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Dynamic response of cantilevered
thin-walled beams to blast and sonic-boom
loadings

Liviu Librescu∗ and Sungsoo Na1

Department of Engineering Science and Mechanics,
Virginia Polytechnic Institute and State University,
Blacksburg, VA 24061-0219, USA

The paper deals with the dynamic response of
anisotropic cantilevered thin-walled beams exposed to
blast and sonic boom loadings. The structural model
used in this study incorporates a number of non-
classical effects such as transverse shear and warping
inhibition. Moreover, implementation of a specific
ply-angle scheme in each constituent lamina results
in elastic cross-couplings beneficial from the response
behavior point of view. The influence of these ef-
fects is highlighted and the efficiency of the tailoring
technique toward enhancing the dynamic response to
various overpressure signatures is demonstrated.

1. Introduction

The response of elastic structures to time-dependent
external excitations, such as sonic boom and blast
loadings, is a subject of much interest in the design of
aeronautical and space vehicles as well as of marine
and terrestrial ones (see, e.g., Crocker [2], Crocker
and Hudson [3], and Houlston et al. [7]).

With the advent of high performance composite
material structures and their increased use in the
aerospace industry and other fields of the advanced
technology, there is a need for further studies of the
problem of structural response. This is due to the
fact that the new composite material structures exhibit
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distinguishing features as compared to their metallic
counterparts. For this reason, in order to accurately
predict the response behavior of structures made of
advanced composite materials, refined structural mod-
els have to be used. In particular, transverse shear as
well as other non-classical effects must be included
in their modeling. To date, investigations of the re-
sponse to sonic booms and blasts have been applied
mainly to flat and curved panels (see, e.g., Birman
and Bert [1], Librescu and Nosier [10,11].) In spite of
the frequent use of thin-walled cantilevered beams in
structures such as airplane wings, helicopter blades,
robotic manipulator arms and space booms, very few
studies have considered the behavior of thin-walled
anisotropic cantilevers subjected to time-dependent
external excitations. In this connection the reader is
referred to the paper by Song and Librescu [18] where,
pertinent references to the literature in this area can
be found.

The development of adequate approaches toward
the prediction of the response of composite thin-
walled beams to time-dependent external pulses is of
practical importance as far as safe design is concerned.
The present paper is aiming to fill the existing gap
in this field and is concerned with two related issues,
namely: (i) the development of a powerful mathe-
matical methodology for determining the response of
thin-walled cantilevers to time-dependent external ex-
citations, and (ii) the highlight of the influence of the
various effects, and specially of the anisotropy, trans-
verse shear and warping inhibition on the dynamic
response of thin-walled beam cantilevers.

It should be mentioned that the theory of anisotropic
thin-walled beams as used in this paper was developed
in the paper by Song and Librescu [17]. However,
in order to be reasonably self-contained, a number of
basic steps yielding the pertinent governing equations
will be displayed.
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2. Structural model: Basic equations

The structural model of single-cell thin-walled
beams used in this study incorporates a number
of non-classical features such as: (i) Anisotropy
of constituent material layers; (ii) Transverse shear,
(iii) Non-uniform twist, in the sense that the rate of
twist dΘ/dz is no longer assumed to be constant as in
the Saint-Venant torsional model, but a function of the
spanwise coordinate and (iv) Primary and secondary
warping effects.

In accordance with the above statements and in or-
der to reduce the 3D problem to an equivalent 1D
one, the components of the displacement vector are
expressed as (see Song and Librescu [17]):

u(x, y, z, t) = u0(z, t)− yΘ(z, t), (1a)

v(x, y, z, t) = v0(z, t) + xΘ(z, t), (1b)

w(x, y, z, t) = w0(z, t)

+ θx(z, t)

[
y(s)− ndx

ds

]
+ θy(z, t)

[
x(s) + n

dy
ds

]
−Θ′(z, t)[Fω(s) + na(s)], (1c)

where

θx(z, t) = γyz(z, t)− v′0(z, t), (2a)

θy(z, t) = γxz(z, t)− u′0(z, t), (2b)

and

a(s) = −y(s)
dy
ds
− x(s)

dx
ds
. (2c)

Here θx(z, t) and θy(z, t) denote the rotations about
axes x and y, respectively, Θ the twist about the z-
axis, while γyz and γxz denote the transverse shear
strains in the planes yz and xz, respectively.

In addition,

Fω(s) =

∫ s

0
[rn(s)− ψ] ds, (3)

plays the role of the primary warping function, na(s)
that of the second warping, whereas the torsional
function ψ and the quantity rn(s) are defined as

ψ =

∮
C

rn(s)
ds
h(s)∮

C

ds
h(s)

, (4)

and

rn(s) = x(s)
dy
ds
− y(s)

dx
ds
, (5)

respectively.
For more details concerning these quantities see the

papers by Song and Librescu [13,17]). Equations (1)
and (2) reveal that six kinematic variables: u0(z, t),
v0(z, t), w0(z, t), θx(z, t), θy(z, t) and Θ(z, t) rep-
resenting three translations in the x, y, z directions
and three rotations about the x, y and z axes, re-
spectively, are used to define the displacement vec-
tor of components u, v and w in the x, y and z di-
rections, respectively. The quantity h[≡ h(s)] de-
notes the wall thickness of the beam (allowed to
vary along the periphery);

∮
C

(·) ds denotes the in-
tegral around the entire periphery C of the mid-
line cross-section of the beam; while

∫ s
0 rn(s) ds

[≡ Ω(s)] is referred to as the sectorial area. For the
case of h uniform in the circumferential direction,
Eq. (4) reduces to ψ = 2Ac/β where Ac denotes the
cross-sectional area bounded by the mid-line contour
while β denotes the total length of the contour mid-
line.

Based on the kinematic representations, Eqs (1) and
(2), the strain measures assume the following form
(see Song and Librescu [17]):

Axial strain:

εzz(n, s, z, t) = εzz(s, z, t) + nεzz(s, z, t), (6a)

where

εzz(s, z, t) = w′0(z, t) + θ′y(z, t)x(s)

+ θ′x(z, t)y(s)−Θ′′(z, t)Fω(s) (6b)

and

εzz(s, z, t) = θ′y(z, t)
dy
ds
− θ′x(z, t)

dx
ds

−Θ′′(z, t)a(s) (6c)

are the axial strains associated with the primary and
secondary warping, respectively.

Tangential shear strain:

εsz(s, z, t) = εsz(s, z, t) + 2
Ac

β
Θ′(z, t), (7a)

where

εsz(s, z, t) = [θy(z, t) + u′0(z, t)]
dx
ds

+ [θx(z, t) + v′0(z, t)]
dy
ds
. (7b)
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Transverse shear strain

εnz(s, z, t) = [θy(z, t) + u′0(z, t)]
dy
ds

− [θx(z, t) + v′0(z, t)]
dx
ds
. (8)

Here, and in the following developments x, y and z
is the global coordinate system, where the z-axis co-
incides with the locus of symmetrical points of the
cross-sections along the wing-span; n, s, z is a local
coordinate system, while (·)′ ≡ ∂(·)/∂z.

For the problem considered herein, u0(z, t), v0(z, t),
w0(z, t), and θx(z, t), θy(z, t) and Θ(z, t) consti-
tute the basic one-dimensional unknown functions of
the problem. When the transverse shear is ignored,
θx → −v′0 and θy → −u′0 and, as a result, the number
of unknowns is reduced to only four.

As concerns the 2D constitutive equations, these
have been obtained in the paper by Song and Li-
brescu [17] for the case of a beam consisting of N
homogeneous anisotropic elastic layers. Upon con-
sidering the hoop stress resultant negligibly small
when compared to the remaining ones, the constitu-
tive equations can be expressed as:

Nzz(s, z, t) = K11εzz +K12εsz

+K13Θ
′ +K14εzz, (9a)

Nsz(s, z, t) = K21εzz +K22εsz

+K23Θ
′ +K24εzz, (9b)

Nzn(s, z, t) = A44εzn, (9c)

Lzz(s, z, t) = K41εzz +K42εsz

+K43Θ
′ +K44εzz, (9d)

Lsz(s, z, t) = K51εzz +K52εsz

+K53Θ
′ +K54εzz, (9e)

In Eqs (9a)–(9e) Nzz and Nsz denote the tan-
gential stress-resultants, Nzn denotes the transverse
shear stress-resultant, Lzz and Lsz denote the stress-
couples; while Kij denote the modified local stiffness
coefficients listed in Appendix A.

3. The governing system

Consistent with the kinematical equations, Eqs (1a)
to (1c), the 1D version of the equations of motion and
the associated boundary conditions can be obtained
by means of Hamilton’s variational principle.

Employment in the obtained equations of mo-
tion (not displayed here) of constitutive equations,
Eqs (9a)–(9e), and of strain-displacement relations,
Eqs (6)–(8), results in the 1D variant of the governing
equations.

These equations feature a full coupling among the
various elastic modes, i.e., among extension, twist,
transversal bending (flapping), lateral-bending (lag-
ging) and transverse shear. However, as it was re-
vealed, in a number of recent works, (see, e.g., Weis-
shaar [19], Librescu and Simovich [9] and Librescu
and Thangjitham [12]), flapping-twist cross-coupling
turns out to be of an exceptional importance towards
the enhancement of the response behavior of aircraft
wings.

As it was shown in Rehfield and Atilgan [15] and
Smith and Chopra [16], the ply-angle distribution with
respect to the spanwise z-axis inducing such a cross-
coupling is

θ(y) = −θ(−y). (10)

By considering such a ply-angle scheme the governing
equations expressed in terms of displacement quanti-
ties are:

δv0: a55(v′′0 + θ′x) + a56Θ
′′′ + py = b1v̈0, (11a)

– – –
δθx: a33θ

′′
x + a37Θ

′′ − a55(v′0 + θx)− a56Θ
′′

– – –
= (b4 + b14)θ̈x, (11b)

δΘ: −a66Θ
′′′′ + a77Θ

′′

– – –
−a56(v

′′′
0 + θ′′x) + a73θ

′′
x +mz

= (b4 + b5)Θ̈ − (b10 + b18)Θ̈′′. (11c)
= = = = = = = =

For cantilevered beams, the boundary conditions
to be prescribed are:
at z = 0:

v0 = 0, θx = 0, Θ = 0, Θ′ = 0, (12a–d)
– –

and at z = L:

δv0: a55
(
v′0 + θx

)
+ a56Θ

′′ = 0, (13a)
– – –

δθx: a33θ
′
x + a37Θ

′ = 0, (13b)

δΘ: −a66Θ
′′′ + a77Θ

′ − a56
(
v′′0 + θ′x

)
– – –

+a37θ
′
x = −(b10 + b18)Θ̈′, (13c)

= = = = = = =
δΘ′: a56(v′0 + θx) + a66Θ

′′ = 0. (13d)
– – –
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The terms underscored in Eqs (11)–(13) by single and
double dotted lines are associated with the warping in-
hibition and the warping inertia, respectively, whereas
the term underscored by a solid line is associated with
the rotatory inertia.

For infinitely rigid in transverse shear beam model,
the counterpart of Eqs (11a)–(11c) becomes:

δv0: a33v
IV
0 − a37Θ

′′′ + py

= −b1v̈0 + (b4 + b14)v̈′′0 , (14a)

δΘ: −a66Θ
IV + a77Θ

′′ − a73v
′′′
0 +mz

– – –
= (b4 + b5)Θ̈ − (b10 + b18)Θ̈

′′ (14b)
= = = = = = = =

while the boundary conditions (12) and (13) become:
at z = 0:

Θ = Θ′ = v0 = v′0 = 0, (15a–d)
– –

and at z = L:

δv0: a33v
′′′
0 = (b4 + b14)v̈′0, (16a)

δv′0: a37Θ
′ − a33v

′′
0 = 0, (16b)

δΘ: −a66Θ
′′′ + a77Θ

′ − a37v
′′
0

– – –
= −(b10 + b18)Θ̈′, (16c)

= = = = = = =
δΘ′: Θ′′ = 0. (16d)
– – – – –

From Eqs (11)–(13) is readily seen that in addition to
the transverse bending stiffness (a33), twist stiffness
(a77) and transverse shear stiffness in the y direction,
(a55), the system is governed by the warping stiffness
(a66), twist-transverse shear (a56), and bending-twist
(a37) cross-couplings. From Eqs (14)–(16) it becomes
also evident that for non-shearable beams, the stiffness
quantities a55 and a56 become immaterial.

From the previously displayed equations it also
emerges that for both shear deformable beams and
their infinitely rigid in transverse shear counter-
part, the governing equations exhibit the same or-
der (namely eight), and the same number of bound-
ary conditions (namely four) has to be prescribed at
each edge. A similar feature is also valid in the con-
text of the solid beam model (see Karpouzian and
Librescu [8]).

In Eqs (11)–(16), the coefficients aij (≡ aji) and bi
denote stiffness and inertia quantities. Their expres-
sions are displayed in Appendix. Moreover py(z, t)
and mz(z, t) denote the distributed force per unit span

length and the twist moment about the z axis. For
the problem at hand, only the distributed force will
be considered, implying that in the forthcoming de-
velopments mz(z, t) = 0.

4. Time-dependent loads associated with blast
and sonic-boom pulses

Herein, the response of thin-walled beams to explo-
sive blast and sonic boom overpressure signatures will
be addressed. For the case of blast loadings, various
analytical expressions have been proposed and dis-
cussed (see, e.g., Houlston et al. [7], Gupta [5], Gupta
et al. [6], Birman and Bert [1]). As it was clearly
established, the blast wave reaches the peak value in
such a short time that the structure can be assumed to
be loaded instantly. Based on experimental evidence,
it may also be assumed that the pressure is uniformly
distributed over the plate. This fact is also assumed
in the case of sonic boom pulses. In accordance with
above mentioned references, the overpressure associ-
ated with the blast pulses can be described in terms of
the modified Friedlander exponential decay equation
as:

py(s, z, t)(≡ py(t)) = Pm

(
1− t

tp

)
e−a

′t/tp , (17)

where the negative phase of the blast is included. In
Eq. (17), Pm denotes the peak reflected pressure in ex-
cess of the ambient one; tp denotes the positive phase
duration of the pulse measured from the time of im-
pact of the structure and a′ denotes a decay parameter
which has to be adjusted to approximate the overpres-
sure signature from the blast tests. A depiction of the
ratio py/Pm vs. time for various values of the ratio
a′/tp and a fixed value of tp is displayed in Fig. 1(a).
As it could be inferred, the triangular load may be
viewed as a limiting case of Eq. (17), occurring for
a′/tp → 0.

As concerns the sonic-boom loading, this can be
modeled as an N-shaped pressure pulse arriving at a
normal incidence. Such a pulse corresponds to an
idealized far field overpressure produced by an air-
craft flying supersonically in the earth’s atmosphere
or by any supersonic projectile rocket or missile (see
Crocker [2] and Gottlieb and Ritzel [4]). The over-
pressure signature of the N-wave shock pulse can be
described by
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(a)

(b)

Fig. 1. Typical pressure time-history. 1(a) Explosive overpressure
signature for various values of a′/tp. Negative phase of the pulse
included. 1(b) Sonic-boom overpressure signature.

py(s, z, t)(≡ py(t))

=

Pm

(
1− t

tp

)
for 0 < t < rtp,

0 for t < 0 and t > rtp,
(18)

where r denotes the shock pulse length factor, and Pm

and tp maintain the same meaning as in the case of
blast pulses. It may easily be seen that: (i) for r = 1
the N-shaped pulse degenerates into a triangular pulse;
(ii) for r = 2 a symmetric N-shaped pressure pulse is
obtained; while (iii) for 1 < r < 2 the N-shaped pulse
becomes an asymmetric one as shown in Fig. 1(b).

Another special case emerging from blast and
sonic-boom pulses corresponds to a step pulse. This
case is obtained either from Eq. (17), when tp →∞,
or from Eq. (18) when r = 1 and tp →∞.

In addition, the cases of the the sine and rectangular
pressure pulses described as:

py(s, z, t) ≡ py(t)

=


Pm sinπt/tp, 0 6 t 6 tp,

0, t > tp,

}
sine pulse

Pm, 0 6 t 6 tp,

0, t > tp,

}
rectangular

pulse

(19)

will be considered in the study of the dynamic re-
sponse.

5. Solution methodology

A number of successive steps aiming to derive a
solution to the dynamic response problem have to be
implemented. As a first step, Hamilton’s variational
principle stating that∫ t2

t1

(δT − δV + δW ) dt = 0,

δv0 = δθx = δΘ = 0 at t = t1, t2 (20)

will be used.
Herein T and V denote the kinetic and strain en-

ergies, respectively while W is the work done by the
external distributed loads; t1 and t2 denote two arbi-
trary instants of time t while δ denotes the variation
operator.

For the problem at hand for which the ply-angle
configuration defined by Eq. (10) was adopted, one
can express∫ t2

t1

δT dt

= −
∫ t2

t1

∫ L

0

(
I1δv0 + I2δΘ + I3δθx

)
dt dz. (21)

where Ii denote inertia terms defined in the papers by
Song and Librescu [17,18]

δV = −
∫ L

0

[
(M ′x −Qy)δθx

+ (B′′ω +M ′z)δΘ +Q′yδv0
]

dz

+
[
Mxδθx −BωδΘ′

+ (B′ω +Mz)δΘ +Qyδv0
]∣∣∣L

0
(22)

and
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δW =

∫ L

0
pyδv0 dz. (23)

From Eq. (20) considered in conjunction with
Eqs (21)–(23), with the definitions of 1D stress-
resultants Qy, stress-couples Mx,Mz and biomoment
Bω as (see Librescu and Song [13] and Song and
Librescu [17]):

Qy(z, t) =

∮
C

(
Nsz

dy
ds
−Nzn

dx
ds

)
ds,

Mx(z, t) =

∮
C

(
yNzz − Lzz

dx
ds

)
ds,

Mz(z, t) = 2
∮
C

Nszψ ds,

Bω(z, t) =

∮
C

[Fω(s)Nzz + a(s)Lzz] ds (24)

and the 2D constitutive equations, Eqs (9a)–(9e), for
independent and arbitrary variations δθx, δv0 and δΘ,
from (20), the equations of motion in terms of dis-
placement quantities, as well as the boundary con-
ditions can be obtained. However, in order to im-
plement the Extended Galerkin Method, one uses
Eq. (20), which in conjunction with Eqs (21)–(23) can
be written in compact form as:∫ t2

t1

[ ∫ L

0

[
(11a)δv0 + (11b)δθx + (11c)δΘ

]
dz

+
[
(13a)δv0 + (13b)δθx + (13c)δΘ

+ (13d)δΘ′
]∣∣∣L

0

]
dt = 0. (25)

The numbers in brackets identify the left hand ex-
pressions of the equations of motion and boundary
conditions at z = L, displayed in the paper under the
same numbers and modified by passing the left hand
side members in the right hand side. Within the sec-
ond step, for the problem at hand one assumes for the
displacement quantities the representation[
v0(z, t); θx(z, t);Θ(z, t)

]
=

N∑
j=1

[
vj(z)qj(t);wj(z)qj(t);Wj(z)qj(t)

]
, (26)

where vj(z), wj(z) and Wj(z) are the trial functions
which have to fulfill all the kinematic boundary con-
ditions and are assumed to be known while qj(t) are
the generalized coordinates whose determination con-
stitutes the central goal of the dynamic response prob-

lem. For the problem at hand the trial functions are
represented as polynomials in the Z (≡ z/L) vari-
able which exactly fulfill the boundary conditions at
Z = 0. Representations (26) as well as that of the
overpressure signatures are replaced in Eq. (25) and
the integration with respect to the dimensionless span-
wise Z-coordinate is performed. For the present prob-
lem the boundary conditions at Z = 1 being in general
not fulfilled, corrective terms instead of zero-valued
ones appear in the process of integration in Eq. (25),
terms which compensate for the non-fulfillment of the
non-essential boundary conditions. As a result, an
equation expressed in matrix form as

D = 0 (27)

is obtained where

D ≡Mq̈ +Kq −F . (28)

Herein q is a 3N×1 column matrix whose elements
are qj(t); M and K are 3N × 3N square matrices,
the latter one containing also the corrective boundary
terms, while F (≡ F (t)) is the input 3N × 1 column
matrix.

Equation

Mq̈ +Kq = F (29)

constitutes a set of coupled ordinary differential equa-
tions. Multiplying Eq. (29) by M−1, introducing
the generalized velocities q̇ as auxiliary variables by
means of the matrix identity q̇ − q̇ = 0 and defining
the state space vector

X =

{
q
q̇

}
, (30)

one can express Eq. (29) in state space form as:

Ẋ =AX +BF , (31)

where

A =

[
0

∣∣ I

−M−1K
∣∣ 0

]
,

B =

{
0

M−1

}
. (32)

Applying Laplace transform to each side of Eq. (31)
yields

X(s) = (sI −A)−1X(0)

+ (sI −A−1)BF , (33)

where the overbars denote Laplace transforms of the
counterpart quantities without the overbar, X(0) de-
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notes the initial state vector while s denotes Laplace
transform variable.

As a result, the time response X(t) is obtained as
the inverse Laplace transform of Eq. (33) as:

X(t) = L−1{[φ(s)]X(0)}
+ L−1[φ(s)BF (s)], (34)

where

φ(s) ≡ (sI −A)−1, (35)

and L−1 denotes the inverse Laplace transform oper-
ation.

In this form the solution forX(t) contains the con-
tributions of initial conditions and of the forcing func-
tion.

In the case of zero initial conditions, as is consid-
ered in the present numerical illustrations, the solution
reads:

Xi(t) = L−1

{
Qi(s)

g(s)

}

=
12∑
i=1

Qi(λi)

(dg/ds)s=λi
eλit. (36)

Herein λi (i = 1, 12 ) are the roots of the polynomial
g(s) which play the role of eigenvalues of the system,
while Qi(s) is a polynomial whose coefficients de-
pend upon the mechanical properties of the structure
and on the characteristics of the pressure pulse.

6. Numerical illustrations and discussion

The numerical illustrations concern the dynamic re-
sponse of a cantilevered thin-walled beam of a bicon-

Fig. 2. Geometry of the thin-walled beam.

vex cross-section profile (see Fig. 2). This profile was
used in the study of the aeroelastic behavior of high
speed wing structures in (see Librescu et al. [14]).

Two materials are considered in the numerical illus-
trations. One of them is the graphite–epoxy material
whose on-axis properties are:

EL = 30× 106 psi (20.68× 1010 N/m2)

ET = 0.75× 106 psi (5.17× 109 N/m2)

GLT = 0.37× 106 psi (2.55× 109 N/m2)

GTT = 0.45× 106 psi (3.10× 109 N/m2)

µTT = µLT = 0.25,

ρ = 14.3× 10−5 lb sec2/in4(1528.15 N s2/m4)

where subscripts L and T denote directions parallel
and transverse to the fibers, respectively.

The second material has transversely-isotropic prop-
erties, the surface of isotropy being parallel at each
point to the mid-surface of the beam. Due to its out-
standing thermomechanical properties, this material
(known as pyrolitic-graphite and its alloys) is a good
candidate to be used in the structure of high-speed
flight vehicles.

The displayed results correspond to the case of zero
initial conditions and of Pm = 500 lb/L. In Figs 3
and 4 the dimensionless deflection Ṽ (≡ v0/L) re-
sponse of the beam tip to a sonic boom overpressure
signature is displayed. Figure 3 reveals the efficiency
of the tailoring technique to confine the increase of the
transverse deflection. From this graph it appears that
for θ = 90◦, at which the maximum bending stiffness
is reached (see Librescu et al. [14]), a minimum de-
flection throughout the positive and negative phases
of the pulse and even in the free motion range (i.e.,
for t > rtp, when the wave has left the structure), is
reached.

In Figure 4 the effect of the transverse shear flex-
ibility of the material of the structure, measured in
terms of the ratio E/G′, is highlighted. Herein E and
G′ denote the tangential Young’s modulus and trans-
verse shear modulus, respectively, where E/G′ = 0
corresponds to the non-shearable (Bernoulli–Euler)
beam model. Whereas during the positive and nega-
tive phases of the blast, transverse shear has an almost
negligible effect on the deflection, in the free motion
range its effect is rather strong and it becomes evident
that the classical theory inadvertently underestimates
the deflection.
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Fig. 3. Influence of ply-angle on time-history of the dimensionless
deflection of the beam tip. Sonic-boom overpressure signature.
tp = 0.15 s, r = 1.5,AR = 16; non-shearable and free-warping
beam model.

Fig. 4. Influence of transverse shear on time-history of the
dimensionless deflection of the beam tip, sonic boom pulse,
tp = 0.037 s, r = 2, θ = 45◦,AR = 6, free warping model (FW).

In Figs 5 and 6 the effects of a blast load on the
response behavior are displayed. Figure 5 highlights
the effect of the ply-angle and of the free and con-
strained warping models on the dynamic response be-
havior. The results reveal that while the ply-angle
plays a significant role in confining the deflection re-
sponse, for high aspect ratio beams, as is the case here
(AR = 16), the warping inhibition plays a negligi-
ble role. At the same time, the results not displayed
here, reveal that the classical Euler–Bernoulli coun-
terpart of the case considered in Fig. 5 results in a
small increase of the deflection amplitude within both
the forced and free motion ranges. In Fig. 6 the time-

Fig. 5. Influence of the warping restraint and of the ply-angle
orientation on time-history of the dimensionless deflection of the
beam tip; blast pulse, tp = 0.1 s, r = 1,AR = 16, non-shearable
beam model.

Fig. 6. Influence of the ply-angle and warping restraint on
the time-history of the twist of the beam tip; blast pulse,
tp = 0.1 s,AR = 16; shearable beam model.

history for the twist angle of the beam tip is recorded.
This graph highlights the strong effect played by the
tailoring technique towards reducing the twist. Fig-
ures 7 and 8 record the deflection response of the
beam to a rectangular pulse. While in Fig. 7 the effect
of the ply-angles is highlighted, in Fig. 8 the effect
of transverse shear is displayed. The results in these
graphs reveal again the great influence played by the
ply-orientation and transverse shear on the transverse
deflection response amplitude. The strong influence
of transverse shear on deflection amplitude in the free
motion range becomes evident also from Fig. 8. Fig-
ure 9 displays the transverse deflection response to a
step pulse.
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Fig. 7. Influence of the ply-angle on time-history of the dimen-
sionless deflection response of the beam tip, rectangular pulse;
tp = 0.2 s,AR = 16, non-sherable and free warping beam models.

Fig. 8. Influence of transverse shear on time-history of the di-
mensionless deflection response of the beam tip, rectangular pulse,
tp = 0.02 s,AR = 6, warping inhibition included.

In addition to the effect played by the ply-angle,
that of the warping restraint emerges clearly from this
plot. The results reveal that warping inhibition plays
a stronger role in confining the increase of the deflec-
tion amplitudes at ply-angles resulting in lower de-
flection amplitudes. Finally, Fig. 10 displays the dy-
namic response to a sine pressure pulse. Within this
plot the time history of transversal deflection, rotation
and twist are presented.

7. Conclusions

In this paper the dynamic response of cantilevered
anisotropic thin-walled beams exposed to various

Fig. 9. Influence of ply-angle on time-history of the dimension-
less deflection response of the beam tip; step pulse, AR = 16,
non-shearable beam model, — ·— Free warping; — Warping re-
straint.

Fig. 10. Dynamic response (Ṽ , θx and Θ) of the beam tip under
a sine pulse, tp = 0.2 s, AR = 16, θ = 45◦ , shearable and free
warping beam model.

time-dependent external pulses has been analyzed,
and in this context the effects of the ply-angle, trans-
verse shear, warping restraint and beam aspect ra-
tio have been illustrated. Based on these findings it
may be concluded that a consistent evaluation of the
time-history structural response of cantilevered thin-
walled beams can be accomplished in the framework
of a refined structural model incorporating transverse
shear and warping inhibition, the latter one being most
significant in the case of relatively low aspect ra-
tio beams. The results reveal also the powerful role
played by the tailoring technique toward enhancement
of the dynamic response of structures exposed to over-
pressure signatures.
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Appendix

The modified local stiffness coefficients Kij (≡
Kji) are:

K11 = A22 −
A2

12

A11
, K12 = A26 −

A12A16

A11
,

K13 = 2K12
Ac(z)

β(z)
, K14 = B22 −

A12B12

A11
,

K22 = A66 −
A2

16

A11
, K23 = 2K22

Ac(z)

β(z)
,

K24 = B26 −
A16B12

A11
, K43 = 2K24

Ac

β
,

K44 =D22 −
B2

12

A11
, K51 = B26 −

B16A12

A11
,

K52 = B66 −
B16A16

A11
, K53 = 2K52

Ac

β
,

K54 =D26 −
B12B16

A11
,

where Aij , Bij and Dij are local stretching, bending-
stretching and bending stiffness quantitites respec-
tively.

The global stiffness quantities aij (≡ aij) and mass
coefficients bi are:

a33 =

∮ (
K11y

2 − 2yK14
dx
ds

+K44

(
dx
ds

)2)
ds,

a37 =

∮ (
yK13 −K43

dx
ds

)
ds,

a55 =

∮ (
K22

(
dy
ds

)2

+A44

(
dx
ds

)2)
ds,

a56 = −
∮ (

FωK21
dy
ds

+K24a
dy
ds

)
ds,

a66 =

∮ (
K11F

2
ω + 2K14Fωa+K44a

2
)
ds,

a77 =

∮
2
Ac

β
K23ds;

(b1, b4, b10) =

∮
m0(1, y2, F 2

ω) ds;

(b14, b18) =

∮
m2

((
dx
ds

)2

, a2

)
ds,

where

(m0,m2) =
N∑
k=1

∫ h(k)

h(k−1)

ρ(k)(1, n2) dn.
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