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Analysis of Vibrating 
Timoshenko Beams Using the 
Method of Differential 
Quadrature 

The main advantages of the differential quadrature method are its inherent concep­
tual simplicity and the fact that easily programmable algorithmic expressions are 
obtained. It was developed by Bellman in the 1970s but only recently has been applied 
in the solution of technically important problems. Essentially, it consists of the ap­
proximate solution of the differential system by means of a polynomial-collocation 
approach at afinite number of points selected by the analyst. This article reports some 
numerical experiments on vibrating Timoshenko beams of nonuniform cross­
section. © 1993 John Wiley & Sons, Inc. 

INTRODUCTION 

The differential quadrature method was devel­
oped by Bellman and Casti [1971] but it has been 
popularized in recent years by Jang, Bert, and 
Striz [1989], Striz, Jang, and Bert [1988], and 
Bert, Jang, and Striz [1989]. 

A simple explanation of the method is pro­
vided and then the technique is applied to the 
determination of the natural frequencies of Ti­
moshenko beams of nonuniform cross-section. 

DESCRIPTION OF THE METHOD 

Consider the differential equation 

M[W(x)] = F(x) (1) 

subject to certain boundary conditions in the in­
terval [a, b]. 

One proposes now the polynomial 
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which is required to satisfy Eq. (1) and the 
boundary conditions at N points of the interval 

a = XI < X2 < ... < Xi < ... < XN = b. (3) 

If N > m it is possible to express, at each Xi of 
expression (3), the derivative of order m of P(x) 
as a linear combination of the values P(x) or in 
other words: 

N 

2: cijP(x) = p(m)(Xi). 
j=) 

(4) 

Expressing Eq. (4) in the form 

N-) 

= 2: k(k - 1) ... (k - m + 1)akx7-m (5) 
k=m 
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leads to the functional relation: 

N-J 

= L k(k - 1) ... (k - m + 1)akxf-m 
k=m 

and finally to: 

N-J 

L (CilXf + Ci2X~ + ... + CiNX'Jv)ak 
k=O 

N-J 

= L k(k - 1) ... (k - m + l)akxf-m. 
k=m 

(6) 

(7) 

The cij's are obtained solving the linear system of 
equations 

Cil + Ci2 + ... + CiN = 0 

CilXl + Ci2 X2 + ... + CiNXN = 0 

CiIX'{' + Ci2xf + ... + CiNX'jJ = m(m - I) ... 1 

Cil X'{'+ I + Ci2xf- 1 + ... + CiNX'jJ+l 
= (m + I)m . . . 2Xi 

CilXN-l + Ci2X~-1 + ... + CiNX~-1 
= (N - 1)(N - 2) ... (N - m)x{"-l-m. (8) 

Accordingly expression (4) is a valid representa­
tion of the derivative of order m of P(x). 

Substituting now the derivatives that appear in 
Eq. (1) and in the boundary conditions, by the 
expressions generated by Eq. (4), one obtains a 
linear system of equations in the P(x;),s. These 
values are approximations to the exact ones, 
W(x;). In the case of an eigenvalue problem a 
homogeneous system of equations results and 
from the nontriviality condition one obtains a de­
terminantal equation in the characteristic values 
of the problem under study. As N increases it is 
reasonable to expect that the approximations will 
improve (assuming that round-off errors do not 
come into play). Following the notation used by 

well-known authors [J ant et aI., 1989; Striz et aI., 
1988; Bert et aI., 1989] the coefficients cij corre­
sponding to first, second, third, and fourth order 
derivatives are denoted by 

respectively. 

DETERMINATION OF NATURAL 
FREQUENCIES OF TIMOSHENKO BEAMS 
OF LINEARLY VARYING THICKNESS 

Consider the mechanical system shown in Fig. 1. 
Making use of Timoshenko's classical theory of 
vibrating beams one expresses the governing dif­
ferential equations in the form 

-E-=. 1--= + - t/J - -=. + pl-2 = 0 
ax ax A ax at {

a (at/J) EA ( av) iPt/J 

(9) 
E a [( av)] a2v --= A t/J--=. +pA-2 =0 
A ax ax at 

where vex, t), transverse displacement; t/J(x, t) 
angular rotation of the cross-section due to bend­
ing; A, 2(1 + p)/k; k, shear factor; P, Poisson's 
ratio; l(x) , moment of inertia of the cross-sec­
tional area; A (X) , cross-sectional area; p, density 
of the beam material. In the case of normal 
modes of vibration one writes 

of 

I. 
FIGURE 1 
study. 

v (x, t) = V(X)cos wt 

t/J(x, t) = 'I'(x)cos wt. 
(10) 

r========l 
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r=========1 
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b ] o 1 h(X)~h(o)(a~+l) 
_ (a~O) 

·1 -.I 1+ 
b(x)=b(O) 

Vibrating mechanical system under 



Introducing the dimensionless variable x = ilL 
and substituting Eq. (10) in (Eq. (9) one obtains 

{
-A'Y}O 1x (fi<l>') + 12(<1> - V') - ,n2A'Y}ii/l<l> = 0 

(11) 

1x [/2(<1> - V')] - ,n2A'Y}ofiV = 0 

where 

fi(x) = (ax + 1)3 

12(X) = (ax + 1) 

1(0) 
'Y}o = A(0)L2 

<I>(x) = L'I'(x) 

pA(0)L4w2 
n 2 = El(O) . 

If the beam is hinged at both ends the boundary 
conditions are 

V(O) = <1>'(0) = 0 

V(1) = <1>'(1) = 0 

and if they are clamped 

V(O) = <1>(0) = 0 

V(I) = <1>(1) = O. 

(12) 

(13) 

The interval [0, 1] is now subdivided and N nodes 
are adopted. In correspondence with each node 
one has two unknowns: <l>k = <I>(Xk) and Vk = 

V(Xk) and two equations are expressed. The un­
knowns will now be defined in the form 

Substituting the polynomial expression (4) in the 
governing differential system and using the nota­
tion defined in earlier, one obtains the following 
system of equations for the case of a hinged­
hinged beam 

N 

-A'Y}o L (f;Aik + fiBik)Uk + jiUi 
k~1 
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N-I 

- L 12A ik Uk+N - ,n2A'Y}iifi Ui = 0 
k~2 

(i = 2, . . . ,N - I) 

N 

12 L AU-N)kUk + I~Ui-N 
k~1 

N-l 

- L [/~A(i-N)k + 12B (i-N)k]Uk+N 
k~2 

,2N-1) 

(15) 

Analogous procedures are followed for other 
combinations of boundary conditions. 

NUMERICAL RESULTS 

Fundamental frequency coefficients were ob­
tained for the following situations (Fig. 1): simply 
supported; clamped-simply supported; simply 
supported-clamped; clamped-clamped. In order 
to ascertain the relative accuracy of the results 
obtained by means of the differential quadrature 
method, they were compared with values ob­
tained using the finite element algorithmic proce­
dure [Gutierrez, Laura, and Rossi, 1991]. Results 
are presented for several values of 'Y}o and a and 
Poisson's ratio is equal to 0.30 and k = 0.833. 
Table 1 depicts numerical results for the case of a 
simply supported beam. 

The comparison with the results obtained by 
means of the finite elements method, (Table 2) 
indicates very good relative accuracy. Excellent 
agreement is also achieved when the results are 
compared with the exact fundamental eigen­
values (Table 1), for a = o. 

The cases of: clamped-simply supported, sim­
ply supported-clamped and clamped-clamped 
ends are dealt with in Tables 3-7. Excellent 
agreement with the finite element predictions are 
observed for the cases considered in Tables 3, 4, 
6, and 7 (no finite elements results are available 
for the situation posed in Table 5). 

CONCLUSIONS 

Present numerical experiments indicate that the 
method of differential quadrature may be advan-
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Table 1. Fundamental Frequency Coefficients fil in 
the Case of a Simply Supported Beam of Linearly 
Varying Thickness 

0 0.05 0.10 0.15 0.20 

TJo/a (A) (B) (A) (B) (A) (B) 

0.0009 9.694 9.695 9.925 10.153 10.376 10.597 
0.0016 9.565 9.567 9.788 10.007 10.220 10.429 
0.0025 9.409 9.411 9.622 9.829 10.030 10.228 
0.0036 9.231 9.232 9.431 9.626 9.815 9.999 
0.0049 9.034 9.036 9.222 9.403 9.581 9.753 
0.0064 8.825 8.827 9.001 9.171 9.333 9.491 

See Fig. 1. (A) Determined by means of the differential 
quadrature method (n = 9). (B) Exact results. 

Table 2. Fundamental Frequency Coefficients fil in 
the Case of a Simply Supported Beam of Linearly 
Varying Thickness 

YJo/a 0.05 0.10 0.15 0.20 

0.0009 9.927 10.154 10.377 10.597 
0.0016 9.790 10.007 10.221 10.430 
0.0025 9.623 9.830 10.031 10.229 
0.0036 9.433 9.627 9.816 10.001 
0.0049 9.224 9.406 9.582 9.754 
0.0064 9.003 9.172 9.336 9.494 

See Fig. 1. Obtained by means of the finite element 
method [Gutierrez et aI., 1991], 

Table 3. Fundamental Frequency Coefficient fil in 
the Case of a Clamped-Simply Supported Beam of 
Linearly Varying Thickness 

0 0.05 0.10 0.15 0.20 

TJo/a (A) (B) (A) (A) (A) (A) 

0.0009 14.792 14.793 15.032 15.267 15.497 15.724 
0.0016 14.358 14.358 14.575 14.786 14.991 15.192 
0.0025 13.854 13.856 14.046 14.231 14.413 14.587 
0.0036 13.310 13.311 13.478 13.638 13.792 13.940 
0.0049 12.745 12.746 12.888 13.024 13.155 13.280 
0.0064 12.179 12.178 12.298 12.413 12.522 12.626 

(A) determined by means of the differential quadrature 
method (n = 10). (B) Exact results. 

Table 4. Fundamental Frequency Coefficient fil in 
the Case of a Clamped-Simply Supported Beam of 
Linearly Varying Thickness 

YJo/a 0.05 0.10 0.15 0.20 

0.0009 
0.0016 
0.0025 
0.0036 
0.0049 
0.0064 

15.035 
14.578 
14.050 
13.480 
12.892 
12.303 

15.271 
14.789 
14.236 
13.641 
13.029 
12.418 

15.502 
14.996 
14.417 
13.796 
13.160 
12.527 

15.728 
15.197 
14.592 
13.285 
13.285 
12.632 

Obtained by means of the finite element method [Gutier­
rez et aI., 1991]. 

Table S. Fundamental Frequency Coefficient fil in 
the Case of a Simply Supported-Clamped Beam of 
Linearly Varying Thickness 

YJo/a 0 0.05 0.10 0.15 0.20 

0.0009 14.792 15.226 15.653 16.075 16.491 
0.0016 14.358 14.757 15.149 15.532 15.909 
0.0025 13.854 14.218 14.569 14.915 15.251 
0.0036 13.310 13.634 13.948 14.255 14.550 
0.0049 12.745 13.054 13.312 13.581 13.841 
0.0064 12.179 12.433 12.679 12.913 13.140 

Results obtained using the method of differential quadra-
ture, (n = 10). 

Table 6. Fundamental Frequency Coefficient fil in 
the Case of a Clamped-Clamped Beam of Linearly 
Varying Thickness 

0 0.05 0.10 0.15 0.20 

TJo/a (A) (B) (A) (A) (A) (A) 

0.0009 20.872 20.872 21.321 21.763 22.194 22.616 
0.0016 19.901 19.901 20.290 20.669 21.038 21.397 
0.0025 18.837 18.837 19.167 19.845 19.794 20.093 
0.0036 17.749 17.749 18.024 18.290 18.544 18.790 
0.0049 16.683 16.682 16.911 17.130 17.339 17.540 
0.0064 15.665 15.666 15.856 16.036 16.208 16.372 

(A) Differential quadrature method (n = 11). (B) Exact 
results. 



Table 7. Fundamental Frequency Coefficient fil in 
the Case of a Clamped-Clamped Beam of Linearly 
Varying Thickness 

TJo/a 0.05 0.10 0.15 0.20 

0.0009 21.325 21.765 22.197 22.621 
0.0016 20.294 20.673 21.043 21.403 
0.0025 19.173 19.492 19.801 20.101 
0.0036 18.031 18.297 18.552 18.799 
0.0049 16.919 17.138 17.348 17.549 
0.0064 15.864 16.045 16.217 16.381 

Finite elements method [Gutierrez et al., 1991]. 

tageous when dealing with vibrating Timoshenko 
beams. The methodology is also applicable in the 
case of forced vibration situations. 

It also appears at this moment that the tech­
nique can be conveniently used when dealing 
with vibrating Timoshenko-Mindlin plates. 

The present study was sponsored by the CONICET 
Research and Development Program (PID 1992-
1994). 
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