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Abstract. The viscous damping force in the mixed form as fd (ẋ) = c1ẋ + c2 |ẋ| ẋ can well describe damping characteristics
of isolators and dampers in many cases. In this paper, performance characteristics of single-degree-of-freedom (SDOF) linear-
stiffness isolators with mixed and piecewise mixed viscous damping are analytically examined under harmonic base excitation.
Based on the first-order harmonic balance method (HBM), both relative and absolute displacement transmissibility expressions
with the equivalent linear damping coefficient (ELDC) are given. And the analytical calculations show good agreement with
the numerical results. Also, the influence of nonlinear damping on the response characteristics is investigated by comparing
the transmissibility of linear and nonlinear systems. The resonant frequency always shifts to a lower value as the nonlinear
damping component of the force fd (ẋ) = c1ẋ + c2 |ẋ| ẋ becomes stronger, and when the damping ratio in the corresponding
linear model is relatively high, the relative transmissibility decreases at frequencies higher than the resonance frequency of the
corresponding linear damping system and the absolute one increases for the frequency ratios above

√
2. Finally, the displacement

transmissibility of a nonlinear isolator with piecewise mixed viscous damping is discussed and the process shows research
similarity with the non-piecewise case.

Keywords: Mixed viscous damping, vibration isolation, harmonic balance method, equivalent linear damping coefficient, dis-
placement transmissibility

1. Introduction

In order to improve the safety and comfort of the production, dampers or isolators with liquid are often used to
control unwanted vibrations and noises in engineering [1–10]. A very basic description of a hydraulic damper is that
it essentially consists of a piston moving in a closed cylinder, which has a small orifice in the piston head connecting
either side through which the fluid flows [3,9]. Sometimes the damping force produced by liquid reciprocating across
the damping orifice may be modeled by a combination of linear and quadratic damping terms relative to the mean
fluid velocity as fd (ẋ) = c1ẋ+ c2 |ẋ| ẋ instead of the proportional to the velocity for a laminar flow or to the square
of the velocity for a turbulent flow [3,5,8]. Also, the damping force of a hydraulic engine/cab mount only with the
inertia track or the orifice could be expressed as the above mixed viscous damping form when the properties of the
main rubber were treated using the Kelvin-Voigt model and the liquid damping force in the track or the orifice was
expressed as the quadratic term f (ẋ) = c |ẋ| ẋ [6,10]. Besides, the mixed damping form was also used to model the
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damping capacity of a metal-bonded rubber isolator [11]. Moreover, dampers were feasibly designed in piecewise
damping characteristics [2,3,12].

For the treatment of the nonlinear damping force involving the quadratic term, there are various approaches. Guo
et al. [1] evaluated the absolute displacement transmissibility of a single-degree-of-freedom (SDOF) base isolation
system with a nonlinear viscous damping device using the Ritz-Galerkin method. Popov and Sankar [8] analysed
the non-linear orifice type damper using the numerical integration. Nayfeh and Mook [13] solved the equation of
motion for the unforced oscillator with quadratic damping using the averaging method which was generally suitable
for weakly nonlinear problems. In practical engineering, a nonlinear damping device is often represented in the
mathematical model by a linear viscous damper which provides a required equivalent viscous damping in the pre-
design stage. Commonly, the equivalent viscous damping coefficient, which is from an approximate solution based
on the equal energy dissipation per cycles for linear viscous-damped and nonlinear-damped systems by assuming
harmonic responses, is proposed [4,14]. Mallik [15] used the common method to treat nonlinear damping forces in
the studies of a duffing oscillator with different damping mechanisms. Ravindra and Mallik [16] solved the equations
with nonlinear restoring and damping forces by using the first-order harmonic balance method (HMB) which was
applicable to both weakly and strongly nonlinear problems and the emphasis was placed on the effects of four typical
damping models on the performance of isolation systems with different nonlinear restoring forces.

Displacement transmissibility is widely used in the design of vibration isolators to indicate the vibration transmis-
sion at different frequencies. For a base isolation system, both absolute displacement transmissibility and relative
displacement transmissibility are often used as performance evaluations of the isolator [14]. To minimize the trans-
mitted vibration from a vibrating foundation, the absolute displacement transmissibility is often examined to study
the vibration isolation performance of nonlinear dampers or isolators [1,8,16]. Also, relative transmissibility is sig-
nificant in an isolator under base excitation. For example, the relative displacement transmissibility is adopted as one
of the suspension performance indices for the design of vehicle suspension systems [17,18]. The relative deflection
is a measure of the clearance (known as working space, travel space or rattle space) required in the isolator, which
should be bounded in the mechanical design. Milovanovic et al. [19] studied the performance of two SDOF isolators
with cubic nonlinearities respectively in stiffness and damping terms under base excitation from the viewpoint of
both absolute and relative displacement transmissibility.

This paper presents an analytical study on the harmonic responses of nonlinear damper isolators with mixed
and piecewise mixed viscous damping and investigates the influence of the nonlinear damping on the displace-
ment transmissibility. The absolute and relative displacement transmissibility expressions and the equivalent linear
damping coefficient (ELDC) for a SDOF linear-stiffness isolation system with mixed viscous damping force as
fd (ẋ) = c1ẋ+ c2 |ẋ| ẋ are obtained based on the first-order HBM in Section 2. The transmissibility expressions in
terms of the ELDC, which reveals that the equivalent viscous damping coefficient has the first harmonic precision,
have the forms of the linear isolation system. Compared with the results of the Runge-Kutta method in Section 3, the
approximate solutions have high accuracy. Meanwhile, the effects of the nonlinear damping component on the two
types of transmissibility are analytically studied by comparing nonlinear damping systems with different values of
damping coefficients in the same peak transmissibility corresponding to a linear isolation system in Section 4. The
comparisons show that the resonance frequency moves towards a smaller value in contrast with the linear damping
model. And in the case of the corresponding linear system with relatively high damping ratio, the relative transmis-
sibility of the nonlinear damping models changes lower at frequencies above the resonance frequency of the linear
system and the absolute transmissibility changes higher for frequency ratios above

√
2. The stronger the nonlinear

damping is, the more visible the above phenomena are. In Section 5, the similar analytical process is carried out to
study a base isolation system with piecewise mixed viscous damping according to the sign of the relative velocity
and it is presented that the two parameters ξ11+ ξ21 and ξ12+ ξ22 characterize both the ELDC and the displacement
transmissibility.

2. Approximate solutions of the SDOF isolation system with the mixed viscous damping

Considering the SDOF vibration isolation system with mixed viscous damping subject to a base excitation shown
in Fig. 1, the equation of motion for the mass M is

Mẍ1 + k (x1 − x0) + c1 (ẋ1 − ẋ0) + c2 |(ẋ1 − ẋ0)| (ẋ1 − ẋ0) = 0 (1)
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Fig. 1. Isolation system with mixed viscous damping under harmonic base excitation.

where k is the spring constant, c1 and c2 are the damping constants, x1 is the displacement response and x0 is the
base displacement. Given the relative displacement between mass M and the base as δ = x1 − x0 and supposing a
motion excitation as x0 = X0 sinωt where ẋ0 = X0ω cosωt and ẍ0 = −X0ω

2 sinωt, we rewrite Eq. (1) as

δ̈ +
k

M
δ +

c1
M

δ̇ +
c2
M

∣∣∣δ̇∣∣∣ δ̇ = X0ω
2 sinωt (2)

Introducing the following non-dimensional parameters

τ = ωnt, λ =
ω

ωn
, ωn =

√
k

M
, ξ1 =

c1
2Mωn

, ξ2 =
c2X0

M
, yδ =

δ

X0
, ẏδ =

δ̇

X0ωn
,

and ÿδ =
δ̈

X0ω2
n

,

Equation (2) takes the form

ÿδ + yδ + 2ξ1ẏδ + ξ2 |ẏδ| ẏδ = λ2 sinλτ (3)

The first approximation to the steady-state solution of Eq. (3) based on the HBM [13,16] is assumed in the form

yδ (τ) = Y0 + Y1 sin (λτ − ϕ) = Y0 + Y1 sinφ (4)

where φ = λτ − ϕ and

ẏδ (τ) = Y1λ cosφ, (5)

ÿδ (τ) = −Y1λ
2 sinφ (6)

The amplitude Y1 is namely the relative transmissibility.
Let f (yδ, ẏδ) = yδ + 2ξ1ẏδ + ξ2 |ẏδ| ẏδ, and substituting Eqs (5) and (6) into it yields

f (yδ, ẏδ) = Y0 + Y1 sinφ+ 2ξ1Y1λ cosφ+ ξ2Y
2
1 λ

2 |cosφ| cosφ (7)

The function f (yδ, ẏδ) can be approximated by Fourier expansion up to the first order as

f (yδ, ẏδ) ≈ a0 + a1 cosφ+ a2 sinφ (8)

where the Fourier coefficients a0, a1 and a2 are given by

a0 =
1

2π

∫ 2π

0

f (yδ, ẏδ) dφ = Y0
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a1 =
1

π

∫ 2π

0

f (yδ, ẏδ) cosφdφ = 2ξ1Y1λ+
8

3π
ξ2Y

2
1 λ

2

a2 =
1

π

∫ 2π

0

f (yδ, ẏδ) sinφdφ = Y1

Then, making use of Eqs (6) and (8) in Eq. (3) provides

−Y1λ
2 sin (λτ − ϕ) + Y0 + Y1 sin (λτ − ϕ) +

(
2ξ1Y1λ+

8

3π
ξ2Y

2
1 λ

2

)
cos (λτ − ϕ) = λ2 sinλτ (9)

Equating the constant term and the coefficients of the same harmonics from both sides of Eq. (9), the steady-state
condition can be obtained as

Y0 = 0 (10)

(
Y1 − Y1λ

2
)
cosϕ+

(
2ξ1Y1λ+

8

3π
ξ2Y

2
1 λ

2

)
sinϕ = λ2 (11)

− (
Y1 − Y1λ

2
)
sinϕ+

(
2ξ1Y1λ+

8

3π
ξ2Y

2
1 λ

2

)
cosϕ = 0 (12)

2.1. ELDC and relative displacement transmissibility

Combining Eqs (11) and (12), the following expression for frequency response is obtained which is an implicit
function of the amplitude Y1 (or the relative transmissibility) and the frequency ratio λ:

(
1− λ2

)2
Y 2
1 +

(
2ξ1 +

8

3π
ξ2Y1λ

)2

λ2Y 2
1 = λ4 (13)

By introducing the ELDC

ξe = ξ1 +
4

3π
ξ2Y1λ (14)

the amplitude Y1 can be obtained as

Y1 =
λ2√

(1− λ2)
2
+ 4ξ2eλ

2

(15)

And according to Eq. (9), Eq. (3) can be rearranged as

ÿδ + yδ + 2ξeẏδ = λ2 sinλτ (16)

Substituting Eq. (15) into Eq. (14) gives

ξe = ξ1 +
4

3π
ξ2λ

3 1√
(1− λ2)2 + 4ξ2eλ

2

(17)

which is an implicit function of the ELDC ξe and the frequency ratio λ.
Equation (16) has the form of the motion equation for a linear isolation system, and Eq. (15) gives the expression

of Y1 dependent on ξe and λ, which is in agreement with the equation of the linear relative transmissibility. In
Eq. (16), there is 2ξe = 2ξ1 +

8
3π ξ2Y1λ where the first term 2ξ1 and the second term 8

3π ξ2Y1λ are corresponding to
the linear and the quadratic damping terms, respectively. The expression 8

3π ξ2Y1λ is consistent with the equivalent
viscous damping coefficient [4,14]. So the conclusion is reached that the common used equivalent viscous damping
coefficient in engineering has the first harmonic precision.
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Fig. 2. Comparison of relative transmissibility by the HBM and the Runge-Kutta method. (a) 1−ξ1 = 0.08 ξ2 = 0.01; 2−ξ1 = 0.2 ξ2 = 0.1;
3− ξ1 = 0.3 ξ2 = 0.35; and (b) ξ1 = 0.01 ξ2 = 0.35.

2.2. Absolute displacement transmissibility

Besides relative displacement transmissibility, absolute displacement transmissibility is also the common index
to evaluate the performance of isolation systems [14]. In this subsection, absolute displacement transmissibility is
obtained as a function of the ELDC ξe and the frequency ratio λ.

According to Subsection 2.1, the first order harmonic solution of Eq. (3) is

yδ (τ) = Y1 sin (λτ − ϕ) (18)

where Y1 is determined by Eq. (15).
Using Eqs (12) and (14), the expression of phase angle ϕ is obtained as

ϕ = arctan

(
2ξeλ

1− λ2

)
(19)

Besides, yδ can be written as

yδ = z (τ)− sinλτ (20)

where z (τ) = x1

X0
.

Assuming z (τ) = Z1 sin (λτ − θ) in the steady state, the amplitude Z1 is actually the absolute transmissibility.
According to Eq. (17), the ELDC ξe is independent on amplitudes of the excitation and the response, so by the linear
vibration theory the absolute transmissibility Z1 is

Z1 =

√
1 + (2ξeλ)

2

(1− λ2)
2
+ (2ξeλ)

2 (21)

3. Comparisons of the HBM solutions and the numerical solutions for displacement transmissibility
(frequency responses)

The HBM solutions and the numerical solutions of the fourth order Runge-Kutta method are compared in Fig. 2
for relative transmissibility and in Fig. 3 for absolute transmissibility, respectively. The HBM results are obtained
using Eqs (14), (15) and (21). And the transmissibility curves are gotten by the Runge-Kutta method in terms of the
maximum amplitudes of the non-dimensional displacement yδ according to Eq. (3) and z (τ) according to Eq. (20)



926 X. Sun and J. Zhang / Displacement transmissibility characteristics of harmonically base excited damper

Fig. 3. Comparison of absolute transmissibility by the HBM and the Runge-Kutta method. (a) 1−ξ1 = 0.08 ξ2 = 0.01; 2−ξ1 = 0.2 ξ2 = 0.1;
3− ξ1 = 0.3 ξ2 = 0.35; and (b) ξ1 = 0.01 ξ2 = 0.35.

Fig. 4. Relative transmissibility with the corresponding damping ratio
of linear system equal to 0.4. 1−ξ1 = 0.139 ξ2 = 0.4; 2−ξ1 = 0.25
ξ2 = 0.223; 3− ξ1 = 0.37 ξ2 = 0.043.

Fig. 5. Relative transmissibility with the corresponding damping ra-
tio of linear system equal to 0.2. 1 − ξ1 = 0.05 ξ2 = 0.135;
2− ξ1 = 0.153 ξ2 = 0.0418.

in the steady state for each certain frequency ratio λ. The range of frequency ratios is from 0.1 to 3 with interval
0.02 and the duration of simulation is τ = 300. It is observed that analytical solutions have good agreement with
numerical results for both relative and absolute transmissibility curves in weakly and strongly nonlinear cases, and
when the nonlinear damping component is obviously predominant in the mixed damping force, there are small
offsets near the resonant frequency respectively shown in Figs 2(b) and 3(b).

The comparisons show that the analytical solutions of displacement transmissibility are able to represent response
characteristics of the system with fairly good accuracy.

4. Influence of the nonlinear damping component

Based on the analytical solutions given in Eqs (15) and (21), frequency responses for different values of parameters
ξ1 and ξ2 are discussed in contrast with the linear damping system having the same peak transmissibility to study
the effects of the nonlinear damping term.
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Fig. 6. Absolute transmissibility with the corresponding damping ratio
of linear system equal to 0.4. 1−ξ1 = 0.25 ξ2 = 0.425; 2−ξ1 = 0.3
ξ2 = 0.272; 3− ξ1 = 0.38 ξ2 = 0.05.

Fig. 7. Absolute transmissibility with the corresponding damping ra-
tio of linear system equal to 0.2. 1 − ξ1 = 0.05 ξ2 = 0.17;
2− ξ1 = 0.162 ξ2 = 0.04.

4.1. On relative displacement transmissibility

Figures 4 and 5 depict the frequency responses of the relative displacement for nonlinear damper isolation sys-
tems with different damping magnitudes compared with a linear isolator in two cases. The damping parameters ξ1
and ξ2 are chosen in such a way that the nonlinear and linear damping systems provide the same peak relative trans-
missibility of the isolated mass M . It can be seen that the peak values of the curves for both weakly and strongly
nonlinear damping occur at lower frequencies compared with the case of the linear damping and that the stronger the
nonlinear damping component is in the damping force fd (ẏδ) = 2ξ1ẏδ + ξ2 |ẏδ| ẏδ, the larger the shift is. It is also
noted that the nonlinear damping model produces lower relative transmissibility at frequencies above the resonance
frequency of the corresponding linear model as the damping ratio of the linear model is bigger (Fig. 4), while it is
not obvious in Fig. 5 with a smaller damping ratio of the linear model.

4.2. On absolute displacement transmissibility

The analysis of the absolute transmissibility is in a similar way to that of the relative transmissibility. Comparing
nonlinear damping models with different values of parameters ξ1 and ξ2 with corresponding linear models in Figs 6
and 7, it is observed that, as the same with the case of relative transmissibility, the resonance frequency also shifts
left due to the effect of the nonlinear damping in contrast with the linear isolator and the curve involving a stronger
nonlinear damping also has a more visible deflection. Meanwhile, the nonlinear damping model produces increased
transmissibility for the frequency ratio λ >

√
2, which, however, is not so distinct as the damping ratio of the

corresponding linear system is in a relatively low magnitude (Fig. 7).
The trends illustrated in this subsection are consistent with the results obtained by Popov and Sankar [8] for a

nonlinear orifice type damper with the SDOF model as Fig. 1 using the Runge-Kutta method. The quadratic damping
coefficient was inversely proportional to the non-dimensional diameter of the orifice. The nonlinear damping caused
a significant shift in resonant frequency and obviously increased transmissibility for λ >

√
2 compared with the

linear damping case when the non-dimensional diameter of the orifice was smaller.

5. Isolation system with a type of piecewise mixed viscous damping

5.1. Model and approximate solution

We consider piecewise mixed viscous damping as
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Fig. 8. Base isolation system with piecewise damping force.

g
(
δ̇
)
=

⎧⎨
⎩
c11δ̇ + c12

∣∣∣δ̇∣∣∣ δ̇, δ̇ > 0

c21δ̇ + c22

∣∣∣δ̇∣∣∣ δ̇, δ̇ < 0
(22)

If the damper or isolator presents this type of damping characteristic according to the sign of the relative velocity,
we can also study its response characteristics in the same way as the above analysis of the isolation system in
Fig. 1. The governing differential equation of the system with the piecewise damping shown in Fig. 8 after non-
dimensionalization is

ÿδ + yδ +G (ẏδ) = λ2 sinλτ (23)

where

G (ẏδ) =

{
2ξ11ẏδ + ξ12 |ẏδ| ẏδ, ẏδ � 0

2ξ21ẏδ + ξ22 |ẏδ| ẏδ, ẏδ < 0
(24)

and ξ11 = c11
2Mωn

, ξ21 = c21
2Mωn

, ξ12 = c12X0

M , ξ22 = c22X0

M .

Sending

f (yδ, ẏδ) = yδ +G (ẏδ) (25)

and assuming a steady-state solution for Eq. (23) in the form of Eq. (4) as well, Eq. (25) becomes

f (yδ, ẏδ) = yδ +

{
2ξ11ẏδ + ξ12 |ẏδ| ẏδ, −π

2 � φ � π
2

2ξ21ẏδ + ξ22 |ẏδ| ẏδ, π
2 < φ < 3π

2

(26)

By Fourier expansion as Eq. (8), the Fourier coefficients a0, a1 and a2 are obtained:

a0 =
1

2π

∫ 3π
2

−π
2

f (yδ, ẏδ) dφ = Y0 +
2

π
(ξ11 − ξ21)Y1λ+

1

4
(ξ12 − ξ22)Y

2
1 λ

2

a1 =
1

π

∫ 3π
2

−π
2

f (yδ, ẏδ) cosφdφ = (ξ11 + ξ21)Y1λ+
4

3π
(ξ12 + ξ22) Y

2
1 λ

2

a2 =
1

π

∫ 3π
2

−π
2

f (yδ, ẏδ) sinφdφ = Y1
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Then, Eq. (23) can be rewritten as

− Y1λ
2 sinφ+

(
Y0 +

2

π
(ξ11 − ξ21)Y1λ+

1

4
(ξ12 − ξ22)Y

2
1 λ

2

)

+

(
(ξ11 + ξ21)Y1λ+

4

3π
(ξ12 + ξ22)Y

2
1 λ

2

)
cosφ+ Y1 sinφ = λ2 sin (φ+ ϕ)

(27)

which leads to

Y0 = −
(
2

π
(ξ11 − ξ21) +

1

4
(ξ12 − ξ22)Y1λ

)
Y1λ (28)

Y1

(
1− λ2

)
= λ2 cosϕ (29)

(ξ11 + ξ21)Y1λ+
4

3π
(ξ12 + ξ22) Y

2
1 λ

2 = λ2 sinϕ (30)

Using Eqs (29) and (30) results in

(
1− λ2

)2
Y 2
1 +

(
(ξ11 + ξ21) +

4

3π
(ξ12 + ξ22)Y1λ

)2

Y 2
1 λ

2 = λ4 (31)

ϕ = arctan

(
(ξ11 + ξ21)λ+ 4

3π (ξ12 + ξ22)Y1λ
2

1− λ2

)
(32)

Introducing the ELDC as

ξe =
1

2
(ξ11 + ξ21) +

2

3π
(ξ12 + ξ22)Y1λ (33)

and substituting it into Eqs (31) and (32), the response amplitude (relative displacement transmissibility) Y1 and the
phase angle ϕ are given in the same forms of Eqs (15) and (19), respectively. Taking into account Eq. (28), Y0 = 0
occurs only when ξ11 = ξ21 and ξ12 = ξ22, which is in the non-piecewise case in Section 2. Therefore, the first
steady-state approximation of the Eq. (23) is

yδ (τ) = Y0 + Y1 sin (λτ − ϕ)

where Y0 is not zero, which indicates that the piecewise damping given in Eq. (22) leads to the change of equilibrium
position of the isolation system.

For the absolute displacement transmissibility Z1, here still suppose it in the form of Eq. (21). In the next sub-
section, we prove the accuracy of the supposition by comparing it with the numerical solution.

5.2. Numerical simulation for absolute displacement transmissibility

The absolute transmissibility curves of four different cases obtained by the fourth order Runge-Kutta method and
the analytical method are compared in Fig. 9. The results of every case show good agreement, which verifies the
supposition in the Subsection 5.1.

Based on Eq. (33), displacement transmissibility is characterized by the parameters ξ11 + ξ21 and ξ12 + ξ22. The
system described by Eq. (23) is not prone to an instability named chatter because of the relative velocity whereby the
damping force is zero at the instant the damper is switched [12]. Therefore, the displacement response characteristics
can be analysed as similar to the case of Eq. (3).
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Fig. 9. Comparison of absolute transmissibility by the numerical and analytical methods. (a) 1 − ξ11 = 0.05 ξ12 = 0.02 ξ21 = 0.08
ξ22 = 0.05; 2 − ξ11 = 0.02 ξ12 = 0.3 ξ21 = 0.2 ξ22 = 0.01; 3 − ξ11 = 0.25 ξ12 = 0.02 ξ21 = 0.3 ξ22 = 0.05; (b) ξ11 = 0.02
ξ12 = 0.4 ξ21 = 0.05 ξ22 = 0.3.

6. Conclusions

The base isolation system with nonlinear damping force as fd (ẋ) = c1ẋ+c2 |ẋ| ẋ which sometimes can represent
the damping characteristic of dampers and isolators in practical engineering is studied using the HBM and the first
approximate solutions are deduced. By introducing the ELDC, the motion equation and the response characteristics
including the relative and absolute displacement transmissibility and the phase angle can all be expressed as func-
tions of the ELDC in the same forms of a linear isolation system. The component of the ELDC corresponding to the
quadratic damping term is consistent with the equivalent viscous damping coefficient based on equivalent energy
dissipation. In accordance with the numerical solutions, the analytical results have high accuracy. And further, the
performance characteristics of the nonlinear damping isolators are evaluated analytically from the viewpoint of the
displacement transmissibility for different values of damping coefficients with equal peak transmissibility against
those of the linear system. Finally, an ideal isolator with piecewise mixed viscous damping by the sign of the rela-
tive velocity is investigated employing the same approach as above, which is found that the displacement response
characteristics can also be studied by introducing the ELDC fairly well.
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