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Construction of Benchmark 
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Ordinary Differential 
Equations 

An inverse method is introduced to construct benchmark problems for the numerical 
solution of initial value problems. Benchmark problems constructed in this fashion 
have a known exact solution, even though analytical solutions are generally not 
obtainable. The process leading to the exact solution makes use of an initially avail
able approximate numerical solution. A smooth interpolation of the approximate 
solution is forced to exactly satisfy the differential equation by analytically deriving a 
small forcing function to absorb all of the errors in the interpolated approximate 
solution. Using this special case exact solution, it is possible to directly investigate the 
relationship between global errors of a candidate numerical solution process and the 
associated tuning parameters for a given code and a given problem. Under the as
sumption that the original differential equation is well-posed with respect to the small 
perturbations, we thereby obtain valuable information about the optimal choice of the 
tuning parameters and the achievable accuracy of the numerical solution. Five illus
trative examples are presented. © 1994 John Wiley & Sons, Inc. 

INTRODUCTION 

We consider the initial value problem for linear 
or nonlinear ordinary differential equations. In 
general, we do not know the true solution and 
any numerical method gives us an approximate 
solution; the numerical solutions generally con
tain two sources of error, round-off and trunca
tion (Gear, 1971). We must somehow evaluate 
the accuracy of a given approximate solution, 
typically without knowing the true solution. The 
most common way of assessing the true error of 
a numerical solution is to reduce some tolerance 
parameter, integrate again, and compare the 
results (Hairer et aI., 1987; Shampine, 1987). Al
though more sophisticated error analyses can be 
conducted, there is no general way to absolutely 
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guarantee the final accuracy of the solutions. 
This does not preclude obtaining practical solu
tions for most applications, but it remains very 
difficult to answer subtle questions. 

Many numerical methods are available for 
solving initial value problems. Early numerical 
methods were merely fixed step size implementa
tions and these methods were straightforward to 
implement, but the results were often inconclu
sive. In the 1960s, research on numerical meth
ods for highly nonlinear initial value problems led 
to adaptive methods that could automatically 
vary the step size and/or the order of the method 
to match a user-specified local error tolerance at 
each step. This work led to the current genera
tion of numerical methods. Due the presence of 
round-off error, it is common to find that accu-
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racy improves until step sizes or tolerances are 
decreased below some critical value; the accu
racy then degrades while solution costs increase 
(Gear, 1971; Shampine, 1974). Shampine (1974, 
1980) pointed out that a typical adaptive code 
will not quit when impossible accuracies are 
specified. He also reported that the standard 
ways to assess true errors may lead to wrong 
conclusions even using the best codes available 
at that time. Shampine (1974) considered a ma
chine dependent limit on the step size and one on 
the local error tolerance, and he suggested a way 
of automatically selecting an initial step size that 
appears to be reliable and reasonably efficient 
(Shampine, 1978). Enright (1989) pointed out that 
the relationship between the accuracy obtained 
and the specified tolerances is generally ex
tremely sensitive to both the problem and the 
method. In particular, for Runge-Kutta methods 
with interpolants, he proposed an error and step 
size control mechanism based on monitoring and 
controlling the defect of a continuous approxima
tion rather than the local error of the discrete 
approximation. 

In view of the historical and recent develop
ments, we observe that the theory of differential 
equation solvers is far from complete, so that the 
understanding of a given code's performance in
variably requires a study of experimental results. 
Hull, et al. (1972) and Krogh (1973) provided two 
outstanding collections of test problems for this 
purpose. These test problems have been used in 
the development and testing of many codes and 
can be regarded as standard benchmark prob
lems for initial value problem solvers. Whenever 
we know the true solutions of a test problem, 
however, we can investigate the relationship be
tween the true, or global error and the tuning 
parameters of a given code (e .g., step size, local 
error tolerance, order, etc.). The relationship be
tween the behavior of an algorithm on a 
benchmark problem and the behavior of the algo
rithm on a problem of interest is difficult to estab
lish. Because the problem of interest is almost 
never exactly solvable, we need a means to es
tablish a customized benchmark problem that is a 
close neighbor of any given problem of interest. 
We introduce here a broadly applicable inverse 
method that constructs a neighbor of a given nu
merical approximate solution; the neighboring 
problem does in fact exactly satisfy the original 
differential equations (with a known, small 
forcing function) and serves as an excellent 
benchmark problem. More specifically, we pre-

sent a broadly useful approach to construct a 
benchmark problem near the problem of interest 
in a particular application. By virtue of the fact 
that the benchmark problem is a customized near 
neighbor of the problem of interest, we show 
that numerical convergence studies on the 
benchmark problem are directly useful in algo
rithm selection, tuning, and accuracy validation. 

The difficulties mentioned earlier result from 
not knowing the true solution. What happens if 
we are able to construct a problem-dependent 
"exact" benchmark problem? First we can eas
ily investigate the true error/parameter relation
ship and find the limiting precision and associ
ated values of critical parameters of a given 
code. Second, the problem of how to assess 
global error vanishes automatically. Finally, we 
have an absolute standard to find which method 
is most suitable for an important member of our 
particular family of problems. The sensitivity of 
the accuracy/tolerance relation of a given 
method is primarily a result of the heuristics used 
to monitor the local error and control the step 
size. If we do not know the true solution, then it 
is very hard to assess which method is the best 
for a class of problems because of the high sensi
tivity of accuracy to variations in step size con
trollogic. The remaining and most critical ques
tion is: How useful is the convergence and 
accuracy information obtained for the exactly 
solved benchmark problem, in regard to drawing 
conclusions for the (neighboring) original prob
lem? It is important to recall that the benchmark 
problem includes a regular perturbation to the 
original problem. If the perturbation is small 
enough, it is to be expected that all derivatives 
will be close for the two problems and conse
quently, the behavior of standard discrete vari
able methods will be similar both with respect to 
accuracy and stability. It is certainly true that 
there are open questions on this issue needing 
further investigation; however, by constructing a 
family of neighboring benchmark problems, it is 
usually possible to judge the size of the neighbor
hood in which the convergence and accuracy 
properties are relatively invariant with respect to 
the perturbation. Several applications presented 
herein provide strong evidence supporting the 
practicality of this approach. 

In this study we propose a method to con
struct a benchmark problem that is a close neigh
bor of a given approximate solution of the origi
nal problem. The benchmark problem is 
constructed so that it satisfies exactly the differ-



ential equation but with a known, usually small, 
time varying forcing function. We can investigate 
the global error/parameter relationship of the 
benchmark problem with the true solution in 
hand. Under the assumption that the original 
problem is well-posed with respect to small per
turbations, we have valuable information about 
the optimal parameters and the accuracy of the 
numerical solution. Actually the stability as
sumption is not so severe because any numerical 
method needs it more or less to obtain reliable 
solutions. Also, by introducing several neighbor
ing approximate solutions with initial condition 
and parameter variations, then repeating the en
tire process, it is possible to experimentally es
tablish insight on the size of the region over 
which the convergence properties are invariant. 

Lee and Junkins (1993) presented two com
puter codes for first order and second order sys
tems of differential equations, when the classical 
Runge-Kutta fourth order method with a fixed 
step size was used. An illustrations, we show the 
utility of these codes for two simple nons tiff 
problems. When we use the IMSL (1989) subrou
tines DIVPRK and DIVPBS as solvers, we show 
the utility of this methodology for two celestial 
mechanics problems (Krogh, 1973) that have 
been used as test problems several times in the 
literature. Subroutine DIVPRK uses the Runge
Kutta formulas of order five and six developed 
by J. H. Verner. Subroutine DIVPBS uses the 
Bulirsh-Stoer extrapolation method and will ter
minate when impossible accuracies are specified. 
In the fifth example, we consider a typical stiff 
problem and discuss some limitations and restric
tions of this methodology. 

CONSTRUCTION OF EXACT 
BENCHMARK PROBLEMS 

We want to construct new differential equations 
that are slightly perturbed versions of the original 
differential equations. For these new differential 
equations, we can establish the true analytical 
solution using an algebraic inverse idea. Then we 
can investigate the errorltolerance relationship 
with an absolute standard. Under local stability 
assumptions, we have valuable information 
about the optimal parameters and the accuracy of 
the particular numerical solution for the given 
original differential equations. The stability as
sumption is easily validated by constructing 
some neighboring benchmark problems. 
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Here we introduce one way for constructing 
exact benchmark problems. We take a global ap
proach for the perturbation term instead of a 
piecewise polynomial perturbation to avoid the 
lack of smoothness at break points. First we con
sider the following two distinct initial value prob
lems: 

x = fl(x, t), x(to) = Xo over to :S 1 :S tf (1) 
II: RN x R - RN 

X = hex, x, t), x(to) = xo, X(10) = Xo 
over 10 :S t :S tf (2) 

12: RN x RN X R ~ RN. 

A candidate discrete approximate solution can be 
obtained from the original first or second order 
differential Eqs. (1) and (2) using a numerical 
method. We distinguish between first and second 
order systems because there are certain draw
backs if one converts a naturally second order 
system into a first order system. To establish a 
continuous, differentiable motion near a given 
approximate solution, least square approxima
tion using the discrete version of the Chebyshev 
polynomials can be invoked to obtain the solu
tion from the the already discrete solution (Abra
mowitz and Stegun, 1972; Junkins, 1978). We 
first consider the least square approximation pro
cess. There are n data points denoted as 

where 1; are the values of the equally spaced in
dependent variable (hI = (tHI - t;) = constant). 

A linear transformation of independent vari
ables should be made to use discrete orthogonal
ity with weight function wet) = 1, 

-( ) 1 - 11 tt =--
hI 

where hI is the constant increment of t, 

x = g(t) = G(t). (3) 

From n data points, the function G can be estab
lished as a linear combination of m basis func
tions that form the discrete version of the 
Chebyshev polynomials as follows: 

m 

G(t) == L a;T;(t) 
i~1 
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where m :5 nand Ti(i) is the ith Chebyshev poly
nomial. 

The Chebyshev polynomials are defined as 
follows: If Urn = m(m = 0, 1, 2, . . . , N) and 
w(u) = 1, then 

n (n) (n + m) u!(N - m)! 
Tn(u) = ~ (_1)m ( _ )'N'. 

m~O m mum .. 

With the recurrence relations: 

To(u) = 1 

2u 
T,(u) = 1 - N 

(n + 1)(N - n)Tn+,(u) = (2n + l)(N - 2u)Tn(u) 
- n(N + n + 1)Tn-,(u). 

Note that the recurrence relations make it easy 
to evaluate an expansion in Chebyshev polyno
mials, and a similar recurrence makes it easy to 
evaluate the derivative of the expansion. 

U sing discrete orthogonality of the Chebyshev 
polynomials, the typical coefficient aj can be ob
tained as follows: 

where 1 :5 j :5 m. 
We can find get) from G(i) because get) 

G(i(t». Using the least square approximation, 
we can find the continuous, differentiable, ana
lytical solution x(t) of Eq. (3) that interpolates 
the n discrete numerical solutions obtained from 
Eqs. (1) and (2). Now this analytical expression 
x(t) does not satisfy exactly the Eqs. (1) and (2). 
However, substituting x(t), x(t) into Eq. (1) al
lows us to determine an analytical function for 
the perturbation term el(t) that appears in the 
following differential equation: 

x(t) = fi(x(t), t) + el(t) == FI(x, t). (4) 

Alternatively, if the system is second order, then 
substituting x(t), x(t), x(t) into Eq. (2) allows us 
to determine the perturbation term e2(t) that ap
pears in the following differential equation: 

x(t) = f2(X(t), x(t), t) + ez(t) == F 2(x, x, t). 
(5) 

Note that because x(t), x(t), x(t) are available 
functions, F,(x, t), F 2(x, x, t) are also available 

functions that satisfy Eqs. (4) and (5) exactly, 
and x(t) is a neighbor of the original numerical 
solution {Xl, X2, . .. ,xn }. By construction, the 
functions el(t) = x(t) - fl(X(t), t) and e2(t) = 

x(t) - f2(X(t), x(t), t) are known analytically and 
therefore these small forcing functions can be 
computed exactly at all t. These functions are 
programmed and Eqs. (4) and (5) can be solved 
by numerical methods and the results can be 
compared to the exact x(t), x(t). The above 
mathematical procedure can be performed in an 
automated fashion using computer symbol ma
nipulation. The symbol manipulation can also au
tomate the generation of C or FORTRAN Code 
to compute function e, (t) and/or e2(t). 

Now Eq. (4) is a benchmark problem neigh
boring Eq. (1) and we have arranged that x(t), 
X(/) satisfy Eq. (4) exactly; and Eq. (5) becomes 
the benchmark problem neighboring Eq. (2) and 
we have arranged that x(t), X(/), x(t) satisfies Eq. 
(5) exactly. We obviously want the perturbation 
function e(/) to be as small as possible, that is, 
the benchmark problem is not only a near neigh
bor of the original discrete solution, but it also 
very nearly satisfies the same differential equa
tions. The previously discussed least square ap
proximation method typically gives the poorest 
approximation near the ends of the interval. This 
may result in a relatively large e(t) near the initial 
and final times. To avoid this problem we can 
integrate Eqs. (1) and (2) over the enlarged inter
val to- ::5 t :5 If+ (where 10- < to, tf+ > tf) and use 
these numerical results as generators for analyti
cal solutions over the original interval (to :5 I :5 

tf). Experience indicates that a 20% "enlarge
ment" {(tf+ - to-) 2: 1.2(tf - to)} is almost always 
sufficient to support good interpolation over the 
original interval (to :5 t :5 tf). If the measure of 
e(/) is judged too large then we increase the num
ber of Chebyshev polynomials m to reduce e(t) 
over the whole interval, or "start over" by at
tempting to find a better approximate numerical 
solution to initiate the process. Figures 1 and 2 
provide logical flow charts showing construction 
of a benchmark problem and an associated con
vergence study for second order systems. 

ILLUSTRATIVE EXAMPLES 

Now we demonstrate the previous ideas using 
five initial value problems for ordinary differen
tial equations. First we show the utility of the 
computer codes (Lee and Junkins, 1993) for two 
simple nonstiffproblems. Then, two celestial me-



GIVEN A DYNAMICAL SYSTEM 

z(t) = j(z(t),i:(t), t) 

z(to) = Zo, i:(to) = i:o, to~t~tf 

1 
NUMERICAL SOLUTION PROCESS 

( for some setting on tuning parameters such as h ) 

! 
APPROXIMATE NUMERICAL SOLUTION 

{Zb Z2, ... , z .. } where Zi = Z(ti) 

! 
SMOOTH ORTHOGONAL APPROXIMATION 

NEAR {xl, X2, ... , zn} 

! 
EXACT SOLUTION OF BENCHMARK PROBLEM 

Zb(t) 

! 
INVERSE DYNAMICS 

e(t) = Zb(t) - j(Zb(t),i:b(t),t) 

I 
BENCHMARK PROBLEM 

z(t) = j(z(t),i:(t),t) + e(t) 

z(to) = Zb(tO), i:(to) = i:b(tO), to~t~tf 

FIGURE 1 Flow chart for construction of a 
benchmark problem. 

chanics problems are introduced to illustrate the 
utility of this methodology when we use the 
IMSL (1989) subroutines DIVPRK and DIVPBS. 
Finally, we consider a stiff problem in the fifth 
example. 

First Order Systems 

We consider the following pair of nonlinear dif
ferential equations. 

(6) 

where XI(O) = 1 and xz(O) = 3, and we seek the 
solution over the interval 0 :::; t :::; 10. 

First, we solve Eq. (6) using the Runge-Kutta 
fourth order method to evaluate the candidate 
discrete approximate solution. Here we use 121 
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data points over the 20% enlarged time interval 
-1 :::; t :::; 11. Second, we establish a continuous, 
differentiable, analytical expression for interpo
lating XI(t) and xz(t) from the discrete approxi
mate solution. We use 51 Chebyshev polynomi
als for fitting. Finally we substitute XI(t), Xz(t) , 
XI(t), x(t) into Eq. (6) and determine functions for 
el(t) and ez(t) that satisfy the following equations 
exactly 

XI = 2xI - 2xlxz + el 

Xz = -Xz + XIXZ + ez· 
(7) 

Now, Eq. (7) provides a benchmark problem 
for Eq. (6), and XI(t), xz(t) are the solutions that 
satisfy Eq. (7) exactly. Upon solving Eq. (7) nu
merically with various values chosen for h, we 
establish the relationship between step size and 
global error. When we use the pointwise error in 
the root mean square sense, Fig. 3 shows the 
relationship in log/log scale. The critical value h 
is about 0.0005 and if h decreased below 0.0005, 
then the results begin to deteriorate. The rate of 
convergence is 4 in this problem and this coin
cides with the fact that an rth order method 
should have a global error of O(hr ) in the absence 
of arithmetic errors (Gear, 1971). Figure 4 shows 
the perturbation terms over the time interval. For 
the benchmark problem, the numerical results 
are very reliable when we use 0.0005 as h be
cause the error measures are about 10- 13 while 
the solutions for XI(t), xz(t) vary from lO-z to 10° 
order. Now we turn our attention to the original 
problem. Figure 5 shows the relationship be
tween step size and error at t = lOon a logllog 
scale for the original problem. Because we do not 
know the true solution, we could follow the com
mon way of assessing the accuracy of a family of 
approximate solutions using the IMSL (1989) 
subroutines DIVPRK and DIVPBS. Comparing 
Figs. 3 and 5, we notice that the shape is roughly 
similar but, in Fig. 5, the critical value h is 0.0002 
instead of 0.0005. The reason for this minor dis
crepancy is the relatively large perturbation 
terms in Fig. 4. If we decrease the perturbation 
terms el(t) and e2(t) by finding a higher order, 
more accurate interpolation and thereby make 
the benchmark problem closer to the original Eq. 
(6), then we can reduce this discrepancy. 

Second Order Systems 

We consider the following nonlinear, nonautono
mous second order differential equation. 
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GIVEN A BENCHMARK PROBLEM 

( with a known exact solution Xb( t) 

:i:(t) = J(x(t),z(t),t) + e(t) 

x(to) = Xb(tO)' z(to) = Zb(tO)' to ::; t ::; t f 

1 
INITIAL SETTING ON TUNING PARAMETERS 

FOR NUMERICAL SOLUTION PROCESS 

I , 
NUMERICAL SOLUTION PROCESS 

1 
VARY APPROXIMATE NUMERICAL SOLUTION 

TUNING OF THE BENCHMARK PROBLEM 

PARAMETERS x. 

1 
EVALUATE ERROR MEASURE 

II x. - Xb II 

No Do we have 

enough data for convergence 

study? 

Yes 

STUDY THE CHARACTERISTICS 

GLOBAL ERROR vs TUNING P ARA.,\1ETERS 

FIGURE 2 Flow chart for convergence study. 

~ ~:jl 0.6 ~----------------, 

~ -8 
til 

~ -91 
2 -10 

&5 ! 

J-lll 
o -12l 
...:I -13-+1-----.---,--__,_--,' --~---11 

-4.5 -3.5 -2.5 -1.5 
LOG IO(h) 

FIGURE 3 Global error vs. step size for the 
benchmark problem. 

-0.6 +-~---.--~__,-__,_-..---~---.---~-l 
o 2 4 6 8 10 

Time 

FIGURE 4 Perturbation terms of example 1. 



-5 ~ 

I 
-7 -- Xl error 

~ -9 
M 
M 
tlJ 
':::--11 

o 

C,!) 
o 
..:l -13 

~ X2 error 

I -15+1--~---.-~---~--~--~ 
-4,5 -3,5 -2.5 -1.5 

LOG lO(h) 

FIGURE 5 Error (at t = 10) vs. step size for the 
original problem. 

x = -x - 0.1(1 + x2)i + 0.l x 3 + sin 31 (8) 

where x(O) = 1 and i(O) = 0, and we seek the 
solution over the interval 0 ::5 1::5 10. We convert 
Eq. (8) to a first order system as follows: 

XI = X2 

X2 = -XI - 0.1(1 + XI)X2 + O.lx~ + sin 31 
(9) 

where XI(O) = 1 and X2(0) = O. 
We solve Eq. (9) using the Runge-Kutta 

fourth order method to evaluate the candidate 
discrete approximate solution. Here we con
struct the interpolated solution using 121 data 
points over the 20% enlarged time interval - 1 ::5 

1 ::5 11. An analytical expression for XI(t) is ob
tained from the discrete approximate solution. In 
this problem, a degree 30 Chebyshev polynomial 
is established by the least square approximation. 
Substituting XI(t), XI(/), XI(/), into Eq. (8) we cal
culate the function e(t) that satisfies the follow
ing equation exactly. 

x = -x - 0.1(1 + x2)i + 0.l x 3 + sin 31 + e. 
(10) 

To use the Runge-Kutta method, Eq. (10) can be 
converted to a first order system as follows: 

XI = X2 
. (2 3. (11) 

X2 = -XI - 0.1 1 + XI)X2 + 0.1x1 + sm 3t + e. 

Now, Eq. (10) becomes a benchmark problem 
for Eq. (8), and x(t) is an algebraic function that 
satisfies Eq. (10) exactly. When we use the 
pointwise error in the root mean square sense, 

-Q) 
M 
::s 
rn 

'" Q) 

::s 

-6 

-7 

-8 

-9 
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-- Xl error norm 
~ X2 error norm 

!-"j --11 ;: 
C,!) , 

3 -12] 

-13 
-4,5 -3.5 -~.5 

LOGID(h) 

I 
-1.5 

FIGURE 6 Global error vs. step size for the 
benchmark problem. 

Fig. 6 shows the relationship between global er
ror and step size. The rate of convergence is 4 as 
expected. Figure 7 shows the perturbation term 
over the time interval. The critical value for step 
size is about 0.001. Now we consider the original 
problem. The relationship between step size and 
error at t = 10 is shown in Fig. 8 when we follow 
the common way assessing the true solution us
ing the IMSL (1989) subroutines DIVPRK and 
DIVPBS. Comparing Figs. 6 and 8, we observe 
that the critical value h and the accuracy are al
most the same. 

We change the initial conditions slightly and 
the nonautonomous term in the differential equa
tion as follows: 

x = -x - 0.1(1 + x2)i + 0.l x 3 + 1.2 sin 31 
(12) 

where x(O) = 1.2 and X(O) = 0.2 over the interval 
o ::5 t ::5 10. 

lE-2,---------------, 

-- e(t) 

-1 E-2:+I--.----,--.-----.-.------.-.------.--r---I 
o 2 4 6 8 

Time 

FIGURE 7 Perturbation term of example 2. 
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-6._-----------------------------. 

-7 

-8 

s:; -9 
o 
t -10 

r:o::l 

'-§-ll 
C!J 
3 -12 

-13 

-14+---~--_.--~L---r_--.---_,--~ 
-4.5 -3.5 -2.5 

LOG lO(h) 
-1.5 

FIGURE 8 Error (at t = 10) vs. step size for the 
original problem. 

Mter using the same procedure, we obtain the 
global error/step size relationship shown in Fig. 
9. We notice that Figs. 6 and 9 are almost the 
same. In other words, the critical value for hand 
the accuracy are almost identical even though 
there are 20% perturbations in the initial condi
tion and the forcing term in the differential equa
tion, in this case. 

Two Body Problem 

We consider the simple two body problem. The 
exact solution is periodic with period 27T and the 
solution traces out an ellipse with eccentricity 
0.6. 

i = -x/r3, x(O) = 0.4, X(O) = 0 

y = -y/r3, yeO) = 0, yeO) = 2 

where r = (X2 + y2)1I2. 

-6 

- -7 
Q) ... 
;:l -8 fIl 
co 
Q) 

-9J ;:;:: 
... 
0-10 ... ... 
e- ll =: 
C!J 
0-12 
...:l 

--- Xl error 
~X2 error 

(13) 

-13+---~---.--~----._--.---_,--~ 
-4.5 -3.5 -2.5 -1.5 

LOGlO(h) 

FIGURE 9 Global error vs. step size for the 
benchmark problem of 20% perturbations. 

-... 
o ... ... 

o 

r:o::l -5 
Q) ..., 
.2 
o 

DIVPRK 

--- position 
~ velocity 

~~::+~~, .-~'-,,~'~'~~,~'~'~'-'~,~' .-~~I 
-20 -15 -10 -5 0 

LOG lO(Tolerance) 

FIGURE 10 Absolute error vs. tolerance for the 
benchmark problem (DIVPRK). 

These equations can be solved exactly (Battin, 
1987); the analytical solution is not included here 
because of space limitations. We reformulate Eq. 
(13) as a first order system as follows: 

XI = X2 

X2 = -XI/(xI + xjp/2 

X3 = X4 
(14) 

X4 = -X3/(XI + xjp/2 

where XI(O) = 0.4, X2(0) = 0, X3(0) = 0, X4(0) = 2. 
We solve Eq. (14) using DIVPRK to evaluate 

the candidate discrete approximate solution. 
Here we use 121 data points over the 20% en
larged time interval and a degree 50 Chebyshev 
polynomial approximation is used for the least 
square fitting of XI(t) and X3(t). After construct
ing the benchmark problem, we do an absolute 
error test on (0. 27T). Figures 10 and 11 show the 

o DIVPBS 

--- position 
~ velocity 

-10 -5 
LOG lO(Tolerance) 

o 

FIGURE 11 Absolute error vs. tolerance for the 
benchmark problem (DIVPBS). 



-1-0 
o 
1-0 
1-0 

o 

r.J -5 
QJ .... 
::s 
'0 
00 

,Q 
.:;. -10 

DIVPRK 

-- position 
~ velocity 

I ~ 
C!l 
o 
.....:l 

-1 ~-tk-::-o .----r-.--., --'j5-"-"-' -,,-,.-, _OJ-oT"' -;,r-r, -;'~-"5-'-' -,--.----r----lj 
LOG lO(Tolerance) 

FIGURE 12 Absolute error VS. tolerance for the two 
body problem (DIVPRK). 

relationship between absolute error and toler
ance in log/log scale when we use DIVPRK and 
DIVPBS for the benchmark problem. Figures 12 
and 13 show the relationship between absolute 
error and tolerance in log/log scale when we use 
DIVPRK and DIVPBS for the original two body 
problem. We notice that Figs. 10 and 11 are al
most identical to Figs. 12 and 13, respectively. 
The perturbation terms are shown in Fig. 14. We 
plot the relationship between the number offunc
tion calls and the absolute error in Fig. 15. Thus 
the benchmark problem (constructed by the 
method of this study) essentially gives results 
that are identical to those obtain~d by using the 
exact solution of the original problem. 

Euler Equations of Motion 

We consider the Euler equation of motion for a 
rigid body without external forces, 
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FIGURE 13 Absolute error vs. tolerance for the two 
body problem (DIVPBS). 
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FIGURE 14 Perturbation terms of the two body 
problem. 

(15) 

where XI(O) = 0, X2(0) = 1, X3(0) = 1. 
The classical exact solutions of Eq. (15) are 

the Jacobian elliptic functions (Abramowitz and 
Stegun, 1972) as follows: 

XI = sn(t I 0.51), X2 = dn(t I 0.51), 

X3 = cn(t I 0.51). 

They are periodic with a quarter period K where 
K = 1.86264 08023 32738 55203 ... in this 
case. 

We solve Eq. (15) using DIVPRK to evaluate 
the candidate discrete approximate solution. To 

Two Body Problem 

1+1~~'~'~1-'~' ~'~'~I~'~'~'~~I ~ 
-15 -10 -5 0 

LOG lO(Absolute Error) 

FIGURE 15 Number of function calls vs. absolute 
error. 
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FIGURE 16 Absolute error vs. tolerance for the 
benchmark problem (DIVPRK). 

establish a benchmark using our method, we use 
121 data points over the 20% enlarged time inter
val and determine a degree 50 Chebyshev least 
square polynomial approximation of Xl(t), X2(t) , 
and X3(t). After constructing the benchmark 
problem, we do an absolute error test on (0,4 K). 
Figures 16 and 17 show the relationship between 
absolute error and tolerance in logllog scale 
when we use DIVPRK and DIVPBS for the 
benchmark problem. Figures 18 and 19 show the 
relationship between absolute error and toler
ance in logllog scale when we use DIVPRK and 
DIVPBS to solve Eq. (15) and compare to the 
classical Jacobian elliptic function solution. We 
notice that Figs. 16 and 17 are almost identical to 
Figs. 18 and 19, respectively. The perturbation 
terms are shown in Fig. 20. We plot the relation
ship between the number of function calls and 
the absolute error in Fig. 21. Thus, again, 
this example indicates that our neighboring 
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FIGURE 17 Absolute error vs. tolerance for the 
benchmark problem (DIVPBS). 
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FIGURE 18 Absolute error vs. tolerance for the 
Euler equations (DIVPRK). 

benchmark problem leads to essentially identical 
convergence properties to using the exact solu
tion of the original problem. 

A Stiff Problem 

We consider the following problem (Shampine 
and Gordon, 1975) that represents a typical stiff 
problem. 

Xl = -29998xl - 39996x2 

X2 = 14998.5xl + 19997x2 

where Xl(O) = 1, X2(0) = 1. 

(16) 

The exact solutions of Eq. (16) are as follows: 

Xl(t) = 7 exp( -104t) - 6 exp( - t) 

X2(t) = -3.5 exp(-104t) + 4.5 exp(-t). 
(17) 

FIGURE 19 Absolute error vs. tolerance for the 
Euler equations (DIVPBS). 
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FIGURE 20 Perturbation terms of the Euler equa
tions. 

The eigenvalues of the coefficient matrix are -1 
and -104• Figures 22 and 23 show the solutions 
over two different intervals, a region of very 
rapid change followed by gradual asymptotic be
havior. It is almost impossible to obtain a satis
factory orthogonal function benchmark problem 
that covers both regions with a reasonable num
ber of terms. We conclude that the proposed 
methodology is not adequate for such stiff prob
lems unless piecewise approximation methods, 
for example, the type introduced by Junkins et 
al. (1973) are used. Stiff problems are relatively 
expensive to solve and the expense depends 
strongly on the tolerance (Gear, 1971; Shampine 
and Gordon, 1975; Shampine and Gear, 1979). 
Enright et al. (1975) provide a good collection of 
stiff test problems. 
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FIGURE 21 Number of function calls vs. absolute 
error. 
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FIGURE 22 Solution of example 5 for the rapid 
change region. 

SUMMARY AND CONCLUSION 

The present article introduces an inverse method 
for constructing exact benchmark problems for 
initial value problems. This methodology gives 
valuable information about the optimal tuning pa
rameters and the accuracy of the numerical solu
tion for a class of ordinary differential equation 
problems and for a given solution code. Numeri
cal examples indicate that a rigorous error analy
sis is usually obtained not merely for one nominal 
solution, but for a substantial neighborhood of 
the nominal solution. If one wants to use the 
classical Runge-Kutta method with a fixed step 
size, then the codes (Lee and Junkins, 1993) pro
vide directly useful information about the opti
mal step size h and the associated accuracy. 
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FIGURE 23 Solution of example 5 for the gradual 
change region. 
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More sophisticated users who are familiar with 
adaptive and robust codes can also construct 
similar benchmark problems; however, the Che
byshev approximation method may have to be 
replaced or modified to obtain a method not re
stricted to uniformly spaced data. For stiff sys
tems, special purpose approximations may be 
required in lieu of the global Chebyshev approxi
mations. The analytical expressions for the 
benchmark problem and its solution can be estab
lished using computer symbol manipulation [e.g., 
MACSYMA (1988), Mathematica, MAPLE, 
etc.]. Then the user investigates the global error/ 
parameter relationship and compares various 
codes with special case absolute standards. In 
examples 3 and 4, we show the utility of this 
methodology using the IMSL (1989) subroutines 
DIVPRK and DIVPBS as solvers. And we inves
tigate the absolute error/tolerance relationship 
and compare DIVPRK and DIVPBS. We have 
developed some basic methodologies, but there 
remains a need for additional numerical experi
ments to further evaluate the practical utility of 
this approach. 
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