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�e main transformer is critical equipment for economically generating electricity in nuclear power plants (NPPs). Dissolved gas
analysis (DGA) is an e�ective means of monitoring the transformer condition, and its parameters can re�ect the transformer
operating condition. �is study introduces a framework for main transformer predictive-based maintenance management. A
condition prediction method based on the online support vector machine (SVM) regression model is proposed, with the input
data being preprocessed using the information granulation method, and the parameters of the model are optimized using the
particle swarm optimization (PSO) algorithm. Using DGA data from the NPP data acquisition system, two experiments are
designed to verify the trend tracing and prediction envelope ability of main transformers installed in NPPs with di�erent operating
ages of the proposed model. Finally, how to use this framework to bene�t the maintenance plan of the main transformer
is summarized.

1. Introduction

�e development of the nuclear industry has slowed or even
stalled for many years [1]. Without the breakthrough of new
technology, an important issue to promote and even
maintain the development of nuclear power is to reduce the
operating and maintenance costs on the premise of ensuring
safe operation reliability [2].

�e main transformer is an important equipment to
generate power in a nuclear power plant (NPP), which is
directly connected to generators. It increases the voltage
from the generator output voltage to the highest trans-
mission voltage to supply electricity to the transmission grid,
while the generator is disconnected; it is used to power
auxiliary systems from the grid [3]. Compared to power
transformers in other industries, main transformers are
generally operated at a rated temperature and therefore age
more quickly, as they are usually operated continuously at a
constant load to produce more electricity [4].

Due to its importance in generating electricity and
vulnerability, NPPs generally have strict and even conser-
vative maintenance management for the main transformer.

�e management of main transformers is mainly based on
preventive maintenance, supplemented by certain corrective
maintenance [5]. In preventive maintenance, there are strict
rules and standards for periodic inspection, test, inspection,
and monitoring. To some extent, regular maintenance
means redundancy. Redundant maintenance not only in-
creases the cost but may even cause damage to equipment,
and the reliability of equipment is reduced due to excessive
maintenance [6].

Gases in oil-immersed transformers are proven to be a
useful tool to identify fault types including thermal and
electrical disturbances [7]. According to the criteria of the
IEC/IEEE standards, dissolved gas analysis (DGA) techni-
ques are commonly used to detect internal faults in
uninterrupted power services. Available gases from chroma-
tographic analysis of the insulation oil could contain con-
centrations of dissolved carbon monoxide (CO), carbon
dioxide (CO2), nitrogen (N2), hydrogen (H2), methane (CH4),
acetylene (C2H2), ethylene (C2H2), and ethane (C2H6).
Composition of the dissolved gases, rates of generation, and
speci�c content ratios can be used to indicate the conditions of
the transformers [8].�ere are many recognized dissolved gas
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analysis techniques for judging themain transformer based on
DGAmonitoring. In particular, these diagnostic technologies
integrate the latesthardwareandsoftwarearchitectures andget
functional modules adapted to new scenarios. A new inte-
gration of an Internet of +ings (IoT) architecture with deep
learning against cyberattacks for online monitoring of the
power transformer status help improve the guarantee of the
physical layer, through the combination of approved analysis
methods to obtain more accurate interpretation [9]. +e new
optimization model optimizes feature input and diagnostic
accuracy [10]; the diagnosis results of recognized dissolved gas
analysis techniques are integrated towards precise interpre-
tation [11].

+e characteristics of dissolved gas can be used as an
effective indicator of the state of nuclear power main
transformer, and the reasonable predicted value of dissolved
gas can be used as an effective basis for judging the future
state of nuclear power main transformer. In general, most
forecasting methods use historical measurements to build
prediction models. Scholars hope to find suitable prediction
methods to improve prediction accuracy. Previous studies
mainly focus on the following aspects: prediction of
transformer dissolved gas concentration by combining the
regression algorithm and data processing techniques like
wavelet [12, 13], prediction of specific parameters related to
gas concentration after correlation analysis or principal
component analysis [14–16], and multiple prediction
methods are combined to form a combined prediction
model or a multiobjective optimization problem [17, 18]. In
addition, there are many interesting applications of machine
learning methods in the field of time series data prediction
[19, 20]. +ese intelligent methods mainly consider im-
proving prediction accuracy, as given in Table 1. In this
study, it is considered that in the actual operation of the
nuclear power plant transformer, the overhaul cycle is taken
as the decision point of the maintenance scheme, and it is
more important to reliably predict the gas concentration in
the subsequent cycle than simply improving the gas con-
centration at the next monitoring point.

Consequently, the use of data stored in NPP’s super-
visory control and data acquisition system (SCADA) makes
it possible to construct a system-wide monitoring system
and help decide maintenance strategies relating to faults that
can be indicated by DGA techniques [21, 22].

SVM, which is used as a regression model, adopts the
principle of structural risk minimization, can effectively
solve regression problems with limited samples, nonlinear
and high dimensions, and has strong generalization ability
[23, 24].

+is study proposes an SVM-based condition prediction
approach using a nonlinear autoregressive network of SVM
to estimate the condition of the main transformer. +e NPP
SCADA system collects DGA data. DGA data can be pre-
processed by the information granulated fuzzy method. +e
SVM prediction model can be trained with these processed
DGA data. +e trained SVM model is used to predict the
dissolved gases of the high value of the main transformer for
the next few outage cycles. +e PSO algorithm is used to
optimize the parameters of the SVM regression model. +e

predicted value is compared with the actual condition value
recorded in the system.

+e structure of this study is as follows: the second
section presents the framework and introduces the pre-
dictive maintenance strategy for the main transformer
based on SVM. +e third section introduces the prediction
model based on SVM in detail. +e fourth section intro-
duces the case study, and the fifth section summarizes the
conclusion.

2. Predictive-Based Maintenance
Management Framework

+e disadvantage of periodic health evaluation is that the
time interval between two consecutive maintenance activ-
ities is not always sufficient to identify emerging issues prior
to failure, while frequent periodic maintenance results in the
maintenance of healthy transformer components, increasing
maintenance costs and the possibility of human error.
Critical components in the main transformer may have
regular maintenance with relatively high frequency, which
may lead to excessive maintenance, while the less important
component may have regular maintenance with too low
frequency, which may bring more corrective maintenance.

Maintenance management expresses a strategy to find
the balance between the cost of maintenance activities and
the benefits of the increased asset value.

In this study, an adaptive maintenance scheduler (AMS)
framework is proposed for certain maintenance manage-
ment of main transformers. +e AMS framework considers
the time window of an outage interval, which exists between
an indication of impeding failure from DGA inspection and
the eventual faults. In the framework, the history data
extracted from SCADA are preprocessed by the information
granulated method; new sampling data are updated into the
data preprocessing module only impacting the latest cycle.
+en, granulated data are obtained to train the SVM re-
gression model for real-time update of the prediction model.
+e output of the predictionmodel would be the basis for the
experts’ diagnosis module, which also provides decision-
making support to maintenance personnel. +e overall logic
of the AMS framework is shown in Figure 1.

According to the AMS framework and the SVM-based
condition prediction approach, it would help the mainte-
nance personnel to decide the maintenance plan. +e di-
agnostic expert system can receive the prediction of the DGA
parameter values, judging from the DGA characterization,
to find any anomalies or faults that could occur in the main
transformer in the next fuel duration. +ese insights can be
passed on to maintenance decision makers to decide the
maintenance program for the next outage, which may in-
volve some additional tests, parts/component replacement,
and disassembly inspection. +us, the execution frequency
of certain programs can be increased or decreased during
continuous validation.

As longer the transformer operates, according to the
monitoring data generated and the online trained SVM re-
gression network of the individual transformer, the network
structurewouldbemore adaptive for eachunique transformer

2 Science and Technology of Nuclear Installations



to adapt to the differences generated in thedesign, installation,
and operation of the individual transformers.

3. Information Granulated SVM-Based
Condition Prediction Approach

According to the main transformer preventive maintenance
management framework introduced in the second para-
graph, how to use historical data and newly sampled data to
predict the future state is very important, which is also the
role of the method proposed in this study. +e flowchart of
the information granulated SVM-based condition predic-
tion approach is shown in Figure 2. Historical data stored in
the SCADA system are preprocessed to obtain representative
data of each cycle. +en, determine whether the new

sampling data are in a new cycle, if it is, preprocess directly; if
not, update the last cycle dataset of historical data and then
preprocess the updated dataset. +e preprocessed data are
used to train the SVM regression model.

3.1. Information Granulation Method. +e information
granulation method was first introduced into time series
mining and explored the nature and mining algorithm of
time series by studying different granularity divisions of time
series on the time axis [25].

+e timeline information granulation of time series is
divided into several subsequences, according to the changing

Table 1: Comparison of prediction methods of typical transformer dissolved gas and sequence data in recent years.

Method Dataset Features

ANN+wavelet [12] A GE transformer located in Brazil, 176 samples
in 7 months

Robustness, improved precision
prediction; the need for retraining for new

measurements.

LSSVM+wavelet + PSO [13]
Data from several electric power companies in
China; 11 samples in 3 months for case 1; 7

samples in 2 months for case 2

With limited samples, performs better
generalization performance and stable

forecasting capability

LSSVM+GRA+EMD+GWO [14]
A transformer in the State Grid Corporation of
China sampled every 3 days during 9 January

2012 and 3 July 2012

Improved prediction accuracy, strong
generalization ability, and robustness.

KPCA+FFOA+GRNN [15]
A substation installed in Shandong Province,
daily sampled data from October 2010 to May

2012

Improved prediction accuracy, the need
for retraining for new measurements.

GRA+GP [16] 8 different datasets between 1992 and 2011 for a
transformer

Removing irrelevant and redundant
features, improved prediction accuracy.

RBFNN/BPNN/LSSVM+GM [17]
7 samples in 7 months for case 1; 8 samples in 8
months for case 2; 10 samples in 10 months for

case 3 for a transformer
Improved accuracy and stability

SVR/RT/GMDH/RBF/ANFIS/ESN/
KRIDGE/CFNN/FFNN [18] 1639 samples in 6 months in a power transformer Improved prediction accuracy and wide

adaptability

HIFI [19] Solar irradiation dataset Improved precision, strong generalization
performance

SVM-based distribution system [20] Photovoltaic unit dataset Improved accuracy and time-saving

SVM based Condition 
predictive Block

Adaptive SVM regression 
model training

Pre-processing module by
information granulated method

Historical data SCADA

New sample

Diagnosis expert system 

Management decision

Figure 1: AMS framework for main transformer maintenance
management.

Historical data

SVM model

Optimizing parametersTraining SVM model

Pre-processing by
information granulation

New sampling data

Is a new 
cycle

Update the
last cycle

Prediction output

Figure 2: Information granulated SVM-based condition predic-
tion process.
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characteristics of the time series in a certain way, and the
subseries in each time window is regarded as an information
granulation. +en, the subseries in the time window is
described effectively.

+e choice of time window width is an important factor
affecting information granulation. Another is the infor-
mation granulation membership function. Membership
function reflects the rules of information granulation for the
original time series data.

+e main task of fuzzification is to establish a fuzzy
particle P, in which the fuzzy particle is established
according to the fuzzy set G that can describe the original
information, and its essence is to determine the membership
function A of G, where A� P(G).

Commonly used fuzzy particles have the following basic
forms: triangle, Gaussian, and parabolic [26].

+e information granulation method is applied to pre-
processed monitored dissolved gas concentration values,
which can reduce the real-time calculation amount of the
system. Moreover, the predicted values formed after the
processing can better represent the state of the main
transformer in the next fueling cycle.

3.2. SVM Regression. +e SVM regression model can be
described as follows: setting training dataset as
(x1, y1), (x2, y2), . . . , (xl, yl), in which xi ∈ RN is a vector of
N dimensions, yi ∈ R

+e model M(x) (or the learning machine) is found
through training and learning to satisfy yi � M(xi), for
training sample set and prediction dataset: xl+1, xl+2, . . . , xm.

+e model can also obtain a satisfactory corresponding
output value yi, finding an optimal functional relation y �

f(x) reflecting sample data. Optimal here refers to the “best”
(minimum cumulative error) fitting of the sample dataset by
the function relation calculated according to a specified error
function.

+e problem of finding the optimal regression hyper-
plane is transformed into solving the following quadratic
convex programming problem:

min
1
2
‖ω‖

2
+ C 

i

ξi + ξ∗i( . (1)

Constraint can be described as follows.

yi − ω · xi(  − b≤ ε + ξi, (2)

ω · xi(  + b − yi ≤ ε + ξ∗i , (3)

where ξi, ξ
∗
i ≥ 0.

By mapping, the nonlinear regression function deter-
mined by the SVM method is described as

f(x) � 
L

i�1
αi − α∗i( K x, xi(  + b, (4)

where K(x, xi) is the kernel function, and αi − α∗i and b are
the parameters to determine the optimal hyperplane [27].

+e weights would be obtained by training the SVM
regression model with preprocessed data described in Sec-
tion 3.1.

3.3. Optimization Method. +e effect of SVM is mainly
related to the kernel function and the penalty parameter. To
get the best fitting function, we need to optimize the pa-
rameters. +e grid search [28], genetic algorithm [29], and
particle swarm optimization are regular methods to search
for optimal solvers in a complex space of the SVM model
[30].

PSO is an evolutionary computational algorithm to
solve nonlinear optimization problems. In PSO, a number
of simple entities, called particles, are placed in the search
space for a problem or function, and each evaluates the
objective function at its current location. Each particle then
determines its movement through the search space by
combining some aspects of the history of its own current
and best locations with those of one or more members of
the swarm, with some random perturbations. +e next
iteration occurs after all particles have been moved.
Eventually, the swarm as a whole, like a flock of birds
collectively foraging for food, is likely to move close to an
optimum of the fitness function [31]. Formula 5 denotes the
moving direction of particle swarm, and formula 6 denotes
the example position of iterative update after moving.
Particle swarm optimization would be used to optimize the
parameters in the SVM model. Each particle represented a
potential solution, including regularization parameter c
and kernel parameter a.

v
d
i (t + 1) � wv

d
i (t) + c1r(t) p

d
i (t) − x

d
i (t) 

+ c2r(t) p
d
g(t) − x

d
i (t) ,

(5)

x
d
i (t + 1) � x

d
i (t) + v

d
i (t + 1). (6)

In the training and testing process of the SVMmodel, its
goal is to minimize the deviation between the real value and
the predicted value of the test sample. +erefore, the fitness
function can be defined as

Fitness �
1
k



k

i�1

1
m



m

j�1
f xij  − yij 

2
. (7)

4. Experiment and Analysis

In order to satisfy the decision support process of NPP
main transformer maintenance management, the AMS
framework and the proposed SVM-based condition
prediction approach are applied. First, the application
data of the algorithm are introduced. Two experiments
were designed based on the actual operating data. +e first
experiment applied the SVM model optimized by PSO to
the data after information granulation, which had good
tracking performance and fast convergence performance.
+e second test is used to verify that the prediction
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method proposed in this study has a good envelope ability
for the performance of the main transformer of nuclear
power plant with different operating periods in the next
cycle.

4.1. 1e Main Transformer Description. A nuclear power
plant generator, 24 kV voltage through the main transformer
increased to 500 kV, and connected to the 500 kV power grid,
themain transformer is three single-phase transformers, each
phase capacity is 410MVA. DGA is sampled once every 3
months regularly. Sampling intervals can sometimes be un-
even, depending on condition values or work schedules. 158
time-marked sampling data from the transformer were col-
lected in this study, where sampled time spans 13 operating
cycles, since the service reactorwas connected to thegrid,with
the longest time span of 5387 days. +e dataset is shown in
Figure 3.

DGA data can be information granulated considering
outage cycles to generalize the high and median values of
features for each outage cycle. +e SVM prediction model
can be trained with these processed feature data. +e
trained SVM model is used to predict the DGA high value
of the main transformer in the next outage cycle, and the
condition is compared with the actual condition value
recorded in the system. +e PSO optimization algorithm
will be used to optimize the parameters of the SVM pre-
diction model.

4.2. SVM-Based Model. +e time granularity (the width of
the time window) used in this study is an outage period that
is not evenly distributed in the absolute sense. +e data
should be divided according to the characteristics of the
sampling interval after learning. +e best practice is manual
assisted marking.

4.3. Experiment 1 (Middle Age). +is experiment is designed
to test the prediction ability of the proposed method on the
condition of the main transformer of the nuclear power
plant which has been in operation in the middle age under
strict and conservative maintenance management.

+is experiment aims to test the prediction ability of the
proposed method for the main transformer operating state of
nuclear power plant, which is operated under strict and
conservative maintenance management. In this experiment,
theproposedSVM-basedmodel applied todatapreprocessing,
parameter optimization, regression prediction, and prediction
accuracy is analysed.

4.3.1. Features Preprocessing. Figure 3 shows the phase A
DGAmonitoring value of a main transformer, where abscissa
is the number of days for which the nuclear power plant is
connected to the grid, and the ordinate is the concentration of
the monitored gas concentration, in μL/L PPM. +e title of
each subplot shows the corresponding gas, where TH is the
sum of hydrocarbon gases.+e concentration of CO and CO2
is obviously not of the same order as that for other gases.

+e data in Figure 3 indicate that the eight characteristic
gas concentrations are in a certain periodic distribution
during the period, that is, more than 5000 days from the day
that the nuclear power plant was connected to the grid,
which is related to the existing regular maintenance activ-
ities. Once several fuel cycles have been performed, the main
transformer is reexamined and these disposal activities can
significantly change the gas concentration. As shown in
Figure 3, the process of developing characteristic gas changes
can be missed due to a too long sampling interval, resulting
in abrupt changes in the data. When the triangle mem-
bership function is used for the estimation of high, median,
and low value estimations, the low value may cause the
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Figure 3: DGA inspection data of a main transformer phase A.
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phenomenon that the low value is negative, which is im-
possible in the actual situation. Here, the point with the low
value is negative and is set to zero.

+e appropriate membership function can help the
granulated information reasonably summarize the moni-
toring values in the time window. +e granulation effect of

each membership function shows that the granulation result
of the triangular membership function, as shown in Figure 4,
has a greater enveloping ability and a stronger ability to cover
extreme observation values that may be missing due to in-
sufficient sampling frequency. +is enveloping purpose is
consistent with the conservative safety view of nuclear power.
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4.3.2. SVM Regression Model. In the process of modelling
SVM regression, the training data are normalized and
processed to [100, 500], and reasonable c and g values are set
according to experience and operation time.

Figure 5 shows the comparison between the high value of
gas concentration processed by the information granulation
method and the predicted value of the SVM regression

model and the predicted value of the SVM regression model
optimized by grid search, which illustrates that the SVM
regression model has great deviation when applied for the
high value predication on granulated DGA data. Moreover,
an inappropriate optimization method is detrimental to
finding appropriate parameters, as the SVM model opti-
mized by grid search demonstrates.
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4.3.3. Optimized SVM Regression. +e parameters of the
SVM regression model were optimized by the genetic al-
gorithm (GA-SVM regression model) and the particle
swarm optimization algorithm (PSO-SVM regression
model). +e maximum number of evolutions is set as 200,
and the maximum number of populations is set as 20. +e
maximum range of parameters c and g is set as [0, 100].

Figure 6 shows the comparison between the high value of
the gas concentration processed by the information gran-
ulation method and the predicted value of the SVM re-
gression model optimized by the genetic algorithm and the
predicted value of the SVM regression model optimized by
PSO. +e parameter optimization of the SVM regression
model for DGA condition monitoring of the main trans-
former by the genetic algorithm and PSO has certain trend
tracking ability.

Figure 7 shows the deviation between the values pre-
dicted by GA-SVM and PSO-SVM and the high values

obtained by the information granulation method, indicating
that the two prediction models have good trend tracking
ability for historical data.

In Figures 8 and 9, the CO monitoring data are taken as
an example to illustrate the convergence process when GA
and PSO optimization algorithms are used, respectively.
Compared to GA-SVM, the PSO-SVM model converges to
the global optimal solution faster and is more effective for
parameter optimization than GA-SVM in the granulated
DGA predication application.

4.3.4. Model Prediction Accuracy Analysis. Figure 10 shows
the comparison of the predicted gas concentration values for
the 13th fuel cycle using the SVM, GA-SVM, and PSO-SVM
models with the actual monitored values, illustrating that
PSO-SVM has stronger and accurate envelope ability than
the SVM and GA-SVM models.
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+us, a PSO-SVM model is applied to predict the DGA
high value of the main transformer for maintenance plan
during outage.

4.4. Experiment 2 (NPP’s Different Ages). +is experiment
uses the historical data of the main transformer operation
condition described in experiment 1 to test the predictive
capacity of the PSO-SVM model to the operation condition
of the main transformer with different operating cycles for
the next few refueling periods.

When the reactor is operated at different ages, the
subsequent predictions of the SVM regressionmodel trained
on the running history data are shown. +e separation line
parallel to the y-axis in Figure 11 is the first sampling time
after refueling. +erefore, the envelope abilities of the results
predicted by the model for subsequent refueling cycles are
shown in Figure 11.

When the reactor enters a long operating life, sufficient
historical data can help themodelmake effective predictions that
can cover DGA conditions in subsequent refueling cycles even
when the main transformer is in a more complex environment.
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Figure 11: Actual value vs. predicted high value by PSO-SVM with different refueling cycle operation history for the main transformer
taking TH as an example.
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5. Conclusion

+is study presents a framework to predict and judge the
condition of the main transformer in a nuclear power plant,
including an online training SVM regression model to
predict the condition of the main transformer.

To carry out fast online training, a refueling cycle is used
as a time window with granulate information to preprocess
the monitoring data without affecting the condition
judgment.

+e PSO algorithm is used to optimize the parameters
of the SVM regression model in this study, which makes
the training model converge quickly and track the trend
well.

On the basis of the data preprocessing of information
granulation, a particle swarm optimization algorithm is used
to train the model and the model is used to predict the future
condition. In this framework, the prediction results can be
used as input into maintenance decisions during subsequent
refueling overhauls. +e practicability of the model is ver-
ified by experiment 1. In experiment 2, the tracking ability
and prediction ability of the model in reactors of different
ages are analysed and verified. Under the established
maintenance strategy, this model can provide the beneficial
support for the maintenance decision of the main trans-
former entering the mature operation reactor for a subse-
quent outage and support the establishment of the
maintenance management framework.

Although the monitored data applied in the model are
not frequent, the DGA analysis tool has been gradually
installed in the main transformers; the amount of moni-
toring data generated online in real time would be enor-
mous. Calculation efficiency obtained by applying the
distributed computing mode of the proposed information
granulation processing method to deal with online DGA
monitoring value initially would become a significant ad-
vantage. Meanwhile, the granulation datamay also lose some
internal indications that have not been found in the original
monitoring values, which may also affect the detection of
potential problems as a compromise.
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