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In this work, a machine learning (ML) metamodel is developed for the time-series forecasting of a typical nuclear power plant
response undergoing a loss of coolant accident (LOCA). Te plant model of choice is based on the APR1400 nuclear reactor. Te
key systems and components of APR1400 relevant to the investigated scenario are modelled using the thermal-hydraulic code,
RELAP5/MOD3.4, following the description published in the design control document. Te model is tested under a spectrum of
initial and boundary conditions via propagation of key uncertain parameters (UPs) which are derived from the phenomena
identifcation and ranking table (PIRT). Tis is achieved by loosely coupling RELAP5/MOD3.4 with the statistical tool, Dakota.
Te most probable nuclear power plant (NPP) response was calculated using the best estimate plus uncertainty (BEPU) approach.
Next, the database generated from the NPP system response was used as an input for theMLmodel.TeNPP system response was
represented by peak cladding temperature (PCT), safety injection system (SIT), mass fow rate, reactor power, and primary system
pressure. In this research, two regression models were tested with reasonably good performance, namely, the gated recurrent unit
(GRU) and the long short-term memory (LSTM).

1. Introduction

Modern nuclear power plants (NPPs) are developed with
safety as the main priority. During normal operation, op-
erators in the main control room (MCR) continuously
monitor a myriad of nuclear power plant (NPP) parameters
in order to keep them within their nominal conditions.
Under accident conditions, MCR operators should com-
prehend the current plant dynamics in real time. Tis in-
cludes accident diagnosis following an emergency situation
for which timing and precision are key to the decision-
making process to keep the NPP safe.

However, under accident conditions, the operators are
exposed to stressful conditions and may need to take timely
decisions. To expedite the decision-making process and
simultaneously minimize the possibility of human error,
a machine learning (ML) prediction model is proposed
using a multistep artifcial neural network.TeMLmodel is

trained to mimic the most NPP system response generated
using a physics-based model for a set of initial, operating,
and boundary conditions. Te main goal of this research is
to develop a machine learning (ML) model for real-time
prediction of NPP response under accident conditions to
help operators in the MCR expedite the decision-making
process [1]. Some of the most challenging conditions for the
operators are the loss of coolant accident (LOCA) or an
extended station blackout (SBO). Under those conditions,
a core meltdown may be potentially inevitable if the ulti-
mate heat sink is completely lost [2]. In case of LOCA, the
loss of ultimate heat sink may be due to the unavailability of
the emergency core cooling system. While for SBO, this
may be due to the loss of the heat removal system as
evidenced by the Fukushima Daiichi accident. In this re-
search, a large break loss of coolant accident (LBLOCA) is
considered as a bounding scenario for design basis
accidents.
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ML is actively being sought for the development of
digital twins [3] for preventive maintenance, as well as the
autonomous control of nuclear power plants in an attempt
to minimize the possibility of human errors [4]. For ex-
ample, an ML model has been developed by implementing
an artifcial neural network (ANN) along with the back-
propagation algorithm to help in mitigating a loss of
feedwater (LOFW) accident in a multiapplication small light
water reactor [5]. A fast-running model conditional
autoencoder (CAE), known as an auto-associative neural
network (AANN), can predict the pressure as well as peak
cladding temperature (PCT) in ARP1400 under a small
break LOCA (SBLOCA) scenario [6]. Similarly, an ANN
model that can also support the implementation of the
diverse and fexible coping strategy (FLEX) has been de-
veloped for an extended SBO [7, 8]. Prediction of the peak
cladding temperature (PCT) and infuence of the FLEX
strategy for APR1400 undergoing an extended station
blackout (SBO) was performed using an artifcial neural
network (ANN) [9]. Usage of artifcial neural networks
(ANNs) such as deep learning neural networks (DLNNs)
and convolutional neural networks (CNNs) have been ex-
plored to predict the critical heat fux (CHF) of water fowing
in reactor vessel channels [10, 11] without solving the un-
derlying physics. Similarly, deep CNN and support vector
regression (SVR)models were used to predict the core power
distribution, reducing the time needed for such an operation
while maintaining high accuracy [12, 13]. SVR has been used
for fast and accurate reactor core loading pattern modelling
[14]. ANN algorithms such as Kohonen self-organizing map,
K-means, and Fuzzy C-means can be useful tools for fow
pattern identifcation in tubes flled with the gas-liquid
mixture [15]. In the wake of the accident at the Fukush-
ima Daiichi, NPP researchers explored the use of codes such
as MELCOR and MAAP to simulate the core behaviour
under severe accident conditions and use the generated
databases to develop and train ML models capable of pre-
dicting the NPP response at a fraction of the time needed
using conventional methods and hence serving as an aiding
tool for the decision-making process [16].

ML models have also been used to predict the difusion
and transport of radioactive materials in the atmosphere
[17, 18] and the prediction of the radioprotector com-
pounds’ efectiveness and toxicity [19]. Furthermore, IAEA
is supporting the increasing trend of using robots in envi-
ronments contaminated with radiation [20]. Robots with
a sophisticated level of artifcial intelligence can help with
general maintenance, decontamination, and postaccident
activities such as search and rescue in NPPs [21].

Since accident prevention is a topmost priority for MCR
operators, Korea Hydro and Nuclear Power Co., Ltd.
(KHNP) developed an early warning system at the head-
quarters in Gyeongju.Te systemmonitors and diagnoses 24
nuclear power plants in real time and uses ML to detect
slight fault symptoms of equipment in advance, which allows
the operators to prevent or prepare for failure and hence
minimize losses caused by unplanned maintenance [22].
Currently, engineers from the Central Research Institute
(CRI) KHNP are working on developing an ML model to

predict the NPP response under accident conditions. Faulty
solenoid-operated valve (SOV) can be detected by AI using
DNN and XGBoost regressor, as well as the emergency diesel
generator (EDG) using CNN autoencoder by loading the
sound waveform and spectrogram to the model [23, 24]. Te
program will detect the defective frequency and report the
state of the tested device. Similarly, CNN can be used for
crack detection on reactor vessel (RV) surfaces [25]. Early
identifcation of potential material failure can prevent an
accident in the future.

A wide variety of artifcial intelligence (AI) applications
in specifc areas of the NPP system can help the MCR
operators beneft from an accurate prediction of the NPP’s
system response during normal conditions like load fol-
lowing operation [26] or even add an extra level of pro-
tection when the NPP is experiencing an accident condition.
ANN-based algorithms can diagnose and identify the ac-
cident scenario that the NPP is currently undergoing and
predict the future system parameters based on the system
response or operator’s actions [5, 27].

Given the potential benefts of AI at large and specifcally
of machine learning (ML), this study builds on the work of
Sallehhudin and Diab [28] and follows the work of Radaideh
[29] to develop a time-series forecasting ML model capable
of predicting the NPP real-time response for APR1400
undergoing an LBLOCA. Unlike the work of Sallehhudin
and Diab [28], the NPP response is predicted as a function of
time rather than pointwise prediction of a characteristic
safety criterion. Furthermore, the current work is considered
an extension of the earlier work of Radaideh [29] whose
work focused on small break LOCA. Te underlying physics
with heterogeneous versus homogeneous vessel conditions
is quite diferent. In the long term, the RCS will remain at
high pressure for SB-LOCA and the injection fow rate is too
low for efective cooling; thus, small breaks require cooling
of the RCS by the SGs until shutdown cooling (SDC) can be
initiated. On the other hand, under LBLOCA, the plant is
adequately cooled by the injection fow because this fow is
large due to the low RCS pressure.

To achieve this goal in an efcient and systematic
manner, the work breakdown structure involved three
building blocks. First, a thermal-hydraulic model of
APR1400 undergoing an LBLOCA scenario was developed
using RELAP5/MOD3.4. Tis was followed by the devel-
opment of an uncertainty quantifcation framework using
the DAKOTA platform to sample and propagate various
uncertain parameters into the thermal-hydraulic model. A
python script allows the communication and data exchange
between the two codes, hence facilitating the automation of
the sampling and propagation processes for the best estimate
plus uncertainty analysis until a statistically representative
sample size achieved. Once the database of possible system
responses is generated, it is passed to the machine learning
(ML) model for training and tuning with the ultimate goal of
predicting key system responses. Given the nature of the
problem, a time-series forecasting model based on recurrent
neural network was selected. Specifcally, the long-short--
term memory (LSTM) and the gated recurrent unit (GRU)
were compared.
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2. Methodology

Tis section describes the methodology applied in this work,
which involves three basic steps, namely, the development of
a thermal-hydraulic model, an uncertainty quantifcation
framework, and a machine learning model. For the machine
learningmodel to predict the NPP response, it is necessary to
generate a large enough database using the thermal hy-
draulics model, which in turn is driven by the uncertainty
quantifcation framework as illustrated in Figure 1.

2.1. Termal-Hydraulics Model. Te thermal-hydraulics
model is developed in RELAP5/MOD3.4 system code to
simulate the nuclear power plant response under LBLOCA
conditions [28]. Te plant of choice for the analysis is the
Korean Advanced Pressurized Reactor (APR1400).
APR1400 is a cutting-edge nuclear power plant which
evolved by upgrading and optimizing its predecessor, the
OPR1000 power plant model. Te design of APR1400 has
been strengthened to satisfy the 0.3 g seismic requirements.
In addition, the quadrant layout design of auxiliary building
enhances its coping capabilities against extreme external
events such as fre, food, and earthquake. In 2019, APR1400
successfully achieved the Design Certifcation from the US
Nuclear Regulatory Commission (NRC) and was success-
fully exported to UAE. More recently, the EU-APR, which is
an evolutionary model of APR1400, received the European
Utility Requirements (EURs) Certifcation.

LBLOCA is a hypothetical accident leading to the loss of
the reactor coolant at a rate exceeding the capability of the
reactor coolant makeup system. Generally speaking, a break
involves a spectrum of sizes and locations; but according to
the APR1400 design control document (DCD), the most
limiting break is a 100 percent of a double-ended guillotine
break at the largest pipe of the reactor coolant system (RCS),
i.e., the pump discharge leg, which is the adopted as-
sumption in the current work.

Under LBLOCA, the emergency core cooling water is
delivered directly into the upper annulus of the reactor
pressure vessel (RPV) via the direct vessel injection (DVI)
nozzle. Te innovative design of APR1400 involves a fuidic
device (FD) to regulate the amount of injection fow from
the safety injection tanks (SITs) depending on the phases of
accident progression. Te SITs in conjunction with the FD
deliver high- and low-fow injections, which are equivalent
to the conventional safety injection tank (accumulator) fow
and low-pressure safety injection pump fow, respectively.
After the safety injection tanks are depleted, the high-
pressure safety injection pumps take over to ensure the
emergency core cooling is achieved.

For the long-term cooling of the plant, the operator can
initiate a controlled system cooldown by using the auxiliary
feedwater (AFW) system in conjunction with the atmo-
spheric dump valves (ADVs). In the absence of a forced
reactor coolant fow, the RCS heat is removed by natural
circulation along with the steam generators (SGs). After the
reactor coolant temperature and pressure have been reduced
to approximately 176.7°C and 31.6 kg/cm2, respectively, the

shutdown cooling system (SCS) is activated to reduce the
RCS temperature to the cold shutdown condition. Te
cooldown capacity of the auxiliary feedwater system pro-
vides reasonable assurance that the shutdown cooling entry
condition is reached before 8 hours.

Te source of safety injection water is the IRWST and
given the fact that it is located within the containment,
simultaneously acting as a containment sump, the need for
a switchover to recirculation mode is not applicable to the
APR1400. Te elimination of the ECCS realignment oper-
ator action is considered a signifcant improvement in the
design of APR1400.

However, it is worth noting that for conservatism in
safety analyses, such safety-related operator action is not
credited for the mitigation of postulated events until
30minutes after the event initiation even though the action
can be performed from the main control room (MCR)
within 30minutes. Since the current work focuses on the
short-term NPP response under LBLCA conditions, oper-
ator actions are not credited following the conservative
safety analysis approach and consistent with APR1400 DCD.

To refect the details of APR1400, the nodalization
shown in Figure 2 contains the key systems and components.
On the primary side, the reactor coolant system (RCS) with
a reactor pressure vessel (RPV), two hot legs, four cold legs,
four reactor circulating pumps (RCPs), a pressurizer (PRZ),
and two steam generators (SGs) along with main steam lines
and safety valves are represented using appropriate thermal-
hydraulics components. Te core inlet and outlet nozzles,
downcomer, and lower and upper plenums as part of the
reactor vessel are modelled as well. Te reactor core is
represented using an average channel and a hot channel,
each is discretized using 20 vertical nodes.

Te emergency core cooling system (ECCS) of the
APR1400 is represented by modelling the safety injection
system (SIS) and connected to the RPV at the upper annulus.
Te SIS contains the following two main components: four

Uncertainty Quantifcation (UQ) Framework
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PIRT Key Uncertain 
Parameters

Figure 1: Data processing fowchart.
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safety injection tanks (SITs) and four safety injection pumps
(SIPs). Automatic operation of the SIPs is actuated by a low
pressurizer pressure signal or a high containment pressure
signal. In accordance with the conservative assumption of
APR1400 design control document (DCD) for LBLOCA
evaluation, two out of four SIPs are available during the ac-
cident to minimize the safety injection available to cool the
core. However, with concurrent LOOP, the available SIPs (with
a design temperature of 177°C) cannot start until the EDG
startup and load sequencing. Hence, a time delay of 40 seconds
is assumed after the safety injection actuation signal (SIAS)
setpoint is reached. Flow is initiated from the SITs when the
check valves open as the pressure in the RPV downcomer
drops below the SIT pressure setpoint (∼4.25MPa).

Te LBLOCA is activated at time zero with a double-
ended guillotine break at 100% of the cold leg with an area of
0.456037m2. Tis is implemented in the simulation by using
two trip valves connected to one of the cold legs after the
pump discharge line. When the LBLOCA is initiated, fow is
directed from the vessel and cold leg to the time-dependent
volumes attached to each valve.

Te reactor kinetics is handled via the point-kinetics
model within RELAP5/MOD3.4. For conservatism, the
negative reactivity insertion due to the control rod worth is
not taken into consideration according to the APR1400
DCD. Furthermore, anMTC of 0.9×10−4 (Δρ/°C) along with
the least negative Doppler coefcient used to be consistent
with the conservative assumptions adopted in APR1400

DCD. Te system is initialized using the nominal operative
conditions provided for LOCA in Chapter 15 of APR1400
DCD, which are listed in Table 1.

2.2. BEPU Approach for Data Generation. It is necessary to
generate a statistically representative database for the
training and development of a machine learning metamodel.
To this end, the Best Estimate Plus Uncertainty (BEPU)
methodology is applied to propagate key uncertain pa-
rameters into the thermal-hydraulics model, RELAP5/
MOD3.4. Te set of key uncertain parameters are derived
from the Phenomena Identifcation and Ranking Table
(PIRT) developed for the LBLOCA scenario [28, 30] as listed
in Table 2.

To automate this process, an uncertainty quantifcation
(UQ) framework, is developed by loosely coupling the
statistical tool, DAKOTA [31], to the thermal-hydraulic
system code, RELAP5/MOD3.4, via a Python script. Te
Monte Carlo (MC) random sampling technique along with
the Latin hyper-cube (LHC) method is used to defne
a combination of input parameters that scan the spectrum of
all possible initial and boundary conditions for the thermal-
hydraulics model.

Te LHC sampling method allows for efcient distri-
bution generation of plausible realizations of values from
a multidimensional distribution [54] and was, therefore,
used to cover the distribution with fewer samples and hence

Figure 2: APR1400 nodalization for the LBLOCA thermal-hydraulic model [28] (reproduced from Sallehhudin and Diab, 2021, under the
creative commons attribution license/public domain).
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reduce the computational burden of conventional MC
techniques such as bootstrap [32].

DAKOTA then passes the uncertain parameters to the
RELAP5/MOD3.4 code by reading and writing text fles in
the developed framework. Te uncertain parameters are
written into the steady state and transient RELAP5/MOD3.4
input fles and output fles from RELAP5/MOD3.4 calcu-
lations are passed back to the DAKOTA results fle. A
Python script is responsible for the input preparation, data
exchange between DAKOTA and RELAP5/MOD3.4, as well
as the output postprocessing before passing the sample into
the data frame as shown in Figure 3.

2.3. Machine Learning Metamodel. In general, there are
three main categories of machine learning, namely, super-
vised learning, unsupervised learning, and reinforcement
learning. Supervised learning algorithms are designed to
learn by example.Te algorithm is given the labelled outputs
for a set of inputs. Based on the dataset designated for
a machine to learn from, the algorithm can predict the
correct answer for the new input data. On the other hand,
unsupervised learning does not have labelled data to learn
from. Instead, it clusters similar outputs into groups based
on common input features. Reinforced learning is based on
a reward system. By observing the environment, the algo-
rithm interprets the input and takes an appropriate action in
order to be rewarded [33].

In this research, a supervised machine learning tech-
nique is implemented. Supervised learning is further divided
into the following two categories: classifcation and re-
gression. Classifcation is a method where inputs and out-
puts are classifed with labels. Te goal of this method is
a prediction of single or multiple related binary class labels.
Tis method is well suited for anomaly detection. Regression
is similar to classifcation, but the prediction is performed
over a continuous domain. For this reason, regression is well
suited for forecasting based on historical time-stamped data
[34]. Predicting the future (time series forecasting) such as
the stock market price [35] or weather forecasting [36] can
be done using a class of artifcial neural networks called

recurrent neural networks (RNNs). RNN uses an algorithm
called backpropagation through time (BPTT) to look back at
historical data using outputs from previous neurons. Using
this method, an artifcial neuron preserves some state in-
formation across time steps in a part of the neural network
called a memory cell [37].

A particular problem with RNNs is using short-term
memory, hence losing some information at each time step of
a long sequence. Te other weakness is exposed during
training when an error occurs. Tis error is backpropagated
through the entire length of the sequence with the same
weights. During each time step, backpropagated gradients
may dramatically increase or decrease. Especially in long
sequences, this process may lead to gradient diminish or
growth at an exponential rate and hence vanish or explode
[38, 39]. Tese phenomena are known as vanishing or
exploding gradient problems.

Tese issues can be mitigated by eliminating the repeat
multiplication by the same weight vector during back-
propagation in an RNN [39]. Tis weight correction has
been implemented in the long short-term model (LSTM)
proposed by Hochreiter and Schmidhuber [40].

Te LSTM is specifcally designed to control the gradient
for a longer duration. In an LSTM cell unit, there are three
gates, namely, forget gate, input gate, and output gate, as
illustrated in Figure 4. Tese gates regulate information fow
within the cell. Te input gate dictates how the activation
should be updated in response to the new input. Tis de-
termines which information is to be stored in the long-term
memory and which should be stored in the short-term
memory. Te output gate dictates which activation should
be used, hence determining the hidden states where in-
formation about previous inputs is stored. Te forget gate
determines which data from the previous time step should be
passed on and which data should be discarded [42].

Similar to the LSTM unit, the gated recurrent unit
(GRU) shown in Figure 5 as proposed by Cho and Bahdanau
[43], controls the information fow from the previous time
step; but instead of using three cell units GRU uses two,
namely, reset gate and and update gate [44]. Te update gate
is responsible for the determination of the amount of
previous information that needs to be passed along to the
next state. Tis way the model can decide to copy all in-
formation from the past and, therefore, eliminate the risk of
vanishing gradient. Te reset gate is used to decide how
much of the past information should be neglected; basically,
it decides whether the previous cell state is important or not.

In an extension of the previous work by Sallehhudin and
Diab [28] where an artifcial neural network (ANN) was used
to predict the maximum value of the peak cladding tem-
perature (PCT) for diferent initial and boundary conditions,
this research is aimed at forecasting the evolution of the PCT
over time as the accident progresses. For this class of
problems, time-series forecasting based on recurrent neural
network (RNN) is the most efective ML tool. Two variations
are used for this work, namely , LSTM and GRU. Each uses
historical observations (in this case, 5 seconds of simulation
time represented by 10 data points) for the prediction of the
next data point of the NPP response [45].

Table 1: General system parameters and initial conditions.

Parameters DCD
Power (MWt) 3,983
Power peaking factor 2.258
RCP fowrate (kg/s) 5250.0
Core fowrate (kg/s) 20361.0
Primary pressure (MPa) 15.51
Feedwater temperature (K) 505.23
Safety injection tank coolant volume (m3) 52.63
Safety injection tank gas pressure (MPa) 4.25
Safety injection tank coolant temperature (K) 302.5
IRWST temperature (K) 302.5
Core inlet temperature (K) 563.8
Core outlet temperature (K) 597.1
Upper head temperature (K) 584.5
Pressurizer level (m) 8.18
Secondary pressure (MPa) 6.86
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AnyMLmodel is built of of a number of hyperparameters,
such as the number of layers, number of neurons per layer, and
activation function. A dictionary of all hyperparameters and
the search space to be considered is listed in Table 3. During the
development of the ML model, these hyperparameters need to
be selected and optimized to arrive at the best combination that
yields the highest performance.

For the LSTM and GRU models, Talos, the open-source
hyperparameter optimization framework developed for
Keras models [46] was utilized to automate the optimization
process [47, 48]. Various combinations of hyperparameters
selected from the provided dictionary are tested within the
Talos loop as shown in Figure 6.

3. Results and Discussion

Tis section is dedicated for the presentation and discussion
of the results. First, the thermal-hydraulic model predictions
for the LBLOCA scenario are discussed. Next, the data
generation results from the uncertainty propagation
framework followed by data processing and ML model
results are presented.

3.1.Termal-HydraulicModel Results. As mentioned earlier,
the thermal-hydraulic model of APR1400 was developed in
RELAP5/MOD3.4 based on the parameters and initial
conditions reported in APR1400 DCD [49] as listed in

DAKOTA

DAKOTA Parameters File

RELAP5 Input File

RELAP5 Code

RELAP5 Output File

DAKOTA
Results File

Figure 3: Uncertainty propagation framework.

Table 2: Normalized uncertain parameters [28, 30].

Nos. Parameter
description Mean, μ PDF Standard deviation,

σ Range, Lhigh–Llow

1 Core power 1.0 Normal 0.0155 0.9691–1.0309
2 Groeneveld-CHF 1.0 Normal 0.500 0.171–2.1711
3 Chen nucleate boiling HTC 1.0 Normal 0.234 0.382–1.618
4 Transition boiling HTC 1.0 Normal 0.230 0.54–1.46
5 Dittus–Boelter liquid HTC 1.0 Normal 0.196 0.607–1.393
6 Dittus–Boelter vapor HTC 1.0 Normal 0.196 0.607–1.393
7 Film boiling HTC 1.0 Normal 0.287 0.426–1.574
8 Break discharge coefcient 1.0 Normal 0.115 0.77–1.23
9 Decay heat 1.0 Normal 0.051 0.898–1.102
10 Oxidization dial 1.0 Normal 0.01 0.980–1.020
11 SIT actuation pressure 1.0 Normal 0.025 0.949–1.051
12 SIT loss coefcient 1.0 Normal 0.20 0.6–1.4
13 Pressurizer pressure 1.0 Normal 0.113 0.77–1.23
14 Fuel thermal conductivity 1.0 Normal 0.0773 0.8455–1.1545
15 Gap conductance — Uniform — 0.75–1.50
16 Downcomer wall thermal conductivity — Uniform — 1.0–2.0
17 SIT water inventory Uniform 0.9634–1.0372
18 Pump two-phase head multiplier — Uniform — 0.0–1.0
19 Pump two-phase torque multiplier — Uniform — 0.0–1.0
20 SIT water temperature — Uniform — 0.955–1.045
21 SIP (IRWST) water temperature — Uniform — 0.936–1.064
22 SIP fow multiplier — Uniform — 0.5–1.5
23 Pump K-factor — Uniform — 0.239–0.577
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Table 3: Dictionary of hyperparameters.

Hyperparameters Search space
Number of neurons in 1st layer 13, 25, 50
Number of neurons in a fnal layer 1
Number of hidden layers 1, 2, 3
Optimizer Adam, Nadam, SGD, RMSprop
Activation functions ReLU, Tanh, Sigmoid, Softmax
Recurrent activation functions Sigmoid, ReLU, Tanh
Dropout 0, 0.1, 0.2
Batch size 64, 100, 200
Number of iterations 15, 20, 35, 40
Kernel regularizers l1 1× 10−4, 1× 10−5, 1× 10−6

Science and Technology of Nuclear Installations 7



Table 1 to arrive at a similar nominal steady state condition
before the accident is initiated. Table 4 lists the result of
validating the steady state response.

Next, the large break loss of coolant accident is initiated
by activating the relevant trip valves connected to the cold
leg between the pump discharge line and the RPV with an
area of 0.456037m2 to simulate the double-ended guillotine
break. Once the break is initiated, the RCS experiences
a rapid pressure drop as the inventory is lost through the
break. Flashing causes the coolant to transition from

subcooled to saturation conditions, the collapsed water level
drops, and the core uncovers as the RPV becomes voided.
Te safety injection system (SIS) responds via its four safety
injection tanks (SITs) and four safety injection pumps (SIPs).
Following the conservative analysis presented in the DCD,
one of the emergency diesel generator (EDG) is lost; hence,
only two SIPs are available after a 40 sec. time delay; the one
near the break and the one across from it on the opposite
side. Furthermore, loss of ofsite power (LOOP) is assumed,
causing the reactor coolant pumps (RCPs) to coastdown.
Tough the reactor trip signal is initiated at a low RCS
pressure signal, the negative reactivity insertion from the
control rods are not credited for conservatism. Under these
conservative conditions, the generated void should bring the
reactor to a shutdown and the safety injection should be
enough to cool down the fuel and replenish the inventory.
Te main events of the transient simulation are compared to
those reported in the DCD for validation with reasonable
agreement as listed in Table 5.

Upon rupture of the cold leg, the inventory rushes
through the break, initially as a liquid until enough in-
ventory is lost to cause a signifcant and abrupt pressure drop
as illustrated by Figure 7 in conjunction with Figure 8. Te
rapid drop in pressurizer pressure, shown in Figure 8, is
a key characteristic of the blowdown phase of the LBLOCA,
refecting the change in the reactor coolant system (RCS)
pressure during the transient.

As a result of the blowdown condition initiated by the
cold leg break, loss of inventory and rapid depressurization
ensue, which causes fashing of the remaining coolant and
hence the core starts to uncover. Once uncovered, the core
temperature increases as evidenced by the peak cladding
temperature (PCT), as shown in Figure 9. Tis is the
maximum cladding temperature observed for the hottest
vertical node of the “hot” channel or “average” channel. Due
to the deterioration of heat transfer capability of the sur-
rounding vapor phase, the cladding temperature increased
to 831.2°C at 10.5 seconds after the break .Te PCTpredicted
by the RELAP5/MOD3.4 model is compared to that re-
ported in DCDwith reasonable agreement. According to the
DCD, the fuel cladding temperature cannot exceed
1204.44°C. As the results show, this temperature has not
been reached, and hence the safety criterion is satisfed.

Tis temperature increase is halted and the PCTstarts to
drop as a result of both the decrease in decay heat and the
cooling efect provided by the condensate dropping from the
upper guide structures (UGSs) and upper head until
∼17 seconds. With the depletion of condensate and buildup
of decay heat, the cladding temperature starts to increase
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Experiment Analysis
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Scan Function
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Acceptance

Figure 6: Talos optimization process fowchart [9].

Table 4: Steady state validation.

Parameters Model DCD
Power, (MWt) 3,983 3,983
Power peaking factor 2.2 2.258
RCP fowrate, (kg/s) 5313.5 5250.0
Core fowrate, (kg/s) 20326.2 20361.0
Primary pressure, (MPa) 15.55 15.51
Feedwater temperature, (K) 505.62 505.23
Safety injection tank coolant volume, (m3) 52.61 52.63
Safety injection tank gas pressure, (MPa) 4.31 4.25
Safety injection tank coolant temperature, (K) 302.59 302.5
IRWST temperature, (K) 302.45 302.5
Core inlet temperature, (K) 563.93 563.8
Core outlet temperature, (K) 607.5 597.1
Upper head temperature, (K) 563.7 584.5
Pressurizer level, (m) 7.91 8.18
Secondary pressure, (MPa) 6.89 6.86

Table 5: Transient validation for key events.

Timing of key events (s) Model DCD
Break occurs 0 0
Reactor trip signal occurs 5.8 6.2
SI injection signal occurs 5.8 6.2
SIT discharge begins 16.0 14.4
SIP initiated 48.0 46.2
SIT empty time 204.0 201.5
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again until the safety injection system (SIS) is activated and
the emergency cooling water starts to fll the downcomer and
lower plenum (refll phase) and ultimately refoods the core
(refooding phase).

Te emergency cooling water is introduced via four
safety injection tanks as well as the two available SIPs on
the active train as demonstrated by the SIS fow rate shown
in Figure 10. When the system pressure reaches the set
point of 4.2MPa (∼43 kg/cm2), the emergency cooling
water rushes from the safety injection tanks (SITs) into the
RCS by gravity at ∼16 seconds. Given the special design of
the fuidic device, the SITs initially provide a very high
fow rate with a maximum of ∼700 kg/s at ∼30 seconds
when the rate of decay heat is highest, it then shifts to
a low fow rate (until ∼200 seconds) as the decay heat
drops. In addition, once the system pressure reaches the
set point of 12.5MPa (128 kg/cm2), at 48.0 seconds, the SIS
initiates SIP injection with a time delay of 40.0 seconds
until the pumps start. Te depletion of SITs at
∼200 seconds marks the end of the refood phase, and the
SIPs take over the task of replenishing the core. Te
emergency core cooling water covers and quenches the
core as evident by the drop in PCT (Figure 8).

During the transient, the normalized power increases ,
reaching 1.65 driven by the moderator temperature feed-
back mechanism as shown in Figure 11.Tis is attributed to
the cooling efect associated with the rapid de-
pressurization during blowdown with instantaneously very
high fow rates in the core as illustrated in Figure 12, which
causes the heat transfer coefcient to be very efective
momentarily. However, with rapid depressurization and
fashing, the core is uncovered and heats up accordingly.
Tis in turn hampers the increase in power due to the
Doppler efect.

While the model captures the system response quali-
tatively well, there are clear deviations between the predicted
values and those reported in the DCD. Te quantitative
diferences may be attributed to diferences in modelling
approach, nodalization, and code options, along with other
user efects.

In DCD, the CAREMmethodology is adopted for LOCA
analysis, with the RELAP5/MOD3.3 code used for the cal-
culation of ECCS thermal-hydraulics behavior and cladding
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temperature. In the current work, the best estimate thermal-
hydraulic system code, RELAP5/MOD3.4, is used. Te
RELAP5 code was developed for the best-estimate transient
simulation of light-water-reactor coolant systems.

Te code has been used worldwide for analyzing large-
and small-break LOCAs and operational transients, such as
anticipated transient without scram, loss of ofsite power,
loss of feedwater, and loss of fow. Te RELAP5/MOD3.4
code is based on a nonhomogeneous, nonequilibriummodel
for the two-phase system that is solved by a fast, partially
implicit numerical scheme to permit economical calculation
of system transients.

In the DCD, the containment back pressure and tem-
perature calculations are performed by the CONTEMPT4/
MOD5 code. Due to the mass and energy release rate, the
containment back pressure is afected. Simultaneously, the
thermal-hydraulics phenomena in the RCS depend on the
containment back pressure. Hence, RELAP5/MOD3.3 and
CONTEMPT4/MOD5 are coupled together for dynamic
data exchange in real time. Tis is a limitation of the current
work since instead of a coupled analysis, the condition in the
containment is represented statically using a time dependent
volume to refect the pressure increase associated with the
LBLOCA.

Furthermore, when the break fow transitions from
subcooled critical fow to saturated critical fow, the mag-
nitude of the break fow will be impacted. For small break
analysis, the break fow remains critical and is, therefore,
indiferent of the containment condition. However, this may
not be true for LBLOCA, and a coupled analysis seems to be
indispensable for accurate estimation of the break fow. Tis
is a limitation of the current work; nonetheless, the
boundary condition approximation is deemed reasonable
since the goal of this work is to develop a machine learning
model rather than a details thermal-hydraulic model of
LBLOCA.

In addition, the Ransom–Trapp critical fow model is
used for the DCD analysis, while in the current simulation,
the Henry–Fauske critical fow model is applied. Un-
fortunately, the Ransom–Trapp critical fow model is not
available in RELAP5/MOD3.4. Furthermore, the system
nodalization and intricate details such various loss co-
efcients not published in APR1400 DCD may also con-
tribute to the observed quantitative deviations.

3.2. Data Postprocessing. As mentioned earlier, the thermal-
hydraulic model prepared in RELAP5/MOD3.4 is ftted with
a list of uncertain parameters selected within the provided
range and statistical distributions at random using the LHC
method along with Wilk’s methodology. Tose parameters
are passed to the thermal-hydraulic model and run several
times within DAKOTA uncertainty quantifcation frame-
work until a statistically representative sample size is
achieved. According to Wilk’s 5th order, a sample size of 181
is sufcient; however, it was found that a database in excess
of 400 is needed for proper training of the ML model. A
database of 450 samples is obtained by DAKOTA, as shown
in Figures 13–16. Next, the most probable PCT curve was
identifed following the USNRC rule [50] of 95% probability
and 95% confdence level. To avoid the model overftting, the
sample representing the most probable response was
dropped from the training dataset and used for validation of
the model at a later stage.

3.3. ML Model Results. From a safety perspective, the ac-
curacy of the ML model is most important at the higher end
of the range of PCT. Due to the data distribution, the ML
model tends to underpredict the upper range of the PCTdata
regardless of the database size. It is worthy to note that as
high as 5746 samples were tested with no avail.

To enhance the prediction accuracy, the oversampling
technique was applied by adding 225 samples of the highest
PCT values to the original database of 450 samples. Both
datasets are mutually exclusive; therefore, there is no chance
that samples from the original database exist in the auxiliary
database. Te intention of this oversampling method is to
increase the chances of the model being trained to predict
PCT in the upper range of the dataset. Te manipulation of
the training data distribution to solve the imbalance problem
is a well-known practice in theML environment [51, 52].Te
same oversampling database was used to predict SIT mass
fow, core power, and RCS pressure.
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Before trusting the ML model predictions, validation is
indispensable to check that the model is neither overftting
nor underftting. While underftting shows that the model is
not well trained, overftting indicates that the trained model
is incapable of generalization. To avoid underftting, the
model should be trained on large enough database, and to
avoid overftting, dropout and regularization are usually
used to make the model learn more easily, while simulta-
neously being more capable of generalization and less
sensitive to the model weights and number of neurons.

Validation can be achieved by comparing the training
and validation loss functions relative to each other. For a ft
model, the loss function for both training and validation
should converge to a very low value and stay close to each
other, with the validation loss slightly larger than that of
training.

To ensure good ftting, it is common practice to split the
data at 15%–30%. In this study, 18.3% of the data yields the
best validation result. After splitting the data, the model is
not exposed to any of the validation data during the training
process to prevent overftting. It is worthy of mention that all
models were trained using 20–40 epochs. Te training and
validation loss are shown in Figures 17–20 for the NPP
response predictions. Inspecting those learning curves, the
models are deemed to be learning well without experiencing
overftting nor underftting for the selected hyperparameters
listed in Table 6.

After training the diferent RNN models, they were used
to predict the most probable sample. Te results of the
prediction can be seen in Figures 18–21. Te performance of
the two RNN models is further assessed by comparing the
mean absolute error, mean square error, root mean squared
error, and coefcient of determination as listed in Table 7.
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Figure 17: Loss function for the key system responses. (a) Peak cladding temperature. (b) Reactor power. (c) Primary system pressure.
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Comparing GRU and LSTM models, both have very similar
performance. For PCT and power prediction, the LSTM
model has better performance than GRU, but GRU has
lower errors predicting primary system pressure and SIT
mass fow. Both models are predicted with an acceptable
amount of error.

4. Conclusions

Te APR1400 NPP undergoing LBLOCA was modelled
using the RELAP5/MOD3.4 thermal-hydraulic system code
using the parameters available in the design and control
document. Te uncertainty propagation (UP) was per-
formed by the DAKOTA uncertainty propagation tool using
the Monte Carlo approach along with the Latin hyper-cube
method to generate a statistically representative databases
and infer the most probable system response. A database of
675 samples including oversampling was used for the pre-
diction of the most probable NPP response for key system
parameters, namely: PCT, primary system pressure, SIT
mass fow rate, and core power.Tis work compares twoML
models: GRU and LSTM. Both models were tuned to en-
hance their performance using the Talos hyperparameters
optimization tool and later manually adjusted using best
engineering practices. Te best-performing model with the
best loss function characteristic and the lowest error was
selected.

Machine learning can be a useful tool for the real-time
prediction of critical NPP parameters during accident
conditions and can provide operators with useful insight
into the decision-making process. Te calculations showed
that the best-performing LSTM model is capable of
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Figure 20: ML models prediction of the primary system pressure.

Table 6: Selected GRU and LSTM hyperparameters.

Hyperparameters Value
Number of neurons in 1st layer 13
Number of neurons in a fnal layer 1
Number of hidden layers 1
Number of neurons in a hidden layer 26
Optimizer Adam
Activation functions Tanh, linear
Recurrent activation functions Relu
Dropout 0
Batch size 64
Number of iterations 20, 40
Kernel regularizer l1 1× 10−6
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Figure 21: ML model prediction of SIT injection.
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Figure 19: ML models prediction of the reactor power.

Table 7: ML model evaluation metrics.

Parameters ML model MSE RMSE MAE R2 Accuracy

PCT GRU 0.002 0.043 0.033 0.983 95.7
LSTM 0.001 0.036 0.024 0.988 96.4

Pressure GRU 0.001 0.038 0.007 0.982 96.2
LSTM 0.002 0.040 0.007 0.980 96

SIT GRU 0.003 0.018 0.008 0.995 98.2
LSTM 0.001 0.019 0.006 0.994 98.1

Power GRU 0.0004 0.020 0.005 0.934 98
LSTM 0.0004 0.019 0.005 0.940 98.1
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predicting PCT with reasonable accuracy, but for more
accurate prediction, a well-balanced dataset is required and
the models need further tuning to improve their
performance.

With further development, the current work may be
used as a cost-efective support tool for the operator. By
processing historical data from various instrumentations, it
can be used to forecast the time sequence of key system
parameters a few seconds forwards into the future. As it
stands, it can be used for diagnoses and training but it is
intended to expand the machine learning model after
training over a spectrum of accident scenarios, so it may be
used as an expert system to provide insight for the decision-
making involved with operator actions [53–59].
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