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Best-Estimation Plus Uncertainty (BEPU) analysis method can provide more information to improve the reliability of calculation
results than the safety analysis with conservative assumption. And the statistical sampling-based uncertainty and sensitivity
analysis methods are widely used in practical applications of the multiphysics, multiscale coupling nuclear reactor system. In this
paper, a novel and efficient sampling method for inputs with normal and uniform distributions is introduced and a systematic
theory for uncertainty and sensitivity analysis is established based on the classical statistical theory. -en the Code of Uncertainty
and Sensitivity Analysis (CUSA) is updated based on these new strategies. For applications, the explicit and implicit effects for
resonance and nonresonance isotopes are studied in depth, and a simple UO2 pin cell is considered to examine the performance of
CUSA and the total uncertainty and sensitivity analysis abilities.-e numerical results indicate that the implicit sensitivity analysis
model and the uncertainty quantification functions developed in CUSA are correct and can be used for sensitivity and uncertainty
analysis in nuclear reactor calculations. Even more important, the LHS-SVDC is recommended to propagate the uncertainties in
multigroup cross sections.

1. Introduction

Accurate estimation of key parameters of nuclear reactor is
essential for both reactor simulation and safety analysis. Due
to the fact that the nuclear reactor is a complex nonlinear
multiphysics, multiscale coupling system, the high-fidelity
simulations and modelling with full consideration of the
coupling among neutronics, thermal hydraulics, fuel per-
formance, and so on have now become the standard for
modern evaluation of nuclear reactor system [1]. However,
uncertainties inevitably propagate in the progress of nuclear
reactor simulations [2, 3]. -e uncertainties of input pa-
rameters, manufacturing tolerance, approximation in cal-
culation models, and so on naturally exist [4]. As research
progressed and Best-Estimate (BE) methods matured, a
move toward Best-Estimation Plus Uncertainty (BEPU)
analysis occurred. BEPU can be used to quantify these
uncertainties, and it provides more information to improve
the reliability of calculation results than the safety analysis

with conservative assumption. It is worthy to note that only
the uncertainty of nuclear data is quantified by using the
BEPU methods in this work.

For uncertainty quantification and propagation, two
primary kinds of methods are widely used, e.g., the adjoint-
based uncertainty quantification and sensitivity analysis [5]
and the statistical sampling-based uncertainty and sensi-
tivity analysis method [6]. But for some practical applica-
tions, the adjoint-based uncertainty method is not going to
work because of the inexistence of the solution of the adjoint
equation or the difficulty in obtaining adjoint solutions.
Although the statistical sampling-based uncertainty and
sensitivity analysis method is to some extent time con-
suming, this method still has some significant advantages,
such as less simplifications and approximations, and no limit
on the system responses compared with the adjoint based
method. Hence, the statistical sampling-based uncertainty
and sensitivity analysis methods are widely used in practical
applications of the multiphysics, multiscale coupling nuclear
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reactor system such as assembly burnup [7]; power distri-
bution [8]; decay heat [9]; control rod worth [10]; filling
fraction of pebble bed [11]. Moreover, some codes based on
this method also have been developed for uncertainty and
sensitivity analysis, such as SUSA [12], XSUSA [13], Dakota
[14], and CUSA [15].

-e CUSA (the Code for Uncertainty and Sensitivity
Analysis) was originally developed for uncertainty and
sensitivity analysis of filling fraction of pebble bed and
uranium loading of fuel pebble in pebble bed high
temperature reactor (HTR-PM). -e initial version only
has some simple sampling and statistical functions based
on the Simple Random Sampling (SRS) method, Latin
Hypercube Sampling (LHS) method, K-S test, and basic
statistical theory. And it is tightly coupled with the
simulation codes for HTR-PM. As for the implementa-
tion progress of the statistical sampling-based uncer-
tainty and sensitivity analysis, a set of input parameters
should be generated firstly by random sampling
according to their distribution and covariance infor-
mation. -en these sets of input parameters will be sent
into the same calculation to produce a set of outputs. At
last, the statistical theory is applied to quantify the un-
certainty of outputs propagated from inputs. So using the
statistical sampling method to perform uncertainty and
sensitivity analysis, two key technical problems should be
considered reasonably and efficiently. First, efficient
sampling methods should be studied to obtain a rea-
sonable input sample space based on the covariance and
distribution information. Second, a systematic theory
analysis for uncertainty quantification should be con-
ducted, which can be used to quantify the uncertainty of
output and its associated error bar or confidence interval
under a specific size of sample space.

In this paper, a novel and efficient sampling method for
inputs with normal and uniform distributions is introduced,
which is based on the well-known LHS method and Singular
Value Decomposition (SVD).-e efficient sampling method
based on the SVD for high-dimensional covariance matrix is
also proposed. -en, a systematic theory for uncertainty and
sensitivity analysis is established based on the classical
statistical theory, which can be used to quantify the dis-
tribution type of outputs, uncertainty, and its associated
error bar under a specific size of samples.-en a new version
of CUSA has been developed and some new functions based
on the innovative efficient sampling methods, correlation
control techniques, and uncertainty quantification methods
have been updated. At the same time, a user-friendly in-
terface for CUSA has been developed and the interface also
serves as an integrated platform for controlling all the
function modules and coupling with the executable version
of other simulation codes. Even more important, the CUSA
code can be used for uncertainty and sensitivity analysis for a
wide range of applications, such as uncertainty analysis for
reactor physics, thermal hydraulics calculations, and safety
analysis.

For applications, the uncertainties of effective resonance
self-shielding cross sections and total uncertainty of ei-
genvalue propagated from multigroup microscopic cross

sections are quantified by using the CUSA and a home-
developed resonance calculation code. Even more impor-
tant, the explicit and implicit effects for resonance and
nonresonance isotopes are fully considered. And the total
uncertainty analysis can be conducted not only for the in-
tegral cross sections, including σa, σs, and σt, but also for the
basic cross sections, such as σelas, σinel, σf, and σc. In this
way, the multigroup microscopic cross section uncertainties
can be propagated to the neutronics responses completely.
In this paper, the uncertainty quantified by CUSA and
“Sandwich Rules” is compared based on a simple UO2 pin
cell in order to examine the performance and ability of
CUSA. Meanwhile, it should be noted that this paper aims to
introduce the good sampling and statistical methods of
CUSA and apply it to sensitivity and uncertainty analysis of
effective resonance self-shielding cross sections and
eigenvalue.

In the following sections, the details of methodologies
and basic functions of CUSA are described and then in
Section 3, the methods of uncertainty and sensitivity analysis
for effective resonance self-shielding cross sections and ei-
genvalue by applying CUSA are discussed. Section 4 shows a
detailed analysis of the origin sensitivity and uncertainty
information and the total uncertainty results for UO2 pin
cell. At last, conclusions drawn from this work are given in
Section 5.

2. Methodologies and Basic Functions of CUSA

2.1. Efficient Sampling Methods

2.1.1. Basic Sampling *eory for Normal and Uniform
Distributions. -e basis of the implemented statistical
sampling-based uncertainty and sensitivity analysis
method is to treat all uncertain inputs as dependent ran-
dom variables by sampling them according to a multi-
variate probability density function (PDF). -e mean and
variance/covariance of the variable PDFs must be known to
perform the statistical sampling uncertainty propagation.
And an n× n covariance matrix is used to describe the
uncertainty associated with each element of the input
vector and the correlations that exist between elements.
Rather than generating new vectors directly from their
PDFs, an alternative approach is to generate vectors of
perturbation factors that when multiplied by the reference
input vector will produce a population of vectors, whose
mean value is equal to the reference and whose elements
have dependencies.

For variables obeying the normal distribution, the
normally distributed dependent random samples can be
generated as shown as follows [16]:

X � AZ + μ, (1)

where Z is a normally distributed independent vector, whose
mean value is equal to 0 and standard deviation is 1. μ is the
mean vector of input variables and the matrix A can be
generated based on the Singular Value Decomposition of the
relative covariance matrix Σ:
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But for uniformly distributed variables, the approach for
normally distributed variables mentioned above will fail;
then a new two-step transformation approach based on
Singular Value Decomposition is proposed to generate the
uniformly distributed dependent random samples. -e basic
idea of this two-step method is illustrated in Figure 1.

As shown in Figure 1, a standard normally distributed
independent vector Z should be generated, and then the
linear transformation technique is applied to obtain the
normally distributed dependent random samples Y:

Y � AZ, (3)

where A is generated by performing SVD of the correlation
coefficient matrix CY of the random elements of the vector
Y:
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Here, the correlation coefficient matrix of Y is not
known. But the correlation coefficient matrix CX of X is
known as the basic input information. So the key technique
is to determine the relationship between the correlation
coefficient of different random elements of X and Y. Based
on the rigorous mathematical derivation, the relationship
can be established by [17]
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As we know, the cumulative probability density function
of Y is consistent with the cumulative probability density
function of X by nonlinear transformation. And the cu-
mulative probability density function of the standard nor-
mally distributed samples can be represented by the error
function, as shown in
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In this way, the desired uniformly distributed dependent
random samples can be generated as shown as follows:
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2.1.2. Correlation Control Method. As discussed above, Z is
a vector including nX independent normally distributed
random variables, which obeys the multivariate standard
normal distribution NnX(0, I). So the success of the sam-
pling is to generate an excellent sample space Zs of Z firstly.
And the samples should meet the following two conditions:
(1) the correlation matrix associated with Zs is very close to
the nX × nX identity matrix; (2) the mean vector is a zero
vector. Normally, the SRS or LHS method is applied to
generate the desired sample space Zs and the covariance
matrix of Zs is denoted as Σs. However, Σs always does not
meet the above two conditions. Especially, when the sample

size is small, a strong correlation will occur, which will lead
to a distortion of the sample space and have a potentially
large impact on the uncertainty propagation. -erefore,
efficient sampling methods of fully considering the corre-
lation information between different elements should be
studied to obtain a reasonable input sample space based on
the covariance and distribution information. In our work, a
novel and efficient sampling method for inputs with normal
and uniform distributions is proposed, which is based on the
well-known LHS or SRS or Importance Sampling (IS)
method combined with SVD technique [18]. -en, a desired
sample space Z∗s can be obtained as follows [18]:
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1
n
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T
s Zs −

1
n2 Z

T
s HZ � USV

T
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where H is an n × n full matrix with the element of 1. S is a
diagonal matrix and the diagonal elements are the singular
value of Σs. And Σs is the covariance matrix of Zs, which is a
symmetric matrix. So the matrix U is the same as V; then (8)
can be rewritten as

U
TΣsU � S. (9)

Further, two new diagonal matrices denoted as E and D
are constructed, in which, E ∈RnX×nX, ei,i �Σs,i,i, D ∈RnX×nX,
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Based on (11), we know that the covariance matrix of the
sample space Z∗s �ZsUD− 1 is a unit diagonal matrix, which
indicates that the parameters in the sample space are
completely independent. So, a new independent sample
space Z∗s is obtained, which strictly obeys the multivariate
standard normal distribution NnX(0, I).

2.1.3. Sampling Method for High-Dimensional Covariance
Matrix. In some practical applications, the n × n covariance
matrix for representing the uncertainty and correlation
information of all uncertain inputs is very large, probably
thousands or more, and we call it high-dimensional co-
variance matrix. For example, the size n of the global co-
variance matrix for the multigroup microscopic cross
sections is very large if fine energy group and all nuclides are
considered, although most of the off-diagonal elements are
zero. If the sample size nS is bigger than or equal to the
matrix size n, the methods mentioned above can be used
efficiently. But very often the physical calculations become
the bottleneck and require the most computational effort. In
fact, a relative small sample size, which can represent most of
the uncertainty and correlation information, is useful for
practical applications. If the nS is smaller than thematrix size
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n, the covariance matrix of the samples of Z is a singular
matrix. -erefore, the correlation control technique based
on the SVD fails and leads to a distorted uncertainty
propagation. To solve this problem, a reduced order sam-
pling technique based on principal component analysis is
proposed.

First, the SVD is performed on the n × n covariance
matrix of the uncertain inputs. -en, the principal com-
ponent analysis is performed on the singular value matrix S,
and the main nSV singular values are selected to construct a
new singular value matrix S1; then
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where the matrix U2S2U2
T can be ignored if enough singular

values are selected. In this way, the n × n covariance matrix
of the uncertain inputs can be approximated to the
following:
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After the principal component analysis, the original
covariance matrix can be approximated to a high degree of
accuracy with very few components. In this way, a relatively
small sample size, such as 100, will be enough. In addition to
the computational gains, the correlation control method can
be no longer limited in the high-dimensional matrix
applications.

2.2. Uncertainty and Sensitivity Analysis Methods Based on
Statistical *eory. For uncertainty quantification, the Kol-
mogorov–Smirnov (K–S) test [19] is chosen to compare
whether the distribution of a population sample is signifi-
cantly different from the overall distribution and judge the
sample distribution type, such as normal distribution,
uniform distribution, and chi-square distribution. When the
significance level is less than the given value (usually 0.05),
the sample space is considered to have a significant differ-
ence from the population. Once the distribution type of the
samples of outputs is determined, the typical statistical
theory can be used to quantify the uncertainty information
of the output, such as the mean value, standard deviation,
and coefficient of variation. Here, the coefficient of variation
is the ratio between the standard deviation and the mean in a
sampled population, which represents the relative
uncertainty.

However, the statistic itself has uncertainty and the
standard error is usually used to represent this uncertainty.
A standard error of a statistic is the standard deviation of the
statistic. And an error bar is, in a plot, a line which is

centered at the estimate with length that is double the
standard error. It is well known that the error bar is a
function of the number of samples and that accurate un-
certainty estimates with narrow error bar will be observed
for large sample sets. So a systematic uncertainty analysis
should not only give the basic statistical information of
outputs but also provide its associated error bar information
under a certain sample size.

For the mean value, regardless of the type of distribution,
as long as the sample size nS is large, normally larger than 20,
the standard error σ

O
of the meanO can be quantified by [20]
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where σ is the standard deviation of the output population.
For standard deviation, the standard error is different for

different distribution types. In the case of large samples
(nS≥ 20), the associated standard error for the normal
distribution and uniform distribution can be quantified by
using (15a) [21] and (15b) [22], respectively:
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-e absolute value of the coefficient of variation is
usually termed as the relative standard deviation (RSD), and
it represents the relative uncertainty in our research. In the
case of large samples (nS≥ 20), the standard error of the
coefficient of variation for the normally distributed outputs
can be determined by

σRSD �
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where C represents the coefficient of variation of the output
population.

But for the uniformly distributed outputs, the standard
error of the coefficient of variation is conservatively esti-
mated by following equation in our present work:
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It should be noted that the confidence interval of the
statistic can also be used to represent the statistic itself
uncertainty due to statistical process. In our work, the

Normally distributed 
independent random 
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Normally distributed
dependent random 

samples Y

Linear
transformation Uniformly distributed

dependent random
samples X

Nonlinear
transformation

Figure 1: -e basic ides of the two-step transformation approach.
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confidence interval with a certain confidence can also be
quantified for the mean, standard deviation, and the coef-
ficient of variation.

On the other hand, the study of how output uncertainty
can be apportioned to the different input sources, which is
known as sensitivity analysis, is an important part to the
uncertainty quantification. Since the sensitivity analysis can
be used to identify where a reduction of uncertainty should
be performed, it has the greatest benefit for the reduction of
the total uncertainty. For uncertainty and sensitivity analysis
based on statistical theory, the sensitivity information
cannot be obtained directly. In this paper, we estimate the
sensitivity coefficients of effective self-shielding cross sec-
tions and eigenvalue to multigroup microscopic cross sec-
tions, which have a strong linear relationship. -e direct
perturbation method is a practical method for local sensi-
tivity analysis, where the output variable is only changing
due to a direct perturbation from a specific parameter. It is
worth noting that when the two parameters do not obey a
linear relationship, the direct perturbation method will not
be applicable. In addition to local sensitivity analysis, global
sensitivity analysis based on variance distribution is also a
good method to estimate the sensitivity coefficients of nu-
clear data, but it is not used in this paper [23, 24].

At the same time, the correlation analysis, which usually
calculates the Kendall, Pearson, and Spearman correlation
coefficients, is also used to perform sensitivity analysis to
quantify the influence of the specific input parameter on the
output.

2.3. Main Functions and Interface Design

2.3.1. Overview of Basic Functions of CUSA. Based on the
main methods discussed above, a new version of CUSA has
been developed and some new functions, such as efficient
sampling, statistical analysis, standardized input, code
coupling, and plot, have also been developed by using C
language on windows operation system. An overview of
basic functions and coupling relationship between different
modules is illustrated in Figure 2.

For the standardized input module, the initial infor-
mation of uncertainty sources should be first inputted to the
CUSA, including mean value, the relative covariance in-
formation, and some basic parameters and description of
inputs. And there are two ways for input, directly reading
from the input files and inputting through interface man-
ually. However, a specific format of input data needs to be
provided, while there is no limitation by using the interface.
For nuclear data uncertainty propagation and quantification
by using CUSA, an important function of transforming
nuclear cross-section covariance matrix in multigroup form
into users’ group structures is implemented based on our
previous research [25]. By using this function, users only
need to input the desired energy group information to
obtain the relative covariance matrix in users’ group
structures, which is an easy way and recommended. Of
course, users can input all the relative covariance infor-
mation by using interface or input files.

According to the innovative efficient sampling methods
and correlation control techniques, three fundamental
sampling methods, including SRS, IS, and LHS, can be used
to generate desired sample spaces. Once the correlation
control techniques are taken into account, total 9 sampling
methods can be used and the LHS-SVDC is recommended to
generate an excellent sample space with a relatively small
sample size, normally about 100, for either normally dis-
tributed or uniformly distributed input parameters. For
other distribution types, the SRS method is used to generate
the desired sample space. All these functions can be easily
applied by using the CUSA interface.

-e statistical analysis module consists of three parts,
K-S test, statistical calculation, and sensitivity analysis and
also has two essential applications in CUSA. -e first ap-
plication is to verify the sample space, such as the mean
value, relative standard deviation, correlation information,
and distribution type. Second, and more important, this
function is especially designed for uncertainty and sensitivity
analysis. Uncertainty quantification (error bar and confi-
dence interval), distribution type estimation, direct sensi-
tivity analysis, and correlation analysis are all conducted by
using this module.

-ere are two coupling strategies with other simulation
codes, directly coupling with the dynamic-link library (DLL)
or reading and generating the specified files for simulation
codes. If the DLL of other simulation codes is coupled with
CUSA, an important parallel calculation function can be
used and the number of calculations can also be controlled.

At last, and more important, a user-friendly human-
computer interaction platform of CUSA is developed by
using QT language. Based on this interface, all functions of
CUSA can be performed.-e initial and operation interfaces
are shown in Figure 3. At the same time, the logo of CUSA is
also designed for further application and development.

3. Sensitivity and Uncertainty Analysis by
Applying CUSA

3.1. SensitivityandUncertaintyAnalysis ofEffectiveResonance
Self-Shielding Cross Sections. For the application of CUSA,
the uncertainties of effective resonance self-shielding cross
sections propagated from multigroup microscopic cross
sections through resonance calculation are quantified firstly.
In this work, a home-developed resonance module based on
subgroup method is applied for resonance calculation. It
should be noted that the effective resonance self-shielding
cross sections are related to the calculation of subgroup
parameters and subgroup flux in the subgroup resonance
calculation. For nonresonant nuclides, the uncertainty of the
multigroup microscopic cross sections will only be propa-
gated to the subgroup flux and further propagated to the
final calculated effective resonance self-shielding cross
sections. But for resonant nuclides, the uncertainty of the
multigroup microscopic cross sections will be propagated to
both the subgroup parameters and flux. So uncertainties of
both nonresonant and resonant nuclides should be taken
into account when quantifying the uncertainty of effective
resonance self-shielding cross sections. In this way, the
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Figure 3: Initial and operation interface of CUSA.
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Figure 2: -e function diagram of CUSA.
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effects of microscopic cross sections on the effective reso-
nance self-shielding cross sections, which are defined as the
implicit effects, are fully considered.

At the same time, the cross-section consistency rules
should be established in the multigroup microscopic cross-
section perturbation model. As a WIMS 69-energy group
based library is used in this work, for the resonance energy
group, the absorption cross section is completely composed
of the neutron capture cross section and fission reaction
cross section, without the (n, 2n), (n, 3n), and (n, p) reac-
tions. And the scattering cross section is completely com-
posed of elastic scattering cross section. In this way, the
following equations are applied as simplified consistency
rules to keep the cross sections balanced:

σa � σ(n,c) + σf, (17a)

σs � σelastic. (17b)

-e direct perturbation function built in CUSA is ap-
plied firstly to quantify the implicit sensitivity coefficients,
which represent the indirect impact of multigroup micro-
scopic cross sections on the response through the resonance
self-shielding calculation. When a parameter perturbation is
small enough, the change of the effective resonance self-
shielding cross section can be expressed through the linear
relationship. -en the sensitivity coefficient, which indicates
the relative percent change of the effective resonance self-
shielding cross section when the multigroup microscopic
cross sections are perturbed with a relative value of 1%, can
be defined as

S
imp
σx,g,αg

�
δσx,g/σx,g

δαg/αg

, (18)

where αg stands for the gth group microscopic cross section of
a particular nuclide and σx,g stands for the effective resonance
self-shielding cross section of the reaction type x. δ represents
the perturbation of cross sections; in this work it is 1%.

For uncertainty quantification, a relative covariance
matrix is needed, which contains the uncertainty and cor-
relation information for different nuclear reactions. And this
matrix should be in the same energy group structure as the
unique multigroup cross-section library used in the sensi-
tivity analysis. -is relative covariance matrix can be col-
lapsed by a flux weighting directly from the evaluated data
files such as ENDF to the user’s group structure by using
NJOY [26]. Although this way is more mathematically
rigorous, the process is relatively complicated and the co-
variance information needs further judgements and com-
prehensive evaluations. Alternatively, an existing evaluated
multigroup covariance matrix, such as ZZ-SCALE6.0/
COVA-44G library [27], can be transformed into a new
energy group structure based on a flat-flux approximation
when the widths of the energy groups are not drastically
different. In this work, the module T-COCCO built in CUSA
is applied to transform the covariance matrix in 44-energy
group form into a 69-energy group structure to provide basic
uncertainty information of multigroup cross sections.

-en efficient sampling and statistical analysis modules are
used to quantify uncertainties of effective resonance self-
shielding cross sections propagated from multigroup micro-
scopic cross sections. At the same time, the “Sandwich” rule is
also used to quantify the uncertainty based on the calculated
implicit sensitivity coefficients for further comparison. As il-
lustrated in Figure 4, the basic idea of quantifying uncertainties
of the effective resonance self-shielding cross sections by using
CUSA is summarized as the following steps:

(1) -e original relative covariance matrix in 44-energy
group and the basic information of the WIMS 69
energy group-based library, such as the energy group
structure and mean of each cross section, are
inputted to CUSA system.

(2) A relative covariance matrix in 69-energy group
structure is generated by using T-COCCO to provide
basic uncertainty information.

(3) Determine the sample size nS and the efficient
sampling module is called to generate a desired
sample space for the multigroup microscopic cross
sections, which will generate nS perturbed multi-
group cross-section libraries. Here, the cross-section
consistency rules are applied to keep the cross sec-
tions balanced.

(4) -e resonance calculation module based on subgroup
method is coupled with CUSA by using the DLL file.
Based on the perturbed libraries, the resonance calcu-
lations will be performed nS times to generate nS ef-
fective resonance self-shielding cross-section libraries.

(5) -e statistical analysis module is then used to
quantify the uncertainty of the effective resonance
self-shielding cross sections and their associated
error bar with the given sample size.

3.2. Sensitivity and Uncertainty Analysis of Eigenvalue by
Applying CUSA. In order to extend the implicit sensitivity
analytical ability of CUSA to a wider application and further
to investigate its impact on the uncertainty results, the ei-
genvalue total sensitivity and uncertainty analysis is per-
formed in our work. In addition, since the sensitivity analysis
of the resonance energy groups is much more complicated
than the sensitivity analysis of fast and thermal energy
groups, which do not contain implicit sensitivity analysis,
this paper is only focused on the sensitivity and uncertainty
analysis of resonance energy groups.

-e total sensitivity coefficient of eigenvalue should
consist of two parts, explicit sensitivity coefficient and implicit
sensitivity coefficient. If the perturbation of gth group mi-
croscopic cross section only affects the corresponding mac-
roscopic cross section and further affects the eigenvalue
through transport calculations, this associated sensitivity
coefficient is defined as explicit sensitivity coefficient, which
can be calculated as

S
exp
keff ,αg

�
δkeff /keff
δαg/αg

. (19)
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As mentioned in Section 3.1, the perturbation of the
microscopic cross section has a direct effect on the ef-
fective resonance self-shielding cross sections first and
further affects the macroscopic cross sections. At last, this
effect will propagate to the final calculated eigenvalue
through transport calculations. In this case, the sensitivity
coefficient of eigenvalue to the multigroup microscopic
cross section is considered as implicit sensitivity coeffi-
cient, which can be quantified by using the following
equation:

S
imp
keff ,αg

� 􏽘
j,x

δkeff /keff
δσj

x,g/σ
j
x,g

δσj
x,g/σ

j
x,g

δαg/αg

� 􏽘
j,x

S
exp
keff ,σ

j
x,g

S
imp
σj

x,g,αg

, (20)

where j indicates resonant nuclides and x is the indicator of
the reaction type of effective resonance self-shielding cross
sections.-e first term of the implicit sensitivity coefficient is
the sensitivity coefficient of the keff to the effective resonance
self-shielding cross sections, which is a kind of explicit
sensitivity coefficient. -e second term of the implicit
sensitivity coefficient is the sensitivity coefficient of the ef-
fective resonance self-shielding cross sections to the mul-
tigroup micro cross sections, the details can be found in
Section 3.1. -en, the total sensitivity coefficient can be
calculated as

S
tot
keff ,αg

� S
exp
keff ,αg

+ S
imp
keff ,αg

. (21)

It should be noted that the calculations of total sensitivity
coefficient for the resonant nuclides and nonresonant nu-
clides are slightly different. For the resonant nuclides, the
explicit sensitivity coefficient term should be considered as

zero. -is is due to the fact that the explicit effect is already
considered when calculating the implicit sensitivity coeffi-
cients for resonant nuclides. But for the nonresonant nu-
clides, since there is no effective resonance self-shielding
cross section associated with its own multigroup micro-
scopic cross section, the explicit effect is not considered in
the process of quantifying its implicit effect on the effective
resonance self-shielding cross sections of resonant nuclides.

-e same as the uncertainty quantification of effective
resonance self-shielding cross sections, the efficient sam-
pling and statistical analysis modules built in CUSA are used
to quantify the uncertainty of eigenvalue propagated from
multigroup microscopic cross sections. Also the “Sandwich”
rule is used to quantify the uncertainty based on the cal-
culated total sensitivity coefficients for comparison. -e
details and flowchart are nearly the same as those described
in Section 3.1.

3.3. Model and Codes. In order to examine the performance
of sensitivity and uncertainty analytical abilities of CUSA in
the application of the uncertainty propagation and quan-
tification of cross sections, a simple UO2 fuel pin cell is built,
as shown in Figure 5. -e density of UO2 is 10.3 g/cc, the
enrichment of 235U is 6.5% in this model, and the clad and
moderator are Zr-nat and light water, respectively; the
details of the materials can be found in Table 1 [28]. Here, it
should be noted that the Zr-nat is not treated as a resonance
nuclide in our work.

As illustrated in Figure 5, the whole cell is divided into 12
subregions, in which the fuel zone is divided into 3 sub-
regions and the moderator zone occupies 8 with flat-source
approximation. It is due to the fact that the method of
characteristics (MOC) is used and a home-developed High-
fidelity NEutron Transport program for 3D nuclear reactor
whole-core (HNET) is applied as a transport solver [29] in
the resonance calculation and the following transport cal-
culation. For the resonance calculation, a home-developed
module built in the HNET based on the subgroup method is
applied. -en aWIMS 69-energy group based library is used
based on the ENDF/B VII.0 evaluation database [30]. At the
same time, the multigroup covariance library ZZ-SCALE6.0/
COVA-44G has been used as the basic evaluated covariance
information. At last, the CUSA is coupled with HNET to
perform sensitivity and uncertainty analysis of effective
resonance self-shielding cross sections and eigenvalue due to
the microscopic cross sections.

4. Numerical Results

4.1. Sensitivity of Effective Resonance Self-Shielding XSs toMG
Microscopic XSs. -e sensitivity analysis of 235U and 238U
effective resonance self-shielding cross sections to the
multigroup microscopic cross sections of each nuclide, in-
cluding resonance and nonresonant nuclides, is performed
firstly. Figures 6–9 illustrate the top five most sensitive
sources to the 235U and 238U effective resonance absorption
and scattering cross section and the corresponding implicit
sensitivity coefficients.

44 group rel. 
covariance matrix

69 group rel. 
covariance matrix

ENDF/B-VII.0

WIMS 69 based 
library

Perturbed MG XS library

Subgroup resonance calculation

Effective resonance XS

Uncertainty information

End

Start

Efficient sampling XS consistency rules

Energy group transforming NJOY

Statistical analysis

Coupled by using DLL

Figure 4: Flowchart of uncertainty analysis of effective resonance
self-shielding XS by CUSA.
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It can be found that the effective resonance self-
shielding cross section of each resonance nuclide is most
sensitive to its associated multigroup microscopic cross
section that constitutes this integral cross sections, as
shown in (17), while the sensitivity coefficient to other

microscopic cross sections is relatively small. For example,
the effective resonance scattering cross sections of 235U are
quite sensitive to the associated microscopic elastic scat-
tering cross section of 235U, the sensitivity coefficient of
which is around 1. But the second most sensitive source to

Table 1: -e materials and the nuclide densities of the UO2 pin cell.

Material
Nuclide density/(barn− 1· cm− 1)

235U 238U Zr-nat 1H 16O
Fuel (900K) 1.5122E − 03 2.1477E − 02 — — 4.5945E − 02
Cladding (600K) — — 4.3107E − 02 — —
Moderator (600K) — — — 4.4148E − 02 2.2074E − 02

0.412cm

0.
63

25
cm

0.476cm

Figure 5: -e simple UO2 fuel pin cell.
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Figure 6: -e top five most sensitive sources to the 235U effective resonance scattering XS and the corresponding implicit sensitivity
coefficients. (a) Sensitivity coefficient to 235U elastic scattering. (b) Sensitivity coefficients to other four reactions.
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the effective resonance scattering cross sections of 235U is
1H elastic scattering cross section, the value of which is only
about 0.004. Although the sensitivity coefficients of non-
resonant nuclides are relatively small, these implicit effects
cannot be ignored in the resonance calculation.-e same as
the scattering cross sections, the effective resonance ab-
sorption cross section is most sensitive to fission and ra-
diation capture cross sections. For 235U, the top 1 most
sensitive source is its fission reaction and the sensitivity
coefficient is around 0.6, which is followed by the radiation
capture cross section of 235U and the value is around 0.4,
while the top 1 most sensitive source is radiation capture
reaction for 238U.

4.2. Uncertainty Quantification of Effective Resonance Self-
Shielding XSs. -e size of sample space is crucial for nuclear
cross-section uncertainty propagation and quantification by
using statistical sampling methods. -ere are different
sampling methods built in CUSA, such as SRS, LHS, IS,
LHS-CDC, and LHS-SVDC. To determine a reasonable
sample size for each sampling method, which is a relative
small size for less computation burden and stable uncer-
tainty contribution, the uncertainty contributions of radi-
ation capture cross section to the 18th and 22nd group
effective resonance absorption cross section of 235U are
selected and quantified by using different sampling methods
with different sample size, as illustrated in Figure 10. At the
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Figure 7: -e top five most sensitive sources to the 235U effective resonance absorption XS and the corresponding implicit sensitivity
coefficients. (a) Sensitivity coefficients to 235U fission and radiation capture. (b) Sensitivity coefficients to other three reactions.
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Figure 8: -e top five most sensitive sources to the 238U effective resonance scattering XS and the corresponding implicit sensitivity
coefficients. (a) Sensitivity coefficient to 238U elastic scattering. (b) Sensitivity coefficients to other four reactions.
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same time, the “Sandwich” rule is also used to quantify the
uncertainty based on the calculated implicit sensitivity co-
efficients for comparison.

It is obviously found that the contribution of radiation
capture cross section to the total uncertainty of the effective
resonance absorption cross sections of 235U tends to be
stable and be close to the results quantified by using
Sandwich rule when the sample size is greater than 100 for
LHS-SVDC methods, while the sample size needs to be
greater than 800, which will generate a relatively stable
uncertainty contribution for LHS or SRS methods. So the
sample size is set to 100 and the LHS-SVDC built in CUSA is
selected in the following uncertainty quantifications.

-e relative uncertainty of the effective resonance ab-
sorption and scattering cross sections of 235U and 238U
propagated from the multigroupmicroscopic cross sections
is quantified by using CUSA and Sandwich rule, respec-
tively, as shown in Figure 11. For uncertainty quantifica-
tion, the error bar of the relative uncertainty under the
sample size 100 is also quantified by using the statistical
analytical function of CUSA, as illustrated in Figure 11. It is
obviously found that the relative uncertainties quantified
by CUSA agree well with the results calculated by the
Sandwich rule based on the implicit sensitivity information
obtained by CUSA. -erefore, the implicit sensitivity
analysis model and the uncertainty quantification functions
developed in CUSA can be proved correct and can be used
for sensitivity and uncertainty analysis in nuclear reactor
calculations.

Figure 11 also shows that the effective resonance ab-
sorption cross section of 235U and the resonance scattering
cross section of 238U have a larger uncertainty due to the
multigroup microscopic cross sections. -e top 3 most
significant microscopic cross section sources of uncertainty
in these two effective resonance self-shielding cross sections
are listed in Tables 2 and 3.

It can be seen that the relative uncertainties in the ef-
fective resonance self-shielding cross sections due to the
basic microscopic cross sections are large and nonignorable.
-e neutron capture reaction of 235U contributes the most to
the uncertainty of 235U resonance absorption cross section,
up to 9%, which is followed by 235U fission reaction, while
this effective resonance self-shielding cross section is most
sensitive to the 235U fission reaction. -is difference is
mainly attributed to the fact that the microscopic cross
section of 235U neutron capture reaction itself has a larger
uncertainty than 235U fission reaction. It can be also found
that 235U elastic scattering reaction has a larger contribution
to uncertainty of the 235U resonance absorption cross section
than the 1H elastic scattering reaction, although it is more
sensitive to the 1H elastic scattering reaction. -is is also due
to the fact that 1H elastic scattering cross section has a
smaller uncertainty. Similar phenomenon of 1H elastic
scattering reaction to the effective resonance scattering cross
section of 238U is also found. Although the effective reso-
nance self-shielding cross sections are more sensitive to the
1H elastic scattering reaction, while its contribution to
uncertainty is small due to itself small uncertainty.

4.3. Total Sensitivity Coefficient of Eigenvalue to MG Micro-
scopic XSs. -e implicit and total sensitivity coefficients of
keff to the microscopic cross sections of each nuclide are
calculated with the direct perturbation function of CUSA.
-e top four most sensitive sources to keff and the corre-
sponding implicit and total sensitivity coefficients are il-
lustrated in Figure 12.

In our work, only the contribution of cross sections in
resonance groups is investigated due to the fact that one of
the main purposes is to verify the implicit sensitivity ana-
lytical ability of CUSA. It can be obviously found in Fig-
ure 12 that the total sensitivity is equal to the sum of explicit
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Figure 9: -e top five most sensitive sources to the 238U effective resonance absorption XS and the corresponding implicit sensitivity
coefficients. (a) Sensitivity coefficient to 238U radiation capture. (b) Sensitivity coefficients to other four reactions.
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Figure 11: -e uncertainty of effective resonance self-shielding cross sections. (a) 235U effective resonance absorption XS. (b) 238U effective
resonance absorption XS. (c) 235U effective resonance scattering XS. (d) 238U effective resonance scattering XS.
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and implicit sensitivity, which further verifies the reliability
of implicit and total sensitivity analysis abilities of CUSA. At
the same time, the keff total sensitivity coefficient to the
neutron radiation capture reaction of 235U and 238U is
negative and is positive for the fission reaction of 235U and
elastic scattering reaction of 1H. -is is physically consistent
with the fact that the radiation capture reaction results in the
disappearance of neutron, while fission results in the pro-
duction of neutron and the moderation produces more
thermal neutron, which has a positive effect on the fission
event.

As discussed in Section 3.2, the explicit effect is con-
sidered when calculating the implicit sensitivity coefficient
for resonance nuclides, as shown in Figures 12(a)–12(c). But
for the nonresonant nuclides, the explicit and implicit
sensitivity coefficients should be calculated, respectively. It
can be found that the explicit sensitivity coefficients of most
energy group for nonresonant nuclides are positive, while
the implicit sensitivity coefficients are negative. It is worth
noting that the total and implicit sensitivity coefficients of 1H
are the biggest one compared with other nonresonant nu-
clides due to the fact that the 1H is the dominating mod-
erated nuclide in our studies.

4.4. Uncertainty Quantification of Eigenvalue due to MG
Microscopic XSs. -e contributions of the multigroup mi-
croscopic cross sections in resonance groups to the keff
uncertainty and the total relative uncertainty of keff prop-
agated from these cross sections are quantified by using
CUSA and Sandwich rule, respectively, as presented in
Table 4. It is obviously found that the contributions and the
relative uncertainties quantified by CUSA agree well with the
results calculated by the Sandwich rule.

It can be found that the relative uncertainty in keff due
to the basic cross section in resonance group is large and
nonignorable, of which the neutron capture reaction of
238U contributes the most to the keff uncertainty, up to
0.27%. And keff is also most sensitive to the neutron capture
reaction of 238U in resonance region, while it is most
sensitive to the average number of neutrons emitted per
fission event for all energy regions. Besides, although keff is
more sensitive to the 1H elastic scattering reaction than the
neutron capture reaction of 235U, its associated contribu-
tion to the keff uncertainty is smaller due to itself smaller
uncertainty. -e whole relative uncertainty of keff con-
tributed by resonance energy groups is about 0.3% and it is
reasonable that the value is smaller than the standard value

Table 3: -e top 3 sources of uncertainty in238U effective resonance scattering XS.

Energy group
Contributions to the relative uncertainty (%)

238U -elastic 16O-elastic 1H elastic
15 7.635E − 01± 5.403E − 02 1.145E − 02± 8.101E − 04 4.243E − 03± 3.003E − 04
16 7.630E − 01± 5.399E − 02 1.343E − 02± 9.500E − 04 5.059E − 03± 3.580E − 04
17 7.428E − 01± 5.256E − 02 1.324E − 02± 9.369E − 04 1.145E − 02± 8.106E − 04
18 8.007E − 01± 5.666E − 02 1.831E − 02± 1.296E − 03 2.265E − 02± 1.603E − 03
19 7.983E − 01± 5.649E − 02 1.767E − 02± 1.250E − 03 2.285E − 02± 1.617E − 03
20 1.043E+ 00± 7.378E − 02 9.930E − 03± 7.026E − 04 6.816E − 03± 4.823E − 04
21 1.739E+ 00± 1.231E − 01 1.395E − 02± 9.872E − 04 4.402E − 03± 3.115E − 04
22 2.586E+ 00± 1.831E − 01 1.345E − 02± 9.520E − 04 4.375E − 03± 3.096E − 04
23 5.790E+ 00± 4.111E − 01 1.086E − 02± 7.685E − 04 3.582E − 03± 2.534E − 04
24 5.756E+ 00± 4.086E − 01 2.316E − 02± 1.639E − 03 7.555E − 03± 5.346E − 04
25 1.162E+ 01± 8.337E − 01 1.464E − 02± 1.036E − 03 4.805E − 03± 3.400E − 04
26 1.108E+ 01± 7.938E − 01 2.401E − 05± 1.699E − 06 6.803E − 06± 4.814E − 07
27 1.439E+ 00± 1.019E − 01 2.993E − 03± 2.118E − 04 9.874E − 04± 6.987E − 05

Table 2: -e top 3 sources of uncertainty in235U effective resonance absorption XS.

Energy group
Contributions to the relative uncertainty (%)

235U (n, c) 235U (n, f ) 238U elastic
15 9.362E+ 00± 6.683E − 01 3.441E − 01± 2.435E − 02 0.000E+ 00
16 8.418E+ 00± 5.999E − 01 3.572E − 01± 2.528E − 02 0.000E+ 00
17 4.955E+ 00± 3.515E − 01 6.125E − 01± 4.334E − 02 0.000E+ 00
18 4.109E+ 00± 2.913E − 01 9.056E − 01± 6.409E − 02 2.053E − 04± 1.453E − 05
19 3.991E+ 00± 2.829E − 01 9.201E − 01± 6.512E − 02 3.189E − 04± 2.257E − 05
20 1.484E+ 00± 1.050E − 01 4.932E − 01± 3.490E − 02 8.482E − 04± 6.002E − 05
21 3.146E − 01± 2.226E − 02 2.101E − 01± 1.487E − 02 3.984E − 03± 2.819E − 04
22 2.441E − 01± 1.727E − 02 1.790E − 01± 1.266E − 02 6.583E − 03± 4.658E − 04
23 1.636E − 01± 1.158E − 02 1.974E − 01± 1.397E − 02 3.189E − 02± 2.256E − 03
24 1.941E − 01± 1.374E − 02 1.675E − 01± 1.186E − 02 6.732E − 02± 4.764E − 03
25 1.879E − 01± 1.330E − 02 1.835E − 01± 1.299E − 02 1.222E − 01± 8.644E − 03
26 2.425E − 01± 1.716E − 02 1.496E − 01± 1.059E − 02 1.181E − 01± 8.354E − 03
27 2.745E − 01± 1.942E − 02 2.664E − 01± 1.885E − 02 1.762E − 02± 1.247E − 03
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Table 4: -e contributions of microscopic cross sections to the keff uncertainty.

Cross section type Total sensitivity coefficient Uncertainty (%) (sandwich rule) Uncertainty (%)
Statistics sampling

238U (n, c) − 1.948E − 01 2.692E − 01 2.692E − 01± 1.905E − 02
235U (n, c) − 6.472E − 02 1.007E − 01 1.012E − 01± 7.161E − 03
Zr-nat (n, c) − 5.147E − 03 5.988E − 02 6.036E − 02± 4.271E − 03
235U (n, f) 6.838E − 02 2.026E − 02 2.032E − 02± 1.438E − 03
1H elastic 1.707E − 01 1.979E − 02 2.045E − 02± 1.447E − 03
238U-elastic 4.089E − 03 9.781E − 03 9.709E − 03± 6.870E − 04
16O-elastic − 9.390E − 03 9.327E − 03 9.225E − 03± 6.549E − 06
235U elastic − 2.915E − 04 1.380E − 03 1.384E − 03± 9.793E − 05
Zr-nat-elastic − 2.107E − 03 1.305E − 03 1.320E − 03± 9.341E − 05
16O (n, c) − 1.013E − 06 9.880E − 06 9.725E − 06± 6.881E − 07
1H (n, c) − 1.636E − 03 8.159E − 04 8.262E − 04± 5.846E − 05
Sum — 2.953E − 01 2.956E − 01± 2.091E − 02
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Figure 12:-e total and implicit sensitivity coefficients of keff to the microscopic cross sections. (a) 238U (n, c). (b) 235U (n, c). (c) 235U (n, f ).
(d) 1H elastic scattering.
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(0.5%) because fast and thermal energy groups are not in
consideration.

5. Conclusions

Best-Estimation Plus Uncertainty (BEPU) analysis method
can provide more information to improve the reliability of
calculation results than the safety analysis with conservative
assumption. And the statistical sampling-based uncertainty
and sensitivity analysis methods are widely used in practical
applications of the multiphysics, multiscale coupling nuclear
reactor system. In this paper, a novel and efficient sampling
method for inputs with normal and uniform distributions is
introduced, which is based on the well-known LHS method
and SVD. -e efficient sampling method based on the SVD
for high-dimensional covariance matrix is also proposed.
-en, a systematic theory for uncertainty and sensitivity
analysis is established based on the classical statistical theory,
which can be used to quantify the distribution type of
outputs, uncertainty, and its associated error bar under a
specific size of samples. Based on these new strategies, the
CUSA has been updated. At the same time, a user-friendly
interface for CUSA has been developed and the interface also
serves as an integrated platform for controlling all the
function modules and coupling with the executable version
of other simulation codes.

For applications, the uncertainties of effective resonance
self-shielding cross sections and total uncertainty of ei-
genvalue propagated from multigroup microscopic cross
sections are quantified by using the CUSA and a home-
developed resonance calculation code. Especially, the ex-
plicit and implicit effects for resonance and nonresonance
isotopes are fully considered. -e calculations of total
sensitivity coefficient for the resonant nuclides and non-
resonant nuclides are slightly different. For the resonant
nuclides, the explicit sensitivity coefficient term should be
considered as zero. -is is due to the fact that the explicit
effect is already considered when calculating the implicit
sensitivity coefficients for resonant nuclides. But for the
nonresonant nuclides, since there is no effective resonance
self-shielding cross section associated with its own multi-
group microscopic cross section, the explicit effect is not
considered in the process of quantifying its implicit effect on
the effective resonance self-shielding cross sections of res-
onant nuclides. Finally, a simple UO2 pin cell is considered
to examine the performance of CUSA and the total un-
certainty and sensitivity analysis ability.

-e numerical results indicate that the relative un-
certainties quantified by CUSA agree well with the results
calculated by the Sandwich rule based on the implicit
sensitivity information obtained by CUSA. -erefore, the
implicit sensitivity analysis model and the uncertainty
quantification functions developed in CUSA can be proved
correct and can be used for sensitivity and uncertainty
analysis in nuclear reactor calculations. Moreover, the
LHS-SVDC is recommended to propagate the uncertainty
in multigroup cross sections, and then a more reliable
uncertainty prediction with smaller number of samples can
be obtained.

However, there is still some work to be solved and
improved in the further work. On the one hand, the
benchmark needs to be replaced with a more representative
one, since the enrichment of 235U (6.5%) exceeded the
standard of LWR. On the other hand, it is necessary to
compare the calculation results of CUSA with other ad-
vanced solvers such as TSUNAMI and Sampler. Finally, it
makes sense to apply CUSA to other parts of nuclear reactor
calculations such as thermal hydraulic calculation.
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