
179

On the steady state response of a cantilever
beam partially immersed in a fluid and
carrying an intermediate mass

A.A. Al-Qaisiaa, B.O. Al-Bedoorb and
M.N. Hamdanb

aMechanical Engineering Department, Jordan
University, Amman 11942, Jordan
bMechanical Engineering Department, KFUPM Box
841, Dhaharan 31261, Saudi Arabia

Received 13 August 1999

Revised 7 February 2000

This paper presents a study on the nonlinear steady state
response of a slender beam partially immersed in a fluid
and carrying an intermediate mass. The model is developed
based on the large deformation theory with the constraint
of inextensible beam, which is valid for most engineering
structures. The Lagrangian dynamics in conjunction with the
assumed mode method is utilized in deriving the non-linear
unimodal temporal equation of motion. The distributed and
concentrated sinusoidal loads are accounted for in a consistent
manner using the assumed mode method. The non-linear
equation of motion is, analytically, solved using the single
term harmonic balance (SHB) and the two terms harmonic
balance (2HB) methods. The stability of the system, under
various loading conditions, is investigated. The results are
presented, discussed and some conclusions on the partially
immersed beam nonlinear dynamics are extracted.

1. Introduction

Offshore structures such as piles, oil plat-forms sup-
ports, oil-loading terminals and towers surrounded by
water is usually modeled as a beam or a column when
studying its static or dynamic behavior. Since these
structures are relatively flexible due to their high aspect
ratio and because they are usually subjected to various
excitation loads such as wind loads and wave loads, the
prediction of their steady state responses, under var-
ious combination of parameters, is extremely needed
for design and analysis purposes.

Westergard [1] investigated the hydrodynamic pres-
sure on a rigid dam under earthquake excitation. His
investigation resulted in the finding that the magni-
tude of the hydrodynamic pressure is dependent on the
frequency of excitation. In the same direction, many
investigations on the hydrodynamic pressure on rigid
structures during earthquake excitation can be found
in the open literature. Among these investigations are
Chopra [2], Chwang [3], Lin [4] and others. When
the issue is the natural frequencies of immersed struc-
tures, Change and Liu [5] have referred to the findings
of some investigations that utilized the transfer matrix
approach for approximating the wet-beam deflection.
They have used the same approach for a tapered im-
mersed beam that is carrying a tip mass and supported
by torsional and linear springs. Their model adopted
the Euler-Bernoulli beam theory, with the assumption
of small deformations, and the Morsion’s condition to
account for the fluid effect. Recently, Xing et al. [6]
reported the results of their investigation on the natural
frequencies of beam water interaction system. They de-
veloped a coupled fluid-beam dynamic model in which
the fluid domain was modeled by a pressure differen-
tial equation and the structure was modeled using two-
segments Euler- Bernoulli beam differential equations,
with the small deformations assumption. The surface
continuity conditions in conjunction with the system
fluid and structure boundary conditions were utilized
in developing the coupled system solutions. Their cal-
culations showed that the effect of fluid can be taken as
an added inertia to the structure. Furthermore, they in-
vestigated the effects of free surface wave disturbance
and the effects of fluid compressibility.

In the previously cited investigations where the im-
mersed beam dynamics was the concern, only the nat-
ural frequencies of a structure that undergoes small de-
formation were calculated and no attention was given
to system nonlinearities that develop as a result of large
deformations due to beam slenderness. These nonlin-
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earities are expected to show up in offshore structures
due to their inherit flexibility and thus produces am-
plitude frequency dependence. Recently, Al-Bedoor et
al. [7] studied the non-linear natural frequencies of a
slender beam partially immersed in water. Their results
have documented a parametric study on the frequency-
amplitude nonlinear relation under different parame-
ters combinations. The immersed beam system, has
shown a hardening amplitude-frequency relation for
the first mode and a softening behavior for the second
and higher modes. Due to the facts that such offshore
structures are extremely flexible and they are usually
exposed to different distributed and concentrated loads
with harmonically varying characteristics, their steady
state response should be studied.

This work is devoted towards studying the nonlin-
ear steady state response of a slender beam partially
immersed in water and carrying an intermediate mass.
The model is developed based on the large deforma-
tion theory with the constraint of inextensible beam,
which is valid for most engineering structures. The
Largrangian dynamics in conjunction with the assumed
mode method is utilized in deriving the unimodal tem-
poral equation of motion. Moreover, the distributed
and concentrated sinusoidal loads are discretized using
the assumed mode method. The nonlinear equation of
motion are solved using the single term (SHB) and two
terms (2HB) harmonic balance method, The selection
of this method to analyze the nonlinear equation in the
present work is based on the analysis results presented
on a wider class of problems in reference [8] which
showed that the 2HB can capture the correct behavior
of the steady state periodic response of such a system.
In addition it was also whown that the 2HB, in com-
parison with the method multiple scale (MMS), does
not generate spurious solutions nor tends to distorte the
steady state response curves of such oscillator. Fur-
thermore, in the presnt work the first order stability are
presented and discussed.

2. Equation of motion

2.1. System description and assumptions

A schematic of the beam under study is shown in
Fig. 1. The beam is considered to be uniform of con-
stant length l, cross sectional area A, flexural rigidity
EI and density ρ. The beam is vertically mounted,
clamped at the base and partially immersed in a fluid
up to depth l1 and carries a lumped mass M at an ar-

bitrary intermediate position d along the beam span.
The fluid is assumed to be non-viscous, incompress-
ible with a constant density ρ′. The thickness of the
beam is assumed to be small compared to its length, so
the effect of rotary inertia and shear deformation can
be ignored. It is assumed also that the beam can only
undergo planar felxural vibrations and the amplitude of
this vibration may reach any large value, but remains
below the limiting value of the slope θ of the elastica
|θ| = 90◦. These assumptions are the same that used in
studying the planar nonlinear vibrations of a cantilever
beam systems [9,10].

2.2. Equation of motion

Upon using the coordinate system shown in Fig. 1
for the immersed beam, the elastic potential Energy Ve

of the beam due to bending is given by;

Ve =
EIl

2

∫ 1

0

R2(ζ)dζ (1)

where ζ = s/l is the dimensionless arc length andR(ζ)
is the of curvature of the beam neutral axis. The exact
of curvature R(ζ) takes the form [9],

R = λ3(x′y′′ − x′′y′) (2)

where λ = 1/l and the prime denotes differentiation
with respect to the non-dimensional arc length ζ. The
system potential energy must contain the gravitational
potential energy develops as a result of axial shortening
due to transverse deformations. An expression of the
axial shortening based on the assumption that no axial
deflection [11], is given by;

dδ ∼= −1
2

(
∂y

∂s

)2

(3)

The gravitational potential energy of the system,
upon using equation (3), can be written as;

Vg = −ρAlg

∫ 1

0

(∫ ζ

0

λ2 y
′2

2
dχ

)
dζ

(4)

−Mg

∫ η

0

λ2

2
y′2dζ

where M is the lumped mass located at the position
η = d/l. The resulted potential energy of the system
can obtained by adding equation (4) to (1), i.e.;
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Fig. 1. A schematic of the immersed cantilever beam under consideration.

V =
EI

2

∫ 1

0

(
λ3(x′y′′ − x′′y′)

)2
dζ

−ρAlg

∫ 1

0

(∫ ζ

0

λ2 y
′2

2
dχ

)
dζ (5)

−Mg

∫ η

0

λ2

2
y′2dζ

The potential energy of the system can be expressed
in terms of the beam transverse deflection variable y,
by noting that the variables x and y are related through
the subsidiary relation [9]

x′2 + y′2 = l2 (6)

Then by using equation (6) and its derivative to elim-
inate x′ and x′′ from equation (5), upon expanding the
term (1−λ2y′2)1/2 into a power series and noting that
(λ2y′2) < l, equation (5) becomes when the nonlinear
terms retained up to fourth order;

V =
EIλ3

2

∫ 1

0

[
y′′2 + (λy′y′′)2

]
dζ

−ρAlg

2

{∫ 1

0

∫ ζ

0

(λy′2)dχdζ (7)

−µ

∫ ι

0

(λy′2)dζ

}

where µ = M/ρAl.
Next the kinetic energy T of the system is given by;

T =
ρA

2
(1 + CmKm)

∫ l1

0

(ẋ2 + ẏ2)ds

+
ρA

2

∫ l

l1

(ẋ2 + ẏ2)ds (8)

+
1
2
M(ẋ2 + ẏ2)s=d

where Cm is the inertia coefficient of the additional
mass of the fluid and Km = ρ′/ρ as imposed by Chang
and Liu [5]. In order to express the system kinetic
energy expressions in terms of the beam transverse
deflection variable y, it is to be noted also, that the
beam under study is assumed to be inextensible, which
implies that the length of the neutral axis of the beam
remains constant during vibration. This imposes the
relation [12]

(1 + λx′)2 + (λy′)2 = 1 (9)

After mathematical manipulations and simplifica-
tions, i.e. expanding into power series, noting that
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(λ2y′2) < 1, and integrating from 0 to an arbitrary
value of ζ, equation (9) can be rewritten in the form;

x = −1
2

∫ ζ

0

(
λy′2 +

1
4
λ3y′4

)
dχ (10)

Differentiating with respect to time t, squaring and
retaining the non-linear terms up to fourth order leads
to

ẋ2 =
1
4

[(∫ ζ

0

λy′2dχ

)•]2

(11)

Upon substituting equation (11) into equation (8),
system kinetic energyT of the considered beam system
becomes;

T =
ρAl

2




∫ 1

0


ẏ2 +

1
4


[(∫ ζ

0

λy′2dχ

)•]2



dζ






+
ρAl

2
CmKm

(12)∫ ζ1

0


ẏ2 +

1
4

[(∫ ζ

0

λy′2dχ

)•]2

dζ

+
ρAl

2
µ


ẏ2 +

1
4

[(∫ ζ

0

λy′2dχ

)•]2


∣∣∣∣∣∣
ζ=η

where ζ1 = l1/l, using equations (7) and (12) one ob-
tains, after factoring out ρAl/2, the system Lagrangian
L, L = T − V , as

L =
ρAl

2




∫ 1

0


ẏ2 +

1
4


[(∫ ζ

0

λy′2dχ

)•]2



dζ






+CmKm

∫ ζ1

0


ẏ2 +

1
4

[(∫ ζ

0

λy′2dχ

)•]2

dζ

+µ


ẏ2 +

1
4

[(∫ ζ

0

λy′2dχ

)•]2


∣∣∣∣∣∣
ζ=η

(13)

−β2

∫ 1

0

(
y′′2 + (λy′y′′)2

)
dζ

+g0

[∫ 1

0

∫ ζ

0

(λy′2)dχdζ + µ

∫ 1

0

(λy′)dζ

]

where β2 = EIλ3/ρAl is the linear frequency param-
eter and g0 = ρAl3g/EI is the dimensionless gravity
parameter.

To obtain an approximate ordinary differential equa-
tion in time t, the assumed mode method is utilized,
such that,

y(ζ, t) = φ(ζ)q(t) (14)

where q(t) is an unknown time modulation of the
assumed mode shape and φ(ζ) is the normalized
mode shape function of the linear cantilever beam,
i.e.

∫ l

0
φ2(ζ)dζ = 1, which is assumed to remain self-

similar (i.e. independent of motion amplitude) during
the motion. In this work Galerkin’s method is used,
whereby φ(ζ) is the eigenfunction of the n− th mode
of the cantilever beam, given in many vibration text
books, as

φ(ζ) = ( coshpζ − cos pζ)
(15)

+
cosp + coshp
sin p + sinhp

(sin pζ − sinhpζ)

Where p is the n−th roots of the frequency equation
1 + cos p coshp = 0, the first four roots of equation
are, 1.875104, 4.694091, 7.854757 and 10.99554.

Substituting equation (14) into equation (13), one
obtains the discrete unimodal beam Lagrangian, which
can be expressed as

L =
ρAl

2
[α1q̇

2 − α2β
2q2

(16)
+α3λ

2q̇2q2 − α4β
2λ2q4]

whereαi(i = 1, 4) are dimensionless coeffeicints asso-
ciated with the selected mode shapes used to discretize
the system Lagrangian, and are defined as follows:

α1 =
∫ 1

0

φ2dζ + Cmkm

∫ ζ1

0

φ2dζ + µφ2 (17)

α2 =
∫ 1

0

φ′′2dζ − g0

∫ 1

0

(∫ ζ

0

φ′2dχ

)
dζ

(18)

−g0µ

∫ η

0

φ′2dζ

α3 =
∫ 1

0

(∫ ζ

0

φ′2dχ

)2

dζ

+Cmkm

∫ ζ1

0

(∫ ζ

0

φ′2dχ

)2

dζ (19)

+µ

[∫ ζ

0

φ′2dχ

]
ζ=η
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α4 =
∫ 1

0

φ′2φ′′2dζ (20)

To study the forced planar response of the beam
system, two types of periodic excitations loads are used
the first is a concentrated load F0 acting at an arbitrary
ζc along the span of the beam and the second is a
distributed load, given as F0(s) cos(Ωt). Both loads
are assumed to act only in the y direction, i.e. beam
transverse direction. Upon the application of the Euler-
Lagrange equation,

Q =
∂

∂t

(
∂L

∂q̇

)
− ∂L

∂q
(21)

where Q is the generalized force, which can be de-
termined from the principle of virtual work method,
δW = Q · δy, one obtains the discrete beam nonlinear
equation as follows,

α1q̈ + β2α2q + α3λ
2q2q̈ + α3λ

2qq̇2

(22)
+2β2λ2α4q

3 = α5
F0

ρAl
cos(Ωt)

where α5 = φ(ζc) for the concentrated load and
α5 =

∫ 1

ζ1
φ(χ)dχ for the distributed load. It is to noted

that some of the coefficients αi in equations (17–20),
increase sharply and attain relatively large values at the
higher modes of the beam. Therefore, for convenience,
equation (22) is scaled and converted to the dimension-
less form

ü + u + ε1u
2ü + ε1uu̇

2 + ε2u
3

(23)
= ε3F̄ cos(Ω̄τ)

Where

ε1 = α3/p
2α1, ε2 = 2α4/p

2α2,
(24)

ε3 = pα5/α2 and F̄ =
F0

ρAl2β2

dots are now derivatives with respect to the dimen-
sionless time τ = β(α2/α1)1/2t, Ω = Ω

β(α2/α1)1/2 ,

µ = pq/l is the dimensionless displacement amplitude
at the point of maximum deflection, and p2 = ωβ is
the dimensionless frequency, and ω is the frequency of
the assumed mode of the associated linear cantilever
beam.

For some stability analysis, structure and water ef-
fective damping is assumed to be viscous, with damp-
ing coefficient δ, which can be added to the equation
of motion to take the form;

ü + δu̇ + u + ε1u
2ü + ε1uu̇

2 + ε2u
3

(25)
= ε3F̄ cos(Ω̄τ)

Equation (25) belongs to the same class of nonlinear
oscillators studied by Al-Qaisia and Hamdan [8]. This
equation describes the nonlinear planar flexural motion
of the in-extensible beam shown in Fig. 1. In this equa-
tion the terms ε1u

2ü and ε1uu̇
2 are inertial nonlinear-

ities due to kinetic energy of axial motion and arise
in this equation as a result of using the in-extensibility
condition and its derivatives given in equations (10) and
(11). The first of these nonlinear terms has a softening
effect (i.e. leads to a decreasing natural frequency with
decreasing motion ampitude, or equivalently tends to
bend the frequency response curve to the left), while
the second nonlinear term has a hardeneing effect (i.e.
leads to an increasing natural frequency with increasing
vibration amplitude, or equivalently tends to bend the
frequency response curve to the right). The last of the
nonlinear term ε2u

3, in equation (25), is a hardening
static type due to potential energy stored in bending
and arise in this equation as a result of using nonlin-
ear curvature. Thus, the response of the above nonlin-
ear oscillator is controlled by two competing sofetning
and hardening nonlinearities which exhibits fundamne-
taly two different response characterestics [8,13]. As
to which of these nonlinearities dominate the response
will depend on the relative value of the coefficints ε1

and ε2 in this equation, which are functions of the sy-
setm parameters and the assumed mode shape. Based
on the results presented on [10,13], the steady state re-
sponse of this oscillator is expected to be of the soften-
ing type, when ε1/ε2 � 1.6, otherwise of the softening
type. Generally speaking, in the present problem and
for the first mode ε1/ε2 < 1.6, and for the second and
higher modes ε1/ε2 � 1.6 and increases as the mode
number increase. Thus one expects that the beam re-
sponse at the first mode to be of the hardening type
while for the second and higher modes this response is
of softening type. Approximations to the steady state
for the first mode and for the second mode are presented
and discussed in the next section.

3. Solutions of the nonlinear model

Approximate analytical solutions for the periodic
steady state response, having the same period as the ex-
citation, of the nonlinear, single mode temporal equa-
tion of motion (25) of the beam system described in
Section 2, are presented. These solutions are obtained
using single term harmonic balance method (SHB) and
two terms harmonic balance method (2HB).
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First Mode, P = 0.2,  δ = 0.02

Frequency, Ω
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Fig. 2. Steady state frequency response of equations (30, 38) for the case ε1 = 1.0449, ε2 = 0.9329, ε3c = 0.17974, ε3d = 0.100623,
δ = 0.02 and P = 0.2, corresponding to the first mode of the immersed cantilever beam in Fig. 1, for the cases; concentrated and distributed
loads. —— SHB-C, – - – 2HB-C, – – – SHB-D, – - - – 2HB-D.

A new time T = Ωτ is first introduced so that equa-
tion (25) becomes;

Ω̄2ü + Ω̄δu̇ + u + ε1Ω̄2u2ü + ε1Ω̄2uu̇2

(26)
+ε2u

3 = ε3F̄ cos(T + φ)

where dots are T derivative and the unknown phase φ
has been added to the excitation so that one can obtain
a fundamental harmonic response containing only one
trigonometric term.

3.1. Single term harmonic balance (SHB)

According to the SHB method, an approximate so-
lution of equation (26), takes the form;

u(T ) = A cosT (27)

where A is the steady state response amplitude. Sub-
stituting equation (27) into equation (26), neglecting
third harmonics which arise, and equating coefficients

of first harmonics, one obtains the following equations:(
3
4
ε2 − ε1

2
Ω̄2

)
A3 + (1 − Ω̄2)A

(28)
= P cosφ

Ω̄δA = P sinφ (29)

where P = ε3F , the steady state frequency response
is obtained by squaring and adding equations (28) and

(29) and solving for Ω
2

as a function of A; this yields

Ω̄2 = R1 ±
√

R2
1 −R2 (30)

where

R1 = −
(
δ2 − 3

2
ε2A

2 − 3
4
ε1ε2A

4 − 2
(31)

−ε1A
2

)/(
2 + 2ε1A

2 +
ε2
1A

4

2

)
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Second Mode, P = 0.2,  δ = 0.02
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Fig. 3. Same as Fig. 2, but for the case ε1 = 5.78828, ε2 = 1.25469, ε3c = 0.006133, ε3d = 0.0003978, δ = 0.02 and P = 0.2,
corresponding to the second mode.

R2 =
(

1 +
9
16

ε2
2A

4 +
3
2
ε2A

2 − P 2

A2

)/
(32)(

1 + ε1A
2 +

ε2
2A

4

4

)

Equation (30), yields two real solutions for Ω pro-
vided that the radical term is real and less than R1; a
single real solution is obtained when the radical term is
zero or greater the R1, and no real solution exists when
R2

1 − R2 < 0. The steady state frequency response
curves obtained using equation (30) are presented and
discussed in next section.

3.2. Two terms harmonic balance (2HB)

An improved harmonic balance solution can be ob-
tained by including higher harmonics in the assumed
solution in equation (27). It is to be noted that the prob-
lem of selecting the ‘right’ combination of the leading
harmonics form Fourier series approximation to the re-
sponse which will lead to the “correct” behavior of the

predicted response becomes a difficult task, especially
when the nonlinearities are not relatively small. In the
present work, the two terms harmonic balance (2HB)
solution is selected based on a previous finding by Al-
Qaisia and Hamdan [8]. It was shown that the 2HB,
can predict the correct behavior of the steady state fre-
quency response and an appreciable improvement of
the accuracy of the predicted responses can be obtained
even when the nonlinearity is relatively strong. In this
work, only one more term is added to equation (27),
whereby the two-terms approximation,having the same
period as the excitation, to the steady state solution
of the system in equation (26) with odd nonlinearities
takes the form;

u(T ) = A1 cosT + A3 cos 3T + B3 sin 3T (33)

Substituting equation (33) into equation (26) and us-
ing the same procedure followed previously in Sec-
tion 3.1 and neglecting the higher-order harmonics,
one obtains the following coupled nonlinear algebraic
equations for A1, A3, B3 and the phase φ;
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3
4
ε2A

3
1 +

3
4
ε2A

2
1A3 +

3
2
ε2A1A

2
3 +

3
2
ε2A1B

2
3

+A−AΩ
2 − ε1

2
Ω

2
A3 − 3

2
ε1Ω

2
A2

1A3 (34)

−5ε1Ω
2
A2

1A3 − 5ε1Ω
2
A2

1B3 = P cosφ

3
4
ε2A

2
1B3 − ΩδA1 − 3

2
ε1Ω

2
A2

1B3

(35)
= P sinφ

3
2
ε2A

2
1B3 +

3
4
ε2A

2
3B3 +

3
4
ε2B

3
3 + B3

−3A3δΩ − 9Ω
2
B3 − 5ε1Ω

2
A2

1B3 (36)

−9
2
ε1Ω

2
A2

3B3 − 9
2
ε1Ω

2
B3

3 = 0

ε2

4
A3

1 +
3
2
ε2A

3
1A3 +

3
4
ε2A

2
3 +

3
4
ε2A3B

2
3

+A3 + 3B3δΩ − 9A3Ω
2 − ε1

2
Ω

2
A3

1

(37)
−5ε1Ω

2
A3

1A3 − 9
2
ε1Ω2A2

3

−9
2
ε1Ω

2
A3B

2
3 = 0

These equations may be expressed in a more con-
venient form as follows. First, squaring and adding
equations (34) and (35) and solving for Ω, leads to

aΩ
4
+ bΩ

2
+ c = 0 (38)

Where:

a = 1 + A2
1ε1 + 3ε1A1A3 + 10ε1A

2
3

+10ε1B
2
3 +

1
4
ε1A

4
1 +

3
2
ε2
1A

3
1A3

+
29
4
ε2
1A

2
1A

2
3 + 15ε2

1A1A
2
3 + 25ε2

1A
4
3

+
29
4
ε2
1A

2
1B

2
3 + 15ε2

1A1A3B
2
3

+50ε2
1A

2
3B

2
3 + 25ε2

1B
4
3

b = δ2 − 2 − 3
2
ε2A

2
1 −

3
2
ε2A1A3 − 3ε2A

2
3

−3ε2B
2
3 − 3

4
ε1ε2A

4
1 −

45
4
ε1ε2A

2
1A

2
3

−12ε1ε2A
2
1A

2
3 − 15ε1ε2A

4
3

(39)
−45

4
ε1ε2A

2
1B

2
3 − 12ε1ε2A1A3B

2
3

−30ε1ε2A
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Next, equations (36) and (37) are solved implicitly
for A3 and B3, respectively:

B3 =
[
−3

4
ε2B3

(
A362 + B2

3

)
+

9
2
ε1Ω

2
B3

(
A2

3 + B2
3

)
3A3δΩ

]/[
3
2
ε2A

2
1 (40)

+
(
1 − 9Ω

2 − 5ε1Ω
2
A2

1

)]

A3 =
[
A3

1

(ε1

2
Ω

2 − ε2

4

)
− 3

4
ε2A3

(
A2

3 + B2
3

)

−3δΩB3 +
9
2
ε1Ω

2
A3

(
A2

3 + B2
3

)]/
(41)

[
1 +

3
2
ε2A

2
1 − 9Ω

2 − 5ε1Ω
2
A2

1

]
Equation (38) can be written using the form

Ω
2

= R3 ±
√

R2
3 −R4 (42)

whereR3 andR4, can be calculated from equation (39),
so that, R3 = (−b/2a) and R3 = (c/a). Equation (42)
has two real solutions provided that R2

3 > R4 and√
R2

3 −R4 < R3. A single real solution exists pro-
vided that R2

3 > R4 and
√

R2
3 −R4 > R3, and no real

solution exists when R2
3 < R4. Equations (40), (41)

and (42) were solved iteratively with an accuracy of
10−6 to define steady state solution. The steady state
frequency response curves obtained using these equa-
tions are, for convenience, presented and discussed in
Section (4).

3.3. Stability of the steady state response

The stability of the steady state response of the fun-
damental harmonic approximation (27), is examined by
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Fig. 4. Steady state frequency response and the instability boundary of the first mode, for the concentrated load case, i.e. ε1 = 1.0449,
ε2 = 0.9329, ε3c = 0.17974, δ = 0.02 and P = 0.2, —— SHB-C, - - - - Instability Boundary.

introducing a small perturbation ν(T ), i.e. by substi-
tutingu(T ) = A cos(T )+ν(T ), into the equation (26),
followed by use of the steady state conditions (28) and
(29). This leads to the following non-linear variational
equation;

Ω
2
(

1 + ε1
A2

2
+ ε1ν

2 + 2ε1νA cosT

+ε1
A2

2
cos 2T

)
ν̈ +

(
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2
Aν sinT

−ε1Ω
2
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)
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(
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3
2
ε2A

2

−ε1Ω
2 A2

2
+ ε1Ω

2
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3
2
ε2A

2 cos 2T (43)

−3
2
ε1A

2 cos 2T
)
ν + ε1Ω

2
A2 cosT ν̇2

+A cosT
(
3ε2 − ε1Ω

2
)
ν2 + ε2ν

3

=
A2

4

(
2ε1Ω

2 − ε2

)
cos 3T

The stability is governed by the linear version of
equation (43). In addition, the excitation term on the
right hand side of equation (43) is deleted, because it
has no influence on the stability of the response ν(T ).
The linear stability is governed by the standard form of
the damped Mathieu equation.

ν̈ + µ∗ν̇ + ν(α∗ − 2q∗ cos 2T ) = 0 (44)

Where:

α∗ =

(
1 + A2

2

(
3ε2 − ε1Ω

2
))

Ω
2 (

1 + ε1
A2

2

) ,

µ∗ =
δΩ

Ω
2 (

1 + ε1
A2

2

) ,
(45)

q∗ =
3
4A

2
(
ε1Ω

2 − ε2

)
Ω

2 (
1 + ε1

A2

2

)
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Fig. 5. Same as Fig. 4, but for the second mode.

The approximation of the stability boundaries of
equation (44) associated with the principal parametric
resonance is given by [14].

α∗(q∗) ∼= 1 ± (q∗2 − µ∗2)1/2 (46)

If A, Ω, δ, ε1, ε2 in equation (45) are such that the
point α∗(q∗) lies between the curves (46), the steady
state solution is unstable to small disturbances. Thus
the conditions for instability may be stated in term of
A, Ω, δ, ε1, ε2 as follows:[

1 +
A2

2

(
2ε2 − ε1Ω

2
)]

>


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−
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


[
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2
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1 + ε1
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)
+

((
3
4
A2

(
ε1Ω

2 − ε2

))2

(48)

− (
δΩ

)2)1/2



The results obtained for the stability of the steady
state response of the fundamental harmonic approxi-
mation (27), using the instability conditions (47) and
(48), are presented in the next section.

4. Results and discussion

The steady state frequency response of the non-
linear, single mode, temporal equation of motion (26)
of the immersed cantilever beam carrying an interme-
diate lumped mass “Fig. 1”, was calculated, for vari-
ous values of system parameters ε1, ε2, δ, ε3 and ex-
citation level P , analytically by using the single term
and two terms harmonic balance methods (SHB and
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Table 1
Values of the parameters in the temporal equation (25) of the beam system shown
in Fig. 1 with physical characteristics as described in Section (4), for the first four
linear eigenfunctions of the cantilever beam. Where the subscript c corresponding
to the concentrated load and the subscript d corresponding to the distributed load.

Wet Beam parameters, i.e. Km �= 0

Mode 1 2 3 4
p 1.875104 4.694091 7.854757 10.99554
α1 1.450759848 1.175825329 1.519188317 1.565111561
α2 12.32839815 485.3450482 3806.040655 14616.18988
α3 5.330115538 149.9670172 1027.160859 4123.530484
α4 20.22032802 6709.048744 132182.7099 964052.2595
α5c 1.181752528 0.634103731 −1.314851876 0.794780663
α5d 0.661575276 0.041130320 −1.799757997 0.000745108
ε1 1.044937644 5.788285351 10.95875813 21.79168359
ε2 0.932955265 1.254692582 1.125811592 1.091096770
ε3c 0.179740211 0.006132834 −0.002713539 0.000597900
ε3d 0.100623165 0.000397798 −0.000371426 5.60534E-07

Dry Beam parameters, i.e. Km = 0

ε1 1.050226273 6.581410281 12.21640933 23.84130772
ε2 0.932955265 1.254693582 1.125811592 1.091096770
ε3c 0.179740211 0.006132834 −0.002713539 0.000597900
ε3d 0.100623165 0.000397798 −0.000371426 5.60534E-07

 P=0.2 , δ = 0.02, ε1 = 0.85 and ε2 = 1.0
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Fig. 6. Same as Fig. 4, but for ε1 = 0.85 and ε2 = 1.0.

2HB), equations (30) and (38), respectively. As an ex-
ample, the beam if Fig. 1 is taken to be an Aluminum

beam, with density ρ = 2800 Kg/m3, modulus of elas-
ticity E = 70 GPa, cross sectional area 5 cm × 5 cm
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First Mode, P =1.0, 0.5  and  0.2,  δ = 0.02
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Fig. 7. Steady state frequency response of the first mode, for the concentrated load case obtained using SHB, i.e. ε1 = 1.0449, ε2 = 0.9329,
ε3c = 0.17974, δ = 0.02. —— P = 1.0, – - – P = 0.5, – – – P = 0.2.

and length l = 2 m. The fluid is taken to be water
ρ′ = 1000 Kg/m3, so that Km = 1/2.8. The added
inertia coefficient was taken as in [5], Cm = 1.0, and
the non-dimensional gravity parameter g0 is calculated
to be 0.015. To calculate the parameters ε1, ε2 and ε3 in
the single mode nonlinear temporal equation (25), for
selected values of the attached mass magnitude ratio µ
and relative position η, relative position of the applied
concentrated load ζc and relative depth ζ1 of the wet
section, the integrals in equation (17–20) defining the
coefficients were evaluated numerically by using the
symbolic manipulator program Derive. The selected
parameters values used in this work were µ = 0.25,
η = 0.75, ζc = 0.7, ζ1 = 0.5, δ = 0.02 and the excita-
tion level P is selected to be within the range 0.2–1.0.
As mentioned in the previous section P = ε3F , where
ε3 is equal to ε3c of the first mode of vibration. Con-
sequently, the value of F = F0/ρAl2β2, is calculated
for the distributed sinusoidal load and for the higher
modes. The calculated values of αi and the parameters
ε1, ε2 and ε3 for the two types of excitation loads and

the immersed and dry beam system are presented, for
convenience, in Table 1.

Figure 2 shows the steady state frequency response
of the immersed beam governed by equation (26) us-
ing single term harmonic balance (SHB) and two terms
harmonic balance (2HB) methods for the first mode and
for both cases, the concentrated load and the distributed
load. These results show that for the selected system pa-
rameters, the first mode steady state frequency response
exhibits, as expected, a hardening behavior, due to the
fact that (ε1/ε2

∼= 1.12) < 1.6 [8,13]. The steady state
frequency response of the second mode, was obtained
also using (SHB) and (2HB) methods for the two types
of excitation loads, is shown in Fig. 3. The steady state
frequency response in this case exhibits a softening be-
havior as the ratio of (ε1/ε2

∼= 4.6) > 1.6, i.e. the
response is dominated by the inertia nonlinearities.

These results show that the steady state response
curve bend to the right, i.e. exhibits a hardening be-
havior, but with an increasing slope as the driving
frequency is increased from a value below the lin-
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First Mode, P = 0.2,  δ = 0.02
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Fig. 8. Steady state frequency response of the wet and dry beam, for the case ε1 = 1.0449, ε2 = 0.9329, ε3c = 0.17974, ε3d = 0.100623,
δ = 0.02 and P = 0.2 corresponding to the first mode of the wet beam and the case ε1 = 1.050226, ε2 = 0.9329, ε3c = 0.17974,
ε3d = 0.100623, δ = 0.02 and P = 0.2 corresponding to the first mode of the dry beam system. – – – SHB-C Wet, —— SHB-C Dry, – – -
Backbone Curve Wet Beam. – - - – SHB-D Wet, – - – SHB-D Dry, - - - - Backbone Curve Dry Beam.

ear resonance frequency. At relatively moderate val-
ues of response amplitude the slope of the response
curve, for the lightly damped system, begins to increase
rapidly whereby the response curve exhibits a relatively
“sharp” resonance peak similar to that of a linear os-
cillator. This behavior of the systems with competing
inertia (softening) and static (hardening) nonlinearities
is due to the fact that as the response amplitude be-
comes relatively large (for the lightly damped system)
the backbone curve (i.e. the curve defining the free re-
sponse amplitude-frequency variation) becomes nearly
constant independent of the response amplitude, i.e.
similar to that of a linear oscillator [13].

The results in Fig. 2 also show that the SHB solution
in comparison with the 2HB solution may produce a
significant “shift” to the right in the steady state fre-
quency response curves. These results as well as the
more detailed ones in [8,13] indicate that the SHB so-
lution or equivalently the first order perturbation solu-

tions [8] may not display the correct frequency response
behavior of these types of oscillators.

It is to be noted also, from Fig. 3, that the steady
state frequency responses, of the second mode for the
distributed excitation load, obtained by SHB and 2HB
are of the same order and the amplitude is small in
comparison that of the concentrated excitation load.
This is due to the fact that the value of ε3c/ε3d

∼= 15.4,
which means that the excitation level is very small.

Figures 4 and 5 show the first order instability bound-
aries obtained using equations (47) and (48) and the
steady state frequency response curves obtained using
SHB for the first and second modes with are shown as
well as the frequency response curves obtained by us-
ing SHB for the first mode with p = 0.2 and δ = 0.02.
An important feature of these results is that for both the
hardening (first mode, Fig. 4) and the softening (second
mode, Fig. 5) these instability curve do not intersect
solution steady state response curves “SHB” at the ver-
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Second Mode, P = 0.2,  δ = 0.02
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Fig. 9. Same as Fig. 8, but for the case ε1 = 5.78828, ε2 = 1.25469, ε3c = 0.006133, δ = 0.02 and P = 0.2 corresponding to the
second mode of the wet beam with concentrated load and the case ε1 = 6.58141, ε2 = 1.25469, ε3c = 0.006133, δ = 0.02 and P = 0.2
corresponding to the second mode of the dry beam with concentrated load only.

tical tangency point as one may expect. As mentioned
in Subsection (3.3), the instability conditions (47) and
(48) is governed by A, Ω, δ, ε1, ε2 and to show the
effect of the ratio ε1/ε2 on the instability boundary,
decreasing the ratio of ε1/ε2 form 1.12 to 0.85 for the
same oscillator, one can see form Fig. 6 that the insta-
bility curve intersects the steady state response curve
at the point with vertical tangency. This result indicate
that, there is a need for a farther more in depth stabil-
ity analysis for better understanding of the instability
mechanism in this type of oscillators.

Figure 7 shows the steady state frequency responses
for the first mode obtained by using the SHB, for dif-
ferent excitation levels P = 0.2, 0.5 and 1.0. These
results show that, as the excitation increases, at higher
amplitudes, the system reveals a linear behavior as the
excitation level increases.

In Figs 8 and 9, the steady state frequency responses
using SHB are shown for the first and second mode,
respectively, for the wet beam case and the dry beam
case. As one, can expect, the effect of the additional

mass of fluid (Km = ρ′/ρ) is clear on the responses,
i.e., the nonlinear natural frequency is decreased for the
immersed beam compared to the dry beam, as one can
see from the backbone curves.

5. Conlusions

The present work studied the steady state frequency
response of a slender cantilever beam partially im-
mersed in water and carrying an intermediate mass.
The assumption of the inextensibility condition were
taken as a means to account the inertia nonlinearities,
which have a strong influence on the steady state fre-
quency response curves of the beam system. The non-
linear equation of motion was derived using Euler-
Lagrange method in conjunction with the assumed
mode method. The steady state responses under the
effect of sinusoidal distributed and concentrated loads
were obtained. The steady state frequency response
curves are presented for the first two modes, which are
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obtained using the method of harmonic balance, SHB
and 2HB. Appreciable improvement of the accuracy of
the predicted response was obtained using two terms
harmonic balance 2HB. It appear that the results pre-
sented in this work indicate that first order approximate
solutions and stability results may not adequately un-
cover the actual behavior of this type of oscillator even
when the system is relatively weakly nonlinear, i.e. ε1

and ε2 are small compare to unity. The steady state
responses show that the effect water “added inertia” is
to decrease the natural frequency as related to the vibra-
tion amplitude as shown by the left skewed backbone
curves.
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Appendix A: Coefficient of the nonlinear unimodal
temporal problem

α1 =
∫ 1

0

φ2dζ + Cmkm

∫ ζ1

0

φ2dζ + µφ2

α2 =
∫ 1

0

φ
′′2dζ − g0

∫ 1

0

(∫ ζ

0

φ
′2dχ

)
dζ

−g0µ

∫ η

0

φ
′2dχ

α3 =
∫ 1

0

(∫ ζ

0

φ
′2dχ

)2

dζ + Cmkm

∫ ζ1

0(∫ ζ

0

φ
′2dχ

)2

dζ + µ

[∫ ζ

0

φ
′2dχ

]
ζ=η

α4 =
∫ 1

0

φ
′2φ

′′2dζ

α5 = φ(ζc), for the concentrated load.

α5 =
∫ 1

ζ1

φ(χ)dχ, for the distributed load.

φ(ζ) = ( coshpζ − cos pζ)

+
cosp + coshp
sin p + sinhp

(sin pζ − sinhpζ)

ε1 = α3

/
p2α1, ε2 = 2α4

/
p2α2,

ε3 = pα5

/
p2α2

µ = M/ρAl

g0 = ρAl3g/EI

β2 = EIλ3/ρAl

Km = ρ′/ρ

τ = β(α2/α1)1/2t

Ω =
Ω

β(α2/α1)1/2
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