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Te neutronics and thermal-hydraulics (N/TH) coupling behavior analysis is a key issue for nuclear power plant design and safety
analysis. Due to the high-dimensional partial diferential equations (PDEs) derived from the N/TH system, it is usually time
consuming to solve such a large-scale nonlinear equation by the traditional numerical solution method of PDEs. To solve this
problem, this work develops a reduced order model based on the proper orthogonal decomposition (POD) and artifcial neural
networks (ANNs) to simulate the N/TH coupling system. In detail, the POD method is used to extract the POD modes and
corresponding coefcients from a set of full-order model results under diferent boundary conditions. Ten, the backpropagation
neural network (BPNN) is utilized to map the relationship between the boundary conditions and POD coefcients. Terefore, the
physical felds under the new boundary conditions could be calculated by the predicated POD coefcients from ANN and POD
modes from snapshot. In order to assess the performance of an ANN-POD-based reduced order method, a simplifed pressurized
water reactor model under diferent inlet coolant temperatures and inlet coolant velocities is utilized. Te results show that the
new reduced order model can accurately predict the distribution of the physical felds, as well as the efective multiplication factor
in the N/TH coupling nuclear system, whose relative errors are within 1%.

1. Introduction

Nuclear reactor is a complex multiphysics system, resulting
from the coupling between neutronics, fuid dynamics, heat
transfer, and mechanics. Te neutronics and thermal-
hydraulics coupling system has attracted signifcant re-
search attention due to its great infuence on the reactor
power distribution and nuclear safety. Several coupling al-
gorithms have been developed to solve this large-scale neu-
tronics/thermal-hydraulics nonlinear system. Picard iteration
is the most common method since it could fully reuse the
existing codes for individual physics [1–3]. Specifcally, in
Picard iteration, the coupling boundary information is

exchanged between diferent physical felds to consider the
coupling efect, while each physical feld is still solved by the
original existing code. However, the outer iterations are re-
quired among all the physical felds whose convergence rate is
only linear. Recently, several attempts have been made to
accelerate the Picard iteration, such as the residual balance
method [4] and Anderson acceleration [5]. Another widely
used multiphysics solver is Jacobian-free Newton–Krylov
method (JFNK), where all the physical felds are solved to-
gether to achieve the 2nd order convergence rate [6–9].
However, both the Picard iteration and JFNKmethod have to
solve a large-scale nonlinear algebraic equation system.When
simulating the same physical model under diferent boundary
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conditions, this large-scale system should be solved re-
peatedly, usually leading to expensively computational cost.

In order to solve this problem, themethod of reduced order
models (ROMs) based on the proper orthogonal de-
composition (POD) has emerged as a promising strategy to
efciently simulate the N/TH coupling system, as well as other
issues in nuclear engineering community, such as the eigen-
value problem [10, 11], the neutron transport problem [12],
and the multigroup neutron difusion problem [13]. Vergari
and German use the POD-based ROM method to solve the
N/TH coupling problem, where the full-order model (FOM) is
projected onto the POD basis to produce the low-dimensional
system [14, 15]. Here, by the projection operator, the partial
diferential equations (PDEs) about physical felds have been
transformed to ordinary diferential equations (ODEs) about
the corresponding coefcient vectors which still have to be
solved by numerical methods, called as the POD-Galerkin-
based ROMmethod. Several attempts have beenmade to avoid
solving the equations by using the artifcial neural network
(ANN) and have been applied in nuclear reactor problems
including the abnormal event diagnosis [16, 17] and system
state prediction [18, 19]. Although both the POD-Galerkin
method and ANN method have been successfully applied in
nuclear reactor felds, there are relatively few reports of the
POD-ANNmethod [20, 21] which is fully data driven and fully
equation solver free. Furthermore, amongst the studies
reviewed, research about the application of the POD-ANN
method in the N/TH coupling problem has not been made yet.

Terefore, in this paper, a nonintrusive POD-ANN
method for the N/TH coupling problem has been developed.
Te POD method is employed to capture the characteristic
spatial structure and modes of physical felds and eigen-
values under diferent boundary conditions by the snapshot
method. Ten, the backpropagation neutral network is se-
lected to map the relationship between the boundary con-
ditions and the POD coefcients. Finally, the trained ANN
model is utilized to predict the POD coefcients with new
boundary conditions, and then the distributions of coupled
multiphysics felds could be reconstructed.

Te reminder of the paper is organized as follows:
Section 2 provides a brief introduction of the couplingmodel
and the POD-ANN-based ROM method used in this study.
Section 3 presents the application of the proposed method to
a simplifed N/TH couplingmodel. Finally, the conclusion of
this work is summarized in Section 4.

2. Numerical Methods

2.1. Neutronics and Termal-Hydraulics Coupling Model

2.1.1. Conservation Equations. A simplifed pressurized water
reactor model in a simplfed cylinder r-z two-dimensional
water reactor model has been considered in this work. Te
detailed information about this model could be found in [22].
Since the objective of this work is to develop a method for the
fast-running N/TH coupling problem in the nuclear reactor,
a simplifed neutron and thermal-hydraulics coupling model is
selected here for the purpose of easy to study. Please note that
the coupling relationship and values of the parameters are

considered as practical as possible. Te results of this work
could have the potential to indicate the performance of the
POD-ANN method for the complicated and practical neu-
tronics and thermal-hydraulics issue. From the mathematical
perspective, the neutronics and thermal-hydraulics system can
be described by fve nonlinear partial diferential equations.

Neutron difusion equation with constraint equation:
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where P is the fxed total reactor power and Ω is the
computational domain.

Solid porous medium energy conservation equation:
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Coolant continuity equation:
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Te pressure Poisson equation used in this work is
derived from the mass conservation equation (4) and the
momentum equation (5):
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Te neutron cross sections in equation (1) are the
functions depending on the fuel temperature and the coolant
temperature. Te heat conduction of the solid fuel in
equation (2) depends on the fuel temperature itself. Te
meaning of each term is listed in Table 1. Te expression of
the parameters can be seen in [22].

2.1.2. Numerical Discretization Method. Te fnite volume
method is utilized in this work to discretize the nonlinear
PDEs. Particularly, the convection term in equation (6) is
discretized with the upwind diference scheme, and the
central diference scheme is utilized for difusion terms in
these equations. Besides, the staggered grid mesh is
employed to solve the coolant fow feld distribution and
coolant temperature feld distribution. After discretization,
the matrix form of the nonlinear equations is expressed by
the following equation [22].
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In equation (8), the term Y is the unknowns, A is the
coefcient matrix, and the submatrix blocks of which are
dependent on the unknowns Y. Te information about the
boundary conditions and the source term is included in Q,
which is not a constant vector obviously. Te Picard it-
eration is utilized to solve N/TH equation system (8),
where the coupling information, such as the fssion power,
fuel temperature, and coolant temperature, is exchanged
among diferent physical felds. Specifcally, the efective
multiplication factor keff in the neutron difusion
equation is solved numerically with the power iteration
method.

2.2. POD-ANN-Based ROM Method

2.2.1. POD Method. Te ROM method aims to replace the
original full-order problem with an alternation of the
lower order but accurate model. Te POD method is
a widely used ROM method due to its broad applicability
to linear and nonlinear systems. In this paper, a full-order
N/TH coupling model described in Section 2.1.2 is con-
sidered.Te coupling equation system can be expressed by
a function f(x, δ): Rd⟶ RN, where x is the domain of
the space and N is the size of x, which depends on the
number of the discretization points of the partial difer-
ential equations. In this work, the magnitude for N is 103.

δ is the parameters which equal to boundary conditions in
this work. Te basic mechanic of POD is to fnd a set of
deterministic function ui(x) called POD basis which can
best approximate the concerning function f(x, δ) in the
least square sense. It is the optimization problem:

minimize e � f(x, δ) − 􏽘
r

i�1
ki(δ)ui(x)

���������

���������
, r<N, (9)

where ki(δ) is the POD coefcient and ||•|| is the standard
Euclidean.

Te Snapshot method is one way to achieve this
purpose. Let S be a matrix consisting of the snapshots of
the solution. In this work, the snapshots yi � f(x, δi) ∈
RN×L, i � 1 · · · L are collected from the numerical simu-
lation of the full-order model constructed in Section 2.1.1
with a series of diferent boundary conditions. L is the
number of the snapshots, whose value is usually much
smaller than that of N.

We apply the singular value decomposition to S, and the
basic vectors are the left singular vectors of S and the frst r

eigenvector U � u1(x), u2(x) · · · ur(x)􏼈 􏼉 are chosen to be
the POD basis vectors. Te number of the POD basis r is
determined by the predefned energy ration c:
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r
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With the POD basis, the original function can be
reconstructed by

f(x, δ) � k1(δ)u1(x) + k2(δ)u2(x) + · · · + kr(δ)ur(x).

(11)

2.2.2. ANN Backpropagation Neutral Network. Te back-
propagation neutral network (BPNN) is a powerful artifcial
neural network, which has been successfully applied in en-
gineering communities. A typical BPNN model usually
consists of input layers, hidden layers, and output layers. Here
are the twomain processes in the BPNN: forward propagation
of information and error backpropagation. Except for the
input layers, for each neuron in the output layers and hidden
layers, the activation function transformed the outputs and
the weight sum of the previous layer with a bias added. Te
activation functions of the hidden layer and the output layer
used in this work are “tanh” and “identity,” respectively.

Te accuracy of the BPNN highly depends on the
quantity of hidden layers and quantity of neurons at each
hidden layer. Teoretically, a BPNN with one hidden layer
can approach to any continuous function in the closed
interval. Although increasing the number of hidden layers
has the potential to improve accuracy, too many hidden
layers complicate the network, increasing the training time
and may lead to the overftting issue. At present, the trial-
and-error method is the most common and practical way to
determine the number of hidden layers and number of nodes
in the hidden layers. Te basic structure of one hidden layer
BPNN used in this work is elucidated in Figure 1. Te four

Table 1: Notation in the governing equations.

Symbols Physical parameters
ϕ Neutron fux
Σa Neutron absorption cross section
υΣf Neutron fssion cross section
D Neutron difusion coefcient

Eeff Heat production per nuclear fssion reaction
keff Efective multiplication factor
Ts Fuel temperature
ρs Fuel density
cps Fuel heat capacity

ks,r, ks,z Anisotropic fuel heat conductivity
Tc Fluid temperature
ρc Fluid density
cpc Fluid heat capacity
λc Fluid heat conductivity
α Heat transfer coefcient
A Heat transfer area
u Fluid velocity
p Fluid temperature
g Gravity acceleration
ε Porosity

W Friction factor
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training processes of the BPNN are included as follows:
frstly, the connection weights are initialized randomly
within the given range; then, the predicted value is generated
after a series of operations on the input data; after that, the
connection weights are adjusted according to the error
between the predicted value and the expected value; the
Levenberg–Marquardt method is utilized in this work as the
training function, which is a combination of the Grand
method and Gauss–Newton method; such process continues
until the error in norm 2 reaches the convergence criterion
or reaches the maximum number of iterations.

2.2.3. POD-ANN Algorithm. Based on the combination of
POD with the ANN-BPNN, a computational model to
solve the N/TH coupling problem is developed in this
paper. Te implementation of this new approach is shown
in Figure 2. A full-order N/TH coupling model, as de-
scribed in Section 2.1, is calculated under diferent per-
turbed boundary conditions to establish a library of the
required results. Ten, the POD method is utilized to
extract the features of the physical feld based on the
simulation results, where the POD basis and corre-
sponding coefcients are obtained. After that, the BPNN
is used to map the relationship between the boundary
conditions and POD coefcients. Finally, the trained
BPNN is utilized to predict the POD coefcients as
outputs, with new boundary conditions as inputs. Te
predicted POD modes and POD basis are then used to
reconstruct the physical felds, and the deviation between
the POD-ANN predicted values and numerical solution of
N/TH coupling equations values is employed to evaluate
the performance of the POD-ANN method.

3. Numerical Results

3.1. Problem Description and Sampling Design. A simplifed
cylinder r-z two-dimensional pressurized water reactor
model with a radius of 1.6meters and a height of 4.4meters
is used to evaluate the performance of the proposed
POD-ANN method. Te neutronics and thermal-
hydraulics coupling behavior is described by equations
(1)–(7). Te vacuum boundary condition is defned at the
outface boundaries for the neutron difusion equation, and

the adiabatic boundary condition is defned at the
boundary for solid energy conservation. Te coolant
pressure at outlet boundary is set to be 15.5MPa, and the
inlet boundary is set to be fxed velocity and fxed tem-
perature boundary condition. Te boundary conditions are
listed in Table 2. Te reactor power is set to be 200MW in
equation (2). Figure 3 shows the numerical calculation
result of physics distribution under the boundary condition
of a coolant inlet velocity of 4m/s and inlet temperature of
270℃.

A series of diferent inlet temperatures and speeds of the
coolant is selected to generate the snapshots. Te inlet
coolant temperature ranges from 280°C to 300°C, and the
inlet coolant velocity is within the range of 4m/s to 6m/s.
Te intervals of the coolant temperature and coolant velocity
are 2℃ and 0.2m/s, respectively. Terefore, there are 121
cases which are determined by the computational model
described in Section 2.1.2, constructing a library of snapshots
as training test. In order to verify the prediction accuracy of
the model for new inputs, for the testing cases, the inlet
coolant temperature ranges from 281℃ to 299℃ and the
inlet coolant velocity is within the range of 4.1m/s to
5.9m/s.Te intervals of the coolant temperature and coolant
velocity are 2℃ and 0.2m/s for testing cases, whose total
number is 100. Te distributions of the training and testing
sample points are presented in Figure 4. Te locations of the
testing sample are totally diferent from those of the training
sample.

… …

… …

X1

X2

Y1

YmXn

Input Layer Hidden Layer Output Layer

ωij ωjk

Figure 1: Structure of the BPNN with one hidden layer.
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Figure 2: POD-ANNmethod for solving N/TH coupling problem.

4 Science and Technology of Nuclear Installations



3.2. PODMode Features. Te POD method is performed on
the snapshots generated by the 121 training sets to obtain the
POD modes which include the important features of

diferent physical felds in the N/TH coupling system. Te
decay in the eigenvalue of the correlation matrices for each
physical quantity is presented in Figure 5. It can be seen that

Table 2: Boundary conditions [22].

z � 0 z � H r � 0 r � R
Neutron Vacuum boundary condition Zero gradient Zero gradient Vacuum boundary condition
Fuel temperature Zero gradient Zero gradient Zero gradient Zero gradient
Coolant temperature Fixed value Zero gradient — —
Coolant velocity Fixed value Determined by pressure — —
Coolant pressure Determined by velocity Fixed value — —
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Figure 3: Distributions of physical felds.
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the eigenvalues decay rapidly, which means only a few POD
modes are sufcient to represent the characteristics of the
physics felds. Te number of the POD basis is determined
by the energy ration c in equation (11). In this work,
c � 1 × 10− 7, indicating that the error between the nu-
merical results and the reconstructed results is less than 0.1%
in norm 2. For the neutron fux feld, only the frst three
POD modes are required to satisfy the criterion of energy
ration c. Te dimensions of the reduced spaces for the
approximation of the diferent physical quantity are sum-
marized in Table 3, and the distributions of the POD bases of
each physical quantity are shown in Figures 6(a)–6(e). By
comparing with the physics distribution in Figure 3, it can be
seen that the frst or frst two POD basis could capture the
key features of the snapshots. We take the frst three POD
basis of the neutron fux as an example, Figure 6(a) shows

that the frst order POD basis, providing the basic spatial
distribution of the neutron fux. Te frst order POD basis is
almost axial symmetry along the z axis, and the maximum is
achieved at the center of the z axis and circle center in the r
axis, satisfying the theoretical prediction of the neutron fux
distribution. Te second order POD basis makes some
adjustments among the z axis, which is approximately
positive at the low part and negative at the upper part due to
the temperature feedback efect. Compared with the frst two
POD basis with one and two extreme points, respectively,
the third POD basis has three extreme points which could
further consider the local detailed distribution of the neu-
tron fux feld. Te POD bases of other physical felds have
the similar phenomenon. Please note that the efective
multiplication factor, which is a key parameter for steady-
state N/TH calculation, is also considered here.

Distribution of Sampling Points

trainning
testing

290 295285 300280
T0 (°C)

4
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5
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6

u0
 (m

/s
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Figure 4: Distribution of the sampling points.
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Figure 5: Decay in the eigenvalue of the correlation matrices.
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3.3. Artifcial Neural Network Structure. Te POD co-
efcients of high order change drastically with inlet velocity
u0 and inlet coolant temperature T0. As an example, Figure 7
shows the 3rd POD coefcient of fuel temperature under
diferent inlet velocities. In this work, the BPNN is utilized to
calculate the POD coefcients under diferent coolant inlet
parameters. Please note that since the complicated re-
lationship between POD coefcient and inlet conditions, the
simple interpolation methods, such as the bilinear in-
terpolation, are incompetent in such cases.

Six BPNNs are constructed for the six physical quan-
tities, respectively, where the inlet coolant velocity and
temperature are the inputs and the sampling dataset of the
POD coefcient are the outputs. Table 4 shows the settings of
the training parameters of each BPNN. For all of the BPNNs,

one hidden layer is used, and the optimized number of
neurons at the hidden layer is determined for each BPNN
after several attempts. Te Levenberg–Marquardt method is
used as the training function due to its high efciency for
small and medium-size problems. Te performance of the
network is evaluated by the mean square error (MSE) be-
tween the target value and the predicted value of the outputs.
Te term n is the number of the outputs, that is, the POD
coefcients. Te information about residual convergence of
each network is presented in Figure 8. For neutron fux,
there are only a few tens of epochs to achieve the predefned
stop criterion, while it requires about several hundreds of
epochs for fuel solid temperature, coolant temperature,
coolant velocity, coolant pressure, and efective multipli-
cation factor, perhaps due to the relatively complicated

Table 3: Dimensions of the reduced spaces for the diferent physical quantities.

Physical quantity Neutron fux Solid temperature Coolant temperature Coolant velocity Coolant pressure
Dimension 3 4 3 3 2
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Figure 6: POD basis distributions of (a) neutron fux, (b) solid fuel temperature, (c) coolant temperature, (d) coolant velocity, and (e)
coolant pressure.
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relationship between the POD coefcients and inputs
(coolant velocity and temperature).

Te approximate felds are reconstructed based on the
predicted POD coefcients from the ANN and POD bases
for the training samples to evaluate the performance of the
POD-ANN model. Ten, the POD-ANN model is further
applied to the testing samples to assess the generalization
ability of the POD-ANNmodel. Here, the deviation between
reconstructed felds and the numerical results of PDEs in
Section 2.1.2 is determined by two conventional evaluation
metrics, the mean relative error (MRE), and the relative L2

error (l2), which is defned as

MREj �
1
N

􏽘

N

i�1

y
pre
(i,j) − y

rel
(i,j)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

y
rel
(i,j)

, i � 1 · · ·N, j � 1 · · · n,

l
2
j �

y
pre
i,j −y

rel
i,j

�����2

�����

y
rel
i,j

�����2

�����
, i � 1 · · ·N, j � 1 · · · n,

(12)

where y
pre
i,j is the predicted results obtained from the

POD-ANN model and yrel
i,j is the numerical solution of

PDEs. N is the total number of the discrete points, and n is
the sample size which is 121 in the training cases and 100 in
the testing cases.

Te maximumMRE and the mean MRE of each physical
feld are listed in Table 5, and those of maximum l2 error
and the mean l2 error are presented in Table 6. Te MRE
and l2 of each feld are under 1%, and the mean MRE of the

efective multiplication factor reached 10− 5 magnitude,
which indicates the proposed model accurately approximate
the steady-state N/TH coupling problem. Among the six
physical quantities considered in this work, the MRE and l2

error of coolant velocity in the testing cases are the largest,
almost one order of magnitude larger than other physical
quantities. Tis might be contributed by the relatively small
change of coolant velocity between inlet and outlet.
Moreover, the computational cost is also analyzed, as shown
in Table 7, and the computational efciency of the
POD-ANNmethod is nearly 80 times higher than that of the
traditional Picard iteration method.

Furthermore, Figure 9 shows the spatial distribution of
the MRE of the training and testing cases of each physical
feld except for the efective multiplication factor. As shown
in Figures 9(a) and 9(b), the maximumMRE of the predicted
neutron fux and fuel temperature is achieved near the
coolant outlet, which might be contributed by the smaller
values and relatively larger gradients of these two physical
quantities. Please note that, due to the low level of the
neutron fux in these regions, the relatively larger predicted
errors have minor impact on the power level. Te MREs for
the temperature and velocity and pressure of the coolant
shown in Figures 9(c)–9(e) are also small, whose value are
less than 0.1%.

In order to explore the prediction accuracy varied with
input boundary conditions, the l2 error distribution of each
case, including both the training and testing samples, is
shown in Figure 10. Te l2 error of the training and testing
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Figure 7: Te 3rd POD coefcient of fuel temperature under diferent inlet velocities.

Table 4: Te settings of the training parameters of each BPNN.

Physical quantity ϕ Ts Tc u p keff

Number of hidden layers 1 1 1 1 1 1
Number of neurons at hidden layer 1 1 1 1 1 4
Training function Levenberg–Marquardt
Transfer function in the hidden layer tanh
Transfer function in the output layer Identity
Learning rate 0.1
Learning goal 0.00004
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ϕ-Best Training Performance is 0.00079564 at epoch 65 Ts-Best Training Performance is 4.2059e-05 at epoch 1000
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Table 5: Te maximum MRE and the mean MRE of each physical feld.

ϕ Ts Tc u p keff

MREmax(‰)
Training cases 4.38 2.01 6.75 6.14 0.01 0.008
Testing cases 3.91 1.78 6.08 5.52 0.01 0.009

MREmean(‰)
Training cases 2.10 0.64 4.92 6.06 0.01 0.008
Testing cases 1.87 0.59 4.44 5.46 0.004 0.009

Table 6: Te maximum l2 and the mean l2 of each physical feld.

ϕ Ts Tc u p keff

l2
max(‰)

Training cases 5.48 2.29 10.88 16.47 0.03 0.029
Testing cases 0.47 0.17 1.00 1.16 0.002 0.037

l2
mean(‰)

Training cases 1.88 0.82 5.01 6.06 0.006 0.008
Testing cases 0.17 0.07 0.45 0.53 0.0005 0.009

Table 7: Computational time for diferent methods.

Method Picard iteration POD-ANN
Time (s) 32 0.37
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Figure 9: Continued.
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Figure 9: Te spatial distribution of the MRE of the training and testing cases of each physical feld of (a) neutron fux, (b) solid fuel
temperature, (c) coolant temperature, (d) coolant velocity, and (e) coolant pressure.
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Figure 10: Te distribution of the l2 error of each case with diferent boundary conditions: (a) l2 error distribution of neutron fux, (b) l2

error distribution of fuel solid temperature, (c) l2 error distribution of coolant temperature, (d) l2 error distribution of coolant velocity, (e)
l2 error distribution of coolant pressure, and (f) l2 error distribution of the efective multiplication factor.
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cases has similar distribution. Te l2 error is relatively
uniform and distributed within a small range, along with the
input variables.

Moreover, the performance of the POD-ANN model is
also evaluated for the situations whose inlet coolant tem-
perature and velocity are linear distribution. In detail, the
average value of the inlet parameter, such as inlet coolant
temperature and velocity, is kept as a constant, but the slope of
the linear distribution is changed. Te slopes of u0 and T0
change from −1 to 0, and the sampling interval is 0.1.
Terefore, the 121 samples are generated and randomly di-
vided into training (70) and testing (51) sets. Te POD bases
are then extracted, and the corresponding coefcients are
calculated. Te distributions of the frst POD basis are shown
in Figure 11. Te MRE and l2 error of each physical feld in
the testing cases under linear distribution inlet parameters are
shown in Tables 8 and 9, respectively. Te max MRE and l2

error of all the physical felds are within 1%, which indicates
that the POD-ANNmethod also has the capability of accurate
prediction for the complicated boundary conditions.

4. Conclusion

An efcient reduced order model based on the POD and
ANN for the neutronics and thermal-hydraulics coupling
problem is developed in this work. In order to evaluate its
performance, a simplifed cylinder r-z two-dimensional
pressurized water reactor model is considered with difer-
ent inlet temperature and speed of coolant. In detail, the
POD approach is employed to extract the characteristic of
the physical felds by snapshots. Te spatial distribution of
the POD bases shows that the frst or frst two POD bases
capture the main features of the snapshots. Te higher order
POD bases could further consider the local detailed dis-
tribution. Te BPNN is constructed with the boundary
conditions as input and the POD coefcients as output. Te
trained BPNNs are then utilized to predict the POD co-
efcients with new boundary conditions. To evaluate the
accuracy of the POD-ANN-based reduced order model, the
MRE and l2 error between the predicted results from the
reduced order model and the numerical solution of PDEs are
analyzed. Results show the MRE and l2 error of each feld
are under 1% which indicates that the proposed approach
can accurately predict the distribution of the physical felds,
as well as the efective multiplication factor keff , for this

steady-state N/TH coupling issue. Te computational time
of the POD-ANNmethod is nearly 80 times less than that of
the traditional Picard iteration method. Furthermore, the
relatively large MRE appears at the outlet, perhaps due to
a small value or large gradient in these regions.

In this work, the BPNN is used to reduce the training
time, but the main drawback of the BPNN is the overftting
problem. In order to solve this issue, the deep learning
neural network’s plan to be used and applied to the practical
multiphysical model in the future [23].
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