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Various canister candidate materials (SS316L, Ti-Gr.2, Alloy 22, and Cu) were studied using groundwater at the Korea Atomic
Energy Research Institute (KAERI) underground research tunnel (KURT), with the addition of chloride ions using di�erent
electrochemical techniques. �e corrosion potential and corrosion current of test materials were obtained by the polarization
measurement. �e polarization measurements revealed that the addition of chloride ions was detrimental to the SS316L and Cu
materials by increasing corrosion current, which is an indicator of corrosion rate. Impedance measurements and �tting analysis
showed that the corrosion resistance of Cu was more than 10 times lower than that of other materials in the KURTgroundwater
solution containing 0.1M of chloride ions.

1. Introduction

A metal canister, which enables the isolation of high-level
radioactive waste and prevents its leakage, is regarded as the
�rst barrier in a multi-barrier deep geological disposal
system. Several countries have adopted di�erent candidate
materials for canisters according to the nature of the ra-
dioactive waste and the geological environment. Typically, a
Cu canister with a cast-iron insert is used in Sweden and
Finland; a Cu-coated steel vessel was designed in Canada,
and an inner stainless-steel (SS316) cylinder with an outer
alloy 22 cylinder and titanium drip shield is considered in
the US as canisters [1–9]. �e lifetime of a canister must be
longer than at least 104 years, and it is signi�cantly a�ected
by geochemical environmental factors such as dissolved
oxygen, chemical composition of groundwater, and tem-
perature. In particular, the initial corrosion of canisters is
caused by aggressive species in groundwater such as chlo-
rides, sulfates, and nitrates [4]. Previously, we have reported
the corrosion behavior of di�erent canister materials
(SS316L, Ti-Gr.2, Alloy 22, and Cu) in a Korean domestic
repository environment [10].

In this study, we investigated the e�ect of chloride ions
on the electrochemical behavior of the materials to extend
the scope of our previous research [10] by comparing the
corrosion potential and corrosion current of test materials
and by calculating the polarization resistance through im-
pedance �tting analysis. Chloride is known to be the most
aggressive anion and strongly in�uences the corrosion be-
havior of metals. �erefore, NaCl was added to groundwater
at the Korea Atomic Energy Research Institute (KAERI)
underground research tunnel (KURT), and potentiody-
namic measurements were performed to examine the cor-
rosion potentials and currents of the test materials.
Furthermore, electrochemical impedance spectroscopy was
performed to observe the corrosion resistance ability of the
canister materials.

2. Materials and Methods

Stainless steel 316L, titanium grade 2 (Ti-Gr.2), nickel alloy
22 (Alloy 22), and copper (Cu) were used as working
electrodes (surface area: 1 cm2). �e chemical composition
of the test materials used in this study is presented in Table 1.
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Before the experiment, the electrodes were polished with SiC
paper (∼2000 grit) and 0.15 μm alumina paste. Subsequently,
the electrodes were sonicated in distilled water and dried. A
saturated calomel reference electrode (SCE) and a Pt-mesh
counter electrode were used to complete the cell. 'e
electrolyte solution was KURT groundwater mixed with
NaCl (0.1M). 'e chemical composition of KURT
groundwater has been reported previously [10]. A BioLogic
SP-300 potentiostat/galvanostat with a typical three-elec-
trode cell configuration was employed in the electrochemical
experiment. All experiments were conducted at room
temperature (25°C). Potentiodynamic polarization curves
were obtained at a scan rate of 1mV/s. Electrochemical
impedance spectroscopy (EIS) measurements were per-
formed at open circuit potential (OCP) by applying an AC
signal of ±10mV amplitude RMS in the frequency range of
100 kHz to 10mHz.

3. Results and Discussion

Figure 1 shows the polarization curves of the aforemen-
tioned four materials immersed in the chloride ion-added
groundwater solution. Compared with the previous result
obtained for KURT groundwater solution without the ad-
dition of 0.1M NaCl [10], it is evident that the addition of
chloride ions to the groundwater solution shifts the cor-
rosion potential to more negative values for all materials.
'is increases the current density for materials, except Alloy
22. 'e polarization curve for SS316L shows obvious anodic
behavior with a corrosion potential (ECORR) of –0.230V vs.
SCE and a corrosion current (iCORR) of 0.243 μA/cm2. As the
electrode potential was increased above the corrosion po-
tential, the anodic current increased gradually, followed by a
rapidly increasing current near 0.6V vs. SCE (pitting po-
tential, Epit). Ti-Gr.2 exhibited the highest ECORR among the
test materials and passivation characteristics, unlike other
metals. 'e high corrosion resistance of titanium in an

aggressive environment is ensured by chemically stable
oxide films such as TiO2 [11]. Alloy 22 exhibited an ECORR
close to that of Cu, and the current density increased
gradually as the potential increased. Cu showed a more
apparent increase in corrosion current density than the
other materials in the presence of chloride ions in the so-
lution. It was also observed that the potential range de-
creased above the corrosion potential, wherein the anodic
current density increased rapidly. 'is result shows the
aggressiveness of chloride ions; the corrosion potential
decreases, and the current density increases with the ad-
dition of chloride ions [12]. 'e corrosion potentials and
currents of the test materials are listed in Table 2.

EIS measurements at the OCP were performed on the test
materials (SS316L, Ti-Gr.2, Alloy 22, and Cu) by exposing
them to the KURT groundwater solution, to which chloride
ions were added. In the chloride-added KURT groundwater
solution, a single capacitive semi-circle with a tail showing
that the corrosion process was mainly charge transfer con-
trolled [13] was found at SS316L, Ti-gr.2, and Alloy 22,
whereas Cu exhibited more than one semi-circle (Figure 2).
'e comparison of arc radius in Figure 2 allows for a relative
order of magnitude of corrosion resistance of materials [14].
In the presence of chloride ions, it was confirmed that the
corrosion resistance of Ti-Gr.2 was relatively low compared to
SS316L, which coincided with the previous study [15]. 'e
three kinds of relaxation of Cu are clearly identified in
Figure 3(a), which is quite similar to previous study [16]. 'e
three time constants are attributed to the double-layer ca-
pacitance with charge transfer resistance, oxide layer-related
capacitance in parallel with resistance, and reversible reac-
tions or diffusion. 'e total impedance magnitude at inter-
mediate frequency region can be attributed to the
electrochemical corrosion reaction onmetal surface.'e total
impedancemagnitude of materials, immersed in the chloride-
added KURT groundwater, in the low frequency range at-
tributed to the electrochemical corrosion process was
Cu< SS316L<Ti-Gr.2<Alloy 22 (Figure 3(b)).

Table 1: Chemical compositions of test materials used in this study.

Component
(mg/kg)

Materials
SS316L Ti-Gr.2 Alloy 22 Cu

Cu 2440 — — Remainder
Fe Remainder 187 30000 —
Ti — Remainder — —
Si 426 894 800 160
Co 2014 1399 25000 166
W — 579 30000 291
Zn 21 953 — —
Sn 42 4 — —
Sb 10 1 — —
Pb 1 1 — —
Mn 9752 5000 —
Nb 55 30 — —
Mo 895 175 130000 —
Cr 174906 — 220000 —
Ni 79348 — Remainder —
V 885 46 3500 —
Zr — 25 — —
Ta 3 605 — —

Cu

Alloy 22
SS316LTi-Gr.2
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Figure 1: Potentiodynamic scans of SS316L, Ti-Gr.2, Alloy 22, and
Cu in naturally aerated KURTgroundwater with 0.1MNaCl added.
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'e measured impedance data in the chloride-added
groundwater solution were fitted using equivalent circuits
(Figure 4) to quantify and compare the impedance

components of the test materials. 'e equivalent circuits
were mostly used to elucidate the obtained data [16, 17]. In
equivalent circuits, R represents the resistance, and Q

Table 2: Corrosion potential and current of various canister materials in KURT groundwater solution with and without the addition of
0.1M NaCl at 25°C.

w/o 0.1M NaCl [10] w/ 0.1M NaCl
ECORR (V vs. SCE) iCORR (μA/cm2) ECORR (V vs. SCE) iCORR (μA/cm2)

SS316L –0.198 0.124 –0.230 0.243
Ti-Gr.2 — — –0.136 0.124
Alloy 22 –0.175 0.224 –0.179 0.064
Cu –0.048 0.938 –0.182 1.946
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Figure 2: Nyquist plots of SS316L, Ti-Gr.2, Alloy 22, and Cu in naturally aerated KURT groundwater with the addition of 0.1M NaCl.
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Figure 3: Bode plots of SS316L, Ti-Gr.2, Alloy 22, and Cu in naturally aerated KURT groundwater with the addition of 0.1M NaCl.
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represents the constant phase element (CPE), which was
adopted to represent non-ideal capacitive behavior due to
uneven current distribution or surface inhomogeneity. 'e
CPE can be expressed as ZCPE � [Q(jω)n]−1(j2 � −1),

where Q, ω, and n represent the CPE amplitude, angular
frequency, and CPE exponent, respectively [18]. 'e value of
n can be 0≤ n≤1, where 0 and 1 represent an ideal resistor
and capacitor, respectively. 'e fitted curves are shown in
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Figure 4: Equivalent circuits used to fit EIS spectra in chloride-added KURTgroundwater solution for (a) SS316L, Ti-Gr.2, and alloy 22, and (b) Cu.
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Figure 5: Measured and fitted data of impedance of (a) SS316L, (b) Ti-Gr.2, (c) Alloy 22, and (d) Cu in chloride-added KURTgroundwater
solution at 25°C.
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Figure 5. As mentioned above, three time constants were
found in Cu (Figures 4(b) and 5(d)).

At the surface of the metal that is in contact with the
chloride-containing solution, RC is related to the double-
layer capacitance with charge transfer resistance
[16, 17, 19–21], oxide film capacitance with resistance ex-
perienced by the ions while traveling through the oxide
[22–24], and reversible reaction or diffusion process [25, 26].
Diffusion is replaced by Warburg impedance instead of an
RC combination to describe mass transfer from or to the
surface [17, 22]. For SS316L, Ti-Gr.2, and Alloy 22, the third
component was fitted satisfactorily using a model with a
Warburg element (W3), indicating that the diffusion process
is involved in the corrosion mechanism [17]. In this study,
the polarization resistances (Rp) of the test materials were
calculated as Rp � R1 + R2, where R1 and R2 represent the
oxide film resistance and charge transfer resistance, re-
spectively [27, 28]. 'e calculated Rp values are given in
Table 3. It can be observed that the polarization resistance of
Cu is one order lower than that of other materials.

4. Conclusions

Electrochemical characterization of various canister mate-
rials was performed using KURT groundwater with the
addition of chloride ions. 'e corrosion potential and
corrosion current of the test materials (SS316L, Ti-Gr.2,
Alloy 22, and Cu) were measured using the polarization
technique. 'e presence of chloride ions lowered the cor-
rosion potential of SS316L and Cu. From the impedance
measurements, we determined that Cu has a higher initial
corrosion susceptibility than SS316L, Ti-Gr.2, and Alloy 22;
in particular, the polarization resistance of Cu in the
groundwater solution containing chloride ions is one order
lower than that of other materials.
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