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A vibration system with slow-changing parameters is a typi-
cal nonlinear system. Such systems often occur in the work-
ing and controlled process of some intelligent structures when
vibration and deformation exist synchronously. In this paper,
a system with slow-changing stiffness, damping and mass is
analyzed in an intelligent structure. The relationship between
the amplitude and the frequency of the system is studied, and
its dynamic characteristic is also discussed. Finally, a piece-
wise linear method is developed on the basis of the asymp-
totic method. The simulation and the experiment show that
a suitable slow-changing stiffness can restrain the amplitude
of the system when the system passes through the resonant
region.

1. Introduction

Many physical and engineering problems have fea-
tures that may be qualitatively described by nonlinear
vibration. The natural frequencies of these systems
can be combined through nonlinear interactions so as
to produce internal resonance. Although much work
has been done on the subject, the natural frequencies
are assumed to be time independent with the resonant
conditions satisfied for all time. In fact, many vibration
problems in engineering are governed by the systems
with slow changing parameters. This system is a typ-
ical nonlinear system in which the masses, stiffness,

damping and exciting force vary slowly with respect
to time compared with an ordinary parameter system.
For example, in the process of a rocket launching, the
mass of the rocket decreases gradually as the fuel con-
tinuously burns. Thus the natural frequency and ampli-
tude vary slowly with time. In the running process of
a lifter, not only the length of the rope changes slowly
with time but also the mass and the stiffness of the vi-
bration system vary slowly. Another example is pro-
vided by cracks of rotors in machines, that increase
gradually with time development of the cracks relates
to the change of the rotor stiffness, thus the process of
the crack development has the feature slowly-changing
stiffness [1]. Additionally some intelligent structures
are parameters such as mass, stiffness, damping and ex-
citing force that change slowly with respect to time due
to vibration and large deformation. “Slow-changing”
means that the parameters change slowly with respect
to the time of a single vibration period, and the obvious
change can be seen only in following more periods.

In some intelligent structures, we also need to con-
trol their vibration, noise, deformation, or shape. In
these processes, the time delay and unstable working
condition must be considered in order to avoid the reso-
nance of the structures, to decrease the amplitude of the
vibration and to improve the speed of passing through
the resonant region. At the same time, the nonlinear
dynamic response requires attention to stability.

The nonlinear vibration problems can often be solved
by the perturbation theory,but the ordinary perturbation
theory cannot handle this problem because of mathe-
matical difficulties. Y.A. Mitropoliski [7] advanced an
asymptotic method of system with slow-changing pa-
rameters. Kevorkian [3] considered the model problem
of two oscillators with weak nonlinear coupling and
either constant or slowly varying frequencies to survey
perturbation solution techniques based on the idea of
multiple-variable expansion applied to problems that
exhibit resonance. He also summarized the perturba-
tion techniques and proposed the first order equations
that described various weakly non-linear vibration with
slow changing parameters [4]. For this class of sys-
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Fig. 1. (a). The response of the system with slow-changing exciting frequency. (b). The response of the system with slow-changing stiffness.

tems, an explicit approximate solution was derived,
based on the technique of freezing slowly changing
parameters [6]. In addition, the generalization of the
EKB method is used to solve Duffing oscillators with
slowly varying parameters [5]. Recently, Bosely [2]
used canonical averaging techniques to deal with these
systems in Hamiltonian standard forms to very high
order and studied their adiabatic invariance.

In this paper, the slow-changing process in the in-
telligent structures is analyzed and the piecewise lin-
ear method is developed on the basis of the asymptotic
method.

2. Dynamic characteristic

A system with slowly changing parameters is given
by a multi-degree-of-freedom system of the form:

[M ]{ẍ} + [C(τ)]{ẋ} + [K(τ)]{x}
(1)

= {f(τ, θ, x, ẋ)}
where [M ], [C] and [K] are the mass matrix, damping
matrix and stiffness matrix of the slow-changing struc-
ture, respectively; {x} is a displacement vector and the
over dots refer to time dervafca.

In order to improve the calculate accuracy, the slow-
changing process can be divided into some sections, i.e.
the process of piecewise linear variation, thus the slow-
changing mass mij(τ), damping cij(τ) and stiffness
kij(τ) can be written as follows:

mij(τ) =




m1(τ), 0 < τ � τ1
m2(τ), τ1 < τ � τ2

. . .
(2)

cij(τ) =




c1(τ), 0 < τ � τ1
c2(τ), τ1 < τ � τ2

. . .
(3)

kij(τ) =




k1(τ), 0 < τ � τ1
k2(τ), τ1 < τ � τ2

. . .
(4)

where τ = εt is the “slow time”; ε is a small constant
parameter.

For the case considered here, the masses of each
element are assummed to be constant and damping is
neglected, the equations of the system are transferred
into the principal coordinates or regular coordinates,
so that the analytical method is the same as the linear
one. The equation of the first principal coordinate can
be expressed as follow:

m1
d2q1
dt2

+ k1q1 = f1

(
τ, θ, q1,

dq1
dt

)
(5)

The first approximate solution of above equation ac-
cording to the asymptotic method [6] can be written as
follow:

q1 = a cos(sϕ + Ψ) + εu1(τ, θ, sϕ + Ψ)
(6)

+ε2u2(τ, θ, sϕ + Ψ) + · · ·
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where u1 and u2 are periodic functions of angles θ and
sϕ + Ψ with the period of 2π, while ϕ = θ/r; s and r
are reciprocal prime numbers.

The amplitude a and phase Ψ are the solutions of [6]

da

dt
= εA1(τ, a,Ψ) + ε2A2(τ, a,Ψ) + · · ·

dΨ
dt

= ω(τ) − s

r
ν(τ) + εB1(τ, a,Ψ) (7)

+ε2B2(τ, a,Ψ) + · · ·
where

A1 = − a

2ωm(τ)
d[m(τ)ω]

dτ

+
∑

σ

iσ(ωr − sν)D1 − 2ωD2

4ω2 − (ωr − sν)2σ2
eiσrΨ

B1 = −1
a

∑
σ

ω
iσ(ωr − sν)D2 + 2ωD1

4ω2 − (ωr − sν)2σ2
eiσrΨ

D1 =
1

2π2m(τ)
·
∫ 2π

0

∫ 2π

0

F0e
−iσrΨ

cos(sϕ + Ψ)dθd(sϕ + Ψ)

D2 =
1

2π2m(τ)
·
∫ 2π

0

∫ 2π

0

F0e
−iσrΨ

sin(sϕ + Ψ)dθd(sϕ + Ψ)

and the u1 can be gained as follows:

u1(τ, θ, a, sϕ + Ψ) =
∞∑

m, n = −∞
nr + (m±1)s �= 0

(8)
Fomn(τ, a)

m(τ)[ω2 − (mω + nν)2]
ei[nθ+m(sϕ+Ψ)]

where

Fomn(τ, a) =
1

4π2
·
∫ 2π

0

∫ 2π

0

F0(τ, a, θ, sϕ + Ψ)e−i[nθ+m(sϕ+Ψ)] (9)

dθd(sϕ + Ψ)

where

σ = ω − s

r
ν, ν =

dθ

dt
, ω =

√
k(τ)
m(τ)

.

Thus, the response of the system with slow-changing
parameters can be obtained.

Fig. 2. The simulation curves of the system with different changing
stiffness coefficients.

3. Dynamic response and the experiment

3.1. The affection of the slow-changing parameters

Suppose exciting frequency and stiffness change
slowly as follow linear regularities

ν = ν0 + βνt (10)

k(τ) = k0 + δk(τ) (11)

where βν is the slow rate of the exciting frequency.
The regularity of the amplitude, that varies slowly

with respect to the exciting frequency, can be obtained
by means of numerical calculation from Equation 7.

Figure 1(a) shows the amplitude characteristic of a
system with slow-changing exciting frequency while
Fig. 1(b) shows the system with slow changing stiff-
ness. In the process of the slow changing frequency,
the resonant curve has no obvious soft or hard feature,
but the unstable range is enlarged. From Fig. 1(b), it
can be seen that the slow-changing stiffness not only
affects the strength of the resonant curve but also affect
the size of the stable region. The slow-changing pa-
rameters cause the unstable resonant curve to deviate.
Therefore, the vibration characteristic of the system can
be improved by means of controlling slow-changing
parameters.

3.2. Simulation of the system

The motion equation of the system of inherent is (a
system in this case)

[M ]{ẍ} + [K(τ)]{x} = {E sin θ}
(12)

+{εf(τ, θ, x, ẋ)}
The equation in the principal coordinates can be writ-

ten as
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Fig. 3. The spectrums of the starting process with different changing stiffness coefficients.

d2q1
dt2

+ ω2
1(τ)q1 = ε[E1 sin θ − c1

dq1
dt

] (13)

where

ω2
1(τ) =

k1(τ)
m1

ν =
dθ

dt

E = eν2(τ) = εE1

Suppose the first approximate solution can be ex-
pressed as follows:

q = a cosϕ (14)

a and ϕ can be obtained as follow equations according
to the asymptotic method

da

dt
= − εE1

ω + ν
cosΨ − εa

2ω
dω

dτ
− εca

2
(15)

dϕ

dt
= ω − ν +

εE1

a(ω + ν)
sinϕ (16)

In order to solve the Eq. (15) and (16) simply, in this
paper, the changing of stiffness can be seen as a linear
process with piecewise form:

k(τ) =




D1 + kd1τ 0 < τ � τ1
D2 + kd2τ 0 < τ1 � τ2
D3 + kd3τ 0 < τ2 � τ3
· · ·

(17)

where kd is the coefficient of the slow changing stiff-
ness; D1, D2 and D3 are constants.

When the values of the parameters are chosen as: ε =
0.01, m = 12.4kg e = 0.04 m, k(0) = 3.2×106 N/m,
c1 = 0.2 s−1, ν = 628 s−1, the results can be obtained
by using the fourth order Rung-Kutta method. In Fig. 2,
curve 1, 2, 3, 4, 5, 6 are the simulation results when the
kd takes the value of 0, 5, 10, 15, 20, 25, respectively.
It is show that when kd = 10, the vibrating amplitude
is the smallest. These cuves illustrate that we can be
seen that we can restrain the vibration effectively in the
starting and breaking process of the rotor system by
choosing different slow changing stiffness coefficients.

3.3. Experimental results

Figure 3 is the experimental result of a rotor system
with slow changing stiffness support in an intelligent
structure. The experiment parameters are the same as
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the simulation ones. Figure 3(a) shows the spectrums
of the starting process with constant stiffness, while
Fig. 3(b)∼(f) show the spectrums of the starting pro-
cess with different slow changing stiffness coefficients.
As can be seen, when kd = 10, the control effect is
the best of all. This because the resonant amplitude
is the smallest in this case. It is also shown that the
vibration of rotor system can be controlled effectively
by means of choosing the suitable slow-changing co-
efficient. Such a scheme could be implemented by an
intelligent structure system.

4. Conclusions

The amplitude and natural frequency of a system
with slow-changing parameters vary slowly with re-
spect to time. The slow-changing parameters not only
affect the strength of the resonance, but also affect the
size of the stability region of the system. Furthermore,
the slow-changing stiffness can cause the deviation of
the unstable resonance curve. In order to solve the
problem simply and improve the accuracy of the solu-
tion, the slow-changing parameters can be regarded as
a nonlinear process with piecewise linear coefficients.

In addition, when the damping become small, the
amplitude characteristic of the system appears to fluc-
tuate, nevertheless, when the damping becomes large
the amplitude of the system decrease rapidly, and
the system is inclined to the stable case. This
simulation and numerical experiment shows that the

suitable slow-changing stiffness coefficient can restrain
the amplitude of the system when it passes through the
resonant region.
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