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Abstract. In this paper, the dynamics of Duffing-van der Pol oscillators under linear-plus-nonlinear position feedback control with
two time delays is studied analytically and numerically. By the averaging method, together with truncation of Taylor expansions
for those terms with time delay, the slow-flow equations are obtained from which the trivial and nontrivial solutions can be found.
It is shown that the trivial solution can be stabilized by appropriate gain and time delay in linear feedback although it loses its
stability via Hopf bifurcation and results in periodic solution for uncontrolled systems. And the stability of the trivial solution
is independent of nonlinear feedback. Different from the case of the trivial solution, the stability of nontrivial solutions is also
associated with nonlinear feedback besides linear feedback. Non-trivial solutions may lose their stability via saddle-node or Hopf
bifurcation and the resulting response of the system may be quasi-periodic or chaotic. The feedback gains and time delays have
great effects on the amplitude of the periodic solutions and their bifurcation control. The simulations, obtained by numerically
integrating the original system, are in good agreement with the analytical results.

1. Introduction

As the combination of the two typical nonlinear systems, Duffing-van der Pol oscillators have received considerable
interest since they can be used as models in physics, engineering, electronics, biology, neurology and many other
disciplines [1-7]. In the last decade, much effort has been devoted to controlling the complicated dynamic behavior
of nonlinear systems by using a feedback control with time delay [8]. Hu et al. [9] considered the primary resonance
and the 1:3 subharmonic resonance of a Duffing oscillator under linear state feedback control with a time delay.
Maccari [10] developed an asymptotic perturbation method when investigating the parametric resonance of a van
der Pol oscillator under state feedback control with a time delay. Zhu et al. [11] applied a new stochastic averaging
method to predict the response of a Duffing—van der Pol oscillator under both external and parametric excitation of
wide-band stationary random processes. Xu et al. [12] discussed the primary resonant dynamics of an externally
excited van der Pol-Duffing oscillator under time-delayed position feedback control and found two routes to chaos,
namely period-doubling bifurcation and torus breaking. Kakmeni et al. [13] examined the strange attractors and
chaos control in an anharmonic Duffing-van der Pol oscillator with two external periodic forces by applying numerical
results and presented a control scheme for chaos suppression. Li et al. [14] considered the response of a forced
Duffing-van der Pol oscillator under weak linear-plus-nonlinear state feedback control with a time delay and found
that unwanted multiple solutions can be eliminated. It is also shown that coupled nonlinear state feedback control can
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be replaced by uncoupled nonlinear state feedback control. In another paper, Li et al. [15] investigated the dynamical
behavior of a parametrically excited Duffing-van der Pol oscillator under linear-plus-nonlinear state feedback control
with a time delay. It was demonstrated that nontrivial steady state response may lose their stability by saddle-node
or Hopf bifurcation when parameters such as feedback gains and time delays vary. Ji et al. drew attention to a
forced Duffing—van der Pol oscillator under weak linear-plus-nonlinear state feedback control with a time delay. It
was found that the trivial equilibrium of the autonomous system may lose its stability via subcritical or supercritical
Hopf bifurcation and the forced periodic response may lose its stability via Neimark-Sacker bifurcation [16]. EL-
Bassiouny [17] studied the fundamental resonance and subharmonic resonance of order one-half of a harmonically
forced oscillation under state feedback control with a time delay by using the multiple scale perturbation technique.
Li Jun etal. [18] investigated the high-amplitude response suppression of the primary resonance of a nonlinear plant
under cubic velocity feedback by means of the multiple scales method. It was demonstrated that appropriate choice
for the feedback gain can greatly reduce the response amplitude of the primary resonance and completely eliminate
the multiple responses. Maccari [19] studied the periodic solutions for the fundamental resonance response of a van
der Pol-Duffing system under time-delayed linear position and velocity feedback using the asymptotic perturbation
method. It was demonstrated that stable periodic solutions with arbitrarily chosen amplitude can be accomplished
if the vibration control terms are added. Ji et al. explored three types of additive resonance response [20], two
types of difference resonance response [21] and two types of primary resonance at non-resonant bifurcations of
co-dimension two [22] respectively. However, the dynamical behavior of the Duffing — van der Pol system under
linear-plus-nonlinear position feedback control with two time delays, which is described by Eq. (1), has not been
presented up to now.

T+ wgac —e(la— v )i 4 efaxd = elrz(t — ) + 92$3(t — 7)) 1)

where the dot denotes differentiation with respect to physical time ¢, w is the nature frequency, « and  are the linear
and nonlinear damping coefficients with o« > 0, 3 is the coefficient of the nonlinear stiffness, ¢ is a small positive
parameter, g; and 7; (i = 1,2) are the feedback gains and time delays respectively.

The present work aims at investigating the effects of gains and time delays in feedback control on the response of
the system considered. The remainder of this paper is arranged as follows. In Section 2, the slow- flow equations,
of which the fixed points correspond to different types of solutions of the system considered are derived with the
aid of the method of averaging. In Sections 3 and 4, the stability of the trivial and nontrivial solutions is discussed
respectively along with simulations. The paper closes with a discussion and some conclusions in Section 5.

2. Slow-flow equations

Equation (1) can be rewritten as

F+wir =ceF(v,3,2(t — 1), 2(t — 12)) 2
where
F = (a—vya2))i — Bad + gia(t — 1) + gox®(t — ) (3)

For the case of small ¢, the approximate solution of Eq. (2) is supposed to take the following form according to the
method of averaging [23-25],

x = R cos(wot — 6) 4)

where the amplitude R and the phase ¢ are time-dependent and governed by

2w

R=—¢ ! /wo sin(wot — 0)Fdt
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Fig. 1. The boundary where Hopf bifurcation of the trivial solution occurs in the 71 — g1 plane, wp = a =1

After integrating and truncating the Taylor expansions for those terms containing time delay [26], Eq. (5) is in the
following form, namely, slow-flow equations

SwoRk = —R[4g; sin(woT) + R?*ywo + 392 R? sin(woTz) — 4awq] ©)

8woRH = —R[3BR? — 4g; cos(wor1) — 392 R? cos(woT))]

where the dot indicates differentiation with respect to the rescaled time 7" = et. Equation (6) is an autonomous
dynamical system, the nontrivial fixed points of which correspond to the periodic motions of the system described
by Eq. (1). Itis clearly seen that the addition of feedback control modifies the modulation equations. Consequently,
with feedback control it is possible to change the nonlinear dynamic characteristics of the system.

If ; = =0inEq. (6), i.e., the time delays in feedback are zero, the slow flow equations for the system under
feedback control without time delay are obtained. Similarly, the slow flow equations for the case without feedback
control can be obtained by setting g1 = go = 0in Eq. (6). Equation (6) has both trivial and nontrivial fixed points,
and the later corresponds to the periodic response of Eq. (1).

3. Stability and bifurcation of thetrivial solution
It is necessary to express Eq. (6) in Cartesian form to avoid being divided by zero when considering the stability
of the trivial solution. For this purpose, the approximate solution (4) can alternatively be written as
T = pcoswot + ¢ sinwot (7
where p and ¢ are determined by
8wop = p[—4g1 sinwoTy + dawy — (p* + ¢*)(woy + 392 sinwos)]

(8)

+ q[—4g1 coswori + (* + ¢*)(33 — 3g2 cos woTy)]
8wod = pl4g1 cosworr — (p* + ¢*) (38 — 3ga cos woT)]
[

+ q[—4g1 sinwer + 4awy — (p% + ¢*)(woy + 3g2 sin woTs)]

The eigenvalues of the Jacobian matrix for the trivial solution are the roots of the following equation
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Fig. 2. Time history of the uncontrolled system, wo =a=8=v =1, =0.2.
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Fig. 3. Time history of the controlled system with parameters of linear feedback in“S”region of Fig. 1. wo =a==~v=1,¢ =0.2, g1 =2,
1 =2,92 =0.
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where a; = 4g;1 sinwo — 4awy, az = (491 sin weTy — 4awp)? + (491 cos wety )?. According to the Routh-Hurwitz
criterion, the trivial solution is asymptotically stable if and only if a ; > 0 and a2 > 0 hold simultaneously. Therefore
the boundary between the stable and unstable regions of the trivial solution is a1 = 0 since a2 > 0 is satisfied by
definition. The condition necessary for Hopf bifurcation of the trivial solution is a ; = 0 which means that a pair of
purely imaginary eigenvalues exists. The curve determined by a1 = 0 is as shown in Fig. 1 where S and U denote
stable and unstable regions respectively.

g1 sinwom; — awp =0 (10)

The trivial solution of the uncontrolled system is unstable since a; < 0, which is demonstrated in Fig. 2. By
appropriate gain and time delay in linear feedback, it is possible to keep a; > 0. Therefore the trivial solution can
be stabilized by feedback control as shown in Fig. 3, which means its Hopf bifurcation can be removed. Certainly,
the trivial solution is still unstable if linear feedback parameters are not appropriate, which is shown in Fig. 4.
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Fig. 4. Time history of the controlled system with parameters of linear feedback in “U” region of Fig. 1. wo =a=08=~v=1,6 =0.2,91 =
2,71 =4,92=0.
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Fig. 5. The boundaries associated with the stability of periodic solutions in 72 — g2 plane.

4. Stability and bifurcation of periodic solutions

In the previous section, it has been shown that when the parameters are varied to cross the critical boundary given
by Eqg. (10) due to time delay, the trivial solution loses its stability, leading to Hopf bifurcation (periodic) solutions.
Letting R = 0 in Eq. (6), the amplitudes of the periodic solutions are determined by the following

2 _ dawy — 4¢; sin(woT) 1)

~Ywo + 392 sin(weTa)
Casel) ywo + 3g2sin(wopr2) = 0. This is the boundary between the two regions where periodic solutions exist
and do not exist respectively. It is presented in the go — 75 plane as shown in Fig. 5 (solid lines). For simplicity,

values of parameters are chosen to be 1 in the following figures if not mentioned.

Case ll) ywg + 3g2sin(wor2) > 0. Periodic solutions exist only when 4awq — 4¢7 sinwgr; > 0 holds. For
dawg — 491 sinwgmy < 0, the trivial solution is stable, which has been shown in the last section. The condition
dawg — 4g1 sinwgr; = 0 is just the boundary where the trivial solution loses its stability. Therefore, the periodic

solution is the result of the bifurcation of the trivial solution.
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Fig. 7. The effect of feedback gains on amplitude of periodic motions.

Case l11) ywp + 3g2sin(wgTz) < 0. This is also possible if feedback gains are negative. Different from Case
1), periodic solutions exist only when 4awo — 4¢1 sinwem; < 0 holds. Therefore it is necessary to determine the
stability of the periodic solutions since the trivial solution is stable when 4awo — 4¢1 sinwem; < 0 holds. The
eigenvalues of the Jacobian matrix for the periodic solutions determined by Eq. (11) are the roots of the following

equation

N 420N+ by =0 (12)
where b; = 4g; sinwem — 4dawy, be = 6R(5 — g2 coswpTa). The conditions when Hopf bifurcation of periodic
solutions occurs are given by by = 0 when b2 > 0 holds. It is obvious that b; is equal to a;. Therefore the boundaries

where Hopf bifurcation of the trivial solution occurs are the possible boundaries where Hopf bifurcation of the
periodic solutions occurs. The condition necessary for saddle-node bifurcation of periodic solutions is givenby b o =

0,i.e,
ﬂ — g2 COSWoT2 = 0 (13)
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Fig. 8. Bifurcation diagram of response when time delay 7 is varied.
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Fig. 9. Regions corresponding to different motions in the 71 — 7> plane. (Im: low-amplitude motion, hm: high-amplitude motion, cm: complex
motion).

This boundary is also presented in Fig. 5 where b and s denote boundaries determined by yw g + 3g2 sin(wo72) =0
and Eq. (13) respectively.

The effect of feedback on the amplitude of periodic solutions can be graphically presented as shown in Figs 6
through 7 from which those regions where periodic solutions do not exist can be found. In Fig. 8, the bifurcation
diagram of response is directly obtained from Eq. (1) by numerical method, according to which it can be noted that
the motion of the system can be periodic with lower amplitude or higher amplitude or complex motion when time
delay 7 is varied. In Fig. 9, the regions corresponding to different motions are given in the 7, — 7» plane. To verify
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Fig. 10. Time history and trajectories corresponding to different time delays.
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the prediction in Fig. 9, some simulations, corresponding to different time delays, are given in Fig. 10 from which it
is easy to note the effect of time delays in feedback on nontrivial solutions.

5. Discussion and conclusions

The dynamics of Duffing-van der Pol oscillators under linear-plus-nonlinear position feedback control with two
time delays is investigated analytically and numerically in this paper. By the slow-flow equations, the stability of
the trivial and nontrivial (periodic) solutions is discussed respectively. It is shown that the trivial solution can be
stabilized by appropriate gain and time delay in linear feedback although it loses its stability via Hopf bifurcation
and results in periodic solution if feedback control is not applied. Different from the case of the trivial solution, the
stability of periodic solutions is also associated with the nonlinear feedback besides linear feedback. The feedback
gains and time delays have great effects on the amplitude of the periodic solutions. Periodic solutions may lose
their stability via saddle-node or Hopf bifurcation and the resulting response of the system may be quasi-periodic
or chaotic. The condition necessary for saddle-node bifurcation of periodic solutions is only depend on nonlinear
feedback control, while the condition necessary for their Hopf bifurcation is only depend on linear feedback control.
The simulations, obtained by numerically integrating the original system, are in good agreement with the analytical
results.
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