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Actuator Placement in 

Multi-Degree-of-Freedom 
Vibration Simulators 

A method for comparing candidate actuator configurations for multi-degree-of-free
dom (MDOF) vibration simulators is presented. The method has its roots in the 
comparison of achievable subspaces and maximum error bounds; the comparison is 
accomplished via a QR decomposition. In instances where two configurations yield 
the same error bound, the ratio of the largest to smallest singular value is used to 
determine the "best" configuration. Both amplitude bounds at given sensor locations 
and relative significance of each sensor's output, if known, can be incorporated in the 
analysis. Through numerical examples, it is demonstrated that no simple rule of 
thumb criterion appears to exist for the selection of actuator placement in MDOF 
vibration simulators. © 1994 John Wiley & Sons, Inc. 

INTRODUCTION 

Due to the changes in vibration test specifica
tions, vibration test facilities must become more 
versatile and more powerful. The changes in test 
specifications are driven by the design and utili
zation of increasingly sophisticated equipment, 
and as such, it is expected that within a few 
years, multi-degree-of-freedom (MDOF) vibra
tion simulators will become the norm rather than 
the aberration. 

Specialized laboratories now require MDOF 
vibration simulators that handle a combination of 
both larger loads and higher frequency ranges 
than currently achievable. The combination of 
high load capacity and high frequency bandwidth 
results in one or more of the system's natural 
frequencies lying within the frequency range of 
the simulator's operation (Fitz-Coy, 1992; 
Schmidt, 1983; Raasch, 1983; Hahn and Raasch, 
1986; Woyski and Tauscher, 1992). At or near 
resonance, the system's response tends to be 
dominated by the resonant mode and the pattern 
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of the amplitudes of vibration at different points 
on the structure tends to be close to the resonant 
mode shape. Thus, it is difficult to get an arbi
trary pattern of amplitudes at various specified 
points on the structure when the structure is ex
cited at or near the resonant frequency. 

For versatility, vibration simulators require 
that their design must work well not just for any 
one given load, but for a large variety of loads 
within some range. Consequently, in the design 
stage, there is no accurate model available for 
determining the optimal actuator locations-no 
such model exists. The designer is forced to 
work with a very crude model corresponding to 
some commonly encountered loading configura
tion. 

The problem addressed in this article is that of 
actuator placement in MDOF vibration simula
tors. The need for MDOF vibration simulators 
that realistically reproduce the actual vibration 
environment has been acknowledged by vibra
tion test engineers for some time (Fitz-Coy, 
1992; Schmidt, 1983; Raasch, 1983; Hahn and 
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Raasch, 1986; Woyski and Tauscher, 1992). This 
work was motivated by this need and the appar
ent lack of "concrete" solution methods. 

To date, previous design approaches for 
MDOF vibration simulators (Raasch, 1983; Hahn 
and Raasch, 1986; Woyski and Tauscher, 1992) 
have been based on physical constraints and en
gineering judgement. In this article we present a 
criterion, which when supplemented with engi
neering judgement, will result in improved 
MDOF vibration simulators. 

In the following sections, the problem of actu
ator placement, as it applies to MDOF vibration 
simulators, is described. A method for determin
ing actuator placement is presented. The method 
is demonstrated with a numerical example. Fi
nally, conclusions are presented. 

The system considered is composed essen
tially of two components: the first component is 
the "table", on it is mounted the second compo
nent, the "load." There are r actuators that are 
capable of exerting forces on r given locations of 
the table. Sensors monitor the motion of m speci
fied locations on the load. 

In the operation of a vibration simulator, the 
desired motion of the monitored points on the 
load will be specified. Typically, the actuators 
will usually be driven through displacement com
mands, reducing the problem to that of finding 
the input displacements at the r actuator loca
tions that will best approximate the desired re
sponses at the m monitored locations. The prob
lem of choosing the r actuator locations that will 
be most effective for the full range of displace
ment patterns, frequencies, and loading configu-

MOTION ... . 

CANDIDATE ACfUATOR LOCATIONS 

rations is not trivial. In fact, it is not guaranteed 
that an arbitrary pattern of responses at the m 
monitored locations will be exactly achievable 
with r actuators, even for the case where r > m. 
The system shown in Fig. 1 can be used to dem
onstrate this point. Consider a scenario where 
klO = kll = CIO = CII = 0, sensors are located at 
masses m6 through ms (m = 3), and actuators are 
located at masses mt. m2, m4, and ms (r = 4). For 
this scenario, actuators located at ml and ms are 
essentially isolated from the system by the actua
tors located at m2 and m4 (i.e., the system in this 
configuration has rank 2, and therefore, only 2 
actuators can effectively be placed). 

PROBLEM DESCRIPTION 

In recent years there has been a large amount of 
work done on the problem of actuator placement 
for the control of flexible structures (Choe and 
Baruh, 1992; Lim, 1992; Lindberg and Longman, 
1984). The fundamental objective behind these 
studies has been to determine actuator placement 
configurations for the purposes of vibration sup
pression. A common strategy adopted in these 
studies has been to place the actuators at loca
tions where they influence as many modes of the 
structure as possible to render as many modes of 
the vibration as controllable as possible. Various 
methods of quantifying the effectiveness of any 
given set of actuator locations have been pro
posed (Choe and Baruh, 1992; Lim, 1992; Lind
berg and Longman, 1984). 

SENSOR LOCATIONS 
~ 

FIGURE 1 8-DOF system. 
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The definition of controllability involves the 
ability to achieve any given state (constant in 
time) within a finite period of time. Thus actuator 
configurations that give a high degree of control
lability are well suited for vibration suppression 
problems. However, in the case of a vibration 
simulator, the interest is not to obtain one given 
constant state, but rather to obtain a state that 
varies periodically in time in an arbitrarily speci
fied manner. From this perspective, the problem 
of actuator placement in vibration simulators in
cludes that of actuator placement for vibration 
suppression in flexible structures as a special 
case. Also, because the actuators will typically 
be operated with displacement commands and 
will typically have large load capacities, the de
sign constraints will be more on displacement 
limits rather than force limits. 

The following section examines the effective
ness of a given actuator configuration in achiev
ing a specified state of continuous periodic mo
tion through (bounded) periodic excitation. 

FORMULATION 

In what follows, it is assumed that rigid body 
(d.c.) motion can be eliminated by "locking" the 
actuators. Therefore, any reference to periodic 
motion implies motion which has no d.c. value 
because such demands will usually not be made 
of vibration simulators. It is also assumed that 
the system has pervasive damping so that any 
pattern of deformation in a cycle must involve 
energy dissipation. Both assumptions are valid 
for the kind of system considered in this article. 

The system is assumed to obey a linear model 
of the form 

Mx(t) + Dx(t) + Kx(t) = f(t). (1) 

The system model has m + r + u degrees-of
freedom (DOF); m DOF represent the motion of 
the sensor locations (monitored DOF), r DOF 
represent motion of the actuator locations (ex
cited DOF), and u nOF represent the motion of 
the remaining unmonitored/unforced nOF of the 
system (unmonitored nOF). 

Let the monitored nOF be arranged in a vec
tor XM(t) , the unmonitored nOF in a vector Xu(t) , 
and the excited nOF in a vector XR(t). Note, the 
force vectors corresponding to XM(t) and xu(t) are 
identically zero. Then, Eq. (1) may be written as 

[MMMMMUMMR]{~M} MUMMUUMUR Xu 

MRMMRUMRR XR 

[ 
DMMDMUDMR ]{XM} 

+ DUMDuuDuR ~u 

DRMDRUDRR XR 

[ 
KMMKMUKMR ]{XM} ~} + KUMKUUKUR Xu = 0 . 

KRMKRUKRR XR R 

Assuming periodic motion, we write 

N 

x(t) = L X(k)e21rik6Jt, 
k=-N 

(2) 

(3) 

where x(t) = {XM, Xu, XRF. Similarly, we write 

N 

fR(t) = L F~)e21rik6Jt. (4) 
k=-N 

Using Eqs. (3) and (4), the kth term of Eq. (2) 
becomes 

(5) 

where 

R(k) = -k2w2M + ikwD + K. 

Keeping in mind that at all times we are refer
ring to a specific k value, we now drop the k 
superscript for convenience. Thus, at any com
ponent frequency within the operational band
width, we have 

[
RMMRMURMR] {XM} { 0 } 
RUMRuuRuR Xu = 0 . 

RRMRRURRR XR F R 

(6) 

Displacement and force inputs are considered 
separately in the following subsections. 

Displacement Inputs 

Given a "desired" response, x'k, at the sensor 
locations, the problem is to determine displace-
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ment inputs, XR , such that the achieved sensor 
displacements, X M , is as close as possible to x'lt 
in some convenient norm. 

We digress for a moment to prove, through 
physical arguments, that RMM and Ruu are non
singular matrices. 

Assume that XR and Xu are constrained to 
have zero displacements (i.e., all DOF, except 
the monitored DOF, are clamped), then the first 
equation of Eq. (6) yields 

(7) 

Because the structure has pervasive damping 
and there is no energy input to the system (the 
forced DOF are constrained to have zero dis
placements), XM(t) cannot sustain a steady peri
odic motion. Thus, Eq. (7) will not be satisfied 
for any nonzero XM. It follows that RMM must be 
nonsingular. By similar arguments, it can be 
shown that R uu is also nonsingular. 

Having established that RMM and Ruu are in
vertible, a relationship between X M and XR can 
be developed as follows. Rewriting the second 
equation of Eq. (6) as 

and combining with the first equation of Eq. (6) 
results in 

(RMM - RMURu'uRuM)XM 
+ (RMR - RMURu'uRuR)XR = O. (9) 

Again through physical arguments, the coeffi
cient matrix of X M in Eq. (9) must be nonsingular. 
Therefore, 

(10) 

where 

C disp = -(RMM - RMURu'uRuM)-1 
(RMR - RMURU'uRuR)' (11) 

Force Inputs 

In general, the actuator subsystem has built in 
controllers, and inputs to the structure will be in 
the form of displacement commands to the actua
tors. However, it might be necessary to take the 
actuator forces into account, if only to check that 
very large forces are not required. In such in
stances, Eq. (8) and the third equation of Eq. (6) 
can be combined to obtain 

(RRM - RRURu'uRuM)XM 
+ (RRR - RRURu'uRuR)XR = FR. (12) 

Using Eq. (10), Eq. (11) can be rewritten as 

[(RRM - RRURu'uRuM)Cdisp 
+ (RRR - RRURu'uRuR)]XR = FR. (13) 

Equation (13) describes the motion of the sys
tem subject only to forces FR. When FR = 0, the 
system may still exhibit rigid body motion; how
ever, at any nonzero frequency (i.e., nonrigid 
body modes), due to pervasive damping, steady 
vibration cannot be sustained. Thus for any non
zero frequency, the only vector X R that satisfies 
Eq. (13) is the zero vector. It follows that the 
coefficient of XR in Eq. (13) is nonsingular. Equa
tions (10) and (13) then yield 

(14) 

where 

Cforc = Cdisp[(RRM - RRURu'uRuM)Cdisp 
+ (RRR - RRURu'uRuR)]-I. (15) 

We note that because [ ]-1 in Eq. (15) is of 
full rank, the columns of C disp and C forc span the 
same subspace of em. Thus theoretically any mo
tion possible with displacement inputs is also 
possible with force inputs. However, due to ill 
conditioning of this matrix, this might not always 
be true in practice. 

Displacement Bounds 

To establish bounds on XM , observe that Eqs. 
(10) and (14) are of the form 

where P is a transfer matrix (Cdisp or C forc) and U 
is the input (XR or FR). Using the 2-norm (Golub 
and Van Loan, 1989), the bounds on XM are as 
follows: 

where 0" min is the smallest singular value of P. 
Rewriting the above as 

/lxMlb 2:: Ilu112, 
0" min 
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it can be observed that conditions may exist that 
lead to large input requirements. Conversely, if a 
bound on the magnitude of U is specified from 
system limitations, then singular values less than 
some prescribed tolerance represent outputs that 
are physically unachievable. For all practical 
purposes, then, these singular values may be 
treated as zero, and the transfer matrix may be 
considered to be numerically rank deficient. 

Thus, it is apparent that the conditioning of P 
could be used as a selection criterion. However, 
computation of the singular values is quite ex
pensive, rendering this criterion impractical for 
an exhaustive search of candidate configura
tions. A criterion based on conditioning should 
be used only to select from among a small group 
of "elite" configurations obtained from other se
lection processes (see the "Best" Configuration 
below). Alternatively, computationally inexpen
sive condition number estimators may be used 
for approximate results (Higham, 1987). 

Although we focus on the placement of actua
tors, we now digress to discuss the unmonitored 
DOF. These DOF are unmonitored and un
forced, and are of indirect interest to the immedi
ate problem. It therefore suffices to show that 
these DOF are bounded. 

From eqs. (8) and (0), Xu is expressed in 
terms of XR as 

Therefore, 

which is bounded for bounded inputs XR • 

General Comparison Criterion 

Observe that Eqs. (10) and (14) are of the form 
X M = PU, where U E Cr is the input (displace
ment or force), XM E Cm is the corresponding 
output, and P E cmxr is a transfer matrix (Cdisp or 
Cforc). Because in general m =1= r, P cannot be 
inverted. In fact, even for the case where m = r, 
P may be rank deficient (see Example 1 below). 
Therefore, while every input produces a unique 
output, it is not true that an arbitrary output, x'k, 
should necessarily be achievable through some 
corresponding input, U. 

If p = rank(P), then the set of achievable out
puts, X M , will lie in a p-dimensional subspace of 

Cm. Therefore, in the general case, the "best" 
solution is obtained when X M minimizes the norm 
of the difference between the desired output, x'k, 
and itself. Via the 2-norm, the best solution is 
obtained from the simple (but possibly rank defi
cient) least squares problem, 

06a) 

Noting that X M = PU, the least squares problem 
becomes 

(16b) 

The least squares problem of Eq. (16) can be 
modified to account for the relative importance 
of the DOF that comprise the monitored DOF. 
Let W be a diagonal weighting matrix with posi
tive entries. Then instead of minimizing IIx'k -
puII2, we are now interested in minimizing 
IIW(x'k - PU)lb. Thus the weighting matrix W 
simply needs to be absorbed into both x'k and the 
matrix P. Without any change in notation, it is 
henceforth assumed that this has already been 
done. 

Often, in the design stage, bounds on the de
sired output are not known a priori. However, in 
cases when these bounds are known a priori, a 
modification ofEq. (6) is required. Suppose that 
for each frequency component, bounds of the 
form 

IX(i)1 < . - 1 2 M - ai. l - , ,. • • ,m (7) 

are imposed. These bounds represent a "hyper
cuboid" in m-dimensional space. Without too 
much loss of accuracy (because these bounds are 
expected to be approximate), the hypercuboid is 
approximated by a hyperellipsoid given by 

where f3 is some constant. 
Equation (8) can then be used to unambigu

ously compare different actuator configurations 
based on the worst case value ofminllx'k - puI12 
at each component frequency and for each con
figuration, given that x'k satisfies the given con
straint. 

Consider matrices A E CnXn and B E cnxm, 

with n > m, and assume B is of full rank. Given 
a unit vector u and a scalar f.L > 0, let the 
vector v always be chosen so as to minimize 



284 Filz-COY and Chatterjee 

IIA(/-tu) - Bulb· If there are no restrictions on the 
magnitude of u, the scalar /-t can be factored out, 
reducing the problem to that of minimizing IIAu -
Bu1l2. We are interested in finding the maximum 
value that this error norm could take, over all 
possible choices of the vector u. 

Let B = QR be the "thin" QR-decomposition 
of B, where R E cmxm , and Q E Cnxm satisfies 
QHQ = I; the superscript H denotes the complex 
conjugate transpose, and 1 is the identify matrix. 
Then, given u, we have 

(19) 

Therefore we want to find 

errormax = maxliAu - BR-]QHAullz 
= maxllAu - QQHAull2, (20a) 

which, by the definition of the 2-norm, is 

Now let the singular values of (I - QQH)A be 
IT] 2: IT2 ••. 2: ITn 2: o. Then errormax = IT] for 
some unit vector u = u], say. However, this is a 
worst case scenario. For a measure of the overall 
error, we look next at error max for all vectors u 
that are orthonormal to u]. This, clearly, is IT2. 

Proceeding in this manner and summing the 
squares of the successive error measures, we get 
ITI + IT~ + ... + IT~. This is nothing but 11(1 -
QQH)AII}. An overall measure of the error can 
then be expressed as 

error = 11(1 - QQH)AIIF. (21) 

Now let the positive numbers (3, a], a2, . 

aM defined by Eq. (18) be given. LetA be a diago
nal matrix with the positive real numbers ai as its 
diagonal entries. Then for some unit vector u and 
a real number /-t > 0, any vector X M may be ex
presses as X M = A(/-tu). This will automatically 
satisfy Eq. (I 8) for /-t :5 {3 and violate it for /-t > {3. 
Beyond this point, the constant /-t (and hence the 
constant (3) becomes irrelevant. 

Algorithm 

At any given frequency, compute the matrix P 
[Cdisp from Eq. (11) or Cforc from Eq. (15)]. Next, 
compute its SVD or a rank-revealing QR decom
position or a UL V decomposition. This allows 
simultaneous evaluation of the conditioning of P 

and determination of a matrix Q whose columns 
form an orthonormal basis for the columns of P. 
If P is not well conditioned (numerically rank 
deficient), the number of columns of the matrix Q 
should be the same as the numerical rank. Fi
nally, the overall error norm for the given ampli
tude bounds are evaluated through the Frobenius 
norm as indicated in Eq. (21). 

This process is performed for a number of fre
quencies in the desired operational bandwidth. 
Care is taken to select some frequencies close to 
the relevant resonant frequencies of the system. 
Finally, compute the 2-norm of the vector of er
rors (if necessary, a weighted mean square error 
may be computed). This measure of the error is 
the general criterion for comparing different ac
tuator configurations. 

The Best Configuration 

Use of the criterion developed above may result 
in several configurations of nearly equal error 
norm. To choose between these configurations, 
the conditioning of matrix P [Cdisp from Eq. (11) 
or Cforc from Eq. (15)] is utilized. Let IT] 2: 

IT2 ••• 2: IT min be the numerically acceptable sin
gular values of P, that is, those larger than the 
tolerance discussed above (see Formulation). 
Define the ratio K = (IT] / IT min)avg, where the aver
age is over the frequency range (in this article 
geometric averaging is used). This ratio is a mea
sure of the conditioning of P (hence a measure of 
the suitability of the actuator configuration), be
cause if K ;3> 1, then some XMs will require much 
larger input magnitudes than other XMs. Thus, 
among all actuator configurations that lead to 
nearly equal error norm, the one corresponding 
to the smallest value of K might be considered the 
best. 

In the next section, numerical examples are 
used to demonstrate the effectiveness of the ac
tuator placement procedure outlined above. 

NUMERICAL RESULTS 

The utility of the actuator placement criterion is 
demonstrated with the eight DOF system shown 
in Figure 1. The system consists of three sensors 
and two actuators. The sensor locations are de
noted by masses m6 through mg. Candidate actu
ator locations are denoted by masses m] through 
m5. For this system, the total number of possible 
actuator configurations is 10; thus it is possible to 
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Table 1. System Characteristics for Example 1 

ml = m2 = m3 = m4 = mS = 3; m6 = m7 = 1.2; 
mg = 3.6 

kl = k2 = k3 = k4 = ks = k6 = 200; 
k7 = kg = k9 = 100; klO = kll = 0 

Eigenvalues: 0 
-0.0752 ± 5.4837 i 
-0.1260 ± 7.0977 i 
-0.2718 ± 10.4237 i 
-0.3965 ± 12.5879 i 
-0.5654 ± 15.0277 i 
-0.6637 ± 16.2798 i 
-1.3597 ± 23.2820 i 

carry out an exhaustive search over the entire 
set. 

The assumption of energy dissipation (perva
sive damping) is enforced by the dashpots shown 
in Figure 1. In both examples discussed below, 
the mechanical resistance of each dash pot is as
sumed to be 0.5% of the associated spring stiff
ness (i.e., Ci = 0.005ki , i = 1, 2, ... , 11). 

All numerical computations were accom
plished with MATLAB (1991). A tolerance of 
1 x 10-4 was used for the numerical rank calcula
tions of each transfer matrix P. For demonstra
tion purposes, this tolerance was chosen suffi
ciently small so as to affect only a small part of 
the computed results. However, in practice, we 
suggest that a larger tolerance (1 x 10-2) be used 
because a value of 1 x 10-4 implies that although 
some output signals may be 10000 times more 
difficult to produce than others, we still accept 
them as being achievable. 

For each actuator configuration, the fre
quency range was sampled at 36 equally spaced 

Table 2. Displacement Comparison for Example 1 

frequencies and the averaging was done over 
these frequencies. Uniform frequency weighting 
was used. It should be noted that in the formula
tion, uniform spacing and uniform weighting is 
not a requirement. 

Two examples are considered. The first exam
ple investigates the effects of output weighting 
on the placement actuators; it also demonstrates 
the problem of rank deficiency. The second ex
ample investigates the effects of the system's 
natural frequencies on the placement of actua
tors. 

Example 1 

The system parameters were selected such that 
mass m3 is a nodal point for the first two nonrigid 
body modes. The resulting system characteris
tics are shown in Table 1. 

A frequency range of 0.1-9 rad/ s was consid
ered. This frequency range includes the first two 
nonzero natural frequencies of the system. Three 
output weighting scenarios were considered: A = 
diag[1,l,l], A = diag[1,10,1], and A = diag 
[10,1,10]. Note that the first weighting matrix is 
simply the identity matrix and corresponds to the 
situation where a priori knowledge is not avail
able and therefore it is assumed that all outputs 
are equally significant. 

The results are given in Tables 2 and 3. The 
first table corresponds to displacement input con
siderations and the second table to force input 
considerations. As mentioned earlier, from phys
ical considerations we might expect that any out
put achievable through displacement inputs is 
also achievable through force inputs. This is in
deed true in exact arithmetic. However, it may 
happen that a small amplitude of vibration near a 

A = diag[l,I,I] A = diag[I,10,1] A = diag[lO,I,IO] 

Error K Location Error K Location Error K Location 

6.00 5.74 2, 4 46.03 6.80 3,4 33.68 6.20 2, 3 
6.00 6.20 2,3 46.03 14.88 3, 5 33.68 14.46 1, 3 
6.00 6.80 3,4 49.56 5.74 2, 4 34.35 5.74 2,4 
6.00 8.83 2,5 49.56 8.83 2, 5 34.35 8.83 2,5 
6.00 9.79 1,4 49.56 9.79 1, 4 34.35 9.79 1, 4 
6.00 10.16 1, 5 49.56 10.16 1,5 34.35 10.16 1, 5 
6.00 14.46 1, 3 50.02 6.20 2, 3 38.95 6.80 3,4 
6.00 14.88 3, 5 50.02 14.46 1, 3 38.95 14.88 3,5 
8.49 1.00 1,2 51.52 1.00 4, 5 66.84 1.00 1,2 
8.49 1.00 4, 5 52.96 1.00 1, 2 67.96 1.00 4,5 
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Table 3. Force Comparison for Example 1 

A = diag[I,I,l] A = diag[l,IO,I] A = diag[lO,I,IO] 

Error K Location Error K 

6.00 9.80 2,4 46.10 16.67 
6.00 9.80 1, 5 46.10 21.24 
6.00 13.27 1,4 49.56 9.81 
6.00 16.85 2, 5 49.56 9.81 
6.08 15.94 2, 3 49.56 13.27 
6.08 16.67 3,4 49.56 16.85 
6.08 18.56 1, 3 50.08 15.94 
6.08 21.24 3,5 50.08 18.56 
8.49 1.00 1, 2 51.52 1.00 
8.49 1.00 4, 5 52.96 1.00 

resonant frequency, imparted at a point very 
close to a nodal point of the corresponding eigen
vector, may lead mathematically to some desired 
response. Yet the same amplitude of vibration 
may require a very large force input, making it 
unachievable. This can lead to discrepancies be
tween displacement (based and force) based cal
culations; such discrepancies will become notice
able when the tolerance used in the computation 
of the rank of P is chosen sufficiently large. 

As seen from Tables 2 and 3, the computed 
errors corresponding to more than one actuator 
location is the same. In those instances, the con- . 
ditioning of the system, K, was used to select the 
best from among these configurations. However, 
in these examples, the number of candidate con
figurations was sufficiently small, allowing com
putation of the conditioning for all configura
tions. The conditioning was then used to order 
the configurations as shown in Tables 2 and 3. 

Note that the conditioning, K, for the two low
est ranked configurations is exactly 1. These two 
configurations correspond to rank-deficient cases 
(rank = 1); in these cases, 0"1 = 0" min, thus the 
conditioning evaluated from K = O"l/O"min, is iden-

Table 4. System Characteristics for Example 2 

ml = m2 = m3 = m4 = m5 = m6 = m7 = 2; mg = 0.6 
kl = k2 = k3 = k4 = 220; k5 = k6 = 200; 

k7 = kg = k9 = klO = kll = 125 
Eigenvalues: 0 

-0.1595 ± 0.4837 i 
-0.4217 ± 12.9807 i 
-0.5170 ± 14.3711 i 
-0.8074 ± 17.9528 i 
-0.8933 ± 16.8816 i 
-1.1570 ± 21.4816 i 
-2.1191 ± 29.0372 i 

Location Error K Location 

3,4 34.35 9.81 2,4 
3, 5 34.35 9.81 1,5 
2, 4 34.35 13.27 1,4 
1, 5 34.35 16.85 2, 5 
1,4 35.06 15.94 2,3 
2, 5 35.06 18.56 1, 3 
2, 3 40.15 16.67 3, 4 
1, 3 40.15 21.24 3,5 
4, 5 66.84 1.00 1, 2 
1, 2 67.96 1.00 4, 5 

tically 1. In the next example, the rank deficiency 
disappears due to the coupling from springs kIO 
and kIl . 

It appears that for the scenarios considered in 
this example, the overall best actuator placement 
is the 2,4 configuration (i.e., actuators placed at 
m2 and m4)' 

Example 2 

The system characteristics for this are shown in 
Table 4. Again the system parameters were cho
sen such that mass m3 is a nodal point for the first 
two nonrigid body modes. 

In this example two frequency ranges were 
considered but the output weighting was fixed at 
A = diag[1,lO,l]. The first frequency range, 4.0-
9.0 rad/s, avoids the system natural frequencies. 
The secon~ frequency range, 4.0-13.1 rad/s, in
cludes the system's second natural frequency. 
Comparisons for displacement inputs and force 
inputs are shown in Tables 5 and 6, respectively. 

Table 5. Displacement Comparison for Example 2 

A = diag[1,IO,I] 

Frequency: 4.0-9.0 Frequency: 4.0-13.1 

Error K Location Error K Location 

45.00 8.93 1, 5 40.10 4.63 1, 5 
46.12 7.22 1,4 42.37 4.67 2, 5 
46.35 7.58 2, 5 43.10 4.76 1,4 
47.09 5.00 2, 4 44.67 3.81 2,4 
50.18 4.68 2,3 45.97 5.95 2, 3 
50.18 6.80 1, 3 45.97 7.04 1, 3 
50.18 8.06 1, 2 45.97 9.60 1, 2 
51.37 4.87 3,4 47.34 5.71 3, 4 
51.37 7.23 3,5 47.34 5.99 3,5 
51.37 7.41 4,5 47.34 6.88 4,5 
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Table 6. Force Comparison for Example 2 

A = diag[1,10,1] 

Frequency: 4.0-9.0 Frequency: 4.0-13.1 

Error K Location Error K Location 

45.00 2.82 1, 5 40.70 2.58 1, 5 
46.12 2.81 1,4 42.37 2.51 2, 5 
46.35 2.95 2,5 43.10 2.94 1,4 
47.09 2.73 2, 4 44.67 2.63 2, 4 
50.18 4.05 2, 3 45.97 4.01 2,3 
50.18 4.18 1, 3 45.97 4.26 1, 3 
50.18 17.25 1,2 45.97 15.93 1, 2 
51.37 4.92 3,5 47.34 3.85 3, 5 
51.37 5.05 3, 4 47.34 3.96 3, 4 
51.37 20.43 4, 5 47.34 14.35 4, 5 

Tables 5 and 6 indicate that the ranking of the 
configurations are identical except for second 
and third ranked elements that are sometimes re
versed. Thus, it appears that system frequencies 
in the operational bandwidth does not drastically 
affect the placement of the actuators. However, 
note that both the maximum error and the system 
conditioning are substantially smaller for the 
cases involving system frequencies in the opera
tional bandwidth. 

CONCLUSIONS 

A criterion for selecting actuator placement in 
MDOF vibration simulators has been presented. 
The criterion incorporates not only information 
regarding the locations of the sensors, but also 
the relative importance assigned to different sen
sor outputs and any a priori information regard
ing amplitude bounds at different sensor loca
tions. The selection criterion makes it possible to 
unambiguously compare different actuator con
figurations. 

The numerical results presented in this article 
indicate that actuator placement in MDOF vibra
tion simulators is independent of nodal locations 
and system frequencies. This is quite surprising 
considering the fact that in vibration suppression 
problems, nodal locations and system frequen
cies are very critical to the placement of actua
tors. From these numerical results, it appears 
that no simple rule of thumb criterion exists for 
the placement of actuators in MDOF vibration 
simulator systems. 

In real systems, the number of candidate actu
ator locations will be much larger than the 10 
used in the examples presented here; therefore, 
an exhaustive search based primarily on the se
lection criterion of this study will be impractical. 
However, through engineering judgement and 
physical constraints, the set of candidate config
urations can be reduced to a manageable size be
fore the selection criterion is applied. Thus, the 
selection criterion presented in this article is in
tended to compliment the current use of engi
neering judgement and physical constraints in 
the design of MDOF vibration simulators. 

This research was supported by US Army contract 
DAAH03-92-P-0893 through the Dynamic Test Branch 
of Redstone Technical Test Center. 
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