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In order to suppress residual vibrations, a general method is
presented for preconditioning any guidance function prior to
its application to a dynamic system, by convolving it with
a sequence of impulses. The approach includes first the de-
velopment of the necessary design specifications for the im-
pulse sequence, so that the robustness properties cover the
widest possible variation of the system natural frequencies.
Three solution methods are proposed then, with special em-
phasis in the achievement of the minimum possible duration
time of the impulse sequence. Numerical experiments verify
the effectiveness of the robustness, not only with respect to
variations of the natural frequency, but also with respect to
variations of a range of other linear and non-linear variables.
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1. Introduction

Residual vibration suppression is quite important in
a broad range of mechanical engineering applications:
space structures [5], cranes, textile machines, hydraulic
machine tools [7], robot manipulators [1,6,8], com-
puter disk heads [4], etc. The traditional approaches to
minimize the effect of residual vibrations are focused
either to a significant increase of the structure stiffness
– resulting thus to bulky structures – or to the appli-
cation of complex closed loop control methods, which
in turn result to complex and failure liable motion sys-
tems.

An alternative approach to the above methods is the
proper conditioning of the pre-specified excitation pat-
tern (“Guidance”), so that the system moves exactly
to the desired end position without any residual vi-
brations. This concept is very attractive, since it can
significantly simplify the requirements of the motion
equipment. Thus, significant research effort has been
devoted towards this direction. The first approach his-
torically introduced by Smith [17, p. 338], involves the
partitioning of the desired excitation pattern into two
distinct steps, the second one of which is delayed in
time. Various other methods have been developed since
then. Approaches generalizing the method proposed by
Smith, include the introduction of multi-switch Bang-
Bang inputs [12], or the convolution of the desired
guidance function with a series of impulses [13–16].
Other methods approximate the guidance function by
a series of typical mathematical functions – such as
splines [1,7,8], sinusoids [2], ramped sinusoids [10],
or polynomials [4]. Closed form solutions are also
available, using linear quadratic (LQ) optimal tech-
niques [4].

The common feature of all the above methods is that
they require the exact knowledge of the structure dy-
namic parameters (e.g., resonant frequencies, damping
ratios, etc.). For this reason, their practical application
has been quite limited, since even small variations of
these parameters – due either to the poor modeling of
the system or to changes of system variables during
operation (e.g., machine payload) – cause significant
deviations from the desired response and thus result to
significant residual vibrations.

Requirements for the robust performance of the de-
sired guidance function have been addressed relatively
recently. The splines method proposed in [7,8], is fur-
ther extended in [1] with satisfactory results, covering
also several possible “alternative dynamic models” of
the system, which result from variations of its nominal
parameters. However, the application of this method
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is limited only to systems where the desired guidance
function can be approximated by splines, while the
choice of the “alternative models” to be used in the de-
sign is significantly based on heuristic criteria.

In order to achieve a more robust behavior of the ba-
sic two equal impulse sequence [17, p. 338], the im-
pulse sequence is extended to a specific pattern of a
limited number of impulses (3 to 5) in several forms,
like the ZVD(D) approach [13], or the Multi Hump
EI approach [16]. Both the above approaches concern
a SDOF system. In order to cover MDOF systems,
the above basic impulse pattern is then further con-
volved [13] or delayed in time [14]. An alternative ap-
proach proposed [15], extends actually to MDOF sys-
tems the same basic set of equations of [13], using
them either directly as a system of linear equations, or
indirectly as constraints in a time minimization prob-
lem.

All the above methods still suffer from the fact that
they require the knowledge of the system dynamic pa-
rameters, while they offer quite limited possibilities in
the determination of the number of the necessary im-
pulses, their duration and their magnitude. However,
their major drawback is that the robustness they offer is
restricted only in local areas around the system natural
frequencies and can be increased only, by increasing
the total duration of the pulse sequence. This results in
unnecessary delays in the application of the total guid-
ance and consequently, in the total duration of the sys-
tem motion. Moreover, if the frequency ranges for the
error minimization are not appropriately selected, sig-
nificant error overshoots can result in other frequency
areas.

This paper establishes the most general possible
framework for preconditioning the desired guidance
function by convolving it with an arbitrary sequence
of impulses. In Sections 2–4, the necessary conditions
for the robust behavior of the impulse sequence are
first derived. Then, a general design approach is pro-
posed, according to which the robustness properties
cover now, not only local areas of variation around sys-
tem natural frequencies, but the widest possible area
for frequency variation. Finally, three methods are pro-
posed for the design of the impulse sequence, with spe-
cial emphasis in the achievement of the minimum pos-
sible duration of the impulse sequence. The first one
is based on local design criteria, generalizing the ap-
proaches proposed in [13–16], while the other two are
based on global error design criteria.

Section 5 includes a comparison of the already ex-
isting methods and the several options offered by the

methods of this paper. Special emphasis is devoted to
the possibilities of achieving the minimum possible du-
ration time of the impulse sequence, while maintain-
ing pre-specified error limits. Numerical experiments
in Section 6 verify the effectiveness of the robustness,
not only with respect to variations of the linear dy-
namic system parameters, but also with respect to vari-
ations of a range of non-linear coefficients and with re-
spect to specific PID algorithms.

2. Robustness requirements

The equations of motion of a linear SDOF dynamic
system with natural frequencyω, damping ratioζ, ex-
citation function (guidance)u(t) and response vec-
tor x(t), can be written in the following state space
form [3,9]:

ẋ(t) = Ax(t) + bu(t), (1a)

A =

[
0 1
−ω2 −2ζω

]
, b =

[
0
1

]
. (1b)

Using the Duhamel integral, the system response is:

x(t) = eAtx(0) +

∫ t

0
eA(t−τ )bu(t) dτ

= eAt
[
x(0)+

∫ t

0
e−Aτbu(t) dτ

]
. (2)

The application of the Sylvester expansion method to
the transition matrix eAt leads to:

eAt =
2∑
i=1

eqitHi, (3a)

q1,2 = −ζω ± ω
√

1− ζ2, (3b)

Hi =
1

qi − qj
[
A − qiI

]
(3c)

for i, j = 1, 2, i 6= j.

Thus, substituting Eq. (3) in Eq. (2), the expression for
the response can be written as:

x(t) = eAt

[
x(0) +

2∑
i=1

Hib
∫ t

0
e−qiτu(τ ) dτ

]
(4a)

= eAt

[
x(0) +

2∑
i=1

HibU (s; s = qi)

]
, (4b)
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where the integral in Eq. (4a) is easily recognized to be
the Laplace transformU (s) of the guidance function,
evaluated at the two system polesqi in Eq. (3b). In
case of a rigid body motion (ω = 0), Eq. (4b) can be
similarly shown to take the specific form:

xR(t) = HR(t)
[
x(0) + bU (s; s = 0)

]
, (5a)

HR(t) =

[
1 t
0 1

]
. (5b)

The preconditioning method proposed, involves the
convolution of the “original guidance function”g(t)
with a series of impulsesp(t):

u(t) =

∫ t

0
g(t− τ )p(τ ) dτ , (6a)

p(t) =
N∑
n=0

cnδ(t− nT ), (6b)

wereδ(t) is the delta (Dirac) impulse function. Thus,
the implementation of Eq. (6a) in practice only requires
that:

u(t) =
N∑
n=0

cng(t− nT ). (6c)

The Laplace transform of Eq. (6) is:

U (s) =G(s)P (s), (7a)

P (s) =
N∑
n=0

cne−snT . (7b)

The purpose of introducing the impulse sequencep(t),
is that the conditioned guidance functionu(t) is able
to move the system in essentially the same way as the
original guidance functiong(t), without the effect of
the residual vibrations. This requirement can be stated
as:

P (s; s = qi) = 0, (8a)

P (s; s = 0) = 1. (8b)

In view of the combination of Eqs (3b), (4b), (7a),
Eq. (8a) implies that the residual vibration effect is
completely canceled. In view of Eq. (7a), this can be
accomplished just by the proper design of only the se-
quencep(t), quite independently from the properties
of the original guidance functiong(t). Parallel, in view

of the combination of Eqs (5) and (7a), Eq. (8b) states
that the pulse sequencep(t) maintains all the proper-
ties thatg(t) posses, in order to move the system as a
rigid body. Thus, Eq. (8) are the necessary conditions
for p(t), in order to bring the system to the desired end
position, without the effect of residual vibrations. Sub-
stitution of Eq. (3b) in (8) leads to:

N∑
n=0

cnenζωT cos
(
nωT

√
1− ζ2

)
= 0, (9a)

N∑
n=0

cnenζωT sin
(
nωT

√
1− ζ2

)
= 0, (9b)

N∑
n=0

cn = 1. (9c)

The effect of the damping coefficientζ in the system
response is two-fold. First, it has a positive effect, re-
sulting in the damping of the residual vibrations. Sec-
ond, it produces a shift in the natural frequency of
the undamped system by a factor of

√
1− ζ2N . Thus,

provided that the design of the sequencep(t) is ro-
bust enough to cover that amount of system natural
frequency variations, damping can be neglected and
Eq. (9) can be simplified as follows, without any loss
in the generality of application:

N∑
n=0

cn cos(nφ) = 0, (10a)

N∑
n=0

cn sin(nφ) = 0, (10b)

N∑
n=0

cn = 1, (10c)

φ = ωT. (10d)

Further treatment of Eqs (10a), (10b) lead to two equiv-
alent sets of equations, depending on the number of
coefficientsN .

Case I (N even)

a0/2 +
L∑
l=1

al cos(lφ) = 0, (11a)

L∑
l=1

bl sin(lφ) = 0, (11b)
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L = N/2. (11c)

where the impulse sequence coefficientscn can be de-
termined as follows:

cj =
(
aL−j + bL−j

)
/2, j = 0,L− 1, (12a)

cL = a0/2, (12b)

cj =
(
aj−L + bj−L

)
/2, j = L+ 1,N. (12c)

Case II (N odd)

M∑
l=1

al cos

(
2l + 1

2
φ

)
= 0, (13a)

L∑
l=1

bl sin

(
2l + 1

2
φ

)
= 0, (13b)

M = (N − 1)/2, (13c)

where the impulse sequence coefficientscn can be de-
termined as follows:

cj = (aM−j + bM−j)/2, j = 0,M , (14a)

cj = (aj−M−1 + bj−M−1)/2, j = M + 1,N. (14b)

In both cases, an obvious and convenient choice for the
coefficientsbi is:

bi = 0. (15)

Thus Eqs (11b) and (13b) are identically satisfied, the
number of the unknown coefficients is reduced by half
according to Eqs (11a), (13a) and the coefficientscn
are now symmetric aroundN/2 according to Eqs (12)
and (14).

3. Design specifications

In view of Eq. (15), Eqs (11) and (10c) now be-
come:

WaI (ω) = a0/2 +
L∑
l=1

al cos(lωT ) = 0, (16a)

ω 6= 0,

WaI (0) = a0/2 +
L∑
l=1

a1 = 1. (16b)

Similarly, Eqs (13) and (10c) become:

WaII (ω) =
M∑
l=0

al cos

(
2l+ 1

2
ωT

)
= 0, (17a)

ω 6= 0,

WaII (0) =
M∑
l=0

a1 = 1. (17b)

Eqs (16) and (17) satisfy the following symmetry prop-
erties:

WaI (φ+ 2π) = WaI (φ), (18a)

WaI (2π − φ) = WaI (φ), (18b)

WaII (φ+ 2π) = −WaII (φ), (19a)

WaII (2π − φ) = −WaII (φ), (19b)

WaII (φ+ 4π) = WaII (φ), (19c)

WaII (4π − φ) = WaII (φ). (19d)

Thus, Eqs (16) and (17) define a residual vibration er-
ror functionWa(ω), dependent on the system eigenfre-
quencyω. In order that the pulse sequencep(t) is ro-
bust with respect to the variations of the system natural
frequencyω, the error functionWa(ω) must be zero for
all the possible values ofω, except the rigid body mo-
tion case ofω = 0. Figure 1 presents the ideal behav-
ior WD(ω) of this error function. The form ofWD(ω)
is constructed in such a way, that for a small frequency
areaB nearω = 0 the “rigid body properties” ofg(t)
are retained, while residual vibrations are suppressed
over eigenfrequency values aboveωc. Thus, a design
problem can be now formulated: The parameters of the
functionWa(ω; a,N ,T ) must be determined in such
a way, thatWa(ω) approximates ‘as close as possible’
the ideal behavior ofWD(ω).

In view of the symmetry properties (18) and (19),
the maximum design frequency achievable in Fig. 1 is
determined by:

ωmax = π/T = Nπ/Tp = Nωp/2, (20a)

ωrep = 2ωmax, (20b)

Tp = NT , (20c)

ωp = 2π/Tp, (20d)

whereTp is the total duration time of the impulse se-
quencep(t) andωp the characteristic impulse sequence
frequency.
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(a)

(b)

Fig. 1. Ideal behavior of a residual vibration error function. (a) Case I, (b) Case II.

4. Design methods

Currently, a large number of methods [11] are avail-
able for the approximation ofWD(ω) by Eqs (16), (17).
Proper adaptation of them leads – among others – to
three interesting solution approaches.

4.1. Direct solution approach

According to this approach, the functionWa(ω)
takes exactly the values ofWD(ω) in a set ofL orM
distinct frequenciesω. This leads to a system of equa-
tions in the form of:

Case I
cos(φ1) cos(2φ1) · · · cos(Lφ1)
cos(φ2) cos(2φ2) · · · cos(Lφ2)
· · · · · · · · · · · ·

cos(φL) cos(2φL) · · · cos(LφL)



×


a1

a2

· · ·
aL

 =


1
1
· · ·
1

 (−a0/2) (21a)

completed by Eq. (16b) after an initial choice ofa0.

The elements of the matrix in the left hand side of

Eq. (21a) can be defined as:

[Φ]ij = cos(jφi) = Tj(yi), (21b)

yi = cos(φi), (21c)

whereTl(y) is anl-th order Chebyshev polynomial of

y [11].

Case II



cos

(
3
φ1

2

)
cos

(
5
φ1

2

)
· · · cos

[
(2M + 1)

φ1

2

]
cos

(
3
φ2

2

)
cos

(
5
φ2

2

)
· · · cos

[
(2M + 1)

φ2

2

]
· · · · · · · · · · · ·

cos

(
3
φM
2

)
cos

(
5
φM
2

)
· · · cos

[
(2M + 1)

φM
2

]
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×


a1

a2

· · ·
aL

 =



cos

(
φ1

2

)
cos

(
φ2

2

)
·

cos

(
φM
2

)


(−a0) (22a)

completed by Eq. (17b) after an initial choice ofa0.
The elements of the matrix in the left hand side of
Eq. (22a) can be defined as:

[Φ]ij = cos
[
(2j + 1)ϕi/2

]
= T2j+1(yi), (22b)

yi = cos(φi/2). (22c)

Using the classical properties of determinants, it can
be easily shown that the determinant ofΦ takes the
form of a Vandermonde determinant, the columns of
which are polynomials ofyl. Provided that the values
of ϕ in Eqs (21a) and (22a) are different from each
other and they do not result in zero cosine terms, this
determinant is different than zero and thus, the systems
in Eqs (21a), (22a) can lead to a nontrivial solution.

In fact, practical applications of this method or its
slight variations, already exist in the literature. The “al-
ternative modeling approach”, proposed in [1] for the
specific case of spline functions, is based on this con-
cept. Also, by selecting a set of individual frequencies
ωi quite close to each other, robustness issues can be
locally added, leading in practice to the same results
as in [13,15]. In case that the error is not requested
at a specific frequency to be exactly zero, but rather
equal to a small percentage (e.g., 5%), an additional
right hand vector can be added to Eqs (21a) and (22a),
leading to the same results as in [16].

Although the method has excellent localization
properties for specific values ofω, it suffers from nu-
merical instability problems, inherent in systems of
the Vandermonde structure, especially for a large num-
ber of unknowns. This results among others to val-
ues of the error functionWa(ω) significantly exceeding
unity at specific frequencies, not explicitly introduced
in Eqs (21), (22). Increasing the number of equations in
Eqs (21a), (22a) by introducing additional frequencies
not appropriately selected, leads to the aggravation of
the above situation.

In order to overcome this disadvantage, two other
methods can be used alternatively, based now on global
approximation criteria dependent on the general shape
of the functionWD(ω).

4.2. Fourier approximation

SinceWD(ω) must also satisfy the symmetry and
periodicity properties of Eqs (18), (19), Fourier series
can be used for its approximation by the direct calcu-
lation of the coefficientsak. Thus:

Case I

ak =
2
π

∫ π

0
WDI (φ) cos(kφ) dφ, k = 0,L. (23)

In the general case, the fast Fourier transform (FFT)
can be used for the evaluation of Eq. (23). In the
specific case thatWa(ω) takes the analytical form of
Fig. 1(a), a closed form solution exists for Eq. (23):

a0 = (φB + φC)/π, (24a)

ak =
4

πk2(φC − φB)
sink

φC + φB

2

× sink
φC− φB

2
, k = 1,L. (24b)

Case II

ak =
2
π

∫ π

0
WDII (φ) cos

[
(2k + 1)φ/2

]
dφ,

k = 0,M. (25)

Similarly, in the specific case thatWD(ω) takes the an-
alytical form of Fig. 1(b), a closed form solution exists
for Eq. (25):

ak =
4

π[(2k + 1)/2]2(φC − φB)
sin

2k + 1
2

φC + φB

2

× sin
2k + 1

2
φC − φB

2
, k = 0,M. (26)

4.3. Chebyshev approximation

Case I
Definingy as:

y = cos(ϕ) (27a)

WDI (ω) can be approximated by a Chebyshev series of
the form [11]:

WDI (y) ≈ a0

2
+

L∑
k=1

akTk(y). (27b)
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The solution is

ak =
2

L+ 1

L∑
r=0

WDI (φr)Tk(yr), k = 0,L, (27c)

whereyr(φr) are theL + 1 roots of theTL+1 polyno-
mial:

TL+1(yr) = 0,

yr = cos(φr),

φr =
2r + 1

2(L+ 1)
π, (28)

wherer = 0,L.
Thus Eq. (17c) becomes

ak =
2

L+ 1

L∑
r=0

WDI (φr) cos(kφr), k = 0,L. (29)

Case II
Similarly, defining

y = cos(θ) = cos(ϕ/2) (30a)

the following solution can be shown to exist for the
coefficientsak:

ak =
2

M + 1

M∑
r=0

WDII (φr) cos

(
2k + 1

2
φr

)
,

k = 0,M , (30b)

φr =
2r + 1

2(M + 1)
π. (30c)

The Chebyshev polynomial is known to be [11] quite
close to the minmax polynomial, best approximating
the original function. It typically converges for a small
numberL or M of coefficients, compared to other
polynomial approximating methods.

5. Comparison of design methods

Figure 2 presents a comparison of the results of the
Two Hump Extra Insensitive input shaper developed
in [16] to the Fourier method (Case I) developed in this
paper. In both methods, the total pulse duration time
Tp is chosen equal to 1.5 times the system eigenpe-
riod, corresponding to an eigenfrequency of 1 rad/s.

Fig. 2. Comparison of the proposed methods to the multi-hump EI
input shapers method [16].

Fig. 3. Comparison of the proposed methods to the robust time-delay
control method [15].

The number of pulses used is 4 for the Two Hump
EI method and 7 for the Fourier method. The Fourier
method is able to eliminate the central lobe appearing
around 2 rad/s.

Figure 3 presents a comparison of the results of the
minimum time robust design, proposed in [15] to the
Fourier method (Case I) developed in this paper. The
example concerns a 2DOF system with two modes at
21.6 rad/s and 212.59 rad/s. The error curve presenting
the results of [15] was reproduced by the Direct Solu-
tion approach, using two points, each one quite close
to the above 2 frequencies. In both methods, the total
pulse duration timeTp is chosen equal to 0.3216 s. The
number of pulses used is 9 for the method of [15] and
17 for the Fourier method. The Fourier method is able
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(a) (c)

(b) (d)

Fig. 4. Error functions of the proposed methods forTp = 2π. (a)N = 4 (Case I), (b)N = 16 (Case I), (c)N = 3 (Case II), (d)N = 15
(Case II).

to eliminate the residual vibration error in the whole
range between 20 and 250 rad/s.

Both the above figures clearly show the problems
associated with the alternative approaches in the lit-
erature. Robustness properties are improved only in a
close area around the specified frequency. Significant
residual vibration errors remain in the rest of the fre-
quency area. Contrary, the methods proposed in this
paper indicate that by properly increasing the number
of pulses and designing them according to global cri-
teria, the robust frequency area can be drastically in-
creased.

Then, the effect of increasing the number of pulses
in the proposed methods is examined. Figure 4 presents
results for all the proposed methods, when the num-

ber of pulses is increased practically by 4, without in-
creasing the total pulse duration time. For the Direct
Solution Approach, the necessary frequency values in
Eq. (21a) are equally spaced in the range [ωC,ωmax].
This appears to be the best way to use the Direct So-
lution Approach, if significant error overshoots are to
be avoided in frequencies not appearing in Eqs (21a),
(22a). For the other 2 methods, the “rigid body fre-
quency area” B is chosen equal to zero. In all cases
the lower limit for the suppression of residual vibra-
tions is ωC = 1 rad/s. The effect of increasing the
number of the necessary coefficientsN is a drastic re-
duction of the error in the high frequency range above
ω = 2 rad/s and a minor improvement in the area be-
tweenω = 1 rad/s andω = 2 rad/s. The improvement
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Fig. 5. Effect of the total pulse duration timeTp on the error function
of Fourier I method (N = 64).

using more coefficients thanN = 64 is marginal, un-
less a higher robust area aboveωmax of Eq. (20a) is to
be achieved. Also, aboveN = 64, all the results of
the corresponding methods belonging in Case I and II
become practically identical.

Comparing the individual behavior of each of the
three proposed methods, the Fourier method leads
to the best results, while the Chebyshev method is
quite close. However, although the global solution ap-
proaches (Fourier, Chebyshev) indicate overall a better
behavior than the Direct Solution Approach, only this
last method can lead to the exact cancellation of the
residual vibration error at well specified frequencies.

Then, the effect of increasing the total pulse dura-
tion time Tp is examined for a total impulse number
of N = 64. The results forTp = 2π, 2.5π, 3π s for
the Fourier and the Chebyshev methods are shown re-
spectively in Figs 5 and 6. The effect of increasing
the total pulse duration timeTp is the significant de-
crease of the residual vibration error in the whole fre-
quency range, with more drastic effect in the area be-
tweenω = 1 rad/s andω = 2 rad/s.

Comparing the individual behavior of each of the
two methods, the Fourier method leads to the best re-
sults.

The major conclusion from the above results (Fig. 5),
is that the Fourier method can lead to the practical can-
cellation of the residual vibration error (error value be-
low 5%) for the whole frequency range above a spe-
cific frequencyωC, when the impulse duration time is
chosen as:

Tp = (5/4)TC, (31a)

TC = 2π/ωC. (31b)

Fig. 6. Effect of the total pulse duration timeTp on the error function
of Chebyshev I method (N = 64).

The corresponding pulse sequences in this case are
shown in Fig. 7 forN = 4, 16, 64 coefficients.

6. Numerical experiments

The results of the design procedure of Section 2 are
then applied to an SDOF system, shown in Fig. 8. The
system includes several non-linearities, in order to test
the robustness of the proposed methods to variations of
a broad range of system parameters. The equations of
motion are:

ẍ+ 2ζω(ẋ− ν̇) + (ω2 + kn)

× (x− ν) + FD = 0, (32a)

ω =
√
k/m, (32b)

ζ = c/2mω, (32c)

kn = Dn(x− ν)2, (32d)

FD = Cdẋ|ẋ|. (32e)

The original guidance function is a ramp with a rise
time of 5 s. This function is shown in Fig. 9, together
with the conditioned guidance function, derived ac-
cording to Eq. (6) with the application of the impulse
sequence of Fig. 7(c). Typical response curves of the
original and the conditioned system, corresponding to
ω = 1 rad/s, are shown in Fig. 10.

First, the introduction of a PID controller is consid-
ered. An extensive treatment of the effect of PID con-
trollers on flexible mechanical systems can be found
in [3]. TheP term results in “stiffening” the mechani-
cal system, increasing thus the natural frequency. The
D term results in adding damping to the system, re-
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(a)

(b)

(c)

Fig. 7. Fourier I impulse sequences forTp = 2.5π. (a)N = 4,
(b)N = 16, (c)N = 64.

sulting however to abrupt control actions. Based on
the above guidelines, a PID controller is designed for
the undamped system withω = 1 rad/s. It provides
a guidance functionu(t) = uC(t), tracking the error
between the original ramp function and the system re-
sponsex(t). TheP term is chosen equal to 15, result-

Fig. 8. Dynamic system, used in the numerical experiments.

Fig. 9. Original and conditioned guidance function.

Fig. 10. System response to the original and conditioned guidance
functions (ω = 1 rad/s, all other variables set equal to zero).

ing to a system with a new eigenperiod of 4 rad/s. The
D term is chosen equal to 5.656, resulting to a new
damping ratio of 0.707.

Initially, no limits were applied to this PID con-
troller (unlimited PID controller). The system response
is shown in Fig. 11(a), indicating an almost perfect
behavior. However, observing in Fig. 11(b) the elastic
force on the spring introduced by this type of control,
the penalty paid can be easily realized. Apart from ac-
tuator saturation problems, abrupt and significant elas-
tic forces are present.



I. Antoniadis / Guidance preconditioning by an impulse sequence 143

(a)

(b)

Fig. 11. System response to the unlimited and limited PID control
(ω = 1 rad/s, all other variables set equal to zero). (a) System re-
sponse, (b) elastic force on the spring.

For this reason, the controller was limited (limited
PID controller), so that the elastic force on the spring
cannot exceed a value of 4 times the maximum spring
force, induced by the guidance method of this paper.
The results indicate a drastic decrease of the perfor-
mance of the PID controller. Although the system re-
sponse reaches the final value at the same time as that
by the guidance function, it exhibits significant over-
shootings and elastic forces.

Then the effect of the variation of several parameters
to the residual vibration error function is considered.
For the comparison of the results, a total residual error
function at timeTe = 20 s is defined as:

Er(Te) =
{

[x(Te)− ν(Te)]
2 + [ẋ(Te)/ω]2

}1/2
. (33)

The system natural frequency is varied over a range of
ω = 1–4 rad/s, with all the other parameters set equal

Fig. 12. Residual error function for variations of the eigenfrequency
ω.

Fig. 13. Residual error function for variations of the damping ratio
ζ.

to zero. The corresponding results are shown in Fig. 12.
The conditioned guidance function leads to zero vibra-
tion error over the whole specified frequency range,
contrary to the original guidance.

Further system parameters were subsequently var-
ied. In all cases, the natural frequency is set toω =
1 rad/s and all the other non further mentioned param-
eters are set equal to zero. The damping ratio is varied
over a range ofζ = 0 to ζ = 0.30. The correspond-
ing error is shown in Fig. 13. As already mentioned in
Section 2, the effect of damping is positive to the re-
duction of the residual vibration, as shown by its ef-
fect to the response at the original guidance function.
However, Fig. 13 clearly verifies the assumption used
in Section 2 for the derivation of Eq. (10) from Eq. (9):
The design of a robust method with respect to natural
frequency variations ensures also robustness for damp-
ing ratio variations.
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Fig. 14. Residual Error function for variations of the drag force co-
efficientCd.

Fig. 15. Residual error function for variations of the dead band
zoned.

The purpose of the numerical experiments further
shown, is to check the validity of the above assump-
tion also for variations of the other nonlinear system
parameters.

Figure 14 presents the error for variations of the drag
coefficient in the rangeCd = 0 to 5. As expected due to
the damping nature of the drag force, the effect is pos-
itive for the original guidance function. A marginally
negative effect is observed for the conditioned guid-
ance function. However, even in this case, the resid-
ual error still remains below the accepted value of 5%,
indicating a robust behavior.

Figure 15 presents the error for variations of the
dead-band zone width in the ranged = 0 to 0.20. The
effect of this type of linearity is to increase the resid-
ual vibration error in a similar amount for both types
of excitation. However, the error for the conditioned
guidance function is significantly lower than that of the
unconditioned guidance.

Fig. 16. Residual error function for variations of the non-linear
spring constantDn.

In both cases of drag force and dead-band zone non-
linearities, residual vibrations increase for the condi-
tioned guidance function, due to the abrupt changes
that are produced to its shape by non-linearities of this
form. Thus, in these cases, some further research is
needed, in order to enhance the frequency robustness
properties of the guidance function with additional fea-
tures, such as the one proposed in [8].

Finally, the effect of variations of the non-linear
spring constant are considered. Figure 16 presents the
error for positive variations in the rangeDn = −5.25
to +5.25. The error of the unconditioned guidance is
significant, increasing with negative values ofDn. Fur-
thermore, the system response to the original guid-
ance for values ofDn < −5.3 becomes unstable. The
conditioned guidance function performs quite robustly,
similarly to the linear case.

7. Conclusion

Preconditioning any guidance function with a series
of impulses designed according to the approach devel-
oped in this paper, can lead to drastic residual vibration
suppression. When the total duration time of the im-
pulse sequence is set to a value larger than 1.25 times
the maximum expected natural period, the residual vi-
bration error can be practically suppressed over the
whole frequency range. This robustness property of the
impulse sequence is additionally valid in practice, not
only for variations of other linear system parameters
(e.g., damping ratio), but also for variations of a num-
ber of non-linear parameters.

The practical implementation of the method requires
just a summation in the form of Eq. (6c). This oper-
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ation can be performed either online or off-line, quite
independently from the type of the original guidance.
Thus, the method can be easily applied in practice to
any mechanical system, with any form of original guid-
ance, either derived mathematically, or input directly
to the system.
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