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Abstract. The idea of safety region was introduced into the rolling bearing condition monitoring. The safety region estimation
and the state identification of the rolling bearing operational were performed by the comprehensive utilization of Empirical
Mode Decomposition (EMD), Principal Component Analysis (PCA), and the Least Square Support Vector Machine (LSSVM).
The collected vibration data was segmented according to a certain time interval, and then the Intrinsic Mode Functions (IMFs) of
each piece of the data were obtained by EMD. The control limits of two statistical variables extracted by PCA were presented as
state characteristics. The safety region estimation for the rolling bearing operational status was performed by two-class LSSVM.
The states of normal bearing, ball fault, inner race fault, and outer race fault were identified by the multi-class LSSVM. The
results show that the estimation accuracy for both the safety region and the states identification reached 95%, and that the validity
of the proposed method was verified.

Keywords: Rolling bearings, condition monitoring, safety region, empirical mode decomposition, principal component analysis,
least square support vector machine

1. Introduction

Rolling bearings are widely used in some industries such as railway vehicle, automobile, construction machinery
and so on. Nevertheless its failure rate is high. According to the statistics, only 10%~20% of the rolling bearings can
achieve their design life [1]. Accurate and effective condition monitoring and identification of the rolling bearings
are very important for safety, work efficiency and operating cost.

Feature extraction and state identification are key issues while dealing with rolling bearing condition monitor-
ing problems. For feature extraction, Empirical Mode Decomposition (EMD) is a relatively new signal processing
method [2]. It is a proper technique for non-stationary and non-linear signal processing such as mechanical vibra-
tion signal because of its self-adaptive and high signal-to-noise ratio [3]. And, the intrinsic mode functions (IMFs)
which are obtained by EMD can be used to extract fault feature information. Currently, calculation of the energy
moment [1], energy entropy [4], Renyi entropy [5], and Shannon entropy [6] of IMFs and calculation of singular

*Corresponding author: Yong Qin, State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, Chi na. Tel.:
+86 10 51683973; Fax: +86 10 51684081; E-mail: zhangyuanl11@gmail.com.

ISSN 1070-9622/13/$27.50 © 2013 —IOS Press and the authors. All rights reserved



834 Y. Zhang et al. / Safety region estimation and state identification of rolling bearing based on statistical feature extraction

A v,

Non-security

’ .
' security .

-
.
-

________ v

»
»

Fig. 1. Schematic diagram of safety region.

values of IMFs matrix have been used in fault feature extraction research. However the statistical features of the
vibration signal, which usually contain rich operational status information, have seldom been considered in current
researches. They can be used to detect the change of the object’s operational status. Principal Component Anal-
ysis (PCA) is a typical multivariate statistical analysis and model recognition method. The PCA parameters have
few limitations and its calculation process is simple [7]. PCA based statistical performance monitoring has many
applications in quality control, process monitoring, and fault diagnosis [8—11]. In condition monitoring, after the
best comprehensive simplified current status sample data based on PCA, statistical variable values, and their con-
trol limits in different subspaces are computed. For the state identification, Least Square Support Vector Machine
(LSSVM) is an intelligent classification method which is an improvement of the general Support Vector Machine
(SVM). LSSVM possess not only the abilities of good learning from small sample, good generalization, and avoid-
ing trapping into local minima effectively like general SVM [12] but also a fast calculating speed with no need to
specify approximate accuracy [13]. Owing to the above strengths, LSSVM is widely used in the pattern recognition
and predictive control field [14-16].

Learning from the idea of region division, the method based on statistical features extraction was proposed for
the safety region estimation and the operational state identification for the rolling bearings condition monitoring
problem. Firstly, the state characteristic values were extracted by EMD and PCA. IMF matrixes are obtained by
processing the vibration signal with EMD. The rolling bearings’ state feature parameters, Hotelling’s T-squared (')
and Squared Prediction Error (SPE), are calculated by PCA. Then, the boundary of safety region was demarcated by
two-class LSSVM, and the identification of the normal state and fault state for the rolling bearings was performed.
Meanwhile, the identification of the normal state, the ball fault, the inner race fault, and the outer race fault of the
rolling bearings are also performed by the multi-class LSSVM.

2. Safety region theory

The theory of safety region analysis and estimation was first put forward by Wu [17]. This theory was applied to
safety evaluation for power systems, and then spread to network control, highway traffic, e-government affairs, etc.
During the past few years, the authors’ research team brought the concept of safety region into the security status
monitoring and was introduced to evaluate the railway system and its key equipment using [18]. A safety assessment
method was proposed for vehicle equipments based on safety region estimation.

In the research field of condition monitoring and state identification for rolling bearings, safety region is a quan-
titative model which fully describes an area of normal (no fault) operation of rolling bearings. Visually, a region is
selected in the space determined by state characteristics, and its boundary is estimated. When the point determined
by state characteristic values is in the aforementioned region, the rolling bearing operational status is normal (no
fault). Otherwise the rolling bearing operational status is abnormal (fault). The schematic diagram of safety region
is shown in Fig. 1 when the number of state characteristics is 2 (i.e., the state feature space is two-dimensional). In
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Fig. 1, v; and vy are the two state characteristics, P, and P> are two points which represent normal and fault state of
rolling bearing, respectively. The main work of safety region estimation is to get its boundary (i.e., a classification
decision-making function which can distinguish between normal and fault states).

3. Method based on the statistical features extraction

The method based on the statistical features extraction is mainly concerned with three technologies: the EMD for
signal processing, the PCA for statistical features extraction, and the LSSVM for state identification. In this section,
the three technologies were described in detail, and the execution procedures of the method were given.

3.1. The basic principles of EMD

EMD, proposed by Huang [19], is a method used to analyze time-frequency of signals. The IMF components and
the residual component, extracted from original signal according to its local characteristic time scale, are capable
of highlighting the local feature and reflecting the signal in slow variation, respectively. Hence, the characteristic
information of the original signal can be accurately expressed by analyzing IMF and residual components [20].

Each IMF must meet the following two conditions: the difference between the number of zero points and the
number of extreme points is less or equal to one; at any point, the average of the above envelope determined by local
maximum and the below envelope determined by local minimum must be zero (i.e., the IMF has local symmetry
about time axis). The sifting processes to get the components of IMF according to EMD are as follows [21]:

1) Sign original signal as x(t), find out all its local extreme points, connect all the local maximum points and
local minimum points respectively, then draw the above and below envelope of x(t).
2) Sign m; as the sequence which is composed of the local average of the above and below envelopes. Then

hl(t) :,T(t) —ma (1)

3) Determine whether h;(¢) meets the two conditions mentioned above. If not, make it the original signal and
repeat step 1) and 2). That is

ha(t) = hi(t) — ma (2)
After repeating k times,

hi(t) = h—1(t) — mg (3)
If hy(t) meets the two conditions of IMF, hy(t) is expressed as

c1(t) = hi(t) )

Then the first IMF ¢4 (¢) is obtained. In practice, Standard Deviation (SD) of two adjacent h(t) is usually used
as a criterion to stop the iteration. SD is defined as

T 2
_ N () = ()]
SD = ;:0 o) &)

where 7' is signal length.
4) Separate the IMF from the original signal, and get the original signal 7 ()

r1(t) = z(t) — e1(¥) 6)
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5) Repeat Eqgs (1) and (4),

T2 (t) =T (t) — C2 (t)

ra(t) = ra(t) — es(t) (7

Tn(t) = rp_1(t) — en(t)

When IMF ¢,,(¢) is less than the threshold value or r,, (t) become a monotonic function, stop the decomposi-
tion. The latter criterion is used in this research.
6) Substitute Eq. (6) into Eq. (7),

ot) = Y et) 4 1) ®)

where 1, (t) is the residual component of the decomposition, representing the mean trend of the signal.

According to the above sifting processes, the original signal x(¢) can be decomposed as a linear sum of n sta-
tionary IMFs ¢;(t),7 = 1,2...n and a residual component r,(t). The frequency components of IMFs are in a
decreasing order. In other words, ¢; (t) has the highest frequency while ¢, (¢) has the lowest. It shows that the IMF
components are at different frequency bands and it’s good for signal feature extraction.

3.2. Statistical features extraction based on PCA

PCA is a well-developed method for process monitoring and fault diagnosis. It partitions the multi-variable sample
space into a low dimensional feature subspace composed of principal components and a residual subspace by multi-
projector method. This partitioning is based on historical state data or process data. Two statistics which reflect the
subspace changes are constructed. The observation vectors are projected into the two subspaces respectively, and the
statistical indicators are calculated for state and process monitoring [22]. The feature subspace statistics reflect the
main state variation, among which T2 is a commonly used. The residual subspace statistics reflect the interference
and noise in state changes, and the SPE and Hawkins statistics are commonly used [23].

Based on the IMF components of vibration signals of normal and fault rolling bearings, two statistics, 72 and
SPE, and their control limits are calculated. Then, the values of control limits, collected as rolling bearing’s state
characteristics, are used for safety region estimation and state identification. The basic PCA algorithm and the
algorithm to calculate T2, SPE and their control limits are as follow [23,24].

1) Build multivariate statistical model based on data set Y, x (a is sample number and b is variable number).
Standardize y = [y1,%2,...,%]7 € R® (R represents the real number field) which is the vector of each
moment in Y, given by follow formula.

¥ =D;'ly - M(y)] ©)
where M(y) = [Ym1, Ym2, - - -, Yms)~ is the mean vector corresponding to y, D, = diag(sq1, 842, - - - , Sap) is
variance matrix, and sq; = \/£(y; — ym;)? is the standard deviation for the 5 variable, j = 1,2...b.
Note d_a;a_set after standardization as Y, then singular value decomposition is employed for correlation matrix
R=XYofY.

R =UD,U" (10)
where U = [uy,ug, ... up) € R is a unitary matrix and Dy = diag(\1, Mo, . .., \p) is a diagonal matrix. The
variances of Y in all directions for the new coordinate system meet A\; > Ay > ... > ). Call the subspace
composed of the former d (d < b) linearly independent vectors P = [u1, ug, ..., u4) as principal components
subspace Sp. The subspace composed of b-d vectors P’ = [ugy1, ud+2,. - ., up)] is residual subspace Sg. d is

usually calculated by the cumulative variance method. Then y can be decomposed as

Yy=yp+VYE 11

where yp € S pandyg € S E are projections of ¥ in S p and S £ respectively.
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Build statistic 72 and calculate its control limit in S P
T2 is defined as

T* = ||D5 %%

= |D; P y|* = yPD; 'PTy" (12)

where D, is a matrix composed of the former d diagonal elements in D and t = PT¥ is principal scoring
vector. For vector ¥ whose sample number is a and the number of principal components is b, T2 follows F
distribution with d and a-d degree of freedom. That is

a—d T2
d a—1

~ F(d,a —d) (13)

where F'(d,a — d) is the F distribution with d and a-d degree of freedom. Then control limit 72, of T2 at
confidence level is

d(a—1)

T(%L: —d

- Fo(d,a —d) (14)
where [, (d, a — d) is the 100« percentile in the F distribution, its value can be got from F" distribution table.
Build statistic SPE and calculate its control limit in Sg

SPE, also known as the () statistic, is defined as

SPE = |lyg|* = (7 - yPP")(y - yPP")T =31 - PP")y" (15)

Accordingly SPE can be viewed as a measure of plant-model mismatch. The confidence limits for SPE are
given by Jackson [25]. This test suggests the existence of an abnormal condition when SPE > SPE |, where
SPE ¢ is defined as follows:

C'ur\/20512 Ooho(ho — 1) | ™
SPEq;, = 61 07204»14»% (16)
1 1

where, 61 = Agy1 4+ Aag2 + ...+ X, 02 = A5 + A5, + ... + A7, Cy are the confidence limits for the
(1 — ) percentile in a standard normal distribution, and hy = 1;2902‘03 (inwhich 03 = X3 | + A3, o 4. ..+ A)).
These confidence limits are calculated based on the assumptions that the measurements are time independent

and multivariate normally distributed.

In step 2) and step 3), the confidence level « is set 0.95.

3.3. State identification based on LSSVM

The basic idea of SVM is to implement non-linear transformation by defining appropriate kernel function. The

input space is transformed into a high dimensional space and then the optimal liner classification surface is calculated
in the new space [26]. LSSVM is an expansion of SVM. By means of (1) using equality constraint instead of
inequality constraint, and (2) making square-error and loss function as experiences loss of training set, the quadratic
programming problem in SVM is transformed into a linear problem, which reduces the complexity of computation
without losing accuracy [27].

For the given non-linear samples (g;, 0;), I = 1,2,... N, where g; is input data, o; is output data, and N is the

number of sample points. LSSVM can be described as the following optimization problem [28]:

w.n
st [wlolg)+n)=1-¢;1=1,2,...N

N
min J(w, &) = gwlw+ $v Y €2
=1 a7)
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Fig. 2. DAGSVM multi-class method.

where J is objective function, w is weight vector, 7 is threshold, € is slack variable, and «y is penalty coefficient.
Sample g; is projected into high-dimensional space by non-linear mapping ¢(g;). Corresponding Lagrange function
is

N
L(w,n,e,8) = J(w,e) = > _ Bif{o [wo(g) +n] +e — 1} (18)
=1

where f3; is Lagrange multiplier. Consider the optimal conditions

oL N
= —0w=
5~ ¥ l; Bre(g)
oL N
8_ = 07 Z ﬂl =0
az 1=1 1=1,2,...,N (19)
_— = 0 =
851 76[ Vel
oL
55 0, 01w p(gr) +1] +e1—1=0
Linear equations can be obtained as follows by eliminating w and €.
T
0 1 n|_ 0 20
1 K+11| |83 (0]
where, 1 = [1,1,...,1]T, , Lis identity matrix, K(g1, 94) = Kiq; = ¢©(91)(g4)" (in which l,qg = 1,2,..., N),
B =[B1,B2,...,8n]| ,and O = [01, 02, ...,0n]T. When h and 3 are available, then classification decision-making
function is
N
f(g) =sen lz BIK(g,91) +n 1)
=1
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Fig. 3. The implementation process of safety region estimation and state identification.

Gauss kernel as shown in Eq. (22) behaves outstanding in many practical engineering problems, so it is selected as
kernel function in this study.

2
lo—al o

K (9,91) = exp

where p is the width of the radial basis function and p is 0.5 after tries.

For multi-classification problems, the multi-class SVM classifiers are constructed by combining multiple two-
class SVM sub-classifiers. The common methods are one-against-one SVM, one-against-all SVM, and Directed
Acyclic Graph SVM (DAGSVM). Among these methods, one-against-one SVM and DAGSVM are more suitable
for practical application, but misclassifications and rejected classifications exist in one-against-one SVM [29]. So,
DAGSVM is selected for the identification of rolling bearings under the conditions of normal, ball fault, inner race
fault, and outer race fault.

For a classification problem containing M classes samples, DAGSVM sets up a hyper-plane between every two
classes, i.e. M (M — 1)/2 two-class sub-classifiers are constructed. The sub-classifiers constitute a directed acyclic
graph, including M (M — 1)/2 root nodes and M leaf nodes. In the graph, each root node represents a sub-classifier
and connects with two leaf nodes of the next layer. When an unknown sample needs to be classified, the process
starts from the root node (including two classes) and is continued by left or right node in the next layer until a bottom
leaf is reached. The resulted leaf is the class of the unknown sample [30]. DAGSVM used for rolling bearing state
identification is shown in Fig. 2.

3.4. Implementation procedures

The implementation procedures of safety region estimation for rolling bearings based on the proposed method are
as follows.
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Table 1
Classification results for normal and fault states
Case 1 Case 2
Testing CR 0.9979 0.9957
Testing FK 0.9943 0.9884
Fig. 4. The experimental apparatus of bearing fault diagnosis.
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Fig. 5. Safety region estimation results for rolling bearing operational status.

Step 1: Collect acceleration vibration signals when rolling bearing operation state is normal or fault (including

Step 2:

Step 3:
Step 4:

Step 5:

Step 6:

ball fault, inner race fault and outer race fault), respectively.

Determine appropriate interval time and divide the collected data of each state into segments (for instance,
the collected data is partitioned into T /¢y parts as its sampling time is Ts and interval time is ¢;). Each
piece of data corresponds to a feature vector.

Process each piece of data by EMD and get their IMF matrixes.

Process each IMF matrix by PCA, calculate each IMF matrix’s control limits of 7 and SPE statistics.
And the two control limits form two-dimensional statistical feature vector of each data segment, each
vector corresponds to a state point.

Scale the control limit data between zero and one, and then mark them as “normal” and “fault” respec-
tively according to their operating status.

Classify the two-dimensional statistical feature vectors (state points) by LSSVM, and the best classified
line which is the safety region boundary can be obtained.

When the rolling bearing states of normal, ball fault, inner race fault, and outer race fault are identified, accelera-
tion vibration signals of the four states must be collected respectively. Then repeat Step 2~ Step 5, and train LSSVM
sub-classifiers for every two states to obtain identified results by DAGSVM method.

The implementation process is shown in Fig. 3, where Q = T/t is the number of data segments in a specific

state.
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Table 2
CR values of the sub-classifiers for every two classes of multi-class LSSVM
CR
Case 1 Case 2
Normal vs outer race fault 1.0000 1.0000
Ball fault vs outer race fault 0.9871 0.9828
Inner race fault vs outer race fault 1.0000 1.0000
Normal vs ball fault 1.0000 0.9914
Normal vs inner race fault 1.0000 0.9914
Ball fault vs inner race fault 0.9485 0.9267
Table 3
Classification results of normal, ball fault, inner race fault and out race fault
Case 1 Case 2
Normal Ball fault Inner race fault Outer race fault Normal Ball fault Inner race fault Outer race fault
DR 1.0000 0.9241 0.9626 0.9898 0.9966 0.9007 0.9517 0.9725
FAR 0.0023 0.0137 0.0252 0.0000 0.0034 0.0230 0.0298 0.0034
CR 0.9692 0.9553
FK 0.9589 0.9404

4. Experiments and results

The rolling bearing experimental data was proposed by Loparo [31], and the photo of the experimental apparatus
is shown in Fig. 4. The bearing type was 205-2RS JEM SKF, which was a kind of deep-groove ball bearings. The
motor load was 3 horsepower and the speed was 1730 rpm. The fault diameters and the fault depths of the ball,
the inner race, and the outer race were 0.1778 mm and 0.2794 mm, respectively. The number of each state of the
testing bearing is one. It was a minor failure. The sampling time was 10 s. To prove the effectiveness of the proposed
method comprehensively, experiments were carried out with the data of two different cases as mentioned below.

Case 1: The sampling frequency was 12 kHz with data from the drive end.
Case 2: The sampling frequency was 48 kHz with data from the fan end.

For Case 1 and Case 2, time interval t; was determined by the rotation speed of the rolling bearing, i.e. £; equals
the time of per revolution of the rolling bearing. That is, a data segment contained the sample points collected during
the time of per revolution. Then the data in Case 1 and Case 2 were both divided into 288 segments. There were
426 sample points of each segment in Case 1 and 1706 sample points of each segment in Case 2.

Then, the 288 data segments in each state (including the normal, the ball fault, the inner race fault, and the outer
race fault) were decomposed by EMD to obtain the IMFs matrix of each segment. The T2 and SPE statistics control
limits of each IMFs matrix were computed by PCA, and two-dimensional statistical features were extracted. Finally,
LSSVM was used to achieve the safety region estimation and states identification based on the statistical features.

Additionally, input data are divided into two parts for training and testing with a proportion of 6:4 when training
LSSVM.

4.1. Assessment indicators

Three performance indicators, e.g., Detection Rate (DR), False Alarm Rate (FAR), and Classification Rate (CR)
were used to measure the performance of proposed method [32]. DR and FAR are indicators for a certain class of
samples. The identification accuracy is considered better when DR is close to 1 and FAR is close to 0. CR is an
indicator for all classes of samples. Classification performance is considered better when CR is close to 1.

DR — the number of samples correctly classified for the given class

(23)

the total number of samples in the given class

FAR — the number of samples for all other classes classified as the given class

(24)

the total number of samples in the given class



842 Y. Zhang et al. / Safety region estimation and state identification of rolling bearing based on statistical feature extraction

L] = normal ; . :
0.8 L] ¢ ¢ outer race fault - A ball fault
H —divided line 4 outer race fault
b - —divided line
m
wn 4
=l = -
S | g
S 0.4fs " =
g . £ ]
) 5 a
Z . Z s
0.2 F 4 N |
A
A A
A
0 1 L L L O L 1 1 1 L L
0 0.2 0.4 0.6 0.8 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Normalized T2 Normalized T2
(a) Sub-classifier for normal and outer race fault (b) Sub-classifier for ball fault and outer race fault
1 ; ; ; ; 1 ; ; ; ;
® inner race fault A = normal
¢ outer race fault ‘ * 4 Dall fault
0.8 —divided line 4 0.8F ' divided line -
i .
E © g N ]
w - L
z 0.6 $ - 0.6 T
& © g A
= . =
£0.4 ¢ 1 E o4l % .
o ° H o
Z. [} Z. A A
H °
0.2 ¢ 1 0.2f
L]
L]
0 1 1 1 L L o L T’y O h 1 1 L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.2 0.4 0.6 0.8 1
. Normalized T2 . Normalized T2
(c) Sub-classifier for inner race fault and outer (d) Sub-classifier for normal and ball fault
race fault
1 8 ; . . 1 . .
b 5 normal A Dall fault
°$ 8 H ® inner race fault © inner race fault
0.8 s s divided line | 0.8 o —divided line ]
. B L]
L] L]
z 0.6 i 06 . 1
§ X
3 E . .
Eo4 I Eos : o]
=] =] °
z z :
o
0.2 = 3 0.2 : 1
. . !
0 L ® 1 ry 0 L L 1 [ ] L
0.2 0.4 0.6 0.8 1 0.2 0.3 0.4 0.5 0.6
Normalized T2 Normalized T2
(e) Sub-classifier for normal and inner race fault (f) Sub-classifier for ball fault and inner race fault
Fig. 6. Classification results of each sub-classifier in multi-class LSSVM in case 1.
CR — the number of samples correctly classified for all classes

25
tthe total number of samples 23)

To measure the performance of state identification more comprehensively, Fleiss Kappa statistic (FK, FK € [—1,
1]) is also used. It gives consistence quantitative assessment of the target of identification and the classifier out-
puts [33,34]. FK statistic is a commonly used indicator in attribute measurement system for consistency analysis
of classification data. The calculation method of FK can be found in [35]. A FK value between two groups of
classification data is greater than 0.8 indicate that they belong to the same population.



Y. Zhang et al. / Safety region estimation and state identification of rolling bearing based on statistical feature extraction 843

1 ‘

e normal : A ball fault
A
% - H ¢ outer race fault 0.8f¢ 4 % R ¢ outer race fault
0.8 T . Pt — divided line
* L | divided line 0.7 § . ) N i
m ‘ " & . * 3 §
= 0.6 " B ] | »n 0.6 o 2 a 1
o . B = A . a
&1) : E NO0.5 " : 2 4 1
E * R : Tl s Y
§0.4 ' .. . I 1 S 0.4p ; R 4 2 . s
Z LA ¥ " 5 : § 2
03f “e 2 ]
02 ¢ o 1 . 2
0.2 o i
0 L L ! L 0.1 e . , .
0 0.2 0.4 0.6 0.8 1 0 0.1 0.2 0.3 0.4 0.5 0.6
Normalized T2 Normalized T2
(a) Sub-classifier for normal and outer race fault (b) Sub-classifier for ball fault and outer race fault
1 ; ; 1 ' i | \ r
® inner race fault = normal
¢ outer race fault 4 ball fault
0.8 — divided line 1 A . — divided line
. . 0.8f » t B ]
L]
> P 5 |1
20.6 . 1 < |4 .
% [] o B
N i 0.6} 2 B 1
E E : :
4 B
S 04 g A " ]
Z Z 4 =
0.4t * | 4
0.2 4 ) A ] ]
. f m H
° 4 2 “ m
0 L L 8 L} L ° L 0.2 L 4 L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 ’ 0.2 0.4 0.6 0.8 1
Normalized T2 Normalized T2
(c) Sub-classifier for inner race fault and outer (d) Sub-classifier for normal and ball fault
race fault
1 [ I T T T 1 T
° = normal 4 ball fault
o 5 H ® inner race fault ® inner race fault
0.8F = g —divided line 0.8 divided line
L]
|
I ° N " m °
' = [=®} °
= 0.6} e\ i ] 2 0.6 N
g ° H " g 4
E o4 i\ ; 3 E 04
Z ' : . z
0.2f | I ; 0.2
0 . 9 . . . . .. | .
0.2 0.4 0.6 0.8 1 8.1 0.2 0.3 0.4 0.5 0.6
Normalized SPE Normalized T2
(e) Sub-classifier for normal and inner race fault (f) Sub-classifier for ball fault and inner race fault

Fig. 7. Classification results of each sub-classifier in multi-class LSSVM in case 2.

4.2. Experimental results

The classification results of testing data for normal and fault states are shown in Table 1. As seen in the Table 1,
CRin Case 1 and Case 2 are 0.9979 and 0.9957, both of which are close to 1. FK is 0.9943 in Case 1 and 0.9884
in Case 2, both of which are greater than 0.8 and close to 1. The safety region estimation results of rolling bearing
operation state are shown in Fig. 5. Figures 5(a) and (b) are the result for Case 1 and Case 2. One can see that
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Fig. 8. Identification results of rolling bearings four states.

the dividing lines between security region and non-security region which represent normal state and fault state
respectively is clear and the classification performance is good. The good accuracy of safety region classification
and the high level consistency between outputs and targets prove the validity of the proposed method.

Table 2 shows the classification performance of the six sub-classifiers, which are obtained by multi-class LSSVM
for the identification of every two of normal, ball fault, inner race fault, and outer race fault. It can be seen that CR
values of the six sub-classifiers are higher than 0.9 for both cases. In Case 1, four CR values are equal to 1 while in
Case 2 two of them reach 1 and another two are higher than 0.99. The classification results for Case 1 and Case 2
are shown in Figs 6 and 7, which show accurate classification of sub-classifiers. It indicates that the sub-classifiers
have good classification performance of multi-class LSSVM.

Table 3 shows the identification results for normal, ball fault, inner race fault, and outer race fault of the rolling
bearing. The DR values of the four states in both Case 1 and Case 2 are higher than 0.9. All FAR values are lower
than 0.03. The CR values are 0.9692 and 0.9553 for all classes’ samples in Case 1 and Case 2. The overall accuracy
rate of identification exceeded 95%. The FK values in Case 1 and Case 2 are 0.9589 and 0.9404, being close
to 1. The overall identification results agreed well with targets. Figure 8 shows the identification results of four
states, with Fig. 8(a) for Case 1 and Fig. 8(b) for Case 2. In the figures, horizontal axis represents the number of
sample points. The 15¢~288'" points are normal state samples, the 289*"~576" points are ball fault samples, the
577t ~864t" points are inner race fault samples, and the 864"~ 1152" points are inner race fault samples. The
whole area is divided into four subareas by dotted lines. Vertical axis from bottom to top represents the four states of
bearing rolling. The figures shown the most samples of the four states can be correctly classified to the given class,
misclassification samples are few. The results illustrated that using the statistical-features-extraction based method
to identify the multiple states of rolling bearing was feasible and effective.

From Fig. 8(a) for Case 1, one can see that most misclassifications are ball fault samples which are misclassified
into inner race fault. In Table 3, the ball fault has the lowest DR (0.9241) while inner race fault has the highest
FAR (0.0252). In Table 2, the sub-classifier for ball fault and inner race fault has the lowest CR among the six
sub-classifiers. The sub-classifier shown in Fig. 6(f) has relatively poor classification effect, which might caused by
the relatively low accuracy of the sub-classifier for classifying ball fault and inner race fault. For Case 2 shown in
Fig. 8(b), most misclassifications are ball fault samples misclassified into the other three classes, which resulted in
the lowest DR (0.9007) in Table 3. As more samples are misclassified as ball fault and inner race fault, the ball fault
and inner race fault have higher FAR than the other two states (0.0230 and 0.0298). This is because the sub-classifier
for ball fault and inner race fault has the lowest DR (0.9267) and slightly lower classification efficiency, which can
be found from the classification accuracy of the six sub-classifiers for Case 2 in Table 2 and the classification effect
of the sub-classifiers in Fig. 7. Thus, the accuracy of ball fault and inner race fault identification need to be improved
for both the two cases.

In summary, the results of safety region estimation for rolling bearing operational status and identification of
normal bearing, ball fault, inner race fault and outer race fault show effectiveness and feasibility of the approach
based on statistical features extraction.



Y. Zhang et al. / Safety region estimation and state identification of rolling bearing based on statistical feature extraction 845
5. Conclusions

The concept of safety region was introduced into the rolling bearing condition monitoring and the estimation
methods integrated with EMD, PCA, and LSSVM were proposed based on statistical features extraction. IMF com-
ponents decomposed by EMD were processed by PCA. T2 and SPE statistics control limits were proposed to
represent state characteristics for rolling bearings. The safety region boundaries for the rolling bearings operational
status were estimated by LSSVM based on extracted characteristics, and identification of normal and fault states was
performed by the multi-class LSSVM. Experiment results show that the proposed method is effective and feasible
for rolling bearing status monitoring.

The future researches will mainly concentrate on (1) how to enhance identification precision for ball fault and
inner race fault. Besides, and (2) push forward the rolling bearing monitoring system based on the proposed method
into practice.
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