
Shock and Vibration 20 (2013) 821–832 821
DOI 10.3233/SAV-130787
IOS Press

Thermo-mechanical vibration of short carbon
nanotubes embedded in pasternak foundation
based on nonlocal elasticity theory

B. Amiriana, R. Hosseini-Arab,∗ and H. Moosavia
aDepartment of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
bDepartment of Engineering, Payame Noor University, Tehran, Iran

Received 8 June 2012

Revised 13 November 2012

Accepted 2 March 2013

Abstract. This study is concerned with the thermal vibration analysis of a short single-walled carbon nanotube embedded in
an elastic medium based on nonlocal Timoshenko beam model. A Winkler- and Pasternak-type elastic foundation is employed
to model the interaction of short carbon nanotubes and the surrounding elastic medium. Influence of all parameters such as
nonlocal small-scale effects, high temperature change, Winkler modulus parameter, Pasternak shear parameter, vibration mode
and aspect ratio of short carbon nanotubes on the vibration frequency are analyzed and discussed. The present study shows
that for high temperature changes, the effect of Winkler constant in different nonlocal parameters on nonlocal frequency is
negligible. Furthermore, for all temperatures, the nonlocal frequencies are always smaller than the local frequencies in short
carbon nanotubes. In addition, for high Pasternak modulus, by increasing the aspect ratio, the nonlocal frequency decreases. It is
concluded that short carbon nanotubes have the higher frequencies as compared with long carbon nanotubes.
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1. Introduction

After seminal work of Iijima [1], many researchers have great interests on dynamic analysis of carbon nanotubes
(CNTs), because of their exceptional mechanical, electrical and thermal properties [2–4]. These properties of CNTs
lead to its application in the fields of nano-electronics, nano-devices, nano-composites, etc. It has been shown that
the CNTs with extremely high elastic modulus and low mass density can serve as terahertz nano-resonators [5–8] in
nano-electro-mechanical systems (NEMS). For example, they are thermally stable up to 2800◦C in vacuum, with a
thermal conductivity which is twice as large as diamond, and having an electric- current- carrying about 1000 times
greater than copper wire [9].

On the other hand, most applications tend to shrink the dimensions of nano-scale devices. Researchers show that
short nanotubes with open ends are required to overpass the diffusion limitation [10]. Wang et al. [11] studied the
electro-chemical behavior of ultra-short carbon nanotubes. They concluded that compared with conventional long
CNTs, short CNTs show much better electro-chemical performances. Lopez et al. [12] discussed structural and
thermal stability of short carbon nanotubes. Seidel et al. [13] showed that short CNTs, with the lengths less than
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20 nanometers, are useful in molecular electronics and CNT field-effect transistors (CNTFETs). Yoon et al. [14]
studied the vibration behavior of multi-walled carbon nanotubes embedded in an elastic medium using multiple-
elastic beam model. Zhang et al. [15] developed a double-elastic beam model for transverse vibration of double-
walled carbon nanotubes (DWCNTs) under axial compressive load using Euler-Bernoulli beam theory. A nonlocal
elastic model for static and dynamic analysis of carbon nanotubes embedded in two-parameter Pasternak foundation
applied by Ref. [16–19]. In fact, the Winkler-type elastic foundation is approximated as a series of closely spaced,
mutually independent, vertical linear elastic springs. The interaction between the springs is ignored in Winkler-type
foundations. Therefore, a more realistic and generalized representation of the elastic medium can be accomplished
by a two-parameter foundation model [20]. However, only a limited portion of literature is concerned with the
vibration analysis of carbon nanotubes considering the thermal effect and Pasternak foundation.

Moreover, the size-dependent nonlocal continuum theory is used because at small-scale length, the material mi-
crostructures, such as lattice spacing between individual atoms, become increasingly significant and thus its effect
can no longer be ignored [21]. In addition, most of the previous studies treated a nanotube as a simple Euler beam
and neglected the effects of transverse shear deformation and rotary inertia. In fact, the Euler-Bernoulli beam models
holds only when the length of the beam is much larger than its thickness (i.e., more than 10 times). However, in many
applications the length of the nanotube is insufficiently long to be simplified as an Euler beam and the influence of
shear deformation and rotary inertia should be taken into account [22].

In this paper, we present a nonlocal Timoshenko beam model and derive all governing equations and boundary
conditions for vibration analysis of short carbon nanotubes, using Hamilton’s principle. The surrounding elastic
medium is described as the Winkler- and Pasternak type foundation. Therefore, an analytically solution is used
to obtain the natural frequency of short carbon nanotubes with immoveable supports. Finally, the influences of
nonlocal parameter, Winkler and Pasternak shear modulus parameter, high temperature change, aspect ratio and
vibration mode on vibration of short carbon nanotubes are discussed.

2. Nonlocal nanobeam model for linear analysis of short CNTs

The nonlocal elasticity theory is developed by Eringen [23,24] and Eringen and Edelen [25]. According to theory
of nonlocal elasticity, the stress at a point x in a body depends not only on the strain at point x (hyper elastic case)
but also on those at all other points of the body. Thus the nonlocal stress tensor σ at point x is expressed as

σij =

∫
V

λ (|x′ − x|, τ) εkl(x′)CijkldV (x′), (1)

(
1− τ2l2∇2

)
σ = t, τ =

e0a

l
. (2)

The terms σij , εkl and Cijkl are the stress, strain and fourth order elasticity tensor, respectively. λ(|x′ − x|, τ) is
the Kernel function or nonlocal modulus or attenuation function incorporating into constitutive equations, |x′ − x|
represents the distance in Euclidean form, and τ is the material constant that depends on the internal (e.g. lattice
parameter, granular size, distance between C-C bonds) and external characteristic length (e.g. wave length). The
values of a and l are the internal and external lengths, respectively, and classical stress tensor is defined as t = C : ε,
where ‘:’ represents the double dot product. The parameter e0 is estimated such that the relations of the nonlocal
elasticity model could provide satisfactory approximation of atomic dispersion curves of plane waves with those
of atomic lattice dynamics [26]. In this regard, Zhang et al. [27] performed analysis of elastic interactions between
Stone-Wales and divacancy defects on carbon graphene sheets. They concluded that the displacement field around
defects obtained from the nonlocal continuum models and MD can match very well if e0 is chosen to be 8.79.
Duan et al. [28] reported the value of e0 ranging from 0–19 for carbon nanotubes with nonlocal Timoshenko beam
theory and using MD results. Wang studied the wave propagation in carbon nanotubes with two nonlocal continuum
mechanics models: elastic Euler-Bernoulli and Timoshenko beam models and proposed e0 = 1∼ 14 [29]. Shen
and Zhang [30] considered e0 in the range of 3 to 5.1 and estimated small scale effect parameter by matching the
buckling torque of CNTs observed from the MD simulation results with the numerical results obtained from the
nonlocal shear deformable shell model. Chan and Zhao [31] reported e0 = 0.23 by considering nonlocal elasticity
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as an important factor in the spinning CNTs. On the other hand, Khademolhosseini et al. [32] proposed e0 =
0.18 through comparison of the MD simulation results with classical and nonlocal dispersion relations. Wang et
al. [33] proposed that e0 = 0.288 be used in determination of the dispersion curves via elastic beam theories and
the Molecular Dynamics method. In addition, Eringen [23] proposed e0 as 0.39. On the other hand, Eringen also
proposed e0 = 0.31 based on the comparison of Rayleigh surface wave via nonlocal continuum mechanics and
lattice dynamics. Zhang et al. [34] approximated that e0 = 0.82 by matching the theoretical buckling strain obtained
by the nonlocal elastic cylindrical shell model. It is clear that a large range of values for scale parameter, e0a, is
possible. The above mentioned studies indicate that reasonable choice of the value of the parameter e0a is crucial
to ensure the validity of the nonlocal models. Although, e0 is a key parameter in the nonlocal elasticity theory,
there is hitherto no rigorous study being made on estimating the scaling parameter for various physical problems.
Therefore, more works, especially experimental tests, are required to determine e0 more accurately for CNTs. In this
study, the small scale coefficients were taken as e0a = 0.0, 0.5, 1.0, 1.5, 2.0 (nm) for carbon nanotubes as described
by Ref. [35].

3. Formulations

The displacement field equation based on Timoshenko beam theory is given as

u1(x, y, z, t) = u(x, t) + zϕ(x, t), (3a)

u2(x, y, z, t) = 0, (3b)

u3(x, y, z, t) = w(x, t), (3c)

where u1 and u3 are the axial and transverse displacement of the point (x, 0) on the mid-plane (i.e., z = 0) of the
beam and ϕ(x, t) denotes the rotation of the cross-section beam. The nonzero strains according to Timoshenko beam
theory are expressed as

εxx =
∂u(x, t)

∂x
+ z

∂ϕ(x, t)

∂x
, εxz =

∂w(x, t)

∂x
+ ϕ(x, t), (4)

where εxx and εxz are the axial and shear strain, respectively. The equations of motion of the nonlocal SWCNTs
embedded in an elastic medium can be derived from the Hamilton’s principle

δ

∫ t1

0

[K − (U + V )] dt = 0. (5)

The strain energy of beam, U is given by

U =
1

2

∫ L

0

{
N

∂u(x, t)

∂x
+M

∂ϕ(x, t)

∂x
+Q

(
∂w(x, t)

∂x
+ ϕ(x, t)

)}
dx, (6)

where the normal resultant force N , bending moment M and transverse shear force Q are calculated from

N =

∫
A

σxxdA, M =

∫
A

σxxzdA, Q =

∫
A

σxzdA. (7)

The general form of kinetic energy comes in the form below

K =

∫ L

0

{
ρA

2

(
∂u(x, t)

∂t

)2

+
ρI

2

(
∂ϕ(x, t)

∂t

)2

+
ρA

2

(
∂w(x, t)

∂t

)2
}
dx. (8)



824 B. Amirian et al. / Thermo-mechanical vibration of short carbon nanotubes embedded in pasternak foundation

where ρ is the mass density of beam material, A is the beam’s cross sectional area (circular-cross section) and I is
the second moment of area about y-axis. The potential energy is equal to work done by external forces and is given
by

V = WE = −1

2

∫ L

0

{
f(x, t)u(x, t) + q(x, t)w(x, t) + N̄

(
∂w(x, t)

∂x

)2

+ few(x, t)

}
dx (9)

Indeed, the Eq. (9) is extended form of potential energy in Ref. [36]. In this equation, the effects of thermal field
and two-parameter elastic medium are considered. In above equation, negative sign indicates that work is done on
the body, f(x, t) and q(x, t) are the axial and transverse distributed forces (measured per unit length), N̄ is applied
compressive force and fe is the density of reaction force of elastic foundation and expressed as

fe = KWw(x, t) −KG
∂2w(x, t)

∂x2
(10)

The terms KW and KG represent the Winkler and shear modulus (shear layer foundation stiffness) of the elastic
medium, respectively. By using calculus of variation and substituting Eqs (6), (8) and (9) into Eq. (5), the Hamilton’s
principle can be represented as

0 =

∫ t

0

∫ L

0

{
m0

(
∂u

∂t

∂δu

∂t
+

∂w

∂t

∂δw

∂t

)
+m2

∂ϕ

∂t

∂δϕ

∂t
−N

∂δϕ

∂x
−M

∂δw

∂x

−Q

(
∂δw

∂x
+ ∂δϕ

)
+ f(x, t)δu + q(x, t)δw + N̄

(
∂w

∂x

∂δw

∂x

)
+ feδw

}
dxdt.

(11)

The mass inertia m0 and m2 are defined by

m0 =

∫
A

ρdA = ρA, m2 =

∫
A

ρz2dA = ρI. (12)

With integrating by parts of Eq. (11) setting the coefficient of δu, δw and δϕ to zero leads to equations of motion

∂N

∂x
+ f(x, t) = m0

∂2u

∂t2
, (13a)

∂Q

∂x
+ q(x, t) −KWw +KG

∂2w

∂x2 − N̄
∂2w

∂x2 = m0
∂2w

∂t2
, (13b)

∂M

∂x
−Q = m2

∂2ϕ

∂t2
. (13c)

It is assumed that the axial and transverse distributed forces are equal to zero

f(x, t) = q(x, t) = 0. (14)

Differentiating Eq. (13c) once related to x and substituting into Eq. (13b), we obtain the nonlocal bending moment,
M , and shear force, Q, in the Timoshenko beam theory

M = EI
∂ϕ

∂x
+ μ

[
N̄

∂2w

∂x2 +KWw −KG
∂2w

∂x2 +m0
∂2w

∂t2
+m2

∂3ϕ

∂x∂t2

]
, (15)

Q = KSGA

(
∂w

∂x
+ ϕ

)
+ μ

∂

∂x

[
N̄

∂2w

∂x2 +KWw −KG
∂2w

∂x2 +m0
∂2w

∂t2

]
. (16)
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where E is the Young’s modulus, G is the shear modulus or modulus of rigidity and Ks is the Timoshenko’s shear
correction that accounts for non-uniform shear stress distribution through the thickness of the beam. By substituting
Eqs (15) and (16) into Eq. (11), we obtain the complete form of equations of motion

EA
∂2u

∂x2 + μm0

(
∂4u

∂x2∂t2

)
= m0

∂2u

∂t2
. (17a)

EI
∂2ϕ

∂x2 −KSGA

(
∂w

∂x
+ ϕ

)
+ μm2

∂4ϕ

∂x2∂t2
= m2

∂2ϕ

∂t2
. (17b)

∂

∂x

[
KSGA

(
∂w

∂x
+ ϕ

)]
+KWw −KG

∂2w

∂x2 − N̄
∂2w

∂x2

+μ
∂2

∂x2

[
N̄

∂2w

∂x2 +KWw−KG
∂2w

∂x2 + m0
∂2w

∂t2

]
= m0

∂2w

∂t2
.

(17c)

The boundary conditions of Eqs (17a–c) are written as follows:(
EA

∂u

∂x
+ μm0

∂3u

∂x∂t2

)
δu

∣∣∣∣
L

0

= 0, (18)

{
KSGA

(
∂w

∂x
+ϕ

)
−N̄

∂w

∂x
+μ

∂

∂x

[
N̄

∂2w

∂x2 +KWw−KG
∂2w

∂x2 +m0
∂2w

∂t2

]}
δϕ

∣∣∣∣
L

0

= 0, (19)

{
EI

∂ϕ

∂x
+ μ

[
N̄

∂2w

∂x2 +KWw −KG
∂2w

∂x2 +m0
∂2w

∂t2
+m2

∂3ϕ

∂x∂t2

]}
δw

∣∣∣∣
L

0

= 0. (20)

Here, N̄ represents the axial force on the CNTs and is expressed as

N̄ = Nm +Nθ (21)

where Nm is the axial force due to the mechanical loading prior to buckling and Nθ is the axial force due to the
influence of temperature change. Here, the theory of thermal elasticity mechanics is adopted because the Young’s
modulus of SWCNT is insensitive to temperature change in the tube at temperatures of less than approximately
1100◦K , but decreases at high temperature [37]. In addition, the high thermal conductivity of CNTs leads to the
uniform and constant axial force, Nθ , as below [38]

Nθ = − EA

1− 2υ
αxθ, (22)

where αx is the coefficient of thermal expansion in the direction of x-axis, υ is the Poisson’s ratio and θ denotes
the change in temperature. Here changes for high temperature environment will be considered. By considering the
boundary conditions for immoveable supports, u (0, t) = u (L, t) = 0, the axial force due to mechanical loading
will be zero.

4. Analytical solution for vibration of short carbon nanotubes

By the application of the separation of variables, we can assume periodic solutions of the form ϕ(x, t) = φ(x)eiωt

and w(x, t) = W (x)eiωt for vibration analysis of short carbon nanotubes, where φ(x) and W (x) are the mode
shapes and ω is the frequency of natural vibration [36]. Therefore, with substituting ϕ(x, t) and w(x, t) into
Eqs (17b) and (17c), we obtain

d

dx

(
EI

dφ

dx

)
−KSGA

(
dW

dx
+ φ

)
+m2ω

2

(
φ− μ

d2φ

dx2

)
= 0. (23)
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d

dx

[
KSGA

(
dW

dx
+ φ

)]
+KWW −KG

d2W

dx2 − N̄
d2W

dx2 + μN̄
d4W

dx4 + μKW
d2W

dx2

− μKG
d4W

dx4 − μm0ω
2 d

2W

dx2 +m0ω
2W = 0.

(24)

Differentiating Eq. (24) once, substituting for dφ
dx and by some simplifications, we obtain

A
d6W

dx6 +B
d4W

dx4 + C
d2W

dx2 +DW = 0, (25)

where

A =μ
(
EI − μm2ω

2
)( N̄ −KG

KSGA

)
,

B =
(
EI − μm2ω

2
)(

1− N̄ +KG − μKW + μm0ω
2

KSGA

)

+ μ

(
N̄ −KG

KSGA

)(
m2ω

2 −KSGA
)
,

C =
(
m2ω

2 −KSGA
) (

1− N̄ +KG − μKW + μm0ω
2

KSGA

)
+KSGA

+
(
EI − μm2ω

2
)(m0ω

2 +KW

KSGA

)
,

D =
(
m2ω

2 −KSGA
) (m0ω

2 +KW

KSGA

)
.

(26)

It is noticeable that by ignoring the thermal and elastic medium parameters, the governing differential equation in
Ref. [36] is derived. Considering the boundary conditions for simply-supported short-SWCNT with immoveable
ends as

w(0, t) = w(L, t) = 0, M = 0 at x = 0 and x = L. (27)

By substituting ϕ(x, t) and w(x, t) into Eqs (19) and (20), the natural boundary conditions for linear vibration are
derived as below

{
KSGA

(
dW

dx
+ φ

)
− N̄

dW

dx
+ μN̄

d3W

dx3 − μm0ω
2 dW

dx

}∣∣∣∣
L

0

= 0. (28a)

{
EI

dφ

dx
+ μ

[
N̄

d2W

dx2 +KWW −KG
d2W

dx2 −m0ω
2W −m2ω

2 dφ

dx

]}∣∣∣∣
L

0

= 0. (28b)

The general solution can be considered as follows:

W (x) =

∞∑
m=1

sin
mπ

L
x, (29)

where m is the mode number. The above solution can satisfy all boundary conditions. With substituting Eqs (26)
and (29) into Eq. (25), we calculate the natural frequencies for different cases. The frequency equation in general
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Fig. 1. Variation of natural frequency with aspect ratio L/d for differ-
ent change in mode numbers, m, with/without rotary inertia, m2, for
short-SWCNT, (KW = KG = N̄ = 0).

Fig. 2. Change of natural frequency with aspect ratio L/d for different
change in nonlocal parameter.

form is written as follows:

−
[
μ
(
EI − μm2ω

2
)(N̄ −KG

KSGA

)](mπ

L

)6

+

[(
EI − μm2ω

2
)(

1− N̄ +KG − μKW + μm0ω
2

KSGA

)

+μ

(
N̄ −KG

KSGA

)(
m2ω

2 −KSGA
)](mπ

L

)4
−
[(
EI − μm2ω

2
)(m0ω

2 +KW

KSGA

)

+KSGA+
(
m2ω

2 −KSGA
) × (

1− N̄ +KG − μKW + μm0ω
2

KSGA

)](mπ

L

)2

+
(
m2ω

2 −KSGA
)(m0ω

2 +KW

KSGA

)
= 0.

(30)

5. Numerical results

Here, we present numerical solutions for the vibration of short-SWCNTs, considering the effects of thermal field
and Pasternak elastic medium. The following values of effective properties are used [36]

ρ = 2300 Kg/m3, E = 1000 Gpa, d = 1× 10−9 m,KS = 0.877, υ = 0.19, G = 420 Gpa (31)

Here, we consider the aspect ratios (length-to-diameter, L/d) of short carbon nanotubes in the range of 5 to 10. In
the following, five different cases are studied in order to consider the different parameters:

Case (1). µ = 0,KG = 0,KW = 0, N̄ = 0

In this case, the natural frequency for local problem is calculated. The effect of aspect ratio and rotary inertia in
local frequency is shown in Fig. 1. It depicts that with increasing in aspect ratio (L/d), the natural frequencies de-
crease but with increasing in mode number (m), the natural frequencies increase. Moreover, the natural frequencies
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Fig. 3. Mode number effect on natural frequency of a short-SWCNT
for different aspect ratio L/d and μ = 0.5.

Fig. 4. Variation of natural frequency with aspect ratio L/d for different
nonlocal parameter, (KW = 103 N/m2, m = 1).

Fig. 5. The effect of mode number on natural frequency for different
nonlocal parameter μ, (KW = 103 N/m2, L/d = 5).

Fig. 6. The effect of Winkler modulus KW on natural frequency with
different aspect ratio for (m = 1, μ = 0.5).

in the presence of rotary inertia are less than its counterpart without the effect of rotary inertia. Therefore, rotary
inertia leads to diminish the amount of natural frequencies. This is the most basic case that has been considered.
Case (2). KG = 0,KW = 0, N̄ = 0

In nonlocal cases in which the nonlocal parameter is considered, with increasing in aspect ratio, the amount of
natural frequencies increase but it is lower than the local values (case1). The Winkler and shear modulus parameters
are equal to zero. Also the effect of thermal field is not considered. Figure 2 shows the variation of natural frequencies
for different nonlocal parameter. It is clear that increasing in nonlocal parameter (μ) in different aspect ratio leads to
reducing natural frequency. In Fig. 3, the change of mode number with different aspect ratio has been considered.
The nonlocal parameter is constant.

It can be shown that by increasing in mode number, unlike the previous case, the natural frequencies significantly
reduce.
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Fig. 7. The effect of shear modulus parameter KG on natural frequency
of a short-SWCNT for different aspect ratio L/d, (KW = 102 N/m2,
m = 1, μ = 0.5).

Fig. 8. The natural frequency of a short-SWCNT with different mode
number m and shear modulus parameter KG, (KW = 102 N/m2,
μ = 0.5, L/d = 5).

Fig. 9. The effect of temperature on frequency of a short-SWCNT with
different aspect ratio L/d, (KG = KW = 0, m = 1, μ = 0.5).

Fig. 10. Change of mode number m on natural frequency for different
temperature, (μ = 0.5, L/d = 5, KW = KG = 0).

Case (3). KG = 0, N̄ = 0

In the absence of Pasternak foundation and thermal effect, we consider the effect of Winkler modulus in consti-
tutive equation. The scale coefficients are taken as e0a � 2 [35]. Figure 4 illustrates the effect of KW on natural
frequency with different nonlocal parameter for different aspect ratio. It is clear that by increasing in nonlocal param-
eter (μ), the natural frequencies decrease but with increasing in aspect ratio (L/d), the natural frequencies increase.
In this case, by using Winkler foundation, the natural frequencies are slightly reduced with respect to case (2).

Figure 5 shows the effect of mode number m on natural frequency in a fixed aspect ratio using Winkler modulus
parameter. It is clear that by increasing in mode number, the natural frequencies decrease.

The effect of Winkler foundation KW on natural frequency with different aspect ratio is shown in Fig. 6. It is
noted that natural frequency for short carbon nanotubes with higher Winkle modulus (e.g. KW = 105 N/m2) are
significantly affected by aspect ratio in comparison with lower Winkler modulus parameter (e.g. KW = 102 N/m2).
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Fig. 11. Variation of natural frequency with temperature for different
Winkler modulus KW . (μ = 0.5, KG = 0, m = 1).

Fig. 12. Change of aspect ratio L/d and effect of Pasternak foundation
KG on frequency of a short-SWCNT, (KW = 102 N/m2, θ = 100◦K ,
m = 1, μ = 0.5).

In general, natural frequencies increase due to increasing the Winkler modulus parameter. For KW � 105 N/m2,
the plots are almost coincided on each other.

Case (4). N̄ = 0

Effects of elastic foundation on the natural frequency of short single-walled carbon nanotubes with surrounding
elastic medium modeled as Pasternak foundation are shown in Fig. 7. In this case, a value of KW = 100 is taken
and the shear modulus parameter KG is varied from 0 to 10. These values are taken from Ref. [18] for the analysis
of double-layered graphene sheets embedded in polymer matrix. It is assumed that the shearing layer stiffness of the
foundation is one-tenth of the value of Winkler modulus [39]. Moreover, by increasing in aspect ratio, the natural
frequencies increase significantly as compared with the case (3). As illustrated in Fig. 7, by increasing the shear
modulus parameter KG in a constant aspect ratio, the natural frequencies of a short single-walled carbon nanotubes
increase significantly and the frequencies are higher than the values in Fig. 4. The variation of natural frequencies
with mode number for different shear modulus parameter is illustrated in Fig. 8. Here, nonlocal parameters and
aspect ratio are assumed to be constant. Figure 8 depicts that with increasing in Pasternak constant, the natural
frequencies increase.

Also, it is clear that the effect of mode number m on natural frequencies is similar to shear modulus parameter.
Therefore, it is noticeable that by increasing in shear modulus parameter KG, the natural frequencies increase
significantly.

Case (5)

This general cases is included all previous cases. In addition, the temperature effect has been considered here.
It is reported that all the coefficients of thermal expansion for single walled carbon nanotube are negative at low
temperature and are positive at high temperature [40]. Thus thermal expansion coefficient for short carbon nanotubes
is taken as +1.1× 10−6◦K [41]. In this case, the temperature changes are assumed to be uniform. Figures 9–12 are
presented in order to review the effect of different parameter in frequency of a short-SWCNT. In Fig. 9, the effect of
temperature change in natural frequency is considered. The Winkler and shear modulus parameter are equal to zero.
It is clear that with increasing in temperature, the natural frequencies increase. In addition, the length-to-diameter
parameter leads to decrease the natural frequencies.

The effect of mode number on natural frequency for different temperature change is shown in Fig. 10. Here, the
nonlocal parameter and aspect ratio are constant. Therefore, with increasing in mode number m and temperature
change, the frequencies increase significantly.
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The simultaneously effects of Winkler modulus KW and temperature change on natural frequency are shown in
Fig. 11. It is clear that by increasing in temperature, θ, and Winkler modulus, KW , the natural frequencies increase
and for low Winkler modulus, the diagrams are almost coincided on each other and the frequencies response are
identical. As compared with Fig. 9, using Winkler foundation leads to decrease natural frequencies. As mentioned
before, the natural frequencies with higher Winkler modulus (e.g. KW = 107 N/m2) are significantly affected by
aspect ratio in comparison with lower Winkler modulus parameter (e.g. KW = 102 N/m2).

Effects of aspect ratio along with Pasternak foundation and a fix nonlocal parameter are shown in Fig. 12. It
is realized that with increasing in aspect ratio, natural frequencies decrease but in this case, with difference in
temperature, natural frequency doesn’t change significantly.

6. Conclusions

In this paper, the linear vibration characteristics of a short SWCNT embedded in Pasternak foundation in thermal
environments were investigated. Analytical solution was used to solve the constitutive equations. The main results
of this paper are obtained as follows:

An increase in nonlocal parameter leads to decrease the natural frequency. For a short SWCNT, with increasing
the Winkler modulus in a constant aspect ratio, the natural frequencies increase. By comparing with the Winkler
medium, for the Pasternak foundation, the frequency significantly increased. In addition, when a short SWCNT is
subjected to various parameters simultaneously, the effect of Pasternak foundation on natural frequency is more sig-
nificant. In this case, the effects of temperature change and Winkler foundation are negligible. For a short SWCNT,
by increasing the temperature, in a constant nonlocal parameter, the natural frequencies increase. However, the
frequency values are lower than the results obtained in case (2). Therefore, we realize that two-parameter elas-
tic medium plays a very important role in frequencies of short SWCNT. Generally, it is concluded that the effect of
Pasternak foundation on natural frequency is more significant as compared to the effects of thermal loading, Winkler
modulus and nonlocal parameter and should be considered in vibration analysis of short carbon nanotubes.
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