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According to the characteristics of the reactor internal structure of nuclear power plants, the vibration of the secondary core
support pillar in water can be modeled as the vibration of the cantilever beam structure under the action of transverse flow, and its
first beam mode is highly likely to be activated. It is thus necessary to dedicate a separate study on the first-order beam mode. In
this work, we study the secondary core support pillar in nuclear reactor AP1000 under the action of transverse flow and focus on
the derivation of its static cantilever deflection mode shape function in order to lay a foundation for the calculation of hy-
drodynamic addedmass and frequency for the nuclear reactor internal components and their structural integrity evaluation. First,
we proposed a set of nonlinear differential equations for the analysis of the single cantilever beam. Second, to solve the nonlinear
differential equations, we used a boundary shooting framework in combination with the Runge–Kutta method. .e results of the
numerical simulation agree with the analytical solution to a very high degree, which demonstrates the effectiveness of the
simulation method. Finally, we solved the static deflection mode shape function of the secondary core support pillar under the
normal operating conditions..e nonlinear differential model and simulation method proposed in this paper can be used to solve
the static cantilever deflection mode shape function of the equipment support tube.

1. Introduction

In the passive advanced nuclear reactor AP1000, the contact
between the internal components and the highly energetic
flow causes the vibration of equipment, which leads to the
fatigue of the equipment immersed in the flowing fluid, such
as the secondary support column, the equipment support
cylinder, the fuel rod, or the heat exchanger tube. Over time,
these effects can result in great damages of the internal
components and can even lead to shutdown of the entire
power plant [1]. When the scale of the reactor increases or
the flow rate of the coolant increases, the internal compo-
nents are more likely to bend; hence, the flow-induced vi-
bration problem becomes more serious. Since the flow-
induced vibration of the internal structure significantly af-
fects the safety of the nuclear reactor, the problem has been

studied since 1950. It is difficult to carry out theoretical study
because it involves both fluid structure problem and non-
linear science. At present, most of the research studies focus
on experimental research and numerical simulation. In the
aspect of experimental research, Ferrari et al. [2] studied the
vibration of the PWR fuel assembly grid in water and air, and
they mainly focused on the nonlinear behavior of the contact
between the grid and fuel rod. De Pauw et al. [3] studied the
axial flow-induced vibration of a single nuclear fuel rod in a
lead-bismuth fast reactor. As for the numerical simulation
studies, many works solve the complete equations by using
the finite element or finite volume numerical method [1, 4].
We can see that most of the studies focus on different types
of fuel assemblies, and boundary conditions are generally
fixed at both ends. Only a few works have studied the
cantilever structure such as secondary core support pillar
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mainly by using the experimental and simulation methods,
and there still lacks the theoretical research [5]. In the early
design stage of engineering problems, the theoretical deri-
vation results are often necessary to provide guidance.
According to the engineering characteristics of nuclear
power plant internal components, the secondary core
support pillar in the reactor can be simplified as the vibration
problem of the cantilever beam structure under the action of
transverse flow. Due to the large height-diameter ratio, the
first-order beam mode is easy to be excited; hence, it is
necessary to study the first-order beam mode separately.
According to the theory of Au-Yang [6], in order to calculate
the hydrodynamic addedmass and frequency for the nuclear
reactor internal components, it is necessary to obtain the
static deflection mode shape function. Generally, many
reactor internal components can be simplified as a beam
with certain rigidity and elasticity. .erefore, we will focus
on a single cantilever elastic beam structure and solve its
static deflection mode shape function.

.e nonlinear deformation of elastic beams has appli-
cations in the nuclear industry, aviation, biology, and
medicine. .ere have been many related studies in the field
of solid mechanics [7–13]. Since 1970, some numerical and
analytical methods have been proposed to solve these
problems of elastic beams, such as the finite element method,
spectral methods, and DQ method [7]. Later on, a new
discrete singular convolution method (DSC), which is
simpler and more efficient compared to methods mentioned
above, has been widely used in solid mechanics [7, 10]. For
example, DSC has been applied to a free vibration analysis of
Timoshenko beams by Civalek and Kiracioglu [7]. Clamped,
pinned, and sliding boundary conditions are considered in
their work. From this work, we can see that the difficulties
arise when considering the boundary conditions especially
for free edges. Several new methods have been proposed for
free boundary conditions, such as local adaptive DQ
methods [11], matched interface and boundary method [12],
and fictitious domain approach [13]. .ese methods have
great application impact. However, they are often very
complicated to implement. .e IMB method [13] is an ef-
ficient way for implementation. However, they have not
obtained efficient results by using the IMB method in their
study [7]. Moreover, the fluid-related parameters such as
fluid velocity field are not considered in the model and
discussed in the paper cited above.

.e cantilever beam vibration and deflection are also
studied in the field of hydraulics [14–17]. As aquatic vegetation
is often submerged and highly flexible, it will deflect and in-
teract with the ambient flow environment. It is necessary to
study its interaction with the surrounding flow environment in
order to determine the flow rate, morphological characteristics,
and ecological conditions of the river channel where the
vegetation grows [16]. Since the encroachment of vegetation
has a destructive effect on the environment, the control of
vegetation by hydraulic means is often adopted because it is a
nonchemical approach [18]. Duan et al. [14] deduced a set of
large deflection nonlinear equations of a single plant and
compared the theoretical results with experimental results. .e
results are in good agreement [14, 15]. SinceDuan et al.’smodel

is applicable for the problem of large-angle deflection of a
cantilever beam with certain rigidity and elasticity, the model
can be applied to solve the problem of static deflection mode
shape function of the internal components of the AP1000
reactor. Based on Duan et al.’s model, this work firstly modeled
the deflection problem of a single cantilever beam in the
transverse flow. A boundary shooting method in combination
with the Runge–Kutta method has been used to solve the
nonlinear equations. Comparing with the existing numerical
method cited above, the proposed method is efficient and easy
to implement for the cantilever problem. Moreover, the
method of implementation of the boundary condition is
presented and proved in detail. .e static cantilever deflection
mode shape function of the secondary core support pillar is
solved by the proposed method.

2. Theoretical Analysis

.e secondary core support pillar in the reactor is an elastic
material that bends or breaks under stress. We consider a
cantilever element which has been fixed at the base without
support elsewhere, with a load being applied above its base
(see Figure 1). .e cross-section geometry of the cantilever
beam affects its rigidity and the bending mechanism [16].
We assume that its cross section does not change along the
vertical direction. .e maximum bending moment and
shear stress are located at the bottom of the cantilever beam
according to classical mechanics of material theory.

Assuming a single cantilever fully exposed to the flow and
no other cantilevers around it to influence the vertical velocity
profile, the dominant load acting on the cantilever is the flow-
induced drag force and not oscillations due to vortex shedding.
.e drag force acting on a single cantilever is

FD �
1
2
ρu(z)

2
CDA, (1)

where FD is the drag force of the fluid on the immersed part of
the cantilever,CD is the drag coefficient, ρ is the density of water,
u(z) is the vertical velocity distribution, and A is the projected
area of the immersed part of the object perpendicular to the
water flow plane. According to Duan et al.’s model, the dif-
ferential governing equation of the cantilever beam is as follows:

dθ
ds

�
M

EI
, (2)

dz

ds
� cos θ, (3)

dx

ds
� sin θ, (4)

dM

ds
� V cos θ, (5)

dV

ds
� w(z)cos θ, (6)

where θ is the deflection angle, s is the distance along the
curve, M is the bending moment of a section, I is the
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moment of inertia, E is the elastic modulus, V is the shear stress
acting on the beam section, w(z) is the distributed load exerted
by the water flow on the beam, and x and z, respectively, in-
dicate the horizontal and vertical distances between any section
of the beam and its bottom. In the literature, the small deflection
hypothesis is usually used to solve the vegetation deflection
problem. Since the deflection of the cantilever beam caused by
the water flow can be very large, the small deflection hypothesis
will cause nonnegligible errors [19]. .erefore, the small de-
flection hypothesis has not been adopted here. Equations (2)–(6)
can be solved when the load distribution is known. Since the
solution is the deflection between the location z∗ � 0 and z∗ �

1 (where z∗ � z/h), in order to facilitate the application of the
boundary conditions, we use the water flow depth and other
parameters to nondimensionalize equations (2)–(6):

dθ
dz
∗ �

M
∗

E
∗
I
∗ cos θ

, (7)

ds
∗

dz
∗ �

1
cos θ

, (8)

dx
∗

dz
∗ � tan θ, (9)

dM
∗

dz
∗ � V

∗
, (10)

dV
∗

dz
∗ � w

∗
(z), (11)

where z∗ � z/h, x∗ � x/h, s∗ � s/h, V∗ � V/0.5ρh2u− 2,
M∗ � M/0.5ρh3u− 2, and E∗I∗ � V/0.5ρh4u− 2. Equations
(7)–(11) can be rearranged into 3 dimensionless nonlinear
differential equations:

d sin θ
dz
∗ �

M
∗

E
∗
I
∗, (12)

dM
∗

dz
∗ � V

∗
, (13)

dV
∗

dz
∗ � w

∗
(z). (14)

Since the base of the cantilever is fixed, we can obtain

sin θ z
∗

� 0( 􏼁 � 0. (15)

We consider the situation that the top of the cantilever
beam is not immersed in water, so the bending moment and
shear force on the top of the cantilever should be zero; thus,
the two boundary conditions can be written as

M
∗

z
∗

� 1( 􏼁 � 0, (16)

V
∗

z
∗

� 1( 􏼁 � 0. (17)

3. Methods

In order to solve the differential equations using the
boundary shooting method and Runge–Kutta method, we
have introduced three variables x1, x2, andx3:

x1 � sin θ,

x2 �
d sin θ
dz
∗ ,

x3 �
d2 sin θ
dz
∗2 .

(18)

.en, equations (12)–(14) can be written as

dx1

dz
∗ � x2,

dx2

dz
∗ � x3,

dx3

dz
∗ �

1/2ρh
3
u(z)

2
CDD

EI
.

(19)

.ree boundary conditions can be written as

x1 z
∗

� 0( 􏼁 � 0,

x2 z
∗

� 1( 􏼁 � 0,

x3 z
∗

� 1( 􏼁 � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(20)

z
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Figure 1: Schematic diagram of cantilever bending.
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.e boundary shooting method uses the initial condi-
tions to replace the known boundary conditions to solve the
problem. By constantly changing the initial value, it grad-
ually approaches the given boundary condition. .erefore,
the selection of the formula for adjusting the boundary
condition is very important. We set two adjustment
equations:

x
i
2(0) � x

i− 1
2 (0) − α x

i− 1
2 (1) − b2􏽨 􏽩, (21)

x
i
3(0) � x

i− 1
3 (0) − α x

i− 1
3 (1) − b3􏽨 􏽩, (22)

where b2 and b3 represent the boundary conditions at the top
of the cantilever z∗ � 1, α represents the shooting coefficient,
whose value is smaller than 1 and depends on the load
exerted on the free end of the beam, and i represents the
iteration step number. Next, we prove that equations (21)
and (22) are necessary conditions to obtain a stable solution.

Firstly, according to the fourth-order Runge–Kutta
method, we have x1(0) � 0. Considering arbitrary initial
condition x2(0), we can obtain the first iteration:

x
1
2(1) � x

1
2(0) +

l

6
K1 x

1
1(0), 0􏼐 􏼑 + 2K2 x

1
1(0), 0􏼐 􏼑􏽨

+ 2K3 x
1
1(0), 0􏼐 􏼑 + K4 x

1
1(0), 0􏼐 􏼑􏽩,

(23)

where l indicates the step length and Ki(i � 1, 2, 3, 4) rep-
resents the fourth-order Runge–Kutta coefficient. .erefore,
the iterative process at the top of the cantilever x1

2(N) is

x
1
2(N) � x

1
2(0) + 􏽘

N− 1

k�0
f x

1
1(k), k􏽨 􏽩. (24)

Secondly, by introducing F1 � 􏽐
N− 1
k�0 f[x1

1(k), k],
according to equation (21), the second iteration can be
written as

x
2
2(0) � x

1
2(0) + α · x

1
2(N) � (1 − α) · x

1
2(0) − α · F

1
+ αb2.

(25)

From equations (24) and (25), the second iteration value
at z∗ � 1 can be written as

x
2
2(N) � x

2
2(0) + F

2
� (1 − α) · x

1
2(0) − α · F

1
+ F

2
+ αb2,

(26)

and the third iteration at z∗ � 1 can be written as

x
3
2(N) � x

3
2(0) + F

3
� (1 − α)

2
· x

1
2(0) − α · (1 − α) · F

1

+ α · F
2

+ F
3

− b2(1 − α)
2

+ b2.

(27)

.en, we obtain the final iteration:

x
j
2(N) � x

j
2(0) + F

j
� (1 − α)

j− 1
· x

1
2(0) − α · F

j− 1
− α(1 − α) · F

j− 2

+ α2(1 − α) · F
j− 3

− α2(1 − α)
2

· F
j− 4

− · · · + F
j

− b2(1 − α)
j− 1

+ b2,
(28)

where Fj � 􏽐
N− 1
k�0 f[x1

1(k), k] is the end-to-end increment
calculated by the Runge–Kutta method in each iteration.
When the increment is small and tends to be 1, equation (28)
can be written as

x
j
2(N) ≈ − α · F

j− 1
+ F

j
+ b2. (29)

Since the values of Fj and Fj− 1 are similar after multiple
iterations, it can be seen from equation (29) that x

j
2(N) will

tend to be b2. x
j
3(N) will tend to be b3, thus corresponding to

the correct boundary conditions. Because the magnitude of Fj

is affected by the load acting on the beam, for beams with
smaller loads, the value of α should be close to 1. .e accurate
solution can be obtained with a small number of iterations.
However, if the load on the beam is large, it is necessary to
reduce the value of α to avoid oscillations of the solution.

4. Results and Discussion

4.1. Validation of theNumericalMethod. In order to validate
the numerical method, we use the value of parameters
provided by Li and Xie [16] and compare the numerical
results with the analytical solution. .e parameters of the
cantilever and field of flow are as follows: stiffness parameter
EI � 2.5 × 10− 7 N · m2, diameter of the cantilever
D � 2.4 × 10− 5 m, water depth h � 0.05m, water density

ρ � 1 × 103 kg/m3, average velocity of flow u � 0.5m/s, and
drag coefficient CD � 1.2. .e vertical velocity profile is
assumed to satisfy the power law [14]:

u(z)

u
�

(m + 1)

m

z

h
􏼒 􏼓

1/m
, (30)

where m� 3.156. By solving equations (12)–(14), we can
obtain the distribution of deflection angle, bending moment,
and shear force along the cantilever beam. .e analytical
solution is expressed as follows:

sin θ z
∗

( 􏼁 � 0.20z
∗3.63

− 0.96z
∗2

+ 1.19z
∗
,

M
∗

z
∗

( 􏼁 � 3.2 × 10− 4 0.73z
∗2.63

− 1.91z
∗

+ 1.19􏼐 􏼑,

V
∗

z
∗

( 􏼁 � 3.2 × 10− 4 1.91 − 1.91z
∗1.63

􏼐 􏼑.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(31)

.e numerical and analytical solutions of the deflection
curve, the sine of the deflection angle, the bending moment,
and the shear are shown in Figure 2. We can see that the
numerical solution and the analytical solution are in good
agreement. .e maximum relative errors in Figures 2(a)–
2(d) are 3.02×10− 6, 3.79×10− 6, 8.84×10− 4, and 1.95×10− 4,
respectively. .erefore, the method proposed in this study is
accurate to a very high degree.
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4.2. Influence of the Iteration Number. .e number of iter-
ations significantly affects the calculation time and accuracy.
.e results of angle of the cantilever beam with various
iteration numbers are shown in Figure 3, while the pa-
rameters of calculation are kept the same as in Figure 2. .e
results show that the numerical solution with 20 iterations
and 100 iterations and analytical solutions are in good
agreement. Among them, the maximum relative error after
20 iterations can be less than 0.5%. We can see that an
accurate numerical solution can be obtained after 20 iter-
ations. For the calculation of this paper, the number of it-
erations is set to Ni � 100.

4.3. Influence of α. According to equation (29), the value of α
will affect the number of iterations. Figure 4 shows the
variation of Ni (number of iterations needed for the nu-
merical solution to converge) with respect to α under dif-
ferent average velocities of the incoming flow. .e

convergence criterion is that the error between the nu-
merical and the analytical solution of the shear force is less
than 1%. We can see that, for different flow velocities, when
α is greater than 0.075, the required number of iterations Ni
is less than 100. When α is greater than 0.2, the required
number of iterations Ni is less than 20. .is result is con-
sistent with the theoretical prediction. Convergence gets
faster while α approaches more closely to 1. However, when
the load is large, numerical oscillations could occur. And
when 0.2≤ α≤ 1, the convergence is relatively fast. .e
shooting coefficient is set to α� 0.5 in this work.

4.4. Influence of theProfile of FlowField. .e flow field profile
affects the deflection.We compared the sine of the deflection
angle of the cantilever beam with the power law flow field
profile and the following three profiles:

(1) Uniform u(z)/u � 1
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Figure 2: Deflection curve, sine of the deflection angle sin θ, bending moment M∗, and shear V∗ of the cantilever beam versus z∗.
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(2) Linear u(z)/u � 2z/h
(3) Open channels [20], u(z)/u � 1 − 0.52(2(z/h)2/1+������������������

1 + 50(1 − z/h)(z/h)2
􏽱

)

Table 1 shows the numerical solution, the analytical
results, and the relative error of the deflection angle when the
dimensionless height is z∗ � 0.3.We can see that the velocity
distribution has a great impact on the deflection. .e power
law distribution and the velocity distribution in open
channels are closer to the actual situation. If a uniform
distribution is used, a larger deflection angle will be ob-
tained; if a linear distribution is used, a smaller deflection
angle will be obtained.We can conclude that ourmethod can

effectively solve the governing equations of cantilever beams
subjected to complex loads.

4.5. Solution of the Beam Mode Function. .e model and
method proposed in this paper are used to solve the mode
shape function of the secondary core support pillar in the
AP1000 reactor. It can be considered as a cantilever beam;
thus, we solve equation (19). According to the literature [21],
it can be assumed that the incoming flow acting on the
support pillar is uniform. Other parameters are set as fol-
lows: the average flow velocity of the coolant in the reactor
u � 16m/s, the support pillar diameter D � 90mm, the
water support column height h � 500mm, and the drag
force coefficient CD � 1.2. .e bending stiffness EI � 6.4 ×

105 N · m2 (since the material is SA-479 stainless steel bar).
Figure 5 shows the numerical solution under the uniform
incoming flow condition. According to the relationship
x∗(z∗) � 􏽒

z∗

0 tan θdz∗, the following static deflection mode
function relationship is obtained (see the red dashed line in
Figure 5):

x
∗

z
∗

( 􏼁 � 1.1 × 10− 4
z
∗4

− 4.5 × 10− 4
z
∗3

+ 6.7 × 10− 4
z
∗2

+ 7 × 10− 7
z
∗
.

(32)
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0
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5
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θ

z*

Figure 3: Evolution of sin θ as a function of z∗ for different
iterations.
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Figure 4: .e variation of Ni (number of iterations needed for the
numerical solution to converge) with respect to α under different
average velocities of the incoming flow.

Table 1: .e numerical solution, the analytical results, and the
relative error of the deflection angle for various flow fields.

Flow
profile

Numerical
solution Analytical solution Relative error

Uniform 0.2974 0.2993 0.0063
Linear 0.0810 0.0820 0.0121
Open
channel 0.1729 — —

Power law 0.2136 0.2125 0.0052
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z*
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Figure 5: .e deflection of the secondary core support pillar under
the operating condition of the reactor, where the red dotted line
represents equation (32).
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5. Conclusions

.is work studies the mode shape function of the secondary
core support pillar in the AP1000 reactor under the action of
transverse flow by using the theoretical analysis and nu-
merical calculation. .e following conclusions are drawn:

(1) In light of the large deflection nonlinear differential
equations proposed by Duan et al. [14], a set of
nonlinear differential equations for the analysis of
the single cantilever beam was proposed, and the
applicability of the model to the cantilever beam
deflection problem was demonstrated.

(2) We use a boundary shooting framework in combi-
nation with the Runge–Kutta method to solve the
aforementioned nonlinear differential control
equations and obtain the numerical solutions of the
deflection curve, deflection angle, bending moment,
and shear force of the cantilever beam. .e results of
the numerical simulation agree with the analytical
solution to a very high degree, which demonstrates
the effectiveness of the simulation method. Mean-
while, the influence of the number of iterations and
the shooting coefficient is studied, which provides a
basis for the selection of parameters.

(3) We have quantitatively studied the influence of
velocity profile on the deflection angle of the can-
tilever beam. Comparing with the actual situation, if
the uniform profile is adopted, a larger deflection
angle will be obtained; if the linear profile is adopted,
a smaller deflection angle will be obtained. Our
method can solve the governing equations with
cantilever subjected to complex loads. In this case, an
analytical solution cannot be obtained.

(4) .e static shape function of the secondary core
support pillar in the AP1000 reactor is solved. .is
work lays a foundation for the calculation of hy-
drodynamic added mass and frequency for the nu-
clear reactor internal components and their
structural integrity evaluation.
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