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Because of the characteristics of the small water volume of OTSG, it is hard to control the outlet steam pressure when the load is
changed or disturbed.�is study is devoted to the control of the once-through steam generator (OTSG). A double-layer controller
based on the PPO algorithm is proposed to control the outlet steam pressure of OTSG. �e bottom layer is the PID controller; it
directly regulates the OTSG feed water valve and then controls the steam pressure.�e top layer of the controller is the agent based
on the PPO algorithm, which is responsible for optimizing the parameters of the PID in real time to obtain better control
performance.�e agent chooses PID parameters as actions to the environment, and then, the reward value is obtained through the
reward function of the environment which enables online learning of the agent. Compared with the PID controller, the simulation
experiment result shows that the method not only has a good control performance but also has a good anti-interference ability.

1. Introduction

�e once-through steam generator (OTSG) is a key part of
the nuclear power plant, which is used to produce super-
heated steam without dehumidi�cation devices. It has ad-
vantages of simple structure, small volume, good static
characteristics, maneuver performance, and so on and can
improve the thermal e�ciency of the equipment. Due to the
advantages, OTSG is often taken into account for small- and
middle-sized nuclear power plants [1].

At present, the research on the control of the OTSG
mainly focuses on the pressure control in the secondary
loop; that is, the outlet steam quality control is realized by
controlling the steam pressure at the outlet. Due to the
strong coupling characteristics of the OTSG, the outlet
pressure control is di�cult [2]. In order to keep the steam
outlet pressure constant, Zhang et al. addressed a scheme
based on PID for adjusting the secondary feedwater �ow rate
with steam pressure deviation signal and steam �ow signal
[3]. Cheng et al. [4] proposed a distributed and multi-input
and output coupling arti�cial immune control strategy and
applied the strategy to the pressure control of the OTSG,

which can e�ectively improve the dynamic operating
characteristics of the pressure and related parameters of the
OTSG. Chen et al. [5] introduced a T-S fuzzy neural control
principle into the water supply control system of the OTSG.

�e above studies have achieved many good results in
simulation experiments and practical applications, which
bene�t from the development of diversi�ed control algo-
rithms and computer technology. However, the above
methods also have drawbacks, such as the need for a large
amount of training data or accurate mathematical models.
Many methods need to establish a relatively accurate system
model and need to design accurate parameters of the
controller. When the system cannot be modeled completely
or the environment changes greatly, the performance of the
controller will degrade to some extent. For systems with
unclear or completely unknown mathematical models, the
emergence of intelligent control methods with self-learning
ability can provide ideas for solving those problems.

Reinforcement learning (RL) is a kind of machine
learning, the basic idea of RL is to explore the optimal
strategy through the interaction between agent and envi-
ronment and to maximize the return [6]. Classical RL, such
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as Q-learning, discretizes the action and state space and uses
the Q-table to solve the problem [7]. However, classical RL is
difficult to discretize the continuous action and state space in
the actual control problem; moreover, the high-dimensional
continuous state space and action space increase the cal-
culation burden. Fortunately, due to the rise of deep
learning, deep neural networks have been introduced into
RL as value function approximators in recent years. Deep
reinforcement learning (DRL) solves the curse of dimen-
sions problem by introducing neural networks to the al-
gorithm. Timothy et al. proposed the Deep Deterministic
Policy Gradient (DDPG) algorithm to solve the control
problem with continuous action space [8]. DRL became
widely known when Google’s AlphaGo defeated Lee Sedol,
one of the world’s top Go players.

DRL not only has the excellent data processing ability of
deep learning but also has the excellent decision ability of
reinforcement learning, which has developed into an im-
portant part of the machine learning field. Up to now, DRL
has been used in robots, HVAC, UAV, energy, and other
control fields. In order to enable full participation of high-
performance units controlled by different dispatching
centers in the performance-based frequency regulation
market, Li et al. used an effective exploration-based mul-
tiagent deep deterministic policy gradient (EE-MADDPG)
algorithm for the grid-area coordinated load frequency
control (GAC-LFC) [9]. He proposed another method based
on the imitation guided-exploration multiagent twin-
delayed deep deterministic policy gradient (IGE-MATD3)
algorithm to address the coordination problems between
AGC controllers in multiarea power systems [10]. Designing
a controller for the attitude control of the moving mass-
actuated unmanned aerial vehicle (MAUAV) faces severe
challenges due to the strong nonlinearity and coupling of its
dynamics. Qiu et al. proposed an attitude controller based on
deep reinforcement learning for the (MAUAV). It directly
maps the states to the needed deflection of the actuators and
is an end-to-end controller [11]. Deng et al. proposed a novel
optimal heating, ventilation, and air conditioning (HVAC)
control method combining active building environment
change detection and deep Q network (DQN). ,is method
aims to disentangle the nonstationarity by actively identi-
fying the change points of building environments and
learning effective control strategies for corresponding
building environments [12]. Zhang et al. adopted a rein-
forcement learning algorithm to optimize the task sequence
allocation scheme in assembly processes of the human-robot
collaborative [13]. A data-driven approach that leverages
deep reinforcement-learning techniques to intelligently
learn effective strategies for state diagnosis of safety func-
tions is proposed by JaeKwan Park.,e approach shows that
it has the potential to assist human operators in monitoring
the safety functions of nuclear facilities [14]. At present, RL is
not widely used in nuclear power plants, but good results
have been achieved. Park et al. propose an automatic control
method for plant heat-up mode using deep reinforcement-
learning technology as a basic study for plant automation
[15]. A multilayer perception (MLP)-based reinforcement
learning control (RLC) is applied to the optimization of

thermal power response for a high temperature gas-cooled
reactor-based nuclear steam supply system (NSSS) [16].

As an intelligent algorithm, DRL has been paid more
attention in recent years. Its self-learning and model-free
characteristics provide a new idea to solve the control
problem of the OTSG. ,e present study investigates the
feasibility of applying the DRL technique to the OTSG. ,e
random policy search method is one of the model-free
methods in reinforcement learning. Its representative
method, PPO (Proximal Policy Optimization), can make
the rewards monotonic nondecreasing, that is, policies are
always updated for the better. ,e PPO algorithm con-
stantly explores through the interaction with the envi-
ronment to obtain the optimal policy without any prior
knowledge.

In this study, a two-layer control scheme for the OTSG
based on PPO is proposed. On the basis of the bottom PID
controller, the upper layer which applies the PPO algorithm
is designed to realize the self-learning of the parameters of
the PID controller for the OTSG. ,e contributions of this
study are as follows:

(i) A two-layer control scheme based on RL for the
OTSG is proposed

(ii) PPO is designed to realize the self-learning of the
parameters of the PID controller

(iii) ,e novel part of this work is to verify the feasibility
and validity of the RLmethod for solving the control
problem of OTSG in this study

,e study is organized as follows. Based on the previous
research study, the innovation points of this study are de-
scribed in Section 1. ,e nonlinear mathematical model of
the OTSG is introduced in Section 2. Section 3 outlines the
control framework for OTSG based on the PPO algorithm.
,e accuracy and effectiveness of the controller are evaluated
in Section 4. Conclusions are given in Section 5.

2. Nonlinear Mathematical Model of the OTSG

,e OTSG is a type of steam generator which applies double
sides to transfer heat. ,e primary fluid flows from top to
bottom both in the internal part of the inner pipe and the
external part of the outer pipe, and the secondary fluid flows
from bottom to top in the annulus channel between the
inner pipe and the outer pipe and then flows out the su-
perheated steam.

2.1. Model Simplification and Assumptions. OTSG can be
divided into three regions: subcooled, nucleate boiling, and
superheat regions [17]. ,e heat flux between water of
centric tube and outside annuli tube and that of annulus
channel is assumed to be equal, and then, the steam
generator’s model is built by lumped parameters with
moving boundary. ,e temperature and enthalpy, the
outlet parameters of each section of the primary and
secondary loops, are considered as lumped parameters [18].
,e input and output of the mathematical model are shown
in Figure 1.
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,e assumptions of the model are as follows:

(1) ,eweight, specific heat, and heat transfer coefficient
of the primary fluid change slowly in each region

(2) ,e weight, specific heat, and thermal conductivity
of the metal are constant in each region

(3) ,e physical characteristics and heat conduction
coefficient of the secondary fluid change linearly in
each region

(a) Subcooled region: h≤ hf (hf is the enthalpy of
saturated water)
Energy conservation equation in the primary
subcooled region is

d ρpl6Aphp7 

dt
� wp5hp5 − wp7hp7 − Qp6.

(1)

Energy conservation equation in the secondary
subcooled region is

d ρs6l6Ashs5( 

dt
� ws7hs7 − ws5hs5 + Qp6. (2)

Mass conservation equation in the secondary
subcooled region is

d ρs6l6As( 

dt
� ws7 − ws5. (3)

(b) Nucleate boiling region: 0<x< 1 (x is dryness)
Energy conservation equation in the primary
nucleate boiling region is

d ρpl4Aphp5 

dt
� wp3hp3 − wp5hp5 − Qp4.

(4)

Energy conservation equation in the secondary
nucleate boiling region is

d ρs4l4Ashs3( 

dt
� ws5hs5 − ws3hs3 + Qp4. (5)

Mass conservation equation in the secondary
nucleate boiling region is

d ρs4l4As( 

dt
� ws5 − ws3. (6)

(c) Superheat region: the secondary saturates steam
to the outlet.

Energy conservation equation in the primary superheat
region is

d ρpl2Aphp3 

dt
� wp1hp1 − wp3hp3 − Qp2.

(7)

Energy conservation equation in the secondary super-
heat region is

d ρs2l2Ashs1( 

dt
� ws3hs3 − ws1hs1 + Qp2. (8)

Mass conservation equation in the secondary superheat
region is

d ρs2l2As( 

dt
� ws3 − ws1, (9)

whereQ is heat transfer, l is effective length, h is the enthalpy
of each cross-section,w is flow, ρ is density,A is efficient flow
area, and P and s represent primary and secondary loops
individually.

3. RL Controller Design for OTSG

3.1. Reinforcement Learning. Reinforcement learning is an
unsupervised learning method. ,rough repeated interac-
tions with the dynamic environment, the agent learns to
select the optimal or near-optimal action to achieve its long-
term goal [19]. ,e basic framework of reinforcement
learning is shown in Figure 2.

Markov decision process (MDP) is an interactive
learning framework as well as a mathematical description of
reinforcement learning problems. ,e goal of reinforcement
learning is to learn a policy to maximize the expected reward
in which the object starts from its initial state s under a
certain policy π:

J � Es∼ρ,a∼π R1 . (10)

,e process can be described by a five-tuple S, A,{

P, R, c}, where S is the set of states, A is the set of actions, P is
the state transition matrix, R is the reward function, and c is
the discount coefficient.

,e reward is defined as the discount accumulated
reward:
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Figure 1: ,e schematic diagram of OTSG.
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Rt � 
T

i�t

c
(i− t)

r si, ai( . (11)

,e state value function Vπ(s) represents the discount
accumulation rewards that are obtained from the envi-
ronment when executing policy π at state s:

V
π

st(  � Es∼ρ,a∼π Rt|st . (12)

,e state action value function Qπ(s, a) represents the
accumulation rewards brought by taking action at state s and
then executing the policy π:

Q
π
(s, a) � Es∼ρ,a∼π Rt|st, at . (13)

To solve reinforcement learning problems, the methods
mainly include dynamic programming (DP), Monte Carlo
(MC), and temporal difference (TD). DP is suitable for
solving model-based reinforcement learning problems,
while model-free reinforcement learning problems need to
be solved by MC or TD. MC does not make full use of the
MDP structure of reinforcement learning, which makes the
efficiency low. TD combines the ideas of DP and MC, which
can achieve more efficiency in model-free learning [20].

,e TD defines that the current state action value
function is estimated by the state action value function at the
next moment:

Q
π
(s, a) � Er,st+1 ∼E⌊ r st, at(  + cEat+1 ∼π Qπ st+1, at+1(   ⌋.

(14)

,e error of temporal difference can be defined as

δt � rt + cQ
π

st+1, at+1(  − Q
π
(s, a). (15)

When approximating the value function of state and
action by the neural network, the value function is a function
about parameter θ; then, the loss function of the network can
be defined as

L(θ) � Es∼ρ,a∼π⌊ yt − Q st, at|θ( ( 
2

⌋, (16)

where

yt � rt + cQ st+1, at+1|θ( . (17)

3.2. PPO Algorithm. Since the traditional policy gradient
algorithm is greatly affected by the step size, the too big step
size will affect the final learning effect. In response to this

problem, the PPO algorithm, a new type of policy gradient
algorithm, is proposed by OpenAI. ,e PPO algorithm
proposes a new objective function that can be updated in
small batches through multiple training steps, thereby
solving the problem of step size selection in traditional
policy gradient algorithms [21–23].

,e optimization goal of reinforcement learning is to
maximize the reward. In the policy gradient algorithm, the
parameter θ of the objective function is updated as

L(θ) � E log π at|st; θ( At st, at(  , (18)

where At(st, at) is the superiority function under the current
policy:

At st, at(  � Qt st, at(  − Vt st( . (19)

,e parameter θ is updated by policy gradient algorithm
as follows:

θt+1 � θt + a∇θL θt( . (20)

,e PPO algorithm overcomes the problem that the
policy gradient algorithm is difficult to select an appropriate
step size, ensuring that the policy model is monotonically
improved during the optimization of the model. ,e ob-
jective function is modified as

L(θ) � E
πθ at|st( 

πθold at|st( 
At . (21)

,e Kullback–Leibler (KL) divergence of the old and
new policies satisfies the following constraints:

E⌊ KL⌊ πθold at|st( , πθ at|st(  ⌋ ⌋≤ δ, (22)

where KL divergence is used to measure the difference
degree between the two distributions. ,e larger the value is,
the greater the difference between the two distributions is,
which can stabilize the training process.

,e constraint term is introduced into the objective
function as a penalty term in the PPO algorithm; that is, the
objective function is

L(θ) � E
πθ at|st( 

πθold at|st( 
At − βKL πθold at|st( , πθ at|st(   .

(23)

It is found that the truncation function clip instead of KL
divergence is used to constrain rt(θ) to prevent the large
difference between the old and new policies reach better
results. ,e ratio of the old and new policies is

rt(θ)
πθ at|st( 

πθold at|st( 
. (24)

,e objective function is

L(θ) � E min rt(θ)At, clip rt(θ), 1 − ε, 1 + ε( At(  , (25)

where ε is a hyperparameter. ,e PPO algorithm avoids the
mutation of policy by truncation function or limited KL
divergence and enhances the training effect in the process of
parameter updating.

agent

environment

action
reward

observation

Figure 2: ,e framework of reinforcement learning.
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3.3. Controller Design Based on PPO Algorithm for OTSG.
PID control algorithm is widely used in industrial
control because of its simple structure and good robustness.
,e control parameters of traditional PID are largely ob-
tained according to experience. However, due to the un-
certainties in practical application, PID control is often
difficult to achieve the optimal. In order to solve the above
problem, this study proposes a PID controller for OTSG
based on the PPO algorithm, as shown in Figure 3.

,e double-layer controller proposed in this study adopts
a two-stage control structure, and the bottom controller
adopts the PID method; it directly regulates the OTSG feed
water valve and then controls the steam pressure. ,e upper
controller adopts the intelligent agent controller based on the
PPO algorithm and is responsible for the online adjustment of
Kp,Ki, andKd of the PID controller. In the control process, the
bottom controller and the top controller work together to
adjust the control strategy in real time according to the state of
the system and realize the intelligent autonomous control.

,e whole control system can be divided into two layers;
the bottom layer is the PID controller; it directly regulates the
OTSG feed water valve to adjust the flow and then control the
steam pressure.,e top layer of the control system is the agent
which is based on PPO, which explores the optimal policy
for the PID controller through the interaction with the
environment. ,e agent receives states and rewards from
the environment and sends actions to the environment.
,e PPO algorithm is used as the learning method of the
agent in this study. PPO creates a replay buffer to store
historical experiences and then randomly sample tran-
sitions from it and feed those samples to update actor and
critic networks.,e replay buffer helps the agent to be able
to learn previous experiences and improve the efficiency
of sample utilization. Random sampling can break the
correlation between samples and make the learning
process of agents more stable.

PPO uses 3 neural networks, namely, actor-new net-
work, actor-old network, and critic network; the role of each
network is given below:

(1) Actor-new network: it selects an action according to
state s; the action is used to interact with the envi-
ronment (OTSG) to generate the next state s_ and
reward r

(2) Actor-old network: the parameters of the actor-old
network are periodically copied from the actor-new
network before each batch size step, which is to
prevent the update step too big

(3) Critic network: it is responsible for the iterative update
of critic network parameters and calculating the state
value function v, which represents the cumulative
discount returns when executing the current policy

,e pseudocode of PPO is given in Algorithm 1.
,e initialization parameters of the PID controller in the

bottom layer can be adjusted by Ziegler–Nichols law, and the
upper PPO algorithm adjusts PID parameters on this basis.
,e core of the PPO algorithm is to design appropriate state
and action space and reward function. ,e state space is the

representation of the environment, the action space is the
reasonable description of the action of the agent, and the
reward function can correctly evaluate the control effect of
PID parameter optimization.,e following sections describe
this in detail.

3.4. Closed-Loop Stability Analysis. ,e general PID control
system is linear, and its stability problem has been solved.
However, compared with the PID control system based on
reinforcement learning, since the PID parameters change
during the operation of the system, the system is nonlinear,
and its stability is affected. How to ensure the stability of the
system under the condition of parameter changes is a
problem to be considered in the design of the PID control
system based on reinforcement learning.

It can be seen from Figures 4–6 that the functional
relationship between the PID control and pressure of the
OTSG can be approximated as

A _x + Bx + C � Df, (26)

where A, B, C, and D are constant coefficients, x is pressure,
and f is feedwater flow.

,e feedwater flow is regulated by the PID controller:

f � Kpew + Kd _ew + Ki  ewdt, (27)

where ew is the difference between the pressure and the set
point and Kp, Ki, and Kd are the input parameters of the
PID controller.

Substitute (27) into (26):

A _x + Bx + C � DKpew + DKd _ew + DKi  ewdt. (28)

Considering that a certain equilibrium state is the initial
state of the system after the system is disturbed:

−A _ew − Bew + C � DKpew + DKd _ew + DKi ewdt,

or _ew + a1ew + a0ewdt � C′,

(29)

where a1 � (Dkp + B)/(Dkd + A), a0 � Dki/(Dkd + A), and
C′ � C/(Dkd + A).

Set x1(t) �  ewdt, x2(t) � ew; then, equation (29) can be
expressed as the equation of state:

_x1

_x2
  �

0 1

−a0 −a1
 

x1

x2
  +

0

1
 C′. (30)

For the system represented by equation (30), the nec-
essary and sufficient conditions for its stability are

a1 > 0,

a0 > 0.
 (31)

,en,

ki > 0,

Dkp + B> 0.
 (32)
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(1) Input: actor-new network πθ(at|st), actor-old network πθold(at|st)

(2) Initial Replay Buffer R
(3) for k� 1, N do
(4) for t� 1, T do
(5) Execute actor-new network πθ(at|st) in the environment to obtain the data (s, a, r, s_).
(6) R.save (s, a, r, s_)
(7) end for
(8) for t� 1, T do
(9) Compute advantage estimates based on the critic network
(10) end for
(11) for j� 1, K do
(12) R.sample (M)
(13) Update parameter θ according to the target function Lclip or Lclip

(14) end for
(15) θold⟵ θ
(16) end for

ALGORITHM 1: PPO.

Kp Ki Kd

a

PID

feedwater flow

Agent

Actor-new
Action

Update

Output layerHidden layers

Copy
parameters

Actor-old

Input layer

Output layerHidden layersInput layer

Output layer

Critic
Update

Adv

Optimizer

Hidden layersInput layer

Environment
(OTSG)

State

Reward function

Reward

Sampling
batch

Replay
buffer

(s,a,r,s_)

r

s

s

s_

Figure 3: ,e framework of control structure based on reinforcement learning.
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,e value kd thus seen has no effect on the stability of the
equation. Sufficient conditions for system stability can be
expressed as

kp > −
B

D
,

ki > 0,

kd > 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(33)

For the control system proposed above, the controller
will adjust PID parameters online according to the system
operation. Real-time parameters are represented by

kp � kp0 + Δkp,

ki � ki0 + Δki,

kd � kd0 + Δkd,

⎧⎪⎪⎨

⎪⎪⎩
(34)

where kp0, ki0, and kd0 are the initial values of PID pa-
rameters and Δkp,Δki, andΔkd are the adjustment.

Substitute (34) into (33); then,

Δkp > − kp0 −
B

D
,

Δki > − ki0,

Δkd > − kd0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(35)

It can be seen that the stability of the system can be
guaranteed as long as the regulation quantity of the con-
trolled system is limited to a certain range.

4. Experiments and Results

OTSG simulation model is built with Matlab, the rein-
forcement learning control algorithm program is developed

with Python, and the data exchange between Python pro-
gram and Matlab simulation model through Socket com-
munication. ,e simulation experiment and performance
analysis of the OTSG pressure control is carried out to verify
the effectiveness of the above scheme.

4.1. Design of State Space. According to the structure of the
steam generator, the water volume in the secondary loop of
the OTSG is small. When the load changes, the steam
pressure is easy to fluctuate. If the water supply cannot keep
up with the pace of changes at this time, equipment in the
secondary loop will have an impact. ,erefore, in order to
represent the dynamic characteristic of the OTSG and ad-
vantageous for the observation, we choose the steam pres-
sure as the state space; therefore, this study selects the
parameters of state space including the steam generator
outlet pressure, the current pressure deviation e(t) (devia-
tion between the current outlet pressure and set pressure),
and the deviation value in last time e(t − 1).

4.2. Design of Action Space

4.2.1. Parameter Sensitivity Analysis. Before selecting the
action space and formulating the control strategy, the
sensitivity analysis of the control parameters to the dynamic
characteristics of the OTSG is carried out. Directly take the
PID controller parameters as the main control parameters.
Analyze the relationship between the parameters P, I,D, and
the OTSG pressure. ,e research is set up as three exper-
iments of power reduction, two control parameters are fixed,
respectively, and the other is adjusted to analyze the dynamic
characteristics of the OTSG.

,e increase of P makes the system responsive, the
adjustment speed is faster, and the steady-state error can be
reduced. As can be seen from Figure 4 that if the P gets too
large, the overshoot will increase and the adjustment time
will lengthen and too large P will even make the closed-loop
system unstable.

,e integral function of the controller is set up to eliminate
the redundancy of the control system. As long as the deviation
exists, the output of the integrating control will change; that is,
the integration will always work, and the integration will stop
only if the deviation does not exist. From Figure 5, we can see
that if the integration time is small, the integration speed is
large and the integration effect is strong. Conversely, the
integration time is large, the integration effect is weak.

,e output variation of differential action is proportional
to the differential time and the speed of deviation change and
has nothing to do with the deviation.,e greater the speed of
deviation change, the longer the differential time and then
the greater the output variation of differential action. Fig-
ure 6 shows that proper differential control can reduce
overshoot and increase system stability.

4.2.2. Design of Action Space. According to the above
analysis results, PID control parameters are designed as the
action space of the agent, and the dimension is 3; that is,

4.6

4.4

4.2

4.0

3.8

M
pa

3.6

3.4

3.2

3.0
-50 0 50 100 150 200

t (s)
250 300 350 400

P = 0.05

P = 1
P = 0.5

P = 6
P = 10

Figure 4: ,e changes of pressure at different P when I and D are
fixed.
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action � [Kp, Ki, Kd], and the range of the set values are
Kp � [0, 10], Ki � [0, 0.5], and Kd � [0, 0.5].

4.3. Design of Reward Function. ,e design of the reward
function is one of the core problems of the reinforcement
learning algorithm, which directly determines whether an
agent can achieve the expected goal. ,e primary problem
faced by the design of the reward function is the sparse reward
function.,e agent only gets a reward when reaches the target
value. ,is sparse reward function is the most common kind
of reward, but it often makes the algorithm difficult to
converge. ,e solution is usually to use reward shaping; that
is, corresponding rewards are given at each step while

approaching the goal instead of giving the final reward only
when the episode is terminated. Aiming at the goal of pressure
control of the OTSG, this study makes a comparison between
the sparse reward and reward-shaping functions:

(1) Sparse reward: in each episode, the reward value r is
obtained only when the pressure reaches the set-
point; otherwise, the reward is 0:

rt �
0, if |e|≥ 0.01,

r, if |e|< 0.01.
 (36)

(2) Reward shaping: in each episode, the distance be-
tween the pressure and the set value is regarded as
the punishment item at each step. After reaching the
target, reward 1 can be given:

rt �
−abs(e), if |e|≥ 0.01,

1, if |e|< 0.01.
 (37)

After training and testing of the above two reward
functions, the training effect diagrams are as follows.

,e horizontal axis represents the number of training
episodes, and the vertical axis represents the cumulative
rewards during the whole episode. It can be seen from
Figure 7 that the agent does not obtain steadily increasing
rewards through training; that is, the training with sparse
rewards does not converge and does not achieve the ex-
pected effect. ,is is because it is difficult for the agent to
achieve the target state by random actions, and thus, it is
difficult to get the final reward.

In Figure 8, it can be seen that more reward settings of
reward-shaping function are used to guide the agent, and the
agent can search for the optimal action according to the
feedback reward value in each step, that is, PID parameter, so
that the action with high reward value can be selected more
quickly after training. ,erefore, the design of the reward
function determines the convergence ability of the rein-
forcement learning algorithm.
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Figure 7: Training effect of sparse reward function.
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4.4. Design of Algorithm Parameter. PPO algorithm has
many hyperparameters and is sensitive to the parameter
setting. Settings for PPO algorithm parameters are divided into
two parts: parameter settings of neural network and hyper-
parameter settings of the algorithm. In order to explore the
influence of different parameters on the training effect, this study
has carried out several experiments on parameter selection.

4.4.1. Settings of Neural Network Parameters. Because the
PPO algorithm is based on the framework of Actor-Critic, in
which the Actor uses the policy function to generate actions
and Critic uses the value function to evaluate the performance
of the Actor, the algorithm sets two neural networks.,erefore,
the parameters of the two neural networks need to be designed.
On the basis of other fixed parameters, the study gives some
examples in the setting of Critic network parameters. ,e

comparison curve of the cumulative reward with the different
numbers of neurons in hidden layers is shown in Figure 9.,e
training with 20 neurons converges, but when the number of
neurons increases to 50, the reward value curve first gradually
increases and then drops off in a cliff, and the training effect
deteriorates sharply. ,e reason is that gradient explosion
occurs with more neurons, leading to a poor training effect.

,erefore, after repeated training and verification, the
settings of the neural network parameters in this study are
shown in Table 1.

4.4.2. Settings for Hyperparameters of PPO Algorithm.
Hyperparameters refer to the parameters’ set before the
training starts. In the hyperparameter design of the PPO
algorithm, the learning rate of the critic neural network is
selected as the representative to illustrate the importance of
the parameter set to the algorithm. ,e learning rate of the
neural networks will affect the training time and stability.

As can be seen from Figure 10, the comparison of curves
with the learning rates of 0.0001 and 0.0002 shows that the
learning rate has no significant influence on the final training
effect, but the curve with a learning rate of 0.0002 reaches the
stable maximum reward value faster than the curve with a
learning rate of 0.0001, and the stability is relatively strong.
It can be seen that the higher the learning rate is, the faster
the agent can learn “knowledge.” However, comparing the
curves with a learning rate of 0.0005, it can be found that the
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Table 1: Settings of neural network parameter.

Parameter Actor Critic
Number of neurons in the input layer 3 3
Number of neurons in the hidden layer 20 20
Number of neurons in the output layer 3 1
Activation function Tanh&softpus Relu
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Figure 10: Training effects of critic with different learning rates.
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greater the learning rate, the weaker the stability of training,
and there is even a rapid deterioration coming out on
training, so the learning rate should not be too large.

,erefore, the parameters of the PPO algorithm selected
in this study are as follows (Table 2).

4.5. Comparative Analysis of Simulation Results. In order to
test the performance of the trained controller, this study carries
out transient tests, anti-interference tests, and tracking tests for
OTSG and compares the control effect of the controller with
PID and fuzzy PID controllers (FPID), respectively.

4.5.1. Transient Test. In order to test the performance of the
trained proposed controller based on the PPO algorithm, the
reducing and increasing load tests are carried out,
respectively.

When the load is reduced from 100% to 70%, the steam
outlet valve opening step decreases and the steam pressure
rises. When the valve opening is stable, the feedwater flow

Table 2: Settings of hyperparameter for PPO algorithm.

Parameter Value
Learning rate of actor network 0.0001
Learning rate of critic network 0.0002
Discount factor 0.9
Truncation constant 0.2
Batch size 25
Max episode 200
Max step 250
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Figure 11: Simulation curve of steam pressure from 100%FP to
70%FP.
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Figure 12: Simulation curve of steam pressure from 70%FP to
100%FP.

Table 3: Performance indicators of the three algorithms when the
load decreases from 100% to 70%.

Algorithm Steady time (s) Overshoot (%)
PID 148 26.9838
FPID 116 29.0041
PPO 124 26.7704

Table 4: Performance indicators of the three algorithms when the
load increases from 70% to 100%.

Algorithm Steady time (s) Overshoot (%)
PID 106 39.3051
FPID 87 38.0808
PPO 61 37.982
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Figure 13: Simulation curve of steam pressure with feed water
temperature step up to 80°C.
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gradually decreases with the valve opening changes and the
steam pressure drops and tends to be stable. Figure 11 shows
the steam pressure change curve when the load decreases
from 100% to 70% under the two control algorithms. It can
be seen that the controller with PPO algorithms not only has
a smaller overshoot than the PID controller but also sta-
bilizes faster. It can be concluded from Table 3 that, com-
pared with FPID, FPID stabilization time is faster, but the
overshoot 29.0041% is larger than PID and PPO. Figure 12
and Table 4 show the simulation curve of steam pressure
when the load increases from 70% to 100%. PPO control not
only reduces the overshoot but also improves the response
speed of the system.

4.5.2. Anti-Interference Test. In order to verify the capability
of the proposed controller, the feedwater temperature dis-
turbance test is carried out. In the test process, the step
disturbance of feed water temperature was added at 50 s.,e
test results are shown in Figures 10–13 and Tables 5 and 6. It
can be seen from the figures that the three methods have
excellent anti-interference ability and can quickly restore the
water level to its normal state (Figure 14).

When the feedwater temperature rises, the steam
pressure in the secondary loop rises rapidly, and the heat
absorption from the pipe wall increases, so the pressure
gradually decreases. When the feedwater temperature drops,
the steam pressure in the secondary loop decreases rapidly,
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Table 5: Performance indicators of the three algorithms when the
feedwater temperature step rises to 80°C.

Algorithm Steady time (s) Overshoot (%)
PID 100 0.4582
FPID 71 0.445
PPO 50 0.4321

Table 6: Performance indicators of the three algorithms when the
feedwater temperature steps down to 50°C.

Algorithm Steady time (s) Overshoot (%)
PID 87 0.5429
FPID 74 0.5254
PPO 45 0.508

Table 7: Performance indicators of the three algorithms when set
point steps up from 3.14MPa to 3.15MPa.

Algorithm Steady time (s) Overshoot (%)
PID 92 0.3468
FPID 145 0.318471
PPO 81 0.3171
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and its heat absorption from the pipe wall also drops, so the
pressure gradually increases. Figures 13 and 15, respectively,
show the curve of steam pressure change when the feedwater
temperature step rises to 80°C and the steep drops to 50°C.
,e results show that the controller designed in this study
has some advantages over the PID and FPID controllers in
terms of response time, overshoot, and control error. From
the simulation results, the controller based on reinforcement
learning can well guarantee the high stability of the OTSG
(Figure 16 and Tables 5–6).

4.5.3. Tracking Test. In order to test the response of the
controller under step function, the pressure set point steps
up from 3.14MPa to 3.15MPa at 10 s during the test. Fig-
ure 17 shows a comparison of the three methods at the full
power level. ,e three methods can effectively adjust the

pressure. Compared with the other two methods, the pro-
posed method has a faster response speed and lower
overshoot (Table 7 and Figure 18).

5. Conclusions

In this study, a PPO algorithm of reinforcement learning is
applied for the control of OTSG. A double-layer pressure
control structure of OTSG is designed in this study, which
realizes the parameter adjustment policy of online learning
in the upper layer and the adaptive adjustment of parameters
of the PID controller in the bottom layer. ,e results of
simulations show that the controller based on the PPO al-
gorithm proposed in this study can realize the self-tuning of
PID parameters under all kinds of working conditions and
has the advantages of fast response speed and strong
adaptive ability.

However, our method is not perfect and there are some
limitations. First, the convergence of the algorithm depends
on the setting of the reward function. ,e reward function
needs to be set artificially according to different objects, and
the algorithm will not be able to converge with an unrea-
sonable reward function. Second, the hyperparameters of the
PPO algorithm need to be regulated relying on experience or
trial and error to get better performance. In future work, we
need to improve the portability of the algorithm when
applying our method to practical work so that the algorithm
performs equally well in different situations.

Data Availability

,e design data of the once-through steam generator used to
support the findings of this study were supplied by China
Nuclear Power Operation Technology Corporation under
license and so cannot be made freely available. Requests for
access to these data should be made to the primary author.
And the parameters used in the algorithm proposed are
listed in detail within the article.
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