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A pipe element developed earlier for the analysis of com-
bined large bending and torsional deformations of blood ves-
sels under static loading is extended to model behavior in the
presence of large rotations and time-varying external forces.
As in the case of the earlier element, the enhanced element
supports ovalization and warping of its cross-section. The en-
hancements presented in this paper are comprised of a mass
matrix and gyroscopic effects resulting from fast rotation
rates and large deformations. The effectiveness of the ele-
ment is demonstrated by two examples, which simulate the
three-dimensional behavior of a highly flexible pipe under
dynamic loading conditions.

1. Introduction

A straight pipe element that enables the efficient
computation of large, three-dimensional deformations
in blood vessels with initially circular cross-sections
was presented in an earlier study by Jiang and Araby-
an [5]. The important features of that formulation are
that it can account for both rigid-body and constant
strain modes, and captures all stresses except the nor-
mal stress across the wall thickness (i.e., thin shell is
assumed). Euler parameters are used to describe rota-
tional rigid-body modes and are incorporated into the
element’s vector of degrees of freedom. Under gen-
eral loading (axial, transverse, bending and torsion),
the element (called the “RC element” in Jiang and
Arabyan [5]) allows large ovalization and warping of
its cross section and large, three-dimensional, angular
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changes in the orientation of its reference axis. The
formulation used to derive the element incorporates
the nonlinear coupling between torsional and bend-
ing deformations. The RC element differs from previ-
ous formulations by Bathe and Almeida [3], and Oht-
subo [6] in that it captures both constant strain and
rigid-body modes, and can be applied to any cases
involving geometrically nonlinear large deformation
problems.

In [5] the variation in the performance of the RC ele-
ment with grid refinement was shown in comparison to
a pipe structure made up of four-node shell elements.
It was shown that the stress resultants computed by the
RC element converge to “exact” results (solutions ob-
tained using very large number of four-node shell el-
ements) with a smaller number of degrees of freedom
than those obtained using four-node shell elements in
ABAQUS [1]. These results were shown using static
loading examples.

In this paper, the RC element formulation is ex-
tended to include dynamic loads via a consistent for-
mulation. In linear analysis, the simplest way to obtain
the vector of inertia nodal forces is to take the inner
product of a diagonal mass matrix with the nodal ac-
celeration vector. This formulation and numerical pro-
cedure have been proven to be very effective in most
applications. However, in the case of this pipe element,
due to the special interpolation functions used, rela-
tions between the field variables and nodal displace-
ments are nonlinear. Therefore the method used in lin-
ear analysis cannot account for all inertia effects. In or-
der to capture all inertia effects and coupling among
extension, torsion, and bending deformations, the dy-
namic formulation of the pipe element must be derived
from the full geometrically non-linear shell theory by
a consistent formulation.

This paper presents a consistent formulation for the
dynamic analysis of the three-dimensional pipe ele-
ments in which the inertia forces due to large defor-
mations are fully accounted by capturing all the inertia
couplings. The assumption of a thin pipe wall is carried
through from previous work. The nodal co-ordinates,
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incremental displacements and rotations are defined in
terms of a fixed global co-ordinate system.

2. Review of the formulation for static analysis

Here, some basic concepts and equations that were
developed in [5] are reviewed, these being essential for
the dynamic formulation that follows.

2.1. Basic assumption

The following assumptions are made in the deriva-
tion of the non-linear behavior:

1. The pipe is assumed to be thin-walled, i.e., ifh
is the wall thickness, andR is the radius of the
undeformed pipe, thenh/R� 1. As a result the
behavior of the pipe can be described by a single
surface which is chosen as the mid-surface (i.e.,
the surface exactly between the outer and inner
surfaces of the pipe).

2. The material is assumed to remain linearly elastic
throughout the range of deformation of the pipe.

3. Normals to the mid-surface remain straight after
deformation.

4. Stresses along the pipe thickness direction is neg-
ligible.

2.2. Co-ordinate systems

To describe the motion of the element, three refer-
ence frames (see Fig. 1) are defined:

1. A fixed global reference frameXY Z.
2. An element reference framexyz in which the ini-

tial angular positions are defined.
3. A floating reference frame moving with the unde-

formed pipe cross section. Ovalization and warp-
ing are measured relative to this frame. The an-
gular position of this frame relative toxyz is de-
scribed by a rotation vectorφ.

In addition, two curvilinear coordinates,s andt, are
defined such thatt is a measure of length on the mid-
surface along a direction parallel to the pipe’s longi-
tudinal axis ands is a measure of length on the mid-
surface in a direction perpendicular tot.

2.3. Element interpolation functions

The general displacement of the pipe element is as-
sumed to consist of three parts (see Fig. 1):

1. The displacement of a point on the pipe axis, de-
noted by the vectorv which is a function oft
only.

Fig. 1. Co-ordinate systems.

2. The rigid-body rotation of the pipe cross-section,
denoted byBr, wherer = R[0, cos(θ), sin(θ)]T

is the vector along the radius of the undeformed
pipe, andB is the rotation matrix for the pipe
cross section which varies only witht.

3. The ovalization and warping of the rotated cross-
section, denoted byBr̂, where r̂(s, t) is the
change inr as a result of the deformation of the
cross section.

Let a be the position vector defining a point on the
pipe axis in the reference configuration. Then the po-
sition of a point on the mid-surface of the deformed
configuration is

x(s, t) = a(t) + v(t) +B(t)(r + r̂(s, t)). (1)

The director fieldt2 of the deformed configuration is
defined in terms of Euler parameterse, as:

t2(s, t) = A(e, t)T2(s), (2)

whereT2(s) is the unit normal of the mid-surface in
the undeformed configuration,A(e, t) is the rotation
matrix, ande is the vector of four Euler parameters
which are functions of the rotational vectorφ defined
in [5]. Note thatA(e, t) is defined independently from
B in order to include transverse shears strain.

2.4. Generalized elasticity forces

The virtual work method is employed to obtain the
generalized elasticity forces. The virtual work done by
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Fig. 2. Stress resultants acting on a differential shell element.

internal stress resultants is given by

δΠ =

∫
A0

[
NTδε+MTδκ+QTδγ

]
dA0, (3)

whereN , M , andQ are the stress resultants as de-
scribed by Cook and Malkus [4] shown in Fig. 2, andε,
κ, γ are membrane strains, bending strains, and trans-
verse shear strains, respectively, as defined in [5]. Us-
ing this formulation, the strain variations are

δε =BεδU ,

δκ=BκδU ,

δγ =BγδU , (4)

whereUT = {qT pT}, q is the vector of translational
degrees of freedom andp is the vector of rotational
degrees of freedom.Bε, Bκ, andBγ are the mate-
rial constitutive matrices. By substituting the above re-
lations into Eq. (3), the virtual work of the elasticity
force can be obtained as:

δΠ =

∫
A0

(
NTBε +MTBκ

+QTBγ

)
dA0 δU

= ΨT
e δU , (5)

whereΨe is the generalized elastic force defined as

Ψe =

∫
A0

(
BT
εN +BT

κM +BT
γQ
)

dA0. (6)

3. Dynamic equations

The virtual work of the inertia force can be ex-
pressed as

δW =

∫
A0

ρ0ẍ · δx dA0, (7)

where δx is the variation of the position vector of
a point on the deformed configuration of the mid-
surface, referred to an inertial frame of reference. The
quantitiesδx and its time derivatives are expressed ex-
plicitly as:

δx(s, t) = BN δq, (8)

and

ẋ(s, t) = BNq̇, (9)

ẍ(s, t) = ḂNq̇ +BNq̈, (10)

where

BN =
[
L1(ζ) (I, RB1,B1N1θ),

L2(ζ) (I, RB2, B2N2θ)
]
, (11)

in whichL1(ζ) = (1− ζ)/2,L2(ζ) = (1+ ζ)/2 are the
Lagrangian interpolation functions defined in [5], and
RBi (i = 1, 2 for two axial-node element) is defined
by

δBi(ri + r̂i) = RBiδφBi, i = 1, 2. (12)

Substituting Eqs (8) and (10) into Eq. (13), one obtains
the variational expression for the virtual work done by
the inertia forces:

δW =

∫
A0

ρ0ẍ
T δx dA0

=

∫
A0

ρ0ẍBN δq dA0

=

(∫
A0

ρ0B
T
NḂN dA0q̇

+

∫
A0

ρ0B
T
NBN dA0q̈

)T

δq

=
(
CU̇ +MÜ

)T
δU

= ΨT
d δU , (13)

whereΨd is the generalized inertia force, and
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C =

[ ∫
A0
ρ0B

T
NḂN dA0 0

0 0

]

M =

[ ∫
A0
ρ0B

T
NBN dA0 0

0 0

]
. (14)

In Eq. (14)C is a damping matrix andM is a con-
sistent mass matrix.

In the development of the inertia force, the entire
mass of the pipe is assumed to be concentrated on the
mid-surface. Normally, this approximation leads to ad-
equate precision for thin walled pipes.

4. Equations of motion

Now the elastic force, the inertia force, and external
forceT can be added together to obtain the equations
of motion:

Ψd + Ψe− T = 0. (15)

Using the mass and damping coefficient matrices of
Eq. (14), we obtain:

MÜ +CU̇ + Ψe(U )− T = 0. (16)

5. Numerical method

The equilibrium relation in Eq. (16) must be satis-
fied throughout the history of load application. Due to
its nonlinearity, Eq. (16) must be solved iteratively for
U (τ ) for any timeτ .

The basic approach described by Bathe [2], in an in-
cremental step-by-step solution is to assume that the
solutionU at timeτ is known. In other words it is as-
sumed that

Ψ (τU ) = 0 (17)

is satisfied. The solution for the discrete timeτ + ∆τ
is required, where∆τ is a suitably chosen time incre-
ment. Hence, considering Eq. (16) at timeτ + ∆τ we
want:

Ψ (τ+∆τU )

= τ+∆τΨe + τ+∆τΨd − τ+∆τT = 0, (18)

where the left superscript denotes “at timeτ + ∆τ ”.
Since the nodal forcesτ+∆τΨe + τ+∆τΨd depend non-
linearly on nodal point displacements,τ+∆τU must be
found by an iterative scheme. In this work, the gener-
alized Newton–Raphson method is used for this itera-
tion. The relations used in the Newton iteration are

τ+∆τK (i−1)∆U(i)

= −
(
τ+∆τΨ (i−1)

e + τ+∆τΨ (i−1)
d − τ+∆τT

)
,

τ+∆τU (i) = τ+∆τU (i−1) + ∆U (i), (19)

whereτ+∆τK (i−1) is the tangential stiffness matrix in
iterationi−1. This matrix is assumed to be nonsingular
and is given by Bathe [2].

τ+∆τK (i−1)

=
∂Ψe

∂U

∣∣∣∣
τ+∆τU (i−1)

+
1

α(∆τ )2
τ+∆τM (i−1), (20)

whereα is an integration parameter (see below).
The basic iteration formulae (19) provides a solu-

tion for nodal displacements for dynamic equilibrium
at τ + ∆τ . This solution must then be used to com-
pute nodal velocities and accelerations. The Newmark
method is used for that purpose, using the general for-
mula in Bathe [2]:

τ+∆τ Ü =
1

α∆τ2
τ∆U − 1

α∆τ
τ Ü

−
(

1
2α
− 1

)
τ Ü ,

τ+∆τ U̇ = τ U̇ + ∆τ (1− δ)τ Ü

+ δ ∆ττ+∆τ Ü , (21)

whereα andδ are parameters that are chosen to ob-
tain integration accuracy and stability. Whenδ = 1/2
andα = 1/6, relations (21) correspond to the linear
acceleration method (also called trapezoidal rule). In
this work, these parameters were picked asδ = 1/2
andα = 1/4, making the integration unconditionally
stable with O(∆τ ) accuracy. The relations employed in
the integration scheme are

τ+∆τK (i−1)∆U (i) =−
(
τ+∆τΨ (i−1)

e

+ τ+∆τΨ (i−1)
d − τ+∆τT

)
,

τ+∆τU (i) = τ+∆τU (i−1) + ∆U (i),
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τ+∆τ Ü (i) =
1

α∆τ2
∆U (i) − 1

α∆τ
Ü

−
(

1
2α
− 1

)
τ Ü ,

τ+∆τ U̇ (i) = τ U̇ + ∆τ (1− δ)τ Ü

+ δ ∆ττ+∆τ Ü (i). (22)

It is evident that the iterative scheme used in dy-
namic analysis is the same as that used in Jiang and
Arabyan [5], except that the tangential stiffness matrix
K now contains contributions from the inertia of the
system.

All the numerical results presented in the follow-
ing sections have been obtained using this numerical
scheme. For most dynamic analysis examples, the time
step sizes were of the order of 10−3–10−2 s.

Fig. 3. Rotation of flexible pipe.

6. Examples

Two examples are given below to demonstrate the
effectiveness of the formulation described above in dy-
namic analysis.

6.1. Flexible pipe with end rotation

In this example, a pipe rotating vertically about a
horizontally axis passing through one end is consid-
ered. Figure 3 shows the geometry of the pipe, which
has the following properties:E = 2005 N/m2, ν =

0.3, ρ = 1.03 kg/m2, L = 2 m, R = 0.05 m,
and h = 0.01 m. The pipe is subjected to a time-
varying moment at the cantilevered end, and the other
is free. The external moment increases linearly with
time, beginning with zero and reaching a final value of
692 N m. The pipe is discretized using ten elements.

Fig. 5. Rotation of flexible pipe with end force.

Fig. 4. Motion of rotating pipe.
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(a) (b)

(c) (d)

Fig. 6. Motion of flexible pipe forτ = 0.0∼ 0.15 s: (a)τ = 0.07 s; (b)τ = 0.10 s; (c)τ = 0.12 s; (d)τ = 0.15 s.

(a) (b)

(c) (d)

Fig. 7. Motion of flexible pipe forτ = 0.17∼ 0.24 s: (a)τ = 0.17 s; (b)τ = 0.20 s; (c)τ = 0.22 s; (d)τ = 0.24 s.
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The time step size was set to 0.001 and the relative er-
ror tolerance was set to 10−3. The deformation of the
pipe at several points in time are shown in Fig. 4.

6.2. Fast rotating pipes with end lateral force

The second example is a pipe rotating about a fixed
horizontal axis passing through one end as illustrated
in Fig. 5. The pipe has the following properties:E =
2005 N/m2, ν = 0.3, ρ = 1.03 kg/m2, L = 3 m,
R = 0.05 m, andh = 0.01 m. In this simulation, 15
elements were used. Around the pipe cross section two
Fourier terms were included for ovalization and warp-
ing deformations. This pipe was subjected to a time
varying moment at one end, and a lateral force was ap-
plied at the other end (see Fig. 5). The moment was
increased linearly with time beginning with zero and
reaching a final value of 376 N m atτ = 0.2365 s. The
final lateral force was 2 N (linearly increasing). The
time step size is set to 0.0005 second and the rela-
tive error tolerance was set to 10−3. The deformation
at several points in time are shown in Figs 6–7. For a
better view of the deformation, the radius of the pipe
was magnified by a factor in Figs 6–7. The computa-
tion time this simulation was approximately 3 hours on
a Sun Sparc Station 5.

7. Concluding remarks

The pipe element described by Jiang and Arabyan
[5] and this paper exhibits properties that may be very
advantageous in the analysis of pipe like structures that
undergo large and fast rotations and large deforma-
tions. Example of such structure range from umbilical
cords used by astronautics and undersea divers to blood
vessels in biosystems.

The principal feature of the new element is its ability
to capture both rigid-body and constant-strain modes.
This feature enables the element to be used in circum-
stances of combined bending, torsional and pressure
loads, and large deformations including large cross-

sectional ovalization and warping. This is a capabil-
ity that other pipe elements (Bathe and Almeida [3],
Ohtsubo [6], and ABAQUS theory manual [1]) do not
have.

In addition, the new element is substantially more
cost efficient computationally than other elements be-
cause a pipe-like structure can be modeled with few
elements. This advantage was demonstrated earlier in
Jiang and Arabyan [5].

In its present form the new element cannot model
large strains (by virtue of the strain definition and the
total Lagrangian formulation used). The element can
be easily modified to model large strains by replacing
the strain definitions and the constitutive laws with the
appropriate relationships. Such modifications would
also have a significant impact on Eqs (13) and (14)
and make the dynamic formulation substantially more
complex, but remove the thin-shell restriction.
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