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A three-dimensional, multigroup, diffusion code based on a high order nodal expansion method for hexagonal-z geometry
(HNHEX) was developed to perform the neutronic analysis of hexagonal-z geometry. In this method, one-dimensional radial
and axial spatially flux of each node and energy group are defined as quadratic polynomial expansion and four-order polynomial
expansion, respectively. The approximations for one-dimensional radial and axial spatially flux both have second-order accuracy.
Moment weighting is used to obtain high order expansion coefficients of the polynomials of one-dimensional radial and axial
spatially flux. The partially integrated radial and axial leakages are both approximated by the quadratic polynomial. The coarse-
mesh rebalance method with the asymptotic source extrapolation is applied to accelerate the calculation. This code is used for
calculation of effective multiplication factor, neutron flux distribution, and power distribution. The numerical calculation in this
paper for three-dimensional SNR and VVER 440 benchmark problems demonstrates the accuracy of the code. In addition, the
results show that the accuracy of the code is improved by applying quadratic approximation for partially integrated axial leakage
and four-order approximation for one-dimensional axial spatially flux in comparison to flat approximation for partially integrated

axial leakage and quadratic approximation for one-dimensional axial spatially flux.

1. Introduction

It has been nearly 30 years since the initial implementation
of finite-difference method (FDM) [1] and finite element
method (FEM) [2] in computer codes designed to solve the
few-group neutron diffusion equations in more than one
spatial dimension. A large number of mesh points were
required for solving few-group neutron diffusion equations
by traditional finite-difference techniques in order to repre-
sent accurately the spatial variation of the neutron flux. Due
to the large number of unknowns involved, these calculations
were very expensive, particularly for fuel management studies
which require repeated solution of the diffusion equation.
In order to solve this problem, the development of nodal
methods had enabled computing times for LWR analysis to
be significantly reduced. The nodal methods consisted of
two main approaches which are polynomial nodal method

[3] and Analytic Nodal Method (ANM) [4]. Two nodal
methods have one feature in common which is that they
are based on approximations to one-dimensional equations
derived by integrating the three-dimensional equation over
the two directions transverse to each coordinate axis. The
essential difference of the two methods suggests classification
of the methods developed for the solution on the basis of
whether information obtained from an analytic solution of
the diffusion equation within the node is incorporated into
the numerical scheme. In the polynomial nodal method,
the basic scheme is that the one-dimensional fluxes are
approximated by a polynomial without the use of analytic
information. A well-known example of the polynomial meth-
ods is the nodal expansion method (NEM) [5, 6]. Its basis
is the solution of equations for the average flux on a coarse
spatial mesh, combined with a high order local polynomial
flux expansion, which is used to determine a relationship



between the mean interface partial currents and the mesh
average fluxes. Accuracies of both ANM and NEM are com-
parable. However, the ANM method, due to its complexity,
is restricted to not more than two energy groups. NEM is an
example of first-generation polynomial nodal method. One of
its main advantages is that there is no restriction on number
of energy groups.

Recently, the capacity to compute accurate numerical
solutions to the neutron diffusion equation in hexagonal-z
geometry is required for the physics and safety analysis of
hexagonal fuel assembly (FA) designs. However, the NEM,
which is initially developed for LWR, is formulated in
rectangular geometry. The analysis of hexagonal-z geom-
etry requires an extension to hexagonal geometry of the
transverse integration procedure widely used in the devel-
opment of Cartesian-geometry nodal schemes. The success
of these Cartesian-geometry nodal methods has prompted
the development of analogous techniques [7, 8] for fast
reactor calculations in hexagonal geometry. Extension of
AFEN for hexagonal-z geometry was also employed by Cho
et al. [9]. Besides, a mathematical basis for an extension
of nodal methods to hexagonal geometry using conformal
mapping of the hexagon into a rectangle has been provided
by Chao and Shatilla [10]. In the traditional nodal expansion
method for hexagonal-z geometry [11], partially integrated
axial flux is approximated by quadratic polynomial and flat
approximation is used for partially integrated axial leakage.
The accuracy of this traditional method can be improved by
using high order approximation.

In this paper, we developed a 3D nodal code based on a
high order nodal expansion method for hexagonal-z geom-
etry (HNHEX). This method exploits quadratic polynomial
expansion for partially integrated radial flux using which is
based on the NEM [11] and four-order polynomial expansion
for partially integrated axial flux. Moment weighting is
used for radial direction and axial direction to obtain high
order expansion coeflicients of the polynomials. The partially
integrated radial and axial leakages are both approximated
by the quadratic polynomial. Numerical results of HNHEX
demonstrate the efficiency and good accuracy of method.

The organization of this paper is as follows. Section 2
presents the summary of high order nodal expansion method
for hexagonal-z geometry. Section 3 presents calculation of
the leakage moments. In the next section, the proposed iter-
ative solution algorithm is given and the results of HNHEX
against three-dimensional SNR and VVER 440 benchmarks
are presented. Section 6 presents the conclusion.

2. A High Order Nodal Expansion Method
for Hexagonal-z Geometry

In this section, we present a high order nodal expansion
method for hexagonal-z geometry. The multigroup neutron
diffusion equation is solved by using a nodal scheme with
one node per hexagonal assembly. One-dimensional radial
spatially flux of each node and energy group is defined as
the quadratic polynomial expansion. One-dimensional axial
spatially flux of each node and energy group is defined as
the four-order polynomial expansion. The polynomial for
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FIGURE 1: Hexagonal coordinate system.

the radial spatially flux is equivalent to a quadratic approx-
imation and has second-order accuracy. The polynomial for
the axial spatially flux is a four-order approximation and
has second-order accuracy. The partially integrated radial
and axial leakages are both approximated by the quadratic
polynomial. The final equations, which are cast in response
matrix form, involve spatial moments of the node flux distri-
bution plus surface-averaged partial currents across the faces
of the node. The coarse-mesh rebalance method with the
asymptotic source extrapolation is applied to accelerate the
calculation.

2.1. Nodal Coordinate Systems. The hexagonal-z geometry
only has difference with rectangular geometry in the radial
direction. There is no difference in the axial direction. Thus,
a combination of a hexagonal geometry analysis in the radial
direction with a 1D rectangular geometry analysis in the axial
direction is required to the derivate of a nodal expansion
method for hexagonal-z geometry.

The hexagonal axes which consist of x-direction, u-
direction, and v-direction are employed in the hexagonal
geometry as shown in Figure 1. The u-direction is rotated
60° counterclockwise with respect to the x-axis and the v-
direction is rotated 120° from the x-axis. Using the orientation
shown in Figure 2, with the origin (in local coordinates) taken
as the center of the hexagon, a homogeneous node volume
of kth node can be defined as shown in (1) in the local
coordinate:

Ve (%9, 2)
xe [—gg] yel-y(x),y®)], z € [—ATZIC:ATZIC]’ ;
where
y () = % (h =), 2)

his the lattice pitch and the x-axis is taken as perpendicular to
one pair of opposite faces of the hexagon. Analogous partially
integrated fluxes and currents are defined for the two opposite
faces.
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FIGURE 2: A three-dimensional hexagonal-z geometry.

2.2. High Order Nodal Expansion Method for Hexagonal-z
Geometry. In this method, reactor is divided into k number
of homogeneous hexagonal nodes. Cross sections within
the nodes are assumed to be constant. Let us consider a
homogeneous node k shown in Figure 2, the multigroup
neutron diffusion equation for kth node, and gth group can
then be written in the form shown in

ko (k rk (k Ak
= VDV, (x,y,2) + "¢, (x, 3, 2) = Q (%, 9, 2),

k=1,...,K, g=1,...,G,
where

Xy L &
Q; (% 3.2) = —k‘; > vE) 6 (6 3,2)
€ g’zl

(4)

The solution of (3) requires additional relationships
between the surface-averaged leakages and the nodal fluxes
in the kth node and its immediate neighbors. The addi-
tional relationships are given by approximations to one-
dimensional equations derived by integrating the three-
dimensional equation over the two directions transverse to
each coordinate axis. The one-dimensional radial equation
can be obtained by integrating the three-dimensional equa-
tion over y and z directions and take the form shown in

3
d T
%]gw (w)+32 g’kgbzw (w)
=Q, W)
2 (5)
Y [Jsuy (w, y @) = T, (w, = y ()]
_LI;Z (LU), w=X,U"v,
where
X Azk/Z y(w)
¢gw (w) = J . dzj dy¢g (x,y,z),
—-AzZ"[2 —y(w)
Azk/2 y(w) a
k k k
= D EY > b b
Jgw (W) J_Azk/z dz J_y(w) y =Dz -4, (x, 7,2)
(6)

Azk/l y(w)

Q) =| dz| dyQ

gw w)_ " z ng(x’y>Z)>
—-Az"[2 -y(w)

*
dz - DX —¢" (x,7,2),
i 952% (% 2:2)
W= X,UV.
The one-dimensional axial equation can be obtained by

integrating the three-dimensional equation over x and y
directions and take the form shown in

d ;
o @+ I, (2) = Q. (2) ~ Ly, (2), ()



x h/2 y(x) x
gz (2) = J dXJ dyd, (x, y.2),
(x)

h/2 y(x) b)
k(o _ k9 K
]gz(z)—J dxj )dy—Dgac/)g(x,y,z),

—h/2 -y(x
X h/2 y(x) B
Q. (2) = J dxj dyQ, (x,y,2), (8)
~h/2 —y(x)

In order to solve (5) and (7), the partially integrated
radial and axial fluxes are defined as quadratic polynomial
expansion and four-order polynomial expansion shown in
(9) and (11), respectively. The approximation defined in (9)
for the partially integrated radial fluxes has second-order
accuracy due to the fact that this latter procedure is equivalent
to enforcing a neutron balance over each of the half-nodes.
The approximation defined in (11) for the axial direction has
second-order accuracy. The approximation of the partially
integrated radial fluxes takes the form shown in

—k ~ B (W)
P07 5y )
ok k k k 9
- ¢9 + agwlfl (w) + angfz (w) + agw3f3 (w)
+ a};w4f4 (w) , wW=X,U,v,
where
& 1 AZF[2 h/2 y(x) .
g W J—Azk/Z dz J—h/Z dx J_y(x) dy¢g (X, V> Z) >
frw=7,
36 fw\?> 5
=13 (5) -5 ()
10 /w\?> 1|w 3
fw=5(5) -alil s
w w 1
s =(5)([%]-2):

w=Xxu,n.

f1(w) and f,(w) are obtained by using orthogonal character-
istics of f,(w) polynomials. Higher order approximations are
obtained by first adding a basis function f;(w) which has a
first derivative discontinuity at w = 0 and then adding an
additional basis function f,(w) which provides a quadratic
approximation over the half-intervals —h/2 < w < 0 and
0<w<h/2.
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The approximation of the partially integrated axial fluxes
takes the form shown in

_ AZFE (2)
¢];z z) = V—gk

(1)

—k
= (/)g + a:;zlgl (2) + agzzgz (2) + agz3g3 (2)

k
+ agz4g4 (Z) >

where
gl(z):Aizk’
20 () i
z z \2 1 12)
wo- (252

0= ((52) -3) () - )

In order to determine the zeroth expansion coefficients,
the polynomials of (9) and (11) are fitted to the average flux
in the node and the average fluxes on its surfaces. Thus, we
impose the conditions shown in

Fou(w=+3) =%+ atuiss () + bunss (5)
i (3) +ebuts(3)

—k
= ¢gw+ =

k k —k —k
agwl + ang - 2¢gw+ - 2¢g’

B (w=-2) =8 +abufi (-5)
+ a§w2f2 (_g) * a’g‘w3f3 <_g)

h —k
+ a§w4f4 <_E) = ¢gw— =

w=xu,v,

k k —k —k
agwl - ang - 2¢g - 2¢gw7’

w=xu,v,
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k Azk
5393\
AZF —k
k
+ agz4g4 (T) = ¢gz+ -

k ko —k —k
Agz1 + gz = 2¢gz+ - 2¢g>

—k AZF —k R AZF
¢gz (Z = _T) = ¢g + agzlgl (_T

AZF

+ agngZ _T
AZF

+ agz3g3 BN
AZF —k

+ agz4g4 _T ¢gz— =

k k —k —k
Agz1 ~ Ggz2 = 2(/59 - 2¢gz—'

(13)

We solve (13) to get the zeroth expansion coefficients
shown in

k —k —k
Agun = ¢gw+ - ¢gw—’

k —k —k —k
ang = ¢gw+ + ¢gw— - 2¢g’
ko —k —k 14
agzl - ¢gz+ - ¢gz—’ ( )
k

k —k —k —
Agzo = ¢gz+ * ¢ng - 2¢g’

w=Xxu,v.

. k _ .
The coefficients ag,; (w = x,u,v) are determined by

requiring the y-integrated net current ];‘w(w) (w=x,u,v)to

+h/2
o [ {7 )+ 2, ) - Qo )+

VE L np

For moment weighting, h,(w) = f,(w) = w/h (w =
X, u, v); integrate and rewrite (18) to get flux moment equation
in three radial directions shown in
32Dk
r.k g9
z g T 7

¢>§x1+3h[r +r r’;]

@)+ 2= [75 @) - 5 (- @) dw =

gzw

be continuous at w = 0 and the imposed condition is shown
in

X=€
lim [

e—0

2 g )]

X=—€

(%) &
2 ()¢ (x) (15)

X=—€

= [ Dt [ZJ’ (x) agx3f3 (x )]
2D* .
_ 739 [aks + 2¢’;x (x)]xzo.

Apply the two-step leakage approximation and the final
form of a’;w (w = x,u,v) is given by

Kk 26 h =k —k —k —k
agx3 - _@ﬁ []gu+ - ]gu— + ]gv+ - ]gv—]
g
8 -k —k —k
- H |:¢gx+ + ¢gx— - 2¢g:| >
kK _ 26 h =k —k —k —k
agu3 - _ﬁﬁ []gx— - ]gx+ + ]gv+ - ]gv—:l
! (16)
8 -k —k —k
- ﬁ [¢gu+ + ¢gu— - 2¢g:| >
k26 h = —k —k —k
Agyz = _@E []gx— - ]gx+ + ]gu— - ]gu+]
g
8 [k —k —k
- H [¢gv+ + ¢gv— - 2¢g] >
where
—k —k h
]gwizlgw<iz>, W= X,U". 17)

Higher order coefficients agw4 (w = x,u,v) are deter-
mined by applying a moment weighting scheme to the one-
dimensional balance equation (5). The weighted residual
equation is obtained by weighting equation (5) with a weight
function h;(w) and require the result to be zero when
integrated over the interval w € [-h/2,h/2] (w = x,u,v) as
shown in

(18)

w=X,U,".

k
_40Dgak oL
92 gx1 =~ Sgxl Azk gzx1?
g P00 e 2
9 T2 ¢gu1+3_h[9x+ gut W]



6
k
40D, PN 1 Ik
- Wagul - qul - y gzul?
rk 32D]; k 2 —k —k —k
5 st | Wt 5y [Toe + T + T,
k
_ % ko—qQf - LLk
92 gvl gvl Azk gzvl?
(19)
where
X 1 h/2
(/)gwl = W j_ dwfl (LU) (/)gw
X 1 h/2
Q= 5z [ duf, @)Q, w),
gwl Vk “nja fl gw (20)
h/2 y(w)
k AZ* k
ngwl = W J-—h dwfl (w) J ) dngz (w’y)>
w=X,U"v,
—k —k —k
rgx = ]gx+ +]gx—’
—k —k —k
rgu = ]gu+ + ]guf’ (21)

—k —k —k
rgv = ]gv+ + ]gv—'

Now substitute ¢Zw(w) in ‘/5;14;1 with (9) and then integrate

k .
to get a,,, as shown in

X 1 h/2
Shor = g |, Aeh @),
= b ia;m:
azm— 24¢Zw1+13—6a’;w1 22)
= 241+ 5 B~ P ]

w=Xx,u,v.

Higher order coefficients a - and ak 44 are determined by
applying a moment weighting scheme to the one-dimensional
balance equation (7). The weighted residual equation is
obtained by weighting equation (7) with a weight function
h,(z) (i = 1,2) and requiring the result to be zero when

integrated over the interval z € [-AZF/2, AZF 2]

1 AZF)2 d . . .
vk sz/z hai () {E] ge (2) + 2570y (2) = Qy (2) (23)

+ L’;xy (z)]» dz =0,
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For moment weighting, i = 1, h,,(z) = g,(z) = z/AZF,
integrate and rewrite (23) to get one-order flux moment
equation in axial direction shown in

1 (7];“ * 722—) D Z k

2”‘(,5 1 + - a
k 2 "gzl
Az (Az*) (24)
2 Ik
= ngl 3]’[ gxyzl’
where
« 1 Azk/Z
W=z |, 40 D4 @),
X 1 Az"[2 k
ngl = W j—Az"/Z dzg, (z) ng (2),
(25)

K 3h 1 (A2
Do = 2 j_ dzg, ()15, (@),

For moment weighting, i = 2, h,(z) = g,(z) = (z/
AZF)? - 1/12, integrate and rewrite (23) to get second-order
flux moment equation in axial direction shown in

Dk
rk ok I =k =k 9k
g Tgz2 6AzZF ( gz+ g ) 3(Azk)2 gz2 26)
2 Ik
= ngZ 3h gxyzZ’
where
. 1 AZF )2
W=z, 40 D9 @),
X 1 AZE /2
ngz = VK J_ ny dzg, (2) ng (2), (27)
X 3h 1 AZR 2
gxyz2 = 7W Jl ngz () Lgxy (2).

Substitute ¢’;Z(z) into (/5’;21 and </>§Z2 with (11) and then
integrate to get (28a) and (28b):

AZF /2

=i [,
A o, vk

. .[-Azk/z <g> (Azk) [

e, for (2) s [ () 4l oy (2)| de

R I
- Eagzl - %agzy

@ @ dz =

gzlle (Z) (28a)
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k 1 AZF /2 1
o= | 0@ @dz= 5

AZF 2 z \2 1 X
— k
. — ) - — +a z
JlAzk/Z <<Azk> 12) [¢g gzlle ( ) (28b)
+d k k d
agszzZ (Z) + agz3fz3 (Z) + agz4fz4 (Z) z
I % I
=—a _,———a.__,.
180 9% 2100 9+
Thus, a’g€23 and a’gcz 4 are shown in
4~
Qg3 = 120¢gz1 + 10a
—k
120(/5_921 +10 [¢gz+ ¢gz—] ’
29)
& 35 & (
gz4 2100¢g22 = 3 gzZ

k 35 1—k —k —k
= _2100¢g22 + ? [¢gz+ + ¢gz— - 2¢g] .

The 3D multigroup nodal balance equation is obtained by
integrating over a homogeneous node volume V*

2 1=k —k —k —k —k —k
2 oo =T+ Tgus = Tgu + T g =T |
1 (30)
—k —] "
t o (T =T ) + 256, = @,

where

k1 (A h/2 yi(x)
Q- —J dzj dxj dyQ: (x.,2). (D)

VE gk g (%)

Ek is derived from (30) and shown in (32). gngl , ¢§u1 ,and ¢§V1

are derived from (19) and shown in (33), (34), and (35). (/) 921

and </> 22 Are derived from (24) and (26) and shown in (36)
and (37):

—k 1 —k 2 —k —k —k —k
8= =7Q, - e = Tow * Touir =7

srk k gu—
Z; 3h2;
. (32)
-k =k —k —k
+ ]gv+ —]gv_] - W (]gz+ —]gz_),
P S
gx1 — k k /1.2 gxl1 kgzx1
(Zpk + 32Dk /1) Az
2
- r _+ F -T
3h(zpk+ 320k /w2) [T ) (33)
40D%

k
a >
T (zok+ 32D’</h2) ol

k 1 k Ik
¢gu1 = (Q 17 L 1)
rk k gu k= gzu
(Zok + 32Dk /) Az

2 —k
*3h(z + 32D5/12) i T Ty /)

(34)

40D% .
a 1>
" o (zk + 320K /12)

1

k k 1k )
e — — _L
¢gv1 (Z;’k + 32D§/h2) (ngl Azk gzvl

2 —k =k =k
- +Fgu+1“gv]

3h (5K + 32D% /) [T (35)

40Dk &
" o2 (zrk + 32Dk /1) Ton

ko 1 k 2 k 1 —k
¢gzl - Zr’k (ngl - %Lgxyzl> - ZAZer’k (]gz+
g g

(36)

ko 1 k 2k 1 —k
¢g22 - Zr’k <Qg22 - 3thxy22> - 6Asz“k (]gz+
9

" (37)
-k D g k

gz—) - 3(T)Zzgka522'

The partial net current and one-dimensional average
spatially flux can be written in the form of outgoing and
incoming partial currents as shown in

—out,k  —ink
i]gwir = ]gwir - ]gwi’
—k —out,k  —ink 38
¢gwi:2[jgwi+]gwt]’ ( )

w=Xx,umvz.

By using (9) and (38), outgoing partial currents through
radial-directed surfaces of kth node in terms of flux expan-
sion coeflicients are shown in

—out,k =k —in,k
]gw+ = ]gw+ ]gw+

[ D"i (w)+D"ME" (w)]
x=h/2

9dw 92y (w) ¥
—in,k
+ ]gw+
Dy 36 7 1
g k k k k
:_Tligwl-i— 3gw2+ 6gw3+2 gw4+E ]

—in,k

g W= XUV,



—out,k —k ink
]gw— = _]gw— + ]9‘“_
!
o d —k Ky (W) i
- _|-pt 2 w) + D Eg, (w
[ 9dw¢gw( ) §2y(w) gw( ) x=—h/2
—in,k
+J g
Dk 36 7 1
= gk - Dak - Zdk +sa, B
T [agwl 13 %0w2 ™ 26 %ws T 3 Fus ngf]
—in,k
+ ];nw,> w=x,Uu,v,
(39)
where
k
ng+
1 h ok 7T
~ 285Dk {17 []gu+ B ]gv—] -2 []g"+ - ]gu_]}
g
1 —k y Y
- o% [179 s T 496, — 228%]
1 %
* 1304
k
Egu+
1 h k5K 7T
© 285Dk {17 []gV+ - ]gx+] -2 []gxf - ]gvf]}
g
1 —k y Y
— T_?,S [179 gu+ + 49¢gu7 - 228(/5!]]
i
130 9%
k
EgV+
1 ho( ok o 7T
= 7285 Dk {17 []gxf - ]gu+] -2 []9“’ B ]5“”
g
1 o &
I
T30
k
Ef,
L ho( ok o 7T
- _ﬁD_’; {17 []gu+ - ]gv—] -2 []9"+ B ]g”_]}
1 7,k 7 ry
% [49 s F 1796, — 228%]
I &

+ Eagxy
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Ej,.
- {17 [Tovs = Toe] -2 [Tn —7;—”
_ % [49_;+ +1798,, 228%];]
b dt
130 94
ES,
1 h k< T
- _ED_]; {17 []gx— - ]gu+] -2 []guf - ]gx+]}
- [98,, v 15, 228
b gt
130 9%

(40)

By using (11) and (38), outgoing partial currents through
axial-directed surfaces of kth node in terms of flux expansion
coefficients are shown in

—out,k =k —in,k k d —k —in,k
Joze =Jgor T o = [—D —¢ (Z)] +]
gz+ gz+ gz+ 94z 197 A gz+
_ [ DF AZF d (’,Bk (Z)] +7m,k
9Vk dg Ve i gz+
Dk 1
9 | k k k k —ink
= _A_Zk Agzr T g + Zagz3 + 4Oagz4] gz+?
—out,k —k —in,k
Jork = g Tk (41
Kk d —k in,k
—-[-0t45,. )] ok
[ Idz " 9* z=—Azk]2 9z
k
i Az d ~k —in,k
=—|-D ——— z +
[ IVk de ¢gz ( )]zz—Azk/Z ]ﬂl—

-a +]gz_.

Dk
g |k k 1 x 17 & —ink
ok |4 gz2 T EagZS - 4_Oagz4

We use (14), (16), (22), and (29) for expansion coeflicients
along with (32), (33), (34), (35), (36), and (37) for node
averaged flux and its moments and (49), (50), (51), (56), and
(58) for node leakage moments. One-dimensional average
spatially flux is expressed by partial currents with (38). Eight
outgoing partial currents can be expressed in terms of eight
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incoming partial currents, source, and its moments and ~ Matrix elements (a;;, b;;, ;) are given below. These elements

leakage moments. are characterized by node dimensions and homogenized
material of the node.

70\1t,k
gx+ 2Dk
app Ay A3 Gy 15 G iy Gig —outk _ _ _ _ _ _ 9 468
T g Ay =Gy =33 = Gy = A5 = Ggs = 1 + n 133
Ay Gy Gyz Oyy Ohs Gy Gyy Oog
—out,k
a3 A3y Q33 Q3y O35 A3 A3y Osg ]9"+ ‘ i
—outk 160D 24D
Ay Qgp Qg3 Oy Oys Qg Qg7 Oyg J gx— + §_ g + 9
231,k
Q51 sy Gs3 Qsy G55 sg sy Osg T;:Lk 3 3(h222,k +32D§) 7h Zg
ds1 Qs g3 Ggs o5 Goe Ge7 Ges —outk K
Jg0- SDg
a7 Gy GAy3 Q74 G5 Gy Ay7 Qg T)ut,k + hzk—k’
P (W227k + 32DF)
ag) Agy Qg3 dgy Ogs Ggg Ug7 dgg 9 g
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(44)

3. Calculation of the Leakage Moments

Leakage moments in the response matrix are derived in this
section. The partially integrated axial leakage Lkgz(x) and

partially integrated radial leakage L’;xy(z) are expanded in
terms of polynomials, but here it is restricted up to second
order as the accuracy achieved in calculation is insignificant
with respect to computational effort involved in higher order
expansion.

3.1. The Radial Moment of the Partially Integrated Axial Leak-
age. The x-direction moment of the partially integrated axial
leakage LI;Z .1 is calculated by using the approximation shown
in (45) in which f,(x) and f,(x) are as given in (10). The
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partially integrated axial leakage 822 (x) is given by (45) and
the total axial leakage is shown in (46):

Ys(x) f f
J dyLy, (x,y) = Ly, (x)
—¥s(x) (45)
—k
=L, + SZzlfl (%) + 8:z2f2 (x),

where

b AZK no
L, = J dxj Ly, (x,9)

VE L
(46)
AZK (h2 o
= W J—h/Z dxagz (X, y) = ]gz+ - ]gz—'

The coefficients 8;21 and 8222 are calculated in the
following manner. Let kx— and kx+ denote the neighboring
nodes in the minus and plus x-directions and the quadratic
polynomial extends over the three nodes kx—, k, and kx+. The
expansion coeflicients in (45) are calculated such that the total
axial leakages shown in (46) in the nodes kx— and kx+ are

preserved as shown in (47). The expansion coefficients 6’;21
and 8;22 are calculated by using the constraints given in (47)
and the results are shown in (48):

—kx- AZF [TH2 k
o =22 J_h/z_h dxd, (x),
. (47)
—kx+ Az hi2+h k
L= L/Z dxs"_ (%),
k (kx+  —kx—
sk = v (ng ~ Ly )
gzl = 2AzZFh ’
k [kxt  —kx— (48)
s = 13V (ng + Ly ) ST
922" 73 AzZFh - e

The required leakage moment Ll;le is calculated by

substituting (45) into (20) and performing the necessary
—k —kx—
integrations and the total axial leakages L ;ZH and L ;ZC shown

in (46) can be computed by axial direction net currents.
The final form of the x-direction moment of the partially

integrated axial leakage Ll;le is shown in (49). Similar
equation for L’;zul and L’;zvl can be obtained as shown in (50)
and (51):

&
ySX
k
_Azkh T +5g_zz _Azkh 7
Covk T 26 ) vk | TR (49)

k [(hkx+  —kx—
L 1% (ng +ng)_sz |

146 Azkh g%

) AZk h/2 y(x) B
5= thzdxfl ) J, L ()

1
k AZkh —k
ngul = Vk 9z
(50)
k (kut  —ku—
. v (ng Ly ) 57
146 Azkh =)
k Azkh —k
ngvl = Vk 9z
51
k (kv —kv— ( )
. v (Lyz 92)_2zk
146 Azkh g

3.2. The Axial Moment of the Partially Integrated Radial
Leakage. The axial moment of the partially integrated radial

leakage L’;xyzl is calculated by using the approximation

equation (52). g,(z) and g,(z) are given in (12). The total
~k

radial leakage L/, can be written in terms of the average

leakages in the three radial directions as shown in (53):

—k
Ll;xy (Z) = Lgxy + 8:xy1g1 (Z) + al;xngZ (Z) > (52)
where

& 31 (M, % =k =k
Loy =5 7t J_Azk/z Loy (@) =Ly +Ly,+L,. (53

The coefficients (Snyl and 8§xy2 are calculated in the
following manner. Let kz— and kz+ denote the neighboring
nodes in the minus and plus z-directions and the quadratic
polynomial extends over the three nodes kz—, k, and kz+.
Integrating (54) over kz— and kz+, respectively, and the
expansion coeflicients 6§x , and 6§x , is calculated by using
the constraints given in (54) and the results are shown in (55).

—kz— 3h 1 -6z')2 k
Lgxy - ? sz_ J’,Azk/ziAzkz— dZLgX)/ (Z) >
. . (54)
—k 3h 1 AZ*[2+AZ
Lo == dzL (2),
92 Vket Jakp, v
k
Kk _ 2V kz— k kz— k
gxyl—ﬁg{[ZAz + Az ][Az + Az ]
—kz+ <k k kz+ k kz+
[ W—Lgxy] + (a2 + 422 A2k + 2824

' [II;XJ' - EZZ]} ’

20" V* . ket —
8 = S (88 + 8] [L - T,

+ [Azk + AZkZ+] [Z,;xy - ZZC;]} ’
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d= [Azkz_ + AZF ] [Azkz_ A+ Azk“] [AszJr

+ Azk] .
(55)
The required leakage moment L’;x},zl is calculated by

substituting (52) into (25) and performing the necessary
integrations to get the final form for L];xyzl shown in

K 3ho1 (A2
Vo= 2 J_A dzg, () L, (2)
hAZ (56)
T8 vk 9wl
_ gkz- [TK —kz— kz+ [k —kz+
5 [Lgxy B Lgxy] o1 [Lgxy B Lgxy] ’

where

kz—

AZF [2Azkz+ + Azk] [Az"z+ + Azk]

T 12[AZ% + AZF|[AZF + AZF + AZY] [AZT + AZF]
(57)

kz+
1

AZ [282% + AZ¥| [A2% + AZY]
T 12[AzZF + AZF] [AZFe + Ak + AZFT] [AZRE + AZF]

The required leakage moment Lkgx},z2 is calculated by
substituting (52) into (27) and performing the necessary
integrations to get the final form for Ll;xyzz shown in

Kk
B 3h 1 Az"[2
gxyz2 = 7W J_ ZgZ (Z) Lgxy ( )
]’l AZ k k
T g vk (‘Swl 1589"y2> (58)

= ( Ifz +£ ) [_gx}' Lf;‘;]
_ ( 11<z+ + Izcz+) [Zl;xy - zl;z;] >

where

kz—
2

(Azk)2 [Azkz+ + Azk]
180 [AzRe + AZK] [AZke + Azk + ARt ] [AZKet + AZK]

kz+ (59)
2

(82%) [a2% + A2
180 [AzZk T + AZK] [AZRe + AZk + AZkH] [AZkEt + AZK]

4. Numerical Solution of the Nodal Equations

4.1. Overview of the Solution Procedure. The effective multi-
plication factor, neutron flux, and fission power distribution

Science and Technology of Nuclear Installations

are obtained by using iteration technique to solve the neutron
diffusion equation. The nodal equations are solved by using
a conventional fission source iteration procedure accelerated
by coarse-mesh rebalance in combination with the asymp-
totic source extrapolation technique. At each fission source
iteration, the solution of the interface partial currents for each
group is accomplished via a series of sweeps through the
spatial mesh.

The algorithm used to solve the nodal equations is shown
in Figure 3 and steps are briefly described here:

(1) We calculate nodal coupling coeflicients shown in
(42). This calculation is performed only once before
the iteration starts.

(2) initialize the node flux moment vector ¢, eigenvalue
-9
k., rebalance factors f™ and partial currents
vector ];ut’k and I, ink to initial value (assuming ¢* =
= g

1.0, k4% = 1.0, }°“”<_1;"‘

groups g and all nodes k. The initial total fission
source vector for kth node is calculated by

G

k(0) _ Sk (k(0)

F*O = Zlvzg, ¢ (60)
i

0.0) for all energy

(3) At the beginning of outer iteration n, the group
partial currents ]O“tk are scaled by rebalance factors

f™ calculated by coarse—mesh rebalance procedure as
shown in

Aout Lk(n)

f out k(n ( 61)

(4) Fission source vector for kth nodes and gth group,
which is defined in (62), is calculated from flux
moment vector and eigenvalue obtained in previous
outer iteration (n — 1) (or, it will be guess value if it is
the first outer iteration)

G
k-1 L Fk  k(n=1)
gg T 1) Xg Z v fg,
eff g'=1
(62)
1 k(n—1)
Tk D Xolg
(3

(5) From this step, inner iteration (group iteration) starts.
Scattering source vector, as given in (63), is calculated
with the most recently computed flux moment vector

k(n) _ k(n)
Qs, Z 8. 63)

9<9

Then, construct group source vector for kth node and
gth group due to fission source vector and scattering
source vector by

k(n) _ k(n—1) k(n)
Q" = QR+ Q. (64)
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Calculate nodal coupling coefficients ([P’;] and [R;] matrix)

J

For all energy groups g and all nodes k, initialize node flux moment vector ¢k , eigenvalue keff(()),
and partial currents (J ‘;m’k and | Z"k) to initial value (assumed to be 1.0). Calculate the initial total

fission source vector Ek(o) .

Apply rebalance factor /™ to group partial currents J ;ut’k

)

_ G =
Calculate fission source vector for gth group by g’;“‘l) =(1 /keff(" R s Zg,:lvzj;’,kfzs” D

G s,k k(n)

Calculate scattering source vector for gth group by Q8™ =
g gth group by QS Zg;zl 7ol
9 <9

l

Construct group source terms due to fission and scattering for gth group by
™ — QFFr-1 4 Ogk®
Q" -,

i

Calculate leakage moment vector for gth group L’;

Solve response matrix equation for partial currents

l

Calculate flux moment vector for gth group ¢’;

Solve coarse-mesh rebalance equations for rebalance factors and eigenvalue

l

Apply rebalance factor f™ to total fission source F<®

I

Check convergence of fission source and eigenvalue

=

Exit

FIGURE 3: Overview of the nodal solution algorithm.
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(6) Leakage moment vector for kth nodes and gth group
defined in (49), (50), (51), (56), and (58) is calculated
by using the most recently computed incoming and
outgoing partial currents.

(7) The response matrix defined in (42) for kth nodes
and gth group is calculated by using latest incoming
currents (these outgoing partial currents are assigned
to the incoming partial currents of neighboring nodes
through respective surfaces).

(8) The flux moment vector defined in (32), (33), (34),
(35), (36), and (37) is calculated by using the most
recently computed partial currents, total source vec-
tor calculated in step (5), and leakage moment vector
calculated in step (6).

(9) Steps (5)-(8) are repeated for all nodes and all energy
groups with keeping fission source vector calculated
in step (4) constant.

(10) Once all energy groups have been processed, the
coarse-mesh rebalance equations are solved to get
coarse-mesh rebalance factors and eigenvalue. The
total fission source vector for kth nodes is scaled by
rebalance factors prior to checking the convergence
of the fission source as shown in

=k(n)

= P kevm, (65)

(11) A new eigenvalue k™ is calculated from k""",

F¥"=D obtained in previous
outer iteration (11— 1), and the total fission source F*™
obtained in present outer iteration n as shown in

the total fission source

k™ = kg 2 (66)
eff T Meff F(n,l)’
where
Koy _ N s Sk
. e
F* = szg, ¢y - (67)
-1

The outer iterations are terminated when three con-
vergence criteria shown in (68) are satisfied:

[kt — kgD < &, = 10X 107,

pko) _ pk(n-1)

max <g =1.0x 107,

k()

2
1 i ) _ pkn=1)
K Fk(n)

4.2. An Improved Coarse-Mesh Rebalance Method. The outer
(fission source) iterations are accelerated by using an
improved coarse-mesh rebalance method in combination
with the asymptotic source extrapolation technique. The
basic idea of the method is to scale the fluxes calculated at

(68)
12

<e=10x10".
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each outer iteration on the “fine-mesh” by rebalance factors
such that a neutron balance is enforced over each cell (region)
of a “coarse-mesh” superimposed on the fine mesh. This
approach is nonlinear since the fine mesh fluxes are used
to compute the coeflicients of the coarse-mesh equations. In
this section, the traditional coarse-mesh rebalance method
improved by Wielandt method and vector normalization
procedure is described.

The outer iterations are accelerated by using coarse-mesh
rebalancing in which each ring of hexagons corresponds to
a hex-plane coarse-mesh rebalance zone. The coarse-mesh
equations can be combined in the form shown in

(M) £ = 3 (P £, (69)

where f™ is coarse-mesh rebalance factor vector. Equation

(69) is constructed and solved following each outer iteration.
The solution to this eigenvalue problem can be obtained using
the Wielandt method. For problems in which the [M] matrix
can be inverted directly, the Wielandt method is often more
efficient. This approach is based on the application of the
power method to the “shifted” eigenvalue problem obtained
by rewriting (69) to

(3 5= < [P] ", 0
where
(3] = (M1 - - (71,
L1 7
1A A

The convergence rate of the power method is determined
by the dominance ratio of the matrix [M ~1[P]; the closer this
ratio is to 1, the slower the convergence rate will be. It can be

shown that, for A, > A, the dominance ratio of [17[71] [P] is
smaller than that of [M'][P]. Hence the Wielandt method,
which is obtained by applying the power method to (70), will
converge faster than the power method applied directly to
(69). However, the application of power method to calculate
eigenvalues of a matrix and corresponding eigenvectors may
lead to divergence of calculation. Thus, it is necessary to
improve the power method by normalizing vector. The
Wielandt method improved by vector normalization proce-
dure, which is obtained by applying the power method to
(70), will converge faster and be more stable than the power
method applied directly to (69). We solve (70) by using the
following iterative procedure as shown in

So=f; #0,
S = [7‘7[]71 (PLAL
Ay = max {S,}, 72)
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Numerical calculations to date have demonstrated that
only two power iterations are required at each power iteration
(k in (72) is equal to 2) due to the efficiency of the Wielandt
method. The computed rebalance factors are used to scale the
partial currents and fission source moments in accordance
with (62) and (65). The fission source is scaled prior to
checking the convergence of the fission source, while the
group partial currents are scaled at the beginning of the loop
over groups in the next outer iteration in order to avoid an
additional group loop following the rebalance procedure. It

is not necessary to scale the flux moments ¢*™ because, as

g
shown in (65), they do not enter into the calculation of the
group source term Qk(””) due to the assumption that there is
no upscatter. The final estimate for the eigenvalue at the nth

outer iteration A" is obtained from (73). The coarse-mesh
rebalance is performed once every five outer iterations:

(73)

5. Validation of HNHEX

In order to validate the effective multiplication factor, neutron
flux, and fission power distribution calculation of code
HNHEX, two 3D benchmark problems are selected. First
problem is a three-dimensional LMFBR benchmark problem
which is a simplified model of MARK-I core design of
SNR 300 prototype LMFBR. The second problem is a three-
dimensional VVER-440 benchmark problem. It should be
noted that all calculations are performed by a desktop
computer with CPU 3.1 GHz.

5.1. The Three-Dimensional SNR Benchmark Problem. The 3D
SNR benchmark problem was introduced by Lawrence in
ANL-7416 [12]. This benchmark problem is derived from
the triangular-z model by altering the outer radial boundary
(while preserving the total volume of the core) to allow
imposition of boundary conditions on surfaces of hexagons.
This modification thus permits solution by both hexagonal-
geometry and triangular-geometry codes. Figures 4 and 5
show the three-dimensional layout of the model reactor. The
model consists of a two-zone core surrounded by radial and
axial blankets without a reflector. The height of the active
core is 95 cm and each axial blanket is 40 cm thick. A total
of 11 rings of hexagons (including the central hexagon) are
included in the model with a lattice pitch of 11.2 cm. Vacuum
boundary conditions are imposed on the outer surfaces of
the blankets. Materials 1 and 2 are the inner and outer
zone consisting of a PuO,-UO, mixture as fuel whereas
materials 3 and 4 represent axial and radial blanket consisting
of U235-depleted uranium. Finally, materials 5 and 6 stand
for absorber-material and follower. The whole core model
includes a total of 18 control rods. In order to simulate a
realistic three-dimensional problem, each of the absorber
rods on the inner ring is withdrawn to the upper core/blanket
boundary whereas the outer ring of control rods is half-
inserted. More details about four-group homogenized cross
sections for assemblies are from [13].

15

‘ Absorber region (M5)

‘ Follower region (M6)

‘ Inner core region (M1)
‘ Outer core region (M2)

@ Radial blanket region (M3)

FIGURE 4: Cross section of SNR benchmark calculation model for
hexagonal-z geometry.

3
Inner core Axial blanket
region (M1) region (M4)
Outer core ‘ Absorber
region (M2) region (M5)
Radial blanket Follower
region (M3) region (M6)

FIGURE 5: Vertical section of SNR benchmark calculation model for
hexagonal-z geometry.
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TaBLE 1: HNHEX results for whole core 3D SNR benchmark in hexagonal-z geometry.

Code Number of axial planes kg kg error (pcm)  &¢ (%) eoc (%) erp (%) €45 (%) ecr (%) CPU time (sec)
DIF* — 1.00989 — — — — — — —
HNHEX® 1.01143 154 0.087 0.071 0.74 0.25 1.52 24.3
HNHEX® 1.01056 67 0.075 0.061 0.51 0.23 0.83 271
HNHEX® 18 1.01036 47 0.072 0.06 0.49 0.21 0.8 60.1
DIF3D Nodal 8 1.01150 161 -0.17 0.23 0.95 -0.30 -0.6 86.4
DIF3D Nodal 18 1.01125 136 -0.18 0.22 0.96 -0.11 -0.44 230.4
DIF3D(6) 36 1.01280 291 -0.27 0.42 0.47 —-0.60 -1.72 576.0
DIF3D(24) 36 1.01118 129 -0.04 0.13 0.05 -0.64 -0.64 2304.0
AFEN 8 1.01334 345 0.24 0.05 -1.46 -0.81 =211 3207.6
AFEN 16 101134 145 008  -005 -129  —041  —-0.92 7160.4
Reference.
bApplying flat approximation for partially integrated axial leakage and quadratic approximation for one-dimensional axial spatially flux.
©Applying quadratic approximation for partially integrated axial leakage and four-order approximation for one-dimensional axial spatially flux.

The HNHEX of traditional method and high order i L
method both have been used to solve the diffusion equation ; Y 300
with four energy groups for whole core calculation. The R;s L 975
hexagonal node size of the radial direction is a fuel assembly | L
dimension. The reference solution is obtained by Richardson i o L s
extrapolation of DIF3D (6 triangular meshes per assembly) : 8 1 20
and DIF3D (24 triangular meshes per assembly) solutions. o R R 7 -

Several codes were used to calculate whole core of 3D 4 4 4 6 17 5
SNR problem and Table 1 shows the numerical results of 3D RO ! R6| 5 [ 150w
SNR problem including effective multiplication factor and ! .
its relative percentage error ¢g; relative percentage error of c $|1 5 and3 , [ 100
region-averaged fluxes in comparison to reference solution; e - 75
and the CPU times. €, €5 €rp> €ap> and €40 are the i 2L 50
errors of the group- and region-averaged fluxes for the inner ! N
core, outer core, radial blanket, axial blanket, and absorber R5 L o
regions, respectively. DIF3D nodal conducts diffusion calcu- E)

lation with using nodal expansion method. DIF3D(6) and
DIF3D(24) perform finite-difference calculations with 6 and
24 triangular mesh cells per hexagonal assembly, respectively.
It should be noted that calculations of HNHEX are performed
by a desktop computer with CPU 3.1 GHz. The calculations of
DIF3D Nodal and DIF(6, 24) were performed using the IBM
370/195 computer. The calculations of AFEN were performed
using the SUN Sparc/2 computer [9]. According to Table 1,
the higher accuracy of results is belonging to the solution with
using quadratic approximation for partially integrated axial
leakage and four-order approximation for one-dimensional
axial spatially flux with less effective multiplication factor
and region-averaged fluxes errors relative to the flat approx-
imation for partially integrated axial leakage and quadratic
approximation for one-dimensional axial spatially flux. The
results calculated by HNHEX with 18 axial planes are more
accurate than that with 8 axial planes. Table 2 shows the
region-averaged fluxes calculated by HNHEX with a high
order nodal expansion method. These fluxes are normalized
to a total power of 3 watts over the whole-core model using
a power conversion factor of 3.1 x 10'° fissions/watt-sec. It
can be seen from Table 2 that the major flux errors appear in

FIGURE 6: Axial core cut for three-dimensional VVER 440 bench-
mark problem.

the absorber regions and blanket assemblies and it is due to
high flux gradient existence in these regions.

5.2. The Three-Dimensional VVER 440 Benchmark Problem.
Three-dimensional VVER 440 benchmark [14] models a
VVER-440 core in 30-degree symmetry using two-group
diffusion approximation and given cross sections. The core
is 250 cm high and covered with axial and radial reflectors
and contains fuel elements of 3 different enrichments. The
radial fuel assembly pitch is 14.7 cm. The control rods are large
control elements with fuel followers. Rod Bank 6 is partially
inserted, as shown in Figure 6. Vacuum boundary conditions
are applied to the entire reflector outside boundaries. The
two-group diffusion parameters are given in Table 3. The
task is to calculate the effective multiplication factor and
the 3D power distribution. The power distribution should
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TABLE 2: Region-averaged fluxes calculated by HNHEX for 3D SNR benchmark in hexagonal-z geometry.

Average fluxes

Group Region
Calculated Reference Relative error (%)
Inner core 4.0504E + 06 4.0569E + 06 -0.16
Outer core 2.4888E + 06 2.4870E + 06 0.07
1 Radial blanket 3.0776E + 05 3.0649E + 05 0.41
Axial blanket 3.6263E + 05 3.6273E + 05 —-0.03
Rods 1.2732E + 06 1.2640E + 06 0.73
Rod followers 2.3874E + 06 2.3688E + 06 0.79
Inner core 1.9106E + 07 1.9027E + 07 0.42
Outer core 1.0584E + 07 1.0594E + 07 —-0.09
) Radial blanket 2.2665E + 06 2.2209E + 06 2.05
Axial blanket 3.4752E + 06 3.4705E + 06 0.14
Rods 6.2578E + 06 6.1898E + 06 1.10
Rod followers 1.2544E + 07 1.2375E + 07 1.37
Inner core 1.7613E + 06 1.7579E + 06 0.19
Outer core 9.2373E + 05 9.2860E + 05 —-0.52
3 Radial blanket 3.1861E + 05 3.0960E + 05 2.91
Axial blanket 5.2894E + 05 5.2703E + 05 0.36
Rods 4.6395E + 05 4.6361E + 05 0.07
Rod followers 1.4109E + 06 1.3897E + 06 1.53
Inner core 3.2760E + 05 3.2706E + 05 0.17
Outer core 1.5468E + 05 1.5343E + 05 0.81
4 Radial blanket 9.1536E + 04 9.0518E + 04 112
Axial blanket 1.9719E + 05 1.9564E + 05 0.79
Rods 5.3574E + 04 5.3702E + 04 -0.24
Rod followers 3.4212E + 05 3.4029E + 05 0.54
TaBLE 3: Fuel assembly cross sections of three-dimensional VVER-440 benchmark.
Parameter
1 2 3 4 5 6
D, (cm) 1.3466 1.3377 1.3322 1.1953 1.4485 1.3413
D, (cm) 0.37169 0.36918 0.36502 0.19313 0.25176 0.24871
Zr1 (Cmfl) 2.5255E — 02 2.4709E — 02 2.4350E — 02 2.5636F — 02 3.3184E - 02 2.9301E - 02
Zro (Cmfl) 6.4277E — 02 7.9361E — 02 1.0010E - 01 1.3498E - 01 3.2839E - 02 6.4655E — 02
DI (Cmfl) 1.6893E — 02 1.5912E — 02 1.4888E — 02 2.2264E — 02 3.2262E - 02 2.7148E — 02
Zf)I (cmfl) 2.21676E — 03 2.79212E - 03 3.59068E — 03 0.0 0.0 0.0
Zﬁ (cmfl) 3.94368E — 02 5.65720E — 02 8.00000E — 02 0.0 0.0 0.0
uzﬂl (Cm_l) 4.4488EF — 03 5.5337E - 03 7.0391E - 03 0.0 0.0 0.0
sz,z (Cm_l) 7.3753E - 02 1.0581E — 01 1.4964E — 01 0.0 0.0 0.0

be normalized to core average power density of unity and
presented for axial node size of 25 cm. The reference solution
was extrapolated from DIF3D-FD runs with 216 and 294
triangle/hexagon subdivisions and 2.5 cm axial mesh spacing.
The node size used in HNHEX for 3D VVER 440 benchmark
is one node per a fuel assembly in radial shape and axial
sections with 25.0 cm height. Several codes were used to cal-
culate 3D VVER 440 problem and Table 4 gives the numerical
results of 3D VVER-440 test case. It should be noted that

calculations of HNHEX are performed by a desktop computer
with CPU 3.1 GHz. The calculations of ACNECH [15] were
performed using a laptop computer with CPU 2.41 GHz. The
CPU times are referred to HP9000/735-125 for ANC-H and
AFEN.

The HNHEX of traditional method and high order
method both have been used to solve the diffusion equation
with two energy groups for whole-core calculation. Accord-
ing to Table 4, implementing quadratic approximation for
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TABLE 4: Numerical results of three-dimensional VVER 440 benchmark.

Code Number of axial planes Eigenvalue k. error (pcm) Emax (%) CPU time (sec)
DIF* — 1.01132 — — —
HNHEX® 12 1.01243 111 -8.6 5.16
HNHEX® 12 1.01186 54 -3.72 6.12
HNHEX® 24 1.01161 29 -3.32 12.3
ACNECH 12 1.01054 -78 -4.9 16
AFEN 12 1.01162 30 3.2 592.8
ANC-H 12 1.01157 25 1.28 124.8
*Reference.

bApplying flat approximation for partially integrated axial leakage and quadratic approximation for one-dimensional axial spatially flux.
¢ Applying quadratic approximation for partially integrated axial leakage and four-order approximation for one-dimensional axial spatially flux.

FIGURE 7: Radial core map and assemblies identification for three-
dimensional VVER 440 benchmark.

partially integrated axial leakage and four-order approxima-
tion for one-dimensional axial spatially flux, the accuracy of
results has been improved relative to flat approximation for
partially integrated axial leakage and quadratic approxima-
tion for one-dimensional axial spatially flux by decreasing the
maximum power error from —8.6% to —3.72%. There is no
obvious increase in execution time with quadratic approxi-
mation for partially integrated axial leakage and four-order
approximation for one-dimensional axial spatially flux. The
keff error of 24 axial plane decreases by 25 pcm comparing
to that of 12 axial planes for VVER 440. At last, Table 5
presents the three-dimensional power distribution obtained
by HNHEX of high order method based on the assembly
identification numbers as shown in Figure 7. Table 6 shows
relative power error of the HNHEX solution of high order
method to DIF3D reference solution for 3D VVER-440
problem.

6. Conclusion

In this work, a three-dimensional, multigroup, diffusion
code based on a high order nodal expansion method
for hexagonal-z geometry (HNHEX) is developed. In this
method, one-dimensional radial and axial spatially flux
of each node and energy group are defined as quadratic
polynomial expansion and four-order polynomial expansion,

respectively. The partially integrated axial leakage is approxi-
mated by the quadratic polynomial instead of flat approxima-
tion to improve the accuracy for three-dimensional problem.
HNHEX has been tested against two popular benchmark
problems. The numerical results confirm that the high order
nodal expansion method for hexagonal-z geometry can
obtain the adequate accuracy for the neutronic calculation
of nuclear reactor core with fuel assemblies of hexagonal
shape. Besides, obtained results present that the accuracy
of four-order polynomial expansion for one-dimensional
axial spatially flux and quadratic approximation for partially
integrated axial leakage is enhanced relative to quadratic
approximation for one-dimensional axial spatially flux and
flat approximation for partially integrated axial leakage. The
improved coarse-mesh rebalance method effectively acceler-
ates the computation. In future work, HNHEX will continue
to be improved to increase the accuracy and calculation speed
with our efforts. Furthermore, HNHEX can be extended for
calculation of the time dependent nuclear problems in order
to conduct simulation of the realistic reactor core neutron
kinetic treatments.

Nomenclature

¢§w(w): One-dimensional radial spatially flux
(w = x,u,v) for kth nodes and gth group

(/)Zz(z): One-dimensional axial spatially flux for
kth nodes and gth group

h: Lattice pitch of the hexagonal assembly

AZ": Axial height of kth node

s Pk, Macroscopic fission cross section of kth

J node and gth group

Z;’;,: Macroscopic scattering cross section from
group g' to group g

Z;’k: Macroscopic removal cross section of kth
node and gth group

D’;: Diffusion coeflicient for kth node and gth
group

Lkgz(x): Partially integrated axial leakage for kth
nodes and gth group

L];xy(z): Partially integrated radial leakage for kth
nodes and gth group
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TABLE 5: Power distribution obtained by HNHEX for three-dimensional VVER-440 problem.
Assembly identity Axial layer
1 (bottom) 2 3 4 5 6 7 8 9 10 (top)

1 0.5153 1.0686 1.4489 1.5830 1.3531 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.4212 0.8744 1.1866 1.2991 1.1610 0.8110 0.5808 0.4098 0.2560 0.1130
3 0.5467 1.1349 1.5412 1.6929 1.5700 1.2626 0.9446 0.6681 0.4180 0.1843
4 0.5605 1.1640 1.5816 1.7402 1.6293 1.3390 1.0129 0.7179 0.4498 0.1985
5 0.4500 0.9354 1.2718 1.3977 1.2922 1.0313 0.7690 0.5449 0.3419 0.1510
6 0.4616 0.9603 1.3061 1.4328 1.2736 0.8692 0.6182 0.4384 0.2754 0.1221
7 0.6063 1.2617 1.7174 1.8857 1.6150 0.0000 0.0000 0.0000 0.0000 0.0000
8 0.6383 1.3302 1.8146 2.0031 1.8099 1.2860 0.9433 0.6796 0.4311 0.1918
9 0.7672 1.6013 2.1873 2.4284 2.2882 1.8810 1.4465 1.0472 0.6661 0.2957
10 0.4705 0.9837 1.3447 1.4982 1.4348 1.2189 0.9545 0.6935 0.4415 0.1958
11 0.5420 1.1249 1.5273 1.6762 1.5443 1.2200 0.9054 0.6400 0.4003 0.1766
12 0.4410 0.9162 1.2448 1.3696 1.2824 1.0540 0.7974 0.5651 0.3539 0.1560
13 0.5561 1.1549 1.5699 1.7279 1.6163 1.3251 1.0020 0.7108 0.4458 0.1969
14 0.5624 1.1686 1.5896 1.7472 1.6042 1.2543 0.9282 0.6590 0.4141 0.1833
15 0.5835 1.2135 1.6520 1.8155 1.6193 1.1125 0.7970 0.5683 0.3581 0.1591
16 0.4902 1.0215 1.3929 1.5360 1.3829 0.9737 0.7097 0.5104 0.3233 0.1437
17 0.5088 1.0622 1.4509 1.6088 1.5051 1.2152 0.9270 0.6705 0.4262 0.1890
18 0.6799 1.4206 1.9417 2.1623 2.0653 1.7453 1.3631 0.9898 0.6304 0.2797
19 0.3970 0.8290 1.1339 1.2654 1.2187 1.0450 0.8241 0.5996 0.3820 0.1696
20 0.5503 1.1430 1.5625 1.7114 1.6083 1.3309 1.0121 0.7178 0.4506 0.1990
21 0.4336 0.9013 1.2264 1.3513 1.2656 1.0392 0.7879 0.5604 0.3522 0.1557
22 0.4392 0.9134 1.2443 1.3719 1.2741 1.0229 0.7694 0.5493 0.3465 0.1535
23 0.5766 1.1997 1.6367 1.8092 1.6795 1.3370 1.0081 0.7249 0.4591 0.2039
24 0.6063 1.2640 1.7271 1.9178 1.8087 1.4890 1.1461 0.8301 0.5276 0.2344
25 0.7107 1.4840 2.0294 2.2628 2.1683 1.8416 1.4443 1.0506 0.6694 0.2972
26 0.5042 1.0536 1.4416 1.6112 1.5558 1.3393 1.0598 0.7727 0.4927 0.2187
27 0.5334 1.1083 1.5100 1.6680 1.5696 1.2982 0.9911 0.7090 0.4473 0.1983
28 0.4360 0.9074 1.2387 1.3735 1.3010 1.0861 0.8381 0.6039 0.3825 0.1698
29 0.4586 0.9560 1.3074 1.4560 1.3925 1.1794 0.9219 0.6694 0.4257 0.1890
30 0.4619 0.9651 1.3212 1.4770 1.4264 1.2272 0.9710 0.7088 0.4519 0.2005
31 0.5678 1.1867 1.6252 1.8210 1.7690 1.5362 1.2243 0.8958 0.5718 0.2540
32 0.5621 1.1712 1.6019 1.7869 1.7195 1.4725 1.1590 0.8427 0.5360 0.2382
33 0.5708 1.1918 1.6326 1.8292 1.7778 1.5450 1.2316 0.9010 0.5747 0.2553
34 0.6013 1.2568 1.7227 1.9351 1.8909 1.6561 1.3287 0.9754 0.6234 0.2770
35 0.3622 0.7631 1.0465 1.1768 1.1527 1.0130 0.8156 0.5992 0.3832 0.1704
36 0.5077 1.0620 1.4563 1.6374 1.6036 1.4089 1.1333 0.8330 0.5325 0.2365
37 0.4136 0.8650 1.1867 1.3365 1.3132 1.1590 0.9362 0.6893 0.4411 0.1961
—k . . . -k
¢ 4.1 One-dimensional face-averaged spatially gws: Face-averaged net current on the

flux on the w-directed face S'; , and Sﬁ_ w-directed face Sﬁ} Land Sﬁ}_ for kth node

for kth node and gth energy group and gth energy group (w = x,u, v, z)
5 S:ftz( :C’:”’_‘;’/fl )ght (s = +) w-surface of Ek: Total fission source vector for kth node

T ode ko w = x.u,v,z, (the left surface is Q; :  Fission source vector for kth node and gth
x=-h/2,u=-h/2,v=-h/2,and group
z = —AZ/2; the right surface is x = h/2, gg("): Scattering source vector for kth node and

u=h/2,v="h/2and z = AZ/2)

gth group
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TABLE 6: Relative power error of the HNHEX power distribution solution to DIF3D reference solution for three-dimensional VVER-440

problem (unit: %).

Assembly identity Axial layer

1 (bottom) 2 3 4 5 6 7 8 9 10 (top)
1 -0.96 -0.74 —-0.63 -0.33 0.23 0.00 0.00 0.00 0.00 0.00
2 0.46 0.69 0.85 1.10 1.52 2.15 2.61 2.89 2.92 2.84
3 -0.52 -0.27 -0.12 0.04 0.31 0.79 1.03 1.14 1.26 1.12
4 -0.36 -0.10 0.03 0.17 0.41 0.82 1.09 112 1.23 1.10
5 0.31 0.54 0.69 0.84 1.07 1.54 1.71 1.85 1.93 1.82
6 0.12 0.36 0.48 0.71 1.08 1.46 1.68 2.10 2.07 2.01
7 -1.08 -0.82 -0.76 -0.50 -0.04 0.00 0.00 0.00 0.00 0.00
8 -1.25 -1.00 -0.91 -0.73 -0.48 -0.27 -0.18 0.15 0.15 0.03
9 -1.62 -1.27 -1.23 -1.14 -1.03 -0.82 -0.86 -0.72 -0.59 -0.85
10 -0.57 -0.21 -0.19 -0.14 -0.06 0.08 0.06 0.14 0.26 0.00
11 -0.50 -0.25 -0.10 0.08 0.36 0.90 117 1.30 1.40 1.27
12 0.48 0.72 0.87 1.01 1.27 1.68 1.97 1.99 2.11 1.96
13 -0.69 -0.44 -0.30 -0.17 0.07 0.47 0.71 0.76 0.87 0.71
14 -0.83 -0.59 -0.45 -0.29 -0.05 0.42 0.57 0.73 0.80 0.69
15 -0.94 -0.70 -0.59 -0.37 -0.04 0.27 0.51 0.84 0.83 0.72
16 -0.16 0.07 0.17 0.36 0.65 0.93 1.10 1.39 1.37 1.27
17 0.01 0.31 0.38 0.48 0.63 0.91 0.87 1.05 1.14 0.93
18 -1.06 —-0.66 —-0.64 -0.58 -0.49 -0.33 -0.36 -0.26 -0.11 -0.43
19 -2.81 -2.52 -2.50 -2.46 -2.38 -2.27 -2.35 -2.22 =211 -2.32
20 -0.66 —-0.41 -111 -0.15 0.09 0.48 0.71 0.66 0.85 0.70
21 0.12 0.35 0.50 0.62 0.85 1.23 1.40 1.48 1.56 1.45
22 -0.11 0.10 0.24 0.37 0.56 0.92 0.98 1.13 1.19 1.07
23 -1.27 -1.05 -0.93 -0.81 -0.64 -0.30 -0.28 -0.13 -0.08 -0.23
24 -1.40 -115 -1.06 -0.97 -0.85 -0.59 -0.60 -0.50 -0.42 -0.61
25 -1.68 -1.33 -1.30 -1.25 -115 -0.98 -1.01 -0.91 -0.79 -1.06
26 =211 =177 -1.76 -1.72 -1.64 -1.53 -1.59 —-1.48 -1.37 -1.62
27 -1.34 -115 -1.00 -0.90 -0.70 -0.35 -0.19 -0.18 -0.11 -0.21
28 -0.34 -0.14 -0.01 0.08 0.24 0.53 0.61 0.67 0.71 0.57
29 -0.38 -0.16 -0.06 0.01 0.14 0.36 0.42 0.46 0.51 0.35
30 0.14 0.44 0.50 0.55 0.65 0.81 0.83 0.88 0.95 0.72
31 -1.90 -1.55 -1.55 -1.50 -1.43 -1.32 -1.35 -1.27 -1.17 —-1.44
32 -1.48 -1.25 -1.16 -1.10 -0.96 -0.76 -0.68 -0.66 -0.61 -0.77
33 -1.15 -0.88 -0.83 -0.77 -0.67 -0.52 -0.52 -0.44 -0.40 -0.61
34 -1.68 -1.32 -1.31 -1.27 -119 -1.08 -1.07 -1.01 -0.92 -1.22
35 -3.72 -2.66 —-2.66 -2.62 -2.55 -2.46 —2.56 -2.40 -2.32 -2.54
36 -0.36 -0.01 0.00 0.04 0.12 0.22 0.21 0.29 0.35 0.08
37 -2.10 -1.76 =177 -1.73 -1.66 -1.59 -1.66 -1.54 —-1.47 -1.71
Qk: Group source vector for kth node and gth Acknowledgments

group

L*: Leakage moment vector for kth nodes and
gth group

¢_: Volume-averaged flux for kth nodes and
gth group.
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