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0e accurate prediction of the neutronic and thermal-hydraulic coupling system transient behavior is important in nuclear reactor
safety analysis, where a large-scale nonlinear coupling system with strong stiffness should be solved efficiently. In order to reduce the
stiffness and huge computational cost in the coupling system, the high-performance numerical techniques for solving delayed
neutron precursor equation are a key issue. In this work, a new precursor integral method with an exponential approximation is
proposed and compared with widely used Taylor approximation-based precursor integral methods. 0e truncation errors of ex-
ponential approximation and Taylor approximation are analyzed and compared. Moreover, a time control technique is put forward
which is based on flux exponential approximation.0e procedure is tested in a 2D neutron kinetic benchmark and a simplified high-
temperature gas-cooled reactor-pebble bed module (HTR-PM) multiphysics problem utilizing the efficient Jacobian-free New-
ton–Krylov method. Results show that selecting appropriate flux approximation in the precursor integral method can improve the
efficiency and precision comparedwith the traditional method.0e computation time is reduced to one-ninth in theHTR-PMmodel
under the same accuracy when applying the exponential integral method with the time adaptive technique.

1. Introduction

0e reactor is a system involving many physical phenomena,
such as neutron kinetics and thermal-hydraulics. Specifically,
the neutron flux distribution directly influences the heat
release and affects the thermal-hydraulics in the reactor [1].
Hence, the accurate and efficient solution of the neutron field
is the first but crucial step for the successful simulation of the
whole coupling system and has attracted persistent attention
in the field of nuclear reactor safety analysis [2]. 0e variation
of neutron flux and delayed neutron precursor always has a
smaller time scale than thermal-hydraulic variables but may
lead to a significant change of heat release in the core. For the
delayed neutron precursor, six additional equations are
usually required to describe its transient behavior, leading to

the significantly enhanced scale of the whole neutronic/
thermal-hydraulic coupled equation system. Since the delayed
neutron precursor equations are only simple ordinary dif-
ferential equations without the space operator, it could be
analytically solved the delayed neutron precursor concen-
tration by integrating their equations over time. As a result,
the amounts of precursor concentration variables are elimi-
nated, and the number of unknowns is significantly reduced.
0e analytical precursor concentrations consist of the integral
of neutron flux over time and then eliminate precursor
variables in the neutron flux equation. 0erefore, the integral
of neutron flux overtime should be accurately calculated.

0e linear flux hypothesis based on Taylor expansion
approximation is widely used to calculate the integral of
neutron flux over time [3–6]. A new exponential form flux is
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proposed in this work to calculate the integral of neutron
flux over time, inspired by the ideas of the stiffness con-
finement method (SCM) [7] and frequency transform
method [8]. 0e truncation errors of the proposed expo-
nential approximation and Taylor approximation are ana-
lyzed and compared. Moreover, since the coefficient of the
exponential function reflects the time scale of neutron ki-
netics, a time step control method is also derived to reduce
calculation cost and ensure precision. In order to pursue the
high computational performance, an advanced Jacobian-free
Newton–Krylov (JFNK) method [9] is employed to solve
space-dependent neutron kinetic diffusion equations and
the neutronic/thermal-hydraulic coupled system.

0e remaining content is organized as follows. In Section
2, the outline of the numerical method for the space-de-
pendent kinetic equations and precursor integral method is
introduced. Exponential flux approximation as well as
Taylor approximation methods are also derived in this
section. Numerical results and discussions with regard to the
precursor integral method are given in Section 3, and the
simulation results of the exponential flux approximation
method with time control are appended. Finally, conclusion
remarks are provided in Section 4.

2. Mathematical Background

0emathematical background is presented in this section. In
detail, the space-dependent neutron kinetic equations, in-
cluding a neutron diffusion equation and delayed neutron
equations, are described in Section 2.1. 0e precursor in-
tegral method with different approximated expansion
methods is presented and discussed in Section 2.2. Ex-
pansion functions are employed in this section, including the
Taylor series and a new exponential function. Error analysis
of both expansion functions is discussed in Section 2.3. An
adaptive time step method is proposed through the expo-
nential function. In Section 2.4, an efficient fully implicit
algorithm, JFNK, is introduced.

2.1. Space-Dependent Neutron Kinetic Equations. 0e time-
dependent Boltzmann transport equations and time-de-
pendent precursor equations are used to describe the
neutron kinetic problems. 0e equations are as follows:
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Equation (1) is discretized in space by using the con-
ventional finite difference method. Compared with other
truncation errors, the spatial discretization error is treated as
high-order term and can be ignored.

To discretize the time derivatives in equations (1) and
(2), we invoke the simple first-order approximation as
follows:

1
vg

z

zt
ϕ(t) ≈

ϕ(t + Δt) − ϕ(t)

vΔt
≕
ϕ(n+1)

− ϕ(n)

vgΔtn

,

z

zt
Cm(t) ≈

Cm(t + Δt) − Cm(t)

Δt
≕

C
(n+1)
m − C

(n)
m

Δtn

.

(3)

In the numerical simulation, the time intervals
t ∈ [0, T] are divided into several intervals from t0 � 0, and
the Δtn is the time step length for step n. 0e selection of
time step length depends on the accuracy of the time
discretization scheme and the dynamic time scale of
physical quantities. A suitable time step should be chosen
to make a balance between accuracy and efficiency. For the
explicit scheme, the time step always suffers from stability
limitation. As a result, the time step is usually quite small to
satisfy the stability requirement, leading to a relatively large
computational cost. 0erefore, the fully implicit scheme is
used in this work due to its advantage of the unconditional
stability [10].

0e number of delayed neutron variables is slightly
more than the number of multigroup neutron fluxes, and
occupies a large part in the solution of the whole system. As
shown in equation (2), the precursor concentration is only
related to the local neutron fission rate. 0erefore, the
solution system contains a large number of simple ordinary
differential equations. Numerous research studies dis-
cussed the numerical solution of equations (1) and (2). 0e
other main problem of these analysis consists in the so-
called stiffness of the system [11]. According to Chao’s
work [7], there is an abrupt turn in neutron flux, reflecting
the stiffness characteristic due to the orders of magnitude
difference between the time coefficients in equation (4).
Stiff differential equations frequently arise in physical
situation characterized by the existence of greatly differing
time constants [12].

2.2. Precursor Integral Method. As mentioned above, the
stiffness and delayed neutron variables make the neutron
kinetic problem difficult to solve. 0e precursor integral
method was born to solve the problem. Precursor con-
centrations are not sensitive to the stiffness of the problem
[10]. 0is phenomenon indicates the possibility of pro-
posing a method to avoid the difficulty of stiffness in
evaluation of C(n+1)

m and confine it to that of ϕ(n+1)( r
→

, g).
Integrating equation (2) and eliminating variables C(n+1)

m

in time-space neutron kinetic equations can effectively
reduce stiffness in equations. 0e precursor concentra-
tions for current time (n + 1) are easily derived from the
integral:
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An analytical neutron flux distribution ϕ( r
→

, g, t) is
applied to solve the integral, and C(n+1)

m can be solved an-
alytically by integral equation (4). Since precursor con-
centrations are not sensitive to the stiffness [13], C(n+1)

m is
acceptable during simulation. It is noted that λmCm is ac-
tually a nonlinear term according to equation (4). 0e key to
this method is precisely calculating integral in equation (4).
In general, the numerical approximation of the integral term
can be realized by using expansion functions.

0e precursor integral method has two benefits. One is
that the discretized time step can be enlarged because of the

decoupling of stiffness due to the elimination of precursor
variables. Although the stiffness is still present, the precursor
concentration variables are eliminated which is beneficial for
efficient solving. Moreover, the solving equations become
nonlinear equations because of the existence of nonlinear
terms in equation (4).

2.2.1. Taylor Approximation of Neutron Flux. 0e unknown
functions are commonly approximated by Taylor series.
Applying expansion to neutron flux at initial of time step tn,
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Considering the zero-order and first-order expansions of
neutron flux, equation (4) can be rewritten as
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Solving the integral is difficult because of the time
derivate term. When applying implicit scheme, the term can
be approximated by forward difference:
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Integrate equation (6) in time tn ≤ t≤ t(n+1):
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Precursor concentrations can be analytically acquired
through neutron flux expansion. If zero-order neutron flux
Taylor expansion is used in equation (5), we can obtain
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2.2.2. Exponential Approximation of Neutron Flux. As
mentioned above, flux approximation technique is a key to
the precursor integral method. 0e same as the precursor
integral method, precursor concentration is analytical ac-
quired utilizing trial functions. Inspired by the idea of the
SCM method, the neutron kinetic frequency is defined:

wg( r
→

, t) ≡
z

zt
ln ϕg( r

→
, t)􏼐 􏼑. (10)

Without considering the feedback effect, equations (1)
and (2) are first-order linear differential equation with
constant coefficients.0e time characteristics of neutron flux
are usually in exponential form. Since the neutron flux
changes from the beginning of the time step ϕn, it is assumed
that its solution at current time step is
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0e coefficient preceding the exponential functions is the
weak time-dependent part of neutron flux. Supposing this
part is flat flux distribution in the time step, we have
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0e frequency wg( r
→

, t − tn) used in equation (11) still
has time dependence, which can be difficult to handle in the

implicit method.0erefore, an approximation is used, which
is the average value in time step:
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Substitute equation (11) into equation (4), and integral
on time tn ≤ t≤ t(n+1):
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By substituting the formula into the transient neutron
diffusion equation, the neutron space-time kinetic problem
can be completely solved. Because the average frequency
wg( r

→
) contains variables at the current time ϕ(n+1), it

should be emphasized that each iteration average frequency
wg( r

→
) must be updated.

2.3. Truncation Error Analysis. In this section, the precision
of flux approximation and time discretization are analyzed
within the context of a neutron kinetic problem. 0e partial
differential equations (PDEs) are defined in the above
section, and here, we discuss the origin of truncation error.

Equation (1) can be rewritten as
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Two types of time discretization are discussed in this
work:

A first-order accurate method (backward Euler):

ϕ
→n+1

− ϕ
→n

Δt
� An+1 ϕ

→n+1. (16)

A second-order accurate method (Crank–Nicolson):
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A truncated Taylor series will help to reveal the ap-
pearance of time discretization errors, for example,
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We use the simplified notation _ϕ ≡ (dϕ/dt).It is un-
derstood that any time integration method can fail to
maintain its designed or asymptotic, convergence rate if the
time step is too large. 0e truncation error in the expansion

would become dominant and could not be omitted when
time is roughly discretized.

0e truncation errors for different time discretization
schemes are derived.
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0ere is a nonlinear term in integral precursor equation:
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As mentioned earlier, the nonlinear terms are linearized
by different neutron flux approximation methods. Hence,
the truncation error occurs and depends on the level of
linearization. When adopting the backward Euler method,
the truncation error is
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It can be seen from equation (22) when applying flux
approximation that an additional truncation error is in-
volved. 0e higher-order flux approximations permit ac-
curate precursor concentration as well as smaller truncation
error. As demonstrated above, the error is introduced by the
deviation between neutron flux approximation 􏽧ϕ( r

→
, t′) and

actual value ϕ( r
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, t′) in the integrals. 0e truncation error of
Cm is
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and when using zero-order Taylor approximation, the
truncation error is
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Here, Δt, tn stands for length of time step and last time
point, respectively. Utilizing the integral characteristics of
exponential function, the truncation error introduced by
zero-order Taylor neutron flux approximation is
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After similar derivation, the truncation error of the first-
order Taylor approximation can be obtained:
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Replaced by exponential expansion, the actual neutron
flux is expanded by Taylor series:
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Bring equations (28) and (29) into equation (31) and
the truncation error can be analyzed according to above
results:

∈zero−order Taylor Cm( 􏼁≫∈first−order Taylor Cm( 􏼁& ∈exponential Cm( 􏼁.

(30)

Two kinds of truncation errors are discussed in this
section, time discretization error and flux approximation
error, receptively. Each truncation error is a function of time
step Δt, which means that the selection of time step will
affect errors in varying degrees. For the flux approximation
method, exponential and first-order Taylor expansion will
provide high-order precision. 0erefore, the focus of our
work is to analyze and compare the accuracy and efficiency
of two approximation methods.

2.4. Time StepControlMethod inExponentialApproximation.
Time step control method is widely used in neutron program
as described in SPANDEX [14]. It is almost impossible to
predict the truncation error accurately in neutron kinetic
calculations, especially for the implicitly discretized diffu-
sion equation.Within the tolerance of introduced truncation
error, we proposed an adaptive time step method to reduce
computational cost as much as possible.

0e adaptive time step method assumes an exponential
time dependence in neutron flux, which is identical with
exponential approximation in the precursor integral
method. Applying backward Euler time discretization and
fully implicit formulation in neutron kinetic equations,
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, (31)

Equation assumes an exponential time dependence
eωt in neutron flux. 0is is feasible since the neutron flux
can be expressed as a series of exponential functions in
the point reactor neutron dynamic method. After a
sufficient time, the solution will be dominated by as-
ymptotic period T ≡ s−1

0 (s0 is the least negative root). At
that time, ω is equal to s−1

0 . Two forms of neutron flux
expression can be obtained by exponential expansion and
variable derivation:
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0e truncation error ∈ of neutron flux is
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1
2
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0e value of relative power is important in validation of
transient neutron kinetic cases. 0e estimated time step is
derived in which relative power error ∈power is taken into
account:
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For the selection of ω( r
→

, g), the average frequency in
Section 2.2.2 is a good estimation which describes the dy-
namic changes in neutron flux. In order to make the esti-
mation more conservative, it is often helpful to multiply an
empirical coefficient ηem in equation (35).

Equation (34) analytically constructs a roughly estima-
tion of truncation error. Even though the truncation error is
obtained through numerous approximations and based on
several assumptions, it can reflect the order of magnitude
about relative power error. Equation (35) gives the length of
time steps given an expected truncation error. Different
from traditional time control strategy which utilizes dy-
namic time scale and empirical functions, this new adaptive
time step method could select time step on the basis of
expectant precision. Meanwhile, this method could work
with exponential expansion in the precursor integral
method.

2.5. JFNK Method. Implicit formulations are well-suited to
maintain the asymptotic balance in complex multiple time-
scale problems, because all relevant terms in the partial
differential equation (PDE) system can be approximated at
the same time level [8]. However, implicit algorithms usually
are related to nonlinear PDEs and require nonlinear solver.
0e residual equations F
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) � 0 obtained from dis-

cretization of the nonlinear system are used in the Jacobian-
free Newton–Krylovmethod.0e nonlinear terms are solved
using a Newton–Modified equation, which requires
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)|. Here, ∈a and ∈r are an absolute
and a relative tolerance, respectively. 0e inversion is per-
formed iteratively using Krylov methods [15] (typically,
GMRES), which could be facilitated by a Jacobian-free
implementation and preconditioner. 0e Jacobian-free
scheme uses the finite difference approach to approximate
the matrix-vector production without building the Jacobian
matrix explicitly. 0e preconditioner is based on reformu-
lating the Jacobian system as JP−1Pδ x

→
� F

→
(right pre-

conditioning), where P−1 approximates the inversed
Jacobian matrix, and it should be computational
inexpensive.

3. Analysis and Computational Results

3.1. Implementation. In order to verify the efficient of the
precursor integral method and compare the different flux
approximation methods in integral, especially the

exponential form, we have developed the space-dependent
neutron kinetic solver based on diffusion theory and the
multigroup approximation. In the kinetic solver, the finite
volume method is used for spatial discretization. Note that
implicit scheme is applied in our work and can achieve
stability with the expense of increased computational cost.
0e main sources of two truncation errors, i.e., truncation
error in time discretization and delayed neutron integral
technique, are analyzed in space-dependent neutronic ki-
netic calculation. In the previous section, we demonstrated
that flux approximations may have a significant impact on
the accuracy of a numerical scheme. 0e precursor integral
method is tested with the above flux approximation method
and the results are compared with those obtained from other
methods. At the same time, the importance of two kinds of
truncation errors is compared. A time control method is
implemented in HTR-PM transient, and the result of CPU
time is shown compared with the fixed time step method.
0e problems include step reactivity insertion and ramp
input. In the following section, the examples are described
separately.

For solving partial differential equations with nonlinear
term, the preconditioned JFNK method is the core of the
algorithm. An efficient physic-based preconditioning
method is implemented in this solver, and we use incomplete
LU factorization to obtain the inverse of preconditioning
matrix.

3.2. TWIGL Benchmark. TWIGL seed-blanket reactor ki-
netic benchmark is implemented as a verification calculation
to confirm the performance of the precursor integral method
for the space-dependent kinetic equations. Two reactivity
insertion cases are included in the TWIGL benchmark
problem [16]. 0e original TWIGL bench problem consists
of a two-dimensional core, as shown in Figure 1, and ma-
terial properties are shown in Table 1.

In addition, the spatial mesh widths for x andy direc-
tions are Δx � 1 cm andΔy � 1 cm in the configurations.
0e performance of each method is evaluated by relative
power.

3.2.1. Reactivity Insert Cases. Accurate calculate neutron
relative power is essential in neutron kinetic problems,
which needs to properly simulate the changes in neutron flux
and precursor concentration. 0e relative power is given by

PRelativePower �
PCurrentPower

PInitialPower
. (36)

Reactivity introduction is one of the most classical
neutron dynamic problems. 0e TWIGL benchmark pro-
vides two ways of reactivity introduction. 0e first case
simulates a step reactivity insertion in a thermal reactor
without extern neutron source. In this case, 􏽐a,2(t) �

􏽐a,2(0) − 0.0035(t � 0.0s). 0e other reactivity input model
which has linear reactivity function of time (the ramp input)
is considered. 0is ramp reactivity takes the form 􏽐a,2(t) �

􏽐a,2(0) × (1 − 0.11667t)(t≤ 0.2s). Numerical simulations
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were performed for three precursor treatments: independent
variable, Taylor expansion approximation, and exponential
expansion approximation. Backward Euler time discretiza-
tion is applied in these case and time steps are selected as
10ms and 20ms. Five reference points are selected in the
following tables.

From Tables 2 and 3, the results indicate the following:

(1) Compared with the method which treats precursor
concentrations as independent variables, the neutron
precursor integral method is superior in terms of the
accuracy, but an appropriate neutron flux approxi-
mation should be employed in analytical precursor
concentration expression.

(2) 0e results of ramp reactivity are not as accurate as
those of step reactivity with the same time step
length. 0is suggests that the length of time step
should be changed for considering different ways of
reactivity insertion.

(3) Different flux approximations in the precursor in-
tegral method introduce truncation errors of dif-
ferent sizes. Higher-order flux approximations
decrease the error of the results by a magnitude.

(4) 0e exponential approximation gives the most ac-
curate result among precursor integral methods in
step reactivity insertion. As mentioned above, first-
order Taylor and exponential approximations

generate second-order time precision, and the result
of these methods shows good accuracy.

0e above simulations of reactivity introduction
problems test relative power changes in a period with the
same time step. 0is suggests that a shorter time step size is
necessary for accurate simulation. 0e influence of time
step selection on simulation accuracy is also a problem that
needs to be paid attention. Considering different time step
selections among simulations, a time period of 0∼50ms in
these two reactivity input cases is chosen. Because of the
lack of reference solution, the result of the independent
precursor variable method of minimum time step is chosen
as base solution. 0e numerical results are shown in Ta-
bles 4 and 5.

It can be seen that all methods produce larger truncation
errors as time step increases from Tables 4 and 5, which is
due to the fact that the expression with truncation error
contains the time step term Δt. A time step length greater
than 10ms simulates relative power error close to 10%.
Considering the efficiency and accuracy of the calculation,
the time step used for subsequent calculation is 10ms.

Previous simulations have compared several different
precursor integral methods using different flux approximate
methods and different length of time steps. 0is part focuses
on the influence of time discretization on the calculation
accuracy, and thus, the Crank–Nicolson method and
backward Euler method are applied in simulations. 0e
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Figure 1: TWIGL benchmark.

Table 1: Material parameters in TWIGL benchmark problem.

Material Group D (cm) 􏽐a(cm) ]􏽐f(cm) χ Σs,g−>1 Σs,g−>2

1 1 1.4 0.010 0.007 1.0 0.0 0.01
2 0.4 0.150 0.200 0.0 0.0 0.00

2 1 1.4 0.010 0.007 1.0 0.0 0.01
2 0.4 0.150 0.200 0.0 0.0 0.00

3 1 1.3 0.008 0.003 1.0 0.0 0.01
2 0.5 0.050 0.060 0.0 0.0 0.00
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relative power errors of two reactivity insertion cases are
investigated with Δt � 10ms.

0e numerical results of the simulations are shown in
Figure 2. It can be observed that the numerical result from
the low-order method (backward Euler) provides large
truncation error compared with the high-order method
(Crank–Nicolson). Also from Figure 2, it can be observed
that the error of the low-order time discretization method is
relatively large in the time of reactivity introduction, due to
the fact that backward Euler scheme cannot accurately
represent the violent change of neutron flux. However, when
neutron reaction rate is stable, the relative error of the

method will be less. It is also important to point out that the
higher-order time discretization scheme has the most sig-
nificant effect on the reduction of relative error.

A computational efficiency study was also performed in
these two reactivity insertion cases. 0e computation time
which treats the precursor as independent variables is much
larger than the precursor integral method. 0is is due to an
overlarge solution vector dimension used in the independent
variable method causes high computation cost, and this will
result in too much inner iterations. Figure 3 shows that the
decrease in time step causes exponential CPU time rise.
Crank–Nicolson scheme does not bring too much

Table 2: Comparison of relative power (percentage error) between independent precursor methods and precursor integral methods for step
reactivity insertion.

t (s) Δt (ms) Reference Independent variables Zero-order Taylor expansion First-order Taylor expansion Exponential expansion
0.0 — 1.00000 1.00000 1.00000 1.00000 1.00000

0.1 10.0 2.06156 2.06046 (−5.3e− 2) 2.05874 (−1.4e− 1) 2.05960 (−9.5e− 2) 2.05963 (−9.3e− 2)
20.0 — 2.05693 (−2.2e− 1) 2.05355 (−3.9e− 1) 2.05524 (−3.1e− 1) 2.05526 (−3.0e− 1)

0.2 10.0 2.07887 2.07888 (−4.8e− 4) 2.07712 (−8.4e− 2) 2.07800 (−4.1e− 2) 2.07803 (−4.0e− 1)
20.0 — 2.07888 (−4.8e− 4) 2.07535 (−1.7e− 1) 2.07712 (−8.4e− 2) 2.07714 (−8.3e− 2)

0.3 10.0 2.09625 2.09627 (+9.5e− 4) 2.09447 (−8.5e− 2) 2.09538 (−4.2e− 2) 2.09541 (−4.0e− 2)
20.0 — 2.09630 (+2.4e− 3) 2.09270 (−1.7e− 1) 2.09451 (−8.3e− 2) 2.09453 (−8.2e− 2)

0.4 10.0 2.11378 2.11381 (+1.4e− 3) 2.11197 (−8.6e− 2) 2.11290 (−4.1e− 2) 2.11293 (−4.0e− 2)
20.0 — 2.11384 (+2.8e− 3) 2.11017 (−1.7e− 1) 2.11203 (−8.2e− 2) 2.11205 (−8.1e− 2)

0.5 10.0 2.13146 2.13150 (+1.8e− 3) 2.12962 (−8.6e− 2) 2.13057 (−4.1e− 2) 2.13060 (−4.0e− 2)
20.0 — 2.13153 (+3.3e− 3) 2.12779 (−1.7e− 2) 2.12969 (−8.3e− 2) 2.12971 (−8.2e− 2)

Table 3: Comparison of relative power (percentage error) between independent precursor methods and precursor elimination methods for
ramp reactivity insertion.

t (s) Δt (ms) Reference Independent variables Zero-order Taylor expansion First-order Taylor expansion Exponential expansion
0.0 — 1.00000 1.00000 1.00000 1.00000 1.00000

0.1 10.0 1.30832 1.30935 (−7.9e− 2) 1.30906 (−5.6e− 2) 1.30921 (−6.7e− 2) 1.30922 (−6.8e− 2)
20.0 — 1.31036 (−1.5e− 1) 1.30977 (−1.1e− 1) 1.31007 (−1.3e− 1) 1.31009 (−1.3e− 1)

0.2 10.0 1.95908 1.96410 (+2.6e− 1) 1.96273 (+1.8e− 1) 1.96342 (+2.3e− 1) 1.96346 (+2.2e− 1)
20.0 — 1.96842 (+4.7e− 1) 1.96564 (+3.3e− 1) 1.96704 (+4.1e− 1) 1.96712 (+4.1e− 1)

0.3 10.0 2.07503 2.07578 (+3.6e− 2) 2.07403 (−4.8e− 2) 2.07491 (−5.6e− 3) 2.07496 (−3.1e− 3)
20.0 — 2.07636 (−6.4e− 1) 2.07286 (−1.0e− 1) 2.07462 (−1.9e− 2) 2.07472 (−1.5e− 2)

0.4 10.0 2.09239 2.09326 (+4.1e− 2) 2.09147 (−4.4e− 2) 2.09237 (−8.1e− 4) 2.09242 (+1.6e− 3)
20.0 — 2.09416 (+8.4e− 2) 2.09058 (−8.6e− 2) 2.09238 (−1.9e− 4) 2.09248 (+4.3e− 3)

0.5 10.0 2.10988 2.11077 (+4.1e− 2) 2.10894 (−4.4e− 2) 2.10987 (−8.0e− 4) 2.10992 (+1.7e− 3)
20.0 — 2.11169 (+8.5e− 2) 2.10803 (−8.7e− 2) 2.10988 (−9.7e− 5) 2.10998 (+4.4e− 3)

Table 4: TWIGL relative power transient reference problem step reactivity insertion at 50ms.

t (ms) Independent variables Zero-order Taylor expansion First-order Taylor expansion Exponential expansion
0.1 2.044782 2.044766 (−7.82e− 4) 2.044775 (−3.42e− 4) 2.044777 (−2.44e− 4)
1 2.042971 2.042809 (−9.64e− 4) 2.042890 (−9.25e− 2) 2.042896 (−9.22e− 2)
10 2.018193 2.016678 (−1.37e0) 2.017436 (−1.34e0) 2.017459 (−1.33e0)
50 1.875968 1.870072 (−8.54e0) 1.872973 (−8.41e0) 1.873018 (−8.40e0)

Table 5: TWIGL relative power transient reference problem ramp reactivity insertion at 50ms.

t (ms) Independent variables Zero-order Taylor expansion First-order Taylor expansion Exponential expansion
0.1 1.124625 1.124624 (−8.89e− 5) 1.124624 (−8.89e− 5) 1.124624 (−8.89e− 5)
1 1.124676 1.124571 (−4.80e− 3) 1.124583 (−3.73e− 3) 1.124683 (−3.73e− 3)
10 1.125223 1.124158 (−4.15e− 2) 1.124174 (−4.01e− 2) 1.124179 (−3.96e− 2)
50 1.128223 1.121703 (−2.59e− 1) 1.121963 (−2.36e− 2) 1.121985 (−2.34e− 2)
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computational burden compared with backward Euler
scheme, and this is mainly because the difference of two
methods is only whether they inherit the previous time step’s
information. 0e precursor integral method with expo-
nential flux approximation shows robustness and a relatively
high computational efficiency for the numerical simulations
of TWIGL neutron kinetic problems.

3.3. HTR-PMModel. In the previous section, the precursor
integral method is proved to be of higher accuracy, less
computing time, and memory storage than any other
methods. In addition, the first-order Taylor approximation
and exponential approximation methods could still main-
tain a high accuracy even at a larger time step. 0e selection
of time step depends on the dynamical time scale and

characteristic of the nonlinear system. Some special nu-
merical characteristics could occur when coupling neutron
with thermal-hydraulic [1].

0e high-temperature gas-cooled reactor-pebble bed
module (HTR-PM), which is under construction in Shidao
Bay, Shandong Province, consists of two nuclear modules,
and one shared steam turbine [17]. Each module contains its
own reactor core, helical coiled one-through steam generator,
helium turbine, and vertical pipes. 0e flowing helium is
heated from 250∘C to 750∘C in the reactor region, where
many complex phenomena related to the neutron physics and
thermal-hydraulics exist [18].0erefore, the presentmodeling
mainly focuses on these issues, especially the solution of
neutron and physical quantities affecting the precursors
significantly. In terms of the algorithm, the JFNK method is
employed to solve this multiphysics nonlinear problem.
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Figure 2: Relative power error of TWIGL reactivity insertion problem in Δt� 10ms.
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Figure 3: Relative power error of TWIGL reactivity insertion problem in Δt� 10ms.
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3.3.1. Reactor Physics Model. 0ere are many elements in-
cluding pebble bed, reflector, carbon bricks, and helium flow
region in the HTM reactor model. 0e artificial homogeni-
zation sections generated by the dedicated nuclear physics
software V.S.O.P [19] are used to characterize different
material composition.0e neutron energy is divided into four
energy groups. 0e reactor core is modeled as a two-di-
mensional region in r-z coordinate, in which the left boundary
is treated as a symmetric boundary, while the remained
boundaries are considered as vacuum boundaries. In the
solution, the cross-sections are updated according to the
temperature field from thermal-hydraulic calculation [20]:

Σg � B1 + B2 ·
������
Ts + 50

􏽰
+ B3 · Ts + 50( 􏼁

+ B4 · Ts + B5 · Ts( 􏼁
2
,

(37)

where Ts is solid (pebble bed area and reflector) tempera-
ture, B1, B2, B3, B4, andB5 are constant coefficients.

Four-group diffusion equations are used to solve neu-
tron flux. Six sets of delayed neutron precursor are con-
sidered in neutron kinetic simulation. Decay constant and
delayed neutron portion are shown in Table 6.

3.3.2. Aermal-Hydraulic Model. In the thermal-hydraulic
model, the HTR-PM core is divided into 7 regions, such as
pebble bed, gas plenums in the top, and bottom reflectors.0ese
regions are characterized by different materials. 0e properties
of these materials and some other constitutive relations for
thermal-hydraulic calculation are obtained from KTA safety
standards [21] and the simplified version of empirical corre-
lations in TINTE [22]. As to the numerical technique, the finite
difference method is employed to discretize the governing
equations with regard to the thermal-hydraulic quantities and
neutron physics quantities on the same grid.

Solid temperature equation:

z

zt
(1 − ε)ρcTs −

1
r

z

zr
r λs,eff

z

zr
􏼠 􏼡 +

z

zz
λs,eff

z

zz
􏼠 􏼡􏼠 􏼡Ts

− q + α Ts − Tf􏼐 􏼑 � 0.

(38)

Fluid temperature equation:

z
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ερfcpTf −

1
r

z
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r λf,eff

z
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􏼠 􏼡 +

z
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λf,eff

z
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1
r

z
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rμr +

z
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μz􏼠 􏼡cpTf + α Tf − Ts􏼐 􏼑 � 0.

(39)

Mass flux equation:

μr � −
1

W

z

zr
p,

μz � −
1

W

z

zz
p − ρg􏼠 􏼡,

(40)

where Ts, Tf, andp are solid temperature, fluid tempera-
ture, and pressure, respectively, μr and μz are mass fluxes,
λs, λf, α, Cp, and ε are solid effective thermal conductivity
coefficient, fluid effective thermal conductivity coefficient,
convective heat transfer coefficient, fluid heat capacity, and
porosity, and W, ρ, andg are resistance factor, density, and
acceleration of gravity, respectively.

0e coolant channel model in HTR-PM is simplified into
one dimension because the diameter of the tube is rather
small. General design parameters are shown in Table 7.

3.3.3. Numerical Result. As stated previously, the solution of
thermal-hydraulic field and neutron physics field in the
HTR-PM reactor model is performed on the same spatial
mesh shown in Figure 4. 0is nonuniform mesh is con-
structed following the high-temperature gas-cooled reactor
safety analysis program TINTE, which is verified in the
design and analysis of HTR-PM.

A transient case is investigated in this paper. By am-
plifying the fission cross-section at the steady state, a positive
reactivity ρ � 0.31595 is introduced into the HTR-PM re-
actor core model. 0e time duration of this transient is 0.8 s.
Compared with the simulation results at the steady state
shown in Figure 5, it is observed that this transient leads to a
significant change to the solid temperature, fluid tempera-
ture field, outlet temperature of the core, and power in the
core, as shown in the figure. Figure 6.

In this transient, the total power of the reactor has in-
creased to 1.6 times within 0.8 s. 0e power approaches an
almost steady value at the end of this transient, indicating the
reactor does not reach the prompt criticality.

0ree methods, namely, zero-order Taylor expansion,
first-order Taylor expansion, and exponential expansion are
employed to approximate the flux in the precursor integral
method, where two time steps, i.e., Δt � 100ms and 10ms,
under a backward Euler time discretization scheme are
adopted to solve this transient problem. 0e comparisons of

Table 6: Six sets of delayed neutron precursor parameters.

Group 1 2 3 4 5 6
β 4.9588e − 4 3.0678e − 3 2.6332e − 3 5.4992e − 2 1.8051e − 3 3.5614e − 4
λ(s−1) 1.2729e − 2 3.1470e − 2 1.1841e − 1 3.1652e −1 1.4092e0 3.7677e0

Table 7: Design parameters of the HTR-PM.

Parameters Design value
Reactor power (MWt) 250 × 2
Inlet helium temperature (∘C) 250
Outlet helium temperature (∘C) 750
Helium mass flow rate (kg/s) 96
Helium pressure of primary loop (MPa) 7.0
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the results are shown in Table 8. In these two tables, the
reference result is derived from a case which treats precursors as
independent variables and uses a rather small time step
Δt � 0.1ms. From Table 8, it is observed that all methods lead
to a well-agreed result to the reference solution, which is due to
these three approximations of λmCm are all accurate. However,
for a larger time step, the result derived from zero-order Taylor
expansion deviates a lot from the reference solution because of
excessive truncation error, which is shown in Table 8. In ad-
dition, it is also found that the results from two higher-order
approximations of neutron flux, viz, first-order Taylor expan-
sion and exponential expansion are almost identical. 0erefore,
it is concluded that these two methods are more stable and
qualitatively correct than the zero-order Taylor approximation.

To evaluate the effect of time discretization on the so-
lution, another scheme, i.e., Crank–Nicolson, is also
employed.0e relative power error of exponential expansion

and first-order Taylor expansion using different time steps
(Δt � 0.001 s, 0.01 s, 0.05 s, and 0.1 s) under both time dis-
cretization schemes is shown in Figure 7. In the figure, it is
indicated that backward Euler (BE) and Crank–Nicolson
(CN) schemes are both accurate at a small time step, but CN
is more accurate than BE at a larger time step due to a
second-order truncation error in time discretization. Even in
the largest time step (Δt � 0.1 s), relative power error is
restricted within 1% using the CN scheme. Moreover, it is
also shown that the BE scheme introduces a large error at the
beginning of the transient, but decreases rapidly with time
proceeding due to the stable asymptotic period of reactor.
Compared to the BE scheme, the CN scheme leads to a
rather smaller relative power error at any time due to a
higher precision in time discretization. In addition, no
obvious difference is observed between exponential ap-
proximation and first-order Taylor approximation using the
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Figure 6: HTR-PM transient relative power and outlet temperature change in 0.8 s.

Table 8: Comparison among flux approximations in the precursor integral method for HTR-PM reactivity insertion in Δt� 100ms.

t(s) Δt(s) Independent variables Δt � 0.1ms Zero-order Taylor expansion First-order Taylor expansion Exponential expansion
0.0 — 1.00000 1.00000 1.00000 1.00000
0.1 100.0 1.26681 1.21258 (−4.28e0) 1.21549 (−4.05e0) 1.21559 (−4.04e0)
— 10.0 — 1.25987 (−5.47e− 1) 1.26017 (−5.24e− 1) 1.26134 (−4.32e− 1)
0.2 100.0 1.38952 1.33279 (−4.08e0) 1.33866 (−3.66e0) 1.33883 (−3.64e0)
— 10.0 — 1.38296 (−4.72e− 1) 1.38363 (−4.23e−1) 1.38424 (−3.79e− 1)
0.3 100.0 1.45391 1.40613 (−3.28e0) 1.41429 (−2.72e0) 1.41449 (−2.71e0)
— 10.0 — 1.44884 (−3.48e− 1) 1.44977 (−2.85e− 1) 1.44978 (−2.84e− 1)
0.4 100.0 1.49410 1.45511 (−2.60e0) 1.46484 (−1.95e0) 1.46507 (−1.94e0)
— 10.0 — 1.49020 (−2.61e− 1) 1.49129 (−1.88e− 1) 1.49129 (−1.88e− 1)
0.5 100.0 1.52388 1.49118 (−2.14e0) 1.50196 (−1.43e0) 1.50220 (−1.42e0)
- 10.0 — 1.52071 (−2.08e−1) 1.52188 (−1.31e− 1) 1.52189 (1.30e− 1)
0.6 100.0 1.54891 1.52024 (−1.85e0) 1.53172 (−1.10e0) 1.53195 (−1.08e0)
— 10.0 — 1.54615 (−1.78e− 1) 1.54738 (−9.87e− 2) 1.54738 (−9.87e− 2)
0.7 100.0 1.57157 1.54533 (−1.66e0) 1.55731 (−9.07e− 1) 1.55754 (−8.92e− 1)
— 10.0 — 1.56903 (−1.61e− 1) 1.57029 (−8.14e− 2) 1.57029 (−8.14e− 2)
0.8 100.0 1.59289 1.56809 (−1.55e0) 1.57029 (−8.14e− 2) 1.58066 (−7.67e− 1)
— 10.0 — 1.59046 (−1.52e− 1) 1.59175 (−7.15e− 2) 1.59175 (−7.15e− 2)
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same second-order time discretization, which means that
time discretization dominates the truncation error.

3.3.4. Time Step Control Method. 0e time step control
technique stated in Section 2.4 is verified in this section. A
reactivity insertion model identical to that in HTR-PM is
used. In this transient, the time step is determined by the
criterion shown as equation (35). Figure 8 shows the vari-
ation of estimated time step with time of different time step.
It is of interest that the exponential approximation of flux is
adopted here since the time adapt method is derived from
this approximation.

In Figure 8, it is noted that the estimated time step
increases continuously as time proceeds, which means that
the neutron fluxes change dramatically at the beginning of
the transient and tend to be stable gradually. To maintain
the accuracy of the results, a small time step is required
initially, while a large time step is also feasible after almost
0.6 s because of a relatively stable exponential variation of
neutron flux. In addition, it is also observed that the es-
timated time step corresponding to Δt � 50ms is the
smallest compared to Δt � 1ms and 10ms, which is due to a
ω increase of truncation error under large time step.
0erefore, the smaller the Δtadapt, the smaller the estimated
time step.

Figure 9 shows the comparison of relative power error of
the time adapt method and fixed time steps, i.e.,
Δt � 1ms, 10ms, 50ms, and 100ms. Both CPU time and
number of time step are included in this figure. For the time
adapt method, the initial time step is 1ms to resolve fast
change of neutron flux and other time steps are determined
by equation (5). Figure 9 indicates that the time adapt

method can realize a relatively low and stable error. In
addition, it is found a continuous drop of error at fixed time
step, which means that the fixed time step does not respond
to the change of neutron flux well. After almost 0.6 s, the
time step is larger because the neutron flux changes slowly
then and small time step is no longer required to reduce
calculation time. 0e results indicate that the time adapt
method is a powerful tool to balance the computational cost
and precision in neutron kinetic calculation.
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Figure 7:0e relative power error of exponential expansion and first-order Taylor expansion in different time discretization and time steps.
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0e relative errors of power compared with the fixed
time step Δt � 1ms, 10ms, 50ms, and 100ms and the time
adapt method are shown in Figure 9. CPU times and number
of time step in each method are also provided in the figure.
0e initial time step of the time adapt method is 1ms, and
equation (35) is used to determine the next time step.
Figure 9 indicates that the time adapt method can maintain
errors at a relatively stable value. Fixed time step methods
result in a continuous error drop which reflects in this figure.
0is also means that the fixed time step method has not
responded to the change of neutron flux. 0e result is that
the time adapt method initially takes smaller time steps in
order to resolve fast change in neutron flux. After ap-
proximately 0.6 second into the transient, the time adapt
method takes longer time steps because the neutron flux is
now changing more slowly and the very small time step is no
longer required in order to reduce calculation time.0e time
adapt method used here can balance computational cost and
precision in neutron kinetic calculation.

4. Conclusion

0e work presents an exponential flux approximation
technique in the precursor integral method, which is shown
to be advantageous for solving space-dependent neutron
kinetic equations. Because the neutron flux is approximated
by exponential function, the coefficients in the function
reflect the reactor asymptotic period. 0is means that the
time step control algorithm can be based on the coefficients,
and an adaptive time step method is proposed which is
instructed by an predicted error. Truncation error analysis
among different flux approximations used in the precursor
integral method is performed in this work. 0e method of
treating the precursor as independent variables is appended
as a contrast. Nonlinear term appeared, and efficient non-
linear solution method, JFNK, is utilized. 0ere are two

sources leading to numerical errors in transient calculation,
viz, time discretization and delayed neutron integral tech-
nique. Analytical insight on the effects of the time dis-
cretization and neutron flux approximation method is
obtained. 0e numerical verification of the method above is
carried out in TWIGL neutronic benchmark. Besides, more
realistic applications are extended. HTR-PM multiphysics
problem is presented with a thermal-hydraulic and a four-
group neutron kinetic model in 2D cylindrical coordinate.
0e main remarks can be drawn as follows:

(i) 0e traditionalmethod of treating the delayed neutron
precursor as independent variables causes expansive
calculation cost compared with the precursor integral
method. 0e CPU time can be reduced by more than
half in using precursor integral methods.

(ii) First-order Taylor approximation and exponential
approximation for neutron flux can provide suffi-
cient accuracy of calculation and the stability of
numerical results in neutron kinetic problems. 0e
comprehensive performance of exponential ap-
proximation is better.

(iii) Time discretization dominates the truncation error
of transient calculation. 0e time discretization of
second-order accuracy is suggested in the calcula-
tion of neutron dynamics.

(iv) 0e time adapt method proposed in this work is
proven to be efficient in HTR-PM transient calcu-
lation. 0is method is based on exponential flux
approximation and has the features of small error
and low computational cost for solving neutron
kinetic equations.

In the future work, more cases will be tested in neutronic
and thermal-hydraulic coupling problem, in which pre-
cursor integral method with exponential approximation is
used for solving neutron kinetic problem.
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Figure 9: Computational cost and relative power error for the fixed time step method and time adapt method.
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Notations

β: Groupwise fraction
χ: Fission spectra
λ: Decay constants of delayed neutron groups
∈: Truncation error
F: Residual function
J: Jacobian matrix
v: Neutron velocity
w: Frequency coefficient
]: Prompt neutron yield
ϕ: Scalar neutron flux
Σs: Fission cross-section
Σf: Fission cross-section
τ: Dynamical time scale
C: Delayed neutron precursor concentration
D: Diffusion coefficient
m: Number of delayed neutron groups
g: Number of neutron energy groups.
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