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A new approach is developed for the general collision prob-
lem of two rigid body systems with constraints (e.g., articu-
lated systems, such as massy linkages) in which the relative
tangential velocity at the point of contact and the associated
friction force can change direction during the collision. This
is beyond the framework of conventional methods, which can
give significant and very obvious errors for this problem, and
both extends and consolidates recent work. A new parameter-
ization and theory characterize if, when and how the relative
tangential velocity changes direction during contact. Elas-
tic and dissipative phenomena and different values for static
and kinetic friction coefficients are included. The method is
based on the explicitly physical analysis of events at the point
of contact. Using this method, Example 1 resolves (and cor-
rects) a paradox (in the literature) of the collision of a double
pendulum with the ground. The method fundamentally sub-
sumes other recent models and the collision of rigid bodies;
it yields the same results as conventional methods when they
would apply (Example 2). The new method reformulates and
extends recent approaches in a completely physical context.

Keywords: Collisions, impact, rigid body systems, con-
straints, motion reversal, friction

1. Introduction

In rigid body mechanics, a collision of two bodies
(or systems) is assumed to be of very brief duration,
with a single point of contact. The dominant forces
during contact are induced by the collision, therefore
impulsive in nature and internal to the combined sys-
tem, and are so large that other applied and external
forces (e.g., gravity) can be ignored during the colli-
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sion. (Derivation of the equations of motion below val-
idate this assumption.) At the point of contact, elastic,
dissipative and frictional effects are significant and can
be treated by approximations. During the collision, the
system coordinates do not change, but the two collid-
ing systems experience step changes in the velocities.
Before and after contact, each system undergoes inde-
pendent motion. (This includes the case where the bod-
ies adhere at the point of contact.) Velocities and ge-
ometries prior to contact are specified; post-collision
velocities are to be determined.

Most analyses of such collisions still follow Whit-
taker [15], e.g., Groesberg [2] and Kane and Levin-
son [4]. They focus on the pre- and post-collision ve-
locities and generally eliminate, or ignore, what hap-
pens during the contact. With a few exceptions, these
“conventional methods” are formulated in terms of two
unconstrained rigid bodies and for systems with zero
or unidirectional friction forces. However, these meth-
ods can and do give significant and very obvious er-
rors when the relative tangential velocity at the point
of contact (slip velocity) can change direction during
a collision; this requires that the friction force also
reverses, which is beyond the framework of conven-
tional methods. This can happen when constrained and
multi-body systems collide: an “interesting” example
is presented in Kane and Levinson [4, problem 14.6]
in which the end of a double pendulum hits a station-
ary surface. Their analysis shows two instances of in-
creased kinetic energy during the collision for selected
(and reasonable) values of the elastic and frictional dis-
sipative parameters. (In their analysis the friction force
resists motion in the reversed (rebound) direction, a
reasonable observation. Normally, by the conventional
analysis [2,4,15], friction resists the initial (approach)
relative motion; this solution still shows one such in-
stance of energy increase. We discovered this by trial-
and-error. Results and more discussion are presented
in Example 1.)

Kane previously wrote this up as “A Dynamics Puz-
zle” for theStanford Mechanics Alumni Newsletterin
1984, which stimulated an analysis by Keller [5] in
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the context of two rigid bodies and a single coefficient
of friction. To consider the reversal, he used the nor-
mal impulse as a new independent variable (instead of
time) “to eliminate the normal force from the equa-
tions of motion”. This is a highly mathematical analy-
sis, somewhat non-physical, and restricted in the sense
that some situations (and quantities) are difficult to
evaluate. Only a single friction coefficient (presum-
ably kinetic) is used, so either the static and kinetic
coefficients must be the same, or the physical effect
of different kinetic and static friction on the tangential
impulse when the slip velocity becomes zero is lost.
Not all possibilities of slip reversal are presented (see
case (i) later). Kane’s problem is not “corrected”, nor
could it be: Keller’s method would give incorrect (or
incomplete) results, since different values of the static
and kinetic friction coefficients are not considered. Re-
cently, Stronge [9] employed a similar parameteriza-
tion and logic to address possible reversal of motion;
he too addresses primarily rigid bodies and very sim-
ple constrained systems. His formulation generally fol-
lows Whittaker [15], and it would appear to be more
complicated for complex systems than a Lagrange–
Kane type approach developed here (cf. [2] or that of
Rosen and Edelstein [6]. In our method, all of these
limitations are overcome with fewer, and no new, as-
sumptions.

In addition, Stronge [8–12] has introduced and vig-
orously promoted a new “internal dissipation” model
for the collision process. However, it appears that the
choice of model is somewhat arbitrary, based on the
value of the coefficient of restitution, and that a case
can be made for any of the collision models [1,7,12–
14]; for convenience and from the various arguments,
we employ the Poisson impulse hypothesis, as dis-
cussed in the next section.

This paper addresses the general collision problem
of two rigid body systems with constraints (such as
massy linkages), in an explicitly physical context, in-
cluding different friction coefficients. The method in-
herently includes the collision of rigid bodies, eccen-
tric collisions, etc., and will yield the same results as
the conventional methods when they would apply. In-
deed, the conventional as well as the methods in the
recent literature clearly can be embedded in the new
method.

In the following, first the motions and forces at the
point of contact are characterized, then equations of
motion are developed for a completely general prob-
lem. Next, a new parameterization and theory are de-
veloped for a finite, but brief, collision, in terms of nor-

mal and tangential relative velocity changes and the
associated impulsive forces. This leads directly to the
solution (algorithm) for the post-collision system mo-
tions. Two examples are presented, with commentary
to show what happens during the collision. Example 1
is the Kane and Levinson problem; Example 2 is a
standard collision with friction of two “large” spheres,
from Groesberg [2]. Comparisons with the conven-
tional methods are made.

2. Analysis

The basic assumptions were given in the opening
paragraph of the Introduction. By hypothesis, the two
systems collide at a single point of contactP , identified
byP1 in system 1 andP2 in system 2, per Fig. 1(a). At
P we can define a tangent plane and its normal, such
that the relative velocity of the surfaces atP can be
written in terms of tangential and normal components:

vP2 − vP1 = unn + utt. (1)

The tangential componentut is also called the slip ve-
locity. Both ut and the normal (approach) velocityun

are variables during the collision. The unit vectorst
and n are determined byvP2 − vP1 at the onset of
the collision. Note that the collision geometry can al-
ways be characterized in terms of two such intersecting
planes.

2.1. Collision system and forces

The collision-induced forces can now be expressed
in terms of normal and tangential forces, i.e.,Fn + τ t,
per Fig. 1(b).F andτ are internal to the collision sys-
tem and comprise equal and opposing forces:F re-
sists the compression at the point of contact, andτ acts
on each body to oppose the tangential relative veloc-
ity at the contact point. By hypothesis, these forces are
very large and not calculable without subsidiary as-
sumptions. However, over the duration of the collision,
∆t = t2 − t1, their impulses, defined by the integrals

F = lim
∆t→0

∫ t2

t1

(Fn + τ t) dt4 F̂m + τ̂ t, (2)

where
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(a)

(b)

Fig. 1. (a) Collision system geometry: relative velocities. (b) Impul-
sive forces.

F̂ = lim
∆t→0

∫ t2

t1

F dt,

(3)

τ̂ = lim
∆t→0

∫ t2

t1

τ dt,

are assumed to be well-defined and finite. In the anal-
ysis, it is assumed that∆t is very small, but nonzero.

In the normal direction, the collision is assumed to
be unimodally elastic, so the general phenomenon can
be modeled as consisting of a compression phase fol-
lowed by a restitution (or rebound) phase, subscripted
c andr, respectively, per Fig. 2. Without loss of gener-
ality, let the collision start att1 = 0. The compression
phase terminates when the normal force is a maximum;
at this “time” (tc) the relative velocityun becomes zero
(then reverses). At the end of the collision (atts) the to-
tal normal impulse during contact̂Fs can be expressed
as the sum of the normal impulses during the compres-

sion and restitution phases,̂Fc + F̂r, where the latter
is defined over the period∆tr = ts − tc. The elastic
and dissipative character of a collision is convention-
ally expressed in terms of these phases by a coefficient
of restitutione:

e =
lim

∆tr→0

∫ ts
tc
F dt

lim
∆tc→0

∫ tc
0 F dt

=
F̂r

F̂c

, (4)

where 06 e 6 1. Therefore, the total normal impulse
over the duration of the collision is

F̂s = F̂c + F̂r = (1 + e)F̂c. (5)

This is the Poisson, or impulse, hypothesis (cf. [8]).
There are other models. From the literature, this is
probably superior to Newtonian (relative velocity)
model [1,7,12–14]. Stronge in [8,12] makes a strong
case for an “internal dissipation” hypothesis. How-
ever, the coefficient of restitution is an approximation,
so any of these assumptions can, in principle, be ac-
commodated. From the discussion of Wang and Ma-
son [13,14] and Stoianovici and Hurmuzlu [7], this
model has certain advantages. For our purposes, the
Poisson model is both consistent with the dynamic
analysis (below) and has a solid physical basis.

There seems to be reasonable agreement on the as-
sumption that resistance to motion in the tangential di-
rection can be modeled by Coulomb friction. In this
analysis, this is characterized by a kinetic coefficient of
friction µ when slipping and a static coefficient of fric-
tion µs during sticking or rolling; in general,µ 6 µs.
During slipping, the tangential forceτ = µF and op-
poses the relative tangential velocity of each body. If,
to sustain equilibrium, it is found thatτ < µF , stick-
ing occurs, whenceut in Eq. (1) is zero. Subsequently,
if a value ofτ to maintain sticking attainsµsF , slip-
ping resumes withτ = µF in opposition to the relative
tangential motion, as before. Since the forces and im-
pulses are proportional, their impulses obey the same
rules. Therefore, over any interval in which slipping
occurs,

τ̂ = µF̂ . (6)

Comment. Absolute precision about the sense ofτ
and τ̂ throughout the collision is essential (per erro-
neous and “anomalous” results in the literature).τ and
τ̂ always oppose incipient as well as actual tangential
relative motion. For example, Eq. (1) is the velocity of
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Fig. 2. Collision normal force vs time and slip time parameter.

P2 relative toP1; in Fig. 1(b), the tangential impulse
τ̂ acts onP1 in the positivet direction according to
sign(ut), and oppositely onP2. That is, for this exam-
ple τ̂1 = τ̂ , andτ̂2 = −τ̂1.

2.2. Equations of motion

The equations of motion during the collision can be
set up by any method, e.g., Newton, Lagrange, Kane,
etc. The Lagrange formulation (to which Kane’s [4] is
essentially equivalent) is used here; for multibody sys-
tems, it is completely general and avoids consideration
of constraint forces. (The implementation of Newton’s
method is given in a later, so-named, section.)

Body system 1 is defined bym generalized coor-
dinates and speeds, {qi} and { q̇i}, i = 1,m, and ki-
netic energyT1; similarly, system 2 is defined by n-
m generalized coordinates and speeds {qi} and { q̇i},
i = m + 1,n, andT2. For each systemk, Lagrange’s
equations of the first kind are

d
dt

(
∂Tk
∂q̇i

)
− ∂Tk
∂qi

= Qi, i(k) = 1,n. (7)

The notationi(k) = 1,n meansk = 1 for i = 1,m
k = 2 for i = m+ 1,n: each system is identified with
(and by) its own generalized coordinates. Eq. (7) isn
equations in then generalized coordinates. The totality

of the generalized coordinates and speeds are denoted
by q = { qi} and q̇ = { q̇i}, i = 1,n. As the generalized
forcesQi are associated with the respective general-
ized coordinates, they do not require the explicit body
designationk. Therefore, each body system is consid-
ered individually and related to the other system only
through the collision forces’ contributions to the gen-
eralized forces during the contact. That is, theQi are

Qi = Qki + ai(q)Fk + bi(q)τk,

i(k) = 1,n; k = 1, 2. (8)

The Qki are the usual applied and field generalized
forces associated with systemk. Fk andτk are the re-
spective reactions of the collision forces on each body;
theai(q) andbi(q) arise from forming their contribu-
tions to the generalized forces.

To get the equations of motion during the collision,
each of Eqs (7) is multiplied by dt and integrated over
∆t = t2 − t1∫ t2

t1

d

(
∂Tk
∂q̇i

)
=

∫ t2

t1

(
∂Tk
∂qi

+Qi

)
dt,

i(k) = 1,n. (9)

Using Eq. (8) and∆t→ 0 (∆t “small”),
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∂Tk
∂q̇i

(t2)− ∂Tk
∂q̇i

(t1) = lim
∆t→0

∫ t2

t1

(
∂Tk
∂qi

+Qki

+ ai(q)Fk + bi(q)τk

)
dt, i(k) = 1,n. (10)

On the right side of Eq. (10) theQki and∂Tk/∂qi are
finite, so as∆t → 0 their integrals become arbitrarily
small (negligible) relative to impulses of the collision
forces defined in Eqs (3). Theai(q) andbi(q) are unaf-
fected by the integration since the system coordinates
do not change during the collision. Hence, the right
side of Eqs (10) is dominated by the collision forces,
and Eq. (9) is

L(t2):
∂Tk
∂q̇i

(t2)− ∂Tk
∂q̇i

(t1) = Q̂i(F̂ , τ̂ ),

i(k) = 1,n, (11)

whereQ̂i(F̂ , τ̂ ) = ai(q)F̂k + bi(q)τ̂k, i(k) = 1,n.
(The subscriptk on the collision forces and impulses
is superfluous; the individual reactions are equal and
opposite and can be expressed in terms ofF̂ and τ̂ in
the sense ofn andt.)

Eq. (11) is the fundamental dynamical equation of
the system during the collision; it providesn equa-
tions which are linear in then + 2 unknownsq̇(t2)
and collision impulseŝF and τ̂ , since the kinetic en-
ergyTk is quadratic inq̇. Eq. (11) will appear in many
guises in the following. To distinguish these, and as a
mnemonic, they are designated byL(t), as indicated.
The argument indicates a specific timet aftert1.

Finally, when the relative velocity in Eq. (1) is
expressed in terms of (q, q̇), the componentsun =
un(q, q̇) andut = ut(q, q̇) are also linear iṅq.

Rosen and Edelstein [6] present a different approach
Lagrangian development, using Lagrange multipliers
instead of force models. For the case of collisions, it
would appear that the present method is somewhat sim-
pler, particularly when analysing events during the col-
lision (below).

3. A new parameterization of a collision

The collision starts att1 = 0. Unless otherwise
stated, the generalized impulsesQ̂i(F̂ , τ̂ ) are for a spe-
cific interval (0,t); the arguments (̂F , τ̂ ) will carry sub-
scripts identified with that interval. In general, at any
time, there aren+2 unknowns:̇q(t), F̂ andτ̂ . Eqs (11)
providen relations, so two more must be developed.

At the end of the compression phase, attc, the nor-
mal relative velocityun becomes zero,

un(tc) = un
(
q, q̇(tc)

)
= 0. (12)

With a normal impulsêFc and tangential impulsêτc,
Eqs (11) give

L(tc):
∂Tk
∂q̇i

(tc)−
∂Tk
∂q̇i

(0) = Q̂i(F̂c, τ̂c),

i(k) = 1,n. (13)

The collision ends atts, with F̂s andτ̂s; Eqs (11) are

L(tc):
∂Tk
∂q̇i

(ts)−
∂Tk
∂q̇i

(0) = Q̂i(F̂s, τ̂s),

i(k) = 1,n. (14)

Eqs (14) giveq̇(ts), the solution to the problem.
Now, consider a “time”t∗ at which the tangential

relative velocityut becomes zero. Since the collision
equations are linear, this can happen at most once dur-
ing a collision. The tangential component then may
pass through zero (change sign), reverse (same sign),
or stay zero (stick).t∗ depicts “when” things happen
during the collision. Clearlyt∗ > 0; t∗ can be infinity,
e.g., collision of two rigid bodies with zero friction. As
it turns out,t∗ is never actually calculated (nor istc).
In a sense,t∗ is a contrivance to advance the solution.

Associated witht∗, i.e., the period (0,t∗), are normal
and tangential impulseŝF ∗ andτ̂∗. Prior to the vanish-
ing of the relative tangential velocity, slipping occurs,
so that fromt = 0 to t∗, from Eq. (6), the impulses are
related by

τ̂∗ = µF̂ ∗. (15)

At t∗,

L(t∗):
∂Tk
∂q̇i

(t∗)− ∂Tk
∂q̇i

(0) = Q̂i(F̂ ∗, τ̂∗),

i(k) = 1,n, (16)

u∗t 4ut(t∗) = ut
(
q, q̇(t∗)

)
= 0. (17)

Eqs (15)–(17) aren+ 2 equations (which are linear) in
then+ 2 unknowns att∗: q̇∗(= q̇(t∗)), F̂ ∗ andτ̂∗.

We now relatet∗ to tc, i.e., the end of slipping to the
end of the compression phase. From theq̇∗ obtained
from Eqs (15)–(17), we can calculate the relative nor-
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mal velocity,u∗n = un(q, q̇(t∗)). From the initial con-
ditions,un(0) = un(q, q̇(0)) is known. There are three
cases to address:

(i) t∗ < tc. This occurs if sign(u∗n) = sign(un(0)):
the relative tangential velocity vanishes before
the compression phase is over.

(ii) t∗ = tc. Thenu∗n = 0: the relative tangential
and normal velocities vanish simultaneously.

(iii) t∗ > tc. Now sign(u∗n) = −sign(un(0)): slip-
ping occurs into, and possibly through, the
restitution phase.

These “times” when the normal and tangential rela-
tive velocities vanish (or pass through zero) are shown
in Fig. 2. The subsequent motion (slipping or sticking)
and complete solutions depend upon the magnitudes of
the forces (impulses), as follows.

4. Theory and solutions

To start the solution, we have the parameterse,µ and
µs, the pre- and post-collision geometryq (they are the
same), and the precollision valuesq̇(0), hence,un(0)
andut(0). We also have values att∗ (defined byu∗t =

0) from Eqs (15)–(17):̇q∗, u∗n, andF̂ ∗ and τ̂∗ for the
interval (0,t∗) during which sliding occurs. Therefore,
we know the case: (i), (ii), or (iii) from above.

The solution (theory) to get the n postcollision vari-
ablesq̇s = q̇(ts) for each case generally has three parts:
(a) consider sticking att∗; (b) check if sticking is sus-
tained; if not, (c) determine the character of the subse-
quent sliding motion.

Case (i). If sign(u∗n) = sign(un(0)), t∗ < tc: the tan-
gential relative velocity becomes zero before the end
of the compression phase.

(a) If sticking occurs att∗, ut will be zero thereafter.
Subsequently, at the end of the compression phase,
both the tangential and normal relative velocities are
zero; the tentative solution is given byun(tc) = 0 and
L(tc), per Eqs (12) and (13), plus

ut(tc) = ut
(
q, q̇(tc)

)
= 0. (18)

These aren+2 equations in then+2 unknownṡq(tc),
F̂c andτ̂c.

(b) We now calculate the impulsive forces for which
sticking continues aftert∗ through the end of the colli-
sion (atts). With sticking atts, then the tangential ve-
locity at ts is zero:

ut(ts) = ut
(
q, q̇(ts)

)
= 0. (19)

Another relation is fromL(ts) − L(t∗), per Eqs (14)
and (16):

L(ts)−L(t∗):
∂Tk
∂q̇i

(ts)−
∂Tk
∂q̇i

(t∗)

= Q̂i
(
F̂res, T̂res

)
, i(k) = 1,n, (20)

where

F̂res = F̂s− F̂ ∗ = (1 + e)F̂c− F̂ ∗, (21)

τ̂res = τ̂s− τ̂∗ (22)

are the impulses in (t∗, ts). With F̂c from i(a) above and
F̂ ∗ from Eqs (15)–(17), Eqs (19)–(22) can be solved in
terms ofτ̂res.

If |τ̂res/F̂res| < µs, sticking continues aftert∗, and
Eqs (19)–(22) give the solution. Otherwise:

(c) If |τ̂res/F̂res| < mus, slipping occurs aftert∗, but
in the opposite direction. The solution is recomputed
as follows.

Sincetc > t∗, the F̂c and τ̂c are (re)computed for
slipping;n relations are obtained from the difference
of Eqs (13) and (16):

L(tc)−L(t∗):
∂Tk
∂q̇i

(tc)−
∂Tk
∂q̇i

(t∗)

= Q̂i
(
F̂c − F̂ ∗, τ̂c − τ̂∗

)
, i(k) = 1,n, (23)

where

−µ
(
F̂c − F̂ ∗

)
= τ̂c − τ̂∗. (24)

The one more needed relation is from Eq. (12), viz.,
un(tc) = 0. These equations are solved forF̂c. The
postcollision solution is now easily expressed in terms
of the restitution phase values:

L(ts)−L(tc):
∂Tk
∂q̇i

(ts)−
∂Tk
∂q̇i

(tc)

= Q̂i
(
F̂r, τ̂r

)
, i(k) = 1,n, (25)

where

F̂r = eF̂c τ̂r = −µF̂r. (26)
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Case (ii). If u∗n = un(t∗) = 0, t∗ = tc. The rela-
tive tangential and normal velocities vanish simultane-
ously. For this case, the∗ andc values are the same.

(a) If sticking occurs att∗ = tc, the tangential rela-
tive velocity is zero thereafter; hence, the postcollision
tangential velocityut(ts) = 0. Now, F̂c = F̂ ∗ from
Eqs (15)–(17).

(b) The impulsive forces necessary to sustain stick-
ing in the restitution phase are given by Eqs (19)
and (25), viz.

ut(t
∗) = ut(ts) = ut

(
q, q̇(ts)

)
= 0, (27)

L(ts)−L(tc):
∂Tk
∂q̇i

(ts)−
∂Tk
∂q̇i

(tc)

= Q̂i
(
F̂r, τ̂r

)
, i(k) = 1,n, (28)

whereL(tc) = L(t∗); sinceF̂c = F̂ ∗,

F̂r = eF̂c. (29)

Eqs (27)–(29) aren+ 2 equations iṅq(ts), F̂r andτ̂r;
If |τ̂r/eF̂c| < µs, sticking is maintained, and

Eqs (27)–(29) give the solution. Otherwise:
(c) If|τ̂r/eF̂c| > µs, slipping occurs in the opposite

direction aftert∗(= tc).
The solution is given by recomputing Eqs (28) and

(29) with

τ̂r = −F̂r = −µeF̂c. (30)

Case (iii). If sign(u∗n) = −sign(un(0)), tc < t∗. The
tangential relative velocity vanishes after the normal
relative velocity: slipping occurs through the compres-
sion phase and into (and possibly through) the restitu-
tion phase. Therefore, throughtc,

τ̂c = µF̂c (31)

Eqs (31), (12) and (13) (un(tc) = 0 andL(tc)) yield
F̂c, as well asq̇(tc) and τ̂c. Therefore, for the entire
collision, the total normal impulse is (1+ e)F̂c = F̂s.

First, we can check whethert∗ occurs during the
collision, beforets. From Eqs (15)–(17), we havêF ∗.
Therefore, ifF̂ ∗ > (1 + e)F̂c, the relative tangential
velocity never becomes zero during the collision; slip-
ping atP occurs throughout. The postcollision veloci-
ties are given by Eqs (14), viz.

L(ts):
∂Tk
∂q̇i

(ts)−
∂Tk
∂q̇i

(0) = Q̂i
(
F̂s, τ̂s

)
,

i(k) = 1,n, (32)

where, withF̂c from above,

F̂s = (1 + e)F̂c,

τ̂s = µF̂s. (33)

These values of̂F ∗ and τ̂∗ corresponding tot∗ do
not (cannot) really occur – they are values which would
makeut = 0 with a friction force throughout (0,t∗).
Another way of seeing this is that for this case,F̂ ∗ =
τ̂∗/µ > F̂s, so slipping occurs up to and atts. Oth-
erwise, for the general procedure: if̂F ∗ < (1 + e)F̂c,
the relative tangential velocity will become zero some-
time during the restitution phase. Then, (a,b) To check
if sticking occurs att∗, we solve as in Case (i), part (b),
viz., Eqs (19)–(22), to see if the necessary forces (im-
pulses) are developed. Recall thatF̂res and τ̂res deter-
mine whether subsequent motions are sticking or slip-
ping.

If τ̂res/F̂res < µs, sticking holds, and Eqs (19)–(22)
give the solution. Otherwise:

(c) If τ̂res/F̂res> µs, slipping occurs in the opposite
direction aftert∗; the direction of the friction force re-
verses to oppose the incipient relative tangential mo-
tion.

The solution is obtained from Eq. (20), viz.,

L(ts)−L(t∗):
∂Tk
∂q̇i

(ts)−
∂Tk
∂q̇i

(t∗)

= Q̂i
(
F̂res, τ̂res

)
, i(k) = 1,n, (34)

where

F̂res = F̂s− F̂ ∗ = (1 + e)F̂c− F̂ ∗, (35)

τ̂res =−µF̂res. (36)

The total impulses are:

F̂s = (1 + e)F̂c, (37)

τ̂s = µF̂ ∗ − µ
[
(1 + e)F̂c− F̂ ∗

]
= 2µF̂ ∗ − µ(1 + e)F̂c. (38)

Special cases

The foregoing three cases address all contingencies.
For example, we did not explicitly address whether
t∗ occurs before or afterts. This was “automatically”
taken care of in Case (iii) – the first calculation – by
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checking the value of̂F ∗ against the total normal im-
pulse.

If the collision is frictionless,̂τ = 0 at all times. This
can be implemented explicitly in the various equations,
thereby reducing the number of equations to be solved
by one. In the above framework, settingµ = µs = 0
achieves the same result. For the frictionless collision
of simple rigid bodies,t∗ is infinite; the initial calcu-
lation in Case (iii) covers this. However, for a con-
strained system, a finitet∗ can be calculated, in terms
of finite u∗n andu∗t , which may occur during the col-
lision. So, even though sticking never occurs, unim-
peded sliding may not be a correct solution. Example 1
shows this.

5. Newtonian formulation – modifications

For the collision of individual rigid bodies, the New-
tonian formulation is straightforward and can be eas-
ier. For two bodies of massesmk and central moments
of inertiaIk, k = 1, 2, subject to the impulsive forceF
defined in Eqs (2)–(4), the relevant equations are, for
each body: linear momentum of the center of mass

mk

(
vk(t2)− vk(t1)

)
= Fk, k = 1, 2, (39)

angular momentum with respect to the center of mass:

Hk(t2)− Hk(t1) = Ik
(
ωk(t2)−ωk(t1)

)
= rPk ×Fk, k = 1, 2, (40)

whereF2 = −F1, andF1 = F of Eq. (2).vk(t) is
the velocity of the center of mass of bodyk at timet.
ωk(t) is the angular velocity of bodyk at timet. rPk
is the vector from the center of mass of bodyk to the
contact pointP .

Clearly, we can definevk(t) andωk(t) in terms of
six generalized coordinates for each bodyk. Together,
Eqs (39) and (40) replaceL(t) of Eqs (11) in whatever
form that Eqs (11) are applied. Everything else in the
previous analysis applies directly.

6. Examples

These are intended to demonstrate the algorithm and
to correct solutions in the literature. Accordingly, the
examples are presented in some detail and with com-
mentary. The “conventional method” referred to is the
method presented by the respective authors, as noted.
These methods are applicable to collisions of individ-
ual rigid bodies, but they can be incorrect for more
complicated systems. The examples clearly show this.

Fig. 3. Example 1.

6.1. Example 1

This is Problem 14.6 posed by Kane and Levin-
son [4], whose “anomalous” results stimulated this
analysis. In Fig. 3, a double pendulum is formed by
the uniform rodsA and B, each of length 2 m and
mass 3 kg. The free end ofB strikes the horizontal sur-
faceH with q14 θ1 = 20◦, q24 2

θ2 = 30◦, and initial
conditionsq̇1(0) = −0.1 rad/s,q̇2(0) = −0.2 rad/s.

The collision equations of motion, Eqs (11), are:

C1
(
q̇1(t2)− q̇1(t1)

)
+D1

(
q̇2(t2)− q̇2(t1)

)
= a1F̂ + b1τ̂ ,

C2
(
q̇1(t2)− q̇1(t1)

)
+D2

(
q̇2(t2)− q̇2(t1)

)
= a2F̂ + b2τ̂ ,

where

C1 = 4D2, D1 = C2 = 1
2m`2 cos (q2 − q1),

D2 = 1
3m`2, ai = ` sin (qi), bi = ` cos (qi),

i = 1, 2.

The results of Kane and Levinson [4] are shown in
Table 1. Kinetic energy increases during the collision
in two cases, clearly an impossibility with nonzero fric-
tion ande < 1. Actually, solution of the problem using
a “conventional” implementation of Kane and Levin-
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Table 1

Example 1: results given by Kane and Levinson [4]

e µs µ Slipping Energy (N m)

0.5 0.25 0.2 Yes 0.03 Decrease

0.5 0.5 0.4 No 0.16 Increase

0.3 0.5 0.4 No 0.12 Decrease

0.7 0.51 0.5 Yes 0.49 Increase

Table 2

Example 1: results using “conventional method” (see text)

e µs µ Slipping Energy (N m)

0.5 0.25 0.2 Yes 0.1034 Decrease

0.5 0.5 0.4 No 0.16 Increase

0.3 0.5 0.4 No 0.12 Decrease

0.7 0.51 0.5 Yes 0.1011 Decrease

son’s [4] formulation gives a slightly different set of re-
sults, per Table 2. The difference is in the assumed di-
rection of the friction force. In the conventional method
(which were our initial results), the friction force re-
sists the initial tangential motion. After some experi-
mentation, we were able to replicate Kane and Levin-
son’s results by lettinĝτ = −µF̂ , i.e., by reversing
the sign of the friction force of the conventional anal-
ysis. This resists motion in the restitution phase, but
has the a priori assumption that the pendulum tangen-
tial velocity reverses direction. However, this gives the
wrong direction for the friction force for the initial rel-
ative motion, so this assumption is always wrong, as
are all the results in Table 1. Note that the conven-
tional method can be correct if the slip velocity does
not change direction. If the slip velocity reverses direc-
tion, clearly both approaches are wrong.

In this example, the conventional method results
might be considered “better” since “only” one increase
in energy appears, although this is still not a satisfac-
tory state of affairs.

As will now be shown, all of these parameter val-
ues indicate a reversal of the slip velocity and the fric-
tion force. Due to the constraints the tangential veloc-
ity changes direction, or tries to (incipience), so that
the friction force (impulse) also must change direction
during the collision. For a constrained system like this,
an “overall” assumption does not consider this. Indeed,
all conventional methods fail to capture this property of
friction impulse accurately [2,4,15]. This also affects
whether sticking or slipping occurs, so those cases
should also be noted, in Table 2.

The problem is worked in detail to demonstrate the
new method. The results are shown in Table 3: energy
always decreases (as it should) and sticking never oc-

Table 3

Example 1: results using proposed method

e µs µ Slipping/ Energy (N m) Case

ut reverses

0.5 0.25 0.2 Yes/Yes 0.11 Decrease (iii)

0.5 0.5 0.4 Yes/Yes 0.12 Decrease (iii)

0.3 0.5 0.4 Yes/Yes 0.13 Decrease (iii)

0.7 0.51 0.5 Yes/Yes 0.12 Decrease (iii)

curs. It turns out that the value of static coefficient of
friction for which sticking will occur can be calculated
explicitly (shortly).

From Eqs (15)–(17), case (iii) obtains for all val-
ues of the specified parameters, per Kane and Levin-
son [4]. Suppose sticking occurs after the tangential
relative velocity becomes zero. Then, per Case iii(a,b),
solve Eqs (19)–(22), which from the above are

C1
(
q̇1(ts)− q̇∗1

)
+D1

(
q̇2(ts)− q̇∗2

)
= a1F̂res + b1τ̂res,

C2
(
q̇1(ts)− q̇∗1

)
+D2

(
q̇2(ts)− q̇∗2

)
= a2F̂res + b2τ̂res

and

u∗t = 0, ut(ts) = 0.

These can be solved for̂Fres andτ̂res and∣∣∣∣ τ̂res

F̂res

∣∣∣∣ =

∣∣∣∣ γ` sin (θ2)− ` sin (θ1)
γ` cos (θ2)− ` cos (θ1)

∣∣∣∣,
where

γ =
C1 cos (θ2)−D1 cos (θ1)
C2 cos (θ2)−D2 cos (θ1)

.

Substitution of the values of the parameters and ini-
tial conditions gives|τ̂res/F̂res| = 0.6234. Therefore,
if µs > 0.6234, the surfaces stick thereafter; ifµs <
0.6234, slipping will resume. This is determined solely
by the system structure. (This may not be obvious for
the double pendulum. However, for the simpler case
of a single pendulum, there is an obvious structure-
defined fixed number forµs, i.e., tanθ(0), whereθ(0)
is the angle from the vertical at the onset of contact.)

In [4], all four values ofµs < 0.6234, so sticking
does not occur in any case, per Table 3. Also, in all
casesut reverses direction. Therefore, the conventional
method will not give correct results. The modification
of Kane and Levinson [4] to address the reversed mo-
tion (Table 1) has a certain logic, but it never gives
correct results. Neither will Keller’s [5] method, since
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Table 4

Example 1: two special cases (proposed method)

e µs µ F̂ ∗ (1 + e)F̂c ut Energy (N m) Case

reverses

0.5 0 0 1.0537 1.1964 Yes 0.08 Decrease (iii)

0.2 0.5 0.4 0.6419 0.5971 No 0.13 Decrease (iii)

there is no accommodation of different values of static
and kinetic friction coefficients.

A few more cases are of interest: zero friction, and
no change in the direction of the relative tangential ve-
locity. These are shown in Table 4. Both agree with
the conventional method – the former since the friction
force is zero, and therefore not an issue, and the lat-
ter because the tangential relative velocity and friction
force do not reverse direction.

Finally, a case where sticking would prevail was
studied, withµs = 0.63 (just slightly over the theo-
retical limit of 0.6234),µ = 0.5, e = 0.7. Sticking
does occur, as predicted, with a kinetic energy decrease
of 0.12. The conventional method will give a 0.59 in-
crease.

6.2. Example 2

This example considers the collision of two identi-
cal spheres, per Groesberg [2, p. 176]. In the text, the
equations indicated that the balls are 4 units in diam-
eter (not radius as stated); in the following we have
changed the length units from inches to cm. The geom-
etry and initial conditions are shown in Fig. 4: ball 2 is
initially at rest and ball 1 hasv1(0) = 30a2 cm/s and
ω1 = −11k rad/s;e = 0.80 andµ = 0.30. (µs is not
specified, but will be equal toµ if the issue arises).

With this change, Eqs (4.5–17) and (4.5–22) in [2]
are correct Newtonian collision equations by the con-
ventional method. However, with these equations,
there is a numerical mistake in the calculations. The
correct results atts are:

v1(ts) = 1.5i + 28.555j ,

v2(ts) = 13.5i − 2.5742j ,

ω1(ts) =−9.391k,

ω2(ts) = 1.6089k,

F̂ = 13.5,

τ̂ = 2.5742.

Fig. 4. Example 2.

Solution by the proposed method (modified Newtonian
formulation)

When the tangential relative velocity vanishes (t∗)

v∗1 = 6.4194i + 28.555j ,

v∗2 = 8.5806i − 2.5742j ,

ω∗1 = −9.391k,

ω∗2 = 1.6089k,

F̂ ∗ = 8.5806.

The normal relative velocity is

un = 6.4194− 8.5806= −2.1612

and changes sign, which is Case (iii).
At the end of the compression phase,

v1(tc) = 7.5i + 28.2308j ,

v2(tc) = 7.5i − 2.25j ,

ω1(tc) =−9.5938k,

ω2(tc) = 1.4062k,

F̂c = 7.5.

Since (1+ e)F̂c > F̂ ∗, the tangential relative veloc-
ity becomes zero in the restitution phase and remains
zero, i.e., sticking. At the point when the tangential rel-
ative velocity becomes zero, all the angular velocities
and tangential velocities are the same as obtained from
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the conventional method when sticking is assumed, be-
cause afterwards, there is no force in the tangential di-
rection. Indeed, from Eq. (35)

F̂res = F̂s− F̂ ∗ = (1 + e)F̂c− F̂ ∗ = 4.9194

will drive the normal velocities to

v1i = 6.4194− 4.9194= 1.5,

v2i = 8.5806− 4.9194= 13.5.

These are the same as given by the conventional
method. The same results are obtained since there is no
reversal in the direction of the tangential relative ve-
locity during the collision.

7. Discussion

When there is no tangential relative velocity direc-
tion change, or zero friction, the new theory (method)
is comparable to the conventional methods, as demon-
strated in the two examples, although it gives consid-
erably greater detail about the process of the collision.
When there is, or can be, a change in the slip veloc-
ity direction, the new method gives both more reason-
able results and a proper “snapshot” of the collision
process.

The algorithm follows exactly the physics of the
conditions during contact (within the confines of the
simplifying assumptions of restitution and friction). It
is not a “thought process” – as with many algorithms –
but strictly an analysis of possible motions due to the
forces which are “automatically” solved by the physi-
cal system.

8. Conclusions

A new analysis and algorithm for the solution to the
collision of constrained rigid body systems has been
presented. It is based on the physical principles appli-
cable at the point of contact and completely captures

the characteristics of a collision. The new algorithm
successfully solves this problem and other more tradi-
tional problems, as well. It matches conventional meth-
ods in the literature when the conventional methods ap-
ply.
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