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Abstract. Due to the presence of system flexibility, impact can excite severe large amplitude vibration responses of the flexible
robotic manipulator. This impact vibration exhibits characteristics of remarkable nonlinearity and strong energy. The main goal
of this study is to put forward an energy-based control method to absorb and attenuate large amplitude impact vibration of the
flexible robotic manipulator. The method takes advantage of internal resonance and is implemented through a vibration absorber
based on the transfer and dissipation of energy. The addition of the vibration absorber to the flexible arm generates a coupling
effect between vibration modes of the system. By means of analysis on 2:1 internal resonance, the exchange of energy is proven
to be existent. The impact vibrational energy can be transferred from the arm to the absorber and dissipated through the damping
of the absorber. The results of numerical simulations are promising and preliminarily verify that the method is feasible and can
be used to combat large amplitude impact vibration of the flexible manipulator undergoing rigid motion.
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1. Introduction

With the development of robotic manipulators toward light weight, heavy load, high speed and large work space,
dynamic effects resulted from their structural flexibility cannot be neglected. How to effectively overcome these
adverse influences on work performance is an important problem.

In the area of motion control for flexible robotic manipulators, different ways have been sought and important
advancements have been achieved [1–3]. On the other hand, since most of robotic manipulators are required to
make physical contact as part of their jobs, such as assembly, repair and capture, impact phenomenon always arises
inevitably. Also, various disturbances from the environment, like unexpected collision from other objects, result in
impact. Generally, characteristics of impact are very brief duration, high force levels, rapid dissipation of energy and
large accelerations/decelerations [4]. As far as the flexible manipulator is concerned, impact can cause abrupt change
in system velocities, thereby exciting severe post-impact vibration responses. Furthermore, since the manipulator is
required to keep moving after the collision, new vibration responses inevitably arise and are accumulated on the
existing impact vibration responses. Therefore, vibration control of the flexible manipulator undergoing an impact
collision is both theoretically challenging and of practical importance.
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In past decades, impact modeling for the flexible manipulator has received considerable attention [4–7]. However,
in contrast to a number of papers on impact control for the rigid manipulator [8–13], insufficient research appears to
have been conducted on impact vibration reduction for the flexible manipulator [14–18]. Most of control algorithms
rely on accurate contact position and collision time, but in some real working environments like outer space, collision
from micrometeoroids are usually unpredictable. In addition, due to system flexibility, the duration between the time
in which a collision occurs and that in which the system detects the collision, known as the collision detection time, is
long, thereby resulting in the delay of reaction strategy. Therefore, control methods based on the collision detection
will face challenges. More importantly, impact energy always excites large amplitude vibration. This large amplitude
may enhance the effects of the nonlinearities in the system. In this case, many nonlinear terms that could have been
ignored in some control methods must be taken into account again. Otherwise, irrational linearization may result in
not only calculation inaccuracy but also fundamental mistakes.

Although a large number of active control schemes can be used to control vibration of the flexible manipulator [19,
20], most of them, especially those based on smart materials like piezoelectric ceramic and shape memory alloy etc.,
probably face challenges when dealing with impact vibration problem. In the post-impact phase, huge impact energy
may excite severe large amplitude vibration of the flexible manipulator. As we know, active control methods mainly
depend on external energy to suppress vibration. In this way, they have to afford much more energy to combat with
this large amplitude vibration. Obviously, it is not always advisable. Furthermore, since output powers of many
smart material actuators are limited, it is difficult for them to provide sufficient energy to resist this large amplitude
vibration. Therefore, compared with active suppression methods, vibration absorption methods based on the transfer
and dissipation of vibrational energy seem more feasible to overcome large amplitude impact vibration.

Since large amplitude impact vibration of the flexible manipulator exhibits characteristics of remarkable non-
linearity and strong energy, it is necessary to seek an effective vibration absorption method based on appropriate
nonlinear principle. For a multi-degree-of-freedom nonlinear vibrating system, internal resonance is one of typical
nonlinear characteristics of modal interaction. For example, if two natural frequencies of the linear portion of a
set of nonlinear equations of motion are commensurable or nearly commensurable (i.e. n1ω1 = n2ω2, where n1

and n2 are integers, ω1 and ω2 are natural frequencies), internal resonance will occur [21]. At the state of internal
resonance, nonlinear coupling will provide a bridge to facilitate a transfer of vibrational energy between the related
modes. Although there are a lot of papers concerning internal resonance phenomenon [22–27], most of them strive
to avoid resonance conditions whereas seldom capitalize on internal resonance for control applications.

In fact, studying internal resonance from a different perspective can help find new ways for vibration control.
Golnaraghi [28,29] was one of the first researchers to employ internal resonance to control vibration of a flexible
cantilever beam. Based on internal resonance, the beam vibration was reduced by removing its vibrational energy
and dissipating it through the slider motion actuated by a motor with position and velocity feedback. Tuer et al. [30]
and Duquette et al. [31] conducted theoretical and experimental studies, and regulated the motion of a similar beam
by means of a rotational internal resonance controller at the tip of the beam. In addition, Tuer et al. [32] proposed
two control strategies to regulate a single-degree-of-freedom second order system based on internal resonance.
Furthermore, Oueini et al. [33] conducted numerical simulations in regulating vibration of a two-degree-of- freedom
structure. Afterwards, Oueini et al. [34] finished an experimental study in which the controller was implemented by
analog electronic components. From these studies, it is shown that internal resonance seems to be a promising tool
for vibration control of the flexible structure without rigid motion.

In aforementioned studies, in order to create a simple single-degree-of-freedom model for analysis, the controlled
cantilever beam, which is inherently flexible, is assumed as a rigid beam attached by a linear torsional spring.
Obviously, this lumped flexibility model is not suitable for the analysis of a robotic manipulator with long and
thin flexible links; instead, a distributed flexibility model is advisable. Besides, these studies mainly focused on the
flexible structure but did not examine the flexible mechanism. In fact, one of important differences between them is
that the former has no large-scale nominal motion (i.e. rigid motion) but the latter has. As a result, compared with the
flexible structure, the flexible mechanism usually exhibits much more complex dynamic behaviors due to coupling
effects between its rigid motion and flexural motion. In addition, the controlled cantilever beam is simplified as
a linear vibration model and a supplementary system (i.e. vibration controller) is added to artificially generate
nonlinear coupling. However, since the flexible arm is a nonlinear vibrating system in nature, its dynamic coupling
with a supplementary system will become more complicated. More importantly, although the above methods used
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internal resonance to transfer vibrational energy from the flexible cantilever beam to the supplementary system, the
exchanged vibrational energy was suppressed by the actuators of vibration controllers (e.g. motors). This means that
these methods still relied on external energy suppressing vibration response. Therefore, in essence they belong to
active control methods.

To our knowledge, internal resonance seems not to have been utilized in dynamic control of the flexible manip-
ulator so far. Whether internal resonance can be successfully established for the flexible manipulator undergoing
rigid motion is not verified. Especially, its theoretical feasibility of combating with large amplitude impact vibration
of the flexible manipulator is not explored. The main goal of this study is to put forward an energy-based control
method to absorb and attenuate large amplitude impact vibration of the flexible robotic manipulator. The method
takes advantage of internal resonance and is implemented through a vibration absorber based on the transfer and
dissipation of energy. The addition of a vibration absorber to the flexible arm generates a coupling effect between
vibration modes of the system. By means of analysis on 2:1 internal resonance, the exchange of energy is proven to
be existent. The impact vibrational energy can be transferred from the arm to the absorber and dissipated through
the damping of the absorber. Since the method aims to regulate internal energy transfer of the flexible manipulator,
it does not necessarily rely on accurate contact position and collision time.

2. Impact dynamics

Based on Kane’s method and the assumed-modes method, dynamics equations of the flexible manipulator are
derived and can be written as follows [35]:

Msχ̈+Csχ̇+Ksχ = Q (1)

where Ms ∈ Rn×n is the system mass matrix; Cs ∈ Rn×n is the system damping matrix; Ks ∈ Rn×n is the
system stiffness matrix; Q ∈ Rn is the sum of coriolis, gravitational, centripetal, and control torques; χ ∈ Rn is
the set of rigid and flexural degrees of freedom, χT =

[
qT ϕT

]T ; q ∈ RnR is the vector describing the rigid
joint angles; ϕ ∈ RnF is the set of flexural displacement of links; n is the total number of degrees of freedom,
n = nR + nF ; nR is the number of joints; nF is the number of flexural degrees of freedom.

Equation (1) can be separated into two equations describing the dynamics of q and ϕ

Dq̈ +Uϕ̈ = τ1 + τ2 (2)

Gq̈ +Mϕ̈+Cϕ̇+Kϕ = f (3)

whereD ∈ RnR×nR , U ∈ RnR×nF , G ∈ RnF×nR , M ∈ RnF×nF are block matrices that formMs; τ1 ∈ RnR

is the set of control torques applied to the joints; τ2 ∈ RnR is the rigid component of the nonlinear torque; C ∈
RnF×nF ;K ∈ RnF×nF ; f ∈ RnF is the flexural component of the nonlinear torque.

The real impact process is quite complex in fact. Since our research is focused on reduction of large amplitude
impact vibration, it is assumed here that: (a) impact time is infinitesimal; (b) impact is modeled as the point contact;
(c) impact process is simplified as an impulse force; (d) the colliding object is treated as a point mass.

Supposing a moving object collides with the flexible arm at a certain point P , the impact force resulted from this
collision is fΔ ∈ R3. The dynamics equations of the flexible manipulator undergoing impact can be written as:

Dq̈ +Uϕ̈ = τ1 + τ2 + f
I
Δ (4)

Gq̈ +Mϕ̈+Cϕ̇+Kϕ = f + f II
Δ (5)

where

f I
Δ = { f I

Δ1 f I
Δ2 . . . f I

ΔnR
}T (6)

f II
Δ = { f II

Δ1 f II
Δ2 . . . f II

ΔnF
}T (7)

f I
Δ ∈ RnR and f II

Δ ∈ RnF are generalized active forces caused by fΔ and can be obtained using Kane’s method,
i.e.



668 Y. Bian and Z. Gao / Impact vibration attenuation for a flexible robotic manipulator through transfer and dissipation of energy

f I
Δj = vpjfΔ (1 � j � nR) (8)

f II
Δ(j−nR) = vpjfΔ (nR + 1 � j � n) (9)

where vpj ∈ R3 is the j-th partial speed of vp, vp is the velocity of point P .
Since impact occurs in an infinitesimal period of time, if taking the integral of the dynamics Eqs (4) and (5) from

t to t+Δt, we obtain∫ t+Δt

t

Dq̈dt+

∫ t+Δt

t

Uϕ̈dt =

∫ t+Δt

t

τ1dt+

∫ t+Δt

t

τ2dt+

∫ t+Δt

t

f I
Δdt (10)

∫ t+Δt

t

Gq̈dt+

∫ t+Δt

t

Mϕ̈dt+

∫ t+Δt

t

Cϕ̇dt+

∫ t+Δt

t

Kϕdt =

∫ t+Δt

t

fdt+

∫ t+Δt

t

f II
Δ dt (11)

Because all linear and angular velocities remain finite in this infinitesimally small period of the impact time, and
there are no changes in positions or orientations of any bodies in the system as Δt→ 0, only the integrals involving
q̈, ϕ̈, fI

Δ and f II
Δ are not zero. From Eqs (10) and (11), we have

DΔq̇ +UΔϕ̇ =

∫ t+Δt

t

f I
Δdt (12)

GΔq̇ +MΔϕ̇ =

∫ t+Δt

t

f II
Δ dt (13)

where Δq̇ = q̇(t+Δt)− q̇(t), Δϕ̇ = ϕ̇(t+Δt)− ϕ̇(t).
According to the Momentum Theorem, we obtain

∫ t+Δt

t

f I
Δjdt =

∫ t+Δt

t

vpjfΔdt = vpjM0v0 (1 � j � nR) (14)

∫ t+Δt

t

f II
Δ(j−nR)dt =

∫ t+Δt

t

vpjfΔdt = vpjM0v0 (nR + 1 � j � n) (15)

where M0 is the mass of the moving object, v0 is relative velocity of the moving object with respect to the contact
point of the arm.

According to Eqs (6), (7), (14) and (15), Eqs (12) and (13) can be written as

DΔq̇ +UΔϕ̇ = hI (16)

GΔq̇ +MΔϕ̇ = hII (17)

where hI = { vp1M0v0 vp2M0v0 . . . vpnRM0v0 }T , hII = { vp(nR+1)M0v0 vp(nR+2)M0v0 . . . vpnM0v0 }T .
Incorporating Eqs (16) and (17), we obtain

MsΔχ̇ = h (18)

where

Ms =

[
D U
G M

]
, Δχ̇ =

[
Δq̇T Δϕ̇T

]T
, h = [ hT

I hT
II ]T .

Equation (18) is the impact dynamics equation of the flexible manipulator, describing the relationship between
the instantaneous velocity increment and the impulsive contact force. The final values Δψ̇ of Eq. (18) are used as
the initial conditions of the post-impact phase.
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Fig. 1. Model of the flexible manipulator.

Fig. 2. Model of the flexible link.

3. Mathematical model of the flexible manipulator with vibration absorber

In this study, a simplified two-link robotic arm model with last link flexible is employed to examine the effective-
ness of the proposed technique, as shown in Fig. 1. In the preliminary stage, this simplification can help decrease
computational complexity while retain basic features of the flexible manipulator. Link1 is a uniform rigid beam with
the length l1, the square cross-section of side length s. Link2 is a uniform Euler-Bernoulli flexible beam with the
length l2, the rectangle cross-section of height h and width b, a tip mass mB , as shown in Fig. 2. Only the in-plane
flexural deformation δ(x2, t) about y2 axis in the plane o2x2y2 is considered, where t is time. The joint o1 and o2 is
controlled to provide large-scale rigid motion (i.e. nominal motion) of the arm around the z1 and z2 axis, denoted
by q1 and q2 respectively.

To reduce vibration of the flexible arm, another vibrating system, used as a vibration absorber, is attached to the
flexible arm at x2 = r, as shown in Fig. 3. The absorber consists of a rigid link, a flexible joint and a damper. The
uniform rigid link with mass m3 and centroid position rc3, is perpendicularly connected, through the flexible joint
and the damper, to the link2 in the plane o2x2y2. It should be noted that the rigid link is not unique form and other
configurations with certain rotary inertia are acceptable in the absorber. The flexibility and damping of the absorber
are modeled using a torsional spring/damper configuration. When the flexible link deforms in the plane o2x2y2, the
angle of the tangent of the flexible link at x2 = r with respect to x2 axis is denoted by α, as shown in Fig. 3(b), i.e.

α ≈ ∂δ(x2, t)

∂x2

∣∣∣∣
x2=r

(19)

When the flexible joint deforms paralleling the plane o2z2y2, the angle of the rigid link with respect to y2 axis is
denoted by β, as shown in Fig. 3(a). Obviously, the vibration absorber increases the structural degrees of freedom
by one, i.e. β.
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Fig. 3. Model of the flexible link with a vibration absorber.

4. Equations of motion

According to the assumed-modes theory, transverse deformation of the link2 in the plane o2x2y2 is expressed in
terms of the mode shapes

δ(x2, t) =

nF∑
i=1

ui(x2)ϕi(t) (20)

where ϕi(t) is the i-th modal coordinate describing deformation of the flexible link, ui(x2) is the i-th mode shape
satisfying certain geometric and force boundary conditions.

In this study, only the fundamental mode of the link is considered due to its most contribution to the vibration
response in common cases. In this case, substituting Eq. (20) into Eq. (19) yields

α ≈ β̃rϕ1(t) (21)

where

β̃r =
du1(x2)

dx2

∣∣∣∣
x2=r

(22)

In addition, the axial displacement resulted from the transverse bending of the link is taken into account, i.e.

υ(x2) = −1

2

∫ x2

0

(
∂δ(ϑ, t)

∂ϑ

)2

dϑ = −1

2
B1ϕ

2
1 (23)

where ϑ is a dummy variable and

B1 =

∫ x2

0

(
du1(ϑ)

dϑ

)2

dϑ (24)
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In order to damp out vibration response of the fundamental mode of the link using the absorber, the coupling
effect between the fundamental mode coordinate ϕ1 of the link and the flexural degree of freedom β of the absorber
is mainly concerned. Therefore, based on Kane’s method and the assumed-modes theory, the flexible dynamics
equations concerning ϕ1 and β are derived in the case of zero gravity and can be written as

m11ϕ̈1 + c11ϕ̇1 + (k11 − b1q̈1 − b2q̈2)ϕ1 =b3ϕ̇
2
1 + b4ϕ1ϕ̈1 + b5β̇

2 + b5ββ̈ − b6q̈1 − b7q̈2 + b8(q̇1

+ q̇2)
2 − b9q̇

2
1 + f1(ϕ1, ϕ̇1, ϕ̈1, β, β̇, β̈, q̇1, q̈1, q̇2, q̈2)

(25)

m22β̈ + c22β̇ + (k22 − b10q̈1 − b11q̈2)β = b5βϕ̈1 + f2(ϕ1, ϕ̇1, ϕ̈1, β, β̇, β̈, q̇1, q̈1, q̇2, q̈2) (26)

where m11 = B2 + m3(u
2
1r + β̃2

rr
2
c3) + mBu

2
1l2

;B2 = ρ2
∫ l2
0 u21(x2)dx2;u1r = u1(x2) |x2=r ;u1l2 =

u1(x2) |x2=l2 ; c11 is the damping of the link2; k11 = E2I2
∫ l2
0

d4u1(x2)
dx4

2
u1(x2)dx2; b1 = m3rc3(β̃

2
rr − B1r) +

m3l1(β̃
2
rrc3 cos q2 +B1r sin q2); B1r = B1(x2) |x2=r ;

b2 =m3rc3(β̃
2
rr −B1r); b3 = m3β̃rrc3(u1rβ̃r −B1r); b4 = 2m3β̃rrc3(u1rβ̃r −B1r); b5 = m3u1rrc3;

b6 =m3(u1rr + β̃rr
2
c3)−m3l1(β̃rrc3 sin q2 − u1r cos q2) + l1B4 cos q2 +B3 +mBu1l2(l1 cos q2 + l2);

B3 = ρ2

∫ l2

0

u1(x2)x2dx2; b7 = m3(u1rr + β̃rr
2
c3) +B3 +mBu1l2 l2; b8 = m3rc3(u1r−β̃rr);

b9 =m3l1(u1r sin q2+β̃rrc3 cos q2) + l1B4 sin q2;B4 = ρ2

∫ l2

0

u1(x2)dx2;m22 = I3zz +m3r
2
c3; k22 = k;

b10 = m3rc3(r + l1 cos q2); b11 = m3rc3r; k is the torsional stiffness of the flexible joint; c22 is the damping of
the vibration absorber; ρ2 is mass per length of the link2; E2 is the Young’s modulus of the link2; E2I2 is flexural
rigidity of the link2; I3zz is the moment of inertial of the rigid link with respect to its centroid axis.

In the following section, modal interaction effect between the fundamental mode of the flexible link and the
vibration mode of the absorber will be investigated.

5. Nondimensional and scaled equations of motion

The first step in the analysis is to nondimensionalize the equations of motion. By means of the transformations

ϕ∗ =
ϕ1

l2
, β∗ = β, t∗ = ωβt, q∗1 = q1, q∗2 = q2 (27)

where ωβ =
√
k22/m22;

the equations of motion Eqs (25) and (26) are nondimensionalized to yield

ϕ̈∗ + η11ϕ̇
∗+(ω2

ϕβ−d1q̈∗1 − d2q̈
∗
2)ϕ

∗ =d3ϕ̇
∗2 + d4ϕ̈

∗ϕ∗+d5β̇∗2+d5β̈∗β∗ − d6q̈
∗
1 − d7q̈

∗
2 + d8(q̇

∗
1

+ q̇∗2)
2 − d9q̇

∗2
1 + f3(ϕ

∗, ϕ̇∗, ϕ̈∗, β∗, β̇∗, β̈∗, q̇∗1 , q̈
∗
1 , q̇

∗
2 , q̈

∗
2)

(28)

β̈∗ + η22β̇
∗ + (1− d10q̈

∗
1 − d11q̈

∗
2)β

∗ = d12β
∗ϕ̈∗ + f4(ϕ

∗, ϕ̇∗, ϕ̈∗, β∗, β̇∗, β̈∗, q̇∗1 , q̈
∗
1 , q̇

∗
2 , q̈

∗
2) (29)

where

η11 = c11/(m11ωβ); ωϕβ = ωϕ/ωβ; ω
2
ϕ = k11/m11; d1 = b1/m11; d2 = b2/m11; d3 = b3l2/m11;

d4 = l2b4/m11;

d5 = b5/(m11l2); d6 = b6/(m11l2); d7 = b7/(m11l2); d8 = b8/(m11l2); d9 = b9/(m11l2);

η22 = c22/(m22ωβ);

d10 = b10/m22; d11 = b11/m22; d12 = l2b5/m22; (·) represents derivatives with respect to the nondimensional
time t∗.
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In order to determine the effect of the nonlinearities of Eqs (28) and (29), it is necessary to scale the equations. A
scaling factor ε, where ε � 1, is introduced to represent the order of nonlinear terms and coupling. It is chosen so
that the nonlinearities are at least one order of magnitude smaller than the linear undamped portions. Therefore, the
following transformations are used

ϕ∗ = εφ, β∗ = εψ, q̇∗1 = εΩ̇1, q̇
∗
2 = εΩ̇2 (30)

which implies that φ, ψ, Ω̇1 and Ω̇2 are of the same order of magnitude.
Then substituting Eq. (30) into Eqs (28) and (29), yields

εφ̈+ εη11φ̇+ ε(ω2
ϕβ − εd1Ω̈1 − εd2Ω̈2)φ = ε2d3φ̇

2 + ε2d4φ̈φ+ ε2d5ψ̇
2 + ε2d5ψ̈ψ − εd6Ω̈1

− εd7Ω̈2 + ε2d8(Ω̇1 + Ω̇2)
2 − ε2d9Ω̇

2
1 + o(ε2)

(31)

εψ̈ + εη22ψ̇ + ε(1− εd10Ω̈1 − εd11Ω̈2)ψ = ε2d12ψφ̈+ o(ε2) (32)

In order to perturb off from the undamped linear equations, the damping terms are scaled by

η11 = εζ11, η22 = εζ22 (33)

so that the scaled equations of motion take the final form as follows

φ̈+ ω2
ϕβφ = −d6Ω̈1 − d7Ω̈2 + ε[−ζ11φ̇+ (d1Ω̈1 + d2Ω̈2)φ+ d3φ̇

2 + d4φ̈φ+ d5ψ̇
2

+d5ψ̈ψ + d8(Ω̇1 + Ω̇2)
2 − d9Ω̇

2
1] + o(ε) (34)

ψ̈ + ψ = ε[−ζ22ψ̇ + (d10Ω̈1 + d11Ω̈2)ψ + d12ψφ̈] + o(ε) (35)

6. Nonlinear solution

6.1. Perturbation equation

Since Eqs (34) and (35) do not have a closed form solution, an approximate analytical solution can be generated
through perturbation analysis. Using the method of multiple scales, the time scales are defined as

Ti = εit∗ (i = 0, 1) (36)

A first order approximation to the solutions of Eqs (34) and (35) can be determined in the form

φ(t∗, ε) = φ0(T0, T1) + εφ1(T0, T1) (37)

ψ(t∗, ε) = ψ0(T0, T1) + εψ1(T0, T1) (38)

The independent variable τ is expressed in terms of T0 and T1 via the chain rule, i.e.
d

dt∗
=D0 + εD1 (39)

d2

dt∗2
=D2

0 + 2εD0D1 (40)

where Di = ∂/∂Ti, (i = 0, 1).
Substituting Eqs (37)–(40) into Eqs (34) and (35), then equating coefficients of the same order of ε in both sides,

the following set of differential equations can be obtained.
Order (ε0):

D2
0φ0 + ω2

ϕβφ0 = −d6D2
0Ω1 − d7D

2
0Ω2 (41)

D2
0ψ0 + ψ0 = 0 (42)
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Order (ε1):

D2
0φ1 + ω2

ϕβφ1 =− 2D0D1φ0 − ζ11D0φ0 + (d1D
2
0Ω1 + d2D

2
0Ω2)φ0 + d3(D0φ0)

2 + d4D
2
0φ0φ0

+ d5(D0ψ0)
2 + d5D

2
0ψ0ψ0 + d8(D0Ω1 +D0Ω2)

2 − d9(D0Ω1)
2

(43)

D2
0ψ1 + ψ1 = −2D0D1ψ0 − ζ22D0ψ0 + (d10D

2
0Ω1 + d11D

2
0Ω2)ψ0 + d12ψ0D

2
0φ0 (44)

Equations (41)–(44) vary with the joint motion and thus are time-varying, which is one of the main differences
between the flexible mechanism and the flexible structure.

6.2. Perturbation solution

The linear problem is governed by Eqs (41) and (42). Their solutions can be written as

φ0 = A1(T1) exp(jωϕβT0)− g1 + cc (45)

ψ0 = A2(T1) exp(jT0) + cc (46)

where A1(T1) and A2(T1) are functions of slow time T1; g1 = (d6D
2
0Ω1 + d7D

2
0Ω2)/(2ω

2
ϕβ); cc denotes the

complex conjugate of the preceding term. Due to smooth rigid motion of these two joints in the flexible manipulator,
the third and above derivatives of Ω1 and Ω2 with respect to time are ignored.

The nonlinear problem is governed by Eqs (43) and (44). In order to solve the nonlinear problem, substituting
Eqs (45) and (46) into Eqs (43) and (44), the following equations can be obtained.

D2
0φ1 + ω2

ϕβφ1 =− 2jωϕβA
′
1 exp(jωϕβT0)− ζ11jωϕβA1 exp(jωϕβT0) + g2[A1 exp(jωϕβT0)− g1]

+ d3[−A2
1ω

2
ϕβ exp(2jωϕβT0) +A1Ā1ω

2
ϕβ] + d4[g1ω

2
ϕβA1 exp(jωϕβT0)

−A2
1ω

2
ϕβ exp(2jωϕβT0)−A1Ā1ω

2
ϕβ] + d5[−A2

2 exp(2jT0) +A2Ā2]

+ d5[−A2
2 exp(2jT0)−A2Ā2] + d8(D0Ω1 +D0Ω2)

2 − d9(D0Ω1)
2 + cc

(47)

D2
0ψ1 + ψ1 =− 2jA′

2 exp(jT0)− ζ22jA2 exp(jT0) + g3A2 exp(jT0)

+ d12{−ω2
ϕβA1Ā2 exp[j(ωϕβ − 1)T0]− ω2

ϕβA1A2 exp[j(ωϕβ + 1)T0]}+ cc
(48)

where, g2 = d1D
2
0Ω1 + d2D

2
0Ω2; g3 = d10D

2
0Ω1 + d11D

2
0Ω2; (′) represents derivatives with respect to the slow

time T1.
To obtain solutions of Eqs (47) and (48), it is necessary to determine the solvability conditions.

7. Analysis of internal resonance

In this section, we will study the responses of the system at the 2:1 internal resonance condition, i.e. ω1 ≈ 2ω2. It
is this internal resonance condition that enables the transfer of energy between vibration modes. The analysis of the
modal amplitudes will verify that the transfer of energy is indeed existent. It will be studied for two cases: undamped
and damped.

7.1. Resonant case, without damping

In the case of the 2:1 internal resonance, a detuning parameter σ is introduced as follow

ωϕβ = 2− εσ (49)

2T0 and (ωϕβ − 1)T0 are expressed as

2T0 = ωϕβT0 + σT1 (50)

(ωϕβ − 1)T0 = T0 − σT1 (51)
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From Eqs (47) and (48), the solvability conditions are obtained

−2jωϕβA
′
1 − jζ11ωϕβA1 + (g2 + d4g1ω

2
ϕβ)A1 − 2d5A

2
2 exp(jσT1) = 0 (52)

−2jA′
2 − ζ22jA2 + g3A2 − d12ω

2
ϕβA1Ā2 exp(−jσT1) = 0 (53)

It is convenient to express the resulting modulation equations in polar form by introducing the following transfor-
mation

A1 =
1

2
a1 exp(jθ1) (54)

A2 =
1

2
a2 exp(jθ2) (55)

where a1, a2, θ1, θ2 are real functions of the slow time T1; a1 and a2 are defined as the modal amplitudes.
Inserting Eqs (54) and (55) into Eqs (52) and (53), then separating the real and imaginary parts, the amplitude and

phase modulation equations are obtained

a′1 = −1

2
ζ11a1 +

1

2ωϕβ
d5a

2
2 sin γ (56)

a′2 = −1

2
ζ22a2 − 1

4
d12ω

2
ϕβa1a2 sin γ (57)

a1θ
′
1 = − a1

2ωϕβ
(g2 + d4g1ω

2
ϕβ) +

1

2ωϕβ
d5a

2
2 cos γ (58)

θ′2 = −1

2
g3 +

1

4
d12ω

2
ϕβa1 cos γ (59)

γ = θ1 − 2θ2 − σT1 (60)

Eliminating θ1 and θ2 from Eqs (56)–(60), yields

a1γ
′ = − a1

2ωϕβ
(g2 + d4g1ω

2
ϕβ) +

1

2ωϕβ
d5a

2
2 cos γ + g3a1 − 1

2
d12ω

2
ϕβa

2
1 cos γ − σa1 (61)

In the absence of damping (i.e. ζ11 = ζ22 = 0), we have

a′1 =
1

2ωϕβ
d5a

2
2 sin γ (62)

a′2 = −1

4
d12ω

2
ϕβa1a2 sin γ (63)

Let

v =
2d5

ω3
ϕβd12

=
2m22

m11l22ω
3
ϕβ

(64)

Then multiplying Eq. (62) by a1 and Eq. (63) by va2, and adding them, yields

a1a
′
1 + υa2a

′
2 = 0 (65)

Integrating Eq. (65), we obtain

a21 + υa22 = E = const. (66)

where E is a integration constant proportional to the initial energy of the system.
Since υ > 0 in Eq. (64), a1 and a2 in Eq. (66) are always bounded. Because the damping is neglected in this

case, the system is conservative and the energy level remains constant. As a result, if the response of the modal
amplitude a1 is governed by a periodic function, then the modal amplitude a2 will be periodic and out of phase
with a1. Equation (66) demonstrates that, in the absence of damping, the energy in the system continues to be
exchanged undamped between the fundamental mode of the flexible link and the vibration mode of the absorber.
This conclusion will be further verified by the numerical simulations.
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Table 1
Parameters of the two-link flexible robotic arm

Material Parameters
Link1 Steel l1 = 1.0 m; Square cross-section with side length of 0.05 m.
Link2 Aluminum l2 = 1.0 m; Rectangle cross-section, h× b = 0.05 m × 0.03 m;

Elastic modulus is 71 GPa; Mass density is 2710 kg/m3 .
Tip mass Steel mB = 0.3 kg.

7.2. Resonant case, with damping

In the presence of damping (i.e. ζ11 > 0 and ζ22 > 0), the equilibrium points for this case are defined by the
solution of the set of steady state secular term equations, namely

−1

2
ζ11a1 +

1

2ωϕβ
d5a

2
2 sin γ = 0 (67)

−1

2
ζ22a2 − 1

4
d12ω

2
ϕβa1a2 sin γ = 0 (68)

− a1
2ωϕβ

(g2 + d4g1ω
2
ϕβ) +

1

2ωϕβ
d5a

2
2 cos γ + g3a1 − 1

2
d12ω

2
ϕβa

2
1 cos γ − σa1 = 0 (69)

By inspection, it is determined that the system posses an infinite number of equilibrium points defined by

a1 = 0, a2 = 0, γ ∈ R (70)

Therefore, by evaluating the Jacobian, we can ascertain the stability of the system.
The Jacobian matrix for this case is⎡

⎣ μ1 0 0
0 μ2 0
0 0 0

⎤
⎦ (71)

where μ1 = − 1
2ζ11, μ1 = − 1

2ζ22.
The corresponding eigenvalues are (μ1, μ2, 0). Obviously, μ1 < 0 and μ2 < 0. Therefore, the modal amplitudes

a1 and a2 are stable, as indicated by the negative eigenvalues.
By numerical integrations of Eqs (56)–(60), it is shown that, in the presence of damping, the energy in the system

continues to be exchanged between the fundamental mode of the flexible link and the vibration mode of the absorber,
but it is continuously dissipated. Therefore, modal interaction can be used as a feasible way to control vibration of
the flexible arm. This conclusion will be further verified by the numerical simulations.

8. Simulation and analysis

To verify the above theoretical analysis, a two-link robotic arm with last link flexible is used in the following
numerical simulations, as shown in Fig. 1. Link1 is a uniform rigid beam and Link2 is a uniform Euler-Bernoulli
flexible beam. Their parameters are listed in Table1. Only the in-plane flexural deformation δ(x2, t) about y2 axis in
the plane o2x2y2 is considered.

Suppose the desired joint motion of the manipulator is{
q1 = 0.1 sin(πt/7)

q2 = 0.1 cos(
√
2t/5)

, (0 � t � 100 s)

At t = 10 s, a moving object M0 with the mass of 0.05 kg impacts the endpoint of Link2 in the plane o2x2y2,
perpendicular to x2 axis, as shown in Fig. 4. Its relative velocity with respect to the end-effector is 0.3 m/s and
impact time period is 0.05 s. The corresponding vibration of the endpoint is shown in Fig. 5. It is seen that impact
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Fig. 4. Schematic of the flexible manipulator without vibration absorber.

Fig. 5. Endpoint vibration undergoing impact.

Fig. 6. Schematic of the flexible manipulator with vibration absorber.

vibration responses arise suddenly due to abrupt changes of system velocities in the impact phase. Furthermore,
since the manipulator is required to keep moving after the collision, new vibration responses inevitably arise and
are accumulated on the existing impact vibration responses. In this example, the largest vibration deformation of the
endpoint is 0.0881 m. Due to low structural damping, vibration responses cannot be decreased.

In order to reduce impact vibration via internal resonance, a vibration absorber is attached to Link2 at r = 0.5 m,
which mass m3 = 0.1 kg and centroid position rc3 = 0.2 m, as shown in Fig. 6. The same impact parameters as the
aforementioned case are used. At the state of 2:1 internal resonance, Eqs (56)–(60) are integrated numerically in the
absence of damping. The relationship between the modal amplitude a1 (solid line) and a2 (dashed line) is shown in
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Fig. 7. Undamped modal amplitudes.

Fig. 8. Damped modal amplitudes. Fig. 9. Endpoint response of the controlled arm.

Fig. 7. It can be seen that the peaks and troughs of the responses are exactly 180◦ out of phase, which means that
there is continuous exchange of the energy between vibration modes.

When the damping of the vibration absorber is taken into account, letting c2 = 0.001, Eqs (56)–(60) are integrated
numerically at the state of 2:1 internal resonance. The modal amplitude a1 (solid line) and a2 (dashed line) are
illustrated in Fig. 8. It is shown that a transfer of energy between modes is occurring, verified by the coincidence of
the peaks of one modal curve with the troughs of the other. In addition, the modal amplitudes decay with time and
approach the equilibrium value (a1 = a2 = 0), demonstrating that the vibrational energy of the flexible arm has
been effectively absorbed and dissipated through modal interaction.

The endpoint deformation of the flexible arm equipped with the vibration absorber is shown in Fig. 9. At the
state of 2:1 internal resonance, the endpoint deformation is decreased quickly by 50% within 7 seconds, 75% within
10 seconds, 90% within 15 seconds, compared with the uncontrolled case (as shown in Fig. 5). It is shown that this
control method can effectively decrease large amplitude impact vibration of the flexible manipulator.

Moreover, when a vibration absorber is incorporated into a flexible manipulator, several parameters are also
introduced accordingly, including: mass of the rigid link (m3), damping of the vibration absorber (c2), centroid
position of the rigid link (rc3) (i.e. the distance from the centroid to the joint of the rigid link), joint position of the
rigid link (r) (i.e. the distance from the joint of the rigid link to the joint of the hinged flexible link), as shown in
Fig. 3(a). These parameters play important roles in improving dynamic performance of the flexible manipulator. As
a result, it is necessary to seek appropriate parameter values to achieve optimal control effect. In this study, the aim
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Fig. 10. Endpoint response of the controlled arm. Fig. 11. Endpoint response of the controlled arm.

of this control method is to attenuate the impact vibration quickly and effectively. Therefore, the optimization object
and constraints are

min → ta

s.t. m3_ min � m3 � m3_ max

c2_ min � c2 � c2_ max

rc3_ min � rc3 � rc3_ max

rmin � r � rmax

where ta is the attenuation time when the impact vibration response is decreased to a certain threshold (e. g. 0.01 m
in this simulation), obviously small ta means quick suppression; m3_ min and m3_ max are the lower and upper
permitted mass of the rigid link; c2_ min and c2_ max are the lower and upper permitted damping of the vibration
absorber; rc3_ min and rc3_ max are the lower and upper permitted centroid position of the rigid link; rmin and rmax

are the lower and upper permitted joint position of the rigid link.
This is a multi-variable optimization problem and an optimization algorithm based on Particle swarm optimization

(PSO) is used to obtain the optimal parameters. Several important parameter values are chosen as follows: swarm
size is 20; particle dimension is 4, i.e. m3, c2, rc3 and r; cognitive acceleration and social acceleration are 2 re-
spectively; value of inertial weight at the beginning is 0.95; value of inertial weight at the end of the PSO iterations
is 0.4; 0.05 kg � m3 � 0.3 kg, 0.0001 � c2 � 0.001, 0.1 m � rc3 � 0.5 m, 0.2 m � r � 0.8 m. The same
impact parameters as the aforementioned case are used and the corresponding optimization results are obtained, i.e.
m3 = 0.0507 kg, c2 = 0.0009, rc3 = 0.1031 m, r = 0.6013 m. In this case, the endpoint deformation is calculated
and shown in Fig. 10, in which the vibration deformation is decreased to 0.01 m within 2.3 second and the final
residual deformation is 0.005 m. Compared with the case without optimization (as shown in Fig. 9), in which the vi-
bration deformation is decreased to 0.01 m within 15 second, the attenuation time is decrease by about 85% and the
final residual deformation is decreased by about 50%. It is demonstrated that this control method can attenuate large
amplitude impact vibration of the flexible manipulator more quickly and effectively with optimality parameters.

In addition, an example of the relative impact velocity 0.6 m/s is conducted. The endpoint deformation is shown
in Fig. 11. As can be seen, even though larger impact velocity is imposed, vibration response can still be quelled
effectively and quickly.

Through above simulation and analysis, it is verified that this control method based on internal resonance is
effective in quelling large amplitude impact vibration of the flexible manipulator undergoing rigid motion.
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9. Conclusion

Due to low flexibility, impact can excite severe large amplitude vibration responses of the flexible robotic manipu-
lator. Since this impact vibration exhibits characteristics of remarkable nonlinearity and strong energy, it is necessary
to seek an effective vibration absorption method based on appropriate nonlinear principle.

This study aims to put forward an energy-based control method to absorb and attenuate large amplitude impact
vibration of the flexible manipulator. The method takes advantage of internal resonance and is implemented through
a vibration absorber based on the transfer and dissipation of energy. The addition of a vibration absorber to the flex-
ible arm introduces quadratic nonlinearties into the system, thereby generating a coupling effect between vibration
modes of the system. It is verified that internal resonance can be established for the flexible manipulator undergoing
rigid motion. Its theoretical feasibility of controlling large amplitude impact vibration of the flexible manipulator
is explored and its stability is analyzed. By means of analysis on 2:1 internal resonance, the exchange of energy is
proven to be existent. The impact vibrational energy can be transferred from the arm to the absorber and dissipated
through the damping of the absorber.

The results of numerical simulations are promising and preliminarily verify that the method is feasible and can be
used to combat large amplitude impact vibration of the flexible manipulator subject to rigid motion.
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