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A new method for the synthesis of structures with prescribed target natural frequencies and mode shapes is presented. The
introduction of a modal Rayleigh quotient approximation based on the target mode shapes is the means to propose a structural
synthesis problem whose solution is free from eigenvector sensitivity analysis. The frequencies and mode shapes can be adjusted
as close as possible to the desired target values, while minimizing the total mass. Several examples corroborate the efficacy of the
proposed method.

1. Introduction

Optimization of dynamic systems is an inverse eigenvalue
problemwith the goal of tailoring the response of a system by
estimating the needed change in the design variables to
achieve a desired change in the natural frequencies of the
structure. The structural synthesis with the inclusion of ine-
quality frequency constraints has been extensively explored
in the past in many different works reported in the literature
[1]; however the need remains to create an effective method
to include not only prescribed frequencies but also prescribed
mode shapes in the optimization process.There are important
instanceswhere the adjusting of frequencies andmode shapes
to given prescribed values is desirable, such as the synthesis
of aircraft under aeroelastic constraints or model updating,
where an analytical or numerical model is improved based
on modal test data [2, 3].

Structural design tailoring applied to simple mass and
spring systems has been extensively reported in the literature.
For instance, Yee and Tsuei [4, 5] have proposed methods of
shifting the desired eigenfrequencies using the forced re-
sponse of the system and modal analysis. Mass matrix modi-
fication has been proposed to achieve desired natural fre-
quencies [6] while the use of concentrated mass elements to

shift eigenfrequencies of a rectangular plate has been pro-
posed in [7]. Sivan andRam [8] have used orthogonality prin-
ciples to obtain modified stiffness and mass matrices. Glad-
well [9] introduced an inverse approach for both the discrete
and continuous structures. Mottershead [10] has investigated
the concept of resonance and adding mass or springs to the
dynamic system.

In other related researches, studies have been reported on
the simultaneous assignment of mode frequency and shape,
by developing approaches based on both modal data [11] and
system physical models [12]. Examples include the assign-
ment of natural frequencies to amulti-degree-of-freedomun-
damped system using an added mass connected by springs
[13], the assignment of natural frequencies and antiresonan-
ces by beam modification [14], and the structural modifica-
tion of a helicopter tail cone [15]. Gladwell and Movahhedy
[16] obtained the set of necessary and sufficient conditions to
ensure positive mass and stiffness parameters for a three-de-
gree-of-freedom case study.

In Richiedei et al. [17], a convex optimization approach is
proposed. A linear matrix difference equation is set based on
satisfying the Rayleigh quotient using linearizations of the
system stiffness andmassmatrices in terms of the design vari-
ables. The residual of the resulting system of linear equations
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in the design variables is then used to form a convex objec-
tive function.Themethod candealwith general finite element
models and has no need of eigenvector sensitivities but is
limited in the context of structural synthesis, since it is indif-
ferent to the structural and nonstructural mass mobilized in
the solution, thus presenting a difficulty of integration with a
general structural synthesis tool; besides it can only deal with
linear constraints.

Although itmay be immediate towrite the statement of an
optimization problemwhere themode shapes are prescribed,
the solution of such a problem may not be an easy task, since
directional optimization demands eigenvector sensitivity
analysis, which is expensive. Also, and perhaps mainly, nu-
merical difficultiesmay arise due to complexmodal structural
behavior of the system, a common feature of many real life
finite element discretizations.

A theoretically consistent method for the structural syn-
thesis with prescribed target frequencies and mode shapes
seems to be inexistent in literature. If such a method could
avoid the use of expensive eigenvector sensitivity analysis,
it might be used with great advantage. The objective of the
present work is to create an effectivemethodwith strong con-
vergence capability for the structural synthesis of general sys-
tems with prescribed target free vibration natural frequencies
(𝜔𝑗, 𝑗 = 1, . . . , 𝑝) andmode shapes (𝜑𝑗, 𝑗 = 1, . . . , 𝑝), without
the use of eigenvector sensitivities. While it is not mandatory,
it is also desirable for the structure to have minimummass.

2. Synthesis Based on Modal Rayleigh
Quotient Approximation

The natural free vibration eigenproblem for a discrete system
can be written as follows:

(K − 𝜆𝑗M)𝜑𝑗 = 0 𝑗 = 1, . . . , 𝑛, (1)

where 𝜆𝑗 = 𝜔
2
𝑗 is the eigenvalue corresponding to the natural

frequency 𝜔𝑗. The natural frequencies are related to corre-
sponding mode shapes by means of the Rayleigh quotient,
such that

𝜆𝑗 = 𝜔
2
𝑗 =

𝜑
𝑇
𝑗K𝜑𝑗
𝜑𝑇𝑗M𝜑𝑗

𝑗 = 1, . . . , 𝑛. (2)

The Rayleigh quotient is classically used to approximate the
fundamental frequency of a system and also in algorithms for
solution of eigenproblems.

In this work there are 𝑠 prescribed pairs of target natural
frequencies andmode shapes, (𝜔𝑗,𝜑𝑗), that are to be imposed
on the structure. Therefore, we seek an optimal solution x∗
that will satisfy

(K∗ − 𝜆𝑗M
∗
)𝜑𝑗 = 0 𝑗 = 1, . . . , 𝑠, (3)

where the eigenvalue 𝜆𝑗 = 𝜔
2
𝑗 . The target eigenvalues are re-

lated to the target mode shapes by the Rayleigh quotient:

𝜆𝑗 =

𝜑
𝑇
𝑗K
∗
𝜑𝑗

𝜑
𝑇
𝑗M∗𝜑𝑗

𝑗 = 1, . . . , 𝑠. (4)

The symbol ∗ indicates that the stiffness and mass matri-
ces are computed at the optimal solution. It may be possible
to satisfy (3) and (4) if we have the appropriate parameters or
design variables to adjust in the system we are dealing with.

We define a modal Rayleigh quotient approximation
(MRQA), based on the target mode shapes and the current
structural stiffness and mass as follows:

𝜇𝑗 =

𝜑
𝑇
𝑗K𝜑𝑗
𝜑
𝑇
𝑗M𝜑𝑗

𝑗 = 1, . . . , 𝑠. (5)

The MRQA quantifies the approximation to the target
mode shape 𝜑𝑗 at the current design, whereK andM are sup-
posedly calculated. This quantity has in it a great deal of the
dynamical structural behavior of the system and can be very
helpful.

TheMRQA can be used to define the following first state-
ment of our synthesis problem, where we want to generate a
structure that will have its eigenvalues and mode shapes the
closest possible to the prescribed target pairs (𝜆𝑗,𝜑𝑗), 𝑗 =
1, . . . , 𝑠 as follows:

min
𝑝

∑

𝑗=1

{𝑎𝑗 (𝜇𝑗 − 𝜆𝑗)
2
+ 𝑏𝑗(𝜆𝑗 − 𝜆𝑗)

2
} . (6)

s.t. 𝜇𝑗 =

𝜑
𝑇
𝑗K𝜑𝑗
𝜑
𝑇
𝑗M𝜑𝑗

𝑗 = 1, . . . , 𝑠, (7)

(K − 𝜆𝑗M)𝜑𝑗 = 0 𝑗 = 1, . . . , 𝑠. (8)

The objective function contains the residuals between the
target frequency eigenvalues (𝜆𝑗) with both the eigenvalues
associated to the system natural frequencies (𝜆𝑗) and the
MRQA (𝜇𝑗). The 𝑎𝑗 and 𝑏𝑗 are adequate weighting factors.
In the synthesis defined by (6)–(8) we will adjust the design
variables and thus the stiffness and mass matrices, such that
𝜇𝑗 and 𝜆𝑗 will both converge to the natural prescribed target
frequency eigenvalues,𝜆𝑗. For instance, admitting that during
the optimization iterations the MRQA will converge to the
target frequency eigenvalue (𝜇𝑗 → 𝜆𝑗) implies that themode
shape will also converge to 𝜑𝑗; that is, we will have 𝜑𝑗 → 𝜑𝑗.

The problem above is well posed in the sense that it will
have a high probability of producing a solution which is the
best possible in fulfilling the specified frequencies and mode
shapes, but it has no mention of limiting the structural or
nonstructural mass mobilized during the solution, and so a
probability exists such that a nonoptimal structure in terms
of mass and structural weight can be created. Limiting the
masses could be an alternative to be exploited, but for now
this will be left as an open issue.

The problem statement can be modified with the inclu-
sion of a term containing the structural and nonstructural
masses in the objective function so that we can synthesize a
system that best fits the prescribed target frequencies and
mode shapes but does it with minimum expending of mass.
The following new augmented statement of the problem is
then proposed with the inclusion of the mass (𝑀) in the
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Table 1: Target frequencies (Case 1).

Mode 𝜆𝑗 = 𝜔
2
𝑗 𝑓𝑗 (Hz)

1 425.2 3.28
2 8396.6 14.58
3 47992.1 34.87

Table 2: Target mode shapes (Case 1).

Mode 1 0.000 0.330 0.622 0.842 0.971 1.000 0.930 0.776 0.555 0.289 0.000
Mode 2 0.000 0.437 0.625 0.408 −0.070 −0.576 −0.918 −1.000 −0.833 −0.469 0.000
Mode 3 0.000 0.228 0.197 −0.182 −0.454 −0.189 0.411 0.897 1.000 0.644 0.000

objective function and also range constraints for the frequen-
cies eigenvalues and the MRQAs:

min 𝑀+

𝑝

∑

𝑗=1

{𝑎𝑗(𝜇𝑗 − 𝜔
2
𝑗)
2
+ 𝑏𝑗(𝜆𝑗 − 𝜔

2
𝑗)
2
} , (9)

s.t. 𝑝𝜔
2
𝑗 ≤ 𝜆𝑗 ≤ 𝑞𝜔

2
𝑗 𝑗 = 1, . . . , 𝑠, (10)

𝑝𝜔
2
𝑗 ≤ 𝜇𝑗 ≤ 𝑞𝜔

2
𝑗 𝑗 = 1, . . . , 𝑠, (11)

𝜇𝑗 =

𝜑
𝑇
𝑗K𝜑𝑗
𝜑
𝑇
𝑗M𝜑𝑗

𝑗 = 1, . . . , 𝑠, (12)

(K − 𝜆𝑗M)𝜑𝑗 = 0 𝑗 = 1, . . . , 𝑠. (13)

The use of the mass augmented objective function of (9)
instead of (6) may lead to a compromise solution in which
the system mass is minimized but the adjustment between
the frequencies and mode shapes to their prescribed values
may not be the best. Thus, the range constraints are added
((10)-(11)) so that the problem statement is now given by (9)–
(13). Range constraints are used instead of strict equality
constraints for two reasons. Firstly, satisfaction of equality of
frequencies andmode shapes to their prescribed target values
may not be possible depending on the design variables used
for the synthesis [3]. Also, because the numerical optimiza-
tion solution tends to be harder for strict equality constraints,
even for the case where they are realizable. Here the multi-
pliers 𝑝 ≤ 1 and 𝑞 ≥ 1 are parameters defining the ranges;
for example, 𝑝 = 1 − 𝛿 and 𝑞 = 1 + 𝛿, where 𝛿 is adjusted
during the optimization, departing from say 𝛿 = 0.1, and
closing the rangewith say 𝛿 = 0.0001. Experiencewith simple
cases now shows that good solutions can be obtained adjust-
ing the ranges smoothly, by means of solving a sequential
optimization with decreasing ranges such that in the 𝑖th opti-
mization problem 𝛿

(𝑖)
= 𝑟 𝛿

(𝑖−1), where 𝑟 < 1; for example,
0.1 ≤ 𝑟 ≤ 0.5. Because of the new constraints we can choose
the weights 𝑎𝑗 and 𝑏𝑗 to be null, so defining a cleaner mass-
only objective function.

3. Simply Supported Beam

A simply supported beam of length 𝐿, with rectangular cross
section (𝑏, ℎ), is shown in Figure 1. It has five concentrated

m1 m2 m3 m4 m5

0.2L 0.2L 0.2L0.2L 0.1L 0.1L
h

b

Figure 1: Beam with concentrated masses.
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Figure 2: Target mode shapes (Case 1).

masses which are design variables, positioned along its cen-
troidal axis. Also the beam depth, ℎ, is a design variable. The
beam behavior includes just in-plane bending which obeys
the Euler-Bernoulli theory, without rotary inertia effects.The
beam natural free vibration analysis is done by the Rayleigh-
Ritz method, using a sine series for the deflections with ten
terms. The length of the beam is 𝐿 = 5m, the modulus of
elasticity is 𝐸 = 70Pa, and the material density is 𝜌 =

2500 kg/m3.
To optimize the beam for minimum total mass, we have

six design variables (ℎ, 𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5). Three study
cases are defined which differ from each other mainly due to
the prescribed target values of frequencies and mode shapes.

3.1. Case 1. In this case the beam section width is 𝑏 = 50mm.
The target values of frequencies are those in Table 1, while
Table 2 has the target mode shapes.

The frequencies and mode shapes of Tables 1 and 2 were
chosen to be the same that can be obtained when the beam
has the following properties: ℎ = 0.2m, 𝑚1 = 200 kg, 𝑚2 =
90 kg, 𝑚3 = 50 kg, 𝑚4 = 30 kg, and 𝑚5 = 10 kg; this will be
called the reference design.

The target mode shapes are illustrated in Figure 2, where
a tendency to symmetry of mode 1 exists while modes 2 and 3
are a mix of symmetric and antisymmetric parts, making the
structural synthesis problem harder when compared to a case
with only purely symmetric or antisymmetric modes.

The optimization problem is defined by (9)–(13); however
we use the simpler objective function corresponding to mass
minimization only, that is, with 𝑎𝑗 = 𝑏𝑗 = 0, 𝑗 = 1, . . . , 3.
A sequential optimization solution was implemented with
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Table 3: Optimal design variables (Case 1).

ℎ (m) Mass 1 2 3 4 5
0.075 (kg) 77.61 34.07 20.11 9.89 0.00

Table 4: Optimal frequencies and MRQA (Case 1).

Mode 𝜔
2
𝑗 𝜆𝑗 % Error 𝜇𝑗 % Error

1 425.2 425.2 0.01 425.2 0.01
2 8396.6 8397.5 0.01 8395.8 0.01
3 47992.1 47987.3 0.01 47996.9 0.01

Table 5: Optimal mode shapes (Case 1).

1st mode 0.000 0.329 0.620 0.840 0.970 1.000 0.931 0.776 0.555 0.289 0.000
2nd mode 0.000 0.442 0.635 0.424 −0.053 −0.564 −0.912 −1.000 −0.834 −0.471 0.000
3rd mode 0.000 0.243 0.210 −0.182 −0.467 −0.205 0.406 0.902 1.000 0.647 0.000

Table 6: Sequential optimization iteration history (Case 1).

(a)

Iter. 𝑝 𝑞 𝑀 (kg) Max 𝑔𝜆 Max 𝑔𝜇
0 0.5 2 1125. 5.4𝐸 − 01 4.3𝐸 − 01

1 0.5 2 23.59 −3.9𝐸 − 01 1.3𝐸 − 06

2 0.95 1.1 77.70 5.9𝐸 − 08 2.3𝐸 − 08

3 0.99 1.01 130.31 4.2𝐸 − 08 5.4𝐸 − 10

4 0.999 1.001 167.60 2.5𝐸 − 09 4.9𝐸 − 09

5 0.9999 1.0001 188.46 8.7𝐸 − 10 9.0𝐸 − 10

(b)

Iter. ℎ (m) 𝑚1 (kg) 𝑚2 (kg) 𝑚3 (kg) 𝑚4 (kg) 𝑚5 (kg) ∑𝑚𝑗 (kg)
0 0.2000 200 200 200 200 200 1000
1 0.038 0.00 0.00 0.00 0.00 0.00 0.00
2 0.058 18.31 1.01 17.78 4.49 0.00 41.59
3 0.067 46.32 14.34 24.54 3.46 0.00 88.67
4 0.072 66.70 27.11 21.76 7.01 0.00 122.58
5 0.075 77.61 34.07 20.11 9.89 0.00 141.68

varying 𝑝 and 𝑞, having the iteration history presented in
Table 6, which will be discussed later.

The optimal values of the six design variables used to
minimize the mass and satisfy the target frequencies and
mode shapes are presented in Table 3 and correspond to
the total mass of 188.46 kg, from which 141.68 kg is made
of concentrated masses. The optimal beam has a depth of
0.075m.The optimal solution is remarkable from the point of
view of reduction of the structural and nonstructural masses,
when compared to the reference design where the beam
depth is 0.020m and the nonstructural mass is 380 kg.

Table 4 has the eigenvalues (𝜆𝑗) and the values of the
MRQA (𝜇𝑗) obtained for the optimal design, where an almost
perfect matching is seen with the target values 𝜔2𝑗 , with devi-
ations around only 0.01%.

Table 5 presents the optimal mode shapes obtained, hav-
ing a very close agreement with the target modes of Table 2.
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Figure 3: Optimal and target mode shapes (Case 1).

This could be anticipated from the closeness between the
MRQA (𝜇𝑗) and 𝜔

2
𝑗 of Table 4. As a matter of fact, the possi-

bility of achieving this matching is the basis of the solution
proposed in this work.

The excellent agreement between optimal and target
mode shapes can be seen from Figure 3. The optimal mode
shape curves which are marked and the target unmarked can
barely be distinguished one from the other.
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Table 7: Target frequencies (Case 2).

Mode 𝜆𝑗 = 𝜔
2
𝑗 𝑓𝑗 (Hz)

1 121.97 1.76
2 2569.53 8.08
3 10350.41 16.19

Table 8: Target mode shapes (Case 2).

Mode 1 0.000 0.319 0.605 0.827 0.963 1.000 0.937 0.786 0.565 0.295 0.000
Mode 2 0.000 0.461 0.707 0.594 0.191 −0.339 −0.790 −1.000 −0.910 −0.536 0.000
Mode 3 0.000 0.522 0.611 0.082 −0.492 −0.488 0.050 0.697 1.000 0.697 0.000
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Figure 4: Optimal and target mode shapes (Case 2A).

It is instructive to look at Table 6 with the nice optimi-
zation iteration history. Each one of the five iterations corre-
sponds to given values of the constraints range parameters 𝑝
and 𝑞, which were quickly found by trial and error. The sec-
ond row has the initial design and from the third row on the
optimal results after the optimization for the corresponding
𝑝 and 𝑞 parameters. The total mass presented in the fourth
column of Table 6 decays in the first iteration and then grows
rapidly with the tightening of 𝑝 and 𝑞. The optimization
behavior was excellent, allowing the use of rapidly decreasing
constraint ranges. Furthermore, the optimizationwould fail if
the tightening of 𝑝 and 𝑞was very sharp or the starting values
of 𝑝 and 𝑞 were too tight. In the fifth column the maximum
constraint violation for the constraints in normalized form of
(10) is presented as follows:

max 𝑔𝜆 = max(1 −
𝜆𝑗

𝑝𝜔
2
𝑗

, −1 +

𝜆𝑗

𝑞𝜔
2
𝑗

) . (14)

Similarly results of the 6th column correspond to (11).
The constraints are always satisfied at the optimum of every
iteration. The second row of Table 6 has the initial design
(iter = 0), with a constraint violation of 54% associated with
𝑝 = 0.5 and 𝑞 = 2.0, the values used to solve the first iteration,
at the end of which the constraints became satisfied (iter = 1).
The solution was obtained with the Solver in Excel.

In the solution presented, the adjustable range constraints
were very effective, leading to results as if equality constraints
had been imposed, corresponding to 𝛿 = 0.0001.

3.2. Case 2. Here 𝑏 = 0.03m and the target frequencies are
smaller, given in Table 7, with the target mode shapes of
Table 8.

The values from Tables 7 and 8 can be obtained from the
ref-erence design: ℎ = 0.05m, 𝑚1 = 𝑚2 = 30 kg, and 𝑚3 =
𝑚4 = 𝑚5 = 10 kg.

Table 9: Optimal design variables results (Case 2A).

ℎ (m) Masses 1 2 3 4 5 ∑𝑚𝑗

0.030 (kg) 5.50 1.32 5.80 0.02 0.67 13.31

Table 10: Optimal frequencies and MRQA (Case 2A).

Mode 𝜔
2
𝑗 𝜆𝑗 % Error 𝜇𝑗 % Error

1 121.97 124.1 1.8 124.2 1.9
2 2569.5 2572.4 0.1 2564.6 −0.2
3 10350.4 10345.2 −0.1 10363.2 0.1

The problem of (9)–(13) has the same six design variables
of Case 1. The beam depth is constrained, with ℎ ≥ 0.03m.
This time both solutions are going to be examined: without
(Case 2A) and with (Case 2B) the range constraints.

For the case without range constraints, we use the weights
𝑎𝑗 = 𝑏𝑗 = 1/(𝜔

2
𝑗). The optimum design, obtained using the

same initial design of Case 1, is given in Table 9.
The optimal frequencies and MRQA obtained in this run

are given in Table 10, showing a very satisfactory agreement
between the target 𝜔2𝑗 and the optimal values of 𝜆𝑗 and 𝜇𝑗,
with errors smaller than 2%.

The optimal mode shapes for the case without range
constraints are given in Table 11.

In Figure 4 the optimal mode shapes are depicted in the
curves with marks against the unmarked curves of target
modes shapes.We can see that thematching is reasonable but
not perfect.

The optimal solution for Case 2B with range constraints
is given in Table 12. It was obtained using as initial design
the solution of Case 2A and the range constraints with 𝛿 =
0.0001. As can be observed the solution is very distinct from
the one in Table 9 in terms of the design variables values.
Besides, the total optimal nonstructural mass is considerably
bigger now.

The optimal frequencies andMRQA are given in Table 13,
showing an almost perfect matching between the target 𝜔2𝑗
and the optimal values of 𝜆𝑗 and 𝜇𝑗.The comparison between
Tables 10 and 13 shows that in Case 2B the solution is con-
siderably more precise.

The optimal mode shapes given in Table 14 and depicted
in Figure 5 have a close agreement with the target values of
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Table 11: Optimal mode shapes (Case 2A).

1st mode 0.000 0.315 0.598 0.819 0.958 1.000 0.940 0.791 0.569 0.297 0.000
2nd mode 0.000 0.576 0.880 0.745 0.273 −0.314 −0.784 −1.000 −0.910 −0.537 0.000
3rd mode 0.000 0.329 0.368 0.016 −0.382 −0.392 0.108 0.729 1.000 0.700 0.000

Table 12: Optimal design variables results (Case 2B).

ℎ (m) Masses 1 2 3 4 5 ∑𝑚𝑗

0.0333 (kg) 7.83 5.24 5.34 1.09 1.50 21.00

Table 13: Optimal frequencies and MRQA (Case 2B).

Mode 𝜔
2
𝑗 𝜆𝑗 % Error 𝜇𝑗 % Error

1 121.97 121.96 0.01 121.98 0.01
2 2569.5 2569.3 0.01 2569.8 0.01
3 10350.4 10349.4 0.01 10350.4 0.01

Table 14: Optimal mode shapes (Case 2B).

1st mode 0.000 0.317 0.602 0.823 0.961 1.000 0.938 0.788 0.567 0.296 0.000
2nd mode 0.000 0.510 0.780 0.656 0.222 −0.333 −0.790 −1.000 −0.908 −0.535 0.000
3rd mode 0.000 0.419 0.479 0.046 −0.432 −0.433 0.088 0.719 1.000 0.699 0.000

Table 15: Target frequencies (Case 3).

Mode 𝜆𝑗 = 𝜔
2
𝑗 𝑓𝑗 (Hz)

1 157.91 2
2 1934.44 7
3 8300.34 14.5
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Figure 5: Optimal and target mode shapes (Case 2B).

Table 8. It is worth comparing Figure 5, from the case with
range constraints, with Figure 4, from the case without them.
It is clear that the solution with range constraints results in
better adjusted mode shapes.

3.3. Case 3. Now the beam has the same target mode shapes
of Case 2 (see Table 8) but different target frequencies accord-
ing to Table 15.

The target frequencies were set trying to make Case 3
harder than Case 2.This was done by keeping the same target
mode shapes of Case 2 but imposing target frequencieswhich
are not scalable from Case 2. With this in mind, Table 15 was
created looking at Table 7 and doing the following: increasing
the first target frequency from 1.76Hz to 2Hz, decreasing the

second target frequency from 8.08Hz to 7Hz, and decreasing
the third from 16.19Hz to 14.5Hz.

The optimization now was done by adjusting the param-
eters 𝑝 and 𝑞, resulting in the iterations shown in Table 16.
The parameters could be decreased up to a corresponding
𝛿 = 0.03; values below this would not produce a feasible
solution. The values of 𝑝 = 1 − 𝛿 and 𝑞 = 1 + 𝛿 used to solve
the sequential optimization are given, with the remark that
for iter = 0 the values have only the purpose of computing
the maximum constraint violations in the initial design.

Table 17 shows that the eigenvalues and the MRQAs for
the optimal design could be reasonably adjusted to the target
values, with a maximum error of 3%.

The mode shapes also were satisfactorily adjusted as
Table 18 shows, when compared to the target values of Table 8.

In Figure 6 continuous lines are the prescribed target
mode shapes and the lines with marks are the optimal mode
shapes. The first mode is practically the same of the target
mode; the second mode seems to be a better fitting to the
prescribed target mode than is the third mode. This is the
case where to obtain a better adjusting for the second and
third modes more design variables would be necessary, such
as additional point masses or eventually a beam with variable
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Table 16: Sequential optimization iteration history (Case 3).

(a)

Iter 𝑝 𝑞 𝑀 (kg) Max 𝑔𝜆 Max 𝑔𝜇
0 0.9 1.1 108.75 2.08𝐸 − 01 2.08𝐸 − 01

1 0.9 1.1 23.03 4.95𝐸 − 08 −4.44𝐸 − 02

2 0.95 1.05 24.03 1.59𝐸 − 08 −2.70𝐸 − 12

3 0.97 1.03 186.09 1.94𝐸 − 08 −7.50𝐸 − 10

(b)

Iter ℎ (m) 𝑚1 (kg) 𝑚2 (kg) 𝑚3 (kg) 𝑚4 (kg) 𝑚5 (kg) ∑𝑚𝑗 (kg)
0 0.0500 30.0 30.0 10.0 10.0 10.0 90.0
1 0.0300 4.46 0.00 2.87 0.000 4.45 11.78
2 0.0300 5.58 0.00 3.12 0.000 4.08 12.78
3 0.0606 74.21 0.00 37.31 11.64 40.23 163.38

Table 17: Optimal frequencies and MRQA (Case 3).

Mode 𝜔
2
𝑗 𝜆𝑗 % Error 𝜇𝑗 % Error

1 157.9 153.2 3.0 153.9 2.5
2 1934.4 1992.5 3.0 1969.0 1.8
3 8300.3 8549.4 3.0 8051.3 3.0

Table 18: Optimal mode shapes (Case 3).

Mode 1 0.000 0.318 0.601 0.818 0.955 1.000 0.947 0.803 0.583 0.306 0.000
Mode 2 0.000 0.587 0.909 0.792 0.346 −0.224 −0.722 −1.000 −0.961 −0.580 0.000
Mode 3 0.000 0.397 0.430 −0.080 −0.737 −0.970 −0.455 0.435 1.000 0.763 0.000

−1

−0.6

−0.2

0.2

0.6

1

Figure 6: Optimal and target mode shapes (Case 3)

depth. However, the important emphasis here is that this re-
sult is expected to be very close to the best possible approxi-
mate solution for the problem using the same six design vari-
ables used for the solution presented.

4. Concluding Remarks

A new method that is theoretically consistent was presented
for the synthesis of structures with prescribed target frequen-
cies and mode shapes. It avoids the use of eigenvector sensi-
tivity and seems to have excellent convergence potential. Its
application to a simple beamled to very encouraging results.
It must be tested in more complex synthesis problems for
mode and frequency adjusting,wherewe anticipate that it will
provide significant advantages compared to many methods
presented in the literature.
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