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This paper deals with the formulation of a frequency do-
main modal analysis technique that is applicable to weakly
non-linear multi-degree of freedom (MDOF) systems with
well-separated modes. The concept of linear modal super-
position is combined with the normal non-linear mode tech-
nique, an approach that allows the formulation of a system
identification procedure in terms of variable modal parame-
ters. The numerical study was focused on a 4-DOF system
with cubic stiffness non-linearity, and the modal parameters
were obtained as functions of the modal amplitude. It was
shown that the methodology was well suited to the study of
practical cases for which the underlying linear model may
be approximate. Similarly, the technique was found to be
robust in the presence of measurement noise, though some
adverse effects were observed for high noise levels. Once
the variable modal parameters were extracted at some given
force level, the non-linear responses were predicted at other
force levels via synthesis of normal non-linear modes. The
same responses were also obtained using a harmonic balance
approach and very good agreement was obtained between the
two sets of results. The procedure is well suited to the study
of industrial cases because of its compatibility with existing
finite element methods and linear modal analysis techniques.

1. Introduction

Currently, three representations of the same model,
namely response, spatial and modal descriptions, are
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routinely used for the prediction of the dynamic be-
haviour of a given structure. For linear systems, these
representations are interchangeable and the choice of
a particular description is based on the objectives of
the analysis or the required form of the output. Spatial
models are usually built for modelling purposes only
and they have no direct established use in experimental
modal analysis. Measured and predicted results can be
compared using response models, though modal mod-
els are usually a more popular choice. Their widespread
use stems from their compactness: a system with a large
number of DOFs can be represented by a small number
of modal parameters. In addition, they provide direct
information about the actual mode shapes which are of-
ten of primary interest for minimising dynamic stress-
es. Consequently, most experimental parameter esti-
mation techniques have been developed around modal
models using the basic assumption of linearity. When
dealing with non-linear systems, linear modal analysis
techniques can be shown to introduce errors, usually
by yielding complex mode shapes as if the system was
non-proportionally damped [5]. Indeed, for situations
involving large-amplitude vibration or significant non-
linearities, linear modal analysis tools are generally
considered to be inadequate for obtaining reliable and
consistent results. In such instances, the modal param-
eters may vary significantly with structural response, a
feature that violates the principle of linearity.

Although several approaches have been proposed
to provide qualitative and quantitative assessments of
structural non-linearities, these are often limited to spe-
cific types and there are no techniques that can routinely
deal with the general case [4,13]. Of particular interest
here are the non-linear system identification tools and
these can be classified as physical, non-physical, para-
metric and non-parametric. While a physical param-
eter based approach has the advantage of direct inter-
pretability, it usually requires an explicit spatial model
which can be very large for representative engineering
systems. Such models are best suited to small systems,
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or perhaps to those with localised non-linearities. For
large structures, modal models are often favoured over
their spatial counterparts because of their computation-
al efficiency in reducing bulky frequency domain data
into a much smaller, albeit often truncated, set of eigen
parameters. Thus, the idea of extending the use of lin-
ear modal models to the vibration analysis of non-linear
systems is very attractive and such an approach will be
pursued here.

The concept of a non-linear mode was first stud-
ied by [7] who used a geometrical method. His work
initiated several studies which showed that the non-
linear normal mode concept could be used to study the
behaviour of non-linear systems [10,14]. Using the
same approach, [9] proposed a non-linear modal iden-
tification procedure which uses a non-physical, non-
parametric formulation. Their work is compatible with
existing linear techniques and makes use of the sin-
gle non-linear resonant mode theory of [11,12] and of
equivalent linearisation approach of [2]. The analy-
sis is based on a first-order frequency domain approx-
imation and hence it requires much less computational
effort than equivalent time domain methods. A sig-
nificant drawback is the requirement to know the vi-
bration characteristics of the underlying linear system
prior to the analysis. However, in most cases, the use
of low excitation levels may allow to obtain linearised
FRFs for the non-linear system under study. A stan-
dard modal analysis of these low-excitation FRFs will
then yield the underlying linear system. Such a route
will also be explored here by extending the work of [9]
to large MDOF systems representing real engineering
structures, and by including both inherent structural
damping and non-linear friction damping. It will also
be shown that approximate underlying linear models
will be sufficient for most engineering applications.

The main purpose of Part I is to describe a non-
linear modal analysis methodology that is applicable to
weakly non-linear MDOF systems with well-separated
modes and to validate the formulation using a 4-DOF
numerical test case. The effects of wrongly-estimated
linear underlying model and robustness in the presence
of measurement noise will also be discussed in some
detail. The experimental verification and the applica-
tion to a representative engineering case will be consid-
ered in Part II. One of the advantages of the method is
the ability to determine the response of the non-linear
system at any force level once its variable modal pa-
rameters have been identified at some reference force
level. Such a feature will allow to undertake more ad-
vanced applications such as the coupling of non-linear
subcomponents.

2. Background Theory

The motion of an n-DOF non-linear system, sub-
jected to a harmonic external force {F} with excitation
frequency Ω, can be described by:

[M ]{Ẍ} + [C]{Ẋ} + [K]{X} + {fnl(X, Ẋ)}
(1)= {F}cosΩt

where [M], [C] and [K] are the mass, stiffness and
damping matrices of the linear system, {X} is the phys-
ical response vector and {fnl(x, ẋ)} is a non-linear
restoring force vector which is a function of displace-
ment and velocity. Linear modal analysis techniques
assume that the non-linear term in (2) is small enough
to be ignored so that the matrix equation can be decou-
pled using the eigenvectors of [M ] and [K] matrices.
However, such an approach is no longer applicable if
the non-linear term, {fnl}, is significant.

2.1. Non-linear modal identification method

While early single non-linear mode approaches ac-
counted for natural frequency variations with the ampli-
tude of the response, they ignored the amplitude depen-
dence of the mode shapes. [11,12] argued that the use
of a linear normal mode to describe the resonant con-
dition of non-linear systems could lead to considerable
discrepancies and suggested the use of the non-linear
normal mode concept, introduced earlier by [7]. [9]
assumed amplitude-dependent mode shapes and postu-
lated that the combined effect of all non-linear contri-
butions will only affect a selected single resonance of
interest only, while the remaining modes will behave in
a linear fashion. For example, if the excitation frequen-
cy, Ω, is close to the jth resonance, ωj , the relationship
between modal co-ordinates and physical co-ordinates
can be expressed as:

{X} = [{φ}1 · · · {φ̄}j · · · {φ}n]{Q} (2)

where {Q} is the modal response vector. The j th mode
shape column, {φ̄}j , is a function of the vibration am-
plitude, as indicated by the bar subscript. The other
columns remain the same as the linear ones. Assuming
that the non-linear mode shape, {φ̄}j is a linear combi-
nation of the linear resonant mode and its neighbours,
one can write:

{φ̄}j = bjj{φ}j + b1j(Qj){φ}1 + b2j(Qj){φ}2

+ · · ·+ bnj(Qj){φ}n (3)

=
n∑

k=1

bkj(Qj){φ}k
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where parameters bkj are the non-linear mode partic-
ipation factors. These parameters are assumed to be
a function of the resonant modal amplitude, Q j . By
definition, the diagonal terms, bjj , are unity, while the
off-diagonal terms, bkj , are allowed to vary with the
resonant modal amplitude, Qj , and hence represent the
coupled nature of the non-linear modal equations. In
this way, it is possible to express all non-resonant modal
displacement effects using a single resonant modal dis-
placement term, a feature that will allow some decou-
pling of the full equations of motion. The coefficient
bkj can also be written in the following form:

bkj(Qj) = {φ}T
k [M ]{φ̄}j

(4)
∀Qj : bjj(Qj) = 1

Clearly, the bkj matrix will be unity if the system
is linear. Using (4), which defines the j th non-linear
mode shape, (2) can be rewritten to yield the uncoupled
equation of motion for the j th non-linear mode. Pre
and post multiplying the mass and stiffness matrices of
(2) with the non-linear j th mode shape, the modal mass
and stiffness matrices can be obtained as:

[m̄] = [φ̄]T [M ][φ̄]

=




. . . b1j

I b2j

. . .
...

b1j b2j · · ·
∑n

k=1 b2
kj · · · · · · bnj

...
. . .

... I

bnj
. . .




(5)

[k̄] = [φ̄]T [K][φ̄] =



ω2
1 b1jω

2
1

ω2
2 b2jω

2
2

. . .
...

b1jω
2
1 b2jω

2
2 · · · ∑n

k=1 b2
kjω

2
j · · · · · · bnjω

2
n

... ω2
j+1

...
. . .

bnjω
2
n ω2

n




(6)

where, as before, the bar superscript represents the
amplitude-dependent nature of the non-linear modal
parameters. Although the normalised mass and stiff-
ness matrices are not completely diagonal, the non-
diagonal terms can be assumed to be small since the

contribution of the non-resonant terms is small by def-
inition. As an approximation, a non-linear modal stiff-
ness correction term, f̄j , and a non-linear modal damp-
ing, ξ̄, are introduced to the resonant modal equations
to represent all such non-diagonal term contributions
implicitly. The resonant modal equation of motion can
then be written as:

−Ω2m̄jQj + iΩξ̄jQj + (k̄j + f̄j + iηj k̄j)Qj
(7)

= {φ̄}T
j {F}

Equation (8) is identical to the original formulation
by [9], except for the addition of a linear hysteretic
damping term. The approximate non-linear modal
mass and stiffness are given as:

m̄j = {φ̄}T
j [M ]{φ̄}j ≈

n∑
k=1

b2
kj

k̄j = {φ̄}T
j [K]{φ̄}j ≈

n∑
k=1

b2
kjω

2
j (8)

Neglecting the damping term, (8) yields an approx-
imate expression for the natural frequency of the j th

non-linear mode:

ω̄2
j =

k̄j + f̄j

m̄j
(9)

Upon substituting (9) into (8), the resonant modal
displacement is given as:

Qj =
{φ̄}T

j {F}
(ω̄2

j − Ω2)
∑n

k=1 b2
kj + iηj k̄j

=
(
∑n

k=1 bkj{φ}k)T {F}
(ω̄2

j − Ω2)
∑n

k=1 b2
kj + i(ηj k̄j + Ωξ̄)

(10)

2.2. Synthesis of normal non-linear modes

Using the single non-linear mode concept, the re-
sponse of a non-linear system can now be computed as
the summation of the non-linear contribution from the
jth mode and linear contributions from the remaining
modes. Around non-linear mode j, for excitation co-
ordinate i and response co-ordinate m, the non-linear
receptance FRF (αim)NL can be expressed as:

(αim)NL = [ᾱim(Ω, Qj) + αim(Ω)] (11)

where αim, the linear part of the receptance FRF, can
be written as:

αim(Ω) =
n∑

l=1

φilφml

ml(ω2
l − Ω2) + iηlkl

(12)
l �= j
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The jth non-linear modal contribution is given as:

ᾱim(Ω, Qj)=
φ̄ij φ̄mj

m̄j(ω̄2
j (Qj) − Ω2) + i(ηj k̄j + Ωξ̄)

=
(
∑n

s=1 bsjφis)(
∑n

k=1 bkjφmk)
m̄j(ω̄2

j − Ω2) + i(ηj k̄j + Ωξ̄)
(13)

2.3. Extension to non-linear modal parameter
extraction

The basic idea behind non-linear parameter extrac-
tion is to minimise the difference between measured (or
simulated) receptances and those obtained from (11)
by varying the non-linear parameters, bkj and ω̄j . The
problem can be solved numerically by using any stan-
dard multi-variable minimisation process. The size of
the problem is determined by the number of participat-
ing neighbouring modes to be included in the analysis.
For instance, if all non-linear parameters were to be
included in the analysis, the number of parameters to
be extracted would be the same as the number of DOFs.
Numerical experience indicates that the bkj parameters
which are not near the resonant mode of interest can be
ignored and the analysis can be conducted by retain-
ing a few neighbouring modes only. In any case, the
identification process involves the use of a column of
receptance matrix which contains the necessary infor-
mation for determining the vibration characteristics of
a structure. By separating the measured and predict-
ed non-linear responses into their real and imaginary
parts, the function to be minimised can be written as:

gR1(ω̄2
j , bkj) = RE{α∗

1m} − RE{[ᾱ1m(Ω, Qj)

+α1m(Ω)]}
...

gRn(ω̄2
j , bkj) = RE{α∗

nm} − RE{[ᾱnm(Ω, Qj)

+αnm(Ω)]} (14)

gI1(ω̄2
j , bkj) = IM{α∗

1m} − IM{[ᾱ1m(Ω, Qj)

+α1m(Ω)]}
...

gIn(ω̄2
j , bkj) = IM{α∗

nm} − IM{[ᾱnm(Ω, Qj)

+αnm(Ω)]}
where the g’s are the functions to be minimised and
α∗’s are the measured receptances. One of the simplest
approaches to minimising (15) is to monitor the norm of

the vector {g} which contains 2n functions because of
the explicit treatment of the real and imaginary parts. In
the following numerical studies, the minimisation was
carried out by a MATLAB subroutine which uses the
Gauss-Newton method with a mixed quadratic/cubic
line search procedure.

At the end of the minimisation process, each exci-
tation frequency used yields a set of non-linear modal
parameters which are associated with that particular
modal amplitude. The non-linear mode shape is then
obtained by inserting the identified participation factor,
bkj , and the (known) linear mode shape into (4). Using
the calculated non-linear mode shape for the j th mode,
the corresponding resonant modal amplitude, Q j is de-
termined from the measured physical displacement am-
plitude by inverting (2). The variation of the non-linear
modal parameters with the resonant modal amplitude
can then be obtained by considering a sufficient number
of excitation frequencies. Further analysis may require
a suitable polynomial curve-fit to this variation so that
a continuous representation can be used.

3. Generation of reference data for non-linear
response

Using an equivalent linearisation technique, it is pos-
sible to use (1) to compute the non- linear response.
Such an approach allows not only the generation of
reference data for non-linear modal analysis but it al-
so enables the validation of the resulting non-linear
modal model by considering several force levels. The
equivalent linearisation method is essentially an opti-
mization process which seeks a linearised representa-
tion of a non-linear system at some defined amplitude
so that the difference between the two states is min-
imised [2]. One of its best known variants, the harmon-
ic balance method (HBM), determines the equivalent
linear stiffness by calculating the harmonic terms of the
non-linear force over one vibration cycle. Despite its
approximate nature, its computational efficiency made
the HBM a favoured choice over time-domain tech-
niques or higher-order FRF representations [1]. Al-
though some unsymmetrical non-linearities are known
to exhibit significant super and sub harmonic charac-
teristics, the fundamental harmonic is still much larger
for a wide class of non-linearities, such as those studied
here. In any case, the HBM has been checked through
experiments and direct numerical integration [3,6,8].
Further experimental validation will be presented in
Part II of this paper.
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M1 M2 M3 M4

K1 K2 K3
K4 K5

M1=0.1 M2=0.2 M3=0.3 M4=0.4      (Kg)
K1=K2=K3=K4=K5=10000   (N/M)

Fig. 1. The 4-DOF system.

Assuming harmonic oscillation and considering the
first harmonic only, the real and imaginary parts of the
linearised stiffness can be expressed as [8]:

K ′
r(X) =

1
πX

∫ 2π

0

fnl cosΩtdt

(15)

K ′
i(X) =

−1
πX

∫ 2π

0

fnl sin Ωtdt

where both integrals of fnl represent the fundamental
harmonic of the non- linear force. These are normalised
by the amplitude of response, X , to obtain the required
describing functions. The above non-linear terms can
then be inserted into (2) to calculate an amplitude-
dependent quasi-linear receptance matrix, [α(X)]. For
a system excited by external force {F}, the equation of
motion can be written as:

{X} = [α(X)]{F} (16)

and solved iteratively, say using a Newton-Raphson
approach.

4. Case Study

4.1. 4-DOF non-linear system

The case study was conducted on a 4-DOF mass-
spring system with 0.5% proportional structural damp-
ing. As shown in Fig. 1, a non-linear cubic stiffness ele-
ment was introduced between the ground and first mass.
The loading characteristic of the non-linear spring is
given by fnl = βX3 and its describing function can be
written as [6]:

K
′
(X) =

3
4
βX2 (17)

The severity of the non-linear element is determined
by the coefficient of cubic term, β, and a value of 200
was used for the case study. Figure 2 shows the effect
of cubic stiffness non-linearity on the response of the

structure. One of the most distinctive features of this
particular non-linearity type is the leaning of the res-
onance peak towards right.The distortions are mostly
confined to the resonant regions and the deviation is
greatest for the 4th mode where the response amplitude
of Mass 1 is largest. Thus the 4th mode was chosen for
the proposed non-linear modal analysis.

4.1.1. Analysis using all 4 modes
As mentioned previously, the number of parameters

to be extracted depends on the number of modes in-
cluded in the analysis. In this particular example, the
effects of all three neighbouring modes were included.
Consequently, there are 4 non-linear parameters that
need to be extracted: the non-linear natural frequency,
ω̄4, and three bkj parameters, namely b14, b24 and b34.

The first column of the response matrix was obtained
via HBM simulations. The response data were com-
puted for a force level of 200 N applied at Mass 1. A
non-linear modal analysis was performed next using
the approach described in Section 2 and the findings
are shown in Fig. 3. The stiffness increases with the re-
sponse amplitude and this results in an increase in nat-
ural frequency, ω̄j . As the non-linearity becomes more
pronounced, the resonance tends to lean more and more
to the right until a jump occurs, this being the result of
a sudden large change in response due to a small per-
turbation. The point where the jump phenomenon oc-
curs largely depends on the size of frequency step taken
for the simulation. Also, depending on increasing and
decreasing frequency steps, the “jump frequency” will
be different. The results of the non-linear modal anal-
ysis in Fig. 3 concur with the characteristics described
above. The hardening nature of the stiffness can be
seen in the variation of the non-linear natural frequen-
cy, ω̄4, with the modal amplitude. The participation of
neighbouring modes, bkj , also increase with the modal
amplitude, indicating a greater distortion of the linear
mode. Another noteworthy finding is the decrease of
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Larger force

Fig. 2. Response of the 4 DOF system with cubic stiffness non-linearity.

bkj value as one moves away from the resonant mode,
justifying that the corresponding modes can be ignored.

To complete the identification process, second-order
polynomials were chosen to curve-fit the variation of
the non-linear modal parameters (Fig. 3). The mathe-
matical model of the non-linear modal parameters for
the 4th mode in terms of the 4th modal amplitude, Q4,
is thus given by:

ω2
4 = c11Q

2
4 + c12Q4 + c13

b14 = c21Q
2
4 + c22Q4 + c23

b24 = c31Q
2
4 + c32Q4 + c33

b34 = c41Q
2
4 + c42Q4 + c43

where the cij parameters are the actual polynomial
coefficients. Each mode of the system will generate
a similar set of parameters to represent the non-linear
behaviour at that particular mode. For this example,
the modal parameters of the first three modes may be
expected to be more or less linear.

4.1.2. Response generation at other force levels
One of the major attractions of a non-linear modal

model is the ability to predict the response at any force
level. Here new responses were computed for force lev-
els of 200N, 160N and 100N using the modal parame-
ters extracted for a force level of 200N. The regenerated
and directly-computed responses are plotted in Fig. 4
for all three force levels. There is very good agreement
between the two sets. Furthermore, typical non-linear
stiffness characteristics, such as non-circular Nyquist
plots and jump phenomenon are successfully preserved
by the extracted non-linear parameters.

5. Robustness checks

5.1. Sensitivity to the accuracy of the underlying
linear model

The underlying linear model of a non-linear system
is usually obtained by exciting the system at a low force
level and performing a linear modal analysis on the
measured response functions1. It is also possible to
use FE modelling for simple cases. However, neither
approach can guarantee an accurate linear model and
the consequences of having an approximate underlying
linear model will be investigated here.

An approximate underlying linear model of the 4-
DOF system of Fig. 1 will now be obtained through
response measurements taken at a relatively high force
level of 100N. The results of a linear modal analysis,
followed by response regeneration using the extracted
linear modal parameters, are shown in Fig. 5 where
the true linear response is also plotted. It is clearly
seen that the linearised response is significantly dif-
ferent from the true linear response obtained from the
exact underlying system. Nevertheless, the approxi-
mate underlying linear model, obtained from the linear
modal analysis, was used as input data to a non-linear
modal analysis. The results are shown in Fig. 6. Also

1Another way of linearising the response is to use the averag-
ing properties of a random excitation signal, though the numerical
simulation of such a route is not straightforward.
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Fig. 3. Non-linear modal parameter variations for the 4-th mode: ∗ ∗ ∗ Extracted values Curve-fitted values.

plotted in the same figure are the results obtained with
the exact underlying linear model. It is easily seen that
both sets of results are very similar, with the exception
of the bkj parameter which shows an offset. On the
other hand, the natural frequency variation is identical,
indicating that approximate underlying linear models
can be used in non-linear parameter identification. This
observation has a significant implication for real appli-
cations since it is almost always possible to obtain an
approximate linear system via a linear modal analysis
of responses obtained at low forcing.

The curve-fitted non-linear modal parameters were
used to regenerate responses at force levels of 1N, 100N

and 200N. The same responses were also obtained via
HBM simulations for comparison purposes (Fig. 7).
Very good agreement was obtained in all cases, includ-
ing the 1 N force level, which effectively corresponds
to the true underlying linear response.

5.2. Effects of measurement noise

5% random noise was added to the non-linear re-
sponses generated for a force level of 100N and a linear
modal analysis was carried out as before to obtain the
underlying linear model. Using this approximate un-
derlying linear model, a non-linear modal analysis was
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conducted on the noise-added responses and the results
are shown in Fig. 8. The non-linear modal parameter
variations show a clear noise effect, though a curve-fit
is relatively straightforward for the natural frequency
variation (Fig. 8). Although it can be argued that the
level of noise is unacceptable for curve-fitting the bkj

parameter, the overall trend is well captured by a cubic

polynomial, the order of which is selected using the
natural frequency variation. In any case, experimental
noise levels are usually around 1-3 % and hence a typ-
ical situation may well be less severe than that studied
here. Finally, Figure 9 shows the response predictions
for various force levels using the extracted non-linear
modal parameters. There is good agreement between
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direct simulations and the regenerated responses, a fea-
ture which indicates the robustness of the non-linear
parameter identification technique in the presence of
measurement errors.

6. Concluding Remarks

– A modal analysis method has been presented
for weakly non-linear MDOF systems with well-

separated modes. It has been shown that the tech-
nique is applicable to practical situations since it
can cope with approximate underlying linear mod-
els and tolerate experimental noise.

– Once the non-linear modal parameters are ob-
tained for a given force level, the response of the
non-linear system was successfully predicted at
other force levels, even in the presence of sig-
nificant measurement noise. However, numerical
tests show that the force levels for data acquisition
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Fig. 9. Regeneration from noise-polluted data: HBM simulation, ∗ ∗ ∗∗ Regenerated FRF.

and response calculations must not be more than
two orders of magnitude apart, though this feature
is likely to be case dependent.

– The non-linear modal model can therefore be used
to minimise experimental testing by enabling the
analyst to obtain the response levels under a wide
range of forcing conditions. It is also possible
to perform a sub-structure analysis by coupling
several non-linear components.

– Being based on a modal representation, the tech-
nique is particularly well suited to the study of
large systems. Further numerical studies, not re-

ported here, showed that only a few modes around
the resonance of interest were needed to predict
the non-linear contributions. This feature will be
exploited when studying a large MDOF system in
Part II.
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