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In this study, the monotonic effect of Ta2O5 and ZrO2 in some selected borotellurite glasses was investigated in terms of their
impact on gamma-ray-shielding competencies. Accordingly, three niobium-reinforced borotellurite glasses (S1 :
75TeO2 + 15B2O3 + 10Nb2O5, S2 : 75TeO2 + 15B2O3 + 9Nb2O5 + 1Ta2O5, and S3 : 75TeO2 + 15B2O3 + 8Nb2O5 + 1Ta2O5 + 1ZrO2)
were modelled in the general-purpose MCNPX Monte Carlo code. /ey have been defined as an attenuator sample between the
point isotropic gamma-ray source and the detector in terms of determining their attenuation coefficients. To verify theMC results,
attenuation coefficients were then compared with the Phy-X/PSD program data. Our findings clearly demonstrate that although
some behavioral changes occurred in the shielding qualities, modest improvements occurred in the attenuation properties
depending on the modifier variation and its magnitude. However, the replacement of 2% moles of Nb2O5 with 1% mole of Ta2O5
and 1% mole of ZrO2 provided significant improvements in both glass density and attenuation properties against gamma rays.
Finally, the HVL values of the S3 sample were compared with some glass- and concrete-shielding materials and the S3 sample was
reported for its outstanding properties. As a consequence of this investigation, it can be concluded that the indicated type of
additive to be added to borotellurite glasses will provide some advantages, particularly when used in radiation fields, by increasing
the shielding qualities moderately.

1. Introduction

Radiation is being used in a number of different ways in
medicine, including the generation of energy for diagnostic

and therapeutic applications. Because radiation cannot be
eliminated, protective steps should be taken to minimize its
harmful effects. Traditionally, lead (Pb) has the highest
atomic number among materials that have a wide usage area
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in the field of radiation shielding. On the other hand,
concrete with low cost, easy use, and good structural
properties can also be used as an excellent shielding material.
/e fact that concrete shielding is primarily utilized in
construction is far and by the most important disadvantage,
owing to its massive structure and weight. /e development
of novel glass materials for efficient radiation shielding
presents numerous untapped research opportunities. Ra-
diation protection material design is heavily reliant on
understanding the interactions between radiation and the
materials used to protect against it. Pb or products con-
taining Pb have a number of disadvantages, the most sig-
nificant of which being their toxicity and consequent risk to
users and the environment as well as difficulties faced during
the attenuation of low-energy X-ray photons [1–9]. As a
result, there has been an increase in recent years in the
consideration of lead-free glasses as gamma-ray-shielding
materials. /is is because many glass compositions have
good radiation-shielding capacities and have unique prop-
erties such as optical transparency, compatibility for
structural modifications as well as radiation absorption.
Researchers have been developing various types of radiation-
shielding glass for several decades, including borate-, sili-
cate-, phosphate-, boro-silicate-, and tellurite-based glass.
Indeed, the glass former has an impact on the overall
characteristics of the glass matrix. Researchers have been
particularly interested in the combination of borate and
tellurite, one of many glass-based oxides, due to the distinct
properties of these two oxides, such as low melting point,
nontoxicity, high refractive index, low phonon energy,
chemical and thermal stability, high density, transparency
over a wide spectral range, and corrosion resistance [10–20].
Various studies on the gamma-ray-shielding properties of

tellurite glasses have been conducted in the literature
[21–29]. In their pure form, tellurite glasses can crystallize
readily and are therefore unstable. Consequently, the ad-
dition of other network formers and modifiers, such as
alkaline-earth metals, alkaline metals, and transition metal
oxides, helps stabilize the system [30]. Transparency, ther-
mal stability, and optical transmittance are all enhanced by
TeO2 glasses containing a significant amount of B2O3 [31]. In
addition, using boron oxide is important in glass samples
where the thermal expansion coefficient is desired to be low.
On the other hand, it increases the resistance of the glass to
chemical effects and gives it the ability to refract light. On the
other hand, the fact that Nb2O5 and Ta2O5 have empty
D-orbitals increases the nonlinear optical response [32–36].
Finally, the ZrO2 modifier raises the thermal and chemical
stability of glass while also increasing viscosity, melting
temperature, and glass transition temperature [37–39].
Although several studies have shown the effect of glass-
forming oxides and modifier oxides on the structure and
properties of telluride glass, their radiation-shielding
properties remain a subject of research./e literature review
showed that no previous research has examined the impact
of Nb2O5 on borotellurite glasses’ absorption capacities
using Monte Carlo simulations for gamma rays. Conse-
quently, in this study, we present an analysis of the gamma-
ray radiation protection properties of Nb2O5 added to
borotellurite glass [40]. /e nominal compositions of the
investigated glass sample are shown below.]

(i) 75TeO2+15B2O3+10Nb2O5 (ρ� 4.88 g/cm3)
(ii) 75TeO2+15B2O3+9Nb2O5+1Ta2O5 (ρ� 4.93 g/cm3)
(iii) 75TeO2+15B2O3+8Nb2O5+1Ta2O5+1ZrO2

(ρ� 4.94 g/cm3)

Table 1: Code, chemical composition, elemental composition, and density (ρ) of the prepared glasses.

Code
Chemical composition wt.% Elemental composition wt.%

ρ (g/cm3)
TeO2 B2O3 Nb2O5 Ta2O5 ZrO2 Te O B Nb Ta Zr

S1 0.764 0.067 0.170 0 0 0.6106 0.2501 0.0207 0.1186 — — 4.88
S2 0.755 0.066 0.151 0.028 0 0.6038 0.2473 0.0205 0.1055 0.0228 — 4.93
S3 0.762 0.066 0.135 0.028 0.008 0.6093 0.2465 0.0207 0.0946 0.0230 0.0058 4.94
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Figure 1: 3D view of the MCNPX simulation setup utilized for gamma-ray transmission simulations (obtained from the MCNPX visual
editor visedX22S).
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Gamma radiation attenuation parameters like mass at-
tenuation coefficients, effective atomic numbers, and half-
value relay (HVL) were calculated using the MCNPX [41]
simulation code and the Phy-X/PSD program [42] with
varying photon energies in the current work. In subsequent
sections of this paper, the technical aspects as well as the
theoretical underpinnings of the current investigation will be
discussed in detail. /is work’s findings may be useful for
future uses of the glass types investigated for radiation

shielding in nuclear reactors. In addition, the findings may
be useful for a better understanding of borotellurite glasses
in the gamma-ray-shielding applications.

2. Materials and Methods

2.1. Glass Samples. In this study, the nuclear radiation-
shielding properties of Ta2O5- and ZrO2-doped niobium-
borotellurite glasses [40] were characterized in a wide energy
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Figure 2: Variation of glass densities (g/cm3).

Table 2: Comparison of the mass attenuation coefficients obtained from MCNPX and Phy-X/PSD.

Energy (MeV)
S1 S2 S3

MCNPX Phy-X/PSD MCNPX Phy-X/PSD MCNPX Phy-X/PSD
0.015 35.1255 34.6423 37.4591 37.0046 37.795 37.1618
0.02 23.9864 23.6582 24.0345 23.9379 24.1215 23.6609
0.03 8.1256 8.0697 8.1274 8.1670 8.1317 8.0690
0.04 14.1317 14.1262 14.2141 14.0600 14.2223 14.1082
0.05 7.8412 7.8360 7.8527 7.8016 7.8606 7.8291
0.06 4.8317 4.8281 4.8412 4.8087 4.8487 4.8258
0.08 2.2554 2.2522 2.3815 2.3787 2.3881 2.3879
0.10 1.2764 1.2642 1.3431 1.3363 1.3438 1.3413
0.15 0.4841 0.4809 0.5096 0.5058 0.5099 0.5074
0.20 0.2734 0.2704 0.2824 0.2820 0.2831 0.2828
0.30 0.1492 0.1474 0.1517 0.1514 0.1524 0.1516
0.40 0.1109 0.1091 0.1123 0.1110 0.1125 0.1111
0.50 0.0921 0.0909 0.0924 0.0920 0.0927 0.0920
0.60 0.0820 0.0800 0.0812 0.0807 0.0815 0.0807
0.80 0.0684 0.0669 0.0681 0.0672 0.0683 0.0672
1.00 0.0593 0.0587 0.0591 0.0589 0.0595 0.0589
1.50 0.0486 0.0472 0.0479 0.0472 0.0482 0.0472
2.00 0.0423 0.0414 0.0419 0.0415 0.0421 0.0415
3.00 0.0372 0.0361 0.0371 0.0362 0.0373 0.0362
4.00 0.0342 0.0338 0.0345 0.0340 0.0347 0.0340
5.00 0.0336 0.0329 0.0337 0.0330 0.0339 0.0330
6.00 0.0334 0.0325 0.0335 0.0327 0.0336 0.0327
8.00 0.0337 0.0327 0.0338 0.0330 0.0339 0.0330
10.00 0.0339 0.0335 0.0341 0.0337 0.0344 0.0338
15.00 0.0361 0.0359 0.0365 0.0362 0.0367 0.0362
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Figure 3: Variations of the linear attenuation coefficient (cm−1) with photon energy (MeV) for all S1–S3 glasses.
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Figure 4: Variations of the mass attenuation coefficient (cm2/g) with photon energy (MeV) for all S1–S3 glasses.
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Figure 5: Variations of the half-value layer (cm) with photon energy (MeV) for all S1–S3 glasses.
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Figure 6: Variations of the tenth value layer (cm) with photon energy (MeV) for all S1–S3 glasses.
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Figure 7: Variations of the mean free path (cm) with photon energy (MeV) for all S1–S3 glasses.
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Figure 8: Variations of the effective atomic number (Zeff) with photon energy (MeV) for all S1–S3 glasses.
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Figure 9: Variations of the effective electron density (Neff) with photon energy (MeV) for all S1–S3 glasses.
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Figure 10: Demonstrates the relationship between the energy and EBF of the S1 sample.

Science and Technology of Nuclear Installations 7



range (i.e., from 0.015MeV to 15MeV). Nb2O5 was replaced
with 1mol % Ta2O5 and 1mol % ZrO2 to evaluate the in-
fluence of modifier oxides. As a result, we examined this
substitution as a possible monotonic influence on the
gamma-ray-shielding behaviors of the analyzed glasses, as
well as the effect of the alterations on the gamma-ray-
shielding characteristics.

2.2. Determination of Gamma-Ray-Shielding PropertiesUsing
the MCNPXMonte Carlo Code. /e attenuation coefficients
of the glasses under examination were calculated using
MCNPX (Monte Carlo N-Particle eXtended) version 2.6.0.
MCNPX is a fully three-dimensional (three-dimensional)
general-purpose application that utilizes upgraded nuclear
cross-section libraries and physics models. /e shape of the
entire gamma-ray transmission setup was modelled using
the MCNPX code’s INPUT file as a first step in the simu-
lation technique. /e INPUT file of MCNPX is composed of
three major components: a CELL card, a SURFACE card,
and a DATA card. To start, we determined the CELL
structures of the simulation equipment by defining their
covering surfaces and densities. Additionally, the CELL card
component has been defined for each glass sample con-
sidering their elemental compositions, which are already
described in the material IDs (Mn) section taking into

account their elemental mass fractions (see Table 1). Fol-
lowing that, the geometrical alignments of the surfaces for
the glass attenuator material, as well as the geometrical
structures of the surfaces, which may be planar, spherical, or
cone, were entered. We included the radioisotope energies
(from 0.015MeV to 15MeV, respectively) as well as the
source geometry as point isotropic to the DATA card area.
Figure 1 depicts the overall geometry of the successfully
designed simulation setup. Additionally, we added a critical
specification to the DATA card for the data gathering
mechanism, which is stated as TALLY MESH. /e outcome
function of the modelled gamma-ray transmission setup was
constructed in this work utilizing the MCNPX`s F4 TALLY
MESH. F4 tally is used to record the average flux in a point.
/ereafter, attenuation coefficients of the glasses under
investigation were determined using the well-known
equation, namely the Beer–Lambert law.

I � I0e
−μt

, (1)

where μ (cm−1) is the linear attenuation coefficient of the
sample and t is the physical thickness (cm) of the shielding
material. To understand gamma energy loss as it passes
through the shielding material, the mass attenuation coef-
ficients (μ/ρ) can be used for the shieldingmaterials [40]./e
mass attenuation coefficient of a compound or mixture is
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Figure 11: Demonstrates the relationship between the energy and EABF of the S1 sample.
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calculated by summing the individual contributions of each
of the elements that make up the mixture or compound (see
for detailed calculation [43–45]. /e obtained attenuation
coefficients are then used for other critical shielding pa-
rameters, namely the tenth value layer (TVL), the half-value
layer (HVL), and the mean free path (MFP).

3. Results and Discussions

/e influence of Ta2O5 and ZrO2 on the gamma-ray at-
tenuation capacities of three niobium-doped borotellurite
glasses was examined in this work. /e aim of the current
investigation was to investigate the monotonic effect of
varying molar contributions of Ta2O5 and % ZrO2 on ni-
obium-doped borotellurite glass. It’s well known that the
material density has a great impact on the shielding prop-
erties of the materials. Comparing the three glass samples’
densities showed that the S3 sample had the highest density
value at 4.94 g/cm3 followed by S2 at 4.93 g/cm3, and then
the S1 sample marking the lowest density at 4.88 g/cm3 (see
Figure 2)./e variances between the glasses were not as high
due to their comparable chemical compositions and a small
number of molar changes across the replacements. However,
it is seen that the replacement of 2%moles Nb2O3 with 1%
mole Ta2O5+ 1%mole ZrO2 caused an increment in the glass
density as 0.06 g/cm3. Along with the elemental alterations

and their effect on gamma-ray-shielding behaviors, the given
findings may be interpreted in terms of the 0.06 g/cm3

density difference between the S1, S2, and S3 samples.
Calculations for the overall study were conducted in two
distinct phases. In the first phase, we utilized the MCNPX
algorithm to determine the attenuation coefficients of the
glass samples under investigation. To validate our findings,
we compared them to those obtained using the Phy-X/PSD
tool (see Table 2). Finally, since we verified two approaches,
we utilized the Phy-X/PSD code to retrieve the remaining
critical values. Figures 3 and 4 depict the numerical varia-
tions of the linear (µ) and mass (µm)attenuation coefficients
of the glasses. As it is seen, both figures share almost identical
trends that exhibit a sharp decrease followed by a sharp
increase in mass and linear attenuation coefficients at 0.03
and 0.04MeV energies with gradual decreasing afterwards.
/e sharp changes in the linear and mass attenuation co-
efficients of the glasses can be explained by the photo-
n–matter interactions in different energy zones such as low,
middle and high energy, where the photoelectric effect,
Compton scattering, and pair production are dominant,
respectively [46–48]. It is seen that the variations share
almost the same pattern of difference among the S1, S2, and
S3 glass types, which is demonstrated in the zoomed-in
graphs. As mentioned before, the linear attenuation of a
material is density dependent, while the mass attenuation
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coefficient is not. As it is seen from Figure 3, there are slight
variations between the linear attenuation coefficients of the
three glasses. /is situation can be explained by similar
density values of the glasses under investigation [49, 50].
However, the similarity in the linear and mass attenuation
coefficients (see Figure 4) among the three glasses may also
be attributed to the similarities in the elemental composi-
tions of the S1, S2, and S3 glasses since replacements have
been used with 1% molar differences between the above-
mentioned structures. However, our findings showed that
the S3 sample has the highest linear and mass attenuation
coefficients at all the gamma-ray energies studied. Calcu-
lating the half-value layer (HVL) of a shielding material is a
critical way for determining its effectiveness against the
radiation being employed [51, 52]. /e half-value layer
(HVL) is the thickness of a material required to reduce the
air-kerma intensity of an X-ray or gamma-ray to half of its
initial value. Variations of the half-value layer (cm) with
photon energy (MeV) for all S1–S3 glasses are demonstrated
in Figure 5. /e variation trend of the reported HVL values
starts with a gradual increase until 0.03MeV, where a sharp
decrease occurs which results in 0.010 cm value for all
glasses; then, it returns to the same pattern of gradual in-
crease in values. At 0.015MeV, a zoom-in column graph
clearly shows the difference among the glasses. Our finding
revealed that the S3 sample has the minimum half-value

layer thickness at all gamma-ray energies. Onemay conclude
that the minimum material thickness necessary to halve the
same amount of gamma-ray energy between the three
glasses is the S3 sample, due to its better attenuation ca-
pabilities. Similar to the term high value layer (HVL), the
tenth value layer (TVL) refers to a certain thickness value for
a material necessary to reduce the initial gamma-ray in-
tensity by one-tenth (1/10). Our findings showed that the
tenth value layer (cm) graph (See Figure 6) exhibits the same
trend behavior and the same difference among the glasses,
where the S2 and S3 values are closer to each other, giving S3
the lowest rank in values and S1 the highest. One may
conclude that the S3 sample is preferable not just for the
HVL values but also for the TVL values in terms of lowering
the initial gamma-ray intensity at the smallest material
thicknesses. /e term mean free path is very helpful in
assessing the mean distance between two consecutive
gamma-ray interactions in the attenuator material. Figure 7
describes the relationship of the mean free path variations
(cm) with photon energy (MeV) for all S1–S3 glasses, which
also demonstrates a very similar trend behavior to the HVL
and TVL graphs, giving S1 the highest values followed by S2
and S3. As a result, the mean distance between two con-
secutive interactions in the S3 sample is the lowest among
the glasses under consideration, due to its superiority in
terms of the interaction frequency with the incoming
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gamma-ray, and hence absorption./e relationship between
the effective atomic number (Zeff) and the effective electron
density (Neff) with the incident photon energy differs from
previous trends, since they start at a higher value and in-
crease at 0.04MeV, and then decrease gradually until
1.0MeV where the trends start increasing again. Both trends
exhibit S1 values as the lowest followed by an increase in S2
and S3, giving S3 the highest rank of values (See Figures 8
and 9). /erefore, it can be said that the replacement of 2%
moles Nb2O3 with 1%mole Ta2O5+ 1%mole ZrO2 caused an
increment in the Zeff and Neff values of S1, S2, and S3 glasses.
Figures 10–15 demonstrate the studied glasses’ exposure
build-up factor (EBF) and energy absorption build-up factor
(EABF) values as a function of energy (MeV) at different
mean free path (i.e., from 0.5 to 40) values. Similar behaviors
are reported as a function of photon energy, with a sub-
stantial rise in these values at 0.04, 0.06, 0.08, 0.1, and
15MeV energies, respectively (see Tables 3–5). Variations in
the EBF and EABF values are less at smaller penetration
depths up to 15MeV energy, yet they significantly increase
with increasing mfp where the energy intensifies up to
15MeV. /e build-up of photons usually occurs at higher
mfp values, particularly for thicker materials and a greater
diversity of incoming X-rays or gamma rays [53–57]. Our
findings clearly indicated that S1 ranks the highest followed

by S2 with a slight decrease, and subsequently S3 ranks the
lowest. In general, our findings for basic gamma-ray-
shielding qualities indicated that the S3 sample exhibits the
greatest attenuation among the three glasses investigated.
/e final assessment step of this research compared the HVL
values of the S3 sample, which demonstrated the best
performances across all gamma-ray reduction parameters to
those of many other glass- and concrete-shielding materials.
/e compared materials and their codes are listed as follows.

(i) Glass shields: PNCKM5 [58], C25 [59], SCNZ7 [60],
Gd10 [61], Gd15 [62].

(ii) Concrete shields: OC, HSC, ILC, BMC, IC, SSC [63].

To begin, all HVL values for the S3 sample were compared
to those of other glassy shielding materials whose gamma-ray
attenuation characteristics had been previously reported for
the same gamma-ray energy range. As seen in Figure 16, the
S3 sample’s gamma-ray attenuation properties are much
greater than those of the glass materials tested. /e primary
explanation for this condition is the disparity between the
heavy element additions in the glass composition and the
density increase caused indirectly by this additive. Addi-
tionally, the HVL values of the S3 sample were compared to
those of many concrete-shielding materials functioning in the
same energy range. /ese concrete materials, including
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Figure 14: Demonstrates the relationship between the energy and EBF of the S3 sample.
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Figure 15: Demonstrates the relationship between the energy and EABF of the S3 sample.

Table 3: (EBF and EABF) G–P fitting coefficients (b, c, a, Xk, and d) of the S1 sample.

Energy (MeV) Zeq
G–P fitting parameters for EBF G–P fitting parameters for EABF

a b c d Xk a b c d Xk

0.015 22.62 −0.249 1.006 1.049 0.234 6.358 −0.242 1.006 1.043 0.225 7.785
0.020 26.03 0.621 1.012 0.130 −0.621 11.384 0.320 1.010 0.258 −0.297 18.162
0.030 26.53 0.193 1.027 0.371 −0.268 26.131 0.251 1.025 0.328 −0.189 17.470
0.040 42.71 0.089 3.906 0.409 −0.041 23.655 0.105 1.506 0.411 −0.043 22.264
0.050 43.19 −0.221 3.170 0.111 0.009 12.737 −0.084 1.424 0.123 0.064 9.645
0.060 43.54 0.870 2.519 0.051 −0.129 14.938 0.618 1.377 0.071 −0.141 16.201
0.080 43.96 0.779 1.699 0.029 −0.229 14.675 0.615 1.324 0.069 −0.228 14.092
0.100 44.24 0.409 1.229 0.227 −0.205 13.762 0.427 1.237 0.198 −0.225 13.677
0.150 44.65 0.211 1.233 0.432 −0.113 14.255 0.337 1.444 0.272 −0.186 14.016
0.200 44.88 0.172 1.393 0.509 −0.096 14.415 0.321 2.031 0.298 −0.196 13.988
0.300 45.14 0.091 1.513 0.697 −0.046 14.383 0.178 2.192 0.516 −0.105 13.961
0.400 45.28 0.050 1.633 0.847 −0.037 14.163 0.126 2.498 0.661 −0.096 13.893
0.500 45.36 0.028 1.701 0.931 −0.029 14.211 0.085 2.549 0.775 −0.073 13.887
0.600 45.41 0.013 1.728 0.984 −0.021 13.976 0.063 2.537 0.840 −0.061 13.747
0.800 45.47 −0.001 1.749 1.039 −0.015 14.052 0.038 2.433 0.920 −0.047 13.646
1.000 45.49 −0.007 1.739 1.063 −0.013 13.430 0.025 2.319 0.961 −0.038 13.527
1.500 44.50 −0.027 1.606 1.148 −0.001 9.504 −0.006 1.933 1.074 −0.018 13.533
2.000 41.99 −0.021 1.601 1.127 −0.005 12.618 0.002 1.850 1.048 −0.024 13.068
3.000 39.09 −0.001 1.569 1.064 −0.026 12.718 0.028 1.711 0.972 −0.049 13.028
4.000 38.00 0.014 1.516 1.023 −0.038 13.241 0.042 1.584 0.936 −0.062 13.671
5.000 37.42 0.036 1.507 0.963 −0.058 13.487 0.064 1.533 0.883 −0.082 13.895
6.000 37.01 0.045 1.473 0.946 −0.065 13.619 0.071 1.469 0.870 −0.088 14.102
8.000 36.58 0.064 1.465 0.909 −0.082 13.907 0.083 1.409 0.854 −0.097 14.200
10.000 36.34 0.052 1.419 0.964 −0.070 14.093 0.069 1.340 0.909 −0.083 14.342
15.000 36.25 0.042 1.421 1.059 −0.062 14.287 0.061 1.301 0.989 −0.076 14.491
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Table 4: (EBF and EABF) G–P fitting coefficients (b, c, a, Xk, and d) of the S2 sample.

Energy (MeV) Zeq
G–P fitting parameters for EBF G–P fitting parameters for EABF

a b c d Xk a b c d Xk

0.015 23.17 −0.302 1.005 1.138 0.254 6.228 −0.296 1.005 1.133 0.247 7.408
0.020 26.18 0.629 1.012 0.128 −0.644 11.352 0.327 1.010 0.256 −0.309 17.867
0.030 26.67 0.193 1.026 0.371 −0.255 25.314 0.251 1.025 0.330 −0.188 17.111
0.040 42.70 0.089 3.906 0.407 −0.041 23.649 0.105 1.505 0.409 −0.043 22.283
0.050 43.17 −0.223 3.169 0.110 0.010 12.724 −0.085 1.423 0.121 0.065 9.623
0.060 43.52 0.873 2.517 0.051 −0.129 14.973 0.621 1.376 0.071 −0.141 16.183
0.080 44.88 0.784 1.717 0.027 −0.217 14.799 0.634 1.335 0.063 −0.228 14.116
0.100 45.19 0.457 1.258 0.198 −0.225 13.767 0.467 1.254 0.176 −0.248 13.631
0.150 45.66 0.224 1.230 0.411 −0.121 14.195 0.355 1.443 0.254 −0.196 13.985
0.200 45.91 0.172 1.365 0.507 −0.095 14.459 0.322 1.945 0.295 −0.195 13.974
0.300 46.22 0.094 1.488 0.686 −0.047 14.347 0.184 2.128 0.502 −0.108 13.928
0.400 46.39 0.053 1.608 0.832 −0.038 14.157 0.132 2.440 0.643 −0.099 13.887
0.500 46.49 0.032 1.678 0.916 −0.031 14.173 0.090 2.502 0.758 −0.076 13.883
0.600 46.57 0.016 1.707 0.971 −0.022 13.987 0.068 2.500 0.823 −0.064 13.742
0.800 46.64 0.002 1.731 1.029 −0.016 14.062 0.042 2.410 0.905 −0.049 13.642
1.000 46.66 −0.005 1.724 1.054 −0.014 13.430 0.028 2.303 0.948 −0.040 13.520
1.500 45.66 −0.026 1.598 1.142 −0.002 10.567 −0.004 1.929 1.065 −0.019 13.561
2.000 43.09 −0.020 1.594 1.124 −0.006 12.691 0.004 1.850 1.040 −0.026 13.077
3.000 39.98 −0.001 1.565 1.064 −0.026 12.756 0.030 1.714 0.967 −0.052 13.085
4.000 38.79 0.014 1.514 1.023 −0.039 13.265 0.045 1.588 0.930 −0.065 13.640
5.000 38.17 0.038 1.509 0.959 −0.060 13.505 0.067 1.539 0.874 −0.086 13.876
6.000 37.75 0.047 1.477 0.942 −0.067 13.650 0.075 1.476 0.861 −0.092 14.087
8.000 37.26 0.066 1.473 0.904 −0.084 13.940 0.087 1.418 0.846 −0.100 14.212
10.000 37.02 0.053 1.429 0.964 −0.071 14.108 0.071 1.349 0.905 −0.085 14.343
15.000 36.90 0.041 1.439 1.066 −0.061 14.272 0.061 1.314 0.992 −0.077 14.465

Table 5: (EBF and EABF) G–P fitting coefficients (b, c, a, Xk, and d) of the S3 sample.

Energy (MeV) Zeq
G–P fitting parameters for EBF G–P fitting parameters for EABF

a b c d Xk a b c d Xk

0.015 23.21 −0.305 1.005 1.144 0.256 6.218 −0.300 1.005 1.139 0.248 7.381
0.020 26.08 0.624 1.012 0.129 −0.629 11.372 0.323 1.010 0.257 −0.301 18.059
0.030 26.56 0.193 1.026 0.371 −0.265 25.934 0.251 1.025 0.328 −0.189 17.383
0.040 42.76 0.089 3.903 0.415 −0.042 23.675 0.105 1.507 0.417 −0.043 22.196
0.050 43.24 −0.217 3.172 0.114 0.007 12.768 −0.082 1.426 0.125 0.062 9.699
0.060 43.58 0.863 2.522 0.053 −0.128 14.864 0.613 1.378 0.073 −0.139 16.238
0.080 44.95 0.784 1.718 0.027 −0.216 14.809 0.635 1.336 0.063 −0.228 14.118
0.100 45.26 0.461 1.260 0.195 −0.227 13.767 0.470 1.255 0.174 −0.250 13.627
0.150 45.73 0.225 1.230 0.410 −0.122 14.191 0.356 1.443 0.253 −0.197 13.983
0.200 45.99 0.172 1.363 0.507 −0.095 14.462 0.322 1.939 0.295 −0.195 13.973
0.300 46.29 0.095 1.486 0.685 −0.047 14.345 0.185 2.124 0.502 −0.108 13.926
0.400 46.46 0.054 1.607 0.831 −0.039 14.157 0.133 2.436 0.642 −0.099 13.887
0.500 46.56 0.032 1.677 0.915 −0.031 14.170 0.091 2.500 0.757 −0.077 13.882
0.600 46.64 0.016 1.705 0.971 −0.022 13.988 0.068 2.498 0.822 −0.064 13.742
0.800 46.71 0.002 1.730 1.028 −0.016 14.063 0.042 2.409 0.904 −0.049 13.642
1.000 46.74 −0.004 1.723 1.053 −0.014 13.430 0.029 2.302 0.948 −0.040 13.519
1.500 45.74 −0.026 1.598 1.142 −0.002 10.636 −0.004 1.929 1.065 −0.019 13.563
2.000 43.17 −0.020 1.594 1.124 −0.006 12.696 0.005 1.850 1.039 −0.027 13.078
3.000 40.06 −0.001 1.565 1.064 −0.027 12.760 0.030 1.714 0.967 −0.052 13.090
4.000 38.87 0.015 1.514 1.023 −0.039 13.268 0.045 1.588 0.929 −0.065 13.637
5.000 38.24 0.038 1.509 0.959 −0.060 13.507 0.068 1.540 0.873 −0.086 13.874
6.000 37.83 0.047 1.477 0.942 −0.068 13.653 0.075 1.476 0.860 −0.092 14.085
8.000 37.34 0.067 1.474 0.904 −0.085 13.944 0.087 1.419 0.845 −0.101 14.214
10.000 37.10 0.053 1.431 0.964 −0.071 14.110 0.072 1.350 0.905 −0.085 14.343
15.000 36.97 0.041 1.442 1.067 −0.061 14.270 0.061 1.315 0.993 −0.077 14.462
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ordinary concrete (OC), were determined as other concretes
such as HSC, BMC, ILC, SSC, and IC with some additives that
increase the shielding properties. Comparison of the critical
HVL values of the S3 sample with these concrete types is
shown in Figure 17. As can be seen, especially at low energy
levels, the HVL values of the S3 sample are much lower than
those compared with the concrete samples. On the other
hand, this advantageous situation in HVL values was also seen
in all energy values studied. Although concrete is still themost

effective and preferred shielding material for medical and
industrial radiation fields, there are also disadvantages of this
material. For this reason, the production and development of
superior glassy shields such as the S3 sample, which can be an
alternative to concrete and especially overcome the critical
disadvantages of concrete, will make important contributions
to the material literature, as well as enable the reshaping of the
shielding materials recommended in radiation protection
procedures.
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Figure 16: Comparison of the HVL values with different types of glasses.
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Figure 17: Comparison of the HVL values with different types of concrete shields.
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4. Conclusion

/e use of glass and glass-based materials for shielding in
radiation fields has increased visibly in recent years. Some of
the most main causes for this expansion are that glass
constructions are incredibly adaptable to development and
may be manufactured with a variety of components and
their combinations in varying proportions. On the other
hand, it is extremely important to understand themonotonic
effect of certain types of additive ratios that increase or
decrease in the glass composition during the production of
glass series. /e aim of this study was to examine the ra-
diation attenuation difference occurring in the studied
borotellurite glass structures according to the varying ad-
ditive ratio and to discuss the rationale behind the positive
change in the shielding ability. /e glass samples that have
been investigated in the current investigation were previ-
ously assessed in terms of their nonlinear refractive index.
/e initial outcome results indicate that while the modifier
oxides have an effect on the structural units and polariz-
ability of the glass, they are insufficient to alter the behavior
of the nonlinear refractive index spectra, with the glass
matrix being the primary source of optical nonlinearity in
the system under study. As with prior results for other
characteristics, our findings clearly demonstrate that al-
though some behavioral changes occurred in the shielding
qualities, modest improvements occurred in the attenuation
properties depending on the modifier variation and its
magnitude. However, the replacement of 2%moles of Nb2O5
with 1% mole of Ta2O5 and 1% mole of ZrO2 provided
significant improvements in both glass density and atten-
uation properties against gamma rays. While concrete re-
mains the most efficient and favored shielding material in
medical and industrial radiation sectors, it does have certain
drawbacks. As a result, the production and development of
superior glassy shields, such as the S3 sample that can be
used in place of concrete and specifically overcome its
critical disadvantages, will contribute significantly to the
material literature, and enable the reshaping of shielding
materials recommended in radiation protection procedures.
As a consequence of this investigation, it can be concluded
that the indicated type of additive to be added to bor-
otellurite glasses will provide some advantages, particularly
when used in radiation fields, by increasing the shielding
qualities moderately. Additionally, supplementary material
characterizations of the relevant glass types are recom-
mended, and it would be beneficial to extend this follow-up
research and provide additional data to the literature in
order to fully understand and apply the relevant glass type’s
terms of use.
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