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Time-variant systems can be found in many areas of engineering. It is widely accepted that the classical Fourier-based methods
are not suitable for the analysis and identification of such systems. The time-variant frequency response function—based on the
continuous wavelet transform—is used in this paper for the analysis of time-variant systems.The focus is on the comparative study
of various broadband input excitations.The performance of the method is tested using simulated data from a simpleMDOF system
and experimental data from a frame-like structure.

1. Introduction

Vibration analysis and dynamic testing traditionally rely
either on time-domain or frequency-domain approaches.
However, many engineering systems exhibit time-variant
behaviour. Examples include aircraft with different config-
urations of control surfaces during take-off and landing,
deployable space structures and manipulator, tooth gear
systems in mesh, or robot manipulator arms with mod-
ulator/demodulator cascade controllers. It is well known
that the classical parametric and nonparametric methods
are not suitable for the analysis and identification of such
systems. Therefore various approaches have been developed
for the analysis time-variant systems, as overviewed in [1,
2]. Wavelets are particularly attractive for the analysis and
identification of time-variant systems thanks to their time-
frequency (or rather time-scale) nature. Previous work in
this area includes various applications in structural dynamics
such as damping estimation [3–6] or nonlinear system
analysis [7]. The method presented in [8] is an evolutionary
approach and is also used for modal identification. Time-
scale approaches have been used also for online identification
procedures based on adaptive wavelets [9–13]. An overview
of different wavelet-based approaches can be found in [13–
15]. Some research work has been done to extend the
classical input-outputmodal analysis to time-variant systems.

However, the majority of the proposed methods are adaptive
approaches, developed mainly in control engineering, signal
processing, and mathematics, as discussed in [1]. More
recently, the time-dependent frequency response function
(FRF) has been proposed [16–18] for the analysis and identi-
fication of time-variant systems.Themethod utilises wavelets
[16, 18] and time-frequency transformations/distributions
[17] for the calculations of time-dependent FRFs.

Since the classical, that is, Fourier-based FRF is by defini-
tion the Fourier transform of the output divided by the
Fourier transform of the input, the only condition in this
analysis for the input signal is that it should be Fourier-trans-
formable. Virtually the majority of physically realisable sig-
nals satisfy this restriction. Therefore the choice of excitation
signals is nearly endless. From a linear system theory point of
view the estimated FRF should be independent of the nature
of excitation. Also, it is important that all vibrationmodes are
excited. Therefore a broadband excitation—such as Gaussian
white nose, chirps, or impacts—are used in practice. More
information on various classical excitation signals used in
modal analysis can be found in [19, 20]. There is no doubt
that broadband excitation should be used also for the analysis
of time-variant systems since time-variation is unknown.
However, in this case the choice of excitation is no longer
arbitrary as some important features could go undetected.
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This paper aims to compare various forms of broadband
excitation in the time-dependent FRF used for analysis of
time-variant systems.The structure of the paper is as follows.
Section 2 briefly describes the continuous wavelet transform
for the sake of completeness. The time-dependent, wavelet-
based FRF is presented in Section 3. Various broadband
excitation signals used in the paper are described in Section 4.
The FRF-based analysis for a simulated time-variant system
is presented in Section 5. Similar analysis for an experimental
system is given in Section 6. Finally the paper is concluded in
Section 7.

2. Continuous Wavelet Transform

For the sake of completeness this section briefly describes
the continuous wavelet transform. The material given in this
section provides only very basic mathematical definitions
with some important comments relevant to the analysis in the
current investigations. More information about the method
can be found in [21–23].

The continuous wavelet transform is used to divide a
continuous time function into set of elementary functions
called wavelets. Unlike the Fourier transform, this transform
has the ability to construct a time-scale representation of
a signal. This representation can be transformed into the
time-frequency domain in engineering applications. One of
the most desirable parameters of all time-frequency repre-
sentations is a good localisation of events simultaneously in
time and frequency. Other desirable properties are related
to time and frequency resolutions. All these parameters
are limited by the Heisenberg uncertainty principle. This
principle states that the combined time-frequency resolution
product has a lower bound. In other words both resolution
parameters, time and frequency, cannot be arbitrarily small
simultaneously.The continuous wavelet transform offers very
good time-frequency localisation with variable time and
frequency resolutions that depended on the so-called scale
parameter. Mathematically, the CWT can be defined as
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where 𝑏 is translation indicating locality, 𝑎 is a scale parameter
providing frequency resolution, and 𝜓(𝑡) is a continuous
function called the mother wavelet. The normalisation √|𝑎|
in the above equation ensures that the integral energy given
by each translated and dilated wavelet is independent of the
scale parameter 𝑎. It is important that the mother wavelet
satisfies the so-called admissibility condition given by
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where Ψ(𝑓) is the Fourier transform of 𝜓(𝑡). This is required
to obtain the inverse wavelet transform given by
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When time-frequency localization is required from the wa-
velet transform, the mother wavelets must be also a window
function. This additionally means that
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Many different wavelet functions can be employed in the
time-scale analysis. In this paper the complex Morlet wavelet
function defined as

𝜓 (𝑡) = 𝑒
−|𝑡|
2
/2

𝑒
𝑗𝜔
0
𝑡 (5)

was used as the mother wavelet. Graphical representation
of the complex Morlet wavelet in the time and frequency
domain is given in Figure 1. This clearly shows limitations
when the Morlet wavelet is used for time-frequency anal-
ysis. The frequency domain localisation is defined by the
bandwidth of the Morlet wavelet function. As it may seem
harmless in this particular example, one has to remember
that, with scaling of the analysing wavelets, the ratio of
frequency bandwidth to the central frequency will remain
constant. Thus, when, for example, the central frequency of
the analysed signal equals 50Hz, the wavelet transform will
“see” the signal in the 40–60Hz frequency range. Therefore
one has to be very careful when closed vibration modes are
analysedwith the CWT. In practice shift and scale parameters
can be selected adequately to provide correct analysis. This
problem is discussed in more details in [3, 5, 16].

3. Wavelet-Based Frequency
Response Function

This section briefly describes the wavelet-based FRF intro-
duced in [16–18]. The formal definition is followed by a short
description of numerical implementation together with some
practical comments related to averaging.

3.1. Definition. The classical FRF can be extended intuitively
for time-variant systems to provide time-frequency localisa-
tion capability. When the analysis is limited to small periods
of time that exhibit time-invariant behaviour, time-variations
are negligibly small and the time-dependent FRF can be
defined as [16–18]

𝐻(𝑡, 𝜔) =
𝑌 (𝑡, 𝜔)

𝑋 (𝑡, 𝜔)
=
TF [𝑦 (𝑡)]
TF [𝑥 (𝑡)]

, (6)

where TF denotes the time-frequency transformation (or
distribution if, for example, the Wigner-Ville transform is
applied) in the above equation. The work presented in this
paper utilises the continuous wavelet transform—defined
in Section 2—to obtain input and output time-frequency
spectra needed to calculate the time-dependent FRF. Despite
the fact that (6) has a relatively simple form, the entire
calculation procedure is not straightforward. It is clear that,
for values of TF[𝑥(𝑡)] that are close to zero, the𝐻(𝑡, 𝜔) tends
to infinity. This is why additional postprocessing is required
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Figure 1: Complex Morlet wavelet function.

to avoid the above problem. In practice, the randomGaussian
white noise 𝑁 is added to the input and output time signals
to form biased (noisy) inputs 𝑥

𝑖
(𝑡) and outputs 𝑦

𝑖
(𝑡) as
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(7)

where 𝜇 and 𝜎2 are the mean and variance of the Gaussian
distribution, respectively. Then, the relevant time-frequency
spectra are calculated using the selected transformation to
receive
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Finally, the results are averaged to obtain the expected values,
that is,
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and assembled to receive the time-dependent FRF as

𝐻(𝑡, 𝜔) =
𝐸 [𝑌 (𝑡, 𝜔)]

𝐸 [𝑋 (𝑡, 𝜔)]
. (10)

3.2. Numerical Implementation. In practice numerical imple-
mentation is composed of several steps. Firstly, the autopower
functions of input and output signals have to be defined as

𝐺
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(11)

where the superscript “∗” in the above equations indicated
a complex conjugate.These wavelet-based autopower spectra
show how the power in a signal is distributed over the entire
time-frequency plane. Both functions could be also used to
judge the quality of acquired input and output signals. By
analogy, the so-called wavelet-based cross-power spectrum
can be defined as

𝐺
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At this point it is possible to compute the wavelet-based FRF.
This can be done using different well-known estimators such
as 𝐻
1
, 𝐻
2
, or 𝐻V. In this paper the 𝐻

1
estimator based on

wavelet auto- and cross-power and spectra is used as
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Figure 2: Impact excitation given in the time, frequency, and combined time-frequency domains.

In practice it is advisable to perform averaging of cross- and
autopower spectra, as this improves signal-to-noise ratios
leading to more reliability. Thus the relevant expected values
are calculated, that is,
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and finally assembled to receive the wavelet-based FRF as

𝐻
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Since the 𝐻
1
estimator is a complex function additional

postprocessing is needed to obtain the amplitude of the
wavelet-based FRF. This is simply done by calculating the
absolute value of FRF; that is,

𝐻
1magnitude

(𝑡, 𝜔) = abs (𝐻
1
(𝑡, 𝜔)) . (16)

This function is used to analyse time-variant systems in
the following sections. The process of averaging is quite
important in the entire procedure, as explained in [16]. It is
also important to note that the phase can be also estimated
from the wavelet-based FRF, as shown in [17]. However this
characteristic is not used in the current investigations.

4. Input Excitation for Analysis of
Time-Variant Systems

This section presents various excitation signals used in the
analysis of time-variant systems. Three commonly known

broadband signals and one newly proposed signal are com-
pared in the time, frequency, and combined time-frequency
domains.

Impact excitation is one of the most widely used forms of
excitation in modal analysis. Figure 2 shows that the analysis
of impact excitation signal in the time domain gives perfect
localization in time, and the analysis in the frequency domain
indicates that this excitation exhibits a truly broadband
nature. These two important properties are also visible in
the combined time-frequency plane. The major drawback
associated with this excitation is related to the fact that the
system is excited only once for a short period of time. The
response is quickly damped and when (15) and (16) are used
the relevant input-output wavelet-based FRF analysis will be
limited only to such a short period of time.

Another commonly used excitation—which is considered
to be broadband—is a chirp excitation. Figure 3 shows that
the analysis of this excitation in the frequency domain
indicates its broadband nature for a predefined range of
frequencies. The time-domain representation of the chirp
signal does not reveal immediate interesting features. How-
ever, in practice, frequency localisation could be more or less
found by analysing zero-crossings and calculating relevant
periods of oscillations. This indicates that a chirp is not truly
broadband when only small parts of signal are considered.
This behaviour is more visible in the time-frequency domain,
where the analysis shows which frequency components are
present at a given time.

White noise is considered to be a broadband excitation.
However, this is only true when the excitation signal is
long enough to be ergodic. Figure 4 shows the stationary
behaviour of the Gaussian white noise excitation in the time
domain. However, if one considers only a small part of this
signal, the stationary and broadband behaviour is not so
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Figure 3: Chirp excitation given in the time, frequency, and combined time-frequency domains.
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Figure 4: White noise excitation given in the time, frequency, and combined time-frequency domains.

obvious. This is particularly visible in the combined time-
frequency domain where the energy distribution of the white
noise signal varies with time and frequency from high to near
zero amplitudes.

A new type of broadband excitation is proposed in this
section. The proposed excitation is composed of randomly
distributed series of impacts. Such excitation is broadband
at given time instances and provides continuous inflow of
energy to the analysed system, as illustrated in Figure 5.
This is advantageous when the excitation is compared with

the classical impact excitation illustrated in Figure 2. The
continuous inflow of energy enables one to observe system
dynamic properties and their variations with time.

5. Numerical Simulations and Results

5.1. Simulated MDOF System. A simple two-degree-of-free-
dom (2-DOF) system was used to compare the performance
of input excitation signals in the analysis of time-variant
systems.The system consisted of heavily dampedmass-spring
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Figure 5: Random impact excitation in the time, frequency, and combined time-frequency domains.

elements. One of the masses involved was varying in time;
the mass was decreasing linearly with time. All other relevant
physical parameters were constant. The values of physical
parameters used were 𝑚 = 10 kg, 𝐾

1
= 3000000N/m, 𝐾

2
=

800000N/m, 𝐶
1
= 150N/(m/s), and 𝐶

2
= 350N/(m/s). The

𝑀
1
mass element was decreasing linearly in time following

the function 𝑀
1
(𝑡) = 16–12t kg. Clearly, this resulted in the

increment of the relevant natural frequencies. Theoretical
natural frequencies are equal to 40Hz and 80Hz (for 0 s)
increasing to 160Hz (for 1 s) with cubic dependence on
time. Figure 6 gives a schematic diagram of the simulated
system. Numerical simulations were performed using the
MATLAB/Simulink platform. The sampling frequency was
equal to 1 kHz in all simulations.

5.2. System Identification Results. This section describes sys-
tem identification results for the simulated time-variant
system described in Section 5.1. The focus is on the anal-
ysis of varying natural frequencies. Numerical calculations
were performed within the MATLAB platform, following
the procedure described in Section 3. Signal averaging was
used in order to smooth out different disturbances that had
impact on the amplitude of the wavelet-based FRF. Four
different excitations—described in Section 4—were tested.
The classical FRF was also computed for comparison.

Figure 7 shows the results for the impact excitation. The
response of the system in the time domain reveals heavy
damping in the simulated system; the envelope amplitude
decays relatively quickly. The classical FRF clearly exhibits
two vibrationmodes.The first natural frequencywas found to
be around 39Hz whereas the second natural frequency could
be estimated around 83Hz. There is very little indication
about possible time-variant behaviour, as expected. The sec-
ond FRF component is more wideband and slightly skewed

C1 C2

K1
K2

M(t) m

Figure 6: Schematic diagram of the 2-DOF system used in numer-
ical simulations.

(or asymmetrical). This could indicate some nonlinearity
and/or time-variance. Also, it is very difficult to observe any
time-variant behaviour in the amplitude contour plot of the
wavelet-based FRF. Harmonic oscillations are dampened too
quickly. Some indication on the varying nature is visible in
the second vibration mode.

The second considered input signal was a chirp excitation.
The results for this excitation are presented in Figure 8. This
excitation is renowned for its frequency evolution over time.
Therefore both vibration modes are excited not earlier than
the chirp sweeps through the relevant natural frequencies.
The first natural frequency was found to be around 39Hz,
whereas the second natural frequency was estimated around
104Hz. The amplitude of the wavelet-based FRF does not
indicate any time-varying nature of the system.

White noise excitation differs qualitatively from impact
and chirp excitation as it provides energy continuously
through the entire excitation time. However, amplitude ex-
citation levels vary for given frequencies. Thanks to this
property it is possible to observe time-varying nature of the
analysed mechanical system in Figure 9. Although the classi-
cal FRF is not clear, two vibration modes can be observed in
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Figure 7: Simulated results obtained for the impact excitation in the time, frequency, and combined time-frequency domains.
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Figure 8: Simulated results obtained for the chirp excitation in the time, frequency, and combined time-frequency domains.

the amplitude of the wavelet-based FRF. The latter can be
used to estimate the natural frequencies. The first natural
frequency was found to be around 39Hz whereas the second
natural frequency was found to vary between 80 and 150Hz.
The only problem is that the curves displaying vibration
modes in the amplitude of the wavelet-based FRF are broken
and do not show uniform energy distribution.

The random impact excitation consists of repeated
impacts in order to introduce more energy into the system.
The amplitude of impacts was constant whereas the repletion

time was random in this type of excitation. The results are
presented in Figure 10. The time-domain response of the
system exhibits five repeated impact responses. However,
periods of these impacts are different; that is, the frequency
involved increases. The classical FRF displays correctly only
the first vibration mode. The time-variant nature can be
clearly observed in the amplitude contour plot of the wavelet-
based FRF.Thefirst natural frequencywas found to be around
39Hz whereas the second natural frequency was estimated
to vary between 80 and 150Hz. Similarly to the white noise
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Figure 9: Simulated results obtained for the white noise excitation in the time, frequency, and combined time-frequency domains.
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Figure 10: Simulated results obtained for the repeated impact excitation in the time, frequency, and combined time-frequency domains.

excitation, the curves displaying vibration modes in the
amplitude of the wavelet-based FRF are broken. However this
time the energy distribution for all impacts is more uniform.

In summary, the noise and repeated impact input signals
were the only out of the four excitations tested that were
able to reveal time-variant nature of the analysed system in
the amplitude of the wavelet-based FRF. Therefore these two
excitations were further tested using the experimental data,
as described in the next section.

6. Experimental Application and Results

A simple experiment was conducted to obtain time-variant
vibration data. A frame-like structure—shown in Figure 11—
with a tank attached to the free end was used in this
experimental work.The vertical armwas 80 cm long, whereas
the horizontal arm was 60 cm long. The tank was filled
with 3 kg of sand. The tank was draining when vibration
measurements were taken using one accelerometer mounted
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Figure 11: Experimental time-variant test rig.

in the middle of the vertical arm of frame. Accelerometer was
measuring vibrations in horizontal direction. Varyingmass of
the tank contributed to time-varying behaviour of the entire
system. The system was excited with a modal hammer and
electrodynamic shaker. The middle of metal block joining
horizontal and vertical arms was used as excitation point.
Excitation was executed in horizontal direction. Due to
the time-varying nature of analysed phenomena, identical
multiple measurements—required for averaging—were not
possible. Therefore Gaussian white noise was used to corrupt
the data. The relevant responses were then calculated using
(7). In order to improve the visibility of the results, the
entire analysis was limited only to the frequency range from
230 to 300Hz. The amplitudes of wavelet-based FRFs were
calculated. Contour plots together with ridges were used for
the analysis of the system.The latter exhibits amplitude where
the largest energies are concentrated.These areas correspond
to vibration modes. These ridges were calculated following
the procedure described in [24].

The results for the noise excitation are shown in Figure 12.
Two vibration modes can be observed in the analysed
frequency range. The first mode can be seen for the entire
period of time, that is, between 0 and 80 s. Its frequency varies
from the initial value of 276Hz (for 0 s) to the final value
of 256Hz (for 80 s). After 5 s the second mode appears. The
frequency of thismode remains relatively unchanged and can
be estimated as approximately equal to 290Hz. The results
for the repeated impact excitation are given in Figure 13.
These results reveal almost the same time-variant behaviour.
Only one mode can be observed initially. Its frequency varies
from 275 to 259Hz. Then this mode splits into two modes.
The frequency of the new (i.e., second) mode again remains
relatively unchanged and can be estimated as 290Hz; this
mode was not visible until 25 s probably due to high damping
of the structure. The response amplitude decayed very fast
when the impact excitation was used. That was not the case
when the white noise excitation was applied. In summary,
both types of excitation used, that is, the Gaussian white
noise and random repeated impacts, have revealed correctly
the varying nature of the analysed system. One important
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Figure 12: Experimental results obtained for the white noise
excitation in the combined time-frequency domain.
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Figure 13: Experimental results obtained for the repeated impact
excitation in combined time-frequency domain.

feature can be observedwhen Figures 12 and 13 are compared.
The natural frequency of the first analysed mode shifts
downwards more rapidly, that is, from 276 to 256Hz, when
the noise excitation was used in Figure 12.

An additional comment is needed here regarding the
change of frequency when mass of structure decreased. It is
well known that, for a simple 1-DOF system, the decrease of
mass results in the increase of natural frequency. However,
this basic theoretical relation does not need to hold for com-
plex MDOF systems, especially for systems where the major
mass is concentrated in one part of the structure. Although
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this is a common problem found in experimental modal
analysis, the observed effect needs further investigations.

7. Conclusions

The wavelet-based FRF was used for the analysis of time-
variant systems. The performance of the method was com-
pared for four different types of broadband excitation.
Numerical simulations and experimental test data were used
in these investigations. A simple heavily dampened 2-DOF
systemwith a time-varyingmass was simulated. A frame-like
structure with an attached tank was used for experimental
tests.

The results show that—for the case investigated—it is
impossible to identify time-varying nature of system with the
use of impact and chirp excitation. These two excitations do
not excite the system continuously in a proper broadband
manner. Identification of time-varying systems was possible
with the use of two other excitations applied, that is, the
white noise and random impact excitations. Both excitations
correctly identified time-varying nature of the systems inves-
tigated.

It is important to note that the effect of excitation signals
was investigated only for the amplitude of the wavelet-
based FRF. Future work should involve the analysis of FRF’s
phase and other modal parameters (than natural frequency).
Furthermore, more complex experimental systems should be
investigated.
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