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This paper presents a procedure for modal reanalysis of struc-
tures with topological modifications. The procedure is based
on the results of initial modal analysis of the original struc-
ture. It is necessary for topological modifications with the
increase of joints and the number of degrees of freedom. The
research results show that the proposed method is effective
and easy to implement on a computer.
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1. Introduction

The modifications of structures and the resolution
of general eigenproblems are the main problems dealt
with in engineering fields to achieve an optimal design.
The iterative vibration analysis can be expensive for
large and complex structures. Therefore it is necessary
to seek a faster computation method for reanalysis. Var-
ious modifications in the structural design are classi-
fied into three types according to the modified patterns:
parameter, shape, and topology. Parameter modifica-
tions involve modifying structural parameters, such as
cross-sectional area, mass and material elastic rigidity,
etc., with boundary shapes and topology unchanged,
which are referred to in [1,2,4,6,10]. The methods for
parameter modifications can not be applied to the case
of the topological modifications. Shape modifications
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involving boundary modifications with the topology
of structures fixed are presented in [5,11]. Topologi-
cal modifications concerning changes of topology of a
structure (number and orientation of elements) are more
difficult because they involve the changes in the struc-
tural model. More efforts are still required to imple-
ment topological modifications in practical structural
designs [8].

Possible modifications in topological optimizations
can be classified as follows [7]:

1) Deletion of members and joints, where both the
design variable vector and the number of DOF
are reduced. When only members are deleted,
the values of some design variables become zero
and can be eliminated from the set of variables.

2) Addition of members and joints, where both the
design variables and the number of DOF are in-
creased. When members are added without ad-
dition of joints, the vector of design variables is
expanded, but the number of DOF is unchanged.

3) Modification in geometry, where there is no
change in the number of variables and DOF. In
this case, only the numerical values of variables
are modified.

In previous studies, significant progress has been
achieved. The static reanalysis procedures for all the
above-mentioned cases of layout modifications are de-
veloped in [3,9]. However, many methods for modal re-
analysis of parameter modifications of structures, such
as Ritz analysis and matrix perturbation, can not be
directly used to deal with the modal analysis for lay-
out modifications in which the number of DOF will be
increased (case 2).

This study presents a new, simple and convenient
procedure for introducing expanded basis vectors. By
this approach, the stiffness matrix and mass matrix of
modified structures are formed directly with the subma-
trices of augmented stiffness matrix and mass matrix.
The procedure is suitable for the changes in a general
finite element system. Once expanded, basis vectors
are formed, and the one-step subspace iteration is used
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to obtain an approximate result of the modified struc-
ture. The calculations are based on results of initial
modal analysis. Each step of the subsequent reanal-
ysis involves the solution of a small-order system of
equations. Therefore, the computational efforts can be
significantly reduced.

2. Technical background

The most important of general techniques for find-
ing approximations to the lowest eigenvalues and cor-
responding eigenvectors of the problem KΦ = λMΦ
is the Rayleigh–Ritz analysis. Various methods can
be considered as Ritz analysis. The techniques differ
only in the choice of Ritz basis vectors assumed in the
analysis.

Since there are only minor modifications in the dy-
namic optimization, the eigensystem of the previous
structure can be a good approximation to the eigensys-
tem of the new structure. The eigenvectors Φ0 of initial
structure can be used as Ritz basis vectors, where Φ0 is
an n × q matrix, i.e., Φ0 = [φ01, · · · , φ0q]. The anal-
ysis can be continued by evaluating the projections of
K and M onto the subspace Vq spanned by the vectors
φ0i, i = 1, · · · , q; i.e., where

K̄ = ΦT
0 KΦ0 (1)

and

M̄ = ΦT
0 MΦ0 (2)

where q � n.
Next step is to solve the eigenproblem,

K̄X = M̄Xρ (3)

where ρ is a diagonal matrix listing the eigenvalue
approximations ρi, ρ = diag(ρi), while X is a ma-
trix storing the M̄ -orthonormal eigenvectors xi, · · ·xq ,
the approximations to the eigenvectors of the problem,
KΦ = λMΦ, are as follows:

Φ = Φ0X (4)

After the Ritz analysis, the original large-order system
can be reduced to a small-order one.

3. Problem formulation

Various changes of the structure will result in
changes of the stiffness matrix K and the mass ma-
trix M . The generalized eigenproblem of the modified

structure is

KmΦ = (K0 + ∆K)Φ = λMmΦ
(5)

= λ(M0 + ∆M)Φ

where K0 and M0 are the stiffness matrix and mass
matrix of the initial structure;Km and Mm are modified
stiffness matrix and mass matrix; ∆K and ∆M are
the changes in the stiffness matrix and mass matrix
respectively.

In the structural optimization, topological modifica-
tion involving changes in members and joints is com-
monly divided into three cases with the change of DOF:

1) The common case, where the number of DOF is
unchanged;

2) The case, where the number of DOF is decreased;
3) The most challenging case, where the number of

DOF is increased.

Most of the reanalysis methods developed in the past
are suitable for cases 1) and 2). The reanalysis method
developed in this study is to include problems where
the number of DOF is increased.

3.1. Case I (number of DOF is unchanged)

Assuming the change in the design variables is de-
noted by ∆X , the corresponding design variables of
the modified design can be expressed as

X = X0 + ∆X (6)

and the corresponding stiffness matrix and mass matrix
are given by

K = K0 + ∆K, M = M0 + ∆M (7)

where ∆K and ∆M are the changes of K0 and M0

due to the change of ∆X . The elements of the stiff-
ness matrix and mass matrix are not restricted to cer-
tain forms and can be general functions of the design
variables, that is, the design variables X can be the
function of coordinates of joints, the structural shape,
cross sections of members, etc.

3.2. Case II (number of DOF is decreased)

Consider the case where some joints and some mem-
bers connecting these joints to remaining joints are
eliminated from the initial structure so that the number
of DOF can be decreased. Assuming that the elimi-
nated DOF are the last numbers of DOF, then ∆K and
∆M in Eq. (5) can be divided into submatrices as
follows:
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∆K =
[
∆Krr ∆Krd

∆Kdr ∆Kdd

]
,

(8)

∆M =
[
∆Mrr ∆Mrd

∆Mdr ∆Mdd

]

where ∆Kdd and ∆Mdd are the submatrices of stiffness
and mass coefficients of the eliminated joints, in which
subscript d denotes the number of the deleted DOF, and
r the number of DOF of the remained structure.

3.3. Case III (number of DOF is increased)

Consider the case where new joints and some mem-
bers connecting these joints to existing joints are added
to the initial structure so that the number of DOF can
be increased.

The ∆K and ∆M in Eq. (5) can be partitioned into

∆K =
[
∆Knn ∆Knm

∆Kmn ∆Kmm

]
,

(9)

∆M =
[
∆Mnn ∆Mnm

∆Mmn ∆Mmm

]

where ∆Kmm and ∆Mmm are the submatrices of stiff-
ness and mass coefficients of the new added joints, in
which subscript n denotes the number of DOF of the
initial structure, and m the augment of DOF of the
modified structure, thus obtaining

Km =
[
K0 0
0 0

]
+

[
∆Knn ∆Knm

∆Kmn ∆Kmm

]
(10)

and

Mm =
[
M0 0
0 0

]
+

[
∆Mnn ∆Mnm

∆Mmn ∆Mmm

]
(11)

For the lumped mass matrix, ∆Mnm and ∆Mmn are
equal to zero.

The problem under consideration can be formulated
as follows:

Given K0, M0 and eigenpairs (Φ0, λ0), the goal is
to find efficient and high-quality approximations of the
modified eigenpairs (φi, λi) that result from various
changes in the structure without resolving Eq. (5) of
the structure modified. To this end, a new approach for
the modal analysis of structural layout modifications
is presented in the next section. For completeness of
presentation, the approach for the first two cases is first
described and then the method for the case where the
number of DOF is increased is developed.

4. Reanalysis method

4.1. Case I and II (number of DOF is not increased)

The Rayleigh–Ritz analysis in different forms has
been used to deal with problems with unchanged num-
bers of design variables and DOF. As demonstrated in
Eqs. (1) to (4), the eigenvectors of initial structure can
be used as the Ritz basis vectors. In the case where the
number of DOF is decreased, the corresponding DOF
in the eigenvectors can be eliminated to get the Ritz
basis vectors.

4.2. Case III (number of DOF is increased)

4.2.1. Expanding the basis vectors
If some joints are added to the structure, thus in-

creasing the number of DOF and expanding the size of
stiffness matrix and mass matrix, it is necessary first
to expand the basis vectors, so that the new DOF are
included in the new analysis model.

Given initial design and the addition of new joints
and members, the changes in the stiffness matrix and
mass matrix can be partitioned as in Eq. (9). The
vibration eigenproblem of the modified structure is[

K0 + ∆Knn ∆Knm

∆Kmn ∆Kmm

]
Φm

(12)

=
[
M0 + ∆Mnn ∆Mnm

∆Mmn ∆Mmm

]
ΦmΛm

It is unnecessary to reassemble the whole stiffness
matrix and mass matrix of the modified structure,which
only needs to assemble the changes of stiffness matrix
and mass matrix including the added new nodes and
members.

The exact results can be obtained from Eq. (12).
However, with the results from the initail analysis the
approximate solutions can be obtained without resolv-
ing Eq. (12). Assuming that the approximate expres-
sions for Φm and Λm are as follows:

Φm =
{

Φ0

∆Φ

}
(13)

and

Λm = Λ0 (14)

Substituting Eqs. (13) and (14) into (12) and expanding
the second equation of Eq. (12), the following equation
can be obtained:

(∆Kmn − λ0i∆Mmn)φ0i
(15)

= −(∆Kmm − λ0i∆Mmm)∆φi
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From the above equation,

∆φi =−(∆Kmm − λ0i∆Mmm)−1

(16)
(∆Kmn − λ0i∆Mmn)φ0i

can be obtained.
In general, the m � n, so that the computational

effort to solve Eq. (16) is little.

4.3. Further analysis

Once the basis vectors Φm have been calculated,
the following procedure can be used to evaluate the
eigenvalues and eigenvectors (φi, λi) for the modified
structure:

1) To form modified matrices Km, Mm by Eqs.
(10) and (11), and to introduce starting vectors Φm

expressed by Eq. (13)
2) To factorize the stiffness matrix Km

Km = LDLT (17)

3) To solve the static problems to obtain the improved
Ritz basis vectors

KmX̄ = MmΦm (18)

4) To perform the Rayleigh-Ritz analysis

KR = X̄T KmX̄ (19)

MR = X̄T MmX̄ (20)

KRQR = MRQRΩ2
R (21)

5) To find approximate eigenvalues and eigenvectors
by

Λ = Ω2
R (22)

and

Φ + X̄QR (23)

As shown later in numerical examples, satisfactory ap-
proximation results of the modified structure can not be
got only with Φm directly as Ritz basis vectors. If dur-
ing the first iteration of the subspace good approxima-
tion results of the modified structure can be obtained,
it is unnecessary to perform more iterations.

5. Numerical examples

In order to illustrate the validity of the proposed
method, two numerical examples are given.

5.1. Plate structure

Consider the initial design of a rectangle plate struc-
ture drawn with thin lines, shown in Fig. 1, with its
parameters: the thickness of plate is t = 0.01 m, the
length and width of plate are 1 m and 0.3 m respec-
tively. Fixed on both sides, the plate is discretisized
into 44 nodes and 30 square plate members.

From the initial modal analysis, the first six eigen-
values Λ0 are as follows:

λ01 = 0.118 × 106, λ02 = 0.556 × 106

λ03 = 0.899 × 106, λ04 = 0.261 × 107

λ05 = 0.351 × 107, λ06 = 0.724 × 107

Consider topological modifications of the added new
nodes and members with thick lines, shown in Fig. 1.
The changes of the stiffness matrix ∆K and mass ma-
trix ∆M are formed by a finite element program.

For the purpose of comparison, the modal analysis
of the modified structure are computed through the fol-
lowing four methods: 1) exact method (by subspace
iteration), 2) direct method (by the initial eigenvectors
Φ0 in Eq. (18) as the starting vectors directly), 3) Ritz
method (by the expand basis vectors Φm as Ritz basis
to perform the Ritz analysis), 4) the present method.
The first three eigenvalues resulting from these four
methods are shown in Table 1.

As seen in Table 1, the Ritz method results in wrong
eigenvalues. Because the eigenvectors of the modified
structure are similar to those of the initial structure,
both the direct method and present method can give
good approximate eigenvalues and eigenvectors.

5.2. Truss structure

Consider a truss structure (shown in Fig. 2) with its
parameters: elasticity modulus = 2.1 × 1011 Pa, cross
section area of each rod: 1 × 10−3 m2, mass density:
7.8× 103 kg/m3. The length between node 2 and node
16 is 2.5 m; between node 2 and node 3 is 0.5 m; and
the height of the structure is 0.4 m. The truss structure
is fixed at node 1, 3, 22 and 23.

From the initial modal analysis, the first six initial
eigenvalues Λ0 are:

λ01 = 0.580 × 107, λ02 = 0.120 × 108

λ03 = 0.189 × 108, λ04 = 0.375 × 108

λ05 = 0.469 × 108, λ06 = 0.791 × 108

The topological modifications with the added new 12
nodes 18 to 29 and 48 members are shown in Fig. 3. The
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Fig. 1. Topological modifications of plate structure.

Table 1
The eigenvalues of modified structure

Modes Exact Direct error Ritz error Present error

1 0.1509E6 0.1557E6 3.16% 0.1378E7 813.1% 0.1557E6 3.14%
2 0.7326E6 0.7591E6 3.62% 0.7049E7 862.1% 0.7575E6 3.38%
3 0.1036E7 0.1111E7 7.25% 0.1092E8 954.2% 0.1111E7 7.21%

Fig. 2. Initial design of truss structure.

Table 2
The frequencies of modified structure (Hz)

Modes Exact Direct error Ritz error Present error

1 160.289 170.334 6.27% 402.743 151.7% 160.428 0.09%
2 237.456 296.462 24.85% 545.219 129.6% 237.678 0.09%
3 294.561 396.457 34.59% 584.554 98.45% 296.066 0.51%

changes of the stiffness matrix ∆K and mass matrix
∆M are formed by the finite element program. The
Φm is given by Eqs. (13) and (16).

The initial eigenvectors Φ0 can not be used directly
as the starting vectors in Eq. (18), because they do
not include the information of the new added nodes.
If the eigenvectors of the modified structure have dis-
tinct difference from the eigenvectors of the initial
structure, they may result in wrong eigenvectors. For
the purpose of comparison, the modal analysis of the

modified structure are computed through the follow-
ing four methods: 1) exact method, 2) direct method,
3) Ritz method and 4) the present method. The first
three eigenvalues resulting from these four methods are
shown in Table 2.

As seen in Table 2, the present method can obtain
good approximate eigenvalues while the Ritz method
results in wrong results. The corresponding first two
mode shape vectors are shown in Figs 4 and 5, respec-
tively. The present method can also give good approx-
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Fig. 3. Topological modifications of truss structure.

(a) Exact (b) Direct (c) Present

Fig. 4. First mode shape vectors of modified structure.

(a) Exact (b) Direct (c) Present

Fig. 5. Second mode shape vectors of modified structure.

imate mode shape vectors, and the second mode ob-
tained by the direct method is not only inaccurate, but
also misleading.

6. Concluding remarks

In this paper, a new modal reanalysis method for
topological modifications of general finite element sys-

tems has been presented. This presentation focuses
on the most challenging case of addition of joints, in
which the structural model and the number of DOF are
changed. A simple reanalysis are first carried out to
expand the basis vectors, so that the new DOF are in-
cluded in the analysis model. The method does not re-
quire to reassemble the whole stiffness matrix and mass
matrix of the modified structure, which only needs to
assemble the changes of stiffness matrix and mass ma-
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trix for the added new nodes and members. Because
the method deals with the stiffness matrix and mass ma-
trix directly, it can be applied to general finite element
systems.

With the numerical examples, the efficient and high-
quality approximate solutions in topological modifica-
tions can be obtained by the present method.
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