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An analysis method is proposed for the vibration analysis of theMindlin rectangular plates with general elastically restrained edges,
in which the vibration displacements and the cross-sectional rotations of the mid-plane are expressed as the linear combination
of a double Fourier cosine series and four one-dimensional Fourier series. The use of these supplementary functions is to solve
the possible discontinuities with first derivatives at each edge. So this method can be applied to get the exact solution for vibration
of plates with general elastic boundary conditions. The matrix eigenvalue equation which is equivalent to governing differential
equations of the plate can be derived through using the boundary conditions and the governing equations based on Mindlin plate
theory. The natural frequencies can be got through solving the matrix equation. Finally the numerical results are presented to
validate the accuracy of the method.

1. Introduction

Rectangular plates are important structural elements and the
analysis of the vibration is very important for the design
of plate-type structures in aerospace, electronic, mechanical,
marine, nuclear, and structural engineering. Thus, many
researchers have done much work and got a lot of results.
However, this research is based on the classical Kirchhoff
hypothesis. This theory neglects the effect of shear deforma-
tion and rotary inertia which result in the over-estimation
of vibration frequencies. This deviation will increase with
increasing plate thickness. To improve the results, the
Mindlin first-order plate can be employed. So the vibration
of Mindlin rectangular plates has begun to gain attention.

The effective methods used to analyze the vibration of
Mindlin rectangular plates include Rayleigh-Ritz method
[1–4] and some numerical methods, such as differential
quadrature method (DQM) [5, 6] and discrete singular con-
volution method (DSC) [7, 8]. Several analysis methods were
also proposed by some researchers. Hashemi et al. derived
the exact close form characteristic equations and their
associated eigenfunctions for the thick rectangular plates
with two opposite sides simply supported [9, 10]. Gorman

used the superposition method to obtain a solution for the
Mindlin plates [11, 12].

Most existing studies are limited to the classical homoge-
neous boundary conditions. Recently, Li proposed a Fourier
series method for the vibration analysis of arbitrarily sup-
ported beam [13]. The flexural displacement of the beam is
sought as the linear combination of a Fourier series and an
auxiliary polynomial function. Subsequently, this method is
extended to the flexural and in-plane vibration of rectangular
plates under general boundary conditions. The flexural and
in-plane displacement of the plate is sought as the linear
combination of a double Fourier cosine series and auxiliary
series functions [14–16]. It has been shown that this solution
method works very well for various edge supports.

In this paper, an improved Fourier series method is
employed to analyze the free vibration of Mindlin rectangu-
lar plates with general elastic boundary supports, in which
the vibration displacements and the cross-sectional rota-
tions of the mid-plane are expressed as the linear combina-
tion of a double Fourier cosine series and four one-dimen-
sional Fourier series. The possible discontinuities problems,
which maybe encountered in the displacement and rotations
partial differentials along the edges, can be solved by these
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Figure 1: A Mindlin plate with general elastic boundary support.

supplementary functions.Then, an exact solution forMindlin
rectangular plates with arbitrary elastically restrained edges
can be obtained. Finally several numerical examples and the
comparisons with those results reported in the literature are
presented to validate the accuracy of the present approach.

2. Mathematical Modeling and
Solution Methodology

Consider a rectangular Mindlin plate elastically restrained
along all edges, as shown in Figure 1. The boundary con-
ditions are physically realized in terms of three kinds of
restraining springs (translational, rotational, and torsional
springs) attached to each edge.Different boundary conditions
can be directly obtained by changing the stiffness of springs.
The governing differential equations for free vibration of a
Mindlin plate are given by

𝑘𝐺ℎ(
𝜕
2
𝑤

𝜕𝑥2
+
𝜕
2
𝑤

𝜕𝑦2
+
𝜕𝜓
𝑥

𝜕𝑥
+
𝜕𝜓
𝑦

𝜕𝑦
) − 𝜌ℎ

𝜕
2
𝑤

𝜕𝑡2
= 0,

𝐷(
𝜕
2
𝜓
𝑥

𝜕𝑥2
+
1 − 𝜇

2

𝜕
2
𝜓
𝑥

𝜕𝑦2
+
1 + 𝜇

2

𝜕
2
𝜓
𝑦

𝜕𝑥𝜕𝑦
)

− 𝑘𝐺ℎ(
𝜕𝑤

𝜕𝑥
+ 𝜓
𝑥
) − 𝜌ℎ

𝜕
2
𝜓
𝑥

𝜕𝑡2
= 0,

𝐷(
𝜕
2
𝜓
𝑦

𝜕𝑦2
+
1 − 𝜇

2

𝜕
2
𝜓
𝑦

𝜕𝑥2
+
1 + 𝜇

2

𝜕
2
𝜓
𝑥

𝜕𝑥𝜕𝑦
)

− 𝑘𝐺ℎ(
𝜕𝑤

𝜕𝑦
+ 𝜓
𝑦
) − 𝜌ℎ

𝜕
2
𝜓
𝑦

𝜕𝑡2
= 0,

(1)

where 𝑤 is the transverse displacement, 𝜓
𝑥
and 𝜓

𝑦
are the

slope due to bending alone in the respective planes, 𝑘 is the
shear correction factor to account for the fact,𝐺 = 𝐸/2(1+𝜇)

is the shearmodulus, 𝜇 is the Poisson’s ratio,𝐷 = 𝐸ℎ
3
/(12(1−

𝜇
2
)) is the flexural rigidity, 𝜌 is the mass density, and ℎ is the

thickness of the plate.
In terms of transverse displacements and slope, the

bending and twisting moments and the transverse shearing
forces in plates can be expressed as
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There are three forces along every edge and they are the

bending moment, the twisting moment, and the shearing
forces. Three kinds of restraining springs (rotational, tor-
sional, and translational springs) along every edge can be
corresponding to these three forces.The boundary conditions
for an elastically restrained rectangular plate are as follows:
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torsional spring constants at 𝑥 = 0 and 𝑥 = 𝑎 (𝑦 = 0 and
𝑦 = 𝑏), respectively. All classical homogeneous boundary
conditions can be easily derived by simply setting each of the
spring constants to be infinite or zero.

According to the Mindlin plate theory, the transverse
displacement of the plate median surface and the rotations
of the cross-section, respectively, along the 𝑥 direction and
the 𝑦 direction are utilized. In this study, these quantities are
expressed in form of improved Fourier series expansions [16]:
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Theoretically, there is an infinite number of these supple-
mentary functions. However, one needs to ensure that the
selected functions will not nullify any of the boundary condi-
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similar conditions exist for the supplementary function in 𝑦-
direction. Though these conditions are not necessary, they
can simplify the subsequent mathematical expressions and
the corresponding solution procedures.

One will notice from (4) that beside the standard double
Fourier series, four single Fourier series are also included.
The potential discontinuity associated with the 𝑥-derivative
and 𝑦-derivative of the original function along the four
edges can be transferred onto these auxiliary series functions.
Then, the Fourier series would be smooth enough in the
whole solving domain. Therefore, not only is this Fourier
series representation of solution applicable to any boundary
conditions but also the convergence of the series expansion
can be improved.
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In order to derive the constraint equations for the
unknown coefficients, all the sine terms and the auxiliary
series functions will be expanded into Fourier cosine series.
The related formulas are provided in Appendix A. Then, by
equating the coefficients for the like terms on both sides, one
can obtain the following equations:
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Similarly, the substitution of (4) into the remaining
boundary conditions will lead to eleven equations that can
be obtained from (3):
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(−𝜆
𝑝
) 𝐵
𝑚𝑝
𝜀
𝑝

+ 𝛾
1𝑚

∞

∑

𝑛=0

𝑓
2

1𝑛
+ 𝛾
2𝑚

∞

∑

𝑛=0

𝑓
2

2𝑛
)) ,

𝐾
𝑥𝑦0

(

∞

∑

𝑛=0

𝐵
𝑚𝑛

+ 𝛼
1𝑚

∞

∑

𝑛=0

𝑓
2

1𝑛
+ 𝛼
2𝑚

∞

∑

𝑛=0

𝑓
2

2𝑛
)

= −
1 − 𝜇

2
𝐷(𝑑
2

1𝑚
+

∞

∑

𝑛=0

∞

∑

𝑝=0

(−𝜆
𝑝
) 𝐶
𝑝𝑛
𝜀
𝑝

+ 𝛾
1𝑚

∞

∑

𝑛=0

𝑓
3

1𝑛
+ 𝛾
2𝑚

∞

∑

𝑛=0

𝑓
3

2𝑛
) ,

𝑘
𝑦𝑏
(

∞

∑

𝑛=0

(−1)
𝑛
𝐴
𝑚𝑛

+

2

∑

𝑙=1

(𝛼
𝑙𝑚

∞

∑

𝑛=0

(−1)
𝑛
𝑓
1

𝑙𝑛
))

= 𝑘𝐺ℎ(𝑑
1

2𝑚
+

∞

∑

𝑛=0

(−1)
𝑛
𝐶
𝑚𝑛

+

2

∑

𝑙=1

(𝛼
𝑙𝑚

∞

∑

𝑛=0

(−1)
𝑛
𝑓
3

𝑙𝑛
)) ,

𝐾
𝑦𝑏
(

∞

∑

𝑛=0

(−1)
𝑛
𝐶
𝑚𝑛

+

2

∑

𝑙=1

(𝛼
𝑙𝑚

∞

∑

𝑛=0

(−1)
𝑛
𝑓
3

𝑙𝑛
))

= 𝐷(𝑑
3

2𝑚
+ 𝜇(

∞

∑

𝑛=0

∞

∑

𝑝=0

(−𝜆
𝑝
) (−1)

𝑛
𝐵
𝑚𝑝
𝜀
𝑝

+

2

∑

𝑙=1

(𝛾
𝑙𝑚

∞

∑

𝑛=0

(−1)
𝑛
𝑓
2

𝑙𝑛
))) ,

𝐾
𝑥𝑦𝑏

(

∞

∑

𝑛=0

(−1)
𝑛
𝐵
𝑚𝑛

+

2

∑

𝑙=1

(𝛼
𝑙𝑚

∞

∑

𝑛=0

(−1)
𝑛
𝑓
2

𝑙𝑛
))

=
1 − 𝜇

2
𝐷(𝑑
2

2𝑚
+

∞

∑

𝑛=0

∞

∑

𝑝=0

(−𝜆
𝑝
) (−1)

𝑛
𝐶
𝑝𝑛
𝜀
𝑝

+

2

∑

𝑙=1

(𝛾
𝑙𝑚

∞

∑

𝑛=0

(−1)
𝑛
𝑓
3

𝑙𝑛
)) .

(8)

When all the series expansions are truncated to 𝑚 = 𝑀

and 𝑛 = 𝑁 in numerical calculations, the twelve equations
can be rewritten in a matrix form as

HB = QA, (9)

where

H =

[
[
[
[

[

H
1,1

H
1,2

⋅ ⋅ ⋅ H
1,12

H
2,1

H
2,2

⋅ ⋅ ⋅ H
2,12

...
... d

...
H
12,1

H
12,2

⋅ ⋅ ⋅ H
12,12

]
]
]
]

]

,

Q =

[
[
[
[

[

Q
1,1

Q
1,2

Q
1,3

Q
2,1

Q
2,2

Q
2,3

...
...

...
Q
12,1

Q
12,2

Q
12,3

]
]
]
]

]

,

A = {𝐴
00
, 𝐴
01
, . . . , 𝐴

𝑀𝑁
, 𝐵
00
, 𝐵
01
, . . . , 𝐵

𝑀𝑁
,

𝐶
00
, 𝐶
01
, . . . , 𝐶

𝑀𝑁
}
𝑇

,

B = {𝑑
1

10
, 𝑑
1

11
, . . . , 𝑑

1

2𝑀
, 𝑓
1

10
, 𝑓
1

11
, . . . , 𝑓

1

2𝑁
, 𝑑
2

10
, 𝑑
2

11
, . . . , 𝑑

2

2𝑀
,

𝑓
2

10
, 𝑓
2

11
, . . . , 𝑓

2

2𝑁
, 𝑑
3

10
,

𝑑
3

11
, . . . , 𝑑

3

2𝑀
, 𝑓
3

10
, 𝑓
3

11
, . . . , 𝑓

3

2𝑁
}
𝑇

.

(10)

The elements of the matrices H and Q are defined in
Appendix B.

By substituting (4) into the governing differential equa-
tion (1), as mentioned earlier, all the sine terms and the auxil-
iary series functions are expanded into Fourier cosine series.
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Then, by equating the coefficients for the like terms on both
sides, one can obtain the following equations:

𝐴
𝑚𝑛

(−𝜆
2

𝑚
)

+

2

∑

𝑙=1

(𝑑
1

𝑙𝑚
(−𝜆
2

𝑚
) 𝛽
𝑙𝑛
+ 𝑓
1

𝑙𝑛
𝜙
𝑙𝑚
) + 𝐴

𝑚𝑛
(−𝜆
2

𝑛
)

+

2

∑

𝑙=1

(𝑑
1

𝑙𝑚
𝜑
𝑙𝑛
+ (−𝜆

2

𝑛
) 𝑓
1

𝑙𝑛
𝛼
𝑙𝑚
) +

∞

∑

𝑝=0

𝐵
𝑚𝑛

(−𝜆
𝑚
) 𝜀
𝑚𝑝

+

2

∑

𝑙=1

(

∞

∑

𝑝=0

𝑑
2

𝑙𝑚
(−𝜆
𝑚
) 𝜀
𝑚𝑝
𝛽
𝑙𝑛
+ 𝑓
2

𝑙𝑛
𝛾
𝑙𝑚
)

+

∞

∑

𝑞=0

𝐶
𝑚𝑛

(−𝜆
𝑛
) 𝜏
𝑛𝑞
+

2

∑

𝑙=1

(𝑑
3

𝑙𝑚
𝜂
𝑙𝑛
+

∞

∑

𝑞=0

𝑓
3

𝑙𝑛
(−𝜆
𝑛
) 𝜏
𝑛𝑞
𝛼
𝑙𝑚
)

+
𝜌𝜔
2

𝑘𝐺
(𝐴
𝑚𝑛

+ 𝛽
1𝑛
𝑑
1

1𝑚
+ 𝑓
1

1𝑛
𝛼
1𝑚

+ 𝛽
2𝑛
𝑑
1

2𝑚
+ 𝑓
1

2𝑛
𝛼
2𝑚
) = 0,

𝐷(𝐵
𝑚𝑛

(−𝜆
2

𝑚
) +

2

∑

𝑙=1

(𝛽
𝑙𝑛
𝑑
2

𝑙𝑚
(−𝜆
2

𝑚
) + 𝜙
𝑙𝑚
𝑓
2

𝑙𝑛
)

+
1 − 𝜇

2
(𝐵
𝑚𝑛

(−𝜆
2

𝑛
)

+

2

∑

𝑙=1

(𝜑
𝑙𝑛
𝑑
2

𝑙𝑚
+ 𝛼
𝑙𝑚
𝑓
2

𝑙𝑛
(−𝜆
2

𝑛
)))

+
1 + 𝜇

2
(

∞

∑

𝑝=0

∞

∑

𝑞=0

𝐶
𝑚𝑛
𝜆
𝑚
𝜆
𝑛
𝜀
𝑚𝑝
𝜏
𝑛𝑞

+

2

∑

𝑙=1

(

∞

∑

𝑝=0

𝑑
3

𝑙𝑚
𝜂
𝑙𝑛
(−𝜆
𝑚
) 𝜀
𝑚𝑝

+

∞

∑

𝑞=0

𝑓
3

𝑙𝑛
𝛾
𝑙𝑚
(−𝜆
𝑛
) 𝜏
𝑛𝑞
)))

− 𝑘𝐺ℎ(

∞

∑

𝑝=0

𝐴
𝑚𝑛

(−𝜆
𝑚
) 𝜀
𝑚𝑝

+

2

∑

𝑙=1

(

∞

∑

𝑝=0

𝛽
𝑙𝑛
𝑑
1

𝑙𝑚
(−𝜆
𝑚
) 𝜀
𝑚𝑝

+ 𝛾
𝑙𝑛
𝑓
1

𝑙𝑛
)

+ 𝐵
𝑚𝑛

+

2

∑

𝑙=1

(𝛽
𝑙𝑛
𝑑
2

𝑙𝑚
+ 𝛼
𝑙𝑚
𝑓
2

𝑙𝑛
))

+ 𝜌ℎ𝜔
2
(𝐵
𝑚𝑛

+

2

∑

𝑙=1

(𝛽
𝑙𝑛
𝑑
2

𝑙𝑚
+ 𝛼
𝑙𝑚
𝑓
2

𝑙𝑛
)) = 0,

𝐷(𝐶
𝑚𝑛

(−𝜆
2

𝑛
) +

2

∑

𝑙=1

(𝜑
𝑙𝑛
𝑑
3

𝑙𝑚
+ 𝛼
𝑙𝑚
𝑓
3

𝑙𝑛
(−𝜆
2

𝑛
))

+
1 − 𝜇

2
(𝐶
𝑚𝑛

(−𝜆
2

𝑚
)

+

2

∑

𝑙=1

(𝛽
𝑙𝑛
𝑑
3

𝑙𝑚
(−𝜆
2

𝑚
) + 𝜙
𝑙𝑚
𝑓
3

𝑙𝑛
))

+
1 + 𝜇

2
(

∞

∑

𝑝=0

∞

∑

𝑞=0

𝐵
𝑚𝑛
𝜆
𝑚
𝜆
𝑛
𝜀
𝑚𝑝
𝜏
𝑛𝑞

+

2

∑

𝑙=1

(

∞

∑

𝑝=0

𝑑
2

𝑙𝑚
𝜂
𝑙𝑛
(−𝜆
𝑚
) 𝜀
𝑚𝑝

+

∞

∑

𝑞=0

𝑓
2

𝑙𝑛
𝛾
𝑙𝑚
(−𝜆
𝑛
) 𝜏
𝑛𝑞
)))

− 𝑘𝐺ℎ(

∞

∑

𝑞=0

𝐴
𝑚𝑛

(−𝜆
𝑛
) 𝜏
𝑛𝑞

+

2

∑

𝑙=1

(𝑑
1

𝑙𝑚
𝜂
𝑙𝑛
+

∞

∑

𝑞=0

𝑓
1

𝑙𝑛
𝛼
𝑙𝑚
(−𝜆
𝑛
) 𝜏
𝑛𝑞
)

+𝐶
𝑚𝑛

+

2

∑

𝑙=1

(𝑑
3

𝑙𝑚
𝛽
𝑙𝑛
+ 𝑓
3

𝑙𝑛
𝛼
𝑙𝑚
))

+ 𝜌ℎ𝜔
2
(𝐶
𝑚𝑛

+

2

∑

𝑙=1

(𝑑
3

𝑙𝑚
𝛽
𝑙𝑛
+ 𝑓
3

𝑙𝑛
𝛼
𝑙𝑚
)) = 0.

(11)

Writing in matrix form, we have

CA +DB +
𝜌ℎ𝜔
2

𝑘𝐺
(EA + FB) = 0. (12)

Substituting (9), the final system equations can be obtained
as

(K +
𝜌ℎ𝜔
2

𝑘𝐺
M)A = 0, (13)

where

C = [

[

C
1,1

C
1,2

C
1,3

C
2,1

C
2,2

C
2,3

C
3,1

C
3,2

C
3,3

]

]

,

D = [

[

D
1,1

D
1,2

⋅ ⋅ ⋅ D
1,12

D
2,1

D
2,2

⋅ ⋅ ⋅ D
2,12

D
3,1

D
3,2

⋅ ⋅ ⋅ D
3,12

]

]

,

E = [

[

E
1,1

E
1,2

E
1,3

E
2,1

E
2,2

E
2,3

E
3,1

E
3,2

E
3,3

]

]

,
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Table 1: The first seven frequency parametersΩ = (𝜔𝑏2/𝜋2)(𝜌ℎ/𝐷)1/2 for F-F-F-F Mindlin rectangular plates.

𝑀 = 𝑁 1 2 3 4 5 6 7
5 1.2978 1.9202 2.3644 3.2556 3.2556 5.6148 5.6148
7 1.2924 1.9196 2.3637 3.2438 3.2438 5.6105 5.6105
9 1.2904 1.9195 2.3635 3.2388 3.2388 5.6092 5.6092
10 1.2903 1.9194 2.3634 3.2371 3.2371 5.6089 5.6089
11 1.2895 1.9194 2.3634 3.2366 3.2366 5.6087 5.6087
12 1.2895 1.9194 2.3633 3.2358 3.2358 5.6085 5.6085
13 1.2892 1.9194 2.3633 3.2355 3.2355 5.6085 5.6085
14 1.2892 1.9194 2.3633 3.2355 3.2355 5.6084 5.6084

Table 2: The first seven frequency parameters Ω = (𝜔𝑎2)(𝜌ℎ/𝐷)1/2 for S-F-S-F Mindlin rectangular plates.

𝑎/𝑏 ℎ/𝑎 Method 1 2 3 4 5 6 7

0.4
0.1 Present 9.5829 10.7868 14.5793 20.7593 29.3643 36.7449 37.8085

[9] 9.5814 10.7809 14.5672 20.7245 29.3338 36.736 37.7879

0.2 Present 9.1316 10.1983 13.5314 18.7785 25.8073 31.7024 32.4788
[9] 9.1313 10.1968 13.5287 18.7728 25.8016 31.7000 32.4730

1
0.1 Present 9.4461 15.4109 33.9251 36.4266 42.8986 62.3508 66.3889

[9] 9.4458 15.4054 33.9160 36.4246 42.8870 62.3304 66.3720

0.2 Present 8.9997 14.1349 29.2566 31.434 36.1663 49.8976 52.8026
[9] 8.9997 14.1341 29.2558 31.4338 36.1646 49.8953 52.8012

2.5
0.1 Present 9.3065 29.6407 35.8486 64.0871 75.9262 105.417 125.3433

[9] 9.3065 29.6389 35.8486 64.0850 75.9234 105.4121 125.3334

0.2 Present 8.8835 24.2058 30.9976 49.7612 59.4412 77.0664 90.361
[9] 8.8835 24.2054 30.9976 49.7609 59.4404 77.0654 90.3658

F = [

[

F
1,1

F
1,2

⋅ ⋅ ⋅ F
1,12

F
2,1

F
2,2

⋅ ⋅ ⋅ F
2,12

F
3,1

F
3,2

⋅ ⋅ ⋅ F
3,12

]

]

,

(14)

where K = C + DH−1Q and M = E + FH−1Q. The element
of the matricesC,D, E, and F are defined in Appendix B.The
natural frequencies and eigenvectors can be obtained through
solving (13). Then, the physical mode shapes also can be got
using (4) and (9).

3. Result and Discussion

Several examples involving various boundary conditions will
be discussed in this section. To avoid any comparison of the
roundoff results, which might be unrealistic, the nondimen-
sional frequency is used. For the analysis, Poisson’s ratio 𝜇 =

0.3 and shear correction factor 𝑘 = 5/6 are used.
First, convergence studies are carried out. Table 1 gives the

frequencies calculated by using different number of terms in
the series expansion for F-F-F-F Mindlin rectangular plates
(for 𝑎/𝑏 = 1 and ℎ/𝑎 = 0.1). It shows that the results are very
accurate when𝑀 and𝑁 are small numbers. When𝑀 and𝑁
are larger than 10, results are almost invariant. So thismethod
has a very good convergence characteristic.

In order to evaluate the accuracy of the present method,
the comparisons with those results reported in the literature
are carried out. First of all, considering a plate with two oppo-
site simple edges and the other two edges free (S-F-S-F).

A simple edge can be obtained by setting the translational
and torsional spring constants to be infinite (here the infinite
is represented by a very large number, 𝐷 × 10

7, and 𝐷 is
the flexural rigidity) and the rotational spring constants to
be zero. A free edge can be obtained when all the spring
constants are zero. In Table 2, the first seven nondimensional
frequency parameters, Ω = (𝜔𝑎

2
)(𝜌ℎ/𝐷)

1/2, are given with
different aspect ratios and thickness ratios. At the same time,
a comparison of the exact solution in [9] is also presented.
The results show that the calculated frequencies are excellent.
As mentioned earlier, the series expansion will have to be
truncated in numerical calculations. In this example and all
the subsequent calculations, the setting𝑀 = 𝑁 = 12 is used.
Specially, in order to compare with the results in [9], shear
correction factor 𝑘 = 0.86667 is used.

Three more classical cases (C-F-F-F, C-F-S-F, and C-
S-S-F) were considered, and the corresponding frequency
parameters are listed in Tables 3, 4, and 5. A clamped edge
can be viewed as all the spring constants set to be infinite.
The frequency parameters solved by Ritz method and DSC
method also are given as a comparison. A good agreement is
also observed among these solutions.

This method not only can solve the Mindlin rectangular
plates with classical boundary conditions but also can solve
plates with the elastical supports. Xiang et al. [3] andGorman
[11] and Zhou [4] also researched Mindlin plates with elasti-
cally restrained edges, but they both used two kinds of springs
(rotational and translational springs) to realize the elastical



Shock and Vibration 7

Table 3: The first seven frequency parametersΩ = (𝜔𝑏2/𝜋2)(𝜌ℎ/𝐷)1/2 for C-F-F-F Mindlin rectangular plates.

𝑎/𝑏 ℎ/𝑏 Method 1 2 3 4 5 6 7

0.4
0.1 Present 2.1006 2.7297 4.3933 7.2648 10.4212 11.1567 11.4449

[1] 2.1006 2.7294 4.3921 7.2622 10.4206 11.1554 11.4433

0.2 Present 1.8579 2.2911 3.4911 5.5123 6.9021 7.3873 8.077
[1] 1.8579 2.2910 3.4909 5.5119 6.9020 7.3871 8.0767

1
0.1 Present 0.3476 0.8171 2.0357 2.584 2.8633 4.8186 5.4836

[1] 0.3476 0.8168 2.0356 2.5836 2.8620 4.8162 5.4834

0.2 Present 0.3384 0.7446 1.7806 2.2766 2.4207 3.8853 4.3156
[1] 0.3384 0.7445 1.7806 2.2765 2.4205 3.8851 4.3168

2.5
0.1 Present 0.0554 0.2798 0.3432 0.8865 0.9517 1.6251 1.8326

[1] 0.0554 0.2795 0.3431 0.8854 0.9516 1.6228 1.8320

0.2 Present 0.0550 0.2626 0.3337 0.8196 0.8958 1.4639 1.6566
[1] 0.0550 0.2625 0.3337 0.8192 0.8958 1.4632 1.6564

Table 4: The first seven frequency parametersΩ = (𝜔𝑏2/𝜋2)(𝜌ℎ/𝐷)1/2 for C-F-S-F Mindlin rectangular plates.

𝑎/𝑏 ℎ/𝑏 Method 1 2 3 4 5 6 7

0.4
0.1 Present 7.8209 8.2262 9.6485 12.1337 15.6899 20.1409 20.358

[8] 7.8285 8.2339 9.6566 12.1373 15.6917 20.1394 20.3607

0.2 Present 5.5099 5.7895 6.7405 8.3478 10.4967 12.6125 12.8205
[8] 5.5128 5.7926 6.7436 8.3495 10.4978 12.6141 12.8219

1
0.1 Present 1.4735 1.9497 3.6462 4.502 5.0407 6.7828 6.8161

[7] 1.4738 1.9536 3.6499 4.5031 5.0483 6.7909 —

0.2 Present 1.3254 1.7019 3.0527 3.6262 4.0033 5.2067 5.3485
[7] 1.3255 1.7030 3.0534 3.6265 4.0054 5.2084 —

2.5
0.1 Present 0.2413 0.5789 0.776 1.2825 1.5996 2.1811 2.4288

[7] 0.2413 0.5817 0.7761 1.2859 1.5995 2.1852 —

0.2 Present 0.2362 0.5402 0.7365 1.1704 1.4595 1.9285 2.1794
[7] 0.2362 0.5409 0.7366 1.1714 1.4594 1.9300 —

Table 5: The first seven frequency parametersΩ = (𝜔𝑏2/𝜋2)(𝜌ℎ/𝐷)1/2 for C-S-S-F Mindlin rectangular plates.

𝑎/𝑏 ℎ/𝑏 Method 1 2 3 4 5 6 7

0.4
0.1 Present 7.9414 8.9713 11.137 14.4651 18.7651 20.4622 21.36

[8] 7.9491 8.9792 11.1430 14.4679 18.7554 20.4646 21.3629

0.2 Present 5.5943 6.3055 7.752 9.8284 12.295 12.6792 13.2365
[8] 5.5972 6.3085 7.7544 9.8298 12.2958 12.6807 13.2381

1
0.1 Present 1.6196 2.9171 4.6617 5.7683 5.9723 8.5764 8.8548

[8] 1.6281 2.9271 4.6650 5.7741 5.9769 8.5795 9.8555

0.2 Present 1.4451 2.4997 3.7407 4.6356 4.677 6.4325 6.4907
[8] 1.4476 2.5027 3.7419 4.6375 4.6787 6.4338 6.4910

2.5
0.1 Present 0.3658 0.9415 1.746 1.7792 2.3445 2.8701 3.217

[8] 0.3832 0.9487 1.7596 1.7828 2.3543 2.8721 3.2233

0.2 Present 0.3526 0.8834 1.6006 1.6092 2.0839 2.4914 2.7667
[8] 0.3574 0.8854 1.6043 1.6102 2.0867 2.4919 2.7685

supports along every edge. As mentioned earlier, three kinds
of springs along every edge are needed to truly realize the
general elastic supports, including all classical homogeneous
boundary conditions. Table 6 gives the first seven frequency
parameters for Mindlin rectangular plates (for 𝑎/𝑏 = 1 and
ℎ/𝑎 = 0.2) with two opposite free edges, the other two edges
only elastically restrained against translation, and Table 7
gives the first seven frequency parameters for the plates with

two opposite free edges, the other two edges symmetrically
elastically restrained. Table 8 lists the frequency parameters
when the translational, rotational, and torsional spring con-
stants are all varying at 𝑥 = 𝑎. For simplicity, all the
restraining springs are assumed to have the same stiffness
in the three examples. Table 8 shows that the results are
invariant when 𝐾 is larger than 107, so it is appropriate to set
infinite to be𝐷 × 10

7 in this paper.
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Table 6: The first seven frequency parameters Ω = (𝜔𝑏2/𝜋2)(𝜌ℎ/𝐷)1/2 for Mindlin rectangular plates with two opposite free edges, the other
two edges only elastically restrained against translation 𝑘

𝑥0
= 𝑘
𝑥𝑎
= 𝐾 × 𝐷.

𝐾 Method 1 2 3 4 5 6 7

5 Present 0.3051 0.3071 0.5397 1.2922 1.8248 2.2009 2.8356
[4] 0.3052 0.3075 0.5396 1.3117 1.8447 2.2089 2.8913

50 Present 0.6926 0.8072 1.5785 1.9220 2.1374 2.7775 3.3443
[4] 0.6941 0.8225 1.5797 1.9268 2.1634 2.7919 3.3823

500 Present 0.8782 1.2203 2.6177 2.8662 3.1461 4.2179 5.0805
[4] 0.8831 1.3081 2.7583 2.8767 3.2089 4.3584 5.0980

5000 Present 0.905 1.306 2.7851 3.1319 3.4845 4.7069 5.1891
[4] 0.9105 1.4254 2.9541 3.1485 3.6157 4.9856 5.3230

Table 7: The first seven frequency parameters Ω = (𝜔𝑏2/𝜋2)(𝜌ℎ/𝐷)1/2 for Mindlin rectangular plates with two opposite free edges, the other
two edges symmetrically elastically restrained 𝑘

𝑥0
= 𝑘
𝑥𝑎

= 𝐾
1
× 𝐷 and 𝐾

𝑥0
= 𝐾
𝑥𝑎

= 𝐾
2
× 𝐷.

𝐾
1

𝐾
2

Method 1 2 3 4 5 6 7

5 10 Present 0.3105 0.3148 0.9155 1.4411 2.006 2.8874 2.9385
[4] 0.3104 0.3148 0.9208 1.4505 2.0122 2.8989 2.9659

50 50 Present 0.8936 0.901 1.6281 1.9545 2.1865 3.2206 3.412
[4] 0.8944 0.9032 1.6305 1.9599 2.1912 3.2374 3.4255

5000 5000 Present 1.7537 1.958 3.0634 3.9445 4.1976 5.1453 5.2879
[4] 1.7607 1.9901 3.1318 3.9578 4.2553 5.2883 5.3548

Table 8: The first seven frequency parameters Ω = (𝜔𝑏2/𝜋2)(𝜌ℎ/𝐷)1/2 for C-C-F-C Mindlin rectangular plates with translational, rotational,
and torsional restraints at 𝑥 = 𝑎, 𝑘

𝑥𝑎
= 𝐾
𝑥𝑎

= 𝐾
𝑦𝑥𝑎

= 𝐾 × 𝐷.

𝐾 1 2 3 4 5 6 7
0 2.2388 3.6105 5.4944 6.6135 6.8022 9.4188 9.7667
0.1 2.2476 3.6233 5.5034 6.6282 6.811 9.4295 9.775
1 2.3132 3.7213 5.5721 6.7447 6.8826 9.5158 9.8391
102 2.878 4.562 6.0184 7.641 7.6707 10.2284 10.3535
104 3.2854 6.2286 6.2735 8.7475 10.2438 10.4305 12.3813
106 3.2954 6.2857 6.2861 8.8102 10.3788 10.4778 12.5528
107 3.2955 6.2863 6.2863 8.8109 10.3797 10.4786 12.5545
109 3.2955 6.2863 6.2863 8.8109 10.3797 10.4786 12.5546
∞ 3.2955 6.2863 6.2863 8.8109 10.3797 10.4786 12.5546

4. Conclusions

An improved Fourier series method is proposed to analyze
the free vibration of Mindlin rectangular plates with general
elastic boundary supports. The general boundary conditions
are physically realized with the uniform distribution of
springs on each boundary edge, and different boundary
conditions can be directly obtained by changing the stiffness
of the springs. The vibration displacements and the cross-
sectional rotations of the mid-plane are sought as the linear
combination of a double Fourier cosine series and four
single auxiliary series functions, respectively. The use of
these supplementary functions is to solve the discontinuity
problems which were encountered in the displacement and
rotations partial differentials along the edges. The unknown
expansion coefficients can be solved through using the
boundary conditions and the governing equations. In this
method, analytical solution is derived for the vibrations of
Mindlin rectangular plates with general elastic boundary

support. Finally, the numerical results and the comparisons
with those reported in the literature are presented to validate
the accuracy of the method.

Appendices

A. Supplementary Series

We have

𝜉
1𝑎
(𝑥) =

𝑎

2𝜋
sin 𝜋𝑥

2𝑎
+

𝑎

2𝜋
sin 3𝜋𝑥

2𝑎
=

∞

∑

𝑚=0

𝛼
1𝑚

cos 𝜆
𝑚
𝑥,

𝛼
1𝑚

=

{{{

{{{

{

4𝑎

3𝜋2
, 𝑚 = 0,

2𝑎

(1 − 4𝑚2) 𝜋2
+

6𝑎

(9 − 4𝑚2) 𝜋2
, 𝑚 ̸= 0,
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𝜉
2𝑎
(𝑥) = −

𝑎

2𝜋
cos 𝜋𝑥

2𝑎
+

𝑎

2𝜋
cos 3𝜋𝑥

2𝑎
=

∞

∑

𝑚=0

𝛼
2𝑚

cos 𝜆
𝑚
𝑥,

𝛼
2𝑚

=

{{{{

{{{{

{

−
2𝑎

3𝜋2
, 𝑚 = 0,

−
2𝑎(−1)

𝑚

(1 − 4𝑚2) 𝜋2
+

6𝑎(−1)
𝑚+1

(9 − 4𝑚2) 𝜋2
, 𝑚 ̸= 0,

𝜉
1𝑏
(𝑦) =

𝑏

2𝜋
sin

𝜋𝑦

2𝑏
+

𝑏

2𝜋
sin

3𝜋𝑦

2𝑏
=

∞

∑

𝑛=0

𝛽
1𝑛
cos 𝜆
𝑛
𝑦,

𝛽
1𝑛
=

{{{

{{{

{

4𝑏

3𝜋2
, 𝑛 = 0,

2𝑏

(1 − 4𝑛2) 𝜋2
+

6𝑏

(9 − 4𝑛2) 𝜋2
, 𝑛 ̸= 0,

𝜉
2𝑏
(𝑦) = −

𝑏

2𝜋
cos

𝜋𝑦

2𝑏
+

𝑏

2𝜋
cos

3𝜋𝑦

2𝑏
=

∞

∑

𝑛=0

𝛽
2𝑛
cos 𝜆
𝑛
𝑦,

𝛽
2𝑛
=

{{{

{{{

{

−
2𝑏

3𝜋2
, 𝑛 = 0,

−
2𝑏(−1)

𝑛

(1 − 4𝑛2) 𝜋2
+

6𝑏(−1)
𝑛+1

(9 − 4𝑛2) 𝜋2
, 𝑛 ̸= 0,

𝜉
󸀠

1𝑎
(𝑥) =

1

4
cos 𝜋𝑥

2𝑎
+
3

4
cos 3𝜋𝑥

2𝑎
=

∞

∑

𝑚=0

𝛾
1𝑚

cos 𝜆
𝑚
𝑥,

𝛾
1𝑚

=

{{{

{{{

{

1

𝜋
, 𝑚 = 0,

(−1)
𝑚

(1 − 4𝑚2) 𝜋
+

9(−1)
𝑚+1

(9 − 4𝑚2) 𝜋
, 𝑚 ̸= 0,

𝜉
󸀠

2𝑎
(𝑥) =

1

4
sin 𝜋𝑥

2𝑎
−
3

4
sin 3𝜋𝑥

2𝑎
=

∞

∑

𝑚=0

𝛾
2𝑚

cos 𝜆
𝑚
𝑥,

𝛾
2𝑚

=

{{

{{

{

0, 𝑚 = 0,

1

(1 − 4𝑚2) 𝜋
−

9

(9 − 4𝑚2) 𝜋
, 𝑚 ̸= 0,

𝜉
󸀠

1𝑏
(𝑦) =

1

4
cos

𝜋𝑦

2𝑏
+
3

4
cos

3𝜋𝑦

2𝑏
=

∞

∑

𝑛=0

𝜂
1𝑛
cos 𝜆
𝑛
𝑦,

𝜂
1𝑛
=

{{{

{{{

{

1

𝜋
, 𝑛 = 0,

(−1)
𝑛

(1 − 4𝑛2) 𝜋
+

9(−1)
𝑛+1

(9 − 4𝑛2) 𝜋
, 𝑛 ̸= 0,

𝜉
󸀠

2𝑏
(𝑦) =

1

4
sin

𝜋𝑦

2𝑏
−
3

4
sin

3𝜋𝑦

2𝑏
=

∞

∑

𝑛=0

𝜂
2𝑛
cos 𝜆
𝑛
𝑦,

𝜂
2𝑛
=

{{

{{

{

0, 𝑛 = 0,

1

(1 − 4𝑛2) 𝜋
−

9

(9 − 4𝑛2) 𝜋
, 𝑛 ̸= 0,

𝜉
󸀠󸀠

1𝑎
(𝑥) = −

𝜋

8𝑎
sin 𝜋𝑥

2𝑎
−
9𝜋

8𝑎
sin 3𝜋𝑥

2𝑎
=

∞

∑

𝑚=0

𝜙
1𝑚

cos 𝜆
𝑚
𝑥,

𝜙
1𝑚

=

{{{

{{{

{

−
1

𝑎
, 𝑚 = 0,

−
1

2 (1 − 4𝑚2) 𝑎
−

27

2 (9 − 4𝑚2) 𝑎
, 𝑚 ̸= 0,

𝜉
󸀠󸀠

2𝑎
(𝑥) =

𝜋

8𝑎
cos 𝜋𝑥

2𝑎
−
9𝜋

8𝑎
cos 3𝜋𝑥

2𝑎
=

∞

∑

𝑚=0

𝜙
2𝑚

cos 𝜆
𝑚
𝑥,

𝜙
2𝑚

=

{{{

{{{

{

−
1

2𝑎
, 𝑚 = 0,

(−1)
𝑚

2 (1 − 4𝑚2) 𝑎
−

27(−1)
𝑚+1

2 (9 − 4𝑚2) 𝑎
, 𝑚 ̸= 0,

𝜉
󸀠󸀠

1𝑏
(𝑦) = −

𝜋

8𝑏
sin

𝜋𝑦

2𝑏
−
9𝜋

8𝑏
sin

3𝜋𝑦

2𝑏
=

∞

∑

𝑛=0

𝜑
1𝑛
cos 𝜆
𝑛
𝑦,

𝜑
1𝑛
=

{{{

{{{

{

−
1

𝑏
, 𝑛 = 0,

−
1

2 (1 − 4𝑛2) 𝑏
−

27

2 (9 − 4𝑛2) 𝑏
, 𝑛 ̸= 0,

𝜉
󸀠󸀠

2𝑏
(𝑦) =

𝜋

8𝑏
cos

𝜋𝑦

2𝑏
−
9𝜋

8𝑏
cos

3𝜋𝑦

2𝑏
=

∞

∑

𝑛=0

𝜑
2𝑛
cos 𝜆
𝑛
𝑦,

𝜑
2𝑛
=

{{{

{{{

{

−
1

2𝑏
, 𝑛 = 0,

(−1)
𝑛

2 (1 − 4𝑛2) 𝑏
−

27(−1)
𝑛+1

2 (9 − 4𝑛2) 𝑏
, 𝑛 ̸= 0,

sin 𝜆
𝑚
𝑥 =

∞

∑

𝑝=0

𝜀
𝑚𝑝

cos 𝜆
𝑝
𝑥

𝑝 = 0, 𝜀
𝑚𝑝

= 0,

𝑝 ̸= 0, 𝜀
𝑚𝑝

=

{{{{{{{{

{{{{{{{{

{

𝑚 = 0,
1 − (−1)

𝑝

𝑝𝜋
,

𝑚 ̸= 0

{{{

{{{

{

𝑚 = 𝑝, 0,

𝑚 ̸= 𝑝,
2𝑝 ((−1)

𝑚+𝑝
− 1)

(𝑚2 − 𝑝2) 𝜋
,

sin 𝜆
𝑛
𝑦 =

∞

∑

𝑞=0

𝜀
𝑛𝑞
cos 𝜆
𝑞
𝑦,

𝑞 = 0, 𝜀
𝑛𝑞
= 0,

𝑞 ̸= 0, 𝜀
𝑛𝑞
=

{{{{{{{{

{{{{{{{{

{

𝑛 = 0,
1 − (−1)

𝑞

𝑞𝜋

𝑛 ̸= 0,

{{{

{{{

{

𝑛 = 𝑞, 0,

𝑛 ̸= 𝑞,
2𝑞 ((−1)

𝑛+𝑞
− 1)

(𝑛2 − 𝑞2) 𝜋
.

(A.1)
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B. Definitions of Matrices

We have

{C
1,1
}
𝑠,𝑡
= − (𝜆

2

𝑚
+ 𝜆
2

𝑛
) 𝛿
𝑠𝑡
,

{C
1,2
}
𝑠,𝑡
= −𝜆
2

𝑚
𝛿
𝑠𝑡

∞

∑

𝑝=0

𝜀
𝑚𝑝
,

{C
1,3
}
𝑠,𝑡
= −𝜆
2

𝑛
𝛿
𝑠𝑡

∞

∑

𝑞=0

𝜀
𝑛𝑞
,

{D
1,1
}
𝑠,𝑚
󸀠
+1
= (−𝜆

2

𝑚
𝛽
1𝑛
+ 𝜑
1𝑛
) 𝛿
𝑚𝑚
󸀠 ,

{D
1,2
}
𝑠,𝑚
󸀠
+1
= (−𝜆

2

𝑚
𝛽
2𝑛
+ 𝜑
2𝑛
) 𝛿
𝑚𝑚
󸀠 ,

{D
1,3
}
𝑠,𝑛
󸀠
+1
= (−𝜆

2

𝑛
𝛼
1𝑚

+ 𝜙
1𝑚
) 𝛿
𝑛𝑛
󸀠 ,

{D
1,4
}
𝑠,𝑛
󸀠
+1
= (−𝜆

2

𝑛
𝛼
2𝑚

+ 𝜙
2𝑚
) 𝛿
𝑛𝑛
󸀠 ,

{D
1,5
}
𝑠,𝑚
󸀠
+1
= −𝜆
𝑚
𝛽
1𝑛
𝛿
𝑚𝑚
󸀠

∞

∑

𝑝=0

𝜀
𝑚𝑝
,

{D
1,6
}
𝑠,𝑚
󸀠
+1
= −𝜆
𝑚
𝛽
2𝑛
𝛿
𝑚𝑚
󸀠

∞

∑

𝑝=0

𝜀
𝑚𝑝
,

{D
1,7
}
𝑠,𝑛
󸀠
+1
= 𝛾
1𝑚
𝛿
𝑛𝑛
󸀠 , {D

1,8
}
𝑠,𝑛
󸀠
+1
= 𝛾
2𝑚
𝛿
𝑛𝑛
󸀠 ,

{D
1,9
}
𝑠,𝑚
󸀠
+1
= 𝜂
1𝑛
𝛿
𝑚𝑚
󸀠 , {D

1,10
}
𝑠,𝑚
󸀠
+1
= 𝜂
2𝑛
𝛿
𝑚𝑚
󸀠 ,

{D
1,11

}
𝑠,𝑛
󸀠
+1
= −𝜆
𝑛
𝛼
1𝑚
𝛿
𝑛𝑛
󸀠

∞

∑

𝑞=0

𝜏
𝑛𝑞
,

{D
1,12

}
𝑠,𝑛
󸀠
+1
= −𝜆
𝑛
𝛼
2𝑚
𝛿
𝑛𝑛
󸀠

∞

∑

𝑞=0

𝜏
𝑛𝑞
,

{E
1,1
}
𝑠,𝑡
= 𝛿
𝑠𝑡
, {E

1,2
}
𝑠,𝑡
= 0,

{E
1,3
}
𝑠,𝑡
= 0,

{F
1,1
}
𝑠,𝑚
󸀠
+1
= 𝛽
1𝑛
𝛿
𝑚𝑚
󸀠 ,

{F
1,1
}
𝑠,𝑚
󸀠
+1
= 𝛽
2𝑛
𝛿
𝑚𝑚
󸀠 ,

{F
1,3
}
𝑠,𝑛
󸀠
+1
= 𝛼
1𝑚
𝛿
𝑛𝑛
󸀠 ,

{F
1,4
}
𝑠,𝑛
󸀠
+1
= 𝛼
2𝑚
𝛿
𝑛𝑛
󸀠 ,

{F
1,5
}
𝑠,𝑚
󸀠
+1
= 0, {F

1,6
}
𝑠,𝑚
󸀠
+1
= 0,

{F
1,7
}
𝑠,𝑛
󸀠
+1
= 0, {F

1,8
}
𝑠,𝑛
󸀠
+1
= 0,

{F
1,9
}
𝑠,𝑚
󸀠
+1
= 0, {F

1,10
}
𝑠,𝑚
󸀠
+1
= 0,

{F
1,11

}
𝑠,𝑛
󸀠
+1
= 0, {F

1,12
}
𝑠,𝑛
󸀠
+1
= 0,

{H
1,1
}
𝑛+1,𝑚+1

= −𝑘
𝑥0
𝛽
1𝑛
,

{H
1,2
}
𝑛+1,𝑚+1

= −𝑘
𝑥0
𝛽
2𝑛
,

{H
1,3
}
𝑛+1,𝑛

󸀠
+1
= −𝑘𝑐ℎ𝛿

𝑛𝑛
󸀠 ,

{H
1,4
}
𝑛+1,𝑛

󸀠
+1
= 0,

{H
1,5
}
𝑛+1,𝑚+1

= −𝑘𝑐ℎ𝛽
1𝑛
,

{H
1,6
}
𝑛+1,𝑚+1

= −𝑘𝑐ℎ𝛽
2𝑛
,

{H
1,7
}
𝑛+1,𝑛

󸀠
+1
= 0, {H

1,8
}
𝑛+1,𝑛

󸀠
+1
= 0,

{H
1,9
}
𝑛+1,𝑚+1

= 0, {H
1,10

}
𝑛+1,𝑚+1

= 0,

{H
1,11

}
𝑛+1,𝑛

󸀠
+1
= 0, {H

1,12
}
𝑛+1,𝑛

󸀠
+1
= 0,

{Q
1,1
}
𝑠,𝑡
= 𝑘
𝑥0
𝛿
𝑚𝑚
󸀠 , {Q

1,2
}
𝑠,𝑡
= 𝑘𝐺ℎ𝛿

𝑚𝑚
󸀠 ,

{Q
1,3
}
𝑠,𝑡
= 0,

(B.1)

where 𝑚󸀠 = 0, 1, . . . ,𝑀, 𝑚 = 0, 1, . . . ,𝑀, 𝑛󸀠 = 0, 1, . . . , 𝑁,
𝑛 = 0, 1, . . . , 𝑁, 𝑠 = 𝑚(𝑁+1)+𝑛+1, and 𝑡 = 𝑚

󸀠
(𝑁+1)+𝑛

󸀠
+1.
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