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An approximate analytical method of the nonlinear vibroacoustic coupling system is proposed for the first time. Taking the Duffing
oscillator-plate-medium system as an example, the nonlinear vibroacoustic coupling equations are developed using variational
principle. The two major difficulties which lie in solving the coupling equations are the uncertain motion of the oscillator and the
surface acoustic pressure on the plate, a system forwhich the fluid-structure coupling cannot be neglected. Based on the incremental
harmonic balance (IHB) method, the motion of the oscillator is expressed in the form of the Fourier series, and then the modal
expressionmethod and the incoherent assumption are employed to discretize the displacement and the surface pressure of the plate.
Then the approximate analytical solution is given by the IHBmethod.The characteristics of acoustic radiation and surface quadratic
velocity of the plate, the nonlinear characteristics of oscillator, and the influence of the excitation frequency and the nonlinear
stiffness on the results are investigated by the numerical simulation. The results show that the excitation at the frequency close to
the natural frequency of the oscillator can produce a significant response of the third-harmonic generation which determines the
vibroacoustic characteristics of the plate.

1. Introduction

The analytical solution of the nonlinear vibroacoustics cou-
pling system is significant to the control of the vibration and
acoustic radiation of structures under nonlinear excitations.
The vibration isolation system as the typical supporting
structure frequently encountered in many industrial appli-
cations transmits the excitation force to the radiator, and
then the force excites the vibration and acoustic radiation
of the radiator. The nonlinear vibration isolation mechanism
is already clear, while the research on the acoustic radiation
mechanism of the structure under the nonlinear vibration
isolation is few. For the nonlinear vibroacoustic coupling
system consisting of the nonlinear vibration isolation, plate,
and acoustic medium, it is hard to obtain the exact analytical
solutions due to the nonlinear factors, the vibration coupling
of the oscillator and the plate, and the acoustic coupling of
the plate and the acoustic medium. Although it could be
solved by the numerical algorithms such as the finite element
method (FEM) and the boundary element method (BEM),
the results cannot represent the general rule. Therefore, this

paper will propose an approximate analytical approach to the
nonlinear vibroacoustic coupling system.

In the nonlinear vibroacoustic coupling system, the non-
linear oscillator’s vibration is the excitation source of the radi-
ator, the supporting structure is the sound channel to trans-
mit the vibration, the surface wave of the radiator disturbs the
surrounding acousticmedium, and then the acoustic pressure
comes into being. On the other hand, the vibroacoustic
coupling of the acoustic pressure and the plate’s vibration
affects the vibration of the oscillator. Hence, the research of
the nonlinear vibroacoustic coupling system is an interdisci-
plinary issue between the branch of the mechanics and the
acoustics. In the field of vibration and acoustic radiation,
the dynamic response of the structure could be determined
by the classical structure mechanics, and then the acoustic
radiation characteristics could be obtained by the basis of
compatibility condition between the structure surface and
the acoustic medium. For a plate set in an infinite baffle,
the radiated acoustic field can be calculated by a Rayleigh
integral approach [1]. There are two common approaches to
determine the radiation resistance, or efficiency. The first is
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to integrate the far-field acoustic intensity over a hemisphere
enclosing the plate. The other is to integrate the acoustic
intensity over the surface of vibrating plate. For a detailed
study of the acoustic radiation it is necessary to derive expres-
sions for the radiation resistance of the particular structural
mode shapes of the plate. Maidanik [2] first proposed several
approximate formulae for calculating the radiation resistance
of vibrating plates and plate-like structures set in an infinite
baffle. Whenever a closed form expression for the power
radiated cannot be found for a particular source of interest,
Williams [3] developed a power series expansion of the
acoustic power radiating from baffled or unbaffled planar
sources in terms of the various moments of the given velocity
distribution in the source plane.The series expansion in terms
of the Fourier transformed velocity and its derivatives inwave
number space was used to derive approximate expressions
for the power radiating at low frequencies from a mode of
a rectangular plate with three different types of boundary
conditions. In order to solve the singular integration in
calculating the radiation resistance of a simple supported
rectangular plate with an arbitrary acoustic wave number, Li
and Gibeling [4] and Li [5] gave an asymptotic solution based
on [3], in the form of a power series of the nondimensional
acoustic wave number, to calculate the self- and mutual
radiation resistance in the entire frequency range, which is
a simple and general way and is theoretically good for any
acoustic wave numbers or frequencies. On the research of the
structural nonlinear vibration, it deals with the geometrically
nonlinear problem using the strain-stress relationship. The
methods mainly are the analytic method (for the elemental
basic structure in [6]), the FEM in [7], and the BEM in [8]),
while there are few works on the acoustic radiation of the
nonlinear structure.

In the vibroacoustic coupling theory, the former work
mainly considered the basic structures, and the latter was the
stiffened structures. For these structures, the dynamical equa-
tions of the vibroacoustic coupling system were established
based on the variational principle; then the modal expression
method, the Fourier transform method, and the stationary
phase method were used to solve the coupling equations.
Crighton and Maidanik [9] presented an analytical study of
the interaction between incident wave fields and a single rib
on a fluid-loaded panel, and then Crighton illustrated that
the fluid loading has many varied and profound influence
on the vibration of structures and on their acoustic fields in
analytical and physical terms through simple models in [10].
Burroughs and Hallander [11] derived the analytical expres-
sions for the far-field acoustic radiation from a fluid-loaded
circular cylindrical shell reinforced with two sets of parallel
periodic ribs and excited by seven types of mechanical point
drives. Recently, a semianalytical model employs the modal
expansion technique in order to investigate the vibroacous-
tic behavior of stiffened composite panels under airborne
and structure borne excitations in [12]. And Chen et al.
[13] implemented a complicated multiple compartment shell
structure in water and concluded that the sound pressure
caused by multiple excitations can be approximated as the
incoherent superposition of those caused by each excitation
separately.

The main methods to investigate the nonlinear vibra-
tion system are the theoretical analysis method and the
experimental method in [14]. The theoretical method is
the basic method including the qualitative theory and the
quantitative method. The perturbation techniques including
the Lindstedt-Poincare method, the method of multiple
scales, and the KBM method are a classical quantitative
method to investigate the weakly nonlinear system. Small
parameters are essentially assumed so that perturbations can
be carried out. The IHB method can give accurate results
without difficulty in increasing the accuracy of the results
and without considering the parameter range. In the IHB
method, nonlinear differential equations are reduced to a set
of linearized incremental algebraic equations in terms of the
Fourier coefficients. Lau [15] originally presented the analyses
of periodic structural vibrations by the method and it has
also been successfully applied to various types of nonlinear
dynamics. For example, the generalized incremental Hamil-
ton’s principle and element formulation are used to study
the nonlinear vibration of thin elastic plates [16]. The IHB
method is employed to investigate the Hopf bifurcation and
limit cycle [17], and the IHB method is also used with the
fast Fourier algorithm to research the steady-state oscillation
of hysteretic differential model [18]. Recently, Sze et al. [19]
used the IHB method to study the nonlinear vibration of
axially moving beams, and Hall et al. [20] used the IHB
method to investigate the computational fluid dynamics
problems. By considering typical examples they have shown
that the method is very effective for analyzing structural and
mechanical systems with nonlinear characteristics.

Given the IHB method expanding the periodic solu-
tion into the Fourier series and the relationship between
the surface acoustic pressure and the excitation frequency,
the IHB method and the modal expression method are
employed to derive the approximate analytical solution of the
vibroacoustic coupling system. The Duffing oscillator-plate-
medium system as an example and the vibroacoustic coupling
equations will be obtained by the variational principle; then
the displacement and the surface pressure of the plate could
be expressed in the superposition form of the normal modes
and the temporal pulse shapes based on the motion form
of the oscillator, the modal expression method, and the
incoherent assumption. Then the IHB method is used to
derive the approximate analytical solution of the nonlinear
multi-degree-of-freedom system.

2. Physical Model and Nonlinear
Vibroacoustic Coupling Equation

The example considered is a simply supported rectangular
plate under a nonlinear oscillator’s excitation in an infinite
rigid baffle, as shown in Figure 1. Properties of the plate
include its length 𝑎, width 𝑏, thickness ℎ, density 𝜌, Young’s
modulus 𝐸, and Poisson ratio 𝜇. The mass of the equipment
is 𝑚, and the excitation force is 𝑓(𝑡) = 𝐹 cos(𝜔𝑡). The linear
and nonlinear stiffness coefficients of supporting spring are
𝑘
1
and 𝑘

3
, respectively, and the location of spring on the

thin plate is (𝑥
0
, 𝑦
0
, 0). The displacement of the oscillator is
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Figure 1: Vibroacoustic model of the plate under a nonlinear
oscillator’s excitations.

denoted by 𝜂(𝑡). The vibration equation of equipment is the
typical Duffing equation when neglecting the effect of plate’s
vibration. Assuming the motion of the plate just accounting
for the transverse displacement 𝑤, the nonlinear vibroa-
coustic coupling equation of the plate under the oscillator’s
excitation will be derived according to variational principle.

Based on thin plate theory [21], the strain energy of the
plate is

𝑉
𝑝
=

1

2

∫

𝑎

0

∫

𝑏

0

(𝐷(∇
2
𝑤)

2

− 2 (1 − 𝜇)

× (

𝜕
2
𝑤

𝜕𝑥
2

𝜕
2
𝑤

𝜕𝑦
2
− (

𝜕
2
𝑤

𝜕𝑥 𝜕𝑦

)

2

))𝑑𝑥𝑑𝑦,

(1)

where 𝐷 = 𝐸ℎ
3
/12(1 − 𝜇

2
) is the flexural stiffness and ∇2 =

𝜕
2
/𝜕𝑥
2
+ 𝜕
2
/𝜕𝑦
2 is the Laplace operators. The kinetic energy

of the plate is

𝑇
𝑝
=

1

2

∫

𝑎

0

∫

𝑏

0

𝜌ℎ�̇�
2
𝑑𝑥 𝑑𝑦. (2)

The elastic potential energy of the spring is

𝑉
𝑆
=

1

2

𝑘
1
(𝜂 − 𝑤(𝑥

0
, 𝑦
0
, 𝑡))
2

+

1

4

𝑘
3
(𝜂 − 𝑤(𝑥

0
, 𝑦
0
, 𝑡))
4

. (3)

The kinetic energy of the equipment is

𝑇
𝑜
=

1

2

𝑚 ̇𝜂(𝑡)
2
. (4)

The work done by the external forces includes the excita-
tion forces and the acoustic pressure exerted by the fluid on
the plate.The acoustic pressure on the plate is𝑝(𝑥, 𝑦, 0, 𝑡), and
then the work due to the fluid loading is

𝑉
𝑓
= ∫

𝑎

0

∫

𝑏

0

𝑝 (𝑥, 𝑦, 0, 𝑡) 𝑤 (𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦. (5)

The work done by the excitation force on the equipment is

𝑊
𝑓
= 𝑓 (𝑡) 𝜂 (𝑡) . (6)

Using variational principle, the nonlinear vibroacoustic
coupling equation of the plate-oscillator system is

𝛿∫

𝑡
2

𝑡
1

(𝑇
𝑝
+ 𝑇
𝑜
− 𝑉
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− 𝑉
𝑆
) 𝑑𝑡 + ∫

𝑡
2

𝑡
1

𝛿 (𝑉
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𝑓
) 𝑑𝑡 = 0. (7)

Then,

𝑚 ̈𝜂 (𝑡) + 𝑘
1
(𝜂 (𝑡) −𝑤 (𝑥
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3
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3

= 𝐹 cos (𝜔𝑡) ,
(8a)
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(8b)

Equations (8a) and (8b) show that the nonlinear vibroa-
coustic coupling equation is the combination of the discrete
system and the continuous system. Due to the thrice non-
linear stiffness, there are some strong nonlinear terms in the
coupling equation.Therefore, the IHBmethod and themodal
expansion method are employed to derive the approximately
analytical solution of the coupling equation.

3. Solution

In this section, the IHB method and the modal expression
method are formulated to derive the approximate analytical
solution of the nonlinear vibroacoustic coupling system. The
new dimensionless time variable 𝜏 is defined as

𝜏 = 𝜔𝑡. (9)

Substituting (9) into (8a) and (8b), then

𝑚𝜔
2
𝜂

(𝜏) + 𝑘

1
(𝜂 (𝜏) − 𝑤 (𝑥
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3

= 𝐹 cos (𝜏) ,
(10a)
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0
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0
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(10b)

There are only odd harmonic terms of cosine in the
solution of Duffing equation in [22], so 𝜂(𝜏) can be expressed
as

𝜂 (𝜏) = 𝑎
1
cos (𝜏) + 𝑎

3
cos (3𝜏) + ⋅ ⋅ ⋅ . (11)
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Based on the modal expansion method, the transverse vibra-
tion displacement 𝑤 can be expressed in terms of admissible
trigonometric trial functions [21]:

𝑤 (𝑥, 𝑦, 𝜏) =

∞

∑
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∞
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∞
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𝑛
𝑦,

(12)

where 𝑘
𝑚
= 𝑚𝜋/𝑎 and 𝑘

𝑛
= 𝑛𝜋/𝑏 are determined by the

simply supported conditions.
Based on Rayleigh integral formulation, the acoustic

pressure of the observation point above the plate is

𝑝 (𝑥, 𝑦, 𝑧, 𝜏)
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where |𝑟 − 𝑟

| = √(𝑥 − 𝑥


)
2
+ (𝑦 − 𝑦


)
2
+ (𝑧 − 𝑧


)
2 is the

distance of observation point and 𝑘, 𝜔, and 𝜌
0
are the wave

number, the excitation frequency, and the medium density.
Inserting (11)–(13) into (10a) and (10b), multiplying the

second equation by sin 𝑘
𝑚
𝑥 sin 𝑘

𝑛
𝑦, integrating over the plate

surface, and using the orthogonality of the plate modes, (10a)
and (10b) can be transformed as
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(14)

where 𝑚 = 𝜌ℎ/𝐷, 𝑏
𝑚𝑛

= (𝑘
2

𝑚
+ 𝑘
2

𝑛
)
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= sin 𝑘
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1𝑚𝑛
and 𝑍

3𝑚𝑛
are the self-radiation

resistances of the plate (see Appendix A). The mutual radia-
tion resistances are neglected due to the little contributions to
the acoustic pressure.

When the effect of the plate’s vibration is neglected, (14)
becomes

− 𝑚𝜔
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1
cos (𝜏) + 9𝑎
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The IHB method used to solve (15) is detailed in [20].
The second step in applying the IHB method to obtain

the periodic solutions is to add increments from some initial
guess of the solution of (14) 𝜂

0
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0
, 𝑤
0
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𝜂
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For simplification, two Fourier series in the form are used.
Substituting (16) into (14) and expanding the resulting prod-
uct of Fourier series into a single summation of cosines, then
using Galerkin procedure, (14) becomes

− 𝑚𝜔
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)Δ𝑎
3

= 𝑅
1
+ 2𝑚𝜔

0
𝑎
1
Δ𝜔,

(17a)

− 9𝑚𝜔
2

0
Δ𝑎
3
+ 𝑘
3
(

3

4

𝑎
2

1
+ 3𝑎
1
𝑎
3
)Δ𝑎
1

+ (𝑘
1
+ 𝑘
3
(

3

2

𝑎
2

1
+

9

4

𝑎
2

3
))Δ𝑎

3

= 𝑅
3
+ 18𝑚𝜔

0
𝑎
3
Δ𝜔,

(17b)

(𝑏
𝑚𝑛
− 𝑚𝜔𝜔

2

0
−

4𝜔
0
𝑍
1𝑚𝑛

𝑎𝑏𝐷

)Δ𝑎
1𝑚𝑛

− 𝑐
𝑚𝑛
{(𝑘
1
+ 𝑘
3
(

9

4

𝑎
2

1
+

3

2

𝑎
2

3
+

3

2

𝑎
1
𝑎
3
))

× Δ𝑎
1
+ 𝑘
3
(

3

4

𝑎
2

1
+ 3𝑎
1
𝑎
3
)Δ𝑎
3
}

= 𝑅
1𝑚𝑛

+ (2𝑚𝜔
0
−

4𝑍
1𝑚𝑛

𝑎𝑏𝐷

)𝑎
1𝑚𝑛

Δ𝜔,

(17c)

(𝑏
𝑚𝑛
− 9(𝑚𝜔

2

0
+

4𝜔
0
𝑍
3𝑚𝑛

𝑎𝑏𝐷

))Δ𝑎
3𝑚𝑛

− 𝑐
𝑚𝑛
{𝑘
3
(

3

4

𝑎
2

1
+ 3𝑎
1
𝑎
3
Δ𝑎
1
)

+ (𝑘
1
+ 𝑘
3
(

3

2

𝑎
2

1
+

9

4

𝑎
2

3
))Δ𝑎

3
}

= 𝑅
3𝑚𝑛

+ 9(2𝑚𝜔
0
−

4𝑍
3𝑚𝑛

𝑎𝑏𝐷

)𝑎
3𝑚𝑛

Δ𝜔,

(17d)

𝑅
1
= 𝐹 + 𝑚𝜔𝜔

2

0
𝑎
1
− 𝑘
1
𝑎
1
− 𝑘
3
(

3

4

𝑎
3

1
+

3

4

𝑎
2

1
𝑎
3
+

3

2

𝑎
1
𝑎
2

3
) ,

(18a)

𝑅
3
= 9𝑚𝜔

2

0
𝑎
3
− 𝑘
1
𝑎
3
− 𝑘
3
(

1

4

𝑎
3

1
+

3

4

𝑎
3

3
+

3

2

𝑎
2

1
𝑎
3
) , (18b)

𝑅
1𝑚𝑛

= (𝑚𝜔
2

0
+

4𝜔
0
𝑍
1𝑚𝑛

𝑎𝑏𝐷

− 𝑏
𝑚𝑛
)𝑎
1𝑚𝑛

+ 𝑐
𝑚𝑛

× (𝑘
1
𝑎
1
+ 𝑘
3
(

3

4

𝑎
3

1
+ (

3

4

𝑎
2

1
𝑎
3
+

3

2

𝑎
1
𝑎
2

3
))) ,

(18c)

𝑅
3𝑚𝑛

= (9(𝑚𝜔
2

0
+

4𝜔
0
𝑍
3𝑚𝑛

𝑎𝑏𝐷

) − 𝑏
𝑚𝑛
)𝑎
3𝑚𝑛

+ 𝑐
𝑚𝑛

× (𝑘
1
𝑎
3
+ 𝑘
3
(

1

4

𝑎
3

1
+

3

4

𝑎
3

3
+

3

2

𝑎
2

1
𝑎
3
)) ,

(18d)

where 𝑎
1

= 𝑎
10

− ∑
∞

𝑚=1
∑
∞

𝑛=1
𝑐
𝑚𝑛
𝑎
1𝑚𝑛0

, 𝑎
3

= 𝑎
30
−

∑
∞

𝑚=1
∑
∞

𝑛=1
𝑐
𝑚𝑛
𝑎
3𝑚𝑛0

, Δ𝑎
1

= Δ𝑎
1
− ∑
∞

𝑚=1
∑
∞

𝑛=1
𝑐
𝑚𝑛
Δ𝑎
1𝑚𝑛

,

Δ𝑎
3
= Δ𝑎
3
− ∑
∞

𝑚=1
∑
∞

𝑛=1
𝑐
𝑚𝑛
Δ𝑎
3𝑚𝑛

. 𝑅
1
, 𝑅
3
, 𝑅
1𝑚𝑛

, and 𝑅
3𝑚𝑛

are called the residual terms. If the solution 𝜂
0
, 𝜔
0
, 𝑤
0
is

an exact solution of (17a), (17b), (17c), and (17d), then the
residual terms are zero. In this sense, the residual term can be
used to control the accuracy in the computation. It is noted
that (17a), (17b), (17c), and (17d) represent a set of 2(𝑀 ×

𝑁 + 1) linear algebraic equations (𝑀, 𝑁 are the truncation
numbers). Rewrite (17a), (17b), (17c), and (17d) inmatrix form

KΔa = R, (19)

where Δa = [Δ𝑎
1
, Δ𝑎
3
, Δ𝑎
111
, Δ𝑎
112
, . . . , Δ𝑎

1𝑀𝑁
, Δ𝑎
311
, Δ𝑎
312
,

. . . , Δ𝑎
3𝑀𝑁

]
𝑇 and the matrixK and the vector R are shown in

Appendix B.
It is noted that the number of unknowns is 2(𝑀 × 𝑁 +

1) + 1 while the number of algebraic equations is 2(𝑀×𝑁+

1). The solution process begins with a guessed solution. The
solution of (19) is then solved point-by-point by incrementing
the frequency 𝜔. The Newton-Raphson iterative method can
be employed. By solving the nonlinear vibroacoustic coupling
equation, one can obtain the mode amplitude of 𝑤. Hence,
one can further obtain the surface quadratic velocity on the
surface of plate.

The following quantities will be used to describe
the vibroacoustic characteristics of the plate. The surface
quadratic velocity is a space-time average of the square
vibrational velocity of plate; it is defined by

𝑉
2
=

1

𝑆

1

𝑇

∫

𝑇

0

∬

𝑆










𝜕𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑡










2

𝑑𝑆 𝑑𝑡

=

𝜔
2

8

∞

∑

𝑚=1

∞

∑

𝑛=1

(




𝑎
1𝑚𝑛






2

+ 9




𝑎
3𝑚𝑛






2

) ,

(20)

where 𝑇 = 2𝜋/𝜔 and 𝑆 is the surface-area of plate.
The radiated acoustic power, which is the integration of

the active intensity over the surface of plate, is defined by

𝑊 =

1

𝑇

∫

𝑇

0

∬

𝑆

𝑃 (𝑥, 𝑦, 0, 𝑡)

𝜕𝑤 (𝑥, 𝑦, 𝑡)

𝜕𝑡

𝑑𝑆 𝑑𝑡

=

𝜔
2

2

∞

∑

𝑚=1

∞

∑

𝑛=1

(𝑎
1𝑚𝑛

Re [𝑍
1𝑚𝑛

] 𝑎
∗

1𝑚𝑛

+ 9𝑎
3𝑚𝑛

Re [𝑍
3𝑚𝑛

] 𝑎
∗

3𝑚𝑛
) ,

(21)

whereRe denotes the real part and∗ is the complex conjugate.
The radiated acoustic power levels and the surface quadratic
velocity levels are defined as

𝐿
𝑊
(𝜔) = 10lg𝑊

𝑊
0

, 𝐿
𝑉
(𝜔) = 10lg

⟨𝑉
2
⟩

V2
0

, (22)

where the reference acoustic power is𝑊
0
= 0.67 × 10

−18W
and the reference velocity is V

0
= 5 × 10

−8m/s.

4. Numerical Simulation and
Results Discussion

In this section, the numerical simulation is used for inves-
tigating the nonlinear vibroacoustic coupling characteristics
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Figure 2: Influence of the supporting form on the vibration properties of the oscillator: (a) acoustic radiation power level and (b) surface
quadratic velocity level.

of the system based on the proposed method. The simply
supported rectangular plate under a nonlinear oscillator’s
excitation in an infinite rigid baffle is shown in Figure 1. The
structural parameters of the plate in the numerical study are
selected as 𝑎 = 3m, 𝑏 = 2m, and ℎ = 0.002m with a density
of 7.8 × 103 kg/m3, Young’s modulus of 2.1 × 1011N/m2, and
Poisson’s ratio of 0.3. The plate is submerged in water with
a density of 1000 kg/m3 and the acoustic velocity of 1.5 ×
103m/s.The parameters of nonlinear oscillator are𝑚 = 10 kg
and 𝑘

1
= 1000N/m, and the oscillator is fixed on the plate

with the location of (𝑎/3, 𝑏/3, 0). The amplitude of excitation
force on the oscillator is 𝐹 = 100N.

The vibroacoustic characteristics of the plate and the
nonlinear vibration characteristics of the oscillator are shown
in Figures 2 to 6. The comparisons are concluded in the
following subsections.

4.1. Vibroacoustic Properties of the Plate. The influence of the
supporting form on the acoustic radiation power level and
surface quadratic velocity level is illustrated in Figure 2. It is
noted that the number of the peaks in the system with the
supporting structure is one more than in the system without
the supporting structure, and the peak value at the natural
frequency of the oscillator is the largest one. The acoustic
radiation power level and the surface quadratic velocity level
of the plate under the excitation force which worked on the
plate directly are lager 30–60 dB above 5𝜔

0
(𝜔
0
= √𝑘

1
/𝑚 =

10 rad/s). Hence, putting the equipment on support structure
is a good way to control the acoustic radiation and the
vibration if the excitation frequency is above five times the
oscillator’s natural frequency.

Figure 3 presents the harmonic components on the
vibroacoustic characteristics of the plate when 𝑘

3
= 10𝑘

1
.

It can be seen that the acoustic radiation power level and
the surface quadratic velocity level are dominated by the
first harmonic component in most frequency bands. While
the excitation at a frequency close to the natural frequency
of the oscillator can produce a significant response at the
third-harmonic generation, the vibroacoustic characteristics
are determined by the third-harmonic generation. And it is
clear that the number of peaks induced by third-harmonic
component is more. The peak at 𝜔

0
/3 is induced by the

third super harmonic resonance of the oscillator. The others
are at the natural frequencies of plate, which is because the
frequency of the third-harmonic component is three times
the excitation frequency.

Figure 4 presents the influence of the nonlinear stiffness
on the vibroacoustic characteristics of the plate. In the present
example, the nonlinear stiffness has no key effect on the
acoustic radiation power level and surface quadratic velocity
level in most frequency bands. However at the oscillator’s
resonant region, as the nonlinear stiffness increases, the
amplitudes increase.

4.2. Vibration Properties of the Oscillator. The effect of the
plate’s vibration on the nonlinear vibration properties of the
oscillator is presented. Figure 5 compares the amplitudes of
𝑎
1
and 𝑎

3
calculated by the simple Duffing equation and

the nonlinear vibroacoustic coupling equation (19). Figure 5
shows that 𝑎

1
≫ 𝑎
3
. It can be found that the vibration of

the plate has no key influence on the vibration of Duffing
oscillator, especially below and above the natural frequency
(10 rad/s) of the oscillator. It is because that the amplitudes
of the oscillator for these frequencies are so small that
the nonlinear forces transmitted to the plate could not
induce the plate’s vibration effectively. Nevertheless at the
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Figure 3: Influence of harmonic components on the vibroacoustic properties of the plate (𝑘
3
= 10𝑘

1
): (a) acoustic radiation power level and

(b) surface quadratic velocity level.
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Figure 4: Influence of the nonlinear stiffness on the vibroacoustic properties of the plate: (a) acoustic radiation power level and (b) surface
quadratic velocity level.

resonance region, the amplitudes are so large that the jump
phenomenon of the Duffing oscillator is changed, and the
resonance region of considering the plate’s vibration is wider.
This may be the main influence of the plate’s vibration on the
oscillator. It could be explained by the fact that the structural
impedance of the system is increased by the plate, so the
resonant prosperity of system is changed.

The oscillator’s amplitudes of the plate-oscillator-medium
systemwith different nonlinear stiffness are given in Figure 6.

Comparing the curves in Figure 6, it could be found that
when the excitation frequency is above 20 rad/s, the nonlinear
stiffness has no evident influence on the amplitudes 𝑎

1
and

𝑎
3
. Below 20 rad/s, as the nonlinear stiffness increases, the

unstable region and the amplitude 𝑎
3
rise, while the amplitude

𝑎
1
drops slightly.
Due to Figures 5 and 6, it is worth noticing that,

in the present example, the vibration of the plate could
change the jump phenomenon of the Duffing oscillator,



8 Shock and Vibration

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 10

Duffing equation
Coupling equation

20 30 40 50 60
Excitation frequency (rad/s)

a 1
(m

)

(a)

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Excitation frequency (rad/s)

a 1
(m

)

Duffing equation
Coupling equation

(b)

Figure 5: Influence of the plate’s vibration on the vibration properties of the oscillator (𝑘
3
= 10𝑘

1
); the shadow range is the unstable range:

(a) the influence on 𝑎
1
and (b) the influence on 𝑎

3
.
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Figure 6: Influence of the nonlinear stiffness on the vibration properties of the oscillator; the shadow range is the unstable range: (a) the
influence on 𝑎

1
and (b) the influence on 𝑎

3
.

and the nonlinear stiffness just changes the amplitudes of
oscillator below 2𝜔

0
. Hence, it could neglect the effects of the

plate’s vibration on the oscillator in most frequency bands.

5. Conclusion

This paper proposes an approximate analytical solution of
the nonlinear vibroacoustic coupling system based on the
IHB method and the modal expression method; the present
method is straightforward, efficient, and reliable, and it can
be used to obtain the nonlinear phenomena for the nonlinear

vibroacoustic coupling system. The research on the Duffing
oscillator-plate-medium system shows that when the exci-
tation frequency is close to the natural frequency of the
oscillator, the vibroacoustic characteristics of the plate are
determined by the third-harmonic generation. In order to
control the vibration and acoustic radiation of the system,
the excitation frequency should be five times the natural
frequency of the oscillator.Theunstable range of the oscillator
becomes wide due to the vibroacoustic coupling. The results
could be used for the vibroacoustic design of the nonlinear
oscillator.
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Appendices

A. Acoustic Radiation Resistances

The self-radiation resistances are

𝑍
1𝑚𝑛

= 𝜉
1𝑚𝑛

+ 𝑖𝜒
1𝑚𝑛

=

𝜔𝜌

2𝜋

∫

𝑎

0

∫

𝑏

0

∫

𝑎

0

∫

𝑏

0

(sin 𝑘
𝑚
𝑥 sin 𝑘

𝑛
𝑦 sin 𝑘

𝑚
𝑥
 sin 𝑘

𝑛
𝑦


×

𝑒
−𝑖𝑘|𝑟−𝑟


|





𝑟 − 𝑟




) 𝑑𝑥

𝑑𝑦

𝑑𝑥 𝑑𝑦,

(A.1)

𝑍
3𝑚𝑛

= 𝜉
3𝑚𝑛

+ 𝑖𝜒
3𝑚𝑛

=

𝜔𝜌

2𝜋

∫

𝑎

0

∫

𝑏

0

∫

𝑎

0

∫

𝑏

0

( sin 𝑘
𝑚
𝑥 sin 𝑘

𝑛
𝑦 sin 𝑘

𝑚
𝑥
 sin 𝑘

𝑛
𝑦


×

𝑒
−𝑖3𝑘|𝑟−𝑟


|





𝑟 − 𝑟




) 𝑑𝑥

𝑑𝑦

𝑑𝑥 𝑑𝑦.

(A.2)

The calculation of the acoustic impedance is detailed in [4].

B. Matrices in (19)
The matrix K is

K =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑘
11
− 𝑚𝜔

2

0
𝑘
12

−𝑘
11
𝑐
11

−𝑘
11
𝑐
12

⋅ ⋅ ⋅ −𝑘
11
𝑐
𝑚𝑛

−𝑘
12
𝑐
11

−𝑘
12
𝑐
12

⋅ ⋅ ⋅ −𝑘
12
𝑐
𝑚𝑛

𝑘
21

𝑘
22
− 9𝑚𝜔

2

0
−𝑘
21
𝑐
11

−𝑘
21
𝑐
12

⋅ ⋅ ⋅ −𝑘
21
𝑐
𝑚𝑛

−𝑘
22
𝑐
11

−𝑘
22
𝑐
12

⋅ ⋅ ⋅ −𝑘
22
𝑐
𝑚𝑛

−𝑐
11
𝑘
11

−𝑐
11
𝑘
12

𝑀
111
+ 𝑐
11
𝑐
11
𝑘
11

𝑐
11
𝑐
12
𝑘
11

⋅ ⋅ ⋅ 𝑐
11
𝑐
𝑚𝑛
𝑘
11

𝑐
11
𝑐
11
𝑘
12

𝑐
11
𝑐
12
𝑘
12

⋅ ⋅ ⋅ 𝑐
11
𝑐
𝑚𝑛
𝑘
12

...
...

...
... ⋅ ⋅ ⋅

...
...

... ⋅ ⋅ ⋅

...
−𝑐
𝑚𝑛
𝑘
11

−𝑐
𝑚𝑛
𝑘
12

𝑐
𝑚𝑛
𝑐
11
𝑘
11

𝑐
𝑚𝑛
𝑐
12
𝑘
11

⋅ ⋅ ⋅ 𝑀
1𝑚𝑛

+ 𝑐
𝑚𝑛
𝑐
𝑚𝑛
𝑘
11

𝑐
𝑚𝑛
𝑐
11
𝑘
12

𝑐
𝑚𝑛
𝑐
12
𝑘
12

⋅ ⋅ ⋅ 𝑐
𝑚𝑛
𝑐
𝑚𝑛
𝑘
12

−𝑐
11
𝑘
21

−𝑐
11
𝑘
22

𝑐
11
𝑐
11
𝑘
21

𝑐
11
𝑐
12
𝑘
21

⋅ ⋅ ⋅ 𝑐
11
𝑐
𝑚𝑛
𝑘
21

𝑀
311
+ 𝑐
11
𝑐
11
𝑘
22

𝑐
11
𝑐
12
𝑘
22

⋅ ⋅ ⋅ 𝑐
11
𝑐
𝑚𝑛
𝑘
22

...
...

...
... ⋅ ⋅ ⋅

...
...

... ⋅ ⋅ ⋅

...
−𝑐
𝑚𝑛
𝑘
21
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where 𝑘
11
= 𝑘
1
+ 𝑘
3
((9/4)𝑎

2

1
+ (3/2)𝑎

2

3
+ (3/2)𝑎

1
𝑎
3
), 𝑘
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=

𝑘
3
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2

1
+3𝑎
1
𝑎
3
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3
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3
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