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Abstract. Mistuning in bladed disks usually increases the forced response of the maximum responding blade leading to shortened
component life in turbine engines. This paper investigates mistuning using a transfer function approach where the frequency
response functions (FRFs) are described by natural frequencies and antiresonant frequencies. Using this approach, antiresonant
frequencies are shown to be a critical factor in determining the maximum blade response. Two insights are gained by formulating
antiresonant frequencies as the eigenvalues of reduced system matrices: 1) Mistuning a particular blade has no effect on that
blade’s antiresonant frequencies. 2) Engine orders N and N/2, where N is the number of blades on the disk, tend to produce
the highest maximum local response. Numerical examples are given using a spring-mass-oscillator model of a bladed disk.
Pole-zero loci of mistuned bladed disks show that increased maximum blade response is often due to the damping of antiresonant
frequencies. An important conclusion is that antiresonant frequencies can be arranged such that a mistuned bladed disk has a
lower maximum blade response than a tuned bladed disk.

Nomenclature
A Mistuning amplification factor
B Input shape matrix
C Output shape matrix
E Engine order
F Vector of applied forces
FRF Frequency response function (20 log |h|)
G Transfer function gain
h Blade frequency response
I Identity matrix
i Blade number
j

√−1
K Global stiffness matrix
kb Blade stiffness
kc Coupling stiffness
M Global mass matrix
m Nominal blade mass
mi Individual blade mass
N Number of blades
p System poles (natural frequencies)
pu Undamped poles
R Coupling ratio

x Displacement degree of freedom
y Measured output
z Transfer function zeros (antiresonant

frequencies)
zu Undamped zeros
u Harmonic input excitation
φin Theith element in thenth mode shape
φn Thenth mode shape
ω Excitation frequency
ωb Nominal blade natural frequency
θ Interblade phase angle
ζ Damping factor

1. Background

1.1. Mistuning

As bladed disks rotate in turbine engines, the air-
foils experience alternating forces resulting from dis-
turbances in the flow field. This excitation is often
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calledengine order excitationwhere the engine order
refers to the number of equally spaced disturbances due
to struts, vanes, or stators either upstream or down-
stream of the bladed disk. The resulting blade vibra-
tion causes fatigue cracks to initiate and grow. This
process is calledhigh cycle fatigue(HCF) because of
the tremendous number of cycles accumulated at the
high rotational rates of turbine engines. (HCF can also
be present in stationary airfoils due to rotating pressure
disturbances.) The U.S. Air Force spends a significant
amount of money and effort inspecting and fixing HCF
problems.

HCF is exacerbated bymistuning, a breakdown in
the cyclic periodicity of bladed disks. Atunedbladed
disk is a perfectly cyclic symmetric structure where all
blades are identical. Unfortunately, manufacturing tol-
erances will inevitably cause small differences in the
geometries, material properties, or interface boundary
conditions of blades resulting in what is called a mis-
tuned bladed disk. The maximum resonant response of
any blade on the disk, ormaximum responsefor short,
is usually greater for mistuned bladed disk than for a
tuned bladed disk [1]. Therefore, mistuning shortens
component life, and negatively impacts the durability
and reliability of engines.

Most of the mistuning literature has relied on a modal
approach when investigating bladed disk forced re-
sponse. The modal approach relates natural frequen-
cy and mode shape behavior to forced response using
concepts such as eigenvalue veering and mode local-
ization. Examples of the modal approach include pa-
pers by Ewins [2], Wei and Pierre [3,4], and Brewer et
al. [5] After surveying the mistuning literature, Slater
et al. [6] concluded that amplified maximum response
in mistuned bladed disks is due to light damping and
mode localization.

1.2. Antiresonance

This paper investigates mistuning using a transfer
function approach where the forced response is formu-
lated in terms of natural frequencies and antiresonant
frequencies. This approach avoids using mode shapes,
which become disordered in the presence of mistun-
ing [3] making their effect on maximum response dif-
ficult to understand. Instead, the antiresonant frequen-
cies incorporate the mode shape information while pro-
viding a more direct and intuitive link to maximum
forced response levels.

Antiresonance is an area of continuing research in
the structural dynamics community. Miu [7] showed

that for discrete spring-mass systems antiresonant fre-
quencies are the resonant frequencies of some substruc-
ture. These substructures and their constraints are de-
fined by La Civita [8] in continuous one dimensional
systems. Wahl and Schmidt [9] applied these discover-
ies to experimental structural analysis. Jones and Tur-
cotte [10], D’Ambrogio and Frengolent [11], Rade et
al. [12], and Lallement and Cogan [13] have applied
antiresonance to finite element model updating with
promising results.

These papers analyzed antiresonance in single-input
single-output (SISO) transfer functions. Bladed disk
forced response requires a multi-input single-output
(MISO) method, because engine order excitation is ap-
plied at all blades. Wang’s [14] formulation of an-
tiresonance can accommodate MISO problems and is
applied to models of bladed disks in this paper.

Although the transfer function forced response for-
mulation is mathematically equivalent to the modal for-
mulation, it does providea different perspective on mis-
tuning phenomena. The insights that come from under-
standing antiresonance may provide new approaches
for reducing maximum response in bladed disks.

2. Theory

2.1. Forced response formulation

The undamped equations of motion (EOM) for a
bladed disk assembly can be written as:

Mẍ + Kx = F = Bu (1)

y = Cx (2)

M =




m11 m12 0 · · · m21

m21 m22 m12 0 · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
m12 0 · · · m21 mNN


 (3)

K =




k11 k12 0 · · · k21

k21 k22 k12 0 · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
k12 0 · · · k21 kNN


 (4)

whereF is the vector of applied forces,mii andkii

are the blade/sector mass and stiffnesses andN is the
number of blades/sectors.mii andkii are equal for
tuned bladed disks but differ for mistuned bladed disks.
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The EOM inputs (F ) and outputs (y) can be any lin-
ear combination of blade input forces (u) or respons-
es (x) respectively. For the response of any particular
bladei, C is a sparse row vector withCi = 1.

The forcing function (F ) can be written as the prod-
uct of an input shape matrix (B), which characterizes
the spatial properties of the applied forces, and a vec-
tor (u), which characterizes the time properties of the
forces. Engine order excitation is assumed to be har-
monic excitation which differs from blade to blade by
a constant interblade phase angle (θ):

Bi = ej(i−1)θ i = 1, 2, . . . , N (5)

u = ejωt (6)

θ = 2π
E

N
(7)

whereE is the engine order.
The solution to Eq. (1) can be written as the summa-

tion of modal responses in physical coordinates (The
mode shapes are mass normalized so thatφTMφ = I):

yi =
(

φi1φ
T
1 B

(p2
1 − ω2)

+
φi2φ

T
2 B

(p2
2 − ω2)

+ · · ·
(8)

+
φiNφT

NB

(p2
N − ω2)

)
u

wherep is a systempole or natural frequency. The
frequency response,h, is defined byy = hu so that:

hi =
φi1φ

T
1 B

(p2
1 − ω2)

+
φi2φ

T
2 B

(p2
2 − ω2)

+ · · ·
(9)

+
φiNφT

NB

(p2
N − ω2)

The frequency response can also be written as the
ratio of two factored polynomials inw2:

hi = (10)

G(z2
1 − w2)(z2

2 − w2) · · · (z2
N−1 − w2)

(p2
1 − w2)(p2

2 − w2) · · · (p2
N − w2)

wherez is a transfer functionzeroandG is a constant
determined by the static deflection of the structure:

G = K−1B
(p2

1)(p2
2) · · · (p2

N )
(z2

1)(z
2
2) · · · (z2

N−1)
(11)

In this paper, Eq. (9) is referred to themodal summa-
tion approach, and Eq. (10) is referred to as thetrans-
fer function approach. The zeros of Eq. (10) are often
referred to asantiresonant frequenciesin the literature,
because they cause sharp inverted resonant peaks in
the frequency response when plotted on a logarithmic

magnitude axis (see Fig. 1). To emphasize FRF an-
tiresonances, this paper defines the frequency response
function (FRF) to be the magnitude of the frequency
response in decibels:

FRF = 20 log |h| (12)

Damping was added to the transfer function FRFs
to prevent infinite resonant peaks and antiresonant val-
leys. Structural damping was incorporated by adding
an imaginary part to the undamped poles (pu):

p2 = p2
u + 2ζp2

uj (13)

Damping was assumed to have a similar effect on the
undamped zeros (zu):

z2 = z2
u + 2ζz2

uj (14)

To validate this approach, the transfer function FRFs
were compared to the modal summation FRFs in equa-
tion (9) using the classic assumption of constant modal
damping where:

p2 = p2
u + 2ζpuωj (15)

A ζ of 0.001 was used for this comparison as well
as the numerical examples in this paper. The transfer
function and modal summation FRFs were virtually
identical.

2.2. Calculation of transfer function zeros

Wang [14] showed that the undamped transfer func-
tion zeros (zu) are the eigenvalues of reduced mass and
stiffness matrices:

det
(
K̃ − z2

uM̃
)

= 0 (16)

where

M̃ = BT
NMCN (17)

K̃ = BT
NKCN (18)

BN = nullspace(B) (19)

CN = nullspace(C) (20)

M̃ and K̃ are non-symmetric matrices whose eigen-
values (z2

i ) can be positive, negative, real or complex
numbers.

Two observations can be made about the role of ze-
ros in bladed disk FRFs based on the above develop-
ment. The first observation comes from examining the
response of an individual blade such as blade 1. TheC
row vector for blade 1 is:

C =
[
1 0 0 · · ·] (21)
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The nullspace ofC is then:

CN =
[

01xN-1

IN-1xN-1

]
(22)

where01xN-1 indicates a row of zeros. The choice of
blade 1 resulted in the first row ofCN containing all
zeros. However, any bladei could have been chosen for
this developmentand would have resulted in theith row
of CN containing all zeros. In the postmultiplication
of M andK by CN in Eqs (17) and (18), theith row
of CN deletes theith column fromM andK. Without
the ith column, M̃ and K̃ do not contain the sector
mass and stiffnessmii andkii. Since the zeros are the
eigenvalues ofM̃ andK̃, they must be independent of
mii andkii. Therefore:

Conclusion 1 The zeros of a blade’s FRF are indepen-
dent of any changes to its own mass and stiffness.

A second observation results from examining engine
ordersN andN/2. These engine orders causeB, M̃
andK̃ to be real by Eqs (5), (17) and (18). Since the
eigenvalues of a real matrix must be real or complex
conjugates [15], all zeros are guaranteed to be real or
complex conjugates when the engine order isN orN/2.
This fact has implications on maximum response, as
explained in the next section.

2.3. Minimizing maximum response

It is well known that different mistuning patterns
can result in very different maximum response am-
plitudes. Under the modal summation approach,
Eq. (9), the mode shapes determine maximum response.
The modal participation factors,φinφ

T
nB, determine

whether the modes in the summation respond in phase
or out of phase. In phase modes reinforce each other
and increase maximum response; out of phase modes
do the opposite. But what mode shapes are desirable
for minimizing maximum response levels? This is a
difficult question, because of the disordered nature of
mistuned bladed disk mode shapes [3].

The transfer function formulation has the advantage
of providing an intuitive relationship between transfer
function zeros and maximum response. Transfer func-
tion zeros attenuate forced response just as the poles
amplify the forced response. The effect of zero spacing
on forced response can be seen in the following exam-
ple where three FRFs with identical poles but different
sets of zeros are shown in Fig. 1. The poles and zeros
are listed in Table 1. The first FRF is analogous to a
tuned bladed disk FRF, where only one resonant peak

is visible [4] (The other resonances are cancelled by
theN -1 antiresonances). FRFs 2 and 3 represent blade
FRFs from two different mistuned rotors that do not
contain collocated poles and zeros.

Figure 1 shows that zero spacing is a critical factor in
determining maximum response. In FRF 1, the maxi-
mum response is determined by the full contribution of
one pole to the response without any attenuation from a
zero (The zeros are completely cancelled by collocated
poles). In FRF 2, the zeros interlace the poles, allowing
all poles to be present in the response. However, each
pole is partially attenuated by a nearby zero, so that the
maximum response is reduced below the "tuned" (FRF
1’s) maximum response. In FRF 3, two neighboring
poles are left without any interlacing or cancelling ze-
ros between them. The result is that the contribution
from the two poles combine to increase the maximum
response above the “tuned” case, which only had one
pole present in the response. Clearly, for a given set
of poles, the spacing of zeros in the FRF determine the
maximum response and interlacing poles and zeros are
desirable for reducing maximum response below the
tuned maximum response.

The other factor that determines maximum response
is the complexity of the zeros. More complex zeros ap-
pear as increasingly “damped” antiresonances; i.e. they
provide less attenuation in the FRF, increasing maxi-
mum response. Therefore, the maximum response is
minimized when real zeros interlace the system poles.
Based on Fig. 1 and the previous discussion, the fol-
lowing conclusion can be given:

Conclusion 2 Mistuning maximum response amplifi-
cation is caused by damping and inefficient spacing(not
interlacing the poles) of antiresonances in the blade
FRFs.

Some physical interpretation of why resonant re-
sponse is reduced by a nearby antiresonance can be
gained by examining the modal FRF formulation in
Eq. (9). When the excitation frequency equals a nat-
ural frequency, the blade response is dominated by a
single system mode. However, the residual response
contribution from a neighboring mode is not negligible
for a system with sufficiently closely spaced natural
frequencies. If the residual response contribution has
opposite phase to the resonant mode’s response contri-
bution, then the two subtract and reduce the magnitude
of the resonant response. If the excitation frequency is
moved away from one natural frequency and towards
the other, the response from one mode decreases as the
other increases. Eventually, the contributions from the
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Fig. 1. The effect of different zero spacings on maximum response.

Table 1
FRF Poles and Zeros for Fig. 1

Poles Zeros for Zeros for Zeros for
FRF 1 FRF 2 FRF3

“Tuned” “Mistuned” “Mistuned”

1.00+ 0.001j 1.00+ 0.001j 1.01+ 0.001j 1.00+ 0.001j
1.02+ 0.001j 1.02+ 0.001j 1.03+ 0.001j 1.01+ 0.001j
1.04+ 0.001j 1.06+ 0.001j 1.05+ 0.001j 1.06+ 0.001j
1.06+ 0.001j

two modes become equal in magnitude and opposite in
phase, creating zero response, which is an antiresonant
frequency. Therefore, antiresonant frequencies are in-
dications that the response contributions from neigh-
boring modes are opposite in phase and destructively
interfering with each other.

Having established the effect of antiresonance on
maximum response, we can now revisit case of engine
orders N and N/2. Recall from the last section that
these engine orders cause all antiresonances to be re-
al or complex conjugate pairs. Neither real or com-
plex conjugate undamped zeros are ideal for minimiz-
ing maximum response. Real zeros provide the same
attenuation in the FRF as the poles provide amplifica-
tion, because the system poles are also real and use the
same damping assumption as the zeros in Eqs (13) and
(14). Ideally, it is desirable for the damped zeros in

Eq. (14) to be less complex than the poles in Eq. (13)
so that they provide more attenuation in the FRF.

Complex conjugate zeros are also detrimental to min-
imizing maximum response. A pair of complex conju-
gate zeros will occur at the same frequency in the FRF.
These “double zeros” leave fewer zeros to attenuate
other areas of the FRF. The result is an inefficient spac-
ing of zeros in the FRF (See Conclusion 2). Therefore,
engine orders N and N/2 will tend to produce higher
maximum response than other engine orders.

Conclusion 3 Engine orders N and N/2 tend to produce
higher maximum response than other engine orders,
because the undamped antiresonances are guaranteed
to be either real or complex conjugate pairs.

This conclusion is consistent with the findings of
Kenyon et al. [16] who showed that the maximum am-
plitude magnification due to mistuning is greater for
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Fig. 2. Coupled oscillator model.

engine orders N and N/2 when simple damping is as-
sumed. Similarly, Whitehead [18] concluded that en-
gine orders N and N/2 (where N is even in the case of
N/2) guarantees that the maximum amplitude magnifi-
cation factor can be achieved.

3. Numerical examples

3.1. Bladed disk model

The coupled spring-mass oscillator model shown in
Fig. 2 was used to demonstrate the role of antireso-
nance in mistuning response amplification. Although
mistuning is normally applied in the literature by alter-
ing individual blade stiffnesses, in this paper mistun-
ing was accomplished by changing the individual blade
masses. The resulting mass and stiffness matrices are
given by:

M = diag
(m1

m
,
m2

m
, · · · , mN

m

)
(23)

K = ω2
b circular

(24)
(1 + 2R,−R, 0, · · · , 0,−R)

ω2
b =

kb

m
= 1 (25)

R =
kc

kb
= 0.01 (26)

where ωb, m and kb are the nominal blade natural fre-
quency, mass and stiffness.

The reason for mistuning the blade masses can be
seen in Fig. 3(a). Here the mistuning amplification(A)
is plotted versus the standard deviation of the mistun-
ing where mistuning amplification is defined as the ra-
tio of maximum mistuned response to maximum tuned

response. With stiffness mistuning, the low frequen-
cy blade (blade 1 in Fig. 3(b)) approaches zero stiff-
ness at higher mistuning levels. This flexible blade will
have high response across all frequencies in its FRF
(Eq. (11)), causing mistuning amplification to increase
with mistuning standard deviation. Therefore, mass
mistuning was used to focus solely on the response am-
plification that is caused by the breakdown of pole/zero
cancellations in Eq. (10).

3.2. Engine order excitation

A 12 bladed coupled oscillator model was used to
investigate the effect that different engine order excita-
tions have on maximum response. Mistuning patterns
were created by randomly selecting blade frequencies
from a normal distribution with a mean of 1 and a stan-
dard deviation of 2%. The forced response of 50,000
random mistuning patterns were solved for each en-
gine order excitation. The probability density func-
tions (pdf) of the resulting mistuning amplifications are
shown in Fig. 4.

As predicted by Conclusion 3, engine orders 6 and 12
produced the highest average mistuning amplification,
which was approximately 50% greater than the tuned
response. Interestingly, some mistuned rotors had low-
er maximum response than the tuned rotor (A < 1).
This phenomena, although present in papers by Tur-
cotte [17] and Castanier [1], has received little attention
in the literature. The cause of this mistuning attenu-
ation is investigated in section 3.3. Another interest-
ing note is that engine orders 1, 5, 6, and 12 seemed
incapable of producing less than the tuned maximum
response.

The role of antiresonance in determining maximum
response was demonstrated by comparing pole/zero
maps in the complex plane with magnitude FRFs. An
example of this method is shown in Fig. 5. The real axis
of the pole/zero map correlates with the FRF frequency
axis. The tuned FRF is plotted in bold to emphasize
the bandwidth of a pole (or zero with Im(z) = 0.001j)
and the tuned maximum response. Note that the system
poles always lie at 0.001 on the imaginary axis, because
of the damping assumption in Eq. (13). Zeros that
lie between the two dashed lines at ±0.001j are more
lightly damped than the poles. Therefore, they reduce
maximum response by providing more attenuation in
the FRF than the poles provide amplification.

The maximum response of a mistuned bladed disk
subjected to engine order N was examined in further
detail in Fig. 5. The pole/zero map of the maximum
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responding blade FRF contains three sets of complex
conjugate zeros, symmetric about 0.001j. These three
sets of zeros create antiresonances in the FRF at the

same frequency. The middle complex conjugate zero
pair (near 1.01 on the real axis) causes a sharp antires-
onance because of one lightly damped zero between
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the dashed lines. All but two zeros lie on or outside of
the dashed lines, indicating that they are more damped
than tuned zeros. The complex conjugate zeros “use
up” two many zeros at the high frequency side of the
FRF, not leaving enough zeros to cover poles at the low
frequencies. Two poles are left at the low frequency
end of the FRF with no interlacing zero. As predicted
by Conclusion 2, the damping and inefficient spacing
of antiresonances increase maximum response over the
tuned FRF.

Figure 5 was found to be typical of maximum re-
sponse FRFs for mistuned bladed disks in that the av-
erage zero was more complex (damped) than the poles.
This leads to a simple explanation for why mistuning
amplification increases with the number of blades [18,
4]. As the number of blades increases, each new blade
adds a resonance and antiresonance to the narrow fre-
quency band in the FRF. Because the antiresonance is
usually more damped than the resonance, there is a new
contribution to the maximum response from this pair.

3.3. Best and worst case mistuning patterns

The largest and smallest mistuning amplifications for
engine order 3 were identified from the 50,000 solu-
tions used to create the pdf in Fig. 4. These mistun-
ing patterns were used to investigate the extremes of

antiresonance behavior in bladed disk FRFs. Engine
order 3 was chosen because it produced the greatest
reduction in maximum response from the tuned bladed
disk.

Figure 6 shows the FRF and pole/zero map of the
maximum responding blade in the worst case mistun-
ing pattern. The peak responding blade has no light-
ly damped antiresonances appearing in the FRF. The
pole/zero map shows that the antiresonances are more
complex (damped) than the poles. Finally, there are
two poles with no interlacing zeros in the highest re-
sponse region of the FRF. The result is an 84% increase
in maximum response over a tuned bladed disk.

Figure 7 shows the FRF of the best case mistuning
pattern. In this case, even the peak responding blade
FRF has three very lightly damped antiresonances in the
response. Furthermore, the antiresonances are spread
evenly across the FRF so that they either interlace or
very nearly cancel the poles. These two factors com-
bined to produce a 18% reduction over tuned response
and a 34% reduction over the mean mistuned maximum
response from the distribution in Fig. 4. If this mis-
tuning state could be maintained in a turbine engine, it
would significantly extend bladed disk life.

3.4. Antiresonance sensitivity to mistuning

Wei and Pierre [3] showed that bladed disk eigen-
values (p2

u) and eigenvectors (φ) are very sensitive to
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the amount of mistuning. The closely spaced eigenval-
ues of the tuned system “veer” away from each other
as the amount of mistuning is increased. The tuned

eigenvectors change from having extended participa-
tion in many blades to being more localized around one
or a few blades when mistuning is increased. Since
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bladed disk antiresonances are defined by the system
eigenvalues and eigenvectors (i.e. they are the zeros of
Eq. (9)), they show a similar sensitivity to the amount
of mistuning.

Consider the mass mistuning example from Fig. 3.
Since there is a different set of antiresonances for each
blade’s FRF, a representative blade must be chosen for
examination. Blade 8 was chosen because it was the
maximum responding blade between a standard devia-
tion of 0.01 and 0.1 in Fig. 3a. Blade 8’s pole/zero locus
as mistuning standard deviation is increased is shown
in Fig. 8. Figure 8 shows that the zeros spread along
the real axis along with the veering poles. The com-
plexity of the zeros varies wildly with small mistun-
ing, with more zeros increasing their complexity than
decreasing. As the mistuning gets larger, all but two
antiresonances are returning to the same complexity as
the poles. The temporary increase in zero complexity
corresponds with the high mistuning amplification seen
between 0.01 and 0.05 in Fig. 3a. This supports the
conclusion that mistuning amplification is related to the
damping (increased complexity) of the antiresonances.

Lastly, to validate Conclusion 1, the sensitivity of a
blade’s antiresonances to changes to its own mass was
investigated. Figure 9 shows the effect on a blade’s
FRF when mistuning is applied to that blade only. The
natural frequency of the blade whose FRF is shown

in Fig. 7 was increased by 1% of the nominal blade
frequency (ωb). This blade’s FRF and pole/zero map
are shown before and after the self-mistuning in Fig. 9.
As predicted by Conclusion 1, the zeros are insensitive
to the mistuning. However, the FRF changes due to the
movement of the poles. As a further note, the blade is no
longer the peak responding blade after self-mistuning.

4. Conclusions

This paper applied antiresonance theory to the forced
response of bladed disks to engine order excitation.
Bladed disk frequency response was formulated using
a transfer function approach. Using this method, the
response can be written completely in terms of eigen-
values and antiresonances without using mode shapes.
Since antiresonances create attenuation in the FRF,
their effect on maximum response can be easily under-
stood.

The transfer function formulation led to the follow-
ing conclusions:

– The zeros of a blade’s FRF are independent of any
changes to its own mass and stiffness.

– Mistuning maximum response amplification is
caused by damping and inefficient spacing of an-
tiresonances in the blade FRFs.
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Fig. 9. Blade FRF Sensitivity to Self Mistuning (E=3). a) Blade FRF. — Before, - - - After. b) Pole/Zero Map. (×,◦) - (pole, zero) before,
(�,♦) - (pole, zero) after. Zeros between the dashed lines reduce the response more than the poles amplify it.

– Engine orders N and N/2 tend to produce higher
maximum response levels than other engine or-
ders, because the undamped antiresonances are
guaranteed to be either real or complex conjugate
pairs.

– Mistuning amplification increases with the number
of blades, because the antiresonances are usually
more damped than the closely spaced resonances.

– Mistuned bladed disks can have lower maximum
response than tuned bladed disks. This mistuning
attenuationis caused by lightly damped antireso-
nances that are spread throughout all blade FRFs.

Robust minimum maximum response mistuning de-
signs for bladed disks would be an attractive weapon
against high cycle fatigue. Since antiresonance sen-
sitivities can be easily calculated [14], structural opti-
mization routines may be able to find such mistuning
patterns using the reduction of the imaginary part of the
antiresonances as a goal. This is a recommended area
for further research.
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