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Fluid Surface Damping: 
A Technique for Vibration 
Suppression of Beams 

A fluid sUrface damping (FSD) technique for vibration suppression of beamlikestructures 
is proposed. The technique is a modification of the surface layer damping method. Two vis­
coelastic sUrface layers containing fluid-filled cavities are attached symmetrically to the 
opposite sUrfaces of the beam. The cavities on one side are attached to the corresponding 
cavities on the other side via connection passages. As the beam vibrates, the fluid is pumped 
back and forth through the connecting passages. Therefore, in addition to the viscoelastic 
damping provided by the sUrface layers, the technique offers viscous damping due to the 
fluidflow through the passage. A mathematical model for the proposed technique is devel­
oped, normalized, and solved in the frequency domain to investigate the effect of various 
parameters on the vibration suppression of a cantilever beam. The steady-state frequency 
response for a base white-noise excitation is calculated at the beam's free tip and over a 
frequency range containing thefirstfive resonantfrequencies. The parameters investigated 
are the flow-through passage viscous resistance, the length and location of the layers, the 
hydraulic capacitance of the fluid-filled cavities, and inertia of the moving fluid (hydraulic 
inertance). Results indicate that the proposed technique has promising potential in the field 
of vibration suppression of beamlike structures. With two FSD elements, all peak vibration 
amplitudes can be well suppressed over the entire frequency spectrum studied. 

INTRODUCTION 

Vibration control of thin structures is of great impor­
tance to the automobile, aircraft, and space industries. 
The surface layer damping method has been used as a 
simple and reliable means of controlling the vibration 
of such structures (Nashif et aI., 1985; Cremer et aI., 
1988). In particular, constrained layer damping (CLD) 
has been widely used because of the relatively high 
damping it provides (Harrison et aI., 1994; Henze et 
aI., 1990; Tomlinson, 1990). In this method a layer of 
a viscoelastic material is bonded to the surface of the 
structure and constrained by a stiff constraining layer. 

Upon vibration of the structure the viscoelastic layer 
deforms and dissipates the excessive energy of vibra­
tion of the structure. The method, although successful, 
is effective over a limited range of temperatures and 
frequencies. A viscous fluid layer has been utilized for 
vibration control of plates (Ingard and Akay, 1987). In 
this application, a thin layer of fluid is trapped between 
the plate and a rigid back block. Upon vibration of the 
plate, the fluid is pumped from regions of compression 
to regions of rarefaction. The energy required to over­
come the friction drag on the fluid is supplied by the 
plate engendering the damping effect. The high sensi­
tivity of the technique to the operating conditions and 
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FIGURE 1 Schematic of a beamlike structure treated with a fluid surface damping element. 

system parameters (Onsay, 1994) as well as the need 
for the backing block restricts the technique to very 
special applications. 

Active control techniques have also been applied 
to control the vibration of thin structures. Active con­
trol using an electrorheological sandwiched beam was 
proposed and shown to reduce the transient response 
of the beam (Rahn and Joshi, 1994). The extreme 
high voltage required renders the technique impracti­
cal. Piezoelectric elements, used as actuators and/or 
sensors, were introduced for the active vibration con­
trol of beam- and platelike structures (Liao and Sung, 
1991; Dosch et aI., 1992; Hollkamp and Napolitano, 
1994). These active techniques are more effective than 
the CLD method; however, unreliability, instability, 
complexity, and cost are some of the disadvantages 
that limit their use. 

To overcome some of these disadvantages, hybrid 
techniques, which integrate the CLD into active con­
trol methods, were recently proposed. One such tech­
nique, the intelligent constrained layer (ICL), replaces 
the constraining layer of the CLD with a piezoelectric 
layer that acts as an actuator (Agnes and Napolitano, 
1993; Nostrand et aI., 1993; Shen, 1994). Baz and Ro 
(1993) introduced a modified ICL technique, active 
constrained layer damping (ACLD), in which an ad­
ditional piezoelectric layer is sandwiched between the 
viscoelastic constrained layer and the structure. This 
additional piezoelectric layer acts as a sensor. The ad­
vantages of the modified technique over the conven­
tional CLD were clearly demonstrated analytically and 
experimentally by Baz and Ro (1994) for a cantilever 
beam and over a considerable range of temperatures. 
Another hybrid technique was also proposed: Elec­
tromechanical surface damping (EMSD). This tech­
nique integrates the shunted piezoelectric damping 
method (introduced by Hagood and Von Flotow, 1991 

into the CLD method). In this case the constraining 
layer of the conventional CLD is replaced by a shunted 
piezoelectric ceramic. Tuning the shunting piezoelec­
tric circuit to one or more of the resonant frequencies 
of the structure renders a greater suppression of the 
resonant vibration amplitudes and/or a wider effective 
range of the vibration control as compared to the con­
ventional CLD (Ghoneim, 1995). 

In this article a simple, passive, and reliable tech­
nique for vibration suppression of beamlike structures 
is proposed, the fluid surface damping (FSD) tech­
nique. It is a modification of the surface layer damp­
ing method. A schematic of a FSD element applied 
to a beamlike structure is illustrated in Fig. 1, and the 
corresponding physical and hydraulic models that il­
lustrate the fundamental working principal of the FSD 
element are presented in Fig. 2. Two viscolelastic sur­
face layers containing fluid-filled cavities are attached 
symmetrically to the opposite surfaces of the beam. 
The cavities on one side of the beam's neutral axis are 
connected to the corresponding cavities on the oppo­
site side via narrow passages. When the beam bends, 
the layer attached to one side of the beam contracts 
and the opposite layer stretches, causing the respec­
tive cavities to contract and expand and the fluid to be 
pumped from the contracting to the expanding cavi­
ties through the connecting passages as illustrated in 
Fig. 2. As the beam vibrates, the fluid is pumped back 
and forth through the connecting passages dissipating 
part of the excessive energy of vibration. Therefore, in 
addition to the viscoelastic damping provided by the 
surface layers, the technique offers viscous damping 
due to the fluid flow through the passages. 

A rather simple mathematical model is proposed 
for the FSD portion of the treated beam. The model 
is normalized and solved, using the finite element, in 
the frequency domain in order to find the frequency 
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FIGURE 2 (a) Physical and (b) hydraulic models of the 
FSD element. 

response of a cantilever beam subject to a white­
noise displacement excitation at the base. A paramet­
ric study is conducted to investigate the effect of some 
parameters: the viscous resistance, length, and loca­
tion of the viscoelastic layers; the hydraulic capaci­
tance of the fluid-filled cavities; and the inertia of the 
moving fluid (hydraulic inertance). Results are dis­
cussed and the potential of the technique for the vibra­
tion suppression of beamlike structures is examined. 

MATHEMATICAL MODEL 

Basic Assumptions 

Development of the governing equations for the FSD­
treated portion of the beam is based on the following 
assumptions: 

• small displacements and strains; 
• perfect bonding between the surface 

viscoelastic layers and the beam; 
• plane cross sections remain plane; 
• all transverse displacements of all points of the 

surface layers and the beam on any cross 
section are the same and equal to the transverse 
displacement of the midplane of symmetry (i.e., 
no transverse normal strains); 

• no axial loading and consequently the midplane 
of the beam does not experience any axial 
displacement; 

• the initial axial displacement due to the fluid 
pressure inside the cavities is considered 
negligible; 

• rotary inertia and shear deformation are 
negligible (Bernoulli-Euler beam); 

• linear, isotropic, elastic material behavior for 
the beam and viscoelastic material behavior for 
the surface layer; 
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• incompressible, laminar flow; 
• the pressure inside the cavities is uniform; that 

is, the pressure drop along the axes of the 
cavities due to the fluid flow inside the cavities 
is negligible; and 

• viscous damping due to the fluid flow through 
the passage is the dominant source of hydraulic 
damping. 

To satisfy the last two assumptions, some design 
consideration of the fluid circuit must be fulfilled. The 
hydraulic resistance of the connecting passage must 
be much larger than that of the cavities. That is 1/ d4 , 

where 1 and d respectively stand for the length and di­
ameter, of the connecting passage must be much larger 
than that of the cavities. This would ensure that the 
pressure drop due to the axial flow inside the cavi­
ties is negligible compared to the pressure drop due to 
the flow through the connection passage. A connecting 
passage with a high slender ratio (length to diameter 
ratio) would also reduce the minor losses (exit and en­
trance losses) relative to the major one due to viscous 
damping. Well-rounded entrances at the connections 
between the passages and the cavities (Fig. 1) further 
reduce these minor losses and render the last assump­
tion more realistic. 

Governing Equations 

Based on the above-mentioned assumptions and from 
the dynamic equilibrium of the differential element 
shown in Fig. 3, we have 

(1) 

where pA is the mass per unit length of the composite 
beam (pA = LPiAi), w is the transverse displace­
ment, and x is the axial coordinate. The bending mo­
mentM is 

where (J is the axial stress; E I Ir the flexure rigidity 
of the beam; E2 the extensional-relaxation modulus 
of the surface layers' viscoelastic material; h the mo­
ment of inertia of the surface layers' cross-sectional 
area, A2, about the neutral axis of the beam; and Q the 
first moment of the fluid cavities' cross-sectional areas 
of one layer about the neutral axis, Q = fA /2 Y dA = 
yA3/2, with y being the perpendicular distance be­
tween the beam's neutral axis and the center line of 
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FIGURE 3 A differential element of the treated beam with an illustration of the different cross­
sectional areas. 

the cavity (Fig. 1). The cross-sectional areas AI, A2, 
and A3 pertain to the beam, surface layers, and fluid 
cavities, respectively (Fig. 3). The symbol ® stands 
for the heredity (Boltzmann) integrals (Christensen, 
1982), A ® B = J~ A(t - ~)(aB/a~)d~. The pres­
sure drop across the connecting passage, I::!..p, can be 
expressed as 

I::!..p=K®q, (3) 

where K is the equivalent hydraulic bulk-relaxation 
modulus of the fluid circuit [Fig. 2(b)] and q is the 
fluid volumetric flow induced by bending, 

q = (A3/2)(Ua - Ub) 

= -(A3/2)y{ (aw/ax)a - (aw/axh} (4) 

= -Q(8a - 8b) = -QI::!..8, 

where U and 8 are the average axial displacement and 
angular rotation of the surface layer's cross-sectional 
plane. The subscripts a and b designate the axial lo­
cations at which U and 8 are measured, i.e., as shown 
in Fig. 2(a), at Xa and Xb, respectively. Substituting (3) 
and (4) into (2), we get 

M = EIII(a2w/ax2)+E2lz®(a2w/ax2)+Mu, (5) 

where M u is the hydraulic moment generated by the 
fluid circuit, 

(6) 

Substituting (5) and (6) into (1), we get the governing 
equation of the FSD-treated portion of the beam, 

(7a) 

noindent subject to 

Clearly, the problem of a beam treated with an FSD el­
ement is equivalent to the classical problem of a beam 
treated with a surface damping layer plus a couple of 
equal and opposite viscous moments, M u, applied at 
both ends of the FSD element [Fig. 2(a)]. 

FREQUENCY ANALYSIS AND PARAMETRIC 
STUDY 

Effect of the FSD treatment on the frequency response 
of a cantilever beam subjected to white-noise displace­
ment excitation at the base was investigated. The re­
sponse was found at the beam's free tip and over a 
wide range of frequencies covering the first five reso­
nmit frequencies. A parametric study was conducted to 
assess the impact of various parameters on the damp­
ing effectiveness of the technique as measured by the 
magnitude of the peak vibration amplitudes. The pa­
rameters considered in the current analysis were the 
viscous resistance R, the length and location of the 
FSD element, the hydraulic capacitance of the upper 
and lower cavities C, and the fluid inertia (hydraulic 
inertance) If. N ondimensional variables and param­
eters were adopted to facilitate the parametric study 
task. 

In the frequency domain, the governing equations, 
Eq. (7), becomes 

(8a) 



subject to 

where 

In (8) Wo is the amplitude of the transverse dis­
placement (w = woeiwt ), B is the amplitude of the 
angular displacement (8 = Beiwt ), cv is the excitation 
frequency, and EI(cvi) = Elh + Ei(cvi)h where Ei 
is the complex Young's modulus of the surface layers' 
viscoelastic material. Based on the assumptions stated 
earlier and the hydraulic model shown in Fig. 2(b), the 
hydraulic complex bulk modulus, K*(cvi), of the FSD 
elementis 

I::!..p I { -Ifcv2 +rcvi } K*(cvi) = - = -
q Ce -Ifcv2 + Rcvi + liCe 

_.! (~)2 + cvi 
_ R r Wn 

- I (W)2 .' 
- Wn + rCVl 

(9) 

In the above equation r is the hydraulic time constant 
(r = RCe ), CVn is the hydraulic natural frequency 
(cvn = I/JlfCe ), and Ce is the equivalent hydraulic 
capacitance of the connected cavities (Ce = C /2, for 
identical cavities). 

For the parametric study, the following nondimen­
sional variables and parameters we adopted: X is the 
nondimensional axial coordinate, X = x / L; W is 
the nondimensional transverse displacement, wo/ L; 
M is the nondimensional bending moment, M = 
M L / E I h; a is the nondimensional complex flexure 
rigidly, a = E I / Ell I; p, is the nondimensional mass 
per unit length, p, = pA/PIAI; 0 is the nondimen­
sional frequency, 0 = cv/cvo; where L is the length of 

the beam and CVo = JElh/PIAIL4. Notice that for 
the untreated portions of the beam, a = p, = 1. Upon 
normalization of the governing equation, Eq. (8), we 
get 

subject to 
,....; ,..... ,...., ......., 

M(Xa) = -Mv and M(Xb) = M v, 

where 
(lOb) 

The nondimensional complex modulus, K(Oi), is ex­
pressed as 

R(Oi) = R T Qn , { _.l(.R)2 + Oi } 

_1(~)2 + TOi 
(11) 
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where R is the nondimensional hydraulic resistance of 
the connecting passages (R = RQ2/PIAIL3cvO), T 
is the nondimensional time constant (T = rwo), and 
On is the nondimensional natural frequency (On 
cvn/WO). 

RESULTS AND DISCUSSION 

The frequency response of the treated cantilever beam 
was determined for different lengths and locations of 
the FSD element and for different values of R, T, and 
On. Samples of the results are shown in Figures 4-
11. The vertical axis in all these figures represents the 
amplitude ratio between the amplitude of the displace­
ment response at the beam's free tip and the input dis­
placement amplitude at the base. All numerical results 
were obtained over the frequency range b = 0-15, 
where b = v'Q, that covers the first five natural fre­
quencies, and for a = 1.25 + O.25i and p, = 1.6. 
The response was determined using the finite element 
method. Twenty beam elements with cubic Hermite 
shape functions (Reddy, 1993) were adopted in all the 
examples presented. The finite element results using 
20 elements for the case shown in Fig. 4 are compared 
with the corresponding analytical ones using the pro­
gram Mathematica, and excellent agreement was ob­
tained. When displayed graphically, both results are 
indistinguishable and consequently the analytical re­
sults are not presented. 

The introduction of the nondimensional variable b 
enhances the frequency response displayed in the fig­
ures and allows a direct comparison between the finite 
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FIGURE 4 The frequency responses of the beam treated 
with an FSD element placed at t:J.X = [0.0-0.1] for differ­
ent values of the nondimensional viscous damping, ii, and 
fore = If = O. 
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FIGURE 5 The frequency responses of the beam treated 
with an FSD element placed at fl.X = [0.0-0.2] for differ­
ent values of the nondimensional viscous damping, ii, and 
for C = If = O. 
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FIGURE 6 The frequency responses of the beam treated 
with an FSD element placed at fl.X = [0.2-0.4] for differ­
ent values of the nondimensional viscous damping, ii, and 
forC = If = O. 

element results and the corresponding analytical ones, 
which are readily determined in terms of b. The val­
ues of a and /L roughly represent an aluminum beam • 
(EI = 70 Gpa and PI = 2700 kg/m3) with viscoelas­
tic layers of Soundcoat DYAD 609 (Ej ~ 700 + 
700i Mpa and P2 = 1000 kg/m3) , having approxi­
mately the same thickness of the beam. The choice of 
these materials is one of the options intended for the 
experimental work. However, it should be mentioned 
that the analysis conducted was qualitative and aimed 
at investigating a window within which the method is 
effective. Consequently, exact values of a and /L are 
not crucial at this stage of the analysis. 
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FIGURE 7 The frequency responses of the beam treated 
with an FSD element placed at fl.X = [0.4-0.6] for differ­
ent values of the nondimensional viscous damping, ii, and 
forC = If =0. 
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FIGURE 8 The frequency responses of the beam treated 
with two FSD elements placed at fl.X = [0.0-0.2] and 
fl.X = [0.7-0.9]. 

Damping Mechanism 

It is useful to emphasize that the FSD treatment dis­
sipates the excessive energy of the vibrating beam via 
two damping mechanisms. 

1. Viscoelastic damping inherent in the surface 
layer material is proportional to the loss of 
Young's modulus of the viscoelastic material 
and to the strain energy captured by the surface 
layer. This is a reason why for best vibration 
suppression the layer should be placed at 
locations of high strain energy. 
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FIGURE 9 The frequency responses of the beam treated 
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ent values of the nondimensional hydraulic time constant, T, 
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FIGURE 10 The frequency responses of the beam treated 
with an FSD element placed at AX = [0.0-0.1] for dif­
ferent values of the nondimensional frequency, bn, and for 
T = 0.005 and Ii = 0.5. 

2. It can be shown that viscous damping 
emanating from the fluid flow through the 
passages, the energy dissipation per cycle, b.E, 
is proportional to b.e2, 

(12) 

Consequently, for best performance at a given 
frequency of the FSD element, it should be 
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FIGURE 11 The frequency responses of the beam treated 
with an FSD element placed at AX = [0.0-0.1] and tuned 
to the first resonant frequency. 

placed such that the difference between the 
angular displacements, b.e, at both ends of the 
element is maximum. 

EffectofVrscous Damping. Figures 4-7 demonstrate 
the effect of R on the frequency response of the beam 
treated with an FSD element of different lengths and 
placed at different locations. In all these figures the 
hydraulic capacitance, C, and inertance, If, are con­
sidered negligible. The figures indicate that for given 
location and length of the FSD element there is a range 
of R that considerably reduces the peak vibration am­
plitudes over the frequency spectrum under consider­
ation. Within this range, there is an optimum value of 
R, R*, that suppresses the peak vibration amplitude(s) 
of a specific resonant frequency or frequencies the 
most. The higher the resonant frequencies, the smaller 
is the value of R*, and vice versa. For example, an 
FSD element, with Lb = 0.1, placed at the vicinity 
of the clamping end (Fig, 4) achieves optimum damp­
ing at the third-to the fifth resonant frequencies when 
R* = 0.25 and at the second resonant frequency when 
R* = 1.0. Similarly, in Fig. 5 for Lb = 0.2, R* = 1.0 
more or less optimizes damping at the first three res­
onant frequencies while R* = 0.1 is the optimum for 
the fifth resonant frequency. 

Effect of Length and Location of FSD Element. The 
length of the FSD element affects the vibration sup­
pression in two ways. As the length increases, the 
element captures and dissipates, via the viscoelas­
tic damping mechanism, more strain energy. Conse­
quently, the longer the FSD element, the more vibra­
tion suppression it provides. As the length increases, 
b.e changes and consequently the energy dissipation 
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FIGURE 12 The first five nondimensional modal (a) e 
diagram and (b) strain energy diagram of a cantilever beam. 

via viscous damping changes too. Because .6.8 may 
increase or decrease, vibration suppression of the peak 
vibration amplitudes may improve or deteriorate. The 
change in .6. 8 at a given resonant frequency can be 
approximately predicted from the modal 8 diagram 
[Fig. 12(a)] as will be discussed next. 

Figures 4 and 5 show the frequency response of the 
beam treated with FSD elements of different lengths 
located at the vicinity of the clamping end. When vis­
cous damping is ignored (i. = 0), the peak vibra­
tion amplitudes are reduced with increasing length of 
the FSD element, Lb. This is because of the increas­
ing strain energy captured by the element, as depicted 
by the thin solid lines in Figs. 4 and 5. At R* (thick 
solid lines), .6.8 is the major factor that controls vi­
bration suppression. For Lb = 0.1, .6.8 increases 
with the increasing order of the resonant frequency 
[Fig. 12(a)], and consequently higher resonant peaks 

are suppressed more (Fig. 4). At X = 0.2, Fig. 12(a) 
shows that the fourth mode experiences a node; conse­
quently viscous damping has little effect on the fourth 
resonant peak vibration amplitude when Lb = 0.2 as 
shown in Fig. 5. 

Samples of the frequency responses of the beam 
treated with an FSD element having the a length 
Lb = 0.2 and placed at different locations are shown 
in Figs. 5-7. The axial locations presented are at 
.6.X = [0.0-0.2], [0.2-0.4], and [0.4-0.6], respec­
tively. The effect of the location on the peak vibra­
tion amplitudes is also governed by the two damping 
mechanisms and consequently depends on the strain 
energy captured by the element and the value of .6.8. 
Viscoelastic damping via the surface layer becomes 
more effective when the FSD element is placed at lo­
cations of maximum strain energy and vice versa. The 
modal strain energy diagram is shown in Fig. 12(b) for 
the first five modes. Notice that the first modal strain 
energy (thick-solid line) is maximum at the clamping 
end and monotonically decreases with the increasing 
axial location, X. Consequently, in the absence of the 
fluid viscous damping (R = 0), the ability of the FSD 
element to suppress the first peak is maximum when 
the element is located at the base and is reduced as 
the element is located further away from the clamp­
ing surface. This abating vibration suppression ability 
is responsible for increasing the magnitude of the first 
peak as the FSD element is placed farther away from 
the clamping end (Figs. 5-7). Also, notice that at loca­
tion 2, .6.X = [0.2-0.4], the second modal strain en­
ergy is small and the third is maximum. Consequently, 
viscoelastic damping reduces the second peak the least 
and the third the most as shown by the thin solid line 
(R = 0) in Fig. 6. The effect of .6.8 on the peak vi­
bration amplitudes is demonstrated in Fig. 7 when the 
FSD element is placed at location 3, .6.X = [0.4-0.6]. 
At this location .6.8 is minimum for the third and fifth 
modes and maximum for the fourth. Consequently R 
has very little effect on the th~d and fifth peak vibra­
tion amplitudes, while when R = 0.1 the FSD treat­
ment almost eliminates the fourth peak. 

Clearly the effect of the FSD treatment on the vi­
bration suppression of the beam is to some extent 
predictable, which facilitates the task of designing 
an efficient FSD treatment. From the modal 8 and 
strain energy diagrams, it can be predicted that a full 
treated beam will produce a good vibration suppres­
sion. A FSD element covering the entire length of the 
beam captures all the possible strain energy and ren­
ders high .6. 8 for all modes. In addition to the non­
desirable extra weight introduced by this treatment, 
the high length to diameter ratio of the fluid cavities 
will cause a violation of the uniform cavity pressure 



assumption and render the present analytical model 
incorrect. An alternative efficient design may be ac­
complished by using multielements. A possible de­
sign is to use two elements located at the base, /).X = 
[0.0-0.2], and near the tip, /).X = [0.7-0.9]. The fre­
quency response of such a design is shown in Fig. 8. 
The responses due to each patch are also included 
as thin solid and dashed lines, respectively. The first 
patch effectively suppresses the first three peak vibra­
tion amplitudes and has little effect on the fourth and 
fifth peaks. The second patch, on the other hand, co­
incides with a near maximum /). E> for the fourth and 
fifth modes [Fig. 12(a)] substantially reducing the cor­
responding peaks. This location, however, is virtually 
ineffective over the first and second modes. Using both 
patches produces a very effective vibration suppres­
sion over the entire spectrum as demonstrated by the 
thick solid line in Fig. 8. 

Effect of Hydraulic Capacitance and Inertance. The 
effect of C and If are presented for the case when 
the FSD element is placed at the base and Lb = 0.1. 
Figure 9 displays the frequency responses for differ­
ent values of T and when If = 0 and R = 0.1. 
Clearly, the effect of C is detrimental. As T increases, 
the peak vibration amplitudes across the spectrum in­
crease. This effect is expected, because the volumet­
ric flow through the connecting passages decreases as 
the compliance of the cavities increases (C increases), 
rendering less viscous energy dissipation. Similarly, 
the effect of the hydraulic inertance is in general detri­
mental. Figure 10 shows the effect of bn (bn ~ ~) 
on the frequency response for the case when R = 0.5 
and T = 0.005. Notice that as Q n decreases, If in­
creases and the effect of the inertance becomes more 
pronounced. Some limited improvement, however, can 
be accomplished for a given combination of R, C, and 
If where the peak vibration amplitude can be reduced 
at one or two frequencies at the expense of a pro­
nounced increase at the other frequencies. 

It should be pointed out that when C and If are sig­
nificant, the FSD element can be used as a damped ab­
sorber and tuned to suppress a specific peak vibration 
amplitude. Figure 11 demonstrates the effect of the 
FSD element on the frequency response of the beam 
when R, C, and If are tuned to the first natural fre­
quency (bn = 2.16). Clearly, a considerable suppres­
sion of the peak is achieved. However, this improve­
ment is at the expense of the response at the second 
resonant frequency. 

CONCLUSION 

A simple and passive technique for the vibration sup­
pression of beamlike structures is proposed where two 
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viscoelastic surface layers with connected fluid-filled 
cavities are attached to the opposite surfaces of the 
beam. In addition to the viscoelastic damping of the 
surface layers, the technique provides viscous damp­
ing due to the fluid flow through the connecting pas­
sages. A mathematical model of a FSD-treated can­
tilever beam is developed and solved. A parametric 
study is conducted to investigate and assess the effec­
tiveness of the technique. The investigation reveals the 
following. 

1. Best performance (vibration suppression) of the 
method is attained under the following 
condition: 

• an optimum value of the 
flow-through-passage viscous resistance; 

• negligible hydraulic capacitance and 
inertance; and 

• the length and location of the FSD element 
are such that it captures the maximum strain 
energy, and the difference between the 
angular displacements at both ends of the 
element is maximum. 

2. With two elements attached at the base and near 
the tip of the beam, all peak vibration 
amplitudes over the entire frequency domain 
studied can be well suppressed. 

3. The effect of the hydraulic capacitance and 
inertance are, in general, detrimental. However, 
for certain values, the FSD element acts as a 
damped absorber and can be tuned to suppress 
the vibration at a specific frequency. 

In brief, the investigation showed that the proposed 
technique has promising potential in the field of vibra­
tion suppression of beamlike structures. Experimental 
work to bolster the current claim will be conducted. 
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