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Te rapid expansion of nuclear technology across various sectors due to global economic growth has led to a substantial rise in the
transportation of radioactive materials. Te International Atomic Energy Agency (IAEA) estimates that approximately 20 million
shipments of radioactive materials occur annually. In this context, ensuring the safety and security of radioactive material
transportation is of signifcant importance. IAEA’s “Security of Radioactive Materials in Transport” (Nuclear Security Series No.
9-G) mandates that an efective transport security system should provide immediate detection of any unauthorized removal of the
packages. In the present study, an innovative Adam-optimized BP neural network model is developed for detecting unauthorized
movements of radioactive material packages. To analyze the performance of the proposed algorithm, numerous experiments were
conducted. Te results demonstrate that the proposed method achieves a 99.17% accuracy rate in detecting unauthorized
movements of radioactive materials, with a missed alarm rate of 0.72% and a false alarm rate of 0.1%. Tis method also enables
real-time detection of unauthorized removal of radioactive materials and efectively enhances the security of radioactive materials
during transport to reduce the risks of theft, loss, diversion, or sabotage.

1. Introduction

Transporting radioactive materials is a crucial and integral
aspect of the nuclear energy industry. Based on estimations
conducted by the International Atomic Energy Agency
(IAEA), approximately 20 million packages of radioactive
materials, including UF6, radioactive sources, fssionable
ores, spent fuel, and nuclear waste, are transported globally
each year [1]. Typically, these materials are transported long
distances and across large geographic areas, often spanning
provinces or borders. However, the transportation of ra-
dioactive materials confronts some limitations in security
and response forces. Consequently, it is crucial not to rely
solely on security personnel or local police to handle

unexpected and malicious incidents during the trans-
portation of these hazardous materials. According to the
records of the IAEA Incident and Trafcking Database
(ITDB), 52% of all thefts of radioactive materials between
1993 and 2022 occurred during authorized transport. Tis
fgure has increased to 62% in the last decade [2]. Moreover,
the event report website of the United States Nuclear
Regulatory Commission (U.S.NRC) contains a substantial
number of reports on the radioactive material lost during
transit. For instance, on February 7, 2020, an Ir-192 source
with a dose of 9.987Ci was lost during transportation to
Golden, Colorado [3]. On July 2, 2019, a moisture/density
gauge (CPN International MC Series) that contained
a 50mCi Am-Be source and a 10mCi Cs-137 source was lost
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on the highway between Aurora and Columbus, Nebraska
[4]. If not detected and responded to efectively, the loss or
theft of radioactive materials can cause severe environmental
contamination and public panic. Criminals may even use
stolen radioactive materials for malicious purposes such as
creating improvised nuclear devices (IND), radiological
exposure devices (RED), radiological dispersal devices
(RDD), and dirty bombs [5]. On the other hand, a wide-
spread nuclear material leakage could lead to severe social
and economic consequences and could easily kick of global
anxiety and concerns [6]. Tus, further surveillance mea-
sures of nuclear materials lead to less risk and enhance global
transportation security measures for radioactive materials.

In July 2020, the IAEA issued the latest implementing
guide under the heading “Security of Radioactive Materials
in Transport” [7]. Tis comprehensive and authoritative
document guides the safe and secure transport of radioactive
materials and mandates states to establish efective national
nuclear security regimes. Based on this guide, transport
security objectives are classifed into basic, enhanced, and
additional transport security levels. Te security objectives
are clearly defned for each level. According to the guide, the
basic level requires detecting any unauthorized access or
movement of packages. In this regard, the present study aims
to focus on detecting unauthorized movements, also called
illegal movement, of packages during the transportation of
radioactive materials to prevent loss, theft, diversion, or
sabotages.

2. Related Work

Recently, numerous studies have been conducted on
detecting and tracking nuclear materials within facilities or
during transportation. For instance, Gilbert et al. [8]
employed spectral X-ray radiography to examine radio-
active materials in packages or composite objects, aiming to
disrupt the illicit trafcking of nuclear materials. Argonne
National Laboratory developed an ARG-US system [9–11],
which uses a range of sensors and active RFID tags to
monitor real-time radiation dose, container sealing, as well
as ambient temperature and state parameters of containers
carrying radioactive materials. Te system utilizes GPS
technology to track and monitor vehicles transporting the
materials. Additionally, the ARG-US system could be
implemented for tracking and monitoring nuclear mate-
rials within facilities [12]. Vander Wal et al. [13] developed
the TRAVELER program based on the ARG-US system and
established a virtual geographic boundary for radioactive
material shipments. Te software automatically triggers an
alarm if the transport vehicle leaves the electronic fence.
Deb [14] proposed a method called the interior point
method (IPM) to estimate the location and trajectory of
a moving radioactive source. Moreover, Bauk [15]
employed RFID technology and established a tracking
model for radioactive materials during sea transportation.
Te model transmits diverse data including the latitude,
longitude, speed, heading of the ship, and the radiation
dose of cargo packages to ground-based control centers
every two hours.

Several investigations have focused on detecting radio-
active sources diverted illicitly in urban environments,
which is an important part of modern nuclear security. A
preflter framework was presented for mobile sensor net-
works to estimate urban sources’ positions and intensity
[16]. When detecting illicit radioactive sources in urban
areas, the performance of mobile detector systems is con-
strained by environmental interference.Tus, to address this
challenge, the RadMAP system systematically probes vari-
ations in natural radiological background and creates
multisensor datasets for mobile radiation detection [17]. A
network of mobile distributed sensors was deployed on
a vehicle platform to detect mobile radioactive sources. It
was found that the detection time of mobile radioactive
sources was afected by the speed of the source and the
number of mobile detectors [18]. Studies [19] demonstrated
that the fusion of extensive data generated by radiation
detectors employing Pearson’s methodology signifcantly
enhances the source detection efectiveness of mobile ra-
dioactive materials.

When transportation occurs, vehicles may pass through
tunnels, bridges, or remote mountainous areas, where GPS
may not provide real-time location data. Meanwhile, cam-
eras may not be applicable on ships to monitor radioactive
materials due to confdentiality and privacy requirements.
To address these challenges, Zeng et al. [20, 21] developed
a method to detect unauthorized movements by installing
a wireless node on radioactive items within the cargo
package. In this context, Zeng et al. [20] established a net-
work comprising numerous wireless nodes on the packages.
In this approach, any illegal movement of containers can be
detected by monitoring the real-time connection status
between the detecting node and its adjacent nodes. If a node
fails to communicate with its neighboring nodes during
transportation, the system automatically issues an alarm
indicating that the package has been lost or stolen. However,
this method required a stable and reliable network between
the nodes. More specifcally, the system will generate false
alarms if the network fails and communication breaks down.
To resolve this shortcoming, the authors in [21] developed
an illegal movement detection model based on a space
triangle. Tis approach involves three steps: 1. the received
signal strength indicator (RSSI) values were calculated by
measuring the signal strength between the nodes on the
package and the four anchor nodes within the package; 2. the
RSSI values were converted into distances using the log-
distance path loss model; 3. the precise location of the
package was determined by establishing a spatial triangle
and solving the associated mathematical equations. Tis
approach allows for the assessment of whether the radio-
active cargo has been moved outside the compartment,
indicating the occurrence of an unauthorized movement. It
should be indicated that the presence of the multipath efect
in wireless signal transmission introduces a notable chal-
lenge. As a result, the distances estimated from RSSI values
are vulnerable to errors [22–24], which adversely afects the
accuracy of determining the cargo location. Consequently,
false and missed alarms may occur in identifying illegal
movements of radioactive material packages. On the other
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hand, due to the shielding efect of the metal carriage,
wireless nodes installed outside the package may not receive
signals from the anchor nodes within the cargo, let alone
obtain RSSI values. Such instances cause the method not to
function properly. Hence, the approach exhibits poor
performance.

Te conducted literature survey indicates that the
existing detection methods deprive stability and accompany
the failure risks of detection since the distance calculation
based on RSSI generates errors that could lead to false and
missed alarms. Consequently, it is of signifcant importance
to develop a novel methodology to detect illegal movements
of radioactive material packages steadily and dependably by
succeeding with a high detection accuracy. A feasible so-
lution to address the aforementioned challenges is to utilize
the backpropagation (BP) neural network, which is a su-
pervised learning algorithm that is commonly employed to
solve various problems such as classifcation, regression,
prediction, and pattern recognition problems [25]. In the
feld of nuclear energy, the BP neural network has been
widely employed to monitor the operating state of nuclear
systems, diagnose faults, identify nuclides, and optimize the
design of reactors [26, 27]. Considering the superior char-
acteristics of the BP neural network such as its profciency in
nonlinear ftting, adaptive learning, and handling multidi-
mensional complex data, this scheme is adopted in the
present study to detect unauthorized movements of radio-
active material packages during transportation.

Similar to the study conducted by Zeng et al. [21], this
article defnes an unauthorized movement (or illegal
movement) as any movement of radioactive cargo outside
the truck’s compartment during transportation. It is worth
noting that although the standard BP neural network ex-
hibits outstanding performance, it has some drawbacks such
as slow converges and susceptibility to fall in local optimal
solutions [28]. To resolve these problems, the Adam opti-
mizer was employed in this article to optimize the standard
model. As a result, a new Adam-optimized BP neural net-
work model was developed to detect unauthorized move-
ments of radioactive material packages. Te main objective
of the present study is to provide a reliable basis for alarm
generation in the vehicle transportation security system.Tis
article primarily focuses on the following aspects:

(1) Dataset Collection: several Wi-Fi modules were
positioned on the inner wall of the cargo compart-
ment and radioactive material transport packages.
Te RSSI sequence collected from the packages from
the Wi-Fi modules inside the cargo compartment
was measured after powering on all the modules. To
establish a comprehensive dataset, the data collection
procedure was repeatedly run at each time where the
position of the packages is randomly adjusted, and
then the corresponding RSSI values were recorded.

(2) Construction of the unauthorized movement de-
tection model: several dynamic optimization algo-
rithms were employed, and the results were
compared. In this regard, the convergence speed and
computational cost of the optimized BP neural
network model were analyzed. Finally, an Adam-
optimized BP neural network model was developed
to detect unauthorized movements of radioactive
materials.

(3) Experimental validation: experimental validation
was carried out through the measured dataset,
comparing and analyzing the changes of three in-
dices, including the number of classifcation errors
(NM), the accuracy rate (ACC), and the
MacroF1 macro-mean of the unauthorized move-
ment detection model before and after the optimi-
zation. Te focus was on the accuracy of the model,
as well as the false and missed alarm rate of
the model.

3. Detection Model

3.1. BP Neural Network. Te BP neural network is a multi-
layer feedforward neural network based on error back-
propagation training. Tis model is one of the most widely
used neural network models, which is commonly used in
diverse applications [25]. Te BP neural network primarily
consists of three parts: the input layer, the hidden layer, and
the output layer. Each layer contains several nodes, and the
network weights refect the connection status between
layers. Tis model compares the actual output with the
expected output in the output layer. If the results are in-
consistent, the error is calculated and the error signal is
propagated backward [29]. Ten, the gradient descent al-
gorithm continuously updates the network weights until the
error meets the accuracy requirements.

Figure 1 shows the schematic structure of a typical three-
layer BP neural network, in which x1,. . .,m, and ŷ1,. . .,n are
input and output variables, respectively. Furthermore, vij

and wij denote the weights between the nodes of the input
and hidden layers and the hidden and output layers, re-
spectively. Te activation function of the hidden layer is
ReLU with a bias term bj, while that of the output layer is
Softmax with a bias term θj. Te forward propagation
equation can be expressed as follows:

hj � g 􏽘
m

i�0
vijxi + bj

⎛⎝ ⎞⎠, j � 1, 2, 3 . . . m, (1)

ŷj � f 􏽘
n

i�0
wijxi + θj

⎛⎝ ⎞⎠, j � 1, 2, 3, . . . k. (2)
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Te BP neural network utilizes the gradient descent
algorithm to optimize and update the network weights and
bias terms. Tis algorithm is as follows:

vij
′ � vij − α

zJ

zvij

, (3)

wij
′ � wij − α

zJ

zwij

, (4)

bj
′ � bj − α

zJ

zbj

, (5)

θj
′ � θj − α

zJ

zθj

, (6)

where α represents the learning rate, with a default value of
0.01 [25]. Tis iterative process is repeated until the network
converges to a satisfactory level of performance.

3.2. BP Neural Network Optimized by Adam Algorithm.
Te standard BP neural network algorithm is prone to
oscillations during weight updates using the gradient de-
scent algorithm, resulting in slower convergence rates and
falling into local minima, thereby adversely afecting the
model accuracy. To address these problems, the Adam
optimization algorithm is adopted to optimize the standard
BP neural network weight update algorithm [30]. Tis
optimization algorithm dynamically adjusts the learning rate
of each parameter by estimating the frst-order and second-
order moments of the gradients. It also incorporates mo-
mentum and adaptive learning rates to accelerate model
training, improve network recognition accuracy, and reduce
oscillations during convergence. For instance, the gradient
descent algorithm updates W[l], which is the weight matrix
between the hidden and output layers, through the following
iterative calculations:

mt � η1 ∗mt−1 + 1 − η1( 􏼁∗ dW[l]
t−1, (7)

nt � η2 ∗ nt−1 + 1 − η2( 􏼁∗ dW[l]
t− 1􏼐 􏼑

2
, (8)

t � t + 1, (9)

􏽣mt �
mt

1 − ηt
1
, (10)

􏽢nt �
nt

1 − ηt
2
, (11)

W
[l]
t � W

[l]
t−1 − α∗

􏽣mt��
􏽢nt

􏽰
+ ε

, (12)

where mt and nt are frst-order and second-order mo-
mentum terms, respectively, while 􏽣mt and 􏽢nt represent their
bias-corrected estimates; W

[l]
t−1 denotes the value of the

network weights of the t-1st iteration in the implicit and
output layers; ƞ1 and ƞ2 are the default values of the
hyperparameters; ƞt

1 and ƞt
2 represent the t-th power of η1

and η2, respectively.
Finally, the weights and biases are updated, and the

weights W[l]
t for the t-th iteration are obtained as equation

(12). Similarly the network weights V[l]
t , biases B[l]

t , and Ɵ [l]
t

between the input and hidden layers during the t-th iteration
are updated as follows:

V
[l]
t � V

[l]
t−1 − α∗

􏽣mt��
􏽢nt

􏽰
+ ε

, (13)

B
[l]
t � B

[l]
t−1 − α∗

􏽣mt��
􏽢nt

􏽰
+ ε

, (14)

Ɵ [l]
t � Ɵ [l]

t−1 − α∗
􏽣mt��
􏽢nt

􏽰
+ ε

, (15)

where B
[l]
t−1 and Ɵ [l]

t−1 denote the model bias at the t-1st it-
eration; V

[l]
t−1 is the network weight between the input and

hidden layers at the t-1st iteration; α is the learning rate; ε is
an infnitesimal real value.

3.3. Detection Model with an Adam-Optimized BP Neural
Network

3.3.1. Model Feature Parameters and Label Defnitions.
Based on the analyses presented in the preceding sections,
the fundamental concept of commonly used methods for
identifying unauthorized relocation of radioactive material
during transport revolves around continuous monitoring of
its position within the cargo compartment. In this study,
a Wi-Fi module was installed on the radioactive trans-
portation parcel, while multiple Wi-Fi modules were
deployed as access points (APs) within the transportation

h2

h3

hn

Input OutputHidden

h1

vmn

x1

ŷ1

ŷ3

ŷk
wnk

ŷ2
x2

xm

g (x) f (x)

Figure 1: Schematic structure of the BP neural network (g(x) and
f(x) are activation functions).
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compartment. Before the experiment, these Wi-Fi modules’
operation mode and network parameters, including IP
address and subnet mask, are required to be confgured.
Once powered on, the Wi-Fi module on the radioactive
goods parcel receives the RSSI values from the multiple APs
located within the compartment. Tese values can be or-
ganized into a sequence denoted as (RSSI1, RSSI2, . . .,
RSSIn), where “n” represents the number of APs, which is 6
in the present study. Notably, distinct locations of the parcels
yield diferent RSSI sequences. Terefore, these RSSI se-
quences can be used as the input feature parameters.

Given the concentration of security forces in the cab,
diverting radioactive materials from the front of the truck
would be unrealistic. Tus, RSSI data collection from this
specifc orientation was omitted. During the experiment,
with the truck in the center, the area is divided into four
distinct regions with unique labels: the interior, the left side,
the right side, and the rear area.Te neural network’s output
value corresponds to the region code, wherein a unique code
is allocated to each label. Table 1 provides a mapping be-
tween the labels and respective regions.

3.4.Model Architecture Design. Te proposed model utilizes
a 3-layer Adam-optimized BP neural network. In this model,
the hidden layer consists of 32 neurons, while the input layer
comprises 6 neurons corresponding to the RSSI values re-
ceived from 6 APs within the compartment.Te output layer
consists of 4 neurons and employs Softmax activation to
classify the region into four distinct regions. Te hidden and
output layers employ ReLU and Softmax activation func-
tions, respectively. Figure 2 illustrates the structure of the
Adam-optimized BP neural network model for un-
authorized movement detection of radioactive material
packages.

Te training dataset encompasses 70% of the collected
dataset, while the remaining 30% is allocated as the test data.
Once the model is trained, inputting the RSSI values
gathered from the six access points received from the ra-
dioactive transportation package empowers the model to
generate the corresponding region code for the parcel.
Consequently, the specifc location of the radioactive parcel
can be determined accordingly. If the radioactive parcel is
detected outside the truck’s compartment, it indicates an
illegal movement has occurred.

4. Experiment

4.1. Hardware Components. Te RSSI dataset was collected
using seven 51mm ∗ 28mm Wi-Fi modules, as shown in
Figure 3(a). Each module featured an onboard 2.4GHz Wi-
Fi chip antenna and was equipped with a 32-bit low-power
dual-core ESP32-WROOM-32 as the core processor. Te
Wi-Fi modules were powered by a 3.7V lithium-ion battery.
Tese modules are small, cost-efective, and efcient Wi-Fi
modules that ofer exceptional performance.

4.2. Experimental Environment. Te experimental truck’s
compartment is 3.00m long, 1.60m wide, and 1.55m high.
Te compartment’s roof is situated at a height of 2.3m above
the ground. Te experiment was conducted in three steps:
frstly, six anchor nodes were arranged inside the com-
partments afxed directly with transparent adhesive paste.
Tese anchor nodes were set to operate in the AP mode that
broadcast wireless signals for other terminals to scan and
obtain signal strength. Figure 4 illustrates the installation
positions of the anchor nodes. Secondly, one additional Wi-
Fi module was designated as the mobile node, simulating
a node mounted on the radioactive material transporting
container. Te mobile node was operated in the STA (sta-
tion) +AP mode. Once the node was powered on, it auto-
matically scanned and obtained the RSSI values from the six
anchor nodes and transmitted the collected data to a PC via
the TCP protocol. Finally, the received RSSI data was read
and stored on the PC using NetAssist V5.0.2 software.

Based on the measurement results, the mobile node
established communication with the anchor node located in
the rear area of the truck at a maximum distance of 8m.
However, when the mobile node was positioned on the left
or right side of the truck, the connection to the anchor node
was lost at a distance of approximately 5m from the
compartment. Notably, the mobile node hardly detected
signals from the anchor node inside the compartment when
positioned on the front side. Accordingly, the experimental
area was divided into four sections: the interior of the truck’s
compartment, the area within 5m to the left and right of the
truck, and the region within 8m from the rear of the truck.
During the experiment, the mobile node was randomly
moved within these four regions, collecting RSSI values from
the six anchor nodes within the compartment at each point.
Additionally, the height of the mobile node at the same
measurement point was measured to simulate scenarios
where packages of diferent volumes of radioactive materials
were illegally moved outside the truck, thereby enriching the
dataset. In total, 10113 data points were collected during the
experiment. Figure 5 shows photographs of the
experimental site.

4.3. Data Preprocessing. RSSI values are afected by a variety
of interfering factors such as multipath, scattering, obstacles,
and metal shielding that are typically present in the envi-
ronment. To reduce the measurement error caused by the
interference, multiple measurements are conducted at the
same location when collecting data. During the experiment,

Table 1: Regional label classifcations.

Regions Labels
Te interior of the truck 1
Te left side of the truck 2
Te rear of the truck 3
Te right side of the truck 4

Science and Technology of Nuclear Installations 5



the mobile node reads 20 consecutive RSSI values from each
AP at each measurement point, creating a set of RSSI values.
On the PC side, a Gaussian flter is applied to the collected
RSSI data from the same AP to obtain the fnal RSSI value.
Tis value is then stored in the sample dataset for subsequent
training and testing of the neural network model.

Te main concept of applying Gaussian fltering is to
select the RSSI value of the high probability region as the
efective value and then calculate its geometric mean. Tis
method efectively reduces the errors caused by small
probability events and improves the accuracy of the mea-
sured data. Based on empirical observations, RSSI values

. . .. . .

RSSI1

RSSI2

RSSIn

. . .

Area

Code

Rear

Left

Right

Interior None Illegal 
Movement

Illegal 
MovementFeature 

Parameters

Adam-optimized BP neural network Outside

Figure 2: Structure of the Adam-optimized BP neural network model for unauthorized movement detection of radioactive material
packages.

(a) (b)

Figure 3: Wi-Fi module: (a) the front view of the module and (b) Wi-Fi module attached to the inner wall of the truck’s compartment.

(a) (b)

Figure 4: Experimental site: (a) anchor node installation diagram in the compartment and (b) mobile node communication schematic
diagram.

6 Science and Technology of Nuclear Installations



follow a Gaussian distribution [31], with the probability
density function in the form as follows:

f(x) �
1

σ
���
2π

√ [ee]
(x − μ)

2

2σ2
, (16)

where the mean μ and variance σ2 are expressed as

μ �
1
m

􏽘

m

i�1
RSSIi , (17)

σ2 �
1

m − 1
􏽘

m

i�1
RSSIi − μ( 􏼁

2
. (18)

Terefore, μ and σ2 can be calculated by introducing the
measured RSSI values into equations (17) and (18). To
compute the Gaussian distribution corresponding to each
set of RSSI, the obtained μ and σ2 are applied to the density
function of the Gaussian distribution, as defned in equation
(16). Te RSSI values were selected according to the sigma
principle of the Gaussian distribution, and then the average
was taken over k RSSI values. Finally, the desired RSSI value
can be obtained from the following expression:

RSSI �
1
k

􏽘

k

i�1
RSSIi . (19)

After applying Gaussian fltering, the fnal RSSI dataset
can be obtained. Tis dataset contained 10113 samples
collected from random locations within four regions. Table 2
provides details of the data distribution. Due to shielding
and obstruction caused by the compartment, the mobile
node was unable to scan signals from certain APs in specifc
areas on the left and right sides near the front of the truck. As
stated previously, the method outlined in [13] fails to
provide a reliable means of detecting unauthorized move-
ments of the radioactive material packages under these
circumstances. In our study, these RSSI values were adjusted
to a minimal value of −200 dBm in the dataset during the
data preprocessing stage and served as a vital component in
the training and testing sets of the detection model.
Moreover, even if the packages were in areas where certain
APs’ signals were blocked, the proposed detection model

could remain capable of efectively detecting the un-
authorized movements of packages.

5. Results and Discussion

5.1. Comparison of Multiple Optimization Algorithms.
After establishing the dataset, the model was trained to
detect unauthorized movements of radioactive material
packages. Data processing, as well as model construction,
was performed on the PyTorch framework within the
PyCharm integrated development environment.

To validate the superiority of the Adam-optimized BP
neural network algorithm, it was compared with the stan-
dard BP neural network and BP neural networks optimized
by other algorithms such as RMSProp, AdaGrade, and
AdaDelta that exhibit adaptive learning capabilities. Te
results illustrated in Figure 6 show that the Adam and
RMSProp optimization algorithms outperform the other
algorithms in terms of cost and convergence rate. Fur-
thermore, it is found that the Adam optimization algorithm
exhibits a clear advantage over the RMSProp optimization
algorithm regarding computational costs. Terefore, it is
concluded that the utilization of the Adam algorithm for
optimizing the BP neural network confers signifcant
advantages.

5.2. Analysis of Experimental Results. Te classifcation
prediction was performed using an Adam-optimized BP
neural network model with a learning rate of 0.01. Te
dataset contained 10113 pieces of data, 70% of which is
allocated to a training set and 30% to a testing set for ex-
perimental validation. Te output results were classifed into
four categories: the interior, the left side, the right side, and
the rear of the truck. Te evaluation metrics were the
number of misclassifcations (NM), accuracy (ACC), and the
macro-average of F1 scores (MarcoF1). ACC is defned as
the ratio of correctly classifed instances to the total number
of instances and can be mathematically expressed as follows:

ACC �
Ptest

Stest
∗ 100%, (20)

(a) (b) (c) (d)

Figure 5: Experimental site in four sections of the truck: (a) left side, (b) rear side, (c) interior area, and (d) right side.
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where Ptest is the number of correctly classifed instances and
Stest is the total number of test instances.

TeMarcoF1 macro-average is an index, which is widely
used to measure the accuracy and stability of multi-
classifcation models while considering both precision rate
and recall rate. In this paper, the output results form a four-
classifcation problem. To calculate the MarcoF1 macro-
average, it is necessary to decompose it into four binary
classifcations. Te F1 score is computed for each binary
classifcation, and then the average of the four F1 scores is
calculated to obtain the MarcoF1 macro-average. Tis ap-
proach ensures the comprehensive evaluation of the model’s
performance across all classes. Te MarcoF1 index can be
obtained from the following expression:

F1(i)
�
2∗P

(i) ∗R
(i)

P
(i)

+ R
(i)

, (21)

MacroF1 �
1
4

􏽘

4

i�1
2∗

P
(i) ∗R

(i)

P
(i)

+ R
(i)

, (22)

where P(i) and R(i) are the precision and recall of class i,
respectively.

Te experiment compared the number of NM, ACC, and
MarcoF1 macro-average values between the BP neural
network and the Adam-optimized BP neural network
models. As shown in Table 3, the results reveal that as the
number of training epochs increases, the classifcation ac-
curacy of both models on the test data improves. For the
same number of training epochs, the Adam-optimized BP

neural network demonstrates higher accuracy and
MarcoF1 macro-average values compared with the BP
neural network. Additionally, the Adam-optimized model
has substantially fewer misclassifcations. Specifcally, when
the number of epochs was set to 200, the Adam-optimized
BP neural network displayed a 28.6% reduction in the
number of misclassifcations compared to the standard BP
neural network. Te gap between the NM, ACC, and
MarcoF1 macro-average of the Adam-optimized BP neural
network and the BP neural network models gradually ex-
hibits a negative correlation with the number of epochs.
However, the Adam-optimized BP neural network model
consistently outperforms the BP neural network model
across these evaluation metrics.

Te classifcation results were converted into two cate-
gories: “inside the truck’s compartment” and “outside the
truck’s compartment” by merging the classifcations for the
left side, right side, and rear of the truck. Te classifcation
“outside the truck’s compartment” signifes that an un-
authorized movement has occurred, which is also referred to
as an abnormal event. On the other hand, the classifcation
“inside the truck’s compartment” indicates that there was no
unauthorized movement, so it is also called a normal event.
Te output results are crucial evidence for alarming the
onboard transportation security system. In cases where
radioactive materials are moved outside but the model in-
correctly classifes them as “inside the truck’s compartment,”
the system fails to generate an alarm. Tis case is known as
a missed alarm. Conversely, if the radioactive materials are
inside the compartment, but themodel predicts it as “outside
the truck compartment,” and a false alarm is triggered. Te
missed alarm rate and false alarm rate are defned as follows:

False alarm rate �
NIO

NI

∗ 100%, (23)

Missed alarm rate �
NOI

NO

∗ 100%, (24)

where NIO is the number of samples inside the truck
misclassifed as outside the truck or the number of normal
events misclassifed as abnormal events; NI is the actual total
number of samples inside the truck or the actual total
number of the normal event; NOI is the number of samples
outside the truck misclassifed as inside the truck or the
number of abnormal events misclassifed as normal events;
NO is the actual total number of samples outside the truck,
or the actual total number of the abnormal event.

Te models were trained for 300 epochs with a learning
rate of 0.01. Te confusion matrices of the standard BP
neural network model and the Adam-optimized BP neural
network model are shown in Figure 7. It is observed that in
the classifcation obtained from the standard BP neural
network, 8 of the 727 test points inside the truck com-
partments were misclassifed, and 24 of the 2307 test points
outside the truck’s compartment were mispredicted. Ac-
cordingly, the overall classifcation accuracy was 98.95%.
Meanwhile, the rates of missed and false alarms were 0.79%
and 0.26%, respectively. Figure 7(b) shows that when using

Table 2: Data distribution.

Regions Number of samples Percentage (%)
Te interior of the truck 2412 23.9
Te left side of the truck 2507 24.7
Te rear of the truck 2928 29.0
Te right side of the truck 2266 22.4
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Figure 6: Performance of various optimization algorithms.
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the Adam-optimized BP neural network model for de-
tection, only 3 of the 727 test points inside the truck
compartment were correctly classifed, resulting in a false
alarm rate of 0.1%. However, 22 of the 2307 test points
outside the truck compartment were wrongly classifed as
the interior, resulting in a missed alarm rate of 0.72%.
Accordingly, the overall classifcation accuracy of the model
was 99.17% indicating that the modifed model outperforms
the standard model.

6. Conclusions

To reduce the rates of false and missed alarms in detecting
unauthorized movements of radioactive material shipments,
an Adam-optimized BP neural network model was proposed
in the present study. Te developed model was applied to
detect unauthorized movements of radioactive material
packages. It was found that the Adam-optimized BP neural
network model improves classifcation accuracy and macro-
average values compared with the standard BP neural
network algorithm. When the output results were catego-
rized into 4 classes: they are the interior, left and right sides,
and the rear sections of a truck. Te results revealed that the
maximum reduction in classifcation errors is 28.6%. Ex-
perimental results indicate that when classifying the output
data as whether inside or outside of the truck compartment,
the proposed model achieves an accuracy rate of 99.17%,
a missed alarm rate of 0.72%, and a false alarm rate of 0.1% in
detecting unauthorized movement of radioactive materials.

Tis article demonstrates that the developed method
exhibits high accuracy and stability in detecting un-
authorized movements, efectively avoids false alarms and

achieves a very low missed alarm rate. Tis method holds
signifcant potential for enhancing the security of trans-
porting radioactive materials. Te developed method ad-
dresses various concerns such as losses, theft, and malicious
incidents. Tis approach contributes to enhancing overall
transportation security levels.
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