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Effective Method for Analysis 
of Electrothermally 
Coupled Fields 

An effective method is presentedfor solving a nonlinear system of partial differential 
equations that describe the time-dependent electrothermally coupled fields for pas­
sage of constant electric current in a three-dimensional conductive medium. A numer­
ical model of this physical phenomenon was obtained by the finite element method, 
which takes into account the temperature-dependent characteristics describing the 
material parameters and conditions of heat transmission outside of the analyzed 
objects. These characteristics and conditions make the problem strongly nonlinear. 
The solution uses the Newton-Raphson method with the appropriate procedure for 
determining the Jacobian matrix elements. The main idea of the proposed method is 
the use of an automatic time step selection algorithm to solve heat conduction equa­
tions. The influence of the assumed accuracy value on thefinal result of the nonlinear 
calculation is discussed. The theoretical results were confirmed by the numerical 
experiments performed with selected physical objects. © 1995 John Wiley & Sons, Inc. 

INTRODUCTION 

The analysis of the 2-D models of electrically and 
thermally coupled fields has been studied by 
many authors, for example Bastos et al. (1990), 
Lavers (1983), and Masse et al. (1985). The pri­
mary problem was to find an effective method of 
solving the nonlinear nonstationary system of 
partial differential equations. Much attention 
was paid to this problem in the article written by 
Masse et al. (1985). 

"single-step" first-rank method with a variable 
time step was elaborated on the basis of the 
methods known from the Masse et al. (1985) and 
Zienkiewicz et al. (1984) studies. 

In this article the authors try to solve the prob­
lem for the 3-D model, assuming that the direct 
current flows through a thermal element. When 
studying the 3-D problem, it is particularly im­
portant to choose an effective method of solving 
the equation that describes the nonstationary 
thermal field distribution. The new version of 
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Numerical computations have confirmed the 
methods proposed. These computations were ar­
ranged in such a way as to avoid nonlinear itera­
tions during calculation. 

MATHEMATICAL MODEl OF 
ANALYZED PROBLEM 

It is essential to consider the physical phenom­
ena that occur during the flow of direct or har­
monic current through a conductor. When the 
Kelvin skin effect is neglected, the phenomena 

CCC 1070-9622/95/030219-07 

219 



220 Korytkowski and Wincenciak 

can be described by the set of partial differential 
equations: 

(1) 

with the appropriate boundary conditions, where 
y(n is the conductance, A(T) is the heat conduc­
tivity, p (T) is the mass density, and C(n is the 
specific heat. They are all temperature-depen­
dent coefficients. 

The boundary conditions of the electric field 
depend on the way in which current flow is 
forced through the conductor. When voltage 
forcing takes place, the potentials at the load 
points are assumed to be cp = 0 and cp = U, and 
when the current forcing appears, y(acp/an) = I n 

is assumed as a nonzero Dirichlet condition. For 
the remaining part of the conductor condition, 
acp/ an = 0 should be satisfied. For a thermal field 
the condition of heat transmission on the surface 
of the conductor is assumed as follows: 

or 

aT 
A(T) - = -ain(T - To) 

an 
(3) 

az<T) = a (T) + e(T)(T + To)(T2 + T&), 

where az(T) is the equivalent coefficient that 
takes into account heat convection and heat radi­
ation, To is the temperature of a conductor's sur­
roundings, aCT) is the coefficient that accounts 
for convection heat transfer, and s(n is the tem­
perature-dependent coefficient that accounts for 
radiation heat transfer. 

After the numerical approximation of Eqs. (1) 
and (2), according to the finite element scheme 
with the boundary conditions presented above, 
nonlinear set of algebraic equations is obtained in 
the folloiwng form 

H(T)[cp] = G (4) 

A(T)T + D(T)T = B([cp], T), (5) 

where t is the vector of the temporal tempera­
ture derivatives at the discretization nodes of the 
domain. 

The elements of the matrices in Eqs. (4) and 
(5) for the eth discretization element of the do­
main of analysis are expressed as follows: 

(7) 

(8) 

+ f a (T)(e)ToN; ds, 
S<el Z 

(9) 

where V(e) is the volume of the eth element, s(e) 

is the surface of the eth element that forms a part 
of the flank of the examined conductor, and Ni is 
the shape functions over the element. 

METHOD OF SOLVING HEAT EQUATION 

From the numerical point of view two serious 
problems must be considered. The first is to 
solve the set of nonlinear equations, and the sec­
ond is to choose the proper way of approximat­
ing the temporal temperature derivative in order 
to solve heat Eq. (5). 

To solve the second problem, the single-step 
method was described by Zienkiewicz et al. 
(1984). Additionally, an algorithm for the auto­
matic calculation of the time step is presented 
below. The temperature for the interval dtn = 
tn+1 - tn is approximated by the pth order poly­
nomial: 

. .. 1 (p) 1 (10) 
T = Tn + Tnt + Tn "2 t2 + ... + an tP p!' 

where 0 ::s; t ::s; dtn. In order to find the tempera­
ture distribution for the nth interval, the coeffi­
cient a;;) has to be found. For the assumption 
p = 1, the single-step algorithm becomes the lin­
ear algorithm, described by the equations: 

(11) 



where 8 E (0.5; 1) and 1'0+1 is an assumed ap­
proximate value of To+1 • 

Equation (11) is nonlinear because the ele­
ments of the matrices D, A, and B depend both 
on the temperature and on [an]. Therefore, the 
following calculations at each instant of time 
should be performed: 

H(T)[r,on] = G (13) 

(D(T) + 8~tnA(T))[an] = B([r,on], T) - A(T)To 

(14) 

AUTOMATIC CALCULATION 
OF TIME STEP 

(15) 

For the single-step method (10), we assume the 
temperature in the (n + 1)st instant of time 

At the end of the nth instant of time the tempera­
ture can be expanded in a Taylor series: 

Limiting ourselves to the second-order expan­
sion, we get the expression for the temperature 
at the (n + 1)st instant of time in the form 

(18) 

The temperature expressed by (18) is assumed to 
be exact. So the error for the nth step is de­
scribed as follows 

2 2··· 
T * = ~tn TOO = D.tn Tn - Tn-I 

B = n+1 - Tn+1 2 n - 2 A L.ltn-I 

(19) 

After approximating the temperature by the 
single-step method (16), we get for each time 
step: 

D.t~ an-I - a n-2 
B = - (20) 
n 2 D.tn-I 
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and replacing the nth with the next time step in 
Eq. (20), we can assume the error at the n + 1 
time step as follows: 

(21) 

The relations (16-21) describe the changes of 
temperature at any point of the analyzed domain. 
Assuming that this temperature is calculated at m 
points of the domain, the error can be calculated 
on the basis of Eq. (21) and can be expressed as 
follows: 

(22) 

and 

(23) 

As proved in our previous article (Kory­
tkowski and Wincenciak (1993), this method of 
calculating the time step for the heat equation 
provides the best results. The time step D.tn+1 
described by (23) uses the time step values calcu­
lated earlier and assumes a constant error B at 
each time step. 

If we replace the second temporal derivative 
of temperature with the forward final difference, 
which is possible as [an] is known after Eq. (14) 
has been solved, and if we take into account the 
whole analyzed domain, we can express the co­
efficient BA in the following equation: 

(24) 

where the index i is valid for all the vector ele­
ments [an] and [an-d. The value of the co­
efficient BA defines the maximal error that is 
made while determining the temperature in the 
(n + 1)st instant of time. 

A very small error B results in a very short 
time step and consequently in a longer calcula­
tion time. But in this way the nonlinear calcula­
tion 'described by Eqs. (13) and (14) can be 
avoided. Then the material parameters can be 
assumed constant for a given time step and cal­
culated on the basis of the Tn value. 

It is possible to assume a higher value of the 
error B, but then a nonlinear calculation will be 
necessary at some time steps. They will occur 
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just at those time steps where the inequality eA > 
e is satisfied. 

When considering the nonlinear iteration, the 
temperature chosen for the calculation of the ma­
terial parameters at the next iteration is: 

(25) 

where T~+I denotes the kth iteration in the 
(n + 1)st instant of time for the temperature, or 

(26) 

The procedure agrees with the assumed tem­
perature approximation for the nth time step. 
Nonlinear calculations are repeated using the 
Newton-Raphson method with the Kirchhoffre­
placement until the inequalities given below hold 
simultaneously: 

(27) 

(28) 

where 'Y/t and 'Y/r are the assumed values of the 
maximal error for the variable a and the resid­
uum of Eq. (14), respectively. 

When these conditions hold, the nonlinear it­
eration ends. R~+1 is a vector of residua of Eq. 
(14) for the kth nonlinear iteration and the 
(n + 1)st instant of time. 

If we use the Kirchhoff replacement 

() = JT 'A(T') dT' 
T8 

(29) 

then the partial differential equation, Eq. (2), de­
scribing the temperature distribution is ex­
pressed as: 

V2() _ p«())C«()) a() = _ «())( d)2 
'A«()) at y gra 'II . (30) 

This replacement results in the fact that the 
nonlinearity of the A matrix (7) is caused only by 
the influence of the boundary condition (3). 
Therefore, we can assume that for the variable () 
the Jacobian matrix for the residuum of Eq. (14) 

in the kth iteration and at the nth time step will 
take the following form: 

(31) 

In this equation the Jacobian matrix is sym­
metrical and can be determined in the same way 
as coefficient matrices in a linear problem. 

In a nonlinear process, we look for the solu­
tion in the form: 

where the coefficient w k is calculated from the 
condition 

k - • ( Ila~-I]11 1) (33) 
w - mill v Ii[da~]II' 

and v E (0.1; 0.2). 
The correction [da~] is derived from the ma­

trix equation 

(34) 

Introducing the variable () has considerably 
shortened the calculation time in comparison 
with the calculation time directly for the temper­
ature. 

If the error eA is still bigger than the previously 
assumed error e then we have to halve the time 
step d tn and repeat the calculation. The whole 
operation should be repeated until the condition 
eA ::5 e is satisfied. 

NUMERICAL EXPERIMENTS 

The process of producing wolfram in a high tem­
perature furnace was simulated numerically. The 
current passing through the molded bar of wolf­
ram is the source of Joule's heat. As a result of 
heating, metallic wolfram is produced. The pro­
cess would fail if the metal is overheated (tem­
perature above 3550K) or if the gradients of tem­
perature are too high, which causes a splitting of 
the heavy bar. In the article written by Kory­
tkowski and Starzynski (1991), calculations of 
heating at continuous feed (current with the root­
mean-square, rms, value 4250 A) were pre­
sented. In the present example, continuous feed 
has been replaced by an impulse one with a 
stronger current, in our case 6000 A. If the maxi-
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FIGURE 1 Discretization of the model. 

mum temperature approaches the melting point, 
the feed is disconnected. Repeated connection 
takes place when the minimum temperature of 
the entire heavy bar attains a value of about 
1070K. The starting point is the thermal steady 
state with continuous feed. The values of coeffi­
cients 8 = 0.75, dto = 3 s were assumed in the 
calculations. 

If we consider that the electric and thermal 
fields are symmetrical only a quarter of the heavy 
bar has been examined. We assume that the phe­
nomena on the boundary of the heavy bar are 
neglected and that the distribution of cooling 
along the side walls is identical and described by 
Eq. (3). The model has been discretized by 294 
finite cubic 8-node elements (7 layers along the 
axes Ox and Oy and 6 layers along the axis Oz; see 
Fig. 1). 

The numerical simulation has been done for a 
number of assumed error values e. In all cases 
the coefficient 8 [Eq. (11)] and time step d t n [Eq. 
(11)] have assigned values, 8 = 0.75 and !1to = 
3 s, respectively. All calculations were done on 

3340 1-+--+---/-----+---+-\-I----f------1 

3180 f--~--/-----+r_----t----f--+_---1 

3020 ;---------j--/----+--+------j+-----+--I'--------1 

380 760 

FIGURE 2 Change of maximum temperature at er­
ror e = 15 (W/m). 
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FIGURE 3 Change of time step during calculation 
process at error e = 15 (W/m). 

an IBM 486 personal computer with 33-MHz 
clock. 

The diagram of Fig. 2 presents the change of 
maximum temperature with an error of e = 15 
(W 1m) for the variable (J and Fig. 3 displays the 
change of time step during the calculation pro­
cess. The simulation process uses 32,400 of CPU 
time. 

Figure 4 presents the change of maximum 
temperature with an error of e = 60 (W 1m) and 
the diagram of Fig. 5 shows the change of time 
step during the calculations. The procedure used 
14,600 of CPU time. 

Figure 6 presents the change of maximum 
temperature with an error of e = 120 (W 1m) and 
the diagram of Fig. 7 displays the change of time 
step during calculations. The calculations took 
21,300 of CPU time. 

(K] 
3500 r-I --......,---,.......--....,...--.......,----, 

3340 1-+--+---/------,---+--++----f------1 

3180 f..-. -+---+---++----\'-------+---+--' 
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=0 f---+-+-+---+--~+--,L+---.....j 

I 
~ __ ~ __ ~ __ .....L.... __ ~ __ ~I(s] 

190 380 570 760 950 

FIGURE 4 Change of maximum temperature at er­
ror e = 60 (W 1m). 
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FIGURE 5 Change of time step during calculation 
process at error e = 60 (W/m). 

CONCLUSIONS 

Comparison of the presented results of simula­
tion shows that assuming a higher error value 
shortens the calculation time but the nature of 
the temperature changes remains the same (com­
pare Figs. 2 and 4). However, a considerable in­
crease in the error results in temperature changes 
of an unpredictable character during the simula­
tion (compare Figs. 2 and 6). 

When calculating the transient state with great 
temperature variations, the following definition 
of the relative error e can be used 

* _ e 
e -IITnll. (35) 

The time variation of the temperature in the 
calculations presented was so small that use of 
formula (35) was unnecessary. 

3~0 ~-+-+~---~--~~~~---
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I 
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o 190 380 570 760 950 

FIGURE 6 Change of maximum temperature at er­
ror e = 120 (W/m). 
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I I I \' ~ 
8.80 -; -----t- ,I 
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FIGURE 7 Change of time step during calculation 
process at error e = 120 (W/m). 
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MATHEMATICAL SYMBOLS 

-y(T) 
>"(T) 
p(T) 
C(T) 
exiT) 

conductance 
heat conductivity 
mass density 
specific heat 
equivalent coefficient that takes into con­
sideration heat convection and heat radi­
ation 



01;:) average value ofthe pth temporal deriva­
tive of temperature in nth time interval 

[OI n] vector of coefficients OI n in points of dis­
cretization 

[aOl~] correction of vector [OI n] in the kth itera­
tion of calculations 

11·11 the Euclidean metric 
To the temperature of conductor's sur­

rounding 
T~v average value of temperature for kth iter­

ation and in nth time step 
OI(T) coefficient that takes into consideration 

heat transfer by convection 
B(T) coefficient that takes into consideration 

heat transfer by radiation 
B error of calculations 
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. 
T 

J 
R 
vee) 
see) 

N j 

v 
w 
() 

vector of derivatives of temperature in 
discretization nodes of the domain 
the Jacobian matrix 
vector of residua 
volume of the eth element 
surface of the eth element that builds a 
part of the examined conductor flank 
shape functions inside each discretiza­
tion element 
constant E (0.5; I) 
constant E (0.1; 0.2) 
coefficient of underrelaxation 
auxiliary variable for Kirchhoff replace­
ment 
the length of the nth time step 
value of maximum error for temperature 
value of maximum error for residuum 
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