Milonga's input file for the 2D Α **IAEA** benchmark

we finally ask milonga to solve the eigenvalue problem SOLVE_PROBLEM Source Situation ID.11 By: R. R. Lee (CE) D. A. Menely (Ontario Hydro) B. Micheelsen (Riso-Denmark) Identification: 11-A2 Date Submitted: June 1976 R. Vondy (ORLaito Hydro) Micheelsen (Riso-Denmark) R. Vondy (ORNL) R. Wagner (KWU) Werner (GRS-Munich) # we save the effective multiplication factor with # six decimal digits in a text file OUTPUT_FILE keff \$1-\$2-\$3-\$4-\$5-\$6/1-keff.txt PRINT FILE keff %.6f keff # and the equivalent static reactivity in another one rho = le5*(keff-1)/keff OUTPUT_FILE rho \$1-\$2-\$3-\$4-\$5-\$6/1-rho.txt PRINT FILE rho \$.2f rho By: H. L. Dodds, Jr. (U. of Tenn.) M. V. Gregory (SRL) # Descriptive Title: Two-dimensional LWR Problem, # also 2D IAEA Benchmark Problem Reduction of Source Situation 1. Two-groupo diffusion theory 2. Two-dimensional (x,y)-geometry # by the way, inform the user we are almos done
wall = mesh_time+read_mesh_time+build_matrices_time+solve_time
PRINT SEPARATOR "_" {
 TEXT "rho_=" %.2f rho
 TEXT "pcm"
 TEXT "(" wall TEXT "segs_)" } # ----8<---- milonga's solution begins here ----8<----# the expected arguments are:
\$1 = number of the case
\$2 = type of geometry (quarter / eigth)
\$2 = type of geometry (quarter / eigth)
\$4 = basic shape (triangs / quads)
\$5 = discretization scheme (volumes / elements)
\$6 = characteristic length of the element/cells</pre> # if a point is in the core or in the reflector OUTPUT_FILE flux-dist-ascii \$1-\$2-\$3-\$4-\$5-\$6/2-flux-dist.dat OUTPUT_FILE flux-dist-post \$1-\$2-\$3-\$4-\$5-\$6/2-flux-dist.pos # we first create a subdirectory that will hold the
files that correspond to the current case
SHELL "mkdir_-p_\$1-\$2-\$3-\$4-\$5-\$6" PRINT_FUNCTION FILE flux-dist-ascii phi_1 phi_2 power_density incore WRITE_OUTPUT_FOR_POST flux-dist-post phi_1 phi_2 power_density # and greet the user through the standard output
PRINT TEXT "case_\$1-\$2-\$3-\$4-\$5-\$6______" NONEWLINE
tell milonga we face a two-dimensional two-groups **PROBLEM DIMENSIONS** 2 GROUPS 2 MESH \$1-\$2-\$3-\$4-\$5-\$6/benchmark.msh SCHEME \$5 # spatial discretization scheme Bg2 = 0.8e-4 # axial geometric buckling in the z direction **OUTPUT_FILE** flux-axis \$1-\$2-\$3-\$4-\$5-\$6/2a-flux-axis.dat **OUTPUT_FILE** flux-diag \$1-\$2-\$3-\$4-\$5-\$6/2a-flux-diag.dat # materials and cross sections according to the two-group constants # each material corresponds to a physical entity in the geometry file # XS can be given as algebraic expressions of x and y if needed

 MATERIAL fuel1 {
 SigmaAl 0.010+1.5*Bg2
 SigmaS_1->2 0.02

 D_2 0.4 SigmaA_2 0.080+0.4*Bg2
 nuSigmaF_2 0.135 eSigmaF_2 0.135 }

 MATERIAL fuel2 {
 SigmaA_2 0.081+0.4*Bg2
 sigmaA_2 0.202

 D_1 1.5 SigmaA_1 0.010+1.5*Bg2
 SigmaS_1->2 0.02

 D_2 0.4 SigmaA_2 0.085+0.4*Bg2
 nuSigmaF_2 0.135 eSigmaF_2 0.135 }

 MATERIAL fuel2 +
 Image: SigmaA_1 0.010+1.5*Bg2
 SigmaA_1->2 0.02

 D_2 0.4 SigmaA_1 0.010+1.5*Bg2
 SigmaS_1->2 0.02

 D_2 1.5 SigmaA_1 0.010+1.5*Bg2
 SigmaS_1->2 0.02

 D_2 0.4 SigmaA_2 0.130+0.4*Bg2
 nuSigmaF_2 0.135 eSigmaF_2 0.135 }

 MATERIAL reflector {
 SigmaA_1 0.000+2.0*Bg2
 SigmaS_1->2 0.04

 D_1 2.0 SigmaA_1 0.000+2.0*Bg2 }
 SigmaS_1->2 0.04
 D_2 0.3 SigmaA_2 0.010+0.3*Bg2 }

 # boundary conditions as requested by the problem, applied # to appropriate physical entities defined in the geometry file PHYSICAL_ENTITY extranal BC robin -0.4692 PHYSICAL_ENTITY mirror BC mirror SHELL "if_[_\"\$4\"_=_\"quads\"_];____then_echo_\"Mesh.RecombineAll=1;\"___ ↔ ______>\$1-\$2-\$3-\$4-\$5-\$6/benchmark.geo;_fi" call gmsh whilst measuring how much wall time it takes t1 = clock()
SHELL "gmsh_-2_\$1-\$2-\$3-\$4-\$5-\$6/benchmark.geo_>_/dev/null"
mesh_time = clock()-t1 # to force milonga to normalize the fluxes as requested, we # can set a power setpoint equal to the core volume and fix # eSigmaF = nuSigmaF (as we did in the MATERIAL section) # in order to compute the volume of the core, we need to # have the XS as functions of (x,y) available for integration # this can only happen if we ask milonga to explicitly read # the mesh before solving the eigenvalue problem with the # READ_MESH keyword. Note that the mesh file for the problem # was defined above with the PROBLEM keyword READ MESH READ_MESH eps = 5e-3 # relative allowed integration error key = 1 # GSL_INTEG_GAUSS15 (see GSL's docum # we take the core as the geometric place of the # points (x,y) that have a non-zero fission XS

number of points used in the gauss-legendre quadrature
points = 8

phil_axis(x) := phi_1(x,0)
phi2_axis(x) := phi_2(x,0) phil_diag(x) := phi_l(x, x)
phi2_diag(x) := phi_2(x, x) PRINT_FUNCTION FILE flux-axis phil_axis phi2_axis MIN 0 MAX 170 STEP 0.1 PRINT_FUNCTION FILE flux-diag phil_diag phi2_diag MIN 0 MAX 170 STEP 0.1 OUTPUT_FILE maximums \$1-\$2-\$3-\$4-\$5-\$6/2b-maximums.txt

and then we proceed to answer the requested items

we save the effective multiplication factor with

item 2a
the radial flux traverses phi(x,0) and phi(x,x)

item 1

phil_max phi2_max PRINT FILE maximums TEXT "maximum_thermal_flux_in_core____is_phi2_=_" ↔ phi2_max TEXT "at_x=" x_max TEXT "y=" y_max

phil_max phi2_max PRINT FILE maximums TEXT "maximum_thermal_flux_in_reflector_is_phi2_=_" ↔ phi2_max TEXT "at_x=" x_max TEXT "y=" y_max

item 3 (and 7) # we build a table with the average subassembly powers as item 7 # asks the average fluxes, we compute the two of them here

the file assemblies.coords contains five columns with the # coordinates that define each of the 38 subassemblies FUNCTION xmin(k) FILE assemblies.coords COLUMNS 1 2 FUNCTION ymin(k) FILE assemblies.coords COLUMNS 1 4 FUNCTION ymin(k) FILE assemblies.coords COLUMNS 1 4

te allow the 8-symmetry geometry, we define "symmetric # functions" that mirror the power and the fluxes around the # line y = x, otherwise for those assemblies that contain a # small area with y > x, their averages would be underestimated simpow(x,y) := if (greater(x,y), power_density(x,y), power_density(y,x)) simphil(x,y) := if (greater(x,y), phi_1(x,y), phi_1(y,x)) simphi2(x,y) := if (greater(x,y), phi_2(x,y), phi_2(y,x))

volume of the k-th subassembly
vol(k) := (xmax(k)-xmin(k)) * (ymax(k)-ymin(k))

points (x, y) that have a non-zero fissi
incore(x, y) := greater(nuSigmaF_2(x, y), 0) integral(integral(incore(x, y), x, 0, 170, eps, key), y, 0, 170, \leftrightarrow power =

eps, key)

OUTPUT_FILE table \$1-\$2-\$3-\$4-\$5-\$6/3-table.dat PRINT TEXT "\€_k____Pk___fast_k___thermal_k" FILE table PRINT_FUNCTION mean_power mean_flux_1 mean_flux_2 MIN xmin_a MAX xmax_b ↔ STEP 1 FILE table FORMAT %.3f #----#
items 4, 5 & 6
the requested information is written by milonga if
the keyword DEBUG is used
DEBUG FILE_PATH \$1-\$2-\$3-\$4-\$5-\$6/4-info.txt #____ # item 7 # included in point 3 # # item 8 # it is not clear what does "results" mean, but we # write a text file with some information we can later # use to compare all the cases as a function of the # size of the problem matrices (number of unknowns) OUTPUT FILE times \$1-52-\$3-\$4-\$5-\$6/8-results.dat PRINT FILE times { % g unknowns nodes cells elements % keff tho mesh_time read_mesh_time build_matrices_time solve_time %.2f wall }