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For structures subjected to stationary or evolutionary white/
colored random noise, their various response variances satisfy
algebraic or differential Lyapunov equations. The solution
of these Lyapunov equations used to be very difficult. A
precise integration method is proposed in the present paper,
which solves such Lyapunov equations accurately and very
efficiently.

1. Introduction

Many engineering structures, e.g. bridges, tall-
buildings, TV towers, offshore platforms, are very
sensitive to the ambient random loads such as wind-
gusts, earthquakes, irregular waves, etc. The analysis
methodology for these problems have received much
attention, and many contributions have been published
(e.g. [1,2,8,9,14]). For most problems, the variance
analysis is of major interest. However, if the structures
are subjected to evolutionary random excitations, such
analysis is quite difficult. Recently, Lin et al. [3–7]
developed the pseudo excitation method (PEM) which
has enabled the computation of such problems rather
conveniently. Unfortunately, for structures subjected
to wide band excitations, a great number of frequency
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points still have to be taken in order to obtain accurate
variances, and the computation would still be rather
time-consuming. Further improvement is still required.

In past few years, Zhong, X.N. [10] derived the
closed solutions of the algebraic and differential Lya-
punov equations based on the precise numerical com-
putation of the exponential matrix exp([A]t) proposed
by Zhong, W.X. [11–13]. In the present paper, these
methods have been combined and extended to the solu-
tion of the above mentioned variances. Two examples
are given which show that the proposed method is not
only accurate, but also extremely efficient.

2. Differential Lyapunov equation

The equations of motion of an n DOF (degrees of
freedom) structure subjected to an evolutionary random
excitation {f(t)} can be expressed as

[M ]{ÿ} + [C]{ẏ} + [K]{y} = {f(t)}
(1)

= g(t){x(t)}
Eq. (1) can be expressed as{

ẏ
ÿ

}
=

[
0 I

−M−1K −M−1C

] {
y
ẏ

}
(2)

+
[

0
g(t)I

]
{x(t)}

or

{ż} = [A]{z} + [G]{x} (3)

where [M ], [C] and [K] are the mass, damping and
stiffness matrices of the structure, {y}, {ẏ} and {ÿ}
are its displacement, velocity and acceleration vecters,
{x(t)} is a stationary Gausian white noise random pro-
cess vector; g(t) is a slowly varying modulation func-
tion, and [I] is a unit matrix of order n.

If the RHS (right hand side) of Eq. (1) is set to zero,
the term M [G]{χ} in Eq. (3) will vanish, and so its
solution would be [3,4]

[Φ(t, t0)] = [Φ(t− t0)] = exp([A](t− t0)) (4)
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If the RHS of Eq. (1) is not zero, the solution of
Eq. (3) would be

{z(t)} = [Φ(t, t0)]{z0}
(5)

+
∫ t

t0

[Φ(t, s)]{f(s)}ds

in which {z0} is the values of {z(t)} at the initial time
t0. Usually, the initial conditions can be regarded as
uncorrelated with the excitations, so that Eq. (5) leads
to the covariance matrix

[Rzz(t1, t2)] = E
⌊{z(t1)}{z(t2)}T

⌋
= [Φ(t1,t0)][Rzz(t0,t0)][Φ(t2,t0)]T

+
∫ t1

t0

ds1

∫ t2

t0

[Φ(t1, s1)][G(s1)]

E
[{x(s1)}{x(s2)}T

] · [G(s2)]T

[Φ(t2, s2)]T ds2 (6)

For the stationary white noise process {x(t)} of
which the intensity function is [D], its auto-correlation
function is

[Rxx(s1, s2] = E
[{x(s1)}{x(s2)}T

]
(7)

= [D]δ(s2 − s1)
That makes Eq. (6), when t1 = t2 = t, become

E
[{z(t)}{z(t)}T

]
= [Φ(t, t0)][Rzz(t0, t0)]

[Φ(t, t0)]T +
∫ t

0

[Φ(t, s)]
(8)

[G(s)][D][G(s)]T

[Φ(t, s)]T ds

Denote [P ] = E
[{z(t)}{z(t)}T

]
, its first order

derivative about time t is

[Ṗ ] = E
[{ż(t)}{z(t)}T

]
+ E

[{z(t)}{ż(t)}T
]

= [Φ̇(t, t0)][Rzz(t0, t0)][Φ(t, t0)]T

+[Φ(t, t0)][Rzz(t0, t0)][Φ̇(t, t0)]T (9)

+
∫ t

t0

[Φ̇(t, s)][G(s)][D][G(s)]T [Φ(t, s)]Tds

+
∫ t

t0

[Φ(t, s)][G(s)][D][G(s)]T [Φ̇(t, s)]Tds

+[Φ(t, t)][G(t)][D][G(t)]T [Φ(t, t)]T

As the principal solution of Φ satisfies

[Φ̇(t, t0)] = [A(t)][Φ(t, t0)], [Φ(t, t)] = [I] (10)

That leads to the differential Lyapunov equation

[Ṗ ] = [A][P ]T+ [P ][A]T+ [G(t)][D][G(t)]T (11)

3. Precise integration for Lyapunov equation

Consider the homogeneous differential Lyapunov
equations

[Ṗ ] = [A][P ]T + [P ][A]T (12)

The values [P0] at initial time t0 are known. It is
readily verified that its solution is

[Ph(t)] = [Φ(t)][P0][Φ(t)]T (13)

Next, let

[Q(s)] = [G(s)][D][G(s)]T (14)

and

[Ps(t)] =
∫ t

t0

[Φ(t− s)][Q(s)][Φ(t− s)]T ds (15)

Because

d

dt
[Ps(t)] = [Φ(0)][Q(t)][Φ(0)]T

+
∫ t

t0

[Φ̇(t− s)][Q(s)][Φ(t− s)]T ds

(16)

+
∫ t

t0

[Φ(t− s)][Q(s)][Φ̇(t− s)]T ds

= [Q(t)] + [A][Ps(t)] + [Ps(t)][A]T

It shows that [Ps(t)] is the particular solutions of
the non-homogeneous equations (11). Therefore, the
solutions of Eq. (11) with non-zero initial values should
be

[P (t)] = [Ph(t)] + [Ps(t)] = [Φ(t)][P0][Φ(t)]T

(17)
+

∫ t

t0

[Φ(t− s)][Q(s)][Φ(t− s)]T ds

In the following, only the case with [P0] = [0] (when
t0 = 0) is considered. The non-zero initial-value solu-
tion can be separately solved and then be linearly added
to the zero-initial-value solution in order to produce the
complete solution. Obviously, at time t,

[P (t)] =
∫ t

t0

[Φ(t− s)][Q(s)][Φ(t− s)]T ds (18)

Since

[Φ(t1 + t2)] = [Φ(t1)][Φ(t2)] (19)

therefore at time t + τ
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[P (t + τ)] =
∫ t

0

[Φ(t + τ − s)][Q(s)]

[Φ(t + τ − s)]T ds

+
∫ t+τ

t0

[Φ(t + τ − s)][Q(s)]

[Φ(t + τ − s)]T ds (20)

= [Φ(τ)][P (t)][Φ(τ)]T

+
∫ τ

0

[Φ(τ − s)][Q(t + s)]

[Φ(τ − s)]T ds

Similarly, the double-step solution (i.e. that at time
2t) can be obtained, being

[P (2t)] = [Φ(t)][P (t)][Φ(t)]T +
∫ t

0

[Φ(t− s)]

(21)
[Q(t + s)][Φ(t− s)]Tds

The formulas for some simple modulation functions
are given in the following. It is always assumed that
when t < 0, g(t) = 0. The response variances are
going to be computed at time τ, 2τ, 3τ, . . .

3.1. For suddenly applied white noise

Let g(t) = 1.0 (when t � 0, the RHS of Eq. (1) with
this modulation function corresponds to a suddenly ap-
plied white noise. Clearly, [G(t)] and [Q(t)] are both
constants. Denote [Q(t) = [Q0], and so the solution of
Eq. (18) at time tk = kτ would be

[
P (0)(tk)

]
=

∫ tk

0

[Φ(tk − s)][Q0]
(22)

[Φ(tk − s)]Tds

So that at time tk+1 = kτ + τ

[
P (0)(tK+1)

]
=

∫ tk+τ

0

[Φ(tk + τ − s)][Q0]

[Φ(tk + τ − s)]T ds

=
∫ tk

0

[Φ(tk + τ − s)][Q0]

[Φ(tk + τ − s)]T ds

+
∫ tk+τ

tk

[Φ(tk + τ − s)][Q0]

[Φ(tk + τ − s)]T ds

= [Φ(τ)]
∫ t

0

[Φ(tk − s)][Q0] (23)

[Φ(tk − s)]Tds[Φ(τ)]T

+
∫ τ

0

[Φ(τ − s)][Φ(τ − s)][Q0]

[Φ(τ − s)]Tds

= [Φ(τ)]
[
P (0)(tk)

]
[Φ(τ)]T

[
P (0)(τ)

]
Similarly, at time 2tk, the double step solution is[

P (0)(2tk)
]

= [Φ(tk)]
[
P (0)(tk)

]
[Φ(tk)]T

(24)
+

[
P (0)(tk)

]

3.2. For time dependent modulation function

Provided g(t) =
√
t (when t � 0), then [Q(t)] =

[Q0]t. At time tk, the variance matrix is [9]
[
P (1)(tk)

]
=

∫ tk

0

[Φ(tk − s)][Q0]s
(25)

[Φ(tk − s)]T ds

This matrix has the form at time tk + τ[
P (1)(tk+1)

]
=

∫ tk+τ

0

[Φ(tk − s)][Q0]s

[Φ(tk − s)]T ds

= [Φ(τ)]
[
P (1)(tk)

]
[Φ(τ)]T

+
∫ τ

0

[Φ(τ − s)][Q0] (26)

(tk + s)[Φ(τ − s)]T ds

= [Φ(τ)]
[
P (1)(tk)

]
[Φ(τ)]T

+tk

[
P (0)(τ)

]
+

[
P (1)(τ)

]
and the corresponding double-step form would be[

P (1)(2tk)
]

= [Φ(tk)]
[
P (1)(tk)

]
[Φ(tk)]T

(27)

+tk

[
P (0)(tk)

]
+

[
P (1)(tk)

]
The integration formats for other modulation func-

tions g(t), so long as they are not too complicated,
can be similarly derived. Note that the above formulas
are all exact. The key problem is how to ensure high
precision on computers.
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4. Precise integration of Lyapunov equation and
its implementation on computers

In order to achieve precise integration on computers,
the step size τ should be divided into 2N equal inter-
vals, N = 20 is usually adequate [10]. Take the values
of [Φ(η)] and [P (η)] at time η = τ/sN as the initial
values for the step-by-step integration. Because η is
extremely small, therefore taking only the first 3 or 4
terms in the related Taylor’s expansions would achieve
extremely high precision. This is the essence of the
precise integration approach. The first step in imple-
mentation is to execute the double step formulas for N
times starting from the initial time t = 0, to produce
their values at time τ . Secondly, the precise integration
is executed with the same step size τ to generate the
response variances at time 2τ , 3τ , . . . The implemen-
tation process for g(t) =

√
t is given here in detail.

For other modulation functions, the processes are quite
similar, and will be referred to the users.

1. Divide τ into 2N equal parts, let η = τ/2N ,
tt = η.

2. Use Taylor’s expansion to compute

[Φ(η)] ≈ [In] + [Ta],

[Ta] = [A]η + ([A]η)2 [[In] + ([A]η)/3 (28)

+([A]η)2/12
]
/2

[
P (0)(η)

]
≈ [Q0]η +

(
[A][Q0] + [Q0][A]T

)

η2/2 +
(
[A]2[Q0] + 2[A][Q0][A]T

+[Q0][A]2T
)
η3/6 +

(
[A]3[Q0](29)

+3[A]2[Q0][A]T + 3[A][Q0][A]2T

+[Q0][A]3T
) · η4/24

[
P (1)(η)

]
= [Q0]η2/2 +

(
[A][Q0] + [Q0][A]T

)

η3/6 +
(
[A]2[Q0] + 2[A][Q0] (30)

[A]T + [Q0][A]2T
)
η4/24

With N = 20, the errors due to neglecting the higher
order terms in the Taylor’s series are all of the order
of O(η5) = O(τ5/1030), which is within the double-
precision of available computers.

3. Repeat the following process forN times, to work
out the variance matrix [P ] at time τ :

      M

K, C

   M

K, C

      M

K, C

Fig. 1. Three DOF system.

[
P (1)

]
=

[
P (1)

]
+ ([In] + [Ta])

[
P (1)

]

([In] + [Ta])T + tt ·
[
P (0)

]
(31)[

P (0)
]

=
[
P (0)

]
+ ([In] + [Ta])

[
P (0)

]

([In] + [Ta])T

[Ta] = [Ta] ∗ 2 + [Ta] ∗ [Ta]; tt = 2 ∗ tt; (32)

To avoid possible numerical ill-conditioning, it is
advisable that the above equations are used only for the
first N/2 iterations; while for the last N/2 iterations,
the matrix [Φn] is used to replace ([In] + [Ta]), and
correspondingly the above equation [Ta] = [Ta] ∗ 2 +
[Ta] ∗ [Ta] should be replaced by [Φn] = [Φn] · [Φn].

Thus, matrices
[
P

(1)
1

] [
P

(0)
1

]
at time τ have been

produced. Denote
[
P

(1)
1

]
=

[
P (1)(τ)

]
;

(33)[
P

(0)
1

]
=

[
P (0)(τ)

]
; tt = τ

4. Compute the response variance matrix at time 2τ ,
3τ , . . ., by executing the following computations for
k = 1, 2 . . .[

P
(1)
k+1

]
= [Φk(τ)]

[
P

(1)
k

]
[Φk(τ)]T

(34)
+tt ∗ [P0(τ)] + [P1(τ)]

[
P

(0)
k+1

]
= [Φk(τ)]

[
P

(0)
k

]
[Φk(τ)]T

(35)
+ [P0(τ)]

The above process is for zero-initial value problems.
The linear superposition should be executed for the
contribution of non-zero initial conditions.
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Fig. 2. Displacement variances for g(t) = 1.0.

Fig. 3. Velocity variances for g(t) = 1.0.

5. Numerical examples

Example 1. The equation of motion of a single de-
gree of freedom system is

ÿ + 2ζω0ẏ + ω2
0y = g(t)x(t) (36)

Its RHS represents a suddenly applied filtered white
noise excitation, i.e. g(t) = 1.0 (when t � 0) and the
PSD of the stationary random process x(t) is

Sxx(ω) =
1 + 4 (ζgω/ωg)

2

(
1 − ω2/ω2

g

)2 + 4 (ζgω/ωg)
2
S0 (37)

For simplicity, dimensionless parameters are used
here. And it is assumed thatω=ωg = 1.0, ζ = ζg = 0.5
and S0 = 1.0. For this simple example, analytical
solutions are available [9], i.e. the variances of y and
ẏ are P11 = 1.5π = 4.71238898 . . . and P22 = π =
3.14159265 . . .
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Fig. 4. Displacement variances for g(t) =
√

t.

Table 1
Comparison of computational precision and time

Method used Time step σ2
y3

Error CPU(s)

Present paper 0.02 2.803 0.0% 16
HPD-S 0.1 2.803 0.0% 226
HPD-L 0.02 2.778 0.9% 434
Newmark 0.01 2.786 1.0% 657
Duhamel 0.05 2.887 4.5% 647

This example has also been computed in terms of the
proposed scheme. Note that when the response vari-
ances at time τ have been obtained (in the computation,
τ was arbitrarily taken as 0.0015707963); the double-
step formula, Eq. (24), was repeatedly used to compute
the response variances at times 2τ, 4τ, 8τ, . . . until
convergence is achieved. Through only 14 such passes,
i.e. at t = 16384τ , the responses reach the stable val-
ues P11 = 4.71238898 . . . and P22 = 3.14159265 . . .

Clearly, their first 9 effective digits are both identical
to those of the analytical solutions.

Example 2. Consider the 3 DOF system of Fig. 1 in
which M = 10.2, C = 85.0 and K = 14000.0. Its
mass, damping and stiffness matrices are, respectively

[M ] =


10.2 0 0

0 10.2 0
0 0 10.2


 ,

[C] =


 170 −85 0
−85 170 −85
0 −85 85


 , (38)

[K] =


 28000 −14000 0
−14000 28000 −14000

0 −14000 14000




Assume that the system is subjected to a suddenly
applied filtered white noise excitation, i.e. when t � 0,

{f(t)} = 10.2g(t)




1
1
1


x(t) (39)

where the PSD of x(t) has the form of Eq. (37) with
S0 = 142.75, ωg = 19.07 and ζg = 0.544.

The integration step size was τ = 0.02 and 200
steps were computed. The displacement and veloc-
ity variance curves of the three masses are shown
in Figs 2 and 3. Computation shows that when
t = 4.0, the variances of such displacements are
{0.5605, 1.807, 2.803}. This example was previously
computed [7] where the pseudo excitation method was
used; and when t = 4.0, the first four digits of these
variances are still {0.5605 1.807 2.803}, exactly the
same as those computed here. Some differences oc-
cur after their fourth digits because a limited frequency
band ω ∈ [−200, 200] was used previously [7], while
the variances based on the Lyapunov equation corre-
spond to the integration frequencybandω ∈ (−∞,∞).

Four different methods have been used [7] to com-
pute the present example. The precision and CPU time
used for all the five methods (including the present one)
are listed in Table 1. It can be seen that previously
the best way is the HPD-S method which used 226
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Fig. 5. Velocity variances for g(t) =
√

t.

s(CPU) to obtail the accurate result for σ2
y3

. However,
the method proposed in the present paper used only 16 s
to produce the same result. All computations were exe-
cuted on a 586 personal computer with main frequency
133 MHz.

For this example, if the modulation function is re-
placed by g(t) =

√
t (when t � 0), and repeat the above

computations, the corresponding results are shown in
Figs 4 and 5. Comparing Fig. 2 and Fig. 4 shows that
when t � 1, the responses due to g(t) =

√
t are ob-

viously smaller than those due to g(t) = 1.0. When
t � 2, however, inverse phenomenon takes place. That
is because the responses due to g(t) =

√
t increase

much faster after t > 1 and so they demonstrate much
stronger non-stationary property. The CPU used was
19 s, about 20% more than that for g(t) = 1.0.

Although only proportional damping matrix [C] was
used in the above, the process would be all the same if
any non-proportional damping matrix is used.

6. Conclusions

The solution of algebraic or differential Lyapunov
equations is a basic problem in the random vibration
field. This problem has long been considered as very
difficult to resolve. Based on the previously developed
precise integration method, i.e. its HPD-L and HPD-S
forms, the authors now further propose a new precise
integration scheme, which can solve such Lyapunov

equations accurately and very efficiently. The excita-
tions can be stationary or non-stationary (evolutionary),
white or colored random noise, therefore the proposed
method applies to a wide range of problems.
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