
A Milonga’s input file for the 2D
IAEA benchmark

BENCHMARK PROBLEM
#
Identification: 11-A2 Source Situation ID.11
Date Submitted: June 1976 By: R. R. Lee (CE)
D. A. Menely (Ontario Hydro)
B. Micheelsen (Riso-Denmark)
D. R. Vondy (ORNL)
M. R. Wagner (KWU)
W. Werner (GRS-Munich)
#
Date Accepted: June 1977 By: H. L. Dodds, Jr. (U. of Tenn.)
M. V. Gregory (SRL)
#
Descriptive Title: Two-dimensional LWR Problem,
also 2D IAEA Benchmark Problem
#
Reduction of Source Situation
1. Two-groupo diffusion theory
2. Two-dimensional (x,y)-geometry
#

-----8<----- milonga’s solution begins here -----8<-----
the expected arguments are:
$1 = number of the case
$2 = type of geometry (quarter / eigth)
$3 = meshing algorithm (delaunay / delquad)
$4 = basic shape (triangs / quads)
$5 = discretization scheme (volumes / elements)
$6 = characteristic length of the element/cells

we first create a subdirectory that will hold the
files that correspond to the current case
SHELL "mkdir -p $1-$2-$3-$4-$5-$6"
and greet the user through the standard output
PRINT TEXT "case $1-$2-$3-$4-$5-$6 " NONEWLINE

tell milonga we face a two-dimensional two-groups
problem with an unstructured grid
PROBLEM DIMENSIONS 2 GROUPS 2 MESH $1-$2-$3-$4-$5-$6/benchmark.msh

SCHEME $5 # spatial discretization scheme
Bg2 = 0.8e-4 # axial geometric buckling in the z direction

materials and cross sections according to the two-group constants
each material corresponds to a physical entity in the geometry file
XS can be given as algebraic expressions of x and y if needed
MATERIAL fuel1 {
D_1 1.5 SigmaA_1 0.010+1.5*Bg2 SigmaS_1->2 0.02
D_2 0.4 SigmaA_2 0.080+0.4*Bg2 nuSigmaF_2 0.135 eSigmaF_2 0.135 }

MATERIAL fuel2 {
D_1 1.5 SigmaA_1 0.010+1.5*Bg2 SigmaS_1->2 0.02
D_2 0.4 SigmaA_2 0.085+0.4*Bg2 nuSigmaF_2 0.135 eSigmaF_2 0.135 }

MATERIAL fuel2+rod {
D_1 1.5 SigmaA_1 0.010+1.5*Bg2 SigmaS_1->2 0.02
D_2 0.4 SigmaA_2 0.130+0.4*Bg2 nuSigmaF_2 0.135 eSigmaF_2 0.135 }

MATERIAL reflector {
D_1 2.0 SigmaA_1 0.000+2.0*Bg2 SigmaS_1->2 0.04
D_2 0.3 SigmaA_2 0.010+0.3*Bg2 }

boundary conditions as requested by the problem, applied
to appropriate physical entities defined in the geometry file
PHYSICAL_ENTITY external BC robin -0.4692
PHYSICAL_ENTITY mirror BC mirror

based on a geometry template file named $1.tpl for the
type of symmetry used, generate a .geo file with the
selected characteristic length, meshing algorithm and
basic element/cell shape
TODO: future versions ought to implement these kind of
conditionals natively instead of relying on the shell
SHELL "echo \"lc=$6;\" > $1-$2-$3-$4-$5-$6/benchmark.geo"
SHELL "cat $2.tpl >> $1-$2-$3-$4-$5-$6/benchmark.geo"
SHELL "if [\"$3\" = \"delaunay\"]; then echo \"Mesh.Algorithm=5;\" ←↩

>> $1-$2-$3-$4-$5-$6/benchmark.geo; fi"
SHELL "if [\"$3\" = \"delquad\"]; then echo \"Mesh.Algorithm=8;\" ←↩

>> $1-$2-$3-$4-$5-$6/benchmark.geo; fi"
SHELL "if [\"$3\" = \"delquad\"]; then echo \"Mesh. ←↩

RecombinationAlgorithm=8;\" >> $1-$2-$3-$4-$5-$6/benchmark.geo; fi ←↩
"

SHELL "if [\"$4\" = \"quads\"]; then echo \"Mesh.RecombineAll=1;\" ←↩
>> $1-$2-$3-$4-$5-$6/benchmark.geo; fi"

call gmsh whilst measuring how much wall time it takes
t1 = clock()
SHELL "gmsh -2 $1-$2-$3-$4-$5-$6/benchmark.geo > /dev/null"
mesh_time = clock()-t1

to force milonga to normalize the fluxes as requested, we
can set a power setpoint equal to the core volume and fix
eSigmaF = nuSigmaF (as we did in the MATERIAL section)
in order to compute the volume of the core, we need to
have the XS as functions of (x,y) available for integration
this can only happen if we ask milonga to explicitly read
the mesh before solving the eigenvalue problem with the
READ_MESH keyword. Note that the mesh file for the problem
was defined above with the PROBLEM keyword
READ_MESH

eps = 5e-3 # relative allowed integration error
key = 1 # GSL_INTEG_GAUSS15 (see GSL’s documentation)
we take the core as the geometric place of the
points (x,y) that have a non-zero fission XS
incore(x,y) := greater(nuSigmaF_2(x,y),0)
power = integral(integral(incore(x,y), x, 0, 170, eps, key), y, 0, 170, ←↩

eps, key)

we finally ask milonga to solve the eigenvalue problem
SOLVE_PROBLEM

and then we proceed to answer the requested items

#---
item 1
we save the effective multiplication factor with
six decimal digits in a text file
OUTPUT_FILE keff $1-$2-$3-$4-$5-$6/1-keff.txt
PRINT FILE keff %.6f keff
and the equivalent static reactivity in another one
rho = 1e5*(keff-1)/keff
OUTPUT_FILE rho $1-$2-$3-$4-$5-$6/1-rho.txt
PRINT FILE rho %.2f rho

by the way, inform the user we are almos done
wall = mesh_time+read_mesh_time+build_matrices_time+solve_time
PRINT SEPARATOR " " {
TEXT "rho =" %.2f rho
TEXT "pcm"
TEXT "(" wall TEXT "segs)" }

#---
item 2 (not asked)
write the two-dimensional flux distribution both in
ASCII and in gmsh post-processing format
the difussion coefficient is included to help decide
if a point is in the core or in the reflector
OUTPUT_FILE flux-dist-ascii $1-$2-$3-$4-$5-$6/2-flux-dist.dat
OUTPUT_FILE flux-dist-post $1-$2-$3-$4-$5-$6/2-flux-dist.pos

PRINT_FUNCTION FILE flux-dist-ascii phi_1 phi_2 power_density incore
WRITE_OUTPUT_FOR_POST flux-dist-post phi_1 phi_2 power_density

#---
item 2a
the radial flux traverses phi(x,0) and phi(x,x)

OUTPUT_FILE flux-axis $1-$2-$3-$4-$5-$6/2a-flux-axis.dat
OUTPUT_FILE flux-diag $1-$2-$3-$4-$5-$6/2a-flux-diag.dat

phi1_axis(x) := phi_1(x,0)
phi2_axis(x) := phi_2(x,0)

phi1_diag(x) := phi_1(x,x)
phi2_diag(x) := phi_2(x,x)

PRINT_FUNCTION FILE flux-axis phi1_axis phi2_axis MIN 0 MAX 170 STEP 0.1
PRINT_FUNCTION FILE flux-diag phi1_diag phi2_diag MIN 0 MAX 170 STEP 0.1

#---
item 2b
the maximum thermal flux has to be located in one of the
solution points, and as computing the maximum of a 2-dimensional
function is rather expensive, we use GNU sort over the
ASCII file computed in item 2, filtering between the core
and the reflector by the value of the fast diffusion coefficient
VAR x_max y_max phi1_max phi2_max

OUTPUT_FILE maximums $1-$2-$3-$4-$5-$6/2b-maximums.txt

SHELL "cat $1-$2-$3-$4-$5-$6/2-flux-dist.dat | grep 1\.000000e+00$ | sort ←↩
-g -k3 -r | head -n1 > $1-$2-$3-$4-$5-$6/2b-maximum_core.dat"

IMPORT ASCII_FILE $1-$2-$3-$4-$5-$6/2b-maximum_core.dat x_max y_max ←↩
phi1_max phi2_max

PRINT FILE maximums TEXT "maximum thermal flux in core is phi2 = " ←↩
phi2_max TEXT "at x=" x_max TEXT "y=" y_max

SHELL "cat $1-$2-$3-$4-$5-$6/2-flux-dist.dat | grep 0\.000000e+00$ | sort ←↩
-g -k3 -r | head -n1 > $1-$2-$3-$4-$5-$6/2b-maximum_refl.dat"

IMPORT ASCII_FILE $1-$2-$3-$4-$5-$6/2b-maximum_refl.dat x_max y_max ←↩
phi1_max phi2_max

PRINT FILE maximums TEXT "maximum thermal flux in reflector is phi2 = " ←↩
phi2_max TEXT "at x=" x_max TEXT "y=" y_max

#---
item 3 (and 7)
we build a table with the average subassembly powers as item 7
asks the average fluxes, we compute the two of them here

the file assemblies.coords contains five columns with the
coordinates that define each of the 38 subassemblies
FUNCTION xmin(k) FILE assemblies.coords COLUMNS 1 2
FUNCTION xmax(k) FILE assemblies.coords COLUMNS 1 3
FUNCTION ymin(k) FILE assemblies.coords COLUMNS 1 4
FUNCTION ymax(k) FILE assemblies.coords COLUMNS 1 5

te allow the 8-symmetry geometry, we define "symmetric
functions" that mirror the power and the fluxes around the
line y = x, otherwise for those assemblies that contain a
small area with y > x, their averages would be underestimated
simpow(x,y) := if(greater(x,y), power_density(x,y), power_density(y,x))
simphi1(x,y) := if(greater(x,y), phi_1(x,y), phi_1(y,x))
simphi2(x,y) := if(greater(x,y), phi_2(x,y), phi_2(y,x))

volume of the k-th subassembly
vol(k) := (xmax(k)-xmin(k))*(ymax(k)-ymin(k))

number of points used in the gauss-legendre quadrature
points = 8

mean_power(k) := 1/vol(k) * gauss_legendre(gauss_legendre(simpow(x,y), ←↩
x, xmin(k), xmax(k), points), y, ymin(k), ymax(k), points)

mean_flux_1(k) := 1/vol(k) * gauss_legendre(gauss_legendre(simphi1(x,y), ←↩
x, xmin(k), xmax(k), points), y, ymin(k), ymax(k), points)

mean_flux_2(k) := 1/vol(k) * gauss_legendre(gauss_legendre(simphi2(x,y), ←↩
x, xmin(k), xmax(k), points), y, ymin(k), ymax(k), points)

OUTPUT_FILE table $1-$2-$3-$4-$5-$6/3-table.dat
PRINT TEXT "\# k P_k fast_k thermal_k" FILE table
PRINT_FUNCTION mean_power mean_flux_1 mean_flux_2 MIN xmin_a MAX xmax_b ←↩

STEP 1 FILE table FORMAT %.3f

#---
items 4, 5 & 6
the requested information is written by milonga if
the keyword DEBUG is used
DEBUG FILE_PATH $1-$2-$3-$4-$5-$6/4-info.txt

#---
item 7
included in point 3

#---
item 8
it is not clear what does "results" mean, but we
write a text file with some information we can later
use to compare all the cases as a function of the
size of the problem matrices (number of unknowns)
OUTPUT_FILE times $1-$2-$3-$4-$5-$6/8-results.dat
PRINT FILE times {
%g unknowns nodes cells elements
%e keff rho

mesh_time read_mesh_time build_matrices_time solve_time
%.2f wall }

-----8<----- milonga’s solution ends here -----8<-----

