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The safe introduction of Generation IV (Gen IV) reactor concepts into operation will require extensive testing of their components.
This must be performed under neutronic conditions representative of those expected to prevail inside the new reactor cores when
in operation. In a thermal Material Testing Reactor (MTR) such neutronic conditions can be achieved by tailoring the prevailing
neutron spectrum with the utilization of a device containing appropriate materials. In this work various materials are investigated
as candidate components of a device that will be required in case that a thermal MTR neutron energy spectrum must be locally
transformed, so as to imitate Sodium cooled Fast Reactor (SFR). Many nuclides have been examined with respect to only their
neutronic behavior, providing thus a pool of neutronically appropriate materials for consideration in further investigation, such as
regarding reactor safety and fabrication issues. The nuclides have been studied using the neutronics code TRIPOLI-4.8 while the
reflector of the Jules Horowitz Reactor (JHR) was considered as the hosting environment of the transforming device. The results
obtained suggest that elements with important inelastic neutron scattering could be chosen at a first level as being able to modify
the prevailing neutron spectrum towards the desired direction. The factors which are important for an effective inelastic scatterer
comprise density and inelastic microscopic cross section, as well as the energy ranges where inelastic scattering occurs. All the
above factors have been separately examined in order to suggest potential device materials, able to locally produce SFR neutron
spectrum imitation in a thermal MTR.

1. Introduction

Several advanced SFR concepts (such as ASTRID, JSFR,
PRISM, PGSFR, BN-1200, and CFR-600) are under develop-
ment in a new phase of fast reactors (FRs) design [1]. The
concept of SFR has been selected by the Generation IV Inter-
national Forum (GIF) as a promising nuclear energy system
able to fulfill the Generation IV criteria: enhanced safety, eco-
nomic competitiveness, reduction in environmental burden,
and efficient utilization of resources as well as proliferation
resistance and enhanced physical protection [2]. With the
perspective to put into operation the above type of reactors,
extensive research related to the behavior of the structural

materials and the fuel under irradiation (during nominal and
transient operation) is mandatory, comprising also relevant
studies for the fuel fabrication and the pin cladding and
wrapper material [3–6]. Thermal Material Testing Reactors
(MTRs) are key facilities to perform experimental irradia-
tion with the above-mentioned requirements [7] since Fast
Experimental Reactors are very rare (only a few of them are
in operation around the world).

Towards this aim several devices have been designed
in thermal MTRs such as in BR2, HFR, ATR, MITR,
HFIR, OSIRIS, BRR, Halden, and CABRI, in past years [8–
16, 16–22, 22–37]. The most common approach to create fast
irradiation conditions in a thermal MTR environment is by
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implementing appropriate neutron absorbing “filters” (neu-
tron screens or shields), reducing the thermal component of
the neutron spectrum, such as boron, europium, cadmium,
and hafnium [7]. These materials are characterized by high
thermal neutron absorption cross sections and are almost
transparent to fast neutrons. In principle the material selec-
tion depends on the specific reactor irradiation conditions
and on the targeted neutron spectrum. It is also determined
by factors such as the reactor safety, the reactor type in which
the screening material will be inserted, the reactor coolant,
and the available space for the neutron screen. Especially for
the neutron screen selection, appropriate information must
be available, since its behavior under irradiation conditions
must be taken into account. Occasionally, the thermal neu-
tron filters can be combined with a booster (fissile material)
for further enhancing the fast neutron flux inside the facility
(see, for example, [7, 20, 25]).

In this work an extensive computational study has been
carried out for determining materials which, interacting with
the neutron population distributed in the reflector area of the
thermal JHR, can render the final local neutron distribution
similar or as close as possible to that of SFR.The JHR reflector
area was selected for the tests since one main objective of
this reactor is to investigate and study structural materials
for current and future generations of power plants; this task
requires the development of appropriate devices. The out-
put of the present work is a first pool of materials which
could be possibly contained in a screening device for locally
modifying the neutron spectrum.More specifically SFR spec-
trum simulation is attempted in an irradiation position of the
JHR reflector. For this study the TRIPOLI-4.8 has been used.

It should be noted that the introduction of a neutron
screen device in a reactor’s irradiation facility demands the
prior examination of the impact that itmight have on the gen-
eral reactor operation and safety. Before the actual insertion
of the device in the reactor, an extensive work emphasizing
reactor safety and performance aspects must be carried out.
That is, the determination of the final device configuration
is a multitask project comprising various analyses. The first
step should be a study on the materials’ effect on the neutron
spectrum as far as their physical (e.g., density) and neutronic
(i.e., microscopic cross sections for the various reactions)
properties are concerned. The subsequent investigation steps
before the neutron screen insertion should comprise vari-
ous topics regarding at least (a) the device impact on the
reactor reactivity and on the neighboring experiments, (b)
the thermophysical properties of the screen, (c) the energy
deposition on the screen material, (d) the ageing of the
screen device under neutron irradiation, (e) the cooling of
the screen, (f) the depletion rate of the screen material under
irradiation, and (g) matters related to the device fabrication
and postirradiation handling and treatment. The present
study focuses only on the first step of a complete investigation
towards the goal of achieving the desired neutron spectrum
modification; that is, it deals with the neutronic behavior
of each screening material. By examining a large range of
different screening materials, the present analysis constitutes
the basis for all the subsequent steps. Regarding in particular
the cooling of the screen, the present work considers cooling

materials which are found to have a negligible effect on the
neutron spectrum.

2. The Jules Horowitz Material
Test Reactor (JHR)

JHR [40] is a thermal MTR under construction at Cadarache
Center in southern France and is intended to be the MTR
which achieves the most important Research Reactor exper-
imental capacity in Europe [41] within the next decade. This
pool-typeMTR is cooled by light water (two cooling systems)
and is designed to have a maximum power of 100 MWth.
The cylindrical core is of 71 cm diameter and 70 cm height,
surrounded by a beryllium reflector of 35 cm thickness. The
reactor has 37 positions for fuel rods location. The fuel rod
is ring-shaped, with external and internal diameter of 9.5 cm
and 3.7 cm, respectively, forming a central hole for irradiation
purposes or control rod insertion; there are 27 fuel rods
equipped to host control rods. The fuel rod is constituted
of 3x8 convex, concentric plates of U

3
Si
2
fuel, cladded with

aluminum and cooled by light water circulating in water
channels of 0.184 cm width. Schematic presentations for the
JHR core and fuel rod are given in Figures 1 and 2. The
design thermal flux is 5.2⋅1014 n/cm2/s and the fast flux (here
E> 0.9MeV) is 5⋅1014 n/cm2/s [42]. The reactor will offer
modern irradiation experimental capabilities for studying
material and fuel behavior under irradiation. It will be a
flexible experimental infrastructure to meet industrial and
public needs related to Generation II, III, and IV Nuclear
Power Plants (NPP) and to different reactors technologies
[43]. JHR is designed to provide high neutron flux (higher
than themaximum available today inmost EuropeanMTRs),
to perform instrumented experiments in order to support
advancedmodelling predictions beyond experimental points,
and to operate experimental devices under various conditions
(temperature, flux, coolant chemistry, stress, pressure, etc.)
relevant to water reactors, gas cooled thermal or fast reactors,
sodium fast reactors, etc. [42].

For this work a model of the reactor provided by
TRIPOLI-4.8 [44] was utilized. The JHR core as simulated by
TRIPOLI-4.8 is shown in Figure 3(a). A series of calculations
concerning the introduction of a device in the reflector area
of JHR was carried out. The available diameter in this area
is 108mm. The device, each time constituted by different
materials, was considered to be introduced in the location
indicated in Figure 3(a), while Figure 3(b) gives the dimen-
sions of the irradiation facility. The latter is assumed to be
of a typical configuration (cylindrical, consisting of void). As
can be seen a cylindrical irradiation space of 2.0 cm diameter
is considered leaving thus a ring of sufficient thickness (i.e.,
4.4 cm) to put the tested screening material, which should
constitute a concentric ring placed in the available space.

3. Neutron Spectrum Characteristics of SFR

Theuse of sodium for cooling a FR provides a neutron energy
spectrum in which the fission neutrons’ flux maximum is
shifted to lower energies comparing to other fast reactors
spectra [45], while the neutron population distribution
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Figure 1: JHR cross section at the core middle plane. Cylindrical fuel assemblies (black) are located in an aluminum rack surrounded by an
aluminum vessel (both purple); the Beryllium reflector (grey) allows locating many devices; some Zircaloy screens (orange) are also visible.
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Figure 2: JHR fuel rod cross section.
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Figure 3: Horizontal cross section of (a) the JHR core as simulated by TRIPOLI-4.8. The arrow points towards the hosting irradiation facility
in the reflector which was used for the calculations presented in this work. (b) The considered irradiation device. The available diameter of
the JHR location indicated in (a) is 10.8 cm.The screening material is contained in the ring between 2.0 and 10.8 cm, leaving thus a sufficient
amount of space for irradiation sample insertion.
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Figure 4: Total, elastic, and inelastic microscopic cross sections of 23Na as produced by using the JEFF-3.1.1 Library [38] and the JANIS
software [39].
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Figure 5: Comparison of the two reference spectra, assuming void in the irradiation facility; (a) neutron flux normalized to lethargy in JHR
reflector (green line) and SFR (black line) and (b) neutron distribution per energy group (in %) for SFR (black) and JHR reflector (green).

around the maximum is broader (see Figure 5(a)). The soft-
ening of the spectrum is caused by both inelastic and elastic
scattering of sodium. As stated in [46] sodium degrades the
spectrum at high end as a result of inelastic scattering and
builds up the low end of the spectrum by elastic scattering.
The total, elastic, and inelastic microscopic cross sections of
23Na are plotted in Figure 4, as produced by using the JEFF-
3.1.1 Library [38] and the JANIS software [39]. In this work
a reference SFR spectrum has been utilized, provided by the
neutronic data of the prototype SFR reactor Phenix [47, 48].
Phenix was a 565 MWth SFR; description of the main Phenix
characteristics can be found in [49].

4. Problem Outline

As already mentioned this work is a feasibility study for the
identification of neutron screen materials which can locally

modify a thermal neutron energy spectrum, so as to be as
close as possible to that characterizing SFR. The neutron
spectra of JHR reflector and SFR are illustrated in Figures 5(a)
and 5(b). In Figure 5(b) the neutron distribution normalized
to lethargy is partitioned in ten energy groups. The JHR
reflector reference spectrum has a typical energy distribution
of a thermal reactor, exhibiting two peaks. That is, the first
peak occurs at low energies (below 0.1eV) due to the neutron
thermalization (water- and reflector-induced) and the second
at high energies (∼1MeV) corresponding to the neutrons
produced by fission. On the contrary, the thermal range
of the SFR spectrum includes an insignificant number of
neutrons, the latter being concentrated at energies of order
of magnitude between 103 and 106 eV. Prompt neutrons are
born at energy ranges from 0.1 to 10MeV but the fast neutron
spectrum component is shifted to lower energies due to the
elastic and inelastic scattering interactions of fast neutrons
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Table 1: Elements with the highest absorption capability classified with descending thermal microscopic absorption cross sections (𝜎
𝛼
).

Element Symbol Atomic number 𝜎
𝛼
(barns) Reasons to reject

Gadolinium Gd 64 49000 -
Samarium Sm 62 5922 -
Fermium Fm 100 5800 Large Z
Europium Eu 63 4600 -
Californium Cf 98 2900 Large Z
Cadmium Cd 48 2450 -
Plutonium Pu 94 1017.3 Large Z
Dysprosium Dy 66 920 -
Boron B 5 767 -
Berkelium Bk 97 710 Large Z
Actinium Ac 89 515 Large Z
Iridium Ir 77 425 -
Mercury Hg 80 374 Problematic properties1

Protactinium Pa 91 200.6 Large Z
Neptunium Np 93 180 Large Z
Promethium Pm 61 168.4 Rare
Einsteinium Es 99 160 Large Z
Erbium Er 68 160 -
Rhodium Rh 45 144.8 Rare
Hafnium Hf 72 104 -
1High toxicity, high vapor pressure even at room temperature, low boiling point, producing noxious fumeswhen heated, and relatively low thermal conductivity.

with sodium as well as structural and other materials existing
in SFR. This study intends to suggest materials which can
affect the JHR spectrum in order for the two curves of
Figure 5 to coincide as much as possible; these materials
could then be indicated for further tests in the prospect to
determine the appropriate device.

The methods of spectrum tailoring can only rely on the
utilization of neutron interactions. To achieve the targeted
neutron spectrum tailoring inside a thermal MTR, two
options exist, i.e., either to remove the thermal spectrum
component or to increase the fast/thermal neutrons ratio,
using the appropriate neutron screens.This appropriateness is
related to the screening materials’ macroscopic cross sections
(combining both physical and neutronic properties) of the
various interactions they are involved in. In the following
chapter the effect of different neutron interactions will be
examined in view of achieving the desired result.

5. Simulation Procedure

The JHR reactor was here simulated with TRIPOLI-4 code,
version 8.1 [44]. TRIPOLI-4 is dedicated to nuclear reactor
physics and nuclear processes simulation. The code is com-
posed of six software libraries: a geometry library, a cross
section reading library derived from NJOY [50] I/O Fortran
routines, amemorymanagement library, a simulation library,
and two special libraries enabling parallel calculations [51].
TRIPOLI-4 is used essentially for four major classes of
applications: shielding studies, criticality studies, core physics
studies, and instrumentation studies. The neutron energy
domain of TRIPOLI-4 ranges from 10−5 eV to 20MeV, while,

for photons, electrons, and positrons it ranges from 1 keV
to 20 MeV [52]. The cross sections used by the code can
be either continuous (pointwise) in ENDF-format or multi-
group calculated by the APOLLO2 code [53]. Any pointwise
cross section data in ENDF-6 format may be used, i.e., JEFF2,
ENDF/B-VI, JEFF3, ENDF/B-VII, and JENDL4.3 [52]. For
the present work the pointwise cross sections from the JEFF-
3.1.1 [54] have been used.

Using TRIPOLI-4 the effect of different neutron inter-
actions is separately examined in the following sections. As
mentioned above the screening material is considered to
constitute a concentric ring with the irradiation space, with
a thickness that allows positioning in the 4.4 cm space shown
in Figure 3(b).The presented neutron distributions have been
calculated in the central irradiation space.

5.1. Effect of Materials with Important Absorbing or Fissioning
Capability. The hardening of the thermal neutron spec-
trum can be achieved either by the utilization of thermal
absorbers or by the introduction of fission sources (boosters),
enhancing thus the fast component of the neutron spectrum
(Chrysanthopoulou et al., 2014a). In a preliminary work [55]
an extensive study was carried out using screening materials
that have important absorbing capacity of thermal neutrons.
This work was continued in more depth in [56]. The results
obtained by the above analysis are here briefly outlined.

In Table 1, twenty of the stronger absorbing chemical
elements, as found in the literature [57], are listed. The neu-
tron capture cross section and the atomic number of each
isotope are also reported.The last column contains brief com-
ments about materials which are possibly unsuitable for use:
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Figure 6: Irradiation device of two different thicknesses constituted by (a) absorbing material and (b) fissile material.

(a) Actinides such as Fm, Cf, Pu, Bk, Ac, Pa, Np, and Es are
all fissionable nuclides and thus should not be considered
as candidate absorbing materials. (b) Pr and Rh are rare
elements and thus are not taken into account. (c)The physical
properties of Hg do not allow its usage inside the reactor.
The remaining nine elements, i.e., Sm, Gd, Eu, Cd, Dy, B,
Ir, Er, and Hf, are not prohibitive for use inside a reactor’s
environment and thus were further investigated.

Assuming two “marginal” thicknesses of the tested mate-
rial (i.e., 0.1 cm vs 1.0 cm) (Figure 6(a)), the effect on the
reference neutron spectrum (i.e., in the JHR reflector) was
examined.

Furthermore, in order to improve the obtained result,
a neutron screen composed of fissile material (uranium
20% enriched in 235U) was also investigated by successively
increasing the screen thickness (Figure 6(b)).

All the examined nonfissile materials, even when consid-
ered of 0.1 cm thickness, were found to be able to provide

a strong reduction of the reference thermal neutron compo-
nent. As expected, the utilization of fissile material enhanced
the fast spectrum component while at the same time the
peak of the fast neutrons flux was shifted to lower energies.
However, despite all these effects, the above study showed
that the neutron screens when based only on neutron
absorbing reactions or even on boosters are rather insufficient
to successfully simulate the SFR spectrum. A centralized
result is shown in Figures 7 and 8, for nonfissile and for
fissile materials, respectively, the former of 1.0 cm and the
latter of variable thickness of screening material. It should
be noted that the metallurgy of the booster (i.e., construc-
tive components) is not taken into account here since only
the fissile material is examined as possible spectrum modifi-
er.

5.2. Effect of Materials with Important Elastic Scattering
Capacity. The findings of the above section stressed the
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requirement of investigating the effect of the neutron scatter-
ing interactions.

Elastic scattering is significant all over the neutron
energy range of a thermal reactor (1⋅10-11 to 20 MeV). In
the present subsection the possibility of achieving the SFR
spectrum imitation through elastic neutron scattering on the
screening material is investigated. The study was based on
the consideration that the elements that present important
elastic cross section at the energies around 1 MeV could
be utilized to achieve the desired result. Moreover, seeing
that the higher the material density the more favoured the
scattering interaction, only solidmaterials were searched.The
gaseous elements were excluded from this analysis since their
low density would make them transparent to neutrons. After

Table 2: Selected isotopes and their densities.

Element Density (g/cm3)
36S 1.96
39K 0.86
40K 0.86
48Ca 1.55
138Ba 3.51
139La 6.15
197Au 19.30

an extensive analysis throughout the periodic table, using also
ENDF library and JANIS software, it was found that only
a few isotopes exhibit an intense peak of scattering cross
section at the desired energy range (Table 2). In all cases
this peak is observed above 2MeV and mainly around 3MeV.
At this point it should be stressed that the above elements
present also important inelastic cross section. Although a
possible requirement of isotope separation would be very
expensive and even nonfeasible in many cases, only for the
sake of research purposes the examined screening materials
are assumed to be composed of the selected isotopes in
100% isotopic abundance. Nevertheless this isotopic study
could be helpful in case that the enrichment of a selected
element with respect to a particular isotope would be deemed
as technoeconomically worthwhile. In all examined cases a
thickness of 3 cm was considered.

As can be seen in Table 2 the densities of most isotopes
are quite small; thus only 197Au and 139La could be of interest.
In fact all isotopes below 139La provided negligible spectrum
modification, indicating that their macroscopic elastic scat-
tering cross sections were inadequate to affect the spectrum
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reflector neutron spectrum.

at high energies. Screens based on the heavier isotopes,
i.e., 139La and 197Au, provided a neutron spectrum tailoring
towards the desired direction (Figure 9). The more intense
result of 197Au is attributed not only to its density (higher than
139La) but also to the combined effect of inelastic scattering
(threshold at 0.1MeV).

5.3. Effect of Materials with Important Inelastic Scattering
Capability. In this section the various materials efficiency
to affect as desired the thermal neutron spectrum through
inelastic scattering is investigated. The neutron energy
boundaries of the JHR range between 1⋅10-11 and 20 MeV
(thermal reactor) with the part from 1⋅10-9 to 10MeV being of
greater importance. Neutrons of higher energy almost always
interact with nuclei by inelastic scattering. The reaction
channel opens at a threshold energy recorded over 10 keV
and mainly around 100 keV for heavy nuclei and a few MeV
for light nuclei [58]. The maximum inelastic cross section
is around 5 barns while for most nuclei it is around 1 barn
[59]. Regarding the goal of the current investigation, the
advantages of inelastic scattering in comparison to elastic
are related to the substantial energy loss during collisions, as
well as to the energy range where the reaction occurs, that
is, in high energies. However, the low probability (i.e., small
cross section) of inelastic reactions is a disadvantage that
can be surpassed with the utilization of materials of high
densities and/or in important quantities. Figure 10 highlights
the low probability of inelastic neutron scattering for some
representative materials (W, Rh, Os, Re, Ir, Lu, and Pt).

To study the inelastic scatterers’ effect on the thermal
neutron spectrum, a large set of numerical experiments with
57 different elements at their natural composition was carried
out. A 3.4cm thick screen inserted in the irradiation facility
was considered in each case. It is worth noting that, as in
the case of elastic scatterers, a study with isotopes instead
of natural elements might have been more indicative since
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different isotopes interact differently with neutrons; however
such a study was here avoided as requiring a huge amount
of calculations. Nevertheless after a successful result for a
particular element an isotopic study can be carried out in
order to investigate which isotopes mainly cause the spec-
trum tailoring. The number of tested elements was limited to
57 since in many cases the neutron cross section data were
unavailable in JEFF-3.1 library. In addition, some elements
such as minor actinides were excluded due to safety issues.
Also elements with low densities (gases) and/or short half-
lives were excluded.

In Figure 11, the 57 studied elements are presented. The
elements of the first rowpresentedmaximum left-shifting and
broadening of the spectrum in the high energy region while
they provided substantial cutoff of the thermal component
(Figure 12). The elements of the second row present a less
sufficient shifting and broadening of the fast spectrum com-
ponent, although they did provide a cutoff in the thermal area
of the spectrum (Figures 13 and 14). Finally, the elements of
the third row also presented maximum shifting and broad-
ening of the fast spectrum component but negligible cutoff
of the thermal component. Figure 15 presents the results for
the third row elements (except for Si, which provided an
almost identical spectrum to the JHR spectrum and thus, for
clarity reasons, it was not included in the plot). The rest of
the examined elements did not present anyworthmentioning
spectrum tailoring.

The results of Figure 11 are shown more representatively
in Figure 16.The elements’ efficiency in the neutron spectrum
tailoring is represented with the same color coding used in
Figure 11. As it can be seenW, Re, Os, Ir, and Pt are successive
transition metals of the 6th period, while Rh (also transition
metal) belongs to the immediately preceding period. Lu is
lanthanide but belongs also to the 6th period. All elements
belong to the d-block. Regarding density, Os and Ir are the
denser elements, followed by Pt, Re, and W. Since these
elements are sequential on the periodic table and with close
density values their neutron number density will be similar
as well. Furthermore Os, Re, W, and Ir have similar inelastic
scattering cross sections (𝜎) with maximum (3 b) occurring
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Figure 11: The elements whose effect on the thermal neutron spectrum due to inelastic scattering was examined.
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between 1MeV and 5 MeV, while Pt, Lu, and Rh have lower 𝜎
with maximum occurring at ∼2MeV.

The effect of the materials which better approach the
desired spectrum modification in the high energies area
(Figure 12) is better illustrated focusing on this specific part
of the spectrum (Figure 17). The results indicate that a
further broadening and extra shifting of the flux peak to
lower energies would provide a neutron distribution more
representative of SFR. This could be achieved by combining
the above examined scatterers with other elements, the latter
presenting enhanced inelastic scattering at lower energies. To
investigate this possibility various tests were made for ele-
ments with notable inelastic cross section at lower energies,

i.e., below ∼1 MeV. Although with questionable feasibility
(due to the low half-life of 72 days and to the requirement of
isotope production) 160Tb was tested exclusively for research
purposes, this particular element was selected as presenting a
characteristic inelastic cross section (Figure 18) with a peak
at 1MeV. Combinations of Os and 160Tb were tested with
various ratios. Formore representative results all the available
space of 4.4 cm was utilized. Figure 19 shows the combined
effect of the two elements in the thermal neutron spectrum.
The result obtained by using only Os (0 160Tb:1Os) is also
included for comparison. As can be seen a neutron screen
composed of Os and 160Tb in a 1:4 ratio modifies the neutron
energy spectrum providing a quite satisfactory imitation of
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Figure 16: Effective inelastic scatterers labeled on the periodic table.Their relative efficiency in shifting and broadening the neutron flux peak
in the JHR reflector towards lower energies and their ability to cut off the spectrum thermal component are indicated.
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the SFR case. This result shows that proper combinations of
screening materials can lead to the desired result, provided
that mechanical fabrication is feasible.

Regarding the immediately less efficient scatterers (light
red in Figure 16), the results forHo are indicatively presented.
165Ho is the only isotope of the solid holmium. Its neutron
inelastic scattering channel opens at 0.1MeV with inelastic
𝜎 at about 1b; this increases with energy to reach finally
3b at 1MeV [38]. The small inelastic scattering cross section
of 165Ho imposed a large screen thickness, which at the
same time caused a deeper flux depression at about 0.2keV,
acting thus as a natural separator between high- and low-
intermediate neutron energies; this created a clear part in
the spectrum composed of high energy neutrons. It is worth
noting that the depression of the neutron flux corresponds
to the resonances of the capture and elastic cross sections.
Figure 20 shows the results for varying screen thickness.

For further investigation of the effect of 165Ho, fissile
material (U, 20% enriched in U-235) of 1.0 cm was added in
the conceptual screen, placed among the holmium and the
irradiation space (Figure 21). As expected this combination
enhanced the fast neutron spectrum component as well as
the neutron flux within the irradiation space. The results are
illustrated in Figure 22. It is noteworthy that the addition
of booster enhances the fast spectrum component in such
extent that fission neutrons are not adequately moderated by
their scattering interactions with 165Ho nuclei, as happens
without fissile material. However, the combination of 165Ho
with fissile material results in higher neutron fluxes (by ∼6
times), with a neutron distribution having reduced epither-
mal component.

5.4. Effect of Coolant. Since energy is deposited to the
neutron screen device, the cooling of the screen ismandatory.
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The materials used for cooling, however, might alter the
performance of the neutron screen. To avoid this, cooling
materials that are expected to induce minimum spectrum
alterations were assumed in the present work, such as liquid
helium and sodium. To confirm their minor effect on the
neutron spectrum, relevant calculations were performed.
In this respect a neutron screen totally composed of 4He
was considered for examining the material effect on the
reference neutron spectrum; for 23Na, 1cm booster fuel was
also included and the spectra, with and without 23Na, were
compared to each other. The results are presented in Figures
23 and 24 for 4He and 23Na, respectively. As can be seen
in Figure 23, the provided spectrum is almost identical to
the reference one, except at the energy area around 1 MeV,
where a weak tailoring can be observed. At 1 MeV, where the
cross section of 4He exhibits a peak, a flux depression occurs;
neutrons with energies around 1 MeV experience a slight
energy loss. In addition, a slight peak occurs at the left of the
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Figure 21: Irradiation device constituted by 165Ho in combination
with a booster (fissile material).
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flux depression due to neutron moderation. As far as sodium
coolant is concerned, it can be seen in Figure 24 that only a
flux depression around 3 keV is provided corresponding to
23Na elastic scattering resonance.

Based on the above findings, the various neutron screen
materials were tested in this preliminary investigation with-
out including the coolant effect; it should be noted however
that the possible degradation of the neutron screen efficiency
due to a selected coolant will require a more complete study.

6. Concluding Remarks

The goal of this study was to classify potential screening
materials for locally transforming a thermal neutron spec-
trum to that of SFR. The neutron energies in a thermal
reactor range between 1⋅10-11 and 20 MeV, with the part from
1⋅10-9 to 10 MeV being of greatest importance. The notable
neutron interactions within this energy range include capture
(radiative capture and fission) and scattering, elastic and
inelastic.

The thermal neutron absorbers, even in screens of small
thickness (e.g., 0.1 cm), can cause significant cutoff of the
thermal neutrons’ component in the neutron energy spec-
trum. Therefore they may be utilized for locally simulating a
neutron spectrum of a fast reactor but not of SFR. The
addition of fissile material (booster) amplifies the neutron
spectrumcomponent in high energies but essentially does not
help for the SFR spectrum reproduction.

The inadequacy to simulate the SFR spectrum when
based on neutron capture interactions (i.e., using absorbing
and fissile screening materials) imposed the utilization of
elements which present intense elastic and inelastic cross
sections at the desired energy range (0.1-10MeV).The present
work showed that the most critical parameters, which classify
an element as effective inelastic scatterer, comprise the den-
sity, the inelastic microscopic cross section, and the energy
range in which inelastic scattering occurs for this element. By
using screening materials with high density and important
inelastic scattering cross section in an energy range around
1 MeV the thermal neutron spectrum can be locally tailored
so as to satisfactorily approach the typical distribution of the
SFR spectrum.

Conceptual neutron screens composed of Os, Re, and Ir
were found to provide a spectrum with neutron distribution
similar to that of SFR, i.e., quite symmetrical around a
maximum of 0.153MeV. However at energies E below 0.1MeV
the tailored neutron spectrum did not exactly simulate that
of SFR. An extra shifting of the flux peak to lower energies
can give a more representative distribution, obtained by
combining the above scatterers with materials for which
inelastic scattering occurs at lower energies. This might be
viewed provided that the required mechanical fabrication is
feasible.

In the end it should be stressed that the introduction
of a neutron screen device in a reactor's irradiation facility
demands a comprehensive and exhaustive examination, the
present work regarding only the first step, i.e., part of the
study of the screening materials’ effect on the neutron spec-
trum; more specifically the materials’ physical (e.g., density)
and neutronic (i.e., microscopic cross sections for the various
reactions) properties are here considered. The subsequent
investigation steps before the neutron screen implementation
should comprise various topics regarding at least (a) the
device impact on the reactor core reactivity and on the
neighboring experiments, (b) the thermophysical properties
of the screen, (c) the energy deposition, (d) the coolant
medium, and (e) the device fabrication process and necessary
postirradiation services. The present study focuses only on
the first step of a complete investigation towards the target
of achieving the desired neutron spectrummodification; that
is, it deals with the neutronic behavior of each screening
material. By examining a wide range of different screening
materials, the present analysis can constitute the basis for all
the subsequent material selection steps.
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