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Abstract. The present approach for vibration suppression of flexible structures is based on friction damping in semi-active joints.
At optimal locations conventional rigid connections of a large truss structure are replaced by semi-active friction joints. Two
different concepts for the control of the normal forces in the friction interfaces are implemented. In the first approach each
semi-active joint has its own local feedback controller, whereas the second concept uses a global, clipped-optimal controller.
Simulation results of a 10-bay truss structure show the potential of the proposed semi-active concept.

1. Introduction

Large space structures (LSS) are commonly designed as very flexible and lightweight truss structures of big
size. Due to their small damping and the stringent positioning accuracy, many missions involving antennas or
optical interferometers require vibration suppression. Numerous works have been published on active vibration
suppression. Usually piezoelectric stacks are used as devices for actuators because of their light weight, high force
and minimum power consumption. Although an active approach is very attractive, actively controlled systems
may cause spillover instability. Passive approaches for damping enhancement involving visco-elastic materials or
preloaded backlashes [20] may be desirable because of their simplicity and low cost. The present approach is based
on friction damping in the joint connections of a truss structure [7]. Dry friction caused by slip in the interface of
connected parts turns out to provide a significant amount of energy dissipation. The original truss nodes are modified
such that relative slip between the truss member’s end connector and the truss node is allowed.

However, passive approaches for vibration suppression are by far not as effective as active ones. Passive friction
damping has several disadvantages. When the amplitude of vibration decreases below a certain level sticking occurs
and energy is no longer dissipated. In addition, if the stiction force is quite high the connected parts can stick and
thus static shape accuracy cannot be assured. To overcome these drawbacks, the friction force in the joint connection
is controlled by varying the normal force in the contact interface using a piezoelectric stack [9]. Since a passive
device is actively controlled, this approach is called semi-active. The resulting semi-active vibration suppression
system is always stable, at least in the Lyapunov sense, because of the dissipative nature of friction. Another appeal
of semi-active control is that performance levels of active control can be achieved with a fraction of input power.
Furthermore, this concept can easily be employed without significantly increasing the structural weight.

The paper is structured as follows. It starts with the numerical model of the adaptive structure consisting of the truss
structure which is considered as a linear subsystem and the nonlinear semi-active joints which exert state-dependent
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Fig. 1. Truss structure.
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Fig. 2. Meroform components.

friction forces on the linear subsystem. The parameters of the nonlinear friction model must be identified from
measurements conducted with an isolated joint. Based on the open-loop state space model of the linear subsystem,
modal reduction is performed using controllability and observability gramians. To improve the fidelity of the reduced
model for lower frequencies, the modal subspace is augmented with Krylov vectors.

At optimal locations conventional connections are replaced by semi-active friction joints and two different control
concepts for the semi-active vibration suppression are introduced: local feedback control and clipped-optimal
control. The simulation results for a 10-bay truss structure presented at the end reveal the potential of the presented
semi-active approach.

2. Adaptive truss structure

The 10-bay truss structure depicted in Fig. 1 is made of Meroform-M12 construction system consisting of
aluminium tubes connected by steel nodes. The Meroform components are shown in more detail in Fig. 2. Each tube
has a 22 mm outer diameter and is fitted with a screw end connector. The horizontal and vertical distance between
the center of the truss nodes is 1 m. In accordance with the Shuttle Radar Topography Mission (SRTM)1 where a
similar truss structure has been used as a cantilever to carry one of the two radar equipments, the mast is clamped at
one end. At the free end a mass of 0.5 kg is attached to each of the five truss nodes.

For the implementation of the semi-active damping approach a modified joint connection has been designed,
which allows relative motion between the end connector of a truss member and the truss node with the remaining
members attached to it. The rigid Meroform nodes can be replaced by this adaptive joint. As shown in Fig. 3, two

1For details visit the websites http://www.jpl.nasa.gov/srtm/ and http://www.aec-able.com/corporate/srtm.htm.
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Fig. 4. Adaptive joint (type B).

types of joints are considered, each allowing relative motion in one particular degree-of-freedom. It is the relative
displacement along the longitudinal axis of the connected rod, affecting the extensional stiffness of the connection
(type A), and the relative rotation about an axis perpendicular to the longitudinal axis, affecting the bending stiffnes
of the connection (type B).

A sketch of the rotational prototype (type B) is shown in Fig. 4. The semi-active joint employs the dissipative
character of dry friction caused by interfacial slip in the contact area.2 By applying voltage to the piezoelectrical
stack actuator, the pressure in the contact area can be altered. The normal force is approximately proportional to the
applied voltage. The preload of the stack can be adjusted by a screw.

2L. Gaul: German Patent “Smart Joint”, Number 19702518 C2 (1997).
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Fig. 5. Hysteresis loops for type B: simulation (—), experiment (– – –).

3. Numerical model

3.1. Model of the friction joint

For the modeling of the nonlinear behaviour in the friction joints the so called LuGre-model [3] has been
proposed [9] which is capable of simulating relevant friction phenomena [1], such as presliding displacement, stick-
slip and the Stribeck effect. It describes the friction interface as a contact between bristles. The internal state variable
ϕ representing the average deflection of the bristles is governed by the first order differential equation

ϕ̇ = f(v, ϕ) = v − σ0g(v)ϕ with
(1)

g(v) =
| v |

Fc + Fde−(v/vs)2

wherev is the relative sliding velocity in the contact. The friction force transmitted in the joint

FR = FN (σ0 ϕ + σ1 ϕ̇ + σ2 v)︸ ︷︷ ︸=:µ (v, ϕ)

(2)

depends on the normal forceFN and the dynamic friction coefficientµ(v, ϕ) . In case of a rotational joint (type B),
a radiusr is introduced in equation (2) to obtain a friction moment, i.e.,M R = r FR , wherev represents the relative
angular velocity. In the following, for both types the generalised forceu R and the generalised sliding velocityv will
be used. The model parametersσ0k

, σ1k
, σ2k

, Fck
, Fdk

andvsk
are all positive and have dimensions consistent with

the dimension ofv .

3.2. Parameter identification

In order to identify the parameters of the LuGre-model, the transfer behaviour of an isolated friction joint is
measured. The joint is supported on a foundation and the friction element (see Fig. 4) is harmonically excited by a
shaker. The sliding velocity and the excitation force are recorded for different normal forces and different excitation
amplitudes and frequencies. Based on the known inertia the transmitted friction force can be calculated from the
measured excitation force.

The model parameters are determined from the comparison between the simulated response and the measurements.
This is done by solving the optimization problem

min
p

J (p) =
1
2

K∑
k=0

[
uR(tk) − ûR(v(tk), FN ,p)

]2
(3)

with the vectorp containing the parameters to be identified, the measured friction forceu R(tk) and the simulated
friction forceûR(v(tk), FN ,p), which is obtained from Eq. (2) and integration of Eq. (1). For calculation ofû R the
measured sliding velocityv(tk) and normal forceFN which is kept constant during the recording period are used.
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Table 1
Identified friction parameters

Typ σ0 σ1 σ2 Fc Fd vs r
A 1.42 · 105 1/m 0.02 s/m 0.01 s/m 0.61 0.14 0.01m/s –
B 6.5 · 104 1/rad 0.02 s/rad 0.01 s/rad 0.49 0.08 0.02 rad/s 0.011 m

From the results of a fuzzy sensitivity analysis [13] it is known, that the individual parameters are responsible
for different behaviour characteristics. Micro-slip behaviour is mostly affected by the parametersp 1 = [σ0 σ1].
During macro-slip, where sliding in the entire contact area occurs, especially the parametersp 2 = [Fc Fd vs σ2]
are of importance. Macro-slip and micro-slip behaviour can be generated by choosing an appropriate combination
of excitation amplitude and normal force which has an influence on the break-away force.

To efficiently solve the optimization problem in Eq. (3), the identification is carried out in two steps. First, the
parametersp1 are identified from responses measured during micro-slip regime. The remaining parametersp 2 are
obtained from measurements where the joint is operated in stick-slip behaviour. For both optimizations, data from
several measurements with different excitations and normal forces are used. Because of the nonlinear objective
function Eq. (3) a gradient-based optimization algorithm will only give local minima. Therefore, it is important to
start the optimization with reasonable initial values forp1 andp2.

The identified parameters are listed in Table 1 for both types of the joint. The present joint design turned out to
have quite small parametersσ1 undσ2 which have almost no influence on the dynamical behaviour. A fact that is
confirmed by the results of the fuzzy sensitivity analysis [13]. Therefore, it is hard to identify their actual values. As
an example, one of the measured hysteresis loops for type B is compared to the predicted loop in Fig. 5.

3.3. FE-model of the truss structure

The FE discretization of the truss connections is depicted in Fig. 6. All tubes and end connectors are discretized
by cubic Euler-Bernoulli beams with two nodes, each having six degrees of freedom. The Meroform nodes are
considered as perfectly rigid and the rigid portions are modelled by geometric constraintsum = Snmun between
the tied dofsum and the independent dofsun. The mass and inertia of the Meroform connections are lumped at
the centers of each truss node. The kinematics of the friction joints are described by constraint matrices, as well,
which couple the degrees of freedom of the corresponding nodes according to the type of joint. By assembling all
constraint matricesSnm into matrixS, all dependent degrees of freedom of the original finite element model with
mass matrixM̄ , damping matrixD̄, stiffness matrixK̄ and the displacement vectorz̄ can be eliminated as follows

STM̄S ¨̄z + ST D̄S ˙̄z + ST K̄Sz̄
(4)

= ST Ē uR (v,ϕ) + ST F̄w .

The resulting system of differential equations is given by

Mz̈ +Dż +Kz = EuR (v,ϕ) + Fw (5)

with the vectorz containing only the independent generalised displacementsz j (j = 1, . . . , N ). The friction forces
uR(v, ϕ) acting in the friction joints depend on the sliding velocitiesv = E T ż and the bristle deflectionsϕ. Vector
w represents disturbances.

Using the modal trasformation

z(t) = Φη(t) (6)

with the modal matrixΦ = [φ1, . . . ,φn] (including n < N ‘significant’ eigenmodesφi) obtained from the
undamped eigenvalue problem

Kφi = ω2
iMφi , i = 1, . . . , n (7)

and assuming modal damping, Eq. (5) can be transformed to a set of differential equations

η̈ + Ξη̇ + Ωη = ΦTEuR(v,ϕ) + ΦTFw (8)
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No EMA FEM error [%] MAC

1 4.49 4.495 0.18 0.79

2 4.60 4.595 0.19 0.88

3 20.65 20.60 0.24 0.97

4 22.07 22.25 0.82 0.95

5 23.61 23.76 0.64 0.93

7 24.72 25.08 1.46 0.93

8 43.47 43.73 0.60 0.95

12 46.83 46.90 0.15 0.98

17 49.45 49.52 0.14 0.72

Fig. 7. Eigenfrequencies in [Hz].

with the matricesΩ = diag (ω2
i ), Ξ = diag (2ξi ωi) and the vectorη of modal coordinatesη i. The eigenfrequency

and the modal damping coefficient of thei-th mode is denoted byω i andξi, respectively.
The sliding velocitiesv and the measured statesy, which in chapters 4.3 and 6 will be the deflections of the tip

of the mast, are given by

v =ET Φ η̇ (9)

y = V Φη +WΦη̇ . (10)

It should be pointed out that the transformation matrix in Eq. (6) is composed of eigenvectors of the underlying
linear undamped system. That means, the nonlinear state-dependent term in the excitation vectoru R is neglected
and a truss structure with frictionless joint connections is considered, i.e.FNj = 0. That way, the structure of
the linear subsystem can fully be exployed for the upcoming model reduction. Such an approach is often used for
systems with local nonlinearities [16].

Since not all the parameters of the FE model are known a priori, they have to be identified by means of Modal
Updating [6] using eigenfrequencies and mode shapes obtained from an Experimental Modal Analysis (EMA) which
has been performed on the structure. The unknown parameters particularly are the axial, bending and torsional
stiffness of the end connectors. Furthermore, the material properties of the aluminum members are not exactly
known. Dimensions and masses of the components however are considered as given.

The eigenfrequencies calculated with the updated FE model are compared to the measured values in Table 7. The
corresponding MAC values [6] of the mode shapes are listed as well. Note that only those modes are listed whose
mode shapes could clearly be identified by the EMA. The extracted modal damping ratios0.05% � ξ i � 0.5%
confirm that the present strutcture indeed is a weakly damped system. For the upcoming simulationsξ i = 0.1% will
be used for all modesi = 1, . . . , n.
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3.4. Model of the adaptive structure

By defining the state vector of the linear subsystem as

x =
[
xT

1 , . . . , xT
n

]T
with xi =

[
η̇i

ωiηi

]
(11)

where the statexi represents thei-th mode, the state space form of the friction damped truss structure is given by[
ẋ
ϕ̇

]
=
[

Ax
f(v,ϕ)

]
+
[
B
0

]
uR(v,ϕ) +

[
H
0

]
w . (12)

The system matrixA as well as the matricesB andH can easily be deduced from Eq. (5) by taking the definition
of the state vectorx into account. The internal state variablesϕ j (j = 1, . . . , l) of the l semi-active friction joints
are arranged inϕ, the corresponding differential Eq. (1) inf (v,ϕ). The sliding velocities are given byv = B Tx.
The actuator forcesuR are defined by Eq. (2) asuRj = FNj µj(vj , ϕj) where the normal forcesFNj represent the
controller output.

4. Model reduction

Because of the high order of the system Eq. (12), a model reduction is required to obtain a low order model for the
control design. This is done by significantly reducing the order of the linear subsystem and keeping the nonlinear
part unchanged. Thus, the linear subsystem[

ẋd

ẋnd

]
=
[
Ad 0
0 And

] [
xd

xnd

]
+
[
Bd

Bnd

]
u+

[
Hd

Hnd

]
w (13)

v =
[
BT

d B
T
nd

] [ xd

xnd

]
(14)

y =
[
Cd Cnd

] [ xd

xnd

]
(15)

is considered in the following. It is partitioned into dominant statesxd which will be kept in the reduced model, and
statesxnd which will be removed. In the following considerations, the nonlinear friction forcesu R are neglected
and the vectoru represents external (state-independent) actuator forces.

4.1. Balanced reduction

The determination of dominant modesxdi is based on balanced reduction using controllability and observability
gramians corresponding to the different inputs (u,w) and outputs (v, y) of the system. For an asymptotically stable
system, the controllability gramianW c and observability gramianW o are symmetric and positive definite matrices
which can be computed from the steady-state Lyapunov equations [19]

AW c +W cAT +BBT = 0 and
(16)

ATW o +W oA+CTC = 0 .

Due to the particular form of the state space model with modal coordinates, Eq. (16) can be solved in closed
form [11]. For structures with small damping and well separated eigenfrequencies3 the gramians tend to diagonal
matrices

3Even for truss structures with their quite high modal density, this approximation is valid as long as the damping ratios are small, i.e.,
ξi � 1 [11,12].
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W c(o) = diag

(
w

c(o)
i 0
0 w

c(o)
i

)
with

(17)

wc
i = ui

eie
T
i

4ξiωi
, wo

i =
ω2

iw
T
i wi + vT

i vi

4ξiω3
i

wherei = 1, . . . , n. The vectorei is thei-th row of ΦTE, vectorsvi andwi correspond to thei-th column of
V Φ andWΦ, respectively. Thei-th diagonal elementw c

i (wo
i ) is a quantitative measure for the controllability

(observability) of thei-th statexi = [η̇i, ωiηi]T which represents thei-th mode.
To idenfity modes which are relevant for the transfer behaviour of the input/output path fromu R to v, one has to

check the corresponding Hankel singular values [12]

γuvi =
√

wc
ui

wo
vi

=
eie

T
i

4ξiωi
(18)

defined by means of the eigenvalues of the controllability and observability gramians for the inputu and outputv,
i.e., wc

ui
andwo

vi
respectively. Modes with large Hankel singular valuesγuvi should be included into the reduced

model in order to guarantee a good approximation of the original system. Those modes will mainly be excited by
the friction forces. And they will contribute to the sliding velocitiesv occuring in the friction joints, as well.

In addition, all modes which have an impact on the system measurementsy need to be added to the reduced
model. They are selected according to the eigenvaluesw o

yi
of the observability gramian corresponding to the output

y. When the disturbance input matrixH is known, it can be taken into account as well.

4.2. Krylov vectors

After the dominant states are choosen, the reduced model of the linear subsystem is given by

ẋd =Adxd +BdũR(ṽ,ϕ) +Hdw (19)

ṽ =BT
d xd = ET Φdη̇d (20)

ỹ = Cdxd = V Φdηd +WΦdη̇d . (21)

Now, focus on the input/output path fromuR to v which is the most critical since the prediction of the local
nonlinearities is affected by the approximation quality of this path. As a result of neglecting the partB T

ndxnd

in Eq. (20), the approximated sliding velocitỹv is erroneous. This has a negative effect on the prediction of the
resulting friction forces̃uR(ṽ,ϕ). The approximation error would amplify when simulating the closed-loop system.
Therefore, it is important to somehow compensate for the deleted modes. For this purpose the transfer matrixG uv(s)
fromu to v

Guv(s) = BT (sI −A)−1B = BT
d (sId −Ad)−1Bd︸ ︷︷ ︸=:Guv

d (s)

+Guv
nd(s) (22)

is considered. The termGuv
nd corresponds to the neglectednnd = N−nd modes. The coefficientsHk = Hdk

+Hndk

of a Taylor series arounds0 = 0



L. Gaul et al. / Semi-active friction damping of large space truss structures 181

0

0.05

0.1

0 100 200 300 400 500 600
0

0.1

0.2

0 100 200 300 400 500 600

mode mode

type B type A

Fig. 9. Eigenvalueswc
ui

.

Guv(s) =
Nk∑
k=0

(−1)k+1BTA−k−1B︸ ︷︷ ︸=:Hk(0)

sk =
Nk∑
k=0

(
Hdk

(0) + Hndk
(0)
)
sk (23)

are the so called ‘low order moments’ which are used in ‘moment matching methods’ for model reduction purposes [4].
Considering thej-th friction joint, the first (k = 0) correction termHnd0 for the second order system in Eq. (5) is
given by

Hnd0 = H0 −Hd0 = eT
j

(
K−1ej − ΦdΩ−1

d ΦT
d ej

)
= eT

j

(
I − ΦdΦT

dM
)
K−1ej (24)

when no damping is assumed4, ej being thej-th column of the matrixE. Hnd0 represents the difference between
the static deformationK−1ej caused by an unit load acting in thej-th joint and the deformationΦ dΩ−1

d ΦT
d ej

which results from the mode superposition of the modesΦd. By taking further coefficientsHndk
into account, the

following recursive formula (Arnoldi process)

ψ∗
k = K−1Mψk−1ψ

∗∗
k =

(
I − Σk−1ΣT

k−1M
)
ψ∗

kψk = ψ∗∗
k

(
ψ∗∗T

k Mψ∗∗
k

)− 1
2

(25)

for the calculation of so called Krylov vectors [2] can be derived. The starting vector is choosen asψ 0 = K−1ej .
The matrixΣk = [Φd ψ1 . . . ψk−1] contains not only the eigenvectors ofΦd but the new generated vectors
ψk−1 (k > 1) as well. Thus, the bracket term in Eqs (26) and (27) constitute an orthonormalization with respect
to the mass matrix. By generatingK vectors for each friction jointj, a total number ofl · K Krylov vectors is
obtained. Since the columns ofΨ = [ψ1 . . . ψlK ] are not orthogonal with respect to the stiffness matrix, a singular
value decomposition (SVD)

ΨTKΨ = T Ω̂T whereΩ̂ = diag (ω̂2
m) , m = 1, . . . , lK (26)

is used to yield vectorŝΨ = ΨT which also diagonalize the stiffness matrix.
When the transformation

z(t) = [Φd Ψ̂]
[
ηd

η̂

]
withΨ̂ = [ψ̂1 . . . ψ̂lK ] andη̂ = [η̂1 . . . η̂lK ]T , (27)

is applied instead of Eq. (16), the reduced model Eq. (19) is extended by the additional rows

¨̂ηm + 2ξ̂m ω̂m
˙̂ηm + ω̂2

m η̂m = ψ̂
T

mEũ
∗
R(ṽ∗,ϕ) + ψ̂

T

mFw , m = 1, . . . , lK (28)

And the expression for the approximated sliding velocity is

ṽ∗ = ET Φdη̇d +EΨ̂ ˙̂η . (29)

The last expression in Eq. (31) can be seen as a correction term which reduces the approximation error for low
frequencies by compensating for the neglected modes of the original system. This also improves the approximated
friction forcesu∗

R.

4Similar expressions can be given for damped second order systems [4]
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4.3. Example

As an example, the proposed reduction method is now applied to the 10-bay truss structure illustrated in Fig. 8.
The displacements iny- andz-direction at the sensor location are used as measurementsy. The disturbancew is a
triangular pulse iny- andz-direction which acts as a force at the mast tip as shown in Fig. 8.

For the present example a configuration with three friction joints (two of type A and one of type B) is used.
Figure 9 shows the firstn = 600 eigenvalueswc

i of the controllability gramian for the rotational joint (type B) and
for one of the translational joints (type A). As can be seen, the frictional forces caused by type A mainly affect the
lowest modes whereas those caused by type B also excites higher modes. Therefore, only the friction joint of type B
(actuator 1) will be considered as ‘active’, in order to point out the effect of the correction termE Ψ̂ ˙̂η in Eq. (31)
on the approximation of the sliding angular velocityṽ 1 and the friction moment̃uR1 . In the other two joints of
type A no friction forces are transmitted and they are regarded as frictionless joint connections with zero normal
force (FN2,3 = 0). The reason for using those ‘inactive’ joints anyway is the resulting local stiffness reduction which
is necessary for a significant effect of the rotational joint to occur.

Using the procedure from Section 4.1nd = 60 dominant modes are selected from the firstn = 100. All
higher modes are not included in the reduced model despite their large eigenvalues5. For a constant normal force
FN1 = 400 N, the friction moment̃uR1 of the reduced system given by Eq. (19) is plotted in Fig. 10 together with
the friction moment obtained from the original system Eq. (5). It is obvious that the approximation of the actual
friction moment is quite bad.

However, augmenting the modal subspace spanned by the eigenvectorsφ di
with just two Krylov vectorsψ̂1,2

(l = 1 , k = 1, 2) improves the low frequency approximation remarkably, as can be seen from the time signal of
ũ∗

R1
in Fig. 10.

5. Semi-active control

In the following, two different control approaches are proposed. In the first approach each semi-active friction
joint has its own local feedback controller. The second concept uses one global clipped-optimal controller.

5.1. Local feedback control

Several semi-active control laws for friction dampers have been derived [18]. A bang-bang controller can be
designed by inspection of the time derivative of the Lyapunov function representing the system energy. For the

5The numbersn andnd are determined quite arbitrarily just to point out the effect of the correction term. An optimization of the ratio ofnd
to the number of Krylov vectors is not considered in this paper.
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Fig. 11. Structure with three semi-active joints at optimal positions.

LuGre friction model defined by Eqs (2) and (1), one arrives at the feedback law

FNj =




Fmax
Nj

, µj vj � εj

Fmin
Nj

+ (Fmax
Nj

/εj)µj vj , 0 < µj vj < εj

Fmin
Nj

, µj vj � 0
(30)

which maximizes the energy dissipation in the adaptive joint by avoiding sticking. A boundary layerε j has
been introduced to avoid chattering (quasi-sticking) which degrates the energy dissipation. The dynamic friction
coefficientµj is obtained from the relation

µj(t) =
uRj (t − ∆t)
FNj (t − ∆t)

(31)

where1/∆t is the sampling rate of the controller.
It is assumed that besides the sliding velocitiesv the friction forcesuR can be measured, as well. Otherwise they

have to be estimated using a simple integrator model as proposed by [14] or the dynamic friction coefficientsµ j

have to be observed using an extended Kalman filter [8,10].
For an efficient vibration suppression, the control parametersε j of the SISO-controller are optimized [21] with

respect to the system energy given by

E(te) =

te∫
0

(
xTx

)
dt . (32)

5.2. Clipped-optimal control

For the second approach a so called clipped-optimal controller is used [5]. First, a LQG controller [17] is designed
assuming an active control system and neglecting the actuator dynamics. The optimal actuator forces

ud = −K x̂ (33)

are defined by the gain matrixK, which is obtained as a solution of the algebraic Riccati equation [17] and the state
vectorx̂ is estimated by means of a Kalman filter [15].

The actuator forcesud cannot directly be applied to the structure, they have to be generated by the semi-active
friction dampers. This is achieved by controlling the normal force in each friction joint using the following local
bang-bang controller

FNj = Fmin
Nj

+ Fmax
Nj

H
[
ej uRj

]
,

(34)
Fmin

Nj
� FNj � Fmax

Nj

which updates the normal forceFNj in thej-th friction force depending on the differencee j = udj − uRj between
the desired actuator forceudj and the actual friction forceuRj . To avoid unwanted bang-bang behavior due to the
Heavyside functionH(·), a boundary layer can be introduced as has been done for the SISO controller defined by
Eq. (32). In the following, the proposed controller is refered to as cLQG controller.

The approximation of the desired actuator forces is limited because of the dissipativity constraint and the bound-
edness of the friction force. If the measurement of the actual friction forces turns out to be difficult, the Kalman
estimator can be extended by an integrator model [14] to estimate the friction forces, as well.
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6. Simulation results

The simulation results in this section will show the potential of the proposed semi-active approach to vibration
suppression. The boundary conditions and disturbance (impulse force with an amplitude of200 N over a time period
of 40 ms) are the same as described in the previous Section 4.3. Three semi-active friction joints are placed in order
to affect the lower modes of the structure. The optimal locations for a specific mode are determined by considering
the strain energies in the end connectors which occur when the structure is deformed according to the mode shape.
Since the focus has been put on the lower modes, all semi-active joints are of type A. The replaced truss nodes and
the corresponding members which are adaptively connected to them are marked in Fig. 11. It should be noted that
if the vibration of the structure is dominated by modes not considered in the optimization of the joints’ placement,
their ability to enhance the damping of the vibration decreases accordingly.

The numerical model is reduced to24 states using the proposed reduction method. The24 states represent9
modes and3 additional ‘correction modes’ (Krylov vectors) generated for each friction joint.

Figure 12 compares the decay of the system energyE (defined by Eq. (34)) for the structure with passive and
semi-active friction joints. A passive joint has a constant normal force which is set to eitherF min

N or Fmax
N . For

the semi-active joints the control law Eq. (32) with optimized control parameterε j is used. It should be noted that
during the excitation time period, the normal forces are set toF max

N in order to enable a comparison of the different
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concepts. As can be seen, the damping can significantly be enhanced by controlling the normal forces in the friction
joints. With a constant maximal normal force good vibration suppression is achieved at the beginning. However,
as the vibration amplitude decreases sticking occurs and no energy is dissipated. Only the small structural damping
reduces the vibrations.

The performance of the cLQG controller is shown in Fig. 13 together with the SISO controller. Furthermore, the
response of a fully active system where the optimal actuator forcesud are provided by the LQG controller (Eq. (35))
are directly applied to the structure. The corresponding tip deflections iny- andz-direction are given in Fig. 14.

When considering the system energy, the cLQG controller seems to perform only slightly better than the three SISO
controllers. The advantage of the cLQG controller becomes more obvious when the tip deflections are compared
(Fig. 14). In order to see how a fully active system would perform, the corresponding plots are included in Figures 13
and 14 as well. As can be seen, the suppression of the tip deflections provided by the LQG controller (active
system) is only slightly better when compared to the cLQG controller (semi-active system), wheras the advantage
of the cLQG controller over the three SISO controllers is significant. However, it is important to point out that the
semi-active approach requires only a fraction of the control power of the active system.

7. Conclusions

The present semi-active approach to vibration suppression of large space truss structures is based on controlled
energy dissipation in friction joints. A numerical model of the adaptive structure is presented, including the nonlinear
dynamics of the friction joints. The finite element model of the truss structure is updated by using data from an
Experimental Modal Analysis. And the parameters of the friction model are identified from measurements on an
isolated friction joint. To obtain a low order model a reduction method is proposed which is a combination of
balanced reduction and matching moments method. A numerical example illustrates the approximation quality of
the reduced model. Two different control approaches for semi-active damping using friction joints are introduced.
Finally, the simulation results of the truss structure with three semi-active friction joints demonstrate the efficiency
of the present vibration suppression approach.
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