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Langmuir Probes attached to plasma-facing components in a Tokamak are used to diagnose high-temperature plasma during
fusion experiments. In this work, a finite element model of Langmuir Probe-Cooling Monoblock (LP-CM) is established, and
structural analysis of the LP-CM is carried out. The maximum von Mises stress during the 400 s incident heat flux has been given
in detail, and the relationship between the sliding friction coefficient and thermal stress has been investigated systematically. A
contact design is employed between Langmuir Probe and Cooling Monoblock, which is an effective method to lower the thermal
stress. The thermal stress reaches the peak on the edge of the aluminium oxide ceramic interlayer. The damaged displacement field
of the LP-CM has been examined fully, and the maximum global displacement is 0.444 mm.

1. Introduction

The Langmuir Probe (LP) [1] is one of the most famous
diagnostic tools to measure the plasma parameters, which
are especially used in nuclear fusion experiments to derive
the electronic temperature of a high temperature ionised gas.
The LPs are relatively simple devices, they are fabricated by
materials with superior electric and thermal conductivity
such as metallics, ceramics, and crystallines [2]. A single
LP consists of one or more small metallic electrodes and
appropriate insulating layer. During the nuclear fusion
experiments, the LP array fixed to the surface of plasma
facing components are widely used to measure edge plasma
parameters in a tokamak, and the running parameters of
center plasma can be derived from these edge parameters.
By sweeping the applied voltage on the probe, we can obtain
the curve of probe current as a function of probe potential
and called classical probe I–V characteristic. The electron
temperature, the plasma density, and the plasma potential
can be deduced from the characteristic [3–5].

With the plasma temperature increasing, the LP faces
more severe thermal etching. Aiming at the future experi-
mental requirements under extreme conditions, the thermo-
dynamic properties is critical to the design of LP since it
determines the service lifetime, precision, and stability of the
LP. In this paper, in order to satisfy the need of the reliability,
numerical experiments on an LP-CM have been carried out
by ANSYS. The thermodynamic and displacement fields have
been given in this paper. Results show the contact design is an
effective method to improve the heat transfer capability and
lower the thermal stress of the LP.

2. Construction, Loading Conditions,
and Computational Principle

This analyzed model includes two parts: Langmuir Probe
and Cooling Monoblock (CM). The LP is divided into
three parts: top pyrolytic graphite (PG), middle pyrolytic
graphite, and bottom Cu block. The Cooling Monoblock
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Figure 1: The composition of LP-CM used in structural analysis.
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Figure 2: Incident heat flux on analyzed model.

(CM) consists of top carbon fiber composite (CFC) block,
cooling CuCrZr tube, and bottom Cu substrate, as shown in
Figure 1. The PG and CFC are, respectively, soldered to Cu
block and Cu substrate. The Langmuir Probe is fixed on the
Cooling Monoblock by an inconel 718 screw, and a cone-
shaped Al2O3 ceramic interlayer (ACI) is inserted between
LP and CM for reaching electrical insulation, meanwhile,
contact relation lies both between the Cu substrate and the
ACI and also between the ACI and the Cu cone, this is used to
obtain higher heat transfer capability and reduce the thermal
stress. During the fusion experiment, the LPs are arranged
into one circle around the edge plasma in Tokamak and the
cooling fluid flows through the center tube of CM for cooling
down the device.

A 400 s incident heat flux (IHF) which reflects the energy
change of edge plasma is applied on front surfaces, as
shown in Figure 2. A 1 MW/m2 steady heat flux is applied
on the lateral surfaces of the LP, the thermal convection
including heat transfer coefficient HTC = 100 kW/(m2 K)
and cooling temperature of 120◦C are applied on the inner
surfaces of cooling tube. Emissivity factor ε = 0.5 is
taken in these calculations due to the Stefan-Boltzmann
rule. The initial temperature 120◦C is taken in initial state.
Preload force Fp = 1200 N is applied on the bolt. In this
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Figure 3: The finite element model and thermal loads.
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Figure 4: The 30s thermal field of LP-CM.

work, the preload bolt is prepared by prets179 element,
the SOLID70 and SOLID45 elements are used to calculate
thermal field and thermal stress field, respectively. The mesh
model is shown in Figure 3. Temperature-dependent thermal
properties such as density, thermal conductivity, and heat
capacity are used in this analysis. There are 9 load steps
used in this computational process, and a transient-state
structural analysis is used to determine the thermodynamic
field. The computational method of transient-state analysis
is based on the transient-state heat transfer equation, it can
be expressed as

[C(T)]
{ •
T

}
+ [K(T)]{T} = {Q(T)}, (1)

where K(T) is the heat conduction coefficient matrix
consisting of thermal conductivity, convection coefficient
form factor, and emissivity. C(T) is the specific heat capacity
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Figure 5: The 30 s thermal stress field with contact design: (a) LP-CM and (b) ACI.
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Figure 6: The 30 s thermal stress field without contact design: (a) LP-CM and (b) ACI.
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Figure 7: The relationship between sliding friction coefficient and maximum von Mises stress.
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Figure 8: The MVS variation tendency during the 400 s incident
heat flux.

matrix, {T} is the node temperature vector, { •T} is the time
derivative of the nodal temperature, Q(T) is the rate of node
heat flow including thermogenesis.

3. Results and Discussion

In order to improve the heat transfer capability and lower
thermal distortion on the fragile part between the LP and
CM, an Al2O3 ceramic interlayer is inserted between the Cu
substrate and Cu block as a contact structure, and the LP
is attached to the CM via the preload bolt with a preload
force of 1200 N. The computational method is based on the
classical theory of thermal contact resistance (TCR) at the
interface of different materials, its calculation equation can
be expressed as

σ

ρ km
= 1.25

(
p

Hc

)0.95

, (2)

where σ is the surface roughness, m is the absolute surface
slope, ρ is the thermal contact resistance, p is the pressure
of contact surface, Hc is the surface hardness, and k is
the harmonic thermal conductivity. The thermal contact
resistance can be determined by (2) with measured param-
eters, the TCR at the Cu substrate-ACI interface is 3.816 ×
10−5 m2 · ◦C/W and at the Cu block-ACI interface is 3.624 ×
10−5 m2 · ◦C/W. The thermal field during the 400 s incident
heat flux is computed by ANSYS, and the 30 s thermal field
of LP-CM are shown in Figure 4. Apparently it shows a
gradient temperature distribution from top to bottom, the
temperature decreases from 1374◦C to 152◦C. Moreover, the
temperature variation is in accord with the incident heat
flux and the temperature reaches the maximum 2608◦C at
211 s. During the structural analysis, the SOLID70 element
must be changed into SOLID 45 element and the thermal
field is applied on the model as thermal load. Meanwhile, a
sliding friction factor (FC) 0.2 is set between Cu substrate,
Cu block and ACI [6]. Furthermore, a 1200 N preload force
is applied on the bolt and the two lateral faces of cooling tube

are restricted [7]. The thermal stress field at 30 s is shown in
Figure 5.

Obviously, the contact site of different materials exhibits
greater thermal stress, especially the ACI needs to withstand
larger thermal stress. Clearly the maximum von Mises stress
(MVS) is 814 MPa, the minimum stress value is 123842 Pa,
and the thermal stress on ACI reaches the peak 762 MPa,
Meanwhile, the thermal stress field without the contact
design is shown in Figure 6. It is apparent the MVS lies on
the welded part of ACI and Cu block, and the peak 885 MPa is
obtained at the edge of Al2O3 ceramic interlayer. Comparing
Figure 5 with Figure 6, clear difference can be observed
which shows the thermal stress on ACI in Figure 6 is much
larger than that in Figure 5. This implies that the contact
design between different materials may not only play a role
of insulation, but also decrease the thermal stress drastically.
Appropriate relative slide at contact site is helpful to reduce
the thermal stress. The contact tightness is regulated by
the FC in finite element analysis. We have figured out the
numerical relationship between FC and MVS, and it is shown
in Figure 7. Obviously the MVS is proportionate to the FC,
that means the increasing of frictional resistance leads to an
increase of thermal stress, however, too much decreasing of
FC will bring a huge increasing of TCR, hence, there must be
an optimum FC value to obtain the minimum stress.

The thermal stress during the incident heat flux are
figured out by ANSYS and the MVS value at different times
is shown in Figure 8. Clearly the MVS shows a variation
tendency from increasing to decreasing with the incident
heat flux and reaches the peak 2380 MPa at 211 s, where
the peak temperature is obtained at this moment, the
211 s thermal stress field is shown in Figure 9. The 211 s
displacement field is shown in Figure 10. Figure 10(a) shows
the maximum global displacement consists of the connection
part of PG and Cu block, and almost reaches 0.444 mm.
The maximum X-displacement, Y-displacement, and Z-
displacement at 211s are, respectively, 0.155 mm, 0.326 mm,
and 0.867 mm.

4. Conclusions

An improved LP-CM model was established, and transient-
state structural analysis used to predict the thermodynamic
state of LP-CM was carried out by ANSYS. The thermal stress
field and displacement field have been given in this paper.
Results show that the thermal stress becomes increasing at
the interface of different material. ACI probably is the most
vulnerable place because of the maximum thermal stress
acting on it, and the LP-CM with a contact structure presents
lower thermal stress than the LP-CM without contact
structure. The thermal stress reaches the peak 762 MPa on
the edge of ACI under the contact state. The maximum
thermal stress has a positive correlation with FC and there
must be an optimum FC value to obtain the minimum stress.
The 211 s global displacement field shows that the maximum
displacement 0.444 mm consists in the connection part of PG
and Cu block. The findings could provide useful information
to develop high-performance Langmuir Probe.
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Figure 9: The 211 s thermal stress field of LP-CM (a) front view and (b) cross section.
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Figure 10: The displacement field at 211 s: (a) global displacement, (b) X-displacement, (c) Y-displacement, and (d) Z-displacement.
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