCA method [8] shows
higher DSC at d � 0 than the proposed ICA approach.
Hyperplane translation has a lower effect in the PCA case
since all support vectors lie in the condition ξi < 1. In the ICA
with a linear kernel case, the false positives are reduced
significantly reaching the maximum DSC values, in agree-
ment with the interval of maximum empirical values.

Figure 9 reports a free-response receiver-operating
characteristic (FROC) curve analysis [38] at the voxel

Table 1: Performance parameters on training and validation data.

Training Validation DSC
Hinge loss Accuracy Specificity Sensitivity d � 0 Max. DSC(μd) [DSC(μd ± σd)]

PCA+ linear SVM 0.9764 0.7263 0.6581 0.7944 0.31 ± 0.01 0.3382 ± 0.0005 0.3310 [0.3039− 0.2169]
PCA+RBFSVM 0.9529 0.7263 0.6581 0.7944 0.31 ± 0.01 0.3382 ± 0.0005 0.3310 [0.3039− 0.2169]
ICA+ linear SVM 0.1254 0.9501 0.9410 0.9593 0.31 ± 0.01 0.53 ± 0.01 0.5295 [0.4752 0.484]
ICA+RBFSVM 0.1083 0.9515 0.9573 0.9457 0.29 ± 0.01 0.44 ± 0.04 0.1085 [0.3711− 0.0559]
Raw+ linear SVM 2.4429 0.8026 0.8446 0.7605 0.15 ± 0.07 0.30 ± 0.05 0.2325 [0.1373− 0.3058]
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level. Although in mass lesions FROC analysis is usually
reported at the lesion level, in NME lesions FROC analysis at
the lesion level can be misleading, as can be seen from
Figure 7: increasing the confidence threshold increases the
number of false-positive lesions due to lesion fragmentation,
although false positives at the voxel level decrease. Two
reference methods are shown for comparison: the signal
enhancement ratio (SER) method, based on the following
SER�(SI(t�1st postcontrast time point)–SI(t�precontrast
time point))/(SI(t�final postcontrast time point)–SI
(t�precontrast time point)), with a varying threshold; and
the derivative SER, a modified version of the method that
uses the Laplacian of the image to obtain the SER, as defined
in the work of Levman et al. [21]. 1e FROC curve for the
ICA-SVMmethod proposed in this paper is obtained on the
test set by adding a varying threshold k to the SVM output in
Equation (8) and computing the sign sign d(x) + k{ }.

5. Discussion

1e contributions of this work are twofold: first, visual
interpretations of the DCE-MRI image can be enriched by
using the proposed ICA-based processing of time signals,
which produces a data-driven decomposition of dynamic
enhancement signals into multicurve description signals,
that are statistically independent and disease specific. 1e
idea of producing multiple curves to characterize lesions has
also been explored by Liu et al. [14], but from the total
variation perspective, it is not data-driven but based on
assumptions on the data. Other visual methods based on
CAD techniques, such as PCA in Eyal et al. [8]or PCA-SOM-
LDD in Varini et al. [11], have been proposed in the lit-
erature to enrich the well-known 3TP method. 1us, visual
support is an important characteristic to evaluate in aiding
diagnosis of breast cancer by computer systems. It is also
important to stress that the ICA extraction must be done
only in the training phase of the algorithm. 1e CAD
system will then benefit from an online response, once the
CAD is conveniently trained. 1e presented approach
outperforms PCA-based methods as shown in Table 1 in
terms of automatic segmentation performance and pro-
vides a meaningful visual support for experienced and
unexperienced readers.

1e low incidence of NME lesions reduces the available
testing data, therefore limiting the validation of the pre-
sented method. Moreover, the heterogeneous nature of
NME lesions also limits the accuracy in lesion annotation
performed by experts when compared to CAD segmenta-
tions. 1erefore, the reported DSC values when comparing
ground truth and CAD results must be understood as
a lower bound estimation of the segmentation capabilities of
the presented CAD, since a semiautomatic annotation can
potentially boost the DSC values.

1e second contribution is the supervised nature of the
detection and segmentation method, which allows control
of the false-positive rate. Most CAD systems for lesion
classification start from a manual or semimanual ROI
delineation [8, 12, 16], that limits control of the false
positives. 1e baseline approach to lesion segmentation is
the FCM unsupervised method, which in Liang et al. [39]is
reported to have a 6% ± 9% of overlap with manually
defined ROIs, and is commonly used in many CAD systems
for breast cancer diagnosis in DCE-MRI. In Jayender et al.
[7], an enhancing preprocessing step is added to the usual
FCM algorithm using linear dynamic systemmodeling.1e
overlap of the algorithm output with the radiologists’
segmentation and CAD stream output, computed in terms
of DSC, was 0.77 and 0.72, respectively. In the unsupervised
approach of Cui et al. [23], a combination of Gaussian
mixture modeling and marker-controlled watershed
transform was used to segment the lesions. 1e overall
overlap ratio between the two radiologists’ manual seg-
mentations and the proposed algorithm was 64.3% ±
10.4%. 1e supervised method of Liang et al. [39]shows
overlap rates with the ground truth of 51% ± 26% and
48% ± 25%. 1is method required a robust intensity
normalization method to make intrapatient comparisons,
while the ICAmethod presented here characterizes the form of
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Figure 8: Scatter plot of the scores corresponding to the first two
independent components of the validation data.
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Figure 9: FROC curves for the proposed algorithm (SVM-ICA) in
comparison with the references (SER and SER derivative [21]).
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the curve, thus not requiring intensity normalization.Moreover,
we report higher or comparable DSC values than those in the
literature, even in the more challenging case of NME breast
lesions. We also report better control of false-positive rate than
the method proposed by Levman et al. [21], with sensitivity
greater than 75% at 105 false-positive voxels. Derivative SER
reaches sensitivity 40% at that level, outperforming SER as
already proved.

6. Conclusions

1is paper presents promising results for challenging NME
breast lesion detection in DCE-MRI. We propose an ap-
proach that develops a linear expansion of features for every
voxel in the image based on ICA, allowing for a multicurve
characterization of the enhancement behavior, in contrast
with usual single-curve voxel characterization. 1e data-
driven obtained features are used to train and test an SVM
with satisfactory performance. In addition, previously, the
imbalanced nature of the interest class features limited
automatic detection by supervised methods such as SVM. In
this work, we propose parameter optimization on the SVM
hyperplane location, such that the false-positive rate is
controlled, thus providing a solution to the low specificity
problem in CAD of breast cancer. With that optimization,
the DSC value is increased approximately a 50% from the
default d � 0 margin value, reaching a peak value of 0.5295.
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Fluorine-18 fluorodeoxyglucose (18F-FDG) positron-emission tomography/computed tomography (PET/CT), a hybrid imaging
technique that simultaneously provides functional and anatomical information, has been reported to be useful in lymphoma. *e
present study was to evaluate the functional parameters of 18F-FDG PET/CT in patients with testicular diffuse large B-cell
lymphoma (DLBCL). We retrospectively reviewed medical records of 5095 patients with lymphoma who treated at West China
Hospital between March 2003 and January 2017, and selected patients with 18F-FDG PET/CT findings and subsequently biopsy
confirmed the invasion of testis with DLBCL. Maximum standardized uptake values (SUVmax), peak standardized uptake values
(SUVpeak), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) of the patients were measured. We evaluated the
characteristics of 18F-FDG PET/CT in this population. Six patients ranged in age from 37 to 73 years (median age, 58 years) were
included in the analysis. *e mean SUVmax was 11.09 and varied between 7.20 and 19.75; mean SUVpeak was 9.56 and ranged
between 6.79 and 14.39. In addition, mean MTV 42% was 18.4 and varied between 1.3 and 61.6; mean MTV 2.5 was 34.7 and
varied significantly between 1.6 and 141.9. With regard to TLG, mean TLG 42% was 168.906 and ranged from 7.514 to 687.004,
while mean TLG 2.5 was 253.972 and ranged from 8.400 to 1127.802. In conclusion, 18F-FDG PET/CT scan is a useful tool in
patients with testicular DLBCL. SUV, MTV, and TLG may vary a lot in different patients. SUVmax of testicular DLBCL lesion is
relatively higher than that of normal testis. Also, we provided a set of MTV and TLG data and firstly showed their significant
correlation with overall survival, which indicated a potential prognostic value of MTV and TLG. However, studies with larger
population are needed to confirm these findings.

1. Introduction

Testicular lymphoma is a rare but aggressive form of extra-
nodal lymphoma, accounting for 3–9% of testicular cancers
and 1-2% of non-Hodgkin’s lymphomas [1, 2]. In spite of the
low overall incidence, testicular lymphoma is the most
common testicular malignancy in men over 60 [2]. Testicular
diffuse large B-cell lymphoma (DLBCL) is the most common
histological subtype, accounting for about 80% to 98% of all
cases [3]. Although radical inguinal orchiectomy is recom-
mended in view of histological evaluation, invasiveness often

hinders its wider adoption [4]. Other diagnostic methods
include testicular ultrasound, computed tomography (CT),
routine blood test, lactate dehydrogenase, bone marrow bi-
opsy, and lumbar puncture [5].

Fluorine-18 fluorodeoxyglucose (18F-FDG) positron-
emission tomography/computed tomography (PET/CT) is
a hybrid imaging technique that simultaneously provides
functional and anatomical information. 18F-FDG PET/CT is
important in biomedical research and clinical diagnostics,
and its application in lymphoma has already been reported
[6, 7]. *ere are several parameters being repeatedly
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discussed in recent studies, including maximum standard-
ized uptake values (SUVmax), peak standardized uptake
values (SUVpeak), metabolic tumor volume (MTV), and total
lesion glycolysis (TLG), since they are believed to play
important roles in the diagnosis and prognosis of patients
with lymphoma [8–10]. *erefore, the National Compre-
hensive Cancer Network (NCCN) guidelines recommend
the use of 18F-FDG PET/CTfor staging, response evaluation,
and prognosis of lymphoma.

However, the role of 18F-FDG PET/CT among patients
with testicular DLBCL has still not been well established. In
this study, we reported 6 patients with testicular DLBCL who
had performed 18F-FDG PET/CTscan and discussed the role
of 18F-FDG PET/CT in this population at the same time.

2. Materials and Methods

2.1. Patients. We retrospectively reviewed medical records
of 5095 patients with lymphoma. All patients were treated at
West China Hospital betweenMarch 2003 and January 2015.
Inclusion criteria were as follows: (1) 18F-FDG PET/CT
findings before receiving orchiectomy were present and
(2) subsequent biopsy confirmed the invasion of testis
with DLBCL. Patients’ characteristics including the histo-
logical type, Ann Arbor stage, International Prognostic
Index (IPI) score, NCCN IPI score, ECOG performance
status, B symptom, metastatic sites, and treatment were
extracted. *is study was approved by the Ethics Admin-
istration Office of West China Hospital, Sichuan University.

2.2. 18F-FDG PET/CT Imaging. Standard whole-body 18F-
FDG PET/CT was performed using a Gemini GXL PET/CT
scanner (Philips, Amsterdam, *e Netherlands). Fasting for
at least 6 hours was required before the examination, and the
blood glucose level was measured immediately before the
administration of 18F-FDG. *e PET/CT scan would be
rescheduled if the blood glucose level was >150mg/dL.
Approximately 5 MBq of 18F-FDG per kilogram of body
weight was administered intravenously, and the patients
rested in a quiet, dark environment for approximately 60
minutes before scanning. After initial low-dose CT (40mA,
120 kVp), emission images were obtained from the top of the
skull to the middle of the thigh, with acquisition times of 2
minutes per bed position in the three-dimensional mode.
*e PET images were reconstructed iteratively with CT-
based attenuation correction (Figures 1 and 2).

2.3. ImageAnalysis. *e image analysis was performed using
Compass Viewer software. Circular regions of interest
(ROIs) were manually drawn on axial, coronal, or sagittal
coregistered PET/CT slices. Within the selected ROI,
SUVmax, mean standardized uptake values (SUVmean),
SUVpeak, MTV, and TLG were measured. SUVmax were
calculated using the following formula: mean ROI activity
(MBq/g)/(injected dose (MBq)/body weight (g)). SUVpeak
was defined as the mean of SUVmax and its 10 neighbors
(roughly corresponding to a 0.5 cm ROI). MTV and TLG
could be measured by a fixed background SUV cut-off or

a fixed percentage of the SUVmax. In this study, we calculated
SUVmean and MTV based on a fixed threshold of 42% of
SUVmax (SUVmean 42%, MTV 42%) or based on a fixed
background SUV cut-off of 2.5 (SUVmean 2.5, MTV 2.5).
TLG was defined as the MTV multiplied with the SUVmean
(TLG 42%, TLG 2.5).

2.4. Statistical Analysis. Correlation analysis between the
functional parameters of 18F-FDG PET/CT and overall
survival (OS) was conducted, and Spearman’s rank co-
efficients were used to assess the relationship between the
functional parameters and outcomes of the patients. Sta-
tistical analyses were performed using the SPSS version 22.0
(IBM Corporation, Armonk, NY, USA) at a significance
level of p< 0.05.

3. Results

A total of 34 patients with testicular lymphoma were selected
from this population. Eighteen of them had 18F-FDG
PET/CT findings while only 6 had preoperative images.
As a result, 6 patients ranging from 37 to 73 years old
(median age, 58) were included in the analysis. Patients’
characteristics including the histological type, Ann Arbor
stage, IPI score, NCCN IPI score, ECOG performance status,
B symptom, metastatic sites, and treatment are described in
Table 1. All patients had histopathological confirmation of
DLBCL. Five (83.3%) out of 6 patients were classified
clinically as stage IVB, and 1 (16.7%) as stage IEA according
to the Ann Arbor classification. *e IPI score of patients
were calculated, and the results revealed that 5 patients
(83.3%) had a score of 3 while 1 patient (16.7%) had a score
of 1. In addition, 1 (16.7%) patient had an ECOG perfor-
mance status of 1, while 5 patients (83.3%) had an ECOG
performance status of 0. Of the 6 patients, 3 (50%) had
tumor located on the left side and 1 (16.3%) on the right side,
whereas 2 (33.3%) on the bilateral sides. Besides testicular
disease, 5 of the patients were identified to have lymph nodes
or other distant metastases. All the patients have received
treatment, of whom 6 (100%) had orchiectomy and che-
motherapy, 2 patients (33.3%) had local radiotherapy, and 4
(66.7%) received prophylactic intrathecal injection in ad-
dition to their systemic chemotherapy. Adjunct laboratory
and immunohistochemical results of the patients, such as Ki-
67, β2 microglobulin, and LDH, are also shown in Table 1.

Within the selected ROI, SUVmax, SUVmean, SUVpeak,
MTV, and TLGweremeasured.*emean SUVmax was 11.09
and varied between 7.20 and 19.75; mean SUVpeak was 9.56
and ranged between 6.79 and 14.39. In addition, mean MTV
42% was 18.4mL and varied between 1.3mL and 61.6mL;
meanMTV 2.5 was 34.7mL and varied significantly between
1.6mL and 141.9mL. With regard to TLG, mean TLG 42%
was 168.906 and ranged from 7.514 to 687.004, while mean
TLG 2.5 was 253.972 and ranged from 8.400 to 1127.802
(Table 2).

*e result of correlation analysis between functional
parameters and survival time indicated that SUVmax and
SUVpeak were not significantly associated with OS of the
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Figure 1: A 37-year-old patient was diagnosed with diffuse large B-cell lymphoma that involved with bilateral testes. *e PET/CT showed
asymmetrical increased uptake in the bilateral testes. He received orchiectomy, prophylactic intrathecal injection, and 6 cycles of che-
motherapy with rituximab-etoposide, prednisone, oncovin (vincristine), cyclophosphamide, and hydroxydaunorubicin (doxorubicin) (R-
DA-EPOCH). *e duration from the time of diagnosis to the date when radiological findings suggested suspected pancreatic involvement
was 9.3 months. *e patient was alive till October 30, 2017, after a follow-up of 26 months.

(a) (b) (c)

Figure 2: Continued.
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(d) (e) (f )

(g) (h) (i)

Figure 2: Histopathological (H&E stain (×400)) and immunohistochemical (×400) findings of the testicular lymphoma biopsy specimen of
the 37-year-old patient: BCL-2 (+), BCL-6 (+), CD5 (+), CD10 (−), CD20 (+), Mum (+), Ki-67/MIB-1 (+, 80%), and P53 (+).

Table 1: Baseline characteristics of the patients.

No Age
Ann
Arbor
stage

IPI
score

ECOG
performance

status
Site Nodal

involvement
Exnodal

involvement
Ki-
67

β2
microglobulin

(mg/L)

LDH
(IU/L) Treatment

1 37 IVB 3 0 Bilateral Para-aortic
lymph node

Bilateral kidney,
perirenal region,

and spleen
80% 2.33 237

Orchiectomy, CT,
and prophylactic

intrathecal
injection

2 73 IVB 3 0 Right Abdominal
lymph node

Lung and
nasopharyngeal

wall
40% 2.63 177

Orchiectomy, CT,
RT, and

prophylactic
intrathecal
injection

3 57 IVB 3 1 Left Neck lymph
node

Maxillary sinus,
maxillary bone,
orbital cavity,
temporalis,
multiple

subcutaneous
tissue, and bone

of trunk

60% 2.82 301 Orchiectomy and
CT

4 58 IEA 1 0 Left — — N/A N/A 223 Orchiectomy, CT,
and RT

5 73 IVA 3 0 Bilateral
Cervical lymph
nodes and hilar
lymph node

Skin 50% 2.19 246

Orchiectomy, CT,
and prophylactic

intrathecal
injection

6 58 IVB 3 0 Left Multiple lymph
nodes

Kidney, adrenal
gland, and

spermatic cord
90% NA 367

Orchiectomy and
CT+prophylactic

intrathecal
injection

IPI, International Prognostic Index; NCCN IPI, National Comprehensive Cancer Network International Prognostic Index; ECOG performance status,
Eastern Cooperative Oncology Group performance status; LDH, lactic dehydrogenase; CT, chemotherapy; RT, radiotherapy; N/A, not applicable.
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patients. However, MTV 42%, MTV 2.5, TLG 42%, and
TLG 2.5 were revealed to be significantly correlated with
OS of the patients, with Spearman’s rank coefficients of
0.812 and p � 0.04982 (Table 3).

4. Discussion
18F-FDG PET/CT is performed in combination with 18FDG
PET and CT scanners.18F-FDG PET/CT has been reported
to be a very useful tool with high sensitivity and specificity
rates in evaluating most lymphoma subtypes, providing
both metabolic and morphologic features of diseases [11].
Compared with contrast-enhanced CT (CECT), PET/CT
shows a higher diagnostic value with sensitivity of 97% and
specificity of 100%, especially for normal-sized lymph
nodes and extranodal involvement [12–14]. Moreover, with
the supplement of other examinations, 18F-FDG PET/CT
can not only make accurate diagnosis but also assess the
treatment response as well as predict the outcomes [15–18].
However, as far as we know, the application of PET/CT in
testicular DLBCL patients has not been well studied. In this
study, we firstly focused on the use of 18F-FDG PET/CT in
the prognosis and staging of patients with testicular DLBCL
and reported their SUVmax, SUVmean, SUVpeak, MTV, and
TLG.

Because of its aggressive clinical biological behavior,
patients with testicular lymphoma usually present a poor
prognosis. Timely and accurate diagnosis of testicular
lymphoma is vital since early diagnosis was reported to be
associated with better outcomes [19]. Imaging modalities
that may be helpful in diagnosis include ultrasonography,
magnetic resonance imaging, and CT, while unfortunately
none of these methods shows satisfying specificity [3].
Fine-needle aspiration, testicular biopsy, and orchiectomy
have been used for pathological diagnosis of testicular
lymphoma. Nevertheless, these pathological diagnostic
process may do harm to the testes’ physiological functions
as well as patients’ mental health [3]. PET/CT is now widely
used in the diagnosis and initial staging of high-grade
lymphoma [20]. In this study, we also demonstrated the

value of PET/CT in diagnosis and staging among patients
with testicular DLBCL.

SUVmax, the most widely used parameter, is a re-
producible measurement for disease evaluation in a quan-
titative way [21]. Previous studies have reported that the
normal level of FDG uptake in the testis is relatively high and
symmetrical in pattern and declines slightly with age [22]. A
study involving 203 men has demonstrated that the normal
SUV range from 1.23 to 3.85 with a mean value of 2.44 [23].
In addition, previous study including 53 patients has re-
ported that a SUVmax of 3.75 is the optimal cut-off value for
differentiating between benign and malignant testicular
diseases [24]. As for the testicular lesions of our population,
the mean SUVmax was 11.09, with a range of 7.20 to 19.75.
SUVmax of all our patients were larger than 3.75. *e results
of this study revealed a high FDG uptake in testicular
DLBCL patients; therefore, abnormal uptake of FDG in testis
warranted further analysis. In addition, the value of SUVpeak
was also shown in this study. However, to the best of our
acknowledgement, no previous studies have reported these
indexes of testicular DLBCL patients.

MTV and TLG can be measured by a fixed background
SUV cut-off or a fixed percentage of the SUVmax [25–27].
Both MTV and TLG have been proposed to assess the
burden of metabolically active tumors and are assumed to be
reliable indicators of the tumor bulk [28]. In this study, we
calculated MTV 42%, MTV 2.5, TLG 42%, and TLG 2.5 of
each patient. *e mean MTV 42% was 18.4mL while the
mean MTV 2.5 was 34.7mL; meanwhile, both of them
showed an apparent change. MTV of tumor burden has been
recently found to be a useful prognostic factor in lymphoma
[29]. TLG, which combined the volumetric and metabolic
information of 18F-FDG PET, was also calculated in this
study. Elevated TLG has also been shown to be associated
with poor survival in various types of cancer, but its
prognostic value in testicular lymphoma has not been well
established [30]. As a result, we demonstrated that MTV and
TLGmay greatly differ between different patients.*e values
of MTV and TLG in neither normal testes nor testicular
lymphoma have been investigated; thus, further studies

Table 2: SUV, MTV, TLG, and survival of the patients.

No. SUVmax SUVpeak MTV 42% MTV 2.5 TLG 42% TLG 2.5 Overall survival (months) Outcomes
1 19.75 14.39 61.6 141.9 687.004 1127.802 26 Alive
2 11.30 9.52 13.1 16.9 91.045 105.794 54 Death
3 7.98 6.99 3.8 4.8 20.786 23.808 17 Alive
4 11.90 11.56 20.7 31.7 168.912 209.537 22 Death
5 7.20 6.79 9.7 11.2 44.175 48.49 18 Alive
6 8.40 8.11 1.3 1.6 7.514 8.400 17 Alive
SUVmax, maximum standardized uptake values; SUVpeak, peak standardized uptake values; MTV, metabolic tumor volume; TLG, total lesion glycolysis.

Table 3: Spearman rank correlation for functional parameters and overall survival.

SUVmax SUVpeak MTV 42% MTV 2.5 TLG 42% TLG 2.5
Spearman rank correlation coefficient 0.638 0.638 0.812 0.812 0.812 0.812
p value 0.1731 0.1731 0.0498 0.0498 0.0498 0.0498
SUVmax, maximum standardized uptake values; SUVpeak, peak standardized uptake values; MTV, metabolic tumor volume; TLG, total lesion glycolysis.
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are expected. To the best of our knowledge, we assessed
the correlation between functional parameters of 18F-FDG
PET/CT and survival of patients with primary testicular
DLBCL for the first time. MTV and TLG were shown to be
correlated with survival with statistical significance, which
indicated a potential prognostic value of MTV and TLG.
However, further studies are needed to confirm these results.

*e current study has several limitations. First, this is
a retrospective analysis. Second, the number of patients is small.
Althoughwe identified 18 testicular DLBCLwith PET/CTscan,
12 of them had undergone orchiectomy before PET/CT ex-
amination. As a result, testicular disease could not be identified
in the scan. *ird, population from a single center also limits
the conclusions of our study. *us, further prospective ran-
domized studies usingmulticenter data are required to confirm
our findings. *e strength of this study includes that histo-
logical confirmation of testicular DLBCLwas obtained in all the
patients, and patients’ data were complete.

5. Conclusions

In conclusion, PET/CT scan has the potential in evaluating
patients with testicular DLBCL. SUV, MTV, and TLG may
vary a lot in different patients. SUVmax of testicular DLBCL
lesion is relative higher than that of normal testis. Also, we
provided a set of MTV and TLG data and firstly showed their
significant correlation with OS, which indicated a potential
prognostic value of MTV and TLG. However, studies with
a larger population are needed to confirm these findings.
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Background and Purpose. Although several methods have been developed to predict the outcome of patients with prostate cancer,
early diagnosis of individual patient remains challenging. *e aim of the present study was to correlate tumor perfusion parameters
derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and clinical prognostic factors and further to
explore the diagnostic value of DCE-MRI parameters in early stage prostate cancer. Patients andMethods. Sixty-two newly diagnosed
patients with histologically proven prostate adenocarcinoma were enrolled in our prospective study. Transrectal ultrasound-guided
biopsy (12 cores, 6 on each lobe) was performed in each patient. Pathology was reviewed and graded according to the Gleason system.
DCE-MRI was performed and analyzed using a two-compartmental model; quantitative parameters including volume transfer
constant (Ktrans), reflux constant (Kep), and initial area under curve (iAUC) were calculated from the tumors and correlated with
prostate-specific antigen (PSA), Gleason score, and clinical stage. Results. Ktrans (0.11± 0.02min−1 versus 0.16± 0.06min−1; p< 0.05),
Kep (0.38± 0.08min− 1 versus 0.60± 0.23min− 1; p< 0.01), and iAUC (14.33± 2.66mmoL/L/min versus 17.40± 5.97mmoL/L/min;
p< 0.05) were all lower in the clinical stage T1c tumors (tumor number, n � 11) than that of tumors in clinical stage T2 (n � 58).
Serum PSA correlated with both tumor Ktrans (r � 0.304, p< 0.05) and iAUC (r � 0.258, p< 0.05). Conclusions. Our study has
confirmed that DCE-MRI is a promising biomarker that reflects the microcirculation of prostate cancer. DCE-MRI in combination
with clinical prognostic factors may provide an effective new tool for the basis of early diagnosis and treatment decisions.

1. Introduction

Prostate cancer is the second leading cause of cancer-related
death and the most frequently diagnosed male malignant
disease in the Nordic countries [1]. Early detection of
prostate cancer permits appropriate and timely management
of the disease, and prognostic biomarkers can help clinicians
to make a proper decision for treatment of individual pa-
tients and to avoid unnecessary treatments [2]. Although
several methods have been developed to predict outcome
of patients with prostate cancer, prognosis evaluation of
individual patient remains challenging. Recent studies

demonstrate that multiparametric magnetic resonance im-
aging (MP-MRI), consisting of T1-weighted, T2-weighted,
diffusion-weighted imaging (DWI), and dynamic contrast-
enhanced MRI (DCE-MRI), has emerged as a useful tool
not only for localizing prostate cancer foci, but also for
assessing tumor aggressiveness [3]. DWI allows to quantify
the randommotion of water molecules in tissue by means of
apparent diffusion coefficient (ADC) measurements and
provides information on tissue cellularity, tortuosity of
extracellular space, and cell membrane integrity, thereby
differentiating noncancerous and cancer lesions [4]. DCE-
MRI is a relatively novel imaging modality that allows to
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measure properties of tissue microvasculature resulting
from tumor angiogenesis and improving tumor detection
and response assessment [5]. *e most commonly used
DCE-MRI parameter that reflects vascular permeability is
the volume transfer constant (Ktrans) [6]. Ktrans represents
the rate at which the contrast agent transfers from the blood
to the interstitial space, which indicates the tumor micro-
circulation and the surface infiltration area. In contrast, the
reflux constant (Kep) reflects the rate at which the contrast
agent transfers from the extravascular extracellular space
back to the blood. *e extravascular extracellular leakage
volume fraction (Ve�Ktrans/Kep) predominantly reflects the
percentage of contrast agent in the extravascular extracel-
lular space [6]. In addition, the semiquantitative parameter
initial area under curve (iAUC) is associated with tumor
blood influx, perfusion, and interstitial space and represents
the general tumor blood flow, overall perfusion, and tumor
interstitial space index [6].

*e aim of the present study was to correlate tumor
perfusion parameters derived from DCE-MRI and clinical
prognostic factors and further to explore if we can separate
very early tumors from relatively advanced ones with DCE-
MRI-derived parameters for decision making in early stage
prostate cancer.

2. Materials and Methods

2.1. Patients. Seventy-one consecutive patients with histo-
logically proven prostate adenocarcinoma were enrolled in
our prospective clinical trials to develop hypofractionated
image-guided and intensity-modulated radical radio-
therapy. *e study identifier at www.ClinicalTrials.gov is
NCT02319239. *e inclusion and exclusion criteria have
been described in details in our previous publication [7].
Briefly, newly diagnosed adult patients with one or two of
the intermediate-risk features (Gleason score 7, staging
T2b-T2c, PSA 10–20 ng/mL) according to the National
Comprehensive Cancer Network (NCCN) criteria [8], and
patients were suitable for MRI examination. No patients
received neoadjuvant or adjuvant hormonal treatment.*e
study was approved by the Ethics Committee of Tampere
University Hospital (Nr. R14009), and all patients gave
written informed consent prior to study entry. Patients
underwent physical examination, digital rectal examina-
tion, and standard laboratory tests including serum
prostate-specific antigen (PSA).

2.2. Histological Analysis. Transrectal ultrasound-guided
biopsy (12 cores, 6 on each lobe) was performed in each
patient. Six biopsy cores were embedded in one paraffin
block. Pathology was reviewed and graded according to the
Gleason system. Major criteria include an infiltrative glan-
dular growth pattern and an absence of basal cells and
nuclear atypia in the form of nucleomegaly and nucleolo-
megaly. *e diagnosis was based on the microscopic ap-
pearance of slides stained using haematoxylin and eosin. In
difficult cases, basal cell absence has been confirmed by
immunohistochemical stains for basal cell markers.

2.3. Multiparametric MRI Acquisition. Multiparametric MR
imaging was acquired using a 3 Tesla MR System (Siemens
Trio-Tim, Erlangen, Germany) with a combination of 6-
channel body matrix coil and 6 elements of 24-channel spine
matrix coil positioned around the pelvis to cover the prostate.
Tri-planar T2-weighted turbo spin echo images from below
the prostatic apex to above the seminal vesicles were obtained.
DWI was acquired with a single-shot echoplanar sequence on
the axial plane using three b values (50, 400, and 800 s/mm2)
and with the same orientation and location used to acquire
axial T2-weighted images. DCE-MRI was performed with
axial T1-weighted 3D volumetric interpolated breath-hold
examination (VIBE) sequence that covers the entire pros-
tate in consecutive sections. To determine the T1 relaxation
time in the tissue before the arrival of contrast agent, the
DCE-MRI included two precontrast 3D VIBE imaging se-
quences that had different flip angles (2° and 13°). *ese
sequences were followed by a DCE series on the axial plane
after gadolinium (Gd)-DOTA (0.2ml/kg Dotarem®) in-
jection, with a temporal resolution of 8 seconds and an ac-
quisition time of 4minutes 40 seconds.*e contrast agent was
administered using a power injector (Medrad Spectris Solaris
EP, Bayer Medical Care Inc, PA, USA) followed by a 20ml
saline flush injection at a flow rate of 2.5ml/s. To minimize
postbiopsy artifact, MRI was performed 6–10 weeks after the
prostate cancer confirmation by biopsy. For imaging pa-
rameters, see Table 1.

2.4. MR Image Analysis. All MR images were reviewed and
analyzed on a syngo Multimodality Workplace (Siemens
Healthcare). Voxelwise MRI signal enhancement time
curves were fitted according to a pharmacokinetic model
using Tissue 4D software (Siemens Healthcare). First,
a motion correction has been performed, which registered
all volumes of the time series to a user-selected reference
volume to reduce the effect of patient and physiological
motion during the DCE image acquisition. After the reg-
istration of the morphological image and the precontrast
image, an oval-shaped or irregular-shaped region of interest
(ROI) was drawn on the prostate cancer foci. ROIs were
drawn in early enhancing region of DCE-MRI and with the
DWI b800, ADCmap, and T2-weighted image as references.
T1 map calculation of precontrast was a prerequisite for
pharmacokinetic modeling. T1 fitting was restricted to pixels
with values above a noise level value (>20), and the re-
spective values were automatically calculated by the system
as a function of the entered contrast agents. For the Tofts
modeling [6], Tissue 4D provides arterial input function
(AIF) that are modeled using a biexponential function with
three different modes (fast, intermediate, and slow).*e AIF
was chosen according to the fast sampling method to cal-
culate kinetic parameters [9]. Parametric maps were cal-
culated, and Ktrans, Kep, Ve, and iAUC of the selected ROI
were automatically estimated by the software.

*e ADC value of each identified tumor lesion was
measured directly on the parametric ADC maps. *e
ADC map was reviewed simultaneously with the corre-
sponding high b value DW images, T2-weighted images, and
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precontrast T1-weighted images. *e slice of the ADC map
containing the largest tumor extent was selected for analysis,
and a ROI was drawn in the center of the tumor excluding
the tumor edges. *e mean ADC value and the size of the
selected tumor area were generated at the workstation and
recorded for analysis.

A prostate cancer was defined on each MRI as follows:
a hypointense region relative to the adjacent parenchyma on
T2-weighted image; a region with a low ADC value relative
to the adjacent parenchyma on the ADC map; and a region
with early wash-in and wash-out of contrast medium relative
to the adjacent parenchyma on DCE-MRI. Precontrast T1-
weighted images were used to identify postbiopsy hemor-
rhage (as an area with high signal intensity) to rule out false-
positive findings.

2.5. Statistical Analysis. Statistical analysis was performed
with SPSS (version 23.0, SPSS Inc., Chicago, Illinois, USA).
A two-sided nonparametric Mann–Whitney U test was used
to compare the patients age, PSA, tumor size, ADC, Ktrans,
Kep, Ve, or iAUC between the peripheral and transitional
zone tumor groups, between Gleason score 3 + 3 and 3 + 4
groups, and between different clinical stages. Spearman’s
correlation coefficient was used to evaluate the correlation
between tumor size, ADC, Ktrans, Kep, Ve, iAUC, Gleason
score, and serum PSA; p values less than 0.05 were con-
sidered significant.

3. Results

3.1. Patient Characteristics. No suspicious lesion was found
on MRI in 7 out of the 71 patients with a biopsy proven
prostate cancer; two patients had no DCE images due to
allergy to the contrast agent. Sixty-nine lesions were detected
in the prostate of the remaining 62 patients (age: mean± SD:
70± 5 years, range from 60 to 79 years). Ten patients had
clinical stage T1c and 52 had T2 (16 in T2a, 8 in T2b, and 28
in T2c) tumors according to TNM classification for prostate
cancer. *e serum PSA value (mean± SD) was 9.5±
3.7 ng/mL, with the range from 3.4 to 19.1 ng/mL.

3.2. Pathological Results. *ere were 19 patients with
a Gleason score 3 + 3, 41 with a Gleason score 3 + 4, and 2
with a Gleason score 4 + 3 tumor.

None of the measured parameters, including patients’ age,
serum PSA, and DWI- and DCE-MRI-derived parameters,
were different between Gleason score 3 + 3 and 3+ 4 tumor
groups.

3.3. Tumor Location. *emajority of the tumors were in the
peripheral zone (52, 75%), and the other 17 tumors were in
the transitional zone.

*ere was no significant difference of the patients’ age,
serum PSA, tumor ADC, Ktrans, or iAUC between the pe-
ripheral and transitional zone tumor groups (Table 2).

(a) *e size of peripheral zone tumors (lesion number,
n � 52) was smaller than that of the transitional zone
tumors (n � 17) (0.68± 0.41 cm2 versus 0.93±
0.59 cm2; p< 0.05).

(b) Kep was higher in the peripheral zone tumors (lesion
number, n � 52) than that of the transitional zone
tumors (n � 17) (0.59± 0.21min−1 versus 0.49±
0.24min−1; p< 0.05).

(c) Ve was lower in the peripheral zone tumors (lesion
number, n � 52) than that of the transitional zone
tumors (n � 17) (0.27± 0.08 versus 0.32± 0.07;
p< 0.05).

3.4. DCE-MRI-Derived Parameters. Prostate cancer showed
earlier and more pronounced enhancement than sur-
rounding normal prostate tissue (example Figure 1). Fifty-
nine patients had perfusionMRI findings of at least one focal
enhancing tumor in the prostate. In three patients, focal
lesions were not obvious on the DCE images; all these 3
patients had clinical stage T2c tumors.

Ktrans (0.11± 0.02min−1 versus 0.16± 0.06min−1;
p< 0.05), Kep (0.38± 0.08min−1 versus 0.60± 0.23min−1;
p< 0.01), and iAUC (14.33± 2.66mmoL/L/min versus
17.40± 5.97mmoL/L/min; p< 0.05) were all lower in the
clinical stage T1c tumors (n � 11) than that of the clinical
stage T2 tumors (n � 58) (Figures 2(a)–2(c)).

3.5. Serum PSA Value. *ere were no significant differences
of the serum PSA levels between clinical stage T1c (n � 10)
and T2 patients (n � 52) (8.2± 4.5 ng/mL versus 9.8±
3.6 ng/mL; p � 0.151) (Figure 2(d)).

Table 1: Sequence parameters for 3T multiparametric MRI with the body and spine matrix combination coil system.

Sequence Pulse sequence TR (msec) TE (msec) FA (°) FOV (mm) ACQmatrix Slice/gap (mm)
Axial DWI, b� 50, 400,
and 800 s/mm2 SE-EPI 3800 77 90 221× 260 102×160 3.6/0

Axial T2W TSE 4000 100 90 200× 200 288× 320 3/0.6
Sagittal T2W TSE 5000 100 90 200× 200 288× 320 3/0.6
Coronal T2W TSE 5000 100 90 200× 200 288× 320 3/0.6
Axial 3D∗ FLASH GRE 4.9 1.7 2 and 13 260× 260 138×192 3/0
Axial 3D DCE FLASH GRE 4.9 1.7 12 260× 260 138×192 3.6/0
SE, spin echo; EPI, echo planar imaging; TSE, turbo spin echo; FLASH, fast low angle shot; GRE, gradient recalled echo; TR, repetition time; TE, echo time;
FA, flip angle; ACQ matrix, acquisition matrix. ∗Sequence for the measurement of T1 relaxation time.
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3.6. 3e Correlations between PSA and MRI Parameters.
Serum PSA correlated with both tumor Ktrans (r � 0.317,
p � 0.012) (Figure 3(a)) and tumor iAUC (r � 0.258,
p � 0.043) (Figure 3(b)).

No correlation was found between serum PSA and tu-
mor ADC value.

4. Discussion

A reliable diagnostic test should be able to provide an early
prostate cancer diagnosis and minimize the amount of
unnecessary biopsies or treatments. From this perspective,
morphological MRI is a good candidate for prostate can-
cer investigation as it provides high-contrast and high-
resolution images of the prostate. However, no single
MRI sequence is sufficient to characterize prostate cancer.
Each of the functional MR components has clinical ad-
vantages and limitations. Early promising data suggest that
MP-MRI, which is performed concurrently with anatomical

and functional techniques, is the most sensitive and specific
imaging tool for lesion detection, characterization, and
staging of prostate cancer [3]. Our study revealed a corre-
lation between tumor Ktrans and serum PSA in patients with
early stage prostate cancer. *is finding is consistent with
previous publications [10, 11]. In addition, we detected
a correlation between tumor iAUC and serum PSA. *ese
may be explained by the altered vascular permeability of
tumor microvessels and lymphatic system [12]. Neo-
vascularity has been demonstrated to be a prerequisite for
tumor growth and metastasis [13]. Abnormal angiogenesis
in the tumor tissue lead to higher microvessel density, which
is represented by leakage, twisted morphology, vascular
wall expansion, and crosslinking [14]. Many scientists have
suggested microvessel density as a prognostic and a pre-
dictive factor [15]. However, microvessel density measure-
ment depends on the availability of postoperative tissue or
biopsy materials, and it is a static assessment rather than
information on vascular function. *erefore, there were

Table 2: Comparison of the 62 patients with peripheral and transitional zone prostate cancer (46 versus 16): age, tumor size, and DWI- and
DCE-derived tumor parameters.

Total n � 69 mean± SD Peripheral n � 52 mean± SD Transitional n � 17 mean± SD p value
Age (years) 70± 5 70± 5 70± 4 0.974
PSA (ng/mL) 9.5± 3.7 9.7± 3.9 9.1± 3.3 0.552
Area of tumor (cm2) 0.74± 0.47 0.68± 0.41 0.93± 0.59 0.037
ADC (×10−3mm2/s) 0.87± 0.16 0.89± 0.17 0.82± 0.13 0.259
Ktrans (min−1) 0.15± 0.05 0.15± 0.05 0.14± 0.06 0.743
Kep (min−1) 0.57± 0.22 0.59± 0.21 0.49± 0.24 0.048
Ve 0.28± 0.08 0.27± 0.08 0.32± 0.07 0.026
iAUC (mmoL/L/min) 16.70± 5.69 17.26± 5.51 15.86± 6.21 0.626
PSA, prostate-specific antigen; ADC, apparent diffusion coefficient; Ktrans, volume transfer constant; Kep, reflux constant; Ve, extravascular extracellular
leakage volume fraction; iAUC, initial area under curve; n, number of tumors.

(a) (b) (c) (g)

(d) (e) (f)

Figure 1: Transverse prostate MR images from a 69-year-old male patient with biopsy proven prostate cancer (Gleason score 3 + 4 and
serum PSA 6.6 ng/mL): (a) T2-weighted image showing in the transitional zone a hypointense area without clear border; (b) ADC map:
transitional zone hypointense region with a clear border, with ADC value of 0.75×10−3mm2/s; (c) T1-weighted image early enhancement
map: the enhanced region of interest 1 (ROI1, red line) corresponds to the tumor, and ROI 2 (green line) was selected from normal prostate
tissue as healthy control; (d) Ktrans map: ROI 1 Ktrans 0.120 min−1 and ROI 2 Ktrans 0.048 min−1; (e) Kep map: ROI 1 Kep 0.657 min−1 and ROI
2 Kep 0.327 min−1; (f ) iAUCmap: ROI 1 iAUC 14.976 mmoL/L/min and ROI 2 iAUC 6.871 mmoL/L/min; (g) enhancement kinetics pattern
from the two ROIs: the time-intensity curves were obtained from dynamic contrast-enhanced MRI. ROI1 showing a higher peak en-
hancement and an early wash-in and wash-out of contrast medium compared with ROI 2.
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controversial results between microvessel density and
prostate cancer progression and grade [16]. In contrast, the
distribution of Gd-DOTA in DCE-MRI is determined not
only by microvessel density but also by vessel permeability
and size of the extravascular extracellular space. DCE-MRI
not only provides more details in tumor morphology but
also allows to assess contrast agent kinetics and thus allows
to improve detection and grading of prostate cancer.

DCE-MRI can be used to assess noninvasively the
functional aspects of microcirculation of tissues. DCE-MRI
relies on the fact that a bolus of contrast agent passing
through the capillary bed is transiently confined within the
vascular space before passing rapidly into the extravascular
extracellular space at a rate determined by the permeability
of the microvessels, their surface area, and blood flow
[17, 18]. In DCE-MRI, the distribution of the contrast agent

is repeatedly measured, allowing the evaluation of the
tumor microcirculation in vivo and enabling the malignancy
or benignancy of the tumor to be quantitatively distin-
guished [19]. Neoangiogenesis plays a vital role in the
growth, progression, and metastasis process of prostate
cancer [20, 21]. Microvessel density in prostatic carcinoma
has also been shown to be an independent predictor of the
pathological stage [13]. In consistent, we found that the
tumor Ktrans, Kep, and iAUC were all lower in smaller tumors
(T1c) than in larger local tumors (T2) in biopsy proven
prostate cancer. To our knowledge, this is the first report that
revealed DCE-MRI-derived parameters can separate very
early stage tumors and relatively advanced tumors in clin-
ically localized prostate cancer. Quantification of tumor
angiogenesis by DCE-MRI may allow stratification of pa-
tients to type of treatment.
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Figure 2: Comparison of tumorKtrans, Kep, iAUC, and serumPSA level in patients with different clinical stages of prostate cancer. (a)Ktrans (0.11±
0.02min−1 versus 0.16± 0.06min−1; p< 0.05), (b) Kep (0.38±0.08min−1 versus 0.60± 0.23min−1; p< 0.01), and (c) iAUC (14.33±
2.66mmoL/L/min versus 17.40±5.97mmoL/L/min; p< 0.05) were all lower in clinical stage T1c tumors than that in clinical stage T2 tumors;
(d) there was no significant difference of serumPSA between clinical stage T1c and T2 patients (8.2±4.5 ng/mL versus 9.8±3.6 ng/mL;p � 0.151).
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Figure 3: Correlations between serum PSA and DCE-MRI-derived tumor parameters in the 62 patients with prostate cancer. (a) Serum PSA
correlated with tumor Ktrans (r � 0.317, p< 0.05); (b) Serum PSA correlated with tumor iAUC (r � 0.258, p< 0.05).
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Serum PSA is elevated as a result of disruption of the
prostatic architecture in the presence of prostate disease
and injury, and PSA screening helps to diagnose prostate
cancer earlier, at lower clinical stages and with lower
Gleason score [22]. However, we did not find significant
difference of the serum PSA levels between the tumors in
clinical stage T1c and those with relatively extent diseases,
for example, clinical stage T2. Serum PSA is not a specific
marker for prostate cancer because of variable contribu-
tion to PSA from benign tissue and the nonlinear re-
lationship between grade and PSA, which lead to overlap
in PSA levels between different clinical stages as shown
also in previous studies [23]. As a result, serum PSA level
cannot be used alone to accurately predict disease extent
for any individual patient. DCE-MRI play a role in con-
junction with PSA for localizing suspicious lesions for
biopsy, improving specificity, and identifying those tu-
mors that are more likely to cause death if they are
left untreated.

*e Gleason score reflects the tumor aggressiveness and
is an important predictor of outcome in patients with
prostate cancer [2]. Correlation between the Gleason score
and DCE-MRI-derived parameters may have been expected,
because the Gleason scores have been shown to correlate
with microvessel density measurements [13]. However, we
did not detect any significant difference of the DCE-derived
parameters between patients with Gleason score 3 + 3 and 3
+ 4. *e lack of differences may be explained by the het-
erogeneity of tumor tissues [24] and the histological sam-
pling errors inherent in needle biopsy. Secondly, our patients
were selected with one or two of the intermediate-risk
features. *erefore, the differences of their disease
extent/magnitude are relatively small compared with pre-
vious publications [10, 11].

Our study has a few limitations: firstly, the MRI was
performed after biopsy. We were not sure, if the tumor ADC
value and DCE parameters had been measured at the biopsy
sites. Secondly, we were unable to evaluate the correlation
between MRIs and histopathological features accurately
because we did not obtain surgical specimens. *ere have
been concerns about the probability of undergrading
prostate cancer by biopsy due to tumor heterogeneity.
*irdly, all patients underwent needle biopsies before MRI
examinations, implying that hemorrhagic or inflammatory
changes caused by this procedure might have affected the
MRIs. However, we excluded visible bleeding with the help
of precontrast T1-weighted images, and the time interval
between biopsy and MRI was long (6–10 weeks) enough for
biopsy wound healing.

5. Conclusions

In conclusion, the present study has confirmed that DCE-
MRI is a promising biomarker that reflects the microcir-
culation of prostate cancer. DCE-MRI-derived quantitative
parameters in combination with clinical prognostic factors
may provide an effective pretreatment diagnosis modality
for early prostate cancer, especially for those with negative
biopsy.
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Our study aimed at comparing the diagnostic value of 18F-NaF positron emission tomography-computed tomography (PET/CT)
and 18F-fluorodeoxyglucose (FDG) PET/CT for detection of skull-base invasion and osseous metastases in patients with na-
sopharyngeal carcinoma (NPC). Our study retrospectively analyzed 45 patients with pathologically proven NPC. )ey all
underwent both 18F-NaF PET/CT and 18F-FDG PET/CT within a 7-day interval. Bone metastases were confirmed by follow-up
using PET/CT, enhance-contrast computed tomography (CT), and magnetic resonance image (MRI). )ese two examinations
were compared using per-patient-based analysis and per-lesion-based analysis. 18F-NaF PET/CTdetected 27 patients with skull-
base invasion, whereas 18F-FDG PET/CT detected 17 patients. 18F-NaF PET/CT and 18F-FDG PET/CT differed significantly in
diagnosing skull-base invasion (p � 0.02) and sensitivity (p � 0.008). )e sensitivity, specificity, and agreement rate of 18F-NaF
PET/CT for detecting bone metastatic lesions were 98.3%, 65.7%, and 92.9%, respectively; these values were 42.9%, 97.1%,
and 51.9%, respectively, for 18F-FDG PET/CT. 18F-NaF PET/CT and 18F-FDG PET/CT differed significantly in the number of
osseous metastases detected (t � 2.45, p � 0.18) sensitivity (p< 0.0001) and specificity (p � 0.003). In patients with nasopha-
ryngeal carcinoma, 18F-NaF PET/CT assessed invasion of the skull base better and detected more osseous metastases than
18F-FDG PET/CT.

1. Introduction

Nasopharyngeal carcinoma (NPC) is an uncommon cancer
worldwide but is prevalent in East and Southeast Asia [1].
NPC has a tendency to spread early to local sites, and re-
gional nodal involvement is frequent (70–90%). Autopsy
studies show that distant metastases are as frequent as
38–87% and that bone metastases occur in 70–80% of pa-
tients with distant metastases [2, 3]. )e actual frequency of
such metastases may be greater than the reported data owing
to the low autopsy rate in Asia. Early and accurate NPC
staging is important for improving both patient quality of
life and therapeutic effects.

Prior to treating NPC, the presence of bonemetastases or
skull-base invasion should be evaluated.)e management of
patients with osseous metastases is quite different. If skull-
base invasion is diagnosed, the T-stage is upgraded to T3,

which has implications for changing therapeutic strategies,
such as increasing the radiation dose and extending the
therapeutic field [4].

99mTc-methylene diphosphonate (MDP) planar bone
scan or single-photon emission computed tomography
(SPECT) is widely used as noninvasive methods for
detecting osseous metastases. However, these methods
cannot obtain cross-sectional images of all the lesions, and
they have lower resolution than other imaging techniques,
such as positron emission tomography/computed tomog-
raphy (PET/CT) [5].

As a molecular imaging technology, PET/CT can in-
dicate the degree of metabolic function of a malignancy and
the clinical stage, response to therapy, and tumour re-
currence, whereas conventional imaging modalities can only
reveal morphological and anatomical information [6, 7].
18F-fluorodeoxyglucose (FDG) has become a routine tracer
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agent for PET/CT but detecting osseous metastases is
a relative weakness of 18F-FDG PET/CT compared with
traditional bone scans and 18F-NaF PET/CT.

18F-NaF was approved by the U.S. Food and Drug
Administration as a bone-seeking diagnostic molecular
imaging agent in 1972 [8]. Because 18F-NaF has better
pharmacokinetic characteristics than 99mTc-MDP, 18F-NaF
regained clinical attention with the development of PET/CT.
Many reports have compared the diagnostic value of
18F-NaF PET/CTwith that of 18F-FDG PET/CTfor detecting
osseous metastases of lung, breast, and prostate cancer
[9, 10]. However, to the best of our knowledge, no study has
compared the clinical value of 18F-NaF PET/CTwith that of
18F-FDG PET/CT for staging NPC.

2. Materials and Methods

2.1. Patients. We reviewed the medical records of patients
with pathologically proven NPC from March 2013 to June
2015 who underwent both 18F-NaF PET/CT and 18F-FDG
PET/CT within an interval of 7 days. )e exclusion criteria
were a history or the detection of another cancer type and an
interval greater than 30 days between an imaging exami-
nation and chemotherapy or radiotherapy.

We obtained informed consent from patients before
both examinations. Our retrospective review of imaging
studies was approved by the institutional review board of the
Affiliated Hospital of Southwest Medical University.

2.2. )e 18F-FDG PET/CT and 18F-NaF PET/CT Protocols.
18F-FDG and 18F-NaF were produced by a Cyclotron
(Siemens Eclipse RD) and an automatic synthesis module
(Beijing PET Technology Co., Ltd., Beijing, China) in our
centre. )e radiochemical purity of 18F-FDG was greater
than 95%. Patients were requested to fast for at least 6 hours
before 18F-FDG was administered. )e 18F-FDG PET/CT
procedure was delayed in patients with a blood glucose level
>11mmol/L (200mg/dL) until the blood glucose level de-
creased to ≤11mmol/L or these patients underwent the
examination on another day [11, 12]. Before and after the
injection, the patients rested and were kept quiet. )e doses
of 18F-FDG and 18F-NaF were 5.55MBq/kg and
4.07MBq/kg, respectively.

Approximately 1 hour after the injection, examinations
began with a Philips Gemini TF/16 PET/CT scanner. For
18F-FDG PET/CT, CT scanning was first performed with
120 kV, 80–250mA, 0.81 pitch, and 0.5 rotation time from
the mid-thigh to the skull base. For 18F-NaF PET/CT, the
scanned area ranged from the feet to the cranium. )e
emission image acquisition time was 70 seconds per bed
position. PET image data were reconstructed by applying
attenuation correction based on the CT data using the or-
dered subset expectation maximization algorithm.

2.3. Image Interpretation. Two experienced nuclear medi-
cine physicians independently evaluated the 18F-NaF
PET/CT and 18F-FDG PET/CT images in a random order
for each patient. )ey were blinded to other imaging results

and the final results of the lesions. For discrepant cases, the
interpreters reached a consensus.

2.4. Definition of Skull-Base Invasion and Metastases.
PET component: local foci of the radioindicator were tar-
geted as malignancy. )e maximal standardized uptake
value (SUVmax) of the mediastinal blood pool was consid-
ered as the reference value for 18F-FDG PETand the SUVmax
of heterolateral or adjacent bone was the reference value for
18F-NaF PET. Because of the heterogeneity of 18F-NaF
concentration in different bones, we could not establish
a unified SUVmax standard to evaluate all skeletons [13].

CT component: bone destruction or osteoblastic
manifestation of bone (local and asymmetric lesions with
increased density) was targeted as malignancy. Differen-
tiations between osteogenic metastases, degenerative
disease, and changes after radiotherapy, such as osteor-
adionecrosis, were difficult only by CT images [14]. Al-
though the uptake was associated with the end plates or
joint surfaces, it was always representative of degeneration
disease [15]. We combined the clinical history with
PET/CT features to make diagnosis.

)e examination range of 18F-NaF PET/CTwas from the
feet to the cranium because of the clinical request of whole-
body evaluation. But when we review the images, we only
record the lesions located in the range from the mid-thigh to
the skull base, which was same to 18F-FDG PET/CT. )e
final diagnosis was based on the overall findings from both
the PET and CT components.

Because the biopsy of all the skull-base invasion and
bone metastases lesions were difficult to be obtained,
whether the skull base of these patients were invaded was
verified by MRI or contrast-enhanced CT within one week
after the PET/CT examinations. Bone metastases were
confirmed by enhance-contrast computed tomography (CT)
or magnetic resonance image (MRI) and one year’s follow-
up. If lesions progressed in the period of follow-up or
osteolytic lesion changed to osteoblastic lesion during
treatment, they were determined as bone metastases [16].
Undetermined lesions and lesions without obvious changes
during follow-up were considered benign lesions (verified
negatives) in the analysis.

2.5. Biochemical Analysis. Biochemical markers such as
alkaline phosphatase were reported to be correlated with
bone metastases [17]. Test data of serum alkaline phos-
phatase were collected if the interval time between blood test
and 18F-NaF PET/CT was less than 7 days.

2.6. Statistical Analysis. )e sensitivity, specificity, and
positive and negative predictive values (PPVs and NPVs)
of 18F-NaF PET/CTand 18F-FDG PET/CTwere calculated
for the diagnosis of skull-base invasion (per-patient
analysis) and the detection of bone metastases (per-
lesion analyses). )e number of osseous metastases de-
tected by 18F-NaF PET/CT and 18F-FDG PET/CT were
compared using the paired-samples t test. McNemar’s
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chi-squared test for matched pairs was used to compare
the diagnostic value of 18F-NaF PET/CT with 18F-FDG
PET/CT for detecting skull-base invasion. Serum alkaline
phosphatase of patients with bone metastases and patients
without bone metastases were compared using in-
dependent samples t-test. Correlation between serum
alkaline phosphatase and SUVmax of 18F-NaF PET/CT had
also been assessed by the Spearman analysis.

3. Results

In total, 45 patients were reviewed (Table 1). All 45 patients
were evaluated during a 3-month follow-up visit. 18F-NaF
PET/CTdetected skull-base invasion in the 26 patients with
verified skull-base invasion. One additional patient who was
diagnosed as having skull-base invasion according to
18F-NaF PET/CTwas considered a false positive based on the
MRI evaluation. In contrast, 18F-FDG PET/CT diagnosed
only 17 of the 26 positively verified patients and did not
detect any false-positive patients (Figure 1). )erefore, the
sensitivity, specificity, accuracy, PPV, and NPV of 18F-NaF
PET/CT for detecting skull-base invasion were 100%, 94.7%,
97.8%, 96.3%, and 100%, respectively, whereas these di-
agnostic measures were 65.4%, 100%, 80%, 100%, and 67.9%,
respectively, for 18F-FDG PET/CT. 18F-NaF PET/CT cor-
rectly diagnosed more patients than 18F-FDG PET/CT
(p � 0.02). Whereas the sensitivity of 18F-NaF PET/CT
was higher than that of 18F-FDG PET/CT (p � 0.008), no
significant difference in specificity was observed (p � 1).

Osseous metastases were detected in 26 patients using
18F-NaF PET/CT or 18F-FDG PET/CT. Using 18F-NaF
PET/CT, 208 lesions were identified as bone metastases in
26 patients (mean, 8). In contrast, using 18F-FDG PET/CT,
physicians diagnosed 81 lesions as osseous metastases
(mean, 6.75). 18F-NaF PET/CT detected more bone meta-
static lesions than 18F-FDG PET/CT did (t � 2.45,
p � 0.018). )e locations of these lesions are described in
Table 2.

Over the course of more than one year’s follow-up, 43
patients underwent chest and abdominal CT or MRI ex-
aminations. Six patients completed whole-spine MRI scans.
Five patients completed pelvic cavity CT or MRI exami-
nations. Seven patients underwent PET/CT reexaminations
and 15 patients underwent 99mTc-MDP bone SPECT/CT
scans. )e final number of verified lesions was 212, among
which 177 lesions were malignant and the other 35 lesions
were benign. )e osseous metastatic lesions that were di-
agnosed using 18F-NaF PET/CT and 18F-FDG PET/CT are
presented in Table 3. Among the verified metastatic lesions,
12 lesions detected by 18F-NaF PET/CT were false positives,
whereas 3 lesions were false negatives. In contrast, one lesion
diagnosed by 18F-FDG PET/CTwas a false positive, whereas
101 verified lesions were not detected by 18F-FDG PET/CT
(Figure 2). )e sensitivity, specificity, PPV, and NPV of 18F-
NaF PET/CT and 18F-FDG PET/CT for the diagnosis of
osseous metastatic lesions are presented in Table 4. )e
differences between 18F-NaF PET/CTand 18F-FDG PET/CT
in sensitivity and specificity were both significant (p< 0.0001
and p � 0.003, respectively). Combining 18F-NaF PET/CT

with 18F-FDG PET/CT changed 13 of 45 (28.9%) manage-
ment decisions made by 18F-FDG PET/CT alone.

40 patients underwent the blood test of near the 18F-NaF
PET/CT examinations. )e range of serum alkaline phos-
phatase was between 5.5 and 128U/L (median was 82.1U/L).
SUVmax of 18F-NaF PET/CT in these patients ranged from
8.16 to 68.8 (median was 16.9). T test showed there were no
significant differences between patients with bone metas-
tases and patients without bone metastases (t � 1.575,
p � 0.124). )ere were no significant correlations between
serum alkaline phosphatase and SUVmax of 18F-NaF PET/CT
of these patients (rs � 0.002, p � 0.991).

4. Discussion

As revealed by Löfgren’s article [16], the pathological evi-
dence of skull-base invasion and bone metastases was hard
to be obtained even in the prospective study. It is mainly due
to the impracticality of obtaining more than one, sometimes
dozens of, biopsy specimens from one patient. Besides, the
torture of patients and the difficulty of biopsy on skull-base
invasion and bone metastases are other limitations to biopsy
analyses. So the assessments of skull-base invasion and bone
metastases are commonly accomplished by imaging
methods.

Imaging methods commonly used in the clinical staging
of NPC include ultrasound, plain film, CT, MRI, bone scans,
and PET/CT. )ese examinations are generally regional,
except for bone scans and PET/CT. A whole-body exami-
nation using multiple imaging modalities is superior to
evaluating the clinical stage using only regional scan
methods. Ultrasound is inaccurate for assessing osseous
status. Whole-body CT examination is limited by the ra-
diation exposure. As for MRI, its disadvantage is the long
examination time required.

Among all imaging methods used for the management of
cancer, the most specific one is radionuclide-labelled gene
imaging. However, the target gene of NPC is under in-
vestigation [18, 19].

In clinical practice, we use 18F-FDG PET/CT as the
common method for tumour staging. However, in 18F-FDG
PET/CT, the uptake of radiotracer by brain and tumour
tissue may disturb the estimation of whether the skull base is

Table 1: Demographic and clinical characteristics of study patients.

Characteristics Number of patients (n � 45) %
Age

Range (22–73 years)
Median (52 years)

Gender
Male 36 80
Female 9 20

Histology
Squamous carcinoma 38 84.4
Undifferentiated

carcinoma 7 15.6

Pretreatment 35 77.8
Posttreatment 10 22.2
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invaded. )e advantages of 11C-choline PET/CT for T
staging of NPC and other disease in skull base compared
with 18F-FDG PET/CT have been reported [20, 21]. How-
ever, the difficulty of producing 11C-choline and the short

half-life of the radionuclide are the limitations of its ex-
tension in clinical practice. )ese disadvantages are not
applicable to 18F-NaF PET/CT.

)e uptake mechanism of 18F-NaF is by chemisorption
to hydroxyapatite, with resultant conversion into fluo-
rapatite and a hydroxyl group. Regional blood flow and

(a) (d)

(b) (e)

(c) (f) (g) (h)
18F-FDG PET/CT 18F-FDG MIP18F-NaF PET/CT 18F-NaF MIP

Figure 1: A 63-year-old man was diagnosed with nonkeratinizing nasopharyngeal carcinoma. (A–C) transverse sections of PET, CT, and
fusion views in 18F-FDG PET/CT, respectively. (D–F) transverse sections of PET, CT, and fusion views in 18F-NaF PET/CT. (G and H) the
maximum intensity projection (MIP) of 18F-FDG PET/CTand 18F-NaF PET/CT, respectively. Skull-base invasion was revealed on 18F-NaF
PET/CT but was hidden on 18F-FDG PET/CT because of the interference from the tumor tissue. )is was consistent with MRI two days
before 18F-NaF PET/CT.

Table 2: Description of osseous metastases detected in 26 patients:
number of lesions by location, radiotracer, and follow-up status.

Location NaF
PET/CT

FDG
PET/CT

Follow-up
positive

Skull (except for
skull base) 3 0 2

Sternum and ribs 52 17 46
Centrum 89 39 78
Ilium, pubis, and ischia 39 18 31
Limbs (include scapula
and clavicle) 25 7 21

Total 208 81 177

Table 3:)e proportion of confirmed osseous metastases that were
detected by each radiotracer for each type of metastatic lesion.

18F-NaF
PET/CT

18F-FDG
PET/CT

Osteoblastic 42/50 18/18
Osteolytic 49/57 27/28
Mixed 22/22 8/8
No obvious abnormality
on CT 61/79 23/27

Total 174/208 76/81
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osteoblastic activity are main factors that influence the
18F-NaF uptake [15].

)e overall accuracy and sensitivity of 18F-NaF PET/CT
are superior to those of 18F-FDG PET/CT for diagnosing
patients with skull-base invasion. Lau et al. previously re-
ported that 18F-NaF PET/CT was more sensitive than
18F-FDG PET/CT for diagnosing skull-base invasion and
could improve the diagnostic accuracy [4]. Our study
revealed that 18F-NaF PET/CT was more sensitive than
18F-FDG PET/CT and exhibited a similar specificity. Owing
to the better diagnostic performance of 18F-NaF PET/CT for
evaluating the skull base, it can more accurately determine
the target volume for radiotherapy.

Although the reported false-positive rate of 18F-NaF
PET/CT is relatively high, our study demonstrated that
the diagnostic accuracies of 18F-NaF PET/CTare sufficiently
high for detecting skull-base involvement in patients with
NPC while compared with MRI. )is finding is consistent
with our previous study [22]. We consider that this finding
may be related to the false-positive discoveries of MRI owing
to common oedema and inflammation before and after
radiotherapy. Although the uptake of 18F-NaF is not specific
to osseous malignancy, correlation of functional findings on
18F-NaF PET with anatomic information on CT improves
the specificity of this modality. Further studies should be

performed to compare the accuracies of 18F-NaF PET/CT,
MRI, and true positive methods.

18F-FDG PET/CT has advantages for evaluating systemic
conditions. Liu et al. discovered that 18F-FDG PET can
replace conventional work-ups, including chest radiogra-
phy, abdominal ultrasonography, and skeletal scintigraphy,
in the primary M staging of nonkeratinizing NPC [23].
However, a retrospective study of 35 newly diagnosed NPC
patients conducted by Yang et al. found no significant
difference between 18F-FDG PET/CT and planar bone
scanning (PBS) in diagnosing one or more osseous metas-
tases in NPC patients. )ey also reported that some bone
metastases could be detected by PBS but not by 18F-FDG
PET/CT [3]. Many studies have reported the superiority of
18F-NaF PET/CT for detecting bone metastases compared
with 18F-FDG PET/CT [24–26]. Our study showed that in
patients with NPC, 18F-NaF PET/CT detects more bone
metastases with a higher sensitivity than 18F-FDG PET/CT
does. For osteoblastic lesions, 18F-NaF PET/CT can show
more sensitivity than 18F-FDG PET/CT due to the imaging
mechanism of these two tracers. 18F-FDG PET/CT detects
lesions owing to the abnormal metabolism of cancer cells,
whereas 18F-NaF PET/CT reveals abnormal blood perfusion
and bone reconstruction. Previous studies have shown that
18F-FDG PET/CT has modest sensitivity for detecting

Table 4: Measures of diagnostic performance using 18F-NaF PET/CT or 18F-FDG PET/CT to detect osseous metastatic lesions of patients
with nasopharyngeal carcinoma.

TP FP TN FN Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%)
18F-NaF PET/CT 174 12 23 3 98.3 65.7 93.4 88.5 92.9
18F-FDG PET/CT 76 1 34 101 42.9 97.1 98.7 25.2 51.9
TP: true positive; FP: false positive; TN: true negative; FN: false negative.

(a) (b) (c)

(d) (e) (f) (g) (h)
18F-FDG PET/CT 18F-FDG MIP18F-NaF PET/CTTransverse CT 18F-NaF MIP

Figure 2: A, D, and G are parts of 18F-FDG PET/CTand C, F, and H are parts of 18F-NaF PET/CT. B and E are transverse sections of low-
dose CT. Abnormal uptake of 18F-NaF is shown at the right rib and right ilium, whereas no abnormal concentration of 18F-FDG is found
(arrows). )e lesions are verified as osseous metastases by CT follow-up.
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osteoblastic lesions and that 18F-NaF PET/CT detects both
osteoblastic and osteolytic bone metastases well [10, 23]. In
our study, 18F-NaF PET/CT detected more osteoblastic,
osteolytic, and mixed-type metastases and lesions without
obvious changes on the CT images compared with 18F-FDG
PET/CT. )ese findings may be due to some osseous me-
tastases having only abnormal blood perfusion or bone
reconstruction without disordered glucose metabolism.

Because 18F-NaF PET/CT and 18F-FDG PET/CT each
have unique advantages and disadvantages, medical man-
agement could be improved by using both methods in one
combined examination [27]. Further study should be made
to combine these two methods while keeping the radio-
exposure of patients low enough.

Serum alkaline phosphatase was proved to be un-
correlated with bone metastases and SUVmax of 18F-NaF
PET/CT in our study. It may be due to the small sample and
the huge amount of influence factors on serum alkaline
phosphatase such as age and living standard. Even so,
18F-NaF PET/CT could still reflect the regional blood flow
and osteoblastic activity in an noninvasive way, which could
be an indicator for assessing treatment response [28].

Our study has several limitations. First, our study was
performed retrospectively with a limited number of patients
who were heterogeneous, which might have led to selection
bias. Second, it was impossible for us to obtain pathological
material from each patient, which potentially produced
errors in the final diagnosis. )ird, in the benign group, we
included undetermined lesions and lesions without obvious
changes during follow-up, which may have increased the
rate of false negatives.

5. Conclusion

)is retrospective study of NPC patients demonstrated that
18F-NaF PET/CT detected more osseous metastases and
more accurately assessed skull-base invasion than did
18F-FDG PET/CT. Combining 18F-NaF PET/CT with
18F-FDG PET/CT could improve the stage evaluation of
NPC compared with 18F-FDG PET/CT alone.
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Multimodal imaging has been increasingly used in oncology, especially in cervical cancer. By using a simultaneous positron emission
(PET) and magnetic resonance imaging (MRI, PET/MRI) approach, PETandMRI can be obtained at the same time which minimizes
motion artefacts and allows an exact imaging fusion, which is especially important in anatomically complex regions like the pelvis.+e
associations between functional parameters from MRI and 18F-FDG-PET reflecting different tumor aspects are complex with in-
conclusive results in cervical cancer. +e present study correlates histogram analysis and 18F-FDG-PET parameters derived from
simultaneous FDG-PET/MRI in cervical cancer. Overall, 18 female patients (age range: 32–79 years) with histopathologically
confirmed squamous cell cervical carcinoma were retrospectively enrolled. All 18 patients underwent a whole-body simultaneous 18F-
FDG-PET/MRI, including diffusion-weighted imaging (DWI) using b-values 0 and 1000 s/mm2. Apparent diffusion coefficient (ADC)
histogram parameters included several percentiles, mean, min, max, mode, median, skewness, kurtosis, and entropy. Furthermore,
mean and maximum standardized uptake values (SUVmean and SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis
(TLG) were estimated. No statistically significant correlations were observed between SUVmax or SUVmean and ADC histogram
parameters. TLG correlated inversely with p25 (r � −0.486, P � 0.041), p75 (r � −0.490, P � 0.039), p90 (r � −0.513, P � 0.029),
ADCmedian (r � −0.497, P � 0.036), and ADCmode (r � −0.546, P � 0.019). MTV also showed significant correlations with
several ADC parameters: mean (r � −0.546, P � 0.019), p10 (r � −0.473, P � 0.047), p25 (r � −0.569, P � 0.014), p75
(r � −0.576, P � 0.012), p90 (r � −0.585, P � 0.011), ADCmedian (r � −0.577, P � 0.012), andADCmode (r � −0.597, P � 0.009).
ADC histogram analysis and volume-based metabolic 18F-FDG-PET parameters are related to each other in cervical cancer.

1. Introduction

Cervical cancer is the third most commonly diagnosed
cancer and the fourth leading cause of cancer death in fe-
males worldwide [1].

Magnetic resonance imaging (MRI) has been established
as the best imaging modality for staging of cervical cancers
due to its excellent soft tissue contrast [2]. Furthermore,MRI
can provide information regarding tumor microstructure by
diffusion-weighted imaging (DWI). +e principle hypoth-
esis is that DWI can quantify the free movement of protons
(Brownian molecular movement) by using apparent diffu-
sion coefficients (ADC) [3]. +is movement is hindered

predominantly by cell membranes. In fact, previous studies
showed that ADC inversely correlated with cell count in
several malignant and benign lesions [4].

Another clinically important functional imaging mo-
dality is 18F-fluorodeoxyglucose positron emission tomog-
raphy (FDG-PET), which reflects tumor glucose-metabolism
[5]. +e FDG-uptake in tumor tissue is associated with the
increased expression of glucose transporters (GLUT), mainly
subtype GLUT-1 [6]. Clinically, 18F-FDG-uptake is semi-
quantified by standardized uptake values (SUV). Moreover, it
has been shown that volume-based metabolic PET parame-
ters, such as metabolic tumor volume (MTV) and total lesion
glycolysis (TLG), might provide additional information
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regarding tumor behavior [7]. MTV and TLG have been
reported as possible prognostic factors, for example, for lung
cancer or laryngeal carcinoma. In cervical cancer, for example,
MTV was the only parameter to be of prognostic relevance in
a multivariate analysis performed by Hong et al. [8].

Presumably, functional parameter derived from PETand
from MRI, albeit reflecting slightly different tumor aspects,
might be linked to each other [9]. As a hypothesis, a cell-rich
tumor might also express more GLUT-transporters within
their cell membranes, and hence, an association between
ADC and SUV values might exist.

In fact, this was studied by various investigations in several
different tumor entities like esophageal or breast cancer [9–
13]. However, in a recent meta-analysis, comprising 35
studies, only a weak inverse correlation coefficient of r �

−0.30 was identified over all various investigated tumors [9].
Regarding cervical cancer, there are inconclusive results

[10, 14–16]. Table 1 summarizes the published data about
reported correlations between ADC and SUV values. So,
Brandmaier et al. identified an inverse correlation between
SUVmax and ADCmin (r � −0.532, P � 0.05) [10], whereas
most authors did not [14–16].

An emergent imaging analysis, namely, ADC histogram
analysis, which is based on pixel distribution, is used to
improve tumor heterogeneity in DWI-MRI assessment. Every
voxel of a region of interest is issued into a histogram and
thusly statistically information about the tumor is provided.
Typically parameters are percentiles, median, mode, skew-
ness, kurtosis, and entropy [17]. It is acknowledged that
heterogeneity displayed by the histogram might be reflected
by tumor microstructure heterogeneity, and therefore,
a better reflection of tumor biology may be possible [17]. +e
histogram analysis approach has been applied in other tu-
mors, for example, in prostate cancer. For example, Liu et al.

characterized histogram variables of ADC as predictors for
the aggressiveness of prostate cancer [18]. In a study of Shindo
et al., ADC histogram analysis has been described as helpful in
differentiating pancreatic adenocarcinomas from neuroen-
docrine tumors [19]. Regarding cervical cancer, there are only
few reports compared metabolic parameters of 18F-FDG-PET
and ADC histogram analysis. For instance, Ueno et al.
evaluated the prognostic value of SUV, MTV and TLG, and
ADC histogram analysis for tumor response to therapy and
event-free survival in patients with cervical cancer [20]. It has
been shown that pretreatment volume-based metabolic 18F-
FDG-PET parameters may have better potential than ADC
histogram analysis for predicting treatment response and
survival in these patients [20]. +e main drawback of this
study was that data from PET and MRI were obtained se-
quentially and not simultaneously; thus, the results of this
study may have been influenced by this fact.

+e aim of our study was to elucidate possible associ-
ations between ADC histogram-based parameters and 18F-
FDG-PET parameters derived from simultaneous PET/MRI
in cervical cancer.

2. Materials and Methods

+is prospective study was approved by the local research
ethics committee.

2.1. Patients. Overall, 18 female patients (age range: 32–79
years; mean age: 55.4 years) with histopathologically confirmed
squamous cell cervical carcinoma were enrolled. Inclusion
criteria were a staging investigating with a body simultaneous
18F-FDG-PET/MRI before any form of treatment.

Table 2 gives an overview about the patients and the
different clinical pathological stages.

Table 1: Overview about published literature regarding correlation analysis between DWI and FDG-PET.

Author Number of patients Analyzed parameters Correlation
Ho et al. [15] 33 ADCmin, mean, SUVmax, mean No statistically significant correlations

Sun et al. [16] 35 ADCmin, mean, SUVmax, mean

No significant correlation between SUVmax and
ADCmin (r � −0.074, P � 0.501) or between

SUVmean and ADCmean (r � −0.505, P � 0.201)
across all 35 primary tumors; for the 28 squamous
cell carcinomas, there was also no significant
correlation between SUVmax and ADCmin

(r � −0.363, P � 0.342) or between SUVmean and
ADCmean (r � −0.354, P � 0.150)

Wang et al. [35] 30 ADCmin, mean, SUVmax, mean
No statistically significant correlations between

ADC and SUV fractions

Brandmaier et al.
[10]

31 (14 primary, 17
recurrence) ADCmin, mean, SUVmax, mean

SUVmax versus ADCmin (r � −0.532, P � 0.05) in
primary tumors. Primary metastasis showed weak
inverse correlations for SUVmax and ADCmin

(r � −0.362, P � 0.05) and moderate correlations
for SUVmean and ADCmin (r � −0.403, P � 0.03)

Pinker et al. [36] 11 ADCmean, SUVmax No significant correlations

Surov et al. [14] 21 ADCmin, mean, max, SUVmax, mean
No significant correlations between ADC and

SUV fractions

Lai et al. [37] 29 MTV, functional diffusion
volume

Significant differences regardingMTVand functional
diffusion volume derived from ADC maps
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2.2. PET/MRI. All 18 patients underwent a whole-body
simultaneous 18F-FDG-PET/MRI (Biograph mMR-Biograph,
Siemens Healthcare Sector, Erlangen, Germany) which was
performed from the upper thigh to the skull for 4 minutes
per bed position. PET images were reconstructed using the
iterative ordered subset expectation maximization algo-
rithm with 3 iterations and 21 subsets, a Gaussian filter
with 4mm full width at half maximum (FWHM), and
a 256 × 256 image matrix. Attenuation correction of the
PETdata was performed using a four-tissue (fat, soft tissue,
air, and background) model attenuation map, which was
generated from a Dixon-Vibe MR sequence according to
previous description.

Radiotracer administration was performed in-
travenously after a fasting period of at least 6 hours with
a body weight-adapted dose of 18F-FDG (4MBq/kg; range:
152–442MBq; mean± std: 285± 70MBq). PET/MRI image
acquisition started on average 122 minutes after 18F-FDG
application. Due to radiotracer elimination via the urinary
tract, which may influence evaluation of pelvic PET images,
all patients received a bladder catheter prior to PET/MRI
examination.

Image analysis was performed on the dedicated work-
station of Hermes Medical Solutions, Sweden. For each
tumor, maximum and mean SUV (SUVmax and SUVmean),
total lesion glycolysis (TLG), and metabolic tumor volume
(MTV) were determined on PET images. MTV was defined
as total tumor volume with an SUV≥ 2.5 and was calculated
automatically. TLG was also calculated automatically by
multiplying the MTV of the primary tumor by its SUVmean.

In all cases, pelvicMRI was performed. Our investigation
protocol included the following sequences: transverse T2
turbo spin echo (TSE) sequence (TR/TE: 5590/105), sagittal
T2 TSE sequence (TR/TE: 4110/131), transverse T1 TSE
sequence (TR/TE:1310/12), transverse T1 TSE after in-
travenous application of contrast medium (0.1mmol/kg
body weight Gadobutrol, Bayer Healthcare, Germany)

(TR/TE: 912/12), and sagittal postcontrast T1 TSE (TR/TE:
593/12). Additionally, diffusion-weighted imaging was
performed using an echo-planar imaging (EPI) sequence (b0
and b1000 s/mm2, TR/TE: 4900/105). Figure 1 shows an
exemplary patient of our patient sample.

2.3. Histogram Analysis of ADC Values. Automatically
generated ADC maps were transferred in DICOM format
and processed offline with custom-made Matlab-based ap-
plication (+e Mathworks, Natick, MA) on a standard
windows-operated system. +e ADC maps were displayed
within a graphical user interface (GUI), which enables the
reader to scroll through the slices and draw a volume of
interest (VOI) at the tumor’s boundary (whole-lesion
measure). All measurements were performed by two au-
thors blinded to each other (AS, HJM, 15 and 2 years of
radiological experience).+e ROIs were modified in the GUI
and saved (in Matlab-specific format) for later processing.
After setting the ROIs, following parameters were calculated
and written in a spreadsheet format: ROI volume (cm3),
mean (ADCmean), maximum (ADCmax), minimum (ADCmin),
ADC median, 10th (p10 ADC), 25th (p25 ADC), 75th
(p75 ADC), 90th (p90 ADC) percentile, and mode (ADC
mode). Additionally, histogram-based characteristics of the
ROI—kurtosis, skewness, and entropy—were calculated.

2.4. Statistical Analysis. Statistical analysis was performed
using SPSS 23.0 (SPSS Inc, Chicago, IL). Collected data were
evaluated by means of descriptive statistics. +e data were
not normally distributed according to Kolmogorow–
Smirnow test. +erefore, Spearman’s correlation coefficient
(p) was used to analyze associations between investigated
parameters. Interreader variability was assessed with
intraclass coefficients. P values< 0.05 were taken to indicate
statistical significance.

3. Results

+e investigated ADC histogram showed a good interreader
variability, ranging from ICC� 0.705 for entropy to
ICC� 0.959 for ADC median (Table 3).

Table 4 shows results of correlation analysis between the
investigated PET and ADC parameters. No statistically
significant correlations were observed between SUVmax or
SUVmean and ADC histogram parameters.

TLG correlated inversely with p25 (r � −0.486, P � 0.041),
p75 (r � −0.490, P � 0.039), p90 (r � −0.513, P � 0.029),
ADC median (r � −0.497, P � 0.036), and ADC mode
(r � −0.546, P � 0.019). MTV also showed significant
correlations with several ADC parameters as follows:
mean (r � −0.546, P � 0.019), p10 (r � −0.473, P � 0.047),
p25 (r � −0.569, P � 0.014), p75 (r � −0.576, P � 0.012), p90
(r � −0.585, P � 0.011), ADCmedian (r � −0.577, P � 0.012),
and ADC mode (r � −0.597, P � 0.009). Finally, histogram-
based parameters—skewness, kurtosis and entropy—did not
correlate with PET parameters.

Table 2: Clinical data of the investigated patients.

Case Age Tumor grade T stage N stage M stage
1 63 G2 2b 1 0
2 76 G3 4 0 0
3 65 G2 2b 0 0
4 63 G3 4 1 1
5 34 G3 2b 1 0
6 57 G2 4 1 1
7 53 G3 2b 0 0
8 32 G2 4 1 0
9 32 G2 2b 0 0
10 54 G2 3a 2 0
11 79 G3 4 1 0
12 52 G1 4 0 0
13 37 G3 2b 1 1
14 72 G3 4 0 0
15 46 G2 2b 1 1
16 71 G2 4 1 1
17 50 G2 2b 1 1
18 61 G2 4 1 0
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Figure 1: Imaging and histopathological findings in a case of cervical cancer. (a) 18F-FDG-PET of a 57-year-old woman with locally
advanced cervical cancer (arrow). (b) Fused 18F-FDG-PET/MRI image demonstration of the metabolic active uterine cervical cancer
(arrow). Calculated 18F-FDG-PET parameters are as follows: SUVmax � 8.77, SUVmean � 4.66, SUV median� 4.32, TLG� 92.91, and
MTV� 19.96. (c) ADCmap of the tumor with a ROI. (e) ADC histogram.+e histogram analysis parameters (×10−3mm2·s−1) are as follows:
ADCmin � 0.36, ADCmean � 0.87, ADCmax � 1.36, p10� 0.7, p25� 0.78, p75� 0.96, p90�1.03, median� 0.88, and mode� 0.93. Histogram-
based characteristics are as follows: kurtosis� 2.96, skewness�−028, and entropy� 4.72. (d) Histopathological examination (hematoxylin
and eosin-stained specimen) after tumor biopsy reveals a G2 cervical cancer.
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4. Discussion

To the best of our knowledge, this is the first study eluci-
dating possible correlations between ADC histogram anal-
ysis and complex 18F-FDG-PET parameters derived from
simultaneous PET/MRI in cervical cancer.

Pretherapeutic tumor staging in cervical cancer is of
great importance. MRI is the best imaging modality to es-
timate regional tumor extent, with identification of tumor
infiltration into the adjacent organs/tissues within the female
pelvis [2]. Hybrid imaging, in terms of PET/CT, has been
shown to be superior to other conventional imaging mo-
dalities (MRI, CT) for the identification of nodal or distant
metastatic spread [21]. Consequently, the combination of
both, namely, a simultaneous PET/MRI, has been described
as valuable imaging modality for whole-body tumor staging
of cervical cancer patients providing improved treatment
planning when compared to MRI alone [22]. Furthermore,
our own preliminary data show that simultaneous PET/MRI
is a valuable imaging modality to reflect histopathologic
parameters like cellularity and proliferation index in cervical
cancer [14].

Additionally, functional MRI, as well as 18F-FDG-PET
can provide information about tumor biology in a different
fashion. ADC values derived from DWI are mainly influ-
enced by cellularity, whereas SUV values derived from FDG-
PET are mainly influenced by GLUT-1 overexpression
within cell membranes and enhanced activity of tumor
hexokinase [4, 14, 23].

Presumably, parameters from PET and MRI might be
associated with each other due to the fact that a more cell-
dense tumor also might express more GLUT-1 or may have
an increased enzymatic activity [9]. However, a recent meta-
analysis identified only a weak inverse correlation
(r � −0.30) between SUV and ADC values pooling various
tumors in oncologic imaging [9]. Regarding cervical cancer,
the studies, which investigated associations between ADC
and SUV values, showed inconclusive results [10, 14–16].
Only one study found an inverse correlation between
SUVmax and ADCmin (r � −0.532) [10], whereas most au-
thors could not identify linear correlations between these

parameters, indicating that they might reflect different tu-
mor aspects [14–16].

+e present study identified that several ADC histogram
parameters were associated with volume-based metabolic
PETparameters, namely, MTV and TLG. In good agreement
with the literature, there were no correlations between ADC
parameters and SUV values in the current patient sample.
+erefore, our results suggest that ADC histogram analysis
parameters and TLG and MTV are more sensitive to reflect
relationships between 18F-FDG-PET and DWI than the
widely used SUV and “conventional” ADC values. Fur-
thermore, our study may explain negative results of the
previous investigations. Moreover, in the present study,
ADC values were obtained as a whole-lesion measurement,
whereas in most studies [10, 14–16], only one slice was used
for calculation and might therefore not be representative for
the whole tumor. According to Kyriazi et al., whole-lesion
measurement might be more beneficial than the conven-
tional one slide approach since pixel-by-pixel ADC histo-
grams through the entire tumor volume include different
microenvironments of diffusivity, which may be masked by
mean ADC analysis [24].

Furthermore, histogram-based analysis has been eval-
uated to have an excellent interobserver agreement [25, 26].
Additionally, it could clearly discriminate between tissue
affected with cancer and physiological cervical tissue [25].
Finally, it could distinguish different FIGO stages: with
increasing skewness, kurtosis, and entropy in the advanced
stages indicating higher tumor heterogeneity in those lesions
[26].

Interestingly, ADC histogram analysis parameters cor-
related with some histopathological features in cervical
cancer. For example, entropy was associated with p53 ex-
pression [27]. Moreover, Meng et al. identified that ADC
histogram parameters can predict tumor recurrence after
radiochemotherapy with an area under the curve 0.85 [28].
In another study, it was identified that skewness and several
percentiles derived from ADC maps were significantly
different between squamous cell and adenocarcinomas of
the uterine cervix and, therefore, ADC histogram analysis
might aid in discrimination of the entities [29]. In fact, as
reported previously, skewness was significantly higher for
squamous cell carcinomas than adenocarcinomas and was
higher in poorly differentiated tumors [29].

Regarding 18F-FDG-PET, pretreatment SUVmax and
MTV have been reported to be associated with tumor
prognosis [30, 31]. So MTV had a hazard ratio of 3.15 for
disease-free survival [31], and SUVmax of the primary tumor
was the only identified prognostic factor in a multivariate
analysis [30]. Furthermore, TLG was also associated with the
overall survival in locally advanced cervical cancer [32].
However, it might be of limited use for primary diagnosis in
early stage carcinomas since 18F-FDG-PET only has little
value in the routine pretreatment assessment in patients with
early FIGO stages [33]. However, there are promising his-
topathological methods to better understand underlying
microstructure changes, which can be displayed with PET
imaging [34].

Table 3: Interreader variability with intraclass coefficients of the
investigated ADC parameters.

Parameter ICC
ADCmean 0.870
ADCmin 0.947
ADCmax 0.920
ADC P10 0.727
ADC P25 0.844
ADC P75 0.804
ADC P90 0.803
ADC median 0.959
ADC mode 0.917
Kurtosis 0.859
Skewness 0.792
Entropy 0.705
ICC, intraclass coefficient.
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Overall, our report indicates that for further analyses
about associations between DWI and PET and as well be-
tween PET, DWI, and histopathology in several tumors,
ADC histogram analysis and volume-based metabolic PET
parameters like TLG/MTV should be obtained.

+ere are several limitations of the present study to
address. Firstly, it is a retrospective study with possible
known bias. However, MRI and 18F-FDG-PET were mea-
sured by two different readers, blinded to each other. Sec-
ondly, the patient sample is relatively small. +irdly, only
squamous cell carcinomas were evaluated.

In conclusion, the present study shows that ADC his-
togram analysis and volume-based metabolic 18F-FDG-PET
parameters are related to each other and might, therefore,
reflect similar tumor behavior of cervical cancer. +e next
step would be to assess the value of these simultaneous
PET/MRI parameters for predicting treatment response and
survival in cervical cancer patients.
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Rationale. To assess the diagnostic value of 18F-FDG-PET/CT for different retroperitoneal soft tissue sarcomas (STS) and other
similar tumors. To analyze the predictive value of 18F-FDG-PET/CTfor histological grade and main prognostic factors.Methods.
195 patients with 44 different diseases have been included. Relationship between SUVmax, Clinical, pathological, and prognostic
information has been analyzed. Results. Malignant tumors do not show higher SUVmax than benign ones (P � 0.443). We divided
all 44 different diseases into two groups; SUVmax of group 1 is significantly higher than group 2 (P≤ 0.001). )e ROC curve
suggests 4.35 is the cutoff value to distinguish groups 1 and 2 (sensitivity� 0.789; specificity� 0.736). SUVmax correlates with Ki-
67 index, mitotic count, vascular resection, histological grade, and recurrent STS without considering pathological diagnosis
(P � 0.001, P � 0.012, P � 0.002, P≤ 0.001, and P � 0.037, resp.). Conclusion. 18F-FDG-PET/CT cannot simply distinguish
malignant and benign tumors in retroperitoneal/intra-abdominal cavity; however, the SUVmax of malignant tumors, in-
flammatory pseudotumor, and PPGL group is higher than the SUVmax of benign tumors, lymph node metastasis, hematoma, and
low malignant STS group. Guidance of “SUVmax location” may be helpful for biopsy and pathology dissection.

1. Introduction

Retroperitoneal and intra-abdominal sarcomas contain
various soft tissue tumors and a wide prognostic range.
Precise diagnosis of these sarcomas always plays a key role in
treatment selection, especially in the application of com-
partment resection [1]. As STS are generally cured by ad-
equate surgical resection, inaccurate diagnosis may cause
unnecessary resection of innocent organs and extra risks.
Judgment of malignancy is not accurate even using biopsy
[2]. Moreover, some researchers resort to other preoperative
examinations such as 18F-Fluoro-2-deoxy-D-glucose (18F-
FDG) positron emission tomography (PET); however, the
effort of 18F-FDG-PET/CT to distinguish extremity low-
grade sarcomas and benign lesions is not fully paid off [3].
Unlike extremity STS, the special anatomical cavity con-
tains many different pathological types that can mimic
STS. )ere is yet no such comprehensive study regarding

the use of 18F-FDG-PET/CT in retroperitoneal and intra-
abdominal STS, considering the limitation of low in-
cidence of STS [4]. As the establishment of the only
sarcoma center in China, the abundant resource provides
us an opportunity to afford such an analysis.

)e use of 18F-FDG-PET/CT in oncology is based on the
FDG accumulation in malignant tumor cells. 18F-FDG-
PET/CT is initially used for diagnosis, staging, and ther-
apy monitoring. )e value for prediction of tumor biology
and even prognosis has been found in recent researches
[5, 6]. To evaluate the use of 18F-FDG-PET/CT in precise
diagnosis and prognosis prediction, we try to correlate
maximum standardized uptake value (SUVmax) with dif-
ferent pathologic diagnosis and prognostic factors. In recent
researches, common STS prognostic factors are histological
grade, tumor size, age, location, vascular resection, number
of resected organs, Ki-67 index, and multifocality [7–9].
Among them, Ki-67 is a nuclear protein associated with
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cellular proliferation. Histological grade of the FNCLCC
system has been widely used in prognostic prediction for
most STS [10]. )ey will be perfect representative histo-
logical data for us to evaluate 18F-FDG-PET/CT.

2. Materials and Methods

2.1. Patients. 195 patients with 44 different pathological di-
agnosis have been enrolled. All patients accepted surgical
treatment and 18F-FDG-PET/CT in retroperitoneal and intra-
abdominal soft tissue sarcoma center, Peking University Cancer
Hospital, during a 4-year period (November, 2013, toDecember,
2017). All patients did not receive any antitumor treatment
before the performance of 18F-FDG-PET/CT. Ethical approval
and written informed consent have been obtained. Clinical,
pathological, and prognostic information have been collected.
Histological grade of STS cases without GIST has been reas-
sessed by two experienced pathologists in accordance with the
FNCLCC system [10]; the two pathologists were blinded to the
findings of clinical and prognostic information.

)ese patients were divided into two different parts. )e
first part included 154 retroperitoneal/intra-abdominal STS
patients, for whom the relationship among SUVmax,
pathological diagnosis, tumor biology, and clinical charac-
ters would be analyzed. )en, 32 patients were excluded as
per the inclusion and exclusion criteria listed below. )e
remaining 121 patients would be used to analyze the re-
lationship between SUVmax and prognosis. )e second part
included 41 patients with benign tumors, psuedotumors,
reproductive tumors, and other tumors. )ey are excellent
cases for differentiation.

2.2. Inclusion and Exclusion Criteria
(1) Patients whose preoperative diagnosis and post-

operative pathology are soft tissue sarcoma will be
included; others will not be included for survival
analysis.

(2) Patients do not receive any antitumor treatment
before 18F-FDG-PET/CT examination.

CA SUV 8.2 

IA SUV 14.16

CA SUV 20.6

MPNST SUV 6.4

SPT SUV 5.67 SPT
SUV 9.46

PEComa SUV 11.4PEComa SUV 4.1
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PPGL SUV 21.7
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SUV 10

YST SUV 6.5 Seminoma
SUV 4.1 

(b)

Figure 1: Representative cases in group 1. STS in group 1 are listed in (a). Other tumors in group 1 are listed in (b).

Contrast Media & Molecular Imaging 3



(3) All patients accept R0/R1 resection, and those who
accept R2 resection will be excluded.

(4) Expect for GIST, no distant metastasis is found
before/during the operation.

(5) All patients have signed the informed consent and
agreed to participate in this study.

(6) )ose patients who died of perioperative compli-
cations or other noncancer-related causes will be
excluded.

2.3. 18F-FDG-PET/CT Acquisition. Patients fasted for at
least 6 h before the 18F-FDG-PET/CT scan. Images were
acquired 1 h after injection of 3.7MBq/kg 18F-FDG.
Awhole-body scan (brain to midthigh) was performed
with the patient in the supine position. CT exposure factors
for all scans were 120 kV and 100mAs. 18F-FDG-PET/CT
images were reported in consensus by two experienced
nuclear medicine physicians, who were blinded to the
findings of clinical and prognostic information. At the same

time, CT imaging was used to differentiate lesions from
physiological uptake. )e SUVmax of lesions were calcu-
lated. )e SUVmax generated from each patient was used in
the final analysis.

2.4. Statistics. Data collection and statistical analysis were
performed with IBM SPSS Version 20 (SPSS Inc., Chicago,
IL, USA). Enumeration data were expressed as mean and
standard deviation, ranked data by cross-tabulation and
percentages, and survival data by the Kaplan–Meier method.
)e ROC curve was used to find appropriate cutoff SUVmax
for differentiation. For statistical analysis, T test, linear re-
gression, ANOVA, nonparametric test, chi-square test, and
log-rank test were employed. All tests were performed two-
sided at a significance level of P � 0.05.

3. Results

3.1. Diagnosis. For all cases included, SUVmax correlates with
Ki-67 index and mitotic count (P � 0.001, and P � 0.012,

DT
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Figure 2: Representative cases in group 2.
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resp.). Malignant tumors do not show higher SUVmax
than benign ones (P � 0.443). )ey have been divided
into two groups according to the box plot, and literature
review, representative images, and pathological types of

each group have been shown in Figures 1–4. SUVmax of
group 2 is significantly higher than group 1 (P≤ 0.001).
)e ROC curve suggests 4.35 is an appropriate cutoff value
to distinguish group 1 from group 2 (sensitivity� 0.789;
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Figure 3: (a))e ROC curve for SUVmax to distinguish group 1 from group 2. (b, c) SUVmax (cutoff at 4.35) does not correlate with OS and
DFS using Kaplan–Meier survival curves. (d) )e box plot for SUVmax of all cases.

Group 1 Retroperitoneal and intra-abdominal STS UPS, DL, GIST, SS, PL, leiomyosarcoma, RCL, AF, MH, FDCS, PNET, MPNST,
rhabdomyosarcoma, chondrosarcoma 

Benign tumors PPGL
Pseudotumor CA, IA, sarcoidosis 

Reproductive tumors HGSOC, YST, OGCT, dysgerminoma, seminoma 
Others PM, lymphoma,MM, SPT, PEComa, carcinosarcoma, SCA
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Others LM

Figure 4: Specific pathological types for groups 1 and 2.
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specificity � 0.736, Figure 3). SUVmax of all diseases are
listed in Table 1.

3.2. Treatment. For all STS cases, SUVmax correlates with
vascular resection (P � 0.002) but has no relationship with
combined organs resection (cutoff at 3 organs, P � 0.453).
SUVmax does not correlate with pathological invasion of
adjacent organs (P � 0.085). SUVmax shows no relationship
with operative time and blood loss (P � 0.252 and P �

0.592, resp.).

3.3. Prognosis. Recurrent STS show higher SUVmax than
primitive STS (P � 0.037). SUVmax correlates with histo-
logical grade (P≤ 0.001), grade 1 is the lowest and grade 3 is
the highest. SUVmax for grade 1, 2 and 3 are 4.03± 2.28,
6.31± 4.78 and 10.09± 12.02, respectively. SUVmax also
significantly correlates with tumor differentiation scores and
tumor necrosis scores of the FNCLCC system (P �

0.006 and P≤ 0.001, resp.). SUVmax for tumor differenti-
ation scores 1, 2, and 3 are 3.51± 1.99, 5.47± 3.84, and 9.63±
7.89, respectively. SUVmax for tumor necrosis scores 0, 1,
and 2 are 5.81± 3.94, 9.73± 8.57, and 11.28± 4.44. SUVmax
shows no significant difference between multifocal and
unifocal tumors (P � 0.279). SUVmax does not correlate
with tumor size (P � 0.279). SUVmax shows no relationship
with death or postoperative recurrence (P � 0.081 and
P � 0.162, resp.). Using 4.35 as the cutoff value, SUVmax
does not correlate with DFS or OS by the Kaplan–Meier
method (P � 0.168 and P � 0.491, resp., Figure 3).

4. Discussion

Precise preoperative diagnosis of retroperitoneal and intra-
abdominal sarcomas is always a vital problem, since different
pathological diagnosis would lead to completely different
treatment and prognosis. In former studies, the intermediate
and high-grade malignant lesions have significantly higher
FDG-uptake than the low-grade and benign lesions, but 18F-
FDG-PET/CT offered inadequate discrimination between
the latter two groups [3, 11]. Some researchers also tried to
find a cutoff to differentiate malignant from benign tumors;
the sensitivity and specificity of 18F-FDG-PET/CT for
detecting malignant versus benign lesions were 79% and
77% using SUV≥ 2.0 and 60% and 86% using SUV≥ 3.0,
respectively [4].

In our study, we included 44 different diseases for dif-
ferentiation. Unlike STS elsewhere, we found that 18F-FDG-
PET/CT cannot simply distinguish benign and malignant
tumors in retroperitoneal and intra-abdominal cavity. To
solve this problem, we divided them into 2 different groups.
With this method, we found that sensitivity and specificity
for distinguishing 2 different groups are 0.789 and 0.736
using SUVmax≥ 4.35. Group 1 stands for malignant tumors,
inflammatory pseudotumor, and pheochromocytoma and
paraganglioma (PPGL). Group 2 stands for benign tumors,
relatively low malignant STS, lymph node metastasis, and
hematoma. )e theory behind this system is that some STS
with relatively low malignancy including desmoid tumor,

myxoid liposarcoma, and well-differentiated liposarcoma
often show lower SUVmax [12, 13]. STS in group 2 are all
assessed as FNCLCC grade 1 sarcoma, except for 1 myxoid
liposarcoma patient (G2) and 1 desmoid tumor patient (G2).
)e SUVmax of the special myxoid liposarcoma and

Table 1: SUVmax for all diseases.

Pathological diagnosis N SUVmax
Retroperitoneal and intra-abdominal STS

Undifferentiated pleomorphic sarcoma (UPS) 9 10.78±
6.72

Dedifferentiated liposarcoma (DL) 32 8.93± 6.42
Gastrointestinal stromal tumor (GIST) 23 8.51± 3.73
Synovial sarcoma (SS) 2 7.09± 0.02
Pleomorphic liposarcoma (PL) 6 5.90± 3.20
Leiomyosarcoma 14 5.77± 3.98
Desmoid tumors (DT) 19 5.76± 5.54
Myxoid liposarcoma (ML) 7 4.70± 2.33
Inflammatory myofibroblastic tumor (IMT) 2 2.83± 0.95
Well-differentiated liposarcoma (WDL) 9 2.48± 0.88
Round cell liposarcoma (RCL) 1 47.3
Adult fibrosarcoma (AF) 1 25.94
Malignant hemangiopericytoma (MH) 1 11.21
Follicular dendritic cell sarcoma (FDCS) 1 7.3
Primitive neuroectodermal tumor (PNET) 1 7
Malignant peripheral nerve sheath tumor
(MPNST) 1 6.4

Dermatofibrosarcoma protuberans (DFSP) 1 5.4
Rhabdomyosarcoma 1 5.19
Chondrosarcoma 1 2.7
Benign tumors
Pheochromocytoma and paraganglioma (PPGL) 13 7.87± 5.26
Schwannoma 6 4.56± 1.59
Ganglioneuroma 3 3.13± 1.53
Leiomyoma 2 1.05± 1.48
Neurofibroma 1 5.5
Mature cystic teratoma (MST) 1 2.6
Hamartoma 1 2.5
Hemangioma 1 2.2
Psuedotumor
Chronic abscess (CA) 2 14.4± 8.77
Infection of actinomyces (IA) 1 14.16
Sarcoidosis 1 9.75
Hematoma 1 1.9
Reproductive tumors
High-grade serous ovarian carcinoma (HGSOC) 2 10.1± 2.68
Yolk sac tumor (YST) 2 6.8± 0.42
Ovarian granulosa cell tumor (OGCT) 1 11.1
Dysgerminoma 1 10
Seminoma 1 4.1
Others

Peritoneal mesothelioma (PM) 3 16.06±
0.92

Lymphoma 4 12.75±
8.56

Malignant melanoma (MM) 2 12.05±
0.35

Solid pseudopapillary tumor (SPT) 7 7.58± 4.93
Perivascular epithelioid cell tumor (PEComa) 3 5.97± 4.78
Lymph node metastasis (LM) 2 3.10± 1.98
Carcinosarcoma 1 13.1
Sarcomatoid carcinoma (SCA) 1 29.83
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desmoid tumor are 4.3 and 6.47, respectively. We also have
a special pleomorphic liposarcoma case assessed as grade 1,
and its SUVmax is 2.5. We do not get enough proof to
conclude dermatofibrosarcoma protuberans (DFSPs) and
inflammatory myofibroblastic tumor (IMT) as the members
of group 2, because we only have a bit G1 cases. In Aisheng
Dong’s study, the SUVmax of IMT was 10.9± 5.5, with
a high variability of SUVmax among tumors ranging from
3.3 to 20.8 [14]. DFSP can also present high SUVmax [15].
Most reports about hematoma and lymph node metastasis
focus on detection of lesions but not on differentiation with
other diseases, so they did not list data of SUVmax [16, 17].
SUVmax of hematoma and lymph node metastasis has been
reported as 3.4 and 6.3, but we still need more evidence
[18, 19]. We just temporarily regard them as group 2
members. On the other side, the range of PPGL SUVmax is
from 2.5 to 62.3 [20]. Combined with our data, we list it as
the only benign tumor in group 1.

In the future, we think that the members of different
groups may vary with the accumulation of cases. If we can
establish such a mature system, it could be very helpful for
the clinical use of 18F-FDG-PET/CT in retroperitoneal and
intra-abdominal sarcomas. )ere will be 2 possibilities of
this system. One is 2 different groups with certain diseases.
)e other is G1 sarcoma in one group, and rest sarcomas in
another one. For now, we prefer the combination of these 2
possibilities, as certain disease is more likely to be of certain
grade. If we can make the system mature, this differentiation
must be very helpful for preoperative diagnosis combined
with other examinations. For example, with exclusion of fat-
containing lesions using MRI, we should be very careful to
perform compartment resection for group 2 diseases
without liposarcoma.

For diagnostic aspect, SUVmax correlates with the Ki-67
index, mitotic count, and histological grade without con-
sidering different pathological types, which is the same as
extremity STS [21]. )is result suggests that 18F-FDG-
PET/CT may be helpful for preoperative biopsy and pa-
thology dissection. For retroperitoneal sarcomas, it is reliable
for core biopsy to determine the presence of a sarcoma, but it
is difficult to correctly identify sarcoma subtype and grade
[2, 22]. Reason for this difficulty is the heterogeneity of
sarcoma, which can be solved by multiple site sampling after
resection. However, even sequential biopsies before resection
cannot offer precise diagnosis for STS. )e relationship of
anatomic pathology and nuclear medicine mentioned in
Manuel Scimeca’s study has drawn our attention [23]. With
the guidance of “SUVmax location,” it may be helpful for core
biopsy and pathology dissection to find the most represen-
tative part of a tumor. It is also possible to build a map of
histological grade and different cell types. If the hypothesis is
proved, it will reduce the number of biopsy and increase the
accuracy of diagnosis and grade.)e chaotic circumstance for
STS diagnosis means that STS diagnosis and grade may vary
with different biopsies, different samplings, or different pa-
thologists. Even pathology of primary tumor and recurrent
tumor in one patient could be different. Some relations may
exist between different STS, like one STS changes into another
one after several recurrences. However, we must know that

any further studies or hypothesis must be established on
accurate diagnosis and histological grade. With development
of imaging fusion, we are convinced that the fusion of 18F-
FDG-PET/CT and ultrasound will greatly enhance the ac-
curacy of core biopsy and pathology dissection.)is is also the
aim for our further study.

For therapeutic aspect, SUVmax correlates with vascular
resection but not with combined organ resection. )is
is because of our aggressive operative decisions. As there is
high risk of thrombosis or bleeding, vascular resection
is relatively passive. However, we will perform compartment
resection even though some organs are “not really infil-
trated” by tumors. At the same time, SUVmax does not
correlate with pathological invasion of adjacent organs
(P � 0.085), but the relationship is more significant than
organ resection (P � 0.453). To some extent, we think
SUVmax may be helpful to predict tumor infiltration and
operative risks.

In prognostic aspect, SUVmax does correlate with STS
prognostic factors including histological grade and recurrent
tumors. However, we do not find the relationship among
SUVmax, OS, DFS, death, and postoperative recurrence.
)is is because our follow-up is relatively short, and the
median survival of STS is 103 months for R0 resection [24].
Our median follow-up is 10 months overall, with a range of 1
through 54 months. As SUVmax correlates with STS
prognostic factors, we are convinced that we can get
a positive result with enough follow-up in the future. For
instance, G3 and recurrent sarcomas have higher SUVmax
than G1 and primary sarcomas. G3 and recurrent sarcomas
always leads to bad prognosis.

5. Conclusion

From our observation of retroperitoneal/intra-abdominal
tumors, we draw the conclusion that 18F-FDG-PET/CT
cannot simply distinguish malignant and benign tumors.
We find that the SUVmax of malignant tumors, in-
flammatory pseudotumor, and PPGL group is higher than
the SUVmax of benign tumors, lymph node metastasis,
hematoma, and low malignant STS group. Guidance of
“SUVmax location” may be helpful for biopsy and pathology
dissection.
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Background. Our purpose was to provide data regarding relationships between 18F-FDG PETand histopathological parameters in
lung cancer.Methods. MEDLINE library was screened for associations between PETparameters and histopathological features in
lung cancer up to December 2017. Only papers containing correlation coefficients between PETparameters and histopathological
findings were acquired for the analysis. Overall, 40 publications were identified. Results. Associations between SUV and KI 67 were
reported in 23 studies (1362 patients). (e pooled correlation coefficient was 0.44. In 2 studies (180 patients), relationships
between SUV and expression of cyclin D1 were analyzed (pooled correlation coefficient� 0.05). Correlation between SUV and
HIF-1α was investigated in 3 studies (288 patients), and the pooled correlation coefficient was 0.42. In 5 studies (310 patients),
associations between SUV and MVD were investigated (pooled correlation coefficient� 0.54). In 6 studies (305 patients), re-
lationships between SUV and p53 were analyzed (pooled correlation coefficient� 0.30). In 6 studies (415 patients), associations
between SUV and VEGF expression were investigated (pooled correlation coefficient� 0.44). In 5 studies (202 patients), as-
sociations between SUV and PCNA were investigated (pooled correlation coefficient� 0.32). In 3 studies (718 patients), as-
sociations between SUV and expression of PD L1 were analyzed (pooled correlation coefficient� 0.36). Finally, in 5 studies (409
patients), associations between SUV and EGFR were investigated (pooled correlation coefficient� 0.38). Conclusion. SUV may
predict microvessel density and expression of VEGF, KI 67, and HIF-1α in lung cancer.

1. Introduction

Lung cancer is one of the most frequent malignancies in
humans [1]. It is the largest cause of cancer deaths in the
United States [1].

Multiple histopathological factors influence tumor bi-
ology in lung cancer. According to the literature, different
molecular markers play a key role here [2]. Previous reports
investigated numerous biomarkers and suggested that some
histopathological parameters can predict tumor behavior in
lung cancer [2–5]. It has been shown that they provide in-
formation about tumor proliferation, aggressiveness, prog-
nosis, and therapy response [2–5]. According to the literature,

following biomarkers are relevant in lung cancer: pro-
liferation index KI 67, hypoxia-inducible factor- (HIF-) 1α,
tumor suppressor protein p53, vascular endothelial growth
factor (VEGF), epidermal growth factor receptor (EGFR),
proliferating cell nuclear antigen (PCNA), PD L1, and several
cyclins [2–10]. For instance, it has been shown that tumors
with high expression of KI 67 and/or VEGF were associated
with a worse prognosis [3, 4]. Similar results were also re-
ported for expression of HIF-1α and p53 [5–7].

Furthermore, some reports analyzed associations be-
tween imaging parameters and histopathological features in
lung cancer [11–14]. Especially parameters of positron
emission tomography (PET) like standardized uptake values
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(SUV) were in focus of the studies. However, the reported
data were inconsistent. While some authors found such
significant relationships, others did not. (erefore, it is
unclear whether SUV can be used as a surrogate parameter
reflecting histopathological features in lung cancer or not.

(e purpose of this meta-analysis was to provide evident
data about associations between SUV and histopathological
parameters in lung cancer.

2. Materials and Methods

2.1. Data Acquisition. (e strategy of data acquisition is
shown in Figure 1. MEDLINE library was screened for
associations between PET parameters and histopathological
findings in lung cancer up to December 2017.

For associations between PET and different biomarkers,
the following search words were used:

(i) PET and KI 67: “lung cancer AND PET OR pos-
itron emission tomography AND KI 67 OR KI67
OR ki67 OR ki-67 OR mitotic index OR pro-
liferation index OR MIB 1 OR MIB-1 OR mitosis
index” (192 items)

(ii) PETand expression of p53: “lung cancer AND PET
or positron emission tomography AND p53 OR
tumor suppressor protein” (51 items)

(iii) PET and expression of VEGF: “lung cancer AND
PETor positron emission tomography ANDVEGF
OR vascular endothelial growth factor” (82 items)

(iv) PET and expression of EGFR: “lung cancer AND
PETor positron emission tomography AND EGFR
OR epidermal growth factor receptor” (345 items)

(v) PET and expression of HIF-1α: “lung cancer AND
PET or positron emission tomography AND HIF-
1α OR HIF1α OR HIF-1 alpha OR HIF1 alpha OR
hypoxia-inducible factor” (38 items)

(vi) PET and expression of PCNA: “lung cancer AND
PET or positron emission tomography AND
PCNA OR proliferating cell nuclear antigen” (23
items)

(vii) PET and expression of cyclins: “lung cancer AND
PET or positron emission tomography AND
cyclin” (22 items)

(viii) PET and microvessel density: “lung cancer AND
PET or positron emission tomography AND
microvessel density OR MVD” (34 items)

(ix) PET and expression of PD L1: “lung cancer AND
PET or positron emission tomography AND
programmed cell death-ligand 1 OR PD L1” (15
items).

Secondary references were also recruited. Overall, 802
records were identified. After exclusion of doublets, review
articles, case reports, non-English publications, and arti-
cles, which not contain correlation coefficients between
PET and histopathological parameters, there were 40 ar-
ticles [11–50].

(e following data were extracted from the literature:
authors, year of publication, number of patients, histo-
pathological parameters, and correlation coefficients,
according to our previous descriptions [51–53].

(e Preferred Reporting Items for Systematic Reviews
and Meta-Analyses statement (PRISMA) was used for the
research [54].

2.2. Meta-Analysis. (e methodological quality of the ac-
quired 40 studies was independently checked by two ob-
servers (Alexey Surov and Hans Jonas Meyer) using the
Quality Assessment of Diagnostic Studies (QUADAS) in-
strument according to previous descriptions [55]. Table 1
shows the results of QUADAS proving.

PET and lung cancer: 6427 items

Associations with
KI 67
p53

HIF-1 alpha
Cyclins
PCNA

Microvessel density
VEGF
EGFR
PD L1

Total: 802 items

Exclusion:
Duplicates

Review articles
Case reports

Articles without correlation analysis
Articles in non-English language

 
Total: 762 items

40 studied included in the meta-analysis.

Figure 1: Flowchart of the data acquisition.

Table 1: Methodological quality of the involved 40 studies
according to the QUADAS criteria.

QUADAS criteria Yes (%) No (%) Unclear (%)
Patient spectrum 38 (95.0) — 2 (5.0)
Selection criteria 28 (70.0) 1 (2.50) 11 (27.5)
Reference standard 40 (100) — —
Disease progression bias 40 (100) — —
Partial verification bias 40 (100) — —
Differential verification bias 40 (100) — —
Incorporation bias 40 (100) — —
Text details 40 (100) — —
Reference standard details 40 (100) — —
Text review details 16 (40.0) 4 (10.0) 20 (50.0)
Diagnostic review bias 17 (42.5) 4 (10.0) 19 (47.5)
Clinical review bias 39 (97.5) — 1 (2.5)
Uninterpretable results 39 (97.5) — 1 (2.5)
Withdrawal explained 38 (95.0) 1 (2.5) 1 (2.5)
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Associations between PET and histopathological find-
ings were analyzed by Spearman’s correlation coefficient.
(e reported Pearson’s correlation coefficients in some
studies were converted into Spearman’s correlation co-
efficients according to the previous description [56].

Furthermore, the meta-analysis was undertaken by using
RevMan 5.3 (Computer Program, version 5.3, (e Cochrane
Collaboration, 2014, (e Nordic Cochrane Centre, Copen-
hagen). Heterogeneity was calculated by means of the in-
consistency index I2 [57, 58]. Additionally, DerSimonian and
Laird random-effects models with inverse-variance weights
were used without any further correction [59].

3. Results

3.1. KI 67. Associations between 18F-FDG PET and KI 67
were reported in 23 studies (1362 patients) [11–33]. (e
calculated correlation coefficients between SUVmax and KI
67 ranged from −0.23 to 0.81 (Figure 2). (e pooled cor-
relation coefficient was 0.44 (95% CI� (0.35; 0.54)).

3.2. Cyclin D1. In 2 studies (180 patients), relationships
between 18F-FDG PET and expression of cyclin D1 were

analyzed [34, 35].(e pooled correlation coefficient between
these parameters was 0.05 (95% CI� (−0.36; 0.46))
(Figure 3).

3.3. HIF-1α. Associations between 18F-FDG PET and HIF-
1α were investigated in 3 studies (288 patients) [36–38]. (e
reported correlation coefficients ranged from −0.19 to 0.99
(Figure 4). (e pooled correlation coefficient was 0.42 (95%
CI� (0.06; 0.78)).

3.4. Microvessel Density (MVD). Associations between
18F-FDG PET and MVD were investigated in 5 studies (310
patients) [25,37–40]. (e reported correlation coefficients
ranged from −0.23 to 0.91 (Figure 5). (e pooled correlation
coefficient was 0.54 (95% CI� (0.29; 0.80)).

3.5. P53. In 6 studies (305 patients), relationships between
18F-FDG PET and p53 were analyzed [13,22,34,41–43]. (e
pooled correlation coefficient between these parameters was
0.30 (95% CI� (0.13; 0.47)) (Figure 6).
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Figure 2: Forest plots of correlation coefficients between SUVmax and KI 67 in patients with lung cancer.
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Study or subgroup

Taylor et al. [34]
Yang et al. [35]

Total (95% CI)

Heterogeneity: tau2 = 0.07; chi2 = 5.00; df = 1 (P = 0.03); I2 = 80%
Test for overall effect: Z = 0.26 (P = 0.80)
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Figure 3: Forest plots of correlation coefficients between SUVmax and expression of cyclin D1.
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Figure 4: Forest plots of correlation coefficients between SUVmax and expression of HIF-1α in lung cancer.

Heterogeneity: tau2 = 0.07; chi2 = 57.39; df = 4 (P < 0.00001); I2 = 93%
Test for overall effect: Z = 4.15 (P < 0.0001)
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0.27 (0.07, 0.47)

0.54 (0.29, 0.80)

Correlation
IV, random, 95% CI

Correlation
IV, random, 95% CI

Figure 5: Forest plots of correlation coefficients between SUVmax and microvessel density.

Heterogeneity: tau2 = 0.03; chi2 = 14.94; df = 5 (P = 0.01); I2 = 67%
Test for overall effect: Z = 3.50 (P = 0.0005)
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Figure 6: Forest plots of correlation coefficients between SUVmax and expression of p53.
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3.6. VEGF. (ere were 6 studies (415 patients) which in-
vestigated associations between SUV and expression of VEGF
in lung cancer [13, 18, 34, 37, 38, 44].(e reported correlation
coefficients ranged from −0.13 to 0.77 (Figure 7). (e pooled
correlation coefficient was 0.44 (95% CI� (0.14; 0.73)).

3.7. PCNA. (ere were 5 studies (202 patients) which
investigated associations between 18F-FDG PETand PCNA
in lung cancer [22,40,45–47]. (e reported correlation

coefficients ranged from 0.04 to 0.83 (Figure 8). (e pooled
correlation coefficient was 0.32 (95% CI � (0.05; 0.60)).

3.8. EGFR. (ere were 5 studies (409 patients) which in-
vestigated associations between 18F-FDG PET and ex-
pression of EGFR in lung cancer [13, 34, 38, 42, 44]. (e
reported correlation coefficients ranged from 0.04 to 0.83
(Figure 9). (e pooled correlation coefficient was 0.38 (95%
CI � (0.10; 0.66)).
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Figure 7: Forest plots of correlation coefficients between SUVmax and VEGF expression.

Heterogeneity: tau2 = 0.08; chi2 = 21.32; df = 4 (P = 0.0003); I2 = 81%
Test for overall effect: Z = 2.31 (P = 0.02)
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Figure 8: Forest plots of correlation coefficients between SUVmax and PCNA.

Heterogeneity: tau2 = 0.09; chi2 = 54.66; df = 4 (P < 0.00001); I2 = 93%
Test for overall effect: Z = 2.63 (P = 0.009)
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Figure 9: Forest plots of correlation coefficients between SUVmax and EGFR expression.
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3.9. PDL1. In 3 studies (718 patients), relationships between
18F-FDG PET and expression of PD L1 were analyzed
[48–50]. (e pooled correlation coefficient between these
parameters was 0.36 (95% CI� (0.22; 0.50)) (Figure 10).

4. Discussion

Analysis of interactions between imaging findings, in par-
ticular, between PET and histopathology can significantly
improve oncologic diagnostics [60]. (e possibility to
characterize histological tissues by imaging can also per-
sonalize anticancer treatment [60]. Although PET is an
established investigation of lung cancer in clinical practice,
only few reports analyzed the question if there are re-
lationships between PET findings and different histopath-
ological parameters. However, this is a key question. In fact,
if PET parameters do correlate with several histopatholog-
ical findings reflecting proliferation or other features of lung
cancer, then PET values can also be used as biomarkers.

Our meta-analysis showed that SUV can reflect different
histopathological parameters in lung cancer. As shown, SUV
correlated moderately with KI 67. (is finding is not sur-
prisingly. KI 67 is a nonhistone, nuclear protein synthesized
throughout the whole cell cycle except the G0 phase and has
been shown to be responsible for cell proliferation [61]. It is
an established biomarker in lung cancer for prediction of
tumor behavior. Our data are in agreement with those of
previous investigations and also analyzed relationships be-
tween expression of KI 67 and SUV in lung cancer [62, 63].
However, we found weak correlations between SUVmax and
other proliferation markers, namely, PCNA (0.32). (is
finding is difficult to explain. (eoretically, SUV reflects
metabolic activity and, therefore, might correlate stronger
with several proliferation biomarkers. Obviously, metabolic
activity and proliferation are not associated directly.

Similarly, our analysis found only slight correlation
between SUVmax and expression of EGFR (0.38). EGFR is
a cell membrane tyrosine kinase receptor [64, 65]. As re-
ported previously, EGFR signaling is critical in development
and cellular homeostasis, proliferation, and growth [64–66].
EGFR is overexpressed in most lung cancers [64–66].
Overexpression of EGFR is associated with a poor prognosis
in non-small-cell lung cancer [66]. In addition, EGFR
overexpression is also associated with chemoresistance in
non-small-cell lung cancer [64, 66]. (e present meta-

analysis showed that SUVmax cannot be used as a surro-
gate marker for EGFR expression in lung cancer.

Furthermore, we analyzed associations between SUVmax
and expression of p53. As seen, these parameters correlate
weakly (0.30). According to the literature, p53 is a protein
encoded by the TP53 gene and plays a key role in tumor
suppression and in the cellular response to DNA damage
[2, 5]. Some authors indicated that high expression of p53
can be used as a predictor for better overall survival [2].
However, in the study of Tsao et al., p53 protein over-
expression was a significant prognostic marker of shortened
survival [5]. Relationships between SUVmax and p53 were
analyzed in 6 previous studies with divergent results
[13,22,34,41–43]. Our data suggest that SUV cannot be used
as a surrogate marker for expression of p53.

Programmed cell death-ligand 1 or PD L1 is another very
important biomarker in lung cancer [67]. PD L1 is an
immune modulator that promotes immunosuppression by
binding to PD-1 receptor [68]. PD L1 on the surface of
tumor cells inhibits an immune-mediated attack by binding
to PD-1 on cytotoxic T-cells [68, 69]. According to the
literature, high expression of PD L1 is associated with
shorter overall survival in patients with non-small cell lung
cancer [70]. (erefore, prediction of PD L1 expression by
imaging may be of interest in clinical practice. Our analysis
identified only a slightly correlation (0.36) between SUVmax
and PD L1 expression in lung cancer; that is, SUVmax cannot
be used as a surrogate marker for PD L1 status.

Our analysis also showed that SUVmax cannot predict
expression of cyclin D1 in lung cancer. As reported previously,
data of the role of this protein are inconsequent. For example,
Gautschi et al. found a strong pathological role for cyclin D1
deregulation in bronchial neoplasia [71]. However, Zhang
et al. suggested in their meta-analysis that the expression of
cyclin D1 is unlikely to be useful as a prognostic marker for
NSCLC in clinical practice from current evidence [72].

(e present meta-analysis identified a moderate pooled
correlation between SUVmax and hypoxia-inducible factor-1
alpha (HIF-1α). According to the literature, HIF-1α char-
acterizes cellular responses to hypoxic stress [6, 7]. It has
been reported that patients with lung cancer and positive
HIF-1α expression in tumor tissues had lower overall sur-
vival rate than patients with negative HIF-1α expression
[6, 7]. Furthermore, in a recent meta-analysis, it was sug-
gested that HIF-1α expression may be a prognostic
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Test for overall effect: Z = 5.14 (P < 0.00001) Negative Positive
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Figure 10: Forest plots of correlation coefficients between SUVmax and EGFR expression.
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biomarker for lung cancer [6]. In addition, it is discussed
that HIF-1αmight be a target for therapy in lung cancer [7].
(erefore, associations between PETparameters and HIF-1α
may be also of clinical importance.

Similarly, we calculated a moderate pooled correlation
between SUVmax and expression of VEGF. Previous reports
indicated that VEGF overexpression is associated with poor
prognosis for NSCLC patients [3]. Furthermore, VEGF plays
an important role in sustaining the development and pro-
gression of lung cancer [73]. Notably, some reports indicated
a great potential of anti-VEGF agents in therapy of lung
cancer [74].(erefore, possible relationships between VEGF
expression and SUV in lung cancer may play a significant
role to plane chemotherapy. In fact, if SUV or other PET
parameters may predict VEGF expression and tumors with
overexpression, respectively, then PETmay also be used for
therapy control with anti-VEGF agents.

Finally, the strongest correlation was found between
SUVmax and microvessel density (0.54). (is finding seems
to be logical. In fact, high metabolic activity may induce
a high perfusion, which is associated with more vessels. SUV
may identify hypervascularized tumor areas.(erefore, SUV
may be used for evaluation of response to therapy with
angiogenesis inhibitors.

(e present meta-analysis also identified several other
problems. Overall, most analyzed biomarkers are associated
with SUV. (is finding suggests that SUVmax may reflect
different histopathological features in lung cancer. How-
ever, as mentioned above, the calculated pooled correlations
are slightly-to-moderate. (erefore, our analysis showed
that SUVmax cannot be used as an ultimate one-to-one
surrogate marker for different receptor expressions in
lung cancer.

Some reports suggested that other PET parameters like
metabolic tumor volume or total lesion glycolysis are more
sensitive than SUVmax [75]. In fact, pretreatment SUV is
commonly used as a relative measure of 18FDG uptake and
is considered a prognostic factor for risk stratification in
different malignancies. However, as suggested previously, it
does not reflect the heterogeneity of a tumor [76].
(erefore, to overcome this drawback of SUV, other PET
parameters, such as metabolic tumor volume and total
lesion glycolysis that reflect metabolic volume and activity,
have been proposed as quantitative indexes of tumor
metabolism [76, 77]. According to the literature, these
parameters can be used as prognostic factors for survival in
several malignant diseases like non-small lung cancer,
pleural mesothelioma, and ovarian cancer [77–79]. Clearly,
further researches are needed to investigate possible as-
sociations between several PET parameters and histopa-
thology in lung cancer.

Furthermore, lung cancer involves several carcinomas
with different histopathological features and behavior.
Presumably, different subtypes of lung cancer may have
also different associations between PET and histopa-
thology. (is question should also be analyzed by further
investigations.

(ere were also other problems. Only 40 reports with
small number of patients investigated associations between

PET parameters and histopathological features in lung
cancer. Furthermore, most of the acquired studies were
retrospective. Finally, according the QUADAS criteria, all
involved studies showed partial verification bias, differential
verification bias, and incorporation bias. Also, most of the
studies had clinical review bias and diagnostic review bias.
Clearly, further prospective studies with more patients are
needed to investigate associations between PET and histo-
pathology in lung cancer.

Some recent reports indicated that other histopathological
markers like tumor-infiltrating CD8-positive T lymphocytes,
cyclooxygenase-2, and survivin play also a great role in lung
cancer [3, 4]. However, there were either no data or in each
case only one report about relationships between PET and
these histopathological factors. (is should be also the pur-
pose for further investigations.

In conclusion, our meta-analysis showed that SUVmax
may predict microvessel density and expression of VEGF, KI
67, and HIF-1α in lung cancer. (ere were no significant
associations between SUVmax and expression of cyclin D1,
EGFR, PD L1, PCNA, and p53.
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