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Dynamic response of a single span bridge subjected to moving flexible vehicles has been studied using a semianalytical approach.
The eccentricity of vehicle path giving rise to torsional motion of the bridge has been incorporated in the approach. The bridge
surface irregularity has been considered as the nonhomogeneous process in spatial domain. A closed form expression has been
derived to generate response samples corresponding to each input of roughness profile to form an ensemble. Thereafter, averaging
across the ensemble has been carried out at each time step to determinemean and standard deviation of bridge and vehicle response.
Further, dynamic amplification factor (DAF) of the bridge response has been obtained for several combinations of bridge-vehicle
parameters.The study reveals that structural bendingmodes of vehicle can significantly reduce dynamic response of the bridge.The
eccentricity of vehicle path and flexural/torsional rigidity ratios plays a significant role in dynamic amplification of bridge response.

1. Introduction

The dynamic effect resulting from the passage of vehicles is
an important problem generally encountered in the bridge
design.The irregularity or unevenness of the bridge pavement
surface is the main cause of exciting the vehicle which in turn
imposes a time varying load as it travels along the span of
the bridge. Starting from the year 1922, various theoretical
and experimental studies have been conducted to understand
the dynamic behavior of bridge subjected to moving load.
A review of literature on the said topic starting from basic
formulation with moving mass has been published by Fryba
[1] and Yang et al. [2] in their books with detailed discussion
on the formulation and its limitations. Earlier researchers
have considered vehicle as a moving mass on the bridge,
either neglecting their inertia effect or incorporating the
same. Although researchers have revealed various dynamic
characteristics for practical applications, modern bridges of
slender cross-section and larger span do not actually reflect
true behavior whenmovingmass problems have been solved.
The deformation of bridge can cause significant change in
dynamic forces at the contact point of the vehicle wheel.

Realizing these facts, numerous studies have been conducted
considering bridge-vehicle a coupled system, with consid-
eration of stiffness and damping parameters of suspension
systems. Biggs [3], Fryba [4], and Wen [5] are some of the
earlier authors who considered vehicle as single lumpedmass
system having only bounce motion or a rigid system with
bounce and pitch motion. A three-dimensional heave-pitch-
roll model has been investigated by Yadav and Upadhyay [6]
to find the response of railway tracks on elastic subgrade.
Vehicle models with seven and twelve degrees of freedom
were developed by Wang et al. [7] according to H20-44 and
HS20-44 which are major design vehicles in the American
Association of State Highway and Transportation Officials
(AASHTO). However, analyses of vehicle motions were
confined to rigidmodes only. Kou and deWolf [8], Cheung et
al. [9], andMarchesiello et al. [10] have studied the vibrational
behavior of multispan continuous bridge by adoption of
beam or isotropic plate model. The effect of moving mass
or rigid standard vehicle models on the bridge response
was examined. Yin et al. [11] investigated lateral vibration
of high pier bridge subjected to moving vehicle. In addition
to employment of three-dimensional rigid vehicle model,

Hindawi Publishing Corporation
Shock and Vibration
Volume 2014, Article ID 546156, 24 pages
http://dx.doi.org/10.1155/2014/546156



2 Shock and Vibration

special attention was given to the modeling of tyre with a
three-dimensional linear spring and a rectangular contact
surface. Other notable works in bridge-vehicle interaction
dynamics that include various dynamic properties of rigid
vehicle have been reported by Chen and Cai [12], Law and
Zhu [13], Zhang et al. [14], and Green and Cebon [15].
Marchesiello et al. [16] studied the interaction of multispan
continuous bridges modeled by isotropic plates with multi-
degree of freedom vehicles moving at constant speed. The-
oretical modes of plate vibration have been obtained with
the help of Rayleigh-Ritz approximate method. Prestressed
concrete single track railway bridges, consisting of several
box girders, were studied by Chu et al. [17] in which they
considered each girder to share equal loads and modelled as
a beam. Rail irregularities are modeled using power spectral
density function. Variousworks on bridge-vehicle interaction
onmultispan bridges have been reported by Huang et al. [18],
Wang [19], and Ichikawa et al. [20]. Numerical techniques for
solving the finite element model with rigid vehicle have been
adopted. Other important works which include complexity in
bridge model are that of horizontally curved girder [21, 22].
Analytical methods were employed to solve bridge dynamic
problem subject to moving mass taking effect of centrifugal
force. Effect of vehicle braking has been included in study
of vehicle-bridge interaction problem by Kishan and Traill-
Nash [23] and Radley and Traill-Nash [24].

Interests in research on bridge-vehicle interaction
dynamics are still growing because of several complexities in
modeling and uncertainties in excitation. In the last decade,
researchers have undertaken more and more complex
problems and attempted to solve by newer methodology
taking into consideration support flexibility and nonuniform
cross-section [25]. A vehicle-track-bridge interaction
element considering vehicle’s pitching effect has been
developed by Lou [26]. Experimental results and their
comparison with finite element model analysis of vehicle-
bridge interaction problem have been presented by Brady
et al. [27]. Rigid model of vehicle has been considered in
the study to determine set of critical velocity associated with
peaks of dynamic amplification factor. Multiple resonance
response of railway bridge has been investigated by Yau and
Yang [28]. A vehicle-bridge interaction process has been
simulatedwithMATLABSimulink byHarris et al. [29] to find
out bridge-friendly damping control strategy with a tractor
semitrailer vehicle model. Very recently, some interesting
studies of bridge-vehicle or road-vehicle coupled dynamics
include stochastic numerics and discrete integration schemes
for digital simulation of road-vehicle system by Wedig [30],
application of spectral stochastic finite element by Wu and
Law [31], and use of spectral matrix operator for direct
solution of stochastic coupled differential equations by Kozar
and Malic [32]. Those studies have significantly improved
the understanding of complex problem in vehicle-bridge
interactions. However, vehicle model has been assumed as
lumped masses with rigid link connected by suspension
elements exhibiting various discrete degrees of freedom.
In most of the studies, numerical integration and Monte
Carlo simulation techniques have been used. In the modern
days, characteristics of vehicles have greatly changed due

to incorporation of larger pay load and for increasing
demand of traffic. In the past, vehicles have been modeled
by a rigid 2D or 3D system having degrees of freedom in
bounce, pitch, and roll. However, due to long and slender
vehicle plying frequently over the bridges, there is a need
to consider flexibility in the vehicle model and to examine
the effect of flexible modes of vehicle on the dynamics of
bridge. This aspect of bridge-vehicle dynamic interaction
is not adequately addressed in the literature. With this in
mind, present study has been conducted to find out the
response statistics of single span bridge due to movement of
flexible vehicle along an eccentric path. By the term “flexible
vehicle,” it is understood here that flexural modes have
been included in addition to rigid body modes. The bridge
has been considered to be under independent transverse
bending as well as under torsional excitation arising out
of the eccentric path of the vehicle. Nonhomogeneous
profile of deck surface has been incorporated in the study
by considering a deterministic mean surface superimposed
by zero mean random process. Such formulation can take
care of defects in surface finishing, construction joints,
potholes, bump, approach slab settlement, and so forth.
Bridge-vehicle system equations are expressed in state-
space form and decoupled at each time step using complex
eigenvalue analysis. Closed form expression has been derived
for state vectors for each sample input of bridge profile to
form the ensemble of response. Finally, averaging across
the ensemble has been carried out to determine mean and
standard deviation of the response quantities. In present
approach numerical integration can be avoided to generate
response samples, which can save considerable amount
of computational time. The results obtained from present
approach have been validated by numerical simulation and
available experimental results from the literature. The effect
of vehicle velocity on the response and combined effect of
several vehicle-bridge parameters on dynamic amplification
factor (DAF) have been examined.

2. Mathematical Model

The bridge-vehicle model has been shown in Figure 1. The
bridge has been modeled as a uniform beam with simply
supported end conditions. The mass, stiffness, and damping
are assumed to be uniform along the span of bridge. Due
to eccentricity of the vehicle path, the bridge is subjected to
flexure as well as torsion.The bridge deck is unevenwhich has
been realized as nonhomogeneous process in spatial domain.
This is represented by a function ℎ(𝑥).

2.1. Equation of Motion of Vehicle. Vehicle body has been
idealized as Euler-Bernoulli beam of length 𝑙V. The behavior
of suspension systems consisting of spring and dashpot is
assumed as linear. The governing differential equation of
motion of the vehicle deflection can be expressed as

𝐸V𝐼V
𝜕
4
𝑧 (𝑢, 𝑡)

𝜕𝑢4
+ 𝐶V

𝜕𝑧 (𝑢, 𝑡)

𝜕𝑡
+ 𝑚V

𝜕
2
𝑧 (𝑢, 𝑡)

𝜕𝑡2
= 𝑓V (𝑢, 𝑡) (1)
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Figure 1: Bridge-vehicle model.

in which 𝑚V, 𝐸V𝐼V, and 𝐶V denote the mass per unit length,
flexural rigidity, and viscous damping per unit length of the
vehicle body and 𝑧(𝑢, 𝑡) represents vertical deflection of the
vehicle body measured at location 𝑢 from the reference point
(taken at the left end of the vehicle) at time instant 𝑡. The
impressed vertical force on the vehicle body is given by

𝑓V (𝑢, 𝑡)

= [𝑘V1 {𝑧 (𝑢, 𝑡) − 𝑧1 (𝑡)} + 𝑐V1 {𝑧̇ (𝑢, 𝑡) − 𝑧̇1 (𝑡)}]

× 𝛿 (𝑢 − 𝑢
1
)

+ [𝑘V2 {𝑧 (𝑢, 𝑡) − 𝑧2 (𝑡)} + 𝑐V2 {𝑧̇ (𝑢, 𝑡) − 𝑧̇2 (𝑡)}]

× 𝛿 (𝑢 − 𝑢
2
) ,

(2)

where 𝑢
1
and 𝑢

2
represent the location of the attachment

point of vehicle suspension from the reference point; 𝑧
1

and 𝑧
2
denote the vertical displacement of front and rear

wheel masses respectively. 𝑘V1 and 𝑘V2 are the front and rear
vehicle suspension stiffness, respectively; 𝑐V1 and 𝑐V2 represent
damping for vehicle front and rear suspension, respectively, 𝛿
represents Dirac delta function with the property

∫

∞

−∞

𝑓 (𝑥) 𝛿 (𝑥 − 𝑥
1
) 𝑑𝑥 = 𝑓 (𝑥

1
) . (3)

The equation of motion for the front unsprung mass is given
by

𝑚
1
𝑧̈(𝑡)
1
+ 𝑘
𝑡1
{𝑧
1
(𝑡) − 𝑦 (𝑥

1
, 𝑡) − ℎ (𝑥

1
)}

+ 𝑘V1 {𝑧1 (𝑡) − 𝑧 (𝑢1, 𝑡)} + 𝑐V1 {𝑧̇1 (𝑡) − 𝑧̇ (𝑢1, 𝑡)}

+ 𝑐
𝑡1
[𝑧̇
1
(𝑡) −

𝐷

𝐷𝑡
{𝑦 (𝑥
1
, 𝑡) + ℎ (𝑥

1
)}] = 0.

(4)

The equation of motion for the rear unsprung mass is given
by

𝑚
2
𝑧̈
2
(𝑡) + 𝑘

𝑡2
{𝑧
2
(𝑡) − 𝑦 (𝑥

2
, 𝑡) − ℎ (𝑥

2
)}

+ 𝑘V2 {𝑧2 (𝑡) − 𝑧 (𝑢2, 𝑡)} + 𝑐V2 {𝑧̇2 (𝑡) − 𝑧̇ (𝑢2, 𝑡)}

+ 𝑐
𝑡2
[𝑧̇
2
(𝑡) −

𝐷

𝐷𝑡
{𝑦 (𝑥
2
, 𝑡) + ℎ (𝑥

2
)}] = 0,

(5)

where𝑚
1
and𝑚

2
are front and rear wheel mass, respectively;

𝑘
𝑡1
, 𝑘
𝑡2
are front and rear suspension stiffness respectively;

and 𝑐
𝑡1
, 𝑐
𝑡2
are front and rear suspension damping, respec-

tively. ℎ(𝑥
1
) and ℎ(𝑥

2
) represent the nonhomogeneous deck

profile under the front and rear wheels, respectively. 𝑦(𝑥
1
, 𝑡)

and 𝑦(𝑥
2
, 𝑡) are bridge displacements under front and rear

wheels, respectively, at any instant of time 𝑡. 𝑧(𝑢
1
, 𝑡) and

𝑧(𝑢
2
, 𝑡) represent vehicle body deflection at the front and rear

wheels position at any instant of time 𝑡. 𝑢
1
and 𝑢

2
are the

location of wheel from the end of the vehicle body. Coriolis
forces that arise due to rolling of wheel on the deflected
profile of the bridge have been considered in the equation of
motion using total derivative operator 𝐷/𝐷𝑡 (with 𝐷𝑦/𝐷𝑡 =
(𝜕𝑦/𝜕𝑥)(𝜕𝑥/𝜕𝑡) + 𝜕𝑦/𝜕𝑡) [1, 33].

2.2. Equation of Motion of Bridge. It is assumed that, for
symmetrical cross-section (symmetrical about vertical axis),
bending and torsion of the bridge would be independent
under vertically applied live load.Thus governing differential
equation of motion of the bridge in flexure can be expressed
as

𝐸
𝑏
𝐼
𝑏

𝜕
4
𝑦 (𝑥, 𝑡)

𝜕𝑥4
+ 𝐶
𝑏

𝜕𝑦 (𝑥, 𝑡)

𝜕𝑡
+ 𝑚
𝑏

𝜕
2
𝑦 (𝑥, 𝑡)

𝜕𝑡2
= 𝑓
𝑏
(𝑥, 𝑡) (6)

in which𝑚
𝑏
, 𝐸
𝑏
𝐼
𝑏
, and 𝐶

𝑏
represent the mass per unit length,

flexural rigidity, and viscous damping per unit length of



4 Shock and Vibration

bridge.The impressed vertical force𝑓
𝑏
(𝑥, 𝑡) on the bridge due

to vehicle interaction is given by

𝑓
𝑏
(𝑥, 𝑡)

= − [𝑘
𝑡1
{𝑧
1
(𝑡) − 𝑦 (𝑥, 𝑡) − ℎ (𝑥)}

+𝑐
𝑡1
{𝑧̇
1
(𝑡) −

𝐷

𝐷𝑡
[𝑦 (𝑥, 𝑡) + ℎ (𝑥)]}]

× 𝛿 (𝑥 − 𝑥
1
)

− [𝑘
𝑡2
{𝑧
2
(𝑡) − 𝑦 (𝑥, 𝑡) − ℎ (𝑥)}

+𝑐
𝑡2
{𝑧̇
2
(𝑡) −

𝐷

𝐷𝑡
[𝑦 (𝑥, 𝑡) + ℎ (𝑥)]}] 𝛿 (𝑥 − 𝑥

2
)

− {𝑚
1
+
1

2
𝑚V𝑙V}𝑔𝛿 (𝑥 − 𝑥1) − {𝑚2 +

1

2
𝑚V𝑙V}𝑔

× 𝛿 (𝑥 − 𝑥
2
)

+ 𝑚
1

𝐷
2

𝐷𝑡2
[𝑦 (𝑥, 𝑡) + ℎ (𝑥)] 𝛿 (𝑥 − 𝑥

1
)

+ 𝑚
2

𝐷
2

𝐷𝑡2
[𝑦 (𝑥, 𝑡) + ℎ (𝑥)] 𝛿 (𝑥 − 𝑥

2
) ,

(7)

where 𝑔 is the acceleration due to gravity. The governing
differential equation of the bridge in torsion can be written
as

𝐺
𝑏
𝐽
𝑏

𝜕
2
𝛾 (𝑥, 𝑡)

𝜕𝑥2
− 𝐶
𝑏𝑇

𝜕𝛾 (𝑥, 𝑡)

𝜕𝑡
− 𝐼
𝑏

𝜕
2
𝛾 (𝑥, 𝑡)

𝜕𝑡2
= 𝑓
𝑇
(𝑥, 𝑡) ,

(8)

in which 𝐼
𝑏
,𝐺
𝑏
𝐽
𝑏
,𝐶
𝑏𝑡
, and 𝛾(𝑥, 𝑡) represent the mass moment

of inertia per unit length, torsional rigidity, distributed
viscous damping to rotational motion, and torsional function
of bridge, respectively. 𝐽

𝑏
is torsional constant, and 𝐺

𝑏
is

the shear modulus of beam material. 𝑓
𝑇
(𝑥, 𝑡) is the torque

produced in the bridge cross-section due to eccentric loading
which is given by

𝑓
𝑇
(𝑥, 𝑡)

= − [𝑘
𝑡1
{𝑧
1
(𝑡) − 𝑦 (𝑥, 𝑡) − ℎ (𝑥)}

+𝑐
𝑡1
{𝑧̇
1
(𝑡) −

𝐷

𝐷𝑡
[𝑦 (𝑥, 𝑡) + ℎ (𝑥)]}]

× 𝑒
𝑥
𝛿 (𝑥 − 𝑥

1
)

− [𝑘
𝑡2
{𝑧
2
(𝑡) − 𝑦 (𝑥, 𝑡) − ℎ (𝑥)}

+𝑐
𝑡2
{𝑧̇
2
(𝑡) −

𝐷

𝐷𝑡
[𝑦 (𝑥, 𝑡) + ℎ (𝑥)]}]

× 𝑒
𝑥
𝛿 (𝑥 − 𝑥

2
)

− {𝑚
1
+
1

2
𝑚V𝑙V}𝑔𝑒𝑥𝛿 (𝑥 − 𝑥1)

− {𝑚
2
+
1

2
𝑚V𝑙V}𝑔𝑒𝑥𝛿 (𝑥 − 𝑥2)

+ 𝑚
1

𝐷
2

𝐷𝑡2
[𝑦 (𝑥, 𝑡) + ℎ (𝑥)] 𝑒

𝑥
𝛿 (𝑥 − 𝑥

1
)

+ 𝑚
2

𝐷
2

𝐷𝑡2
[𝑦 (𝑥, 𝑡) + ℎ (𝑥)] 𝑒

𝑥
𝛿(𝑥 − 𝑥

2
)
𝑥
𝛿 (𝑥 − 𝑥

2
) .

(9)

The parameter 𝑒
𝑥
in (9) denotes the eccentricity of vehicle

wheels from the centre line of bridge deck.

2.3. Bridge Deck Roughness. In the present study we intro-
duce a roughness, which is nonhomogeneous in space even
though vehicle velocity is constant, by adopting the following
relation:

ℎ (𝑥) = ℎ
𝑚
(𝑥) +

𝑁

∑

𝑠=1

𝜍
𝑠
cos (2𝜋Ω

𝑠
𝑥 + 𝜃
𝑠
) , (10)

where ℎ
𝑚
(𝑥) is a deterministic mean which represents

construction defects, expansion joints, created pot holes,
approach slab settlement, expansion joints, development of
corrugation, and so forth; 𝜍

𝑠
is the amplitude of cosine wave;

and Ω
𝑠
is the spatial frequency (rad/m) within the interval

[Ω𝐿 Ω
𝑈] in which power spectral density is defined. Ω

𝐿

and Ω
𝑈
are lower and upper cut-off frequencies. The deck

roughness is a Gaussian process [34] with a random phase
angle 𝜃

𝑠
uniformly distributed from 0 to 2𝜋.𝑁 is the number

of terms used to build up the road surface roughness. The
parameters 𝜍

𝑠
andΩ

𝑠
are computed as

𝜍
𝑠
= √2𝑆 (Ω

𝑠
) ΔΩ,

Ω
𝑠
= Ω
𝐿
+ (𝑠 −

1

2
)ΔΩ,

ΔΩ =
(Ω
𝑈
− Ω
𝐿
)

𝑁
,

(11)

in which 𝑆(Ω
𝑠
) is the power spectral density function

(m3/rad) taken from [35] modifying the same with addition
of one term in denominator so that the function exists when
Ω → 0:

𝑆 (Ω) = 𝑆 (Ω
0
) ×

Ω
2

0

Ω
𝑠

2
+ Ω2
𝐿

. (12)

In the above equation, Ω
0
= 1/2𝜋 rad/m has been taken.

The spatial frequency Ω (rad/m) and temporal frequency 𝜔
(rad/s) for the surface profile are related to the vehicle speed
𝑉 (m/s) as 𝜔 = Ω𝑉. In the present study, vehicle forward
velocity has been assumed as constant.

2.4. Discretization of Flexible Vehicle Equation of Motion. As
mentioned earlier vehicle body has beenmodeled as free-free
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beam which has two rigid modes and 𝑛V number of elastic
modes. It can be shown that when the translation of the mass
centroid and the rotational motion about the mass centroid
are considered, the two motions are orthogonal with respect
to each other and with respect to the elastic modes [36].Thus
total displacement of these rigid body degrees of freedom and
elastic modes can be described by

𝑧 (𝑢, 𝑡) =

𝑛V

∑

𝑗 =−1

𝜙V𝑗 (𝑢) 𝜂𝑗 (𝑡) , (13)

where 𝜙V𝑗(𝑢) is the vehicle mode shapes; the subscript V
denotes vehicle; 𝜂

𝑗
(𝑡) is the time dependent generalized

coordinate; 𝑗 is the mode number; 𝑗 = −1, 0 are taken
to denote rigid body translatory and pitching mode; 𝑗 =

1, 2, 3, . . . , 𝑛V represent elastic mode sequence of free-free
beam; and 𝑛V is the number of significant modes of flexible
vehicle body. Thus two rigid modes can be written as

𝜙
−1
= 1,

𝜙
0
= 𝑢 − 𝐷

2
,

(14)

where 𝐷
2
is a distance of vehicle centre of gravity from the

trailing edge as given in Figure 1.
The elastic bending modes of free-free beam for 𝑗 =

1, 2, 3, . . . are given by [37]:

𝜙V𝑗 = sin (𝛼
𝑗
𝑢) + sinh (𝛼

𝑗
𝑢)

+ 𝛽
𝑗
[cos (𝛼

𝑗
𝑢) + cosh (𝛼

𝑗
𝑢)]

𝛽
𝑗
=
cos (𝛼

𝑗
𝑙V) + cosh (𝛼

𝑗
𝑙V)

sin (𝛼
𝑗
𝑙V) + sinh (𝛼

𝑗
𝑙V)

,

(15)

where corresponding nondimensional frequency parameters
𝛼
𝑗
𝑙V can be related to circular natural frequency as

𝜔V𝑗 = 𝛼
2

𝑗
√

𝐸V𝐼V

𝑚V𝑙
4

V
. (16)

Substituting (13) in (1) and multiplying both sides of the
equation by 𝜙V𝑘(𝑢) and then integrating with respect to 𝑢

from 0 to 𝑙V alongwith orthogonality conditions, the equation
of motion can be discretized as

̈𝜂
𝑗
(𝑡) + 2𝜉V𝑗𝜔V𝑗 ̇𝜂𝑗 (𝑡) + 𝜔

2

V𝑗𝜂𝑗 (𝑡) = 𝑄V𝑗 (𝑡) , (17)

where 𝑗 = −1, 0, 1, 2, . . ..
Generalized force 𝑄V𝑗(𝑡) in the 𝑗th mode acting on the

vehicle is given as

𝑄V𝑗 (𝑡) =
1

𝑀V𝑗
∫

𝑙𝑉

0

𝑓V (𝑢, 𝑡) 𝜙𝑗 (𝑢) 𝑑𝑢, (18)

in which generalized mass𝑀V𝑗 in the 𝑗th mode is given by

𝑀V𝑗 = ∫

𝑙V

0

𝑚V𝜙
2

V𝑗 (𝑢) 𝑑𝑢. (19)

Making use of (2) and (13) in (17) and integrating the
expression using the property of Dirac delta function, one has
the following expression for generalized force:

𝑄V𝑗 (𝑡)

=
1

𝑀V𝑗

[

[

𝑘V1
{

{

{

𝑧
1
(𝑡) −

𝑛V

∑

𝑗 =−1

𝜙
𝑗
(𝑢
1
) 𝜂 (𝑡)

}

}

}

𝜙
𝑗
(𝑢
1
)

+ 𝑐V1
{

{

{

𝑧̇
1
(𝑡) −

𝑛V

∑

𝑗 =−1

𝜙
𝑗
(𝑢
1
) ̇𝜂 (𝑡)

}

}

}

𝜙
𝑗
(𝑢
1
)

+ 𝑘V2
{

{

{

𝑧
2
(𝑡) −

𝑛V

∑

𝑗 =−1

𝜙
𝑗
(𝑢
2
) 𝜂 (𝑡)

}

}

}

𝜙
𝑗
(𝑢
2
)

+𝑐V2
{

{

{

𝑧̇
2
(𝑡) −

𝑛V

∑

𝑗 =−1

𝜙
𝑗
(𝑢
2
) ̇𝜂 (𝑡)

}

}

}

𝜙
𝑗
(𝑢
2
)]

]

.

(20)

It may be mentioned that infinite number of modes are
possible in continuous system considered in the present
study. However, for practical implementation only first 𝑛V
modes of vehicle body have been included.

2.5. Discretization of Bridge Equation of Motion. Using first
𝑛
𝑏
number of bridge bending modes, the bridge deflection in

flexure be written as

𝑦 (𝑥, 𝑡) =

𝑛𝑏

∑

𝑘=1

𝜙
𝑏𝑘
(𝑥) 𝑞
𝑘
(𝑡) , (21)

where subscript 𝑏 represents bridge, 𝜙
𝑏𝑘
(𝑥) is the flexural

mode of the beam for simply supported boundary condition
corresponding to natural frequency, and 𝜔

𝑏𝑘
and 𝑞

𝑘
(𝑡) are

generalized coordinates in 𝑘th mode [37].
Now, substituting (21) in (6) and multiplying both sides

of the equation by 𝜙
𝑏𝑗
(𝑥) and then integrating with respect to

𝑥 from 0 to 𝐿 with the use of orthogonality conditions, the
equation of motion can be discretized in normal coordinates
as

̈𝑞
𝑘
(𝑡) + 2𝜉

𝑏𝑘
𝜔
𝑏𝑘

̇𝑞
𝑘
(𝑡) + 𝜔

2

𝑏𝑘
𝑞
𝑘
(𝑡) = 𝑄

𝑏𝑘
(𝑡) , (22)

where 𝑘 = 1, 2, 3, . . . , 𝑛
𝑏
.

The generalized force𝑄
𝑏𝑘
(𝑡) in the 𝑘th mode of bridge in

flexure is given as

𝑄
𝑏𝑘
(𝑡) =

1

𝑀
𝑏𝑘

∫

𝐿

0

𝑓
𝑏
(𝑥, 𝑡) 𝜙

𝑏𝑘
(𝑥) 𝑑𝑥, (23)

in which generalized mass𝑀
𝑏𝑘
in the 𝑘th mode is given by

𝑀
𝑏𝑘
= ∫

𝐿

0

𝑚
𝑏
𝜙
2

𝑏𝑘
(𝑥) 𝑑𝑥. (24)
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The generalized force in the 𝑘th of mode of bridge transverse
vibration has been worked out as

𝑄
𝑏𝑘
(𝑡)

= −
1

𝑀
𝑏𝑘

[𝑘
𝑡1
{𝑧
1
(𝑡) −

𝑛𝑏

∑

𝑘=1

𝜙
𝑏𝑘
(𝑥
1
) 𝑞
𝑘
(𝑡) − ℎ (𝑥

1
)}

× 𝜙
𝑏𝑘
(𝑥
1
)

+ 𝑘
𝑡2
{𝑧
2
(𝑡) −

𝑛𝑏

∑

𝑘=1

𝜙
𝑏𝑘
(𝑥
2
) 𝑞
𝑘
(𝑡) − ℎ (𝑥

2
)}

× 𝜙
𝑏𝑘
(𝑥
2
)

+ 𝑐
𝑡1
{𝑧̇
1
(𝑡) − 𝑉

𝑛𝑏

∑

𝑘=1

𝜙
󸀠

𝑏𝑘
(𝑥
1
) 𝑞
𝑘
(𝑡)

−𝑉

𝑛𝑏

∑

𝑘=1

𝜙
𝑏𝑘
(𝑥
1
) ̇𝑞
𝑘
(𝑡) − 𝑉ℎ

󸀠
(𝑥
1
)}

× 𝜙
𝑏𝑘
(𝑥
1
)

+ 𝑐
𝑡2
{𝑧̇
2
(𝑡) − 𝑉

𝑛𝑏

∑

𝑘=1

𝜙
󸀠

𝑏𝑘
(𝑥
2
) 𝑞
𝑘
(𝑡)

−𝑉

𝑛𝑏

∑

𝑘=1

𝜙
𝑏𝑘
(𝑥
2
) ̇𝑞
𝑘
(𝑡) − 𝑉ℎ

󸀠
(𝑥
2
)}

× 𝜙
𝑏𝑘
(𝑥
2
)

− {𝑚
1
+
1

2
𝑚V𝑙V}𝑔𝜙𝑏𝑘 (𝑥1)

− {𝑚
2
+
1

2
𝑚V𝑙V}𝑔𝜙𝑏𝑘 (𝑥2)

× 𝑚
1
{

𝑛𝑏

∑

𝑘=1

𝜙
𝑏𝑘
(𝑥
1
) ̈𝑞
𝑘
(𝑡)

+ 2𝑉

𝑛𝑏

∑

𝑘=1

𝜙
󸀠

𝑏𝑘
(𝑥
1
) ̇𝑞
𝑘
(𝑡)

+𝑉
2

𝑛𝑏

∑

𝑘=1

𝜙
󸀠󸀠

𝑏𝑘
(𝑥
1
) 𝑞
𝑘
(𝑡) + 4𝑉ℎ

󸀠󸀠
(𝑥
1
)}

× 𝜙
𝑏𝑘
(𝑥
1
)

+ 𝑚
2
{

𝑛𝑏

∑

𝑘=1

𝜙
𝑏𝑘
(𝑥
2
) ̈𝑞
𝑘
(𝑡)

+ 2𝑉

𝑛𝑏

∑

𝑘=1

𝜙
󸀠

𝑏𝑘
(𝑥
2
) ̇𝑞
𝑘
(𝑡)

+ 𝑉
2

𝑛𝑏

∑

𝑘=1

𝜙
󸀠󸀠

𝑏𝑘
(𝑥
2
) 𝑞
𝑘
(𝑡)

+4𝑉ℎ
󸀠󸀠
(𝑥
2
) }

× 𝜙
𝑏𝑘
(𝑥
2
) ] ,

(25)

in which (⋅) denotes time derivative. Repeating the similar
steps, the discretized bridge equation for torsion in normal
coordinates can be expressed as

̈𝛾
𝑙
(𝑡) + 2𝜉

𝑇𝑙
𝜔
𝑇𝑙

̇𝛾
𝑙
(𝑡) + 𝜔

2

𝑇𝑙
𝛾
𝑙
(𝑡) = 𝑄

𝑇𝑙
(𝑡)

(𝑙 = 1, 2, 3, . . . , 𝑛
𝑇
) ,

(26)

where 𝑛
𝑇
represents number of bridge torsional modes con-

sidered and 𝜔
𝑇𝑙
and 𝜉
𝑇𝑙
are the natural frequency and modal

damping coefficient of the 𝑙th mode in torsion, respectively.
The generalized torque in the 𝑙th mode is given by

𝑄
𝑇𝑙
(𝑡) =

1

𝑀
𝑇𝑙

∫

𝐿

0

𝑓
𝑇
(𝑥, 𝑡) 𝜙

𝑇𝑙
(𝑥) 𝑑𝑥. (27)

The torsional natural frequency𝜔
𝑇𝑙
and correspondingmode

𝜙
𝑇𝑙

for the given simply supported boundary conditions
for no warping restrains have been taken from [37]. The
generalized mass moment of inertia 𝑀

𝑇𝑙
in the 𝑙th mode is

given by

𝑀
𝑇𝑙
= ∫

𝐿

0

𝐼
𝑏
𝜙
2

𝑇𝑙
(𝑥) 𝑑𝑥. (28)

The generalized torque in the 𝑙th mode can be expressed as

𝑄
𝑇𝑙
(𝑡)

= −
𝑒
𝑥

𝑀
𝑇𝑙

[𝑘
𝑡1
{𝑧
1
(𝑡) −

𝑛𝑇

∑

𝑙=1

𝜙
𝑇𝑙
(𝑥
1
) 𝛾
𝑙
(𝑡) − ℎ (𝑥

1
)}

× 𝜙
𝑇𝑙
(𝑥
1
)

+ 𝑘
𝑡2
{𝑧
2
(𝑡) −

𝑛𝑇

∑

𝑙=1

𝜙
𝑇𝑙
(𝑥
2
) 𝛾
𝑙
(𝑡) − ℎ (𝑥

2
)}

× 𝜙
𝑇𝑙
(𝑥
2
)

+ 𝑐
𝑡1
{𝑧̇
1
(𝑡) − 𝑉

𝑛𝑇

∑

𝑙=1

𝜙
󸀠

𝑇𝑙
(𝑥
1
) 𝛾
𝑙
(𝑡)

−𝑉

𝑛𝑇

∑

𝑙=1

𝜙
𝑇𝑙
(𝑥
1
) ̇𝛾
𝑙
(𝑡) − 𝑉ℎ

󸀠
(𝑥
1
)}
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× 𝜙
𝑇𝑙
(𝑥
1
)

+ 𝑐
𝑡2
{𝑧̇
2
(𝑡) − 𝑉

𝑛𝑇

∑

𝑙=1

𝜙
󸀠

𝑇𝑙
(𝑥
2
) 𝛾
𝑙
(𝑡)

−𝑉

𝑛𝑇

∑

𝑙=1

𝜙
𝑇𝑙
(𝑥
2
) ̇𝛾
𝑙
(𝑡) − 𝑉ℎ

󸀠
(𝑥
2
)}

× 𝜙
𝑇𝑙
(𝑥
2
)

− {𝑚
1
+
1

2
𝑚V𝑙V}𝑔𝜙𝑇𝑙 (𝑥1) − {𝑚2 +

1

2
𝑚V𝑙V}

× 𝑔𝜙
𝑇𝑙
(𝑥
2
)

× 𝑚
1
{

𝑛𝑇

∑

𝑙=1

𝜙
𝑇𝑙
(𝑥
1
) ̈𝛾
𝑙
(𝑡) + 2𝑉

𝑛𝑇

∑

𝑙=1

𝜙
󸀠

𝑇𝑙
(𝑥
1
) ̇𝛾
𝑙
(𝑡)

+𝑉
2

𝑛𝑇

∑

𝑙=1

𝜙
󸀠󸀠

𝑇𝑙
(𝑥
1
) 𝛾
𝑙
(𝑡) + 4𝑉ℎ

󸀠󸀠
(𝑥
1
)}

× 𝜙
𝑇𝑙
(𝑥
1
)

+ 𝑚
2
{

𝑛𝑇

∑

𝑙=1

𝜙
𝑇𝑙
(𝑥
2
) ̈𝛾
𝑙
(𝑡) + 2𝑉

𝑛𝑇

∑

𝑙=1

𝜙
󸀠

𝑇𝑘
(𝑥
2
) ̇𝛾
𝑙
(𝑡)

+𝑉
2

𝑛𝑇

∑

𝑘=1

𝜙
󸀠󸀠

𝑇𝑘
(𝑥
2
) 𝛾
𝑙
(𝑡) + 4𝑉ℎ

󸀠󸀠
(𝑥
2
)}

× 𝜙
𝑇𝑙
(𝑥
2
) ] .

(29)

3. Method of Solution

The system of (4), (5), (17), (22), and (26) is coupled second
order ordinary differential equations. In general for continu-
ous system like the ones (vehicle and bridge) presented in the
paper infinite number of modes exist. However, for practical
applications, modes have to be truncated to a finite size. Let
𝑛V, 𝑛𝑏, and 𝑛

𝑇
be number of significant modes of vehicle

motion, bridge flexural, and torsional vibration, respectively.
The number of coupled equations becomes 𝑛 = 2 + 𝑛V + 𝑛

𝑏
+

𝑛
𝑇
.The system equations can be expressed inmatrix notation

as

[𝑀] { ̈𝑟 (𝑡)} + [𝐶] { ̇𝑟 (𝑡)} + [𝐾] {𝑟 (𝑡)} = {𝐹 (𝑡)} , (30)

where {𝑟(𝑡)} = {𝜂
1
(𝑡), 𝜂
2
(𝑡), . . . , 𝜂

𝑛V(𝑡), 𝑧1(𝑡), 𝑧2(𝑡), 𝑞1(𝑡),
𝑞
2
(𝑡), . . . , 𝑞

𝑛𝑏
(𝑡), 𝛾
1
(𝑡), 𝛾
2
(𝑡), . . . , 𝛾

𝑛𝑇
(𝑡)}
𝑇 is the response vec-

tor, {𝐹(𝑡)} is the generalized force vector and, [𝑀], [C],
and [𝐾] are system mass, damping, and stiffness matrix,
respectively.

The system equation can be cast into a 2𝑛-dimensional
first order differential equation of the following form:

{𝑝̇ (𝑡)} + [𝐴] {𝑝 (𝑡)} = {𝑃 (𝑡)} , (31)

where

{𝑝 (𝑡)} = {
̇𝑟 (𝑡)

𝑟 (𝑡)
} , {𝑃 (𝑡)} = {

[𝑀]
−1
{𝐹 (𝑡)}

{0}
} ,

[𝐴] = {
[𝑀]
−1
[𝐶]

− [𝐼]

[𝑀]
−1
[𝐾]

[0]
} .

(32)

This form is suitable for bridge-vehicle interaction problems,
since suspension damping is not small and diagonalization
of damping matrix as in case of Rayleigh’s damping may not
be fully convincing. [𝐼] is an identity matrix and 0 a null
vector or matrix. Let the eigenvalues of the state matrix A be
𝛼
1
, 𝛼
2
, 𝛼
3
, . . . , 𝛼

2𝑛
and the corresponding eigenvectors {u}1,

{u}2, {u}3, . . . , {u}2𝑛. The modal matrix is defined as
[𝑈] = [{𝑢}

1
{𝑢}
2
, . . . , {𝑢}

2𝑛
] . (33)

The eigenvalues are assumed to be distinct. Thus one has

[𝑈]
−1
[𝐴] [𝑈] = diagonal [𝛼

1
, 𝛼
2
, 𝛼
3
, . . . , 𝛼

2𝑛
] . (34)

Let us assume
{𝑝} = [𝑈] {V} . (35)

Using linear transformation in (35), the state-space equations
in decoupled form can be written as

V̇
𝑗
(𝑡) + 𝛼

𝑗
V
𝑗
(𝑡) = 𝑅

𝑗
(𝑡) , 𝑗 = 1, 2, 3, . . . , 2𝑛, (36)

with

𝑅
𝑗
=

𝑛

∑

𝑘=1

𝑢
󸀠

𝑗𝑠

𝑛

∑

𝑠=1

𝑚
󸀠

𝑠𝑘
𝐹
𝑘
(𝑡) , (37)

𝑢
󸀠

𝑗𝑠
denotes elements in the inverse of the matrix [𝑈] and𝑚󸀠

𝑠𝑘

the elements in the inverse of matrix [𝑀].
The general solution of (36) in Stieltjes integral [38] form

may be expressed as

V
𝑗
(𝑡) = 𝑋

0𝑗
exp (−𝛼

𝑗
𝑡) + ∫

∞

−∞

𝐻
𝑗
(𝜔, 𝑡) 𝑑𝑆 [𝐹

𝑘
(𝜔)] , (38)

where 𝑋
0𝑗

are constants of integration to be determined
from the initial conditions.𝐻

𝑗
(𝜔, 𝑡) is the transient frequency

response function given by [38]

𝐻
𝑗
(𝜔, 𝑡) =

1

−𝑖𝜔 + 𝛼
𝑗

[exp (−𝑖𝜔𝑡) − exp {−𝛼
𝑗
(𝑡 − 𝑡
0
)}] .

(39)
It can be seen that as 𝑡

0
→ −∞, for the positive real

part of 𝛼
𝑗
, 𝐻
𝑗
(𝜔, 𝑡) approaches the limiting value (1/ −

𝑖𝜔 + 𝛼
𝑗
) exp(−𝑖𝜔𝑡). This is the characteristics of stable

dynamic system. Using (37) and (39) in (38), the response in
generalized normal coordinate may be expressed as

𝑟
𝑚
(𝑡) =

2𝑛

∑

𝑗=1

𝑢
𝑚+𝑛,𝑗

𝑋
0𝑗
exp (−𝛼

𝑗
𝑡)

+

2𝑛

∑

𝑗=1

𝑢
𝑚+𝑛,𝑗

𝑛

∑

𝑠=1

𝑢
󸀠

𝑗𝑠

𝑛

∑

𝑘=1

𝑚
󸀠

𝑠𝑘
∫

∞

−∞

𝐻
𝑗
(𝜔, 𝑡) 𝑑𝑆 (𝐹

𝑘
(𝜔))

𝑚 = 1, 2, 3, . . . , 𝑛.

(40)
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The first term of (40) represents homogeneous solution of
the system equation due to initial condition and the second
term of the equation may be written using the limiting value
of transient frequency response function

𝑟
𝑃𝑚

(𝑡) =

2𝑛

∑

𝑗=1

𝑢
𝑚+𝑛,𝑗

𝑛

∑

𝑠=1

𝑢
󸀠

𝑗𝑠

×

𝑛

∑

𝑘=1

𝑚
󸀠

𝑠𝑘
∫

∞

−∞

exp (−𝑖𝜔𝑡)
−𝑖𝜔 + 𝛼

𝑗

𝐹
𝑘
(𝜔) 𝑑𝜔.

(41)

Using Fourier integral [39] and changing the order of integra-
tion, (41) can be written as

𝑟
𝑃𝑚

(𝑡)

=

2𝑛

∑

𝑗=1

𝑢
𝑚+𝑛,𝑗

𝑛

∑

𝑠=1

𝑢
󸀠

𝑗𝑠

𝑛

∑

𝑘=1

𝑚
󸀠

𝑠𝑘

× ∫

∞

−∞

𝐹
𝑘
(𝜏) [

1

2𝜋
∫

∞

−∞

exp [𝑖𝜔 (𝜏 − 𝑡)]
−𝑖𝜔 + 𝛼

𝑗

𝑑𝜔]𝑑𝜏.

(42)

Using Cauchy’s residue theorem [39], the particular solution
can be expressed as

𝑟
𝑃𝑚

(𝑡) =

2𝑛

∑

𝑗=1

𝑢
𝑚+𝑛,𝑗

𝑛

∑

𝑠=1

𝑢
󸀠

𝑗𝑠

𝑛

∑

𝑘=1

𝑚
󸀠

𝑠𝑘
𝐼
𝑗𝑘
, (43)

where

𝐼
𝑗𝑘
= ∫

𝑡

0

exp [𝛼
𝑗
(𝜏 − 𝑡)] 𝐹

𝑘
(𝜏) 𝑑𝜏, (44)

in which 𝑡 is the bridge loading time. 𝐼
𝑗𝑘

can be split up for
convenience as

𝐼
𝑗𝑘
= 𝐼
𝑗𝑤
+ 𝐼
𝑗𝑥
+ 𝐼
𝑗𝑦
+ 𝐼
𝑗𝑧
, (45)

where 𝑤 = 1, 2, 3, . . . , 𝑛V; 𝑥 = 𝑛V + 1, 𝑛V + 2; 𝑦 = 𝑛V + 3,
𝑛V+4, . . . , 𝑛V+2+𝑛𝑏; 𝑧 = 𝑛V+𝑛𝑏+3, 𝑛V+𝑛𝑏+4, . . . , 𝑛V+𝑛𝑏+𝑛𝑇+2.

Closed form expressions for the components of the above
integral which generates each of the response samples have
been developed and given in the appendix.The response sam-
ples thus form complete ensemble of the process. Averaging
across the ensemble at each time step yields mean 𝜇

𝑌
(𝑡
𝑘
) and

standard deviation 𝜎
𝑌
(𝑡
𝑘
) of a response process 𝑌.

4. Results and Discussions

4.1. Model Validation. The results obtained by present ana-
lytical method have been first compared with numerically
simulated results and published results from the literature.
Newmark integration scheme [40] has been adopted for
numerical simulation. Time step for integration purpose has
been selected as 0.005 sec. Two-axle vehicle model data and
bridge of single span with simple supports have been used
for comparison purpose. For this purpose, bridge and vehicle
parameters have been selected from study conducted byDeng
and Cai [41] in which they have also presented experimental
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Figure 2: Comparison of analytical, numerical, and experimental
results.

data. Following are the inputs taken in both analytical model
and numerical integration scheme:

span (𝐿): 16.764m, mass per unit length (𝑚
𝑏
): 1.08 ×

10
4 kg/m, flexural rigidity (𝐸

𝑏
𝐼
𝑏
): 2.48 × 10

12Nm2, torsional
rigidity (𝐺

𝑏
𝐽
𝑏
): 2.48 × 10

12Nm2, mass moment of inertia
(𝐼
𝑏
): 1.87 × 10

5 kgm2/m; 𝐸
𝑏
= 32GPa, deck = 25.12GPa;

vehicle mass (𝑚V): 2.48 × 10
4 kg, mass of front and rear

wheel (𝑚
𝑤1
, 𝑚
𝑤2
): 725.4 kg each,massmoment of inertia (𝐼V):

1.72×10
5 kgm2, front and rear suspension stiffness (𝑘V1, 𝑘V2):

7.28 × 10
5N/m, 1.97 × 10

6N/m, front and rear suspension
damping (𝑐V1, 𝑐V2): 2189.6Ns/m, 7181.8Ns/m, and front and
rear tyre stiffness (𝑘

𝑡1
, 𝑘
𝑡2
): 1.97 × 10

6N/m, 4.74 × 10
6N/m.

In Figure 2, the analytically obtained response sample has
been compared with numerically simulated response sample
and experimental results found in [41]. The comparison of
response sample exhibits close agreement between analytical
and numerically simulated results. The experimental data in
the initial portion has shown considerable deviation from
theoretical results, which, however, becomes closer in the
later part of the response time history.The peakmagnitude of
the displacement in analytical, numerical, and experimental
results agrees well.

4.2. Parametric Study. The following system data have been
adopted to generate numerical results and to conduct para-
metric study: a RC slab-girder bridge of span (𝐿): 20m;
three longitudinal girders along the span and three cross-
girders at midspan and at supports are provided in bridge;
the lane width: 8.6m, deck thickness: 200mm, and concrete
characteristic strength 25N/mm2. The cross-section of the
bridge is shown in Figure 3. A finite element (FE) model of
bridge in SAP2000 commercial software is first developed
using the above details of the bridge so as to match the
fundamental natural frequency andfirstmodal damping ratio
of the simply supported beam model of T-beam bridge.
The sectional properties of FE model are then used in
the present analytical program of the bridge. The following
physical parameters are finally selected for the beam model
to represent a T-beam RC concrete bridge:

mass (𝑚
𝑏
): 11.15×103 kg/m, flexural rigidity (𝐸

𝑏
𝐼
𝑏
): 3.7×

10
10N-m2, and torsional rigidity (𝐺

𝑏
𝐽
𝑏
): 1.695 × 10

10N-m2.
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Figure 3: Cross-section of T-beam bridge (all dimensions are in meter).
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Figure 4: Longitudinal section of vehicle (all dimensions are in meter).

The sectional parameters to be given in the beam model of
bridge have been found from the FE model of bridge in SAP
2000 commercial software to match the fundamental natural
frequency and first modal damping of both the beam and the
FE model of bridge.

Vehicle parameters are as follows: a long vehicle carrying
heavy load often crossing the bridge has been chosen to
illustrate the present approach. The standards of vehicle are
different from the live load prescribed by bridge code. In
the present study, we use a vehicle type TATA 3516C-EX as
shown in Figures 4 and 5. This has been idealized as Euler-
Bernoulli beam adopted in present formulation. Following
are the important physical parameters pertaining to vehicle:
length (𝑙V): 12m, flexural rigidity (𝐸V𝐼V): 5.3×10

6N-m2, mass
per unit length (𝑚V): 1500 kg/m, front and rear wheel masses
(𝑚
𝑤1
, 𝑚
𝑤2
): 800 kg each, suspension stiffness front and rear

(𝑘V1, 𝑘V2): 3.6 × 10
7N/m, suspension damping front and rear

(𝑐V1, 𝑐V2): 7.2 × 10
4N-sec/m, front and rear tyre stiffness:

(𝑘
𝑡1
, 𝑘
𝑡2
): 0.9 × 10

7N/m, and front and rear tyre damping
(𝑘
𝑡1
, 𝑘
𝑡2
): 0.7 × 104N-sec/m.

4.2.1. Bridge Response Statistics. Bridge mean responses at
midspan displacement (𝜇

𝑑𝑦
), velocity (𝜇V𝑦), and acceleration

(𝜇
𝑎𝑦
) subjected to three vehicle speed have been shown in

Figures 6, 7, and 8. The roughness of the bridge deck has
been assumed to be of poor category as per ISO classifi-
cation corresponding to roughness coefficient 𝜍

𝑠
= 16 ×

10
−6m2/(m/cycle) [42]. The mean peak central deflection is

found to increase with the vehicle speed. The corresponding
standard deviation of each response displacement (𝜎

𝑑𝑧
),

velocity (𝜎V𝑧), and acceleration (𝜎
𝑎𝑧
) has been shown in

Figures 9, 10, and 11. It may be noted that bridge response fre-
quency ismodified by change in vehicle velocity and obtained
behavior has appropriate physical sense that higher velocity
increases the temporal frequency of road excitation. This is
obvious from left shift of the peak when velocity increases
from lower to higher. The peak magnitude is also higher in
case of vehicle travelling with higher velocity. No definite
pattern is discernible in the standard deviation. Although,
the magnitudes of standard deviation are insignificant for
practical purpose, magnitudes of the coefficient of variation
of peak displacement, velocity, and accelerations are found to
be 0.11, 0.183, and 0.105, respectively. Itmay bementioned that
dynamic loads do not lead to major bridge damage, except in
resonance, but they contribute to continuous degradation of
bridge increasing necessity of bridge maintenance.
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Figure 6: Mean displacement of bridge at the midspan.
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Figure 7: Mean velocity of bridge at the midspan.
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Figure 8: Mean acceleration of bridge at the midspan.
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Figure 9: Standard deviation of bridge midspan deflection.

4.2.2. Vehicle Response Statistics. The mean vehicle body
responses (at centroid)—displacement (𝜇

𝑑𝑧
), velocity (𝜇V𝑧),

and acceleration (𝜇
𝑎𝑧
) time history—including residual

response have been shown in Figures 12, 13, and 14. The
corresponding standard deviation of responses displacement
(𝜎
𝑑𝑧
), velocity (𝜎V𝑧), and acceleration (𝜎

𝑎𝑧
) is shown in

Figures 15, 16, and 17. It has been seen that the peak response is
increased with increase in vehicle speed. Standard deviation
has no definite trend in the present case for vehicle response.

4.2.3. Effect of Vehicle Flexibility on Mean and Standard Devi-
ation. The contribution of significant number of structural
modes of vehicle to bridge response has been examined in
a bar diagram presented in Figures 18 and 19 by comparing
maximum mean and standard deviation, respectively. It may
be seen that inclusion of bendingmodes of the vehicle reduces
the response magnitude of the bridge. The same figure also
reveals that when flexiblemodes of the vehicle are considered,
summation of first five modes for finding the response is
adequate. Figures 20 and 21 show the comparison of mean
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Figure 10: Standard deviation of bridge midspan velocity.
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Figure 11: Standard deviation of bridge midspan acceleration.
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Figure 12: Mean displacement of vehicle C.G.
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Figure 13: Mean velocity of vehicle at C.G.
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Figure 14: Mean acceleration of vehicle at C.G.
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Figure 15: Standard deviation of vehicle displacement at C.G.
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Figure 16: Standard deviation of vehicle velocity at C.G.
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Figure 17: Standard deviation of vehicle acceleration at C.G.
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Figure 19: Maximum standard deviation of displacement at
midspan, (A) rigid vehicle, (B) flexible vehicle only with first
structural mode, (C) flexible vehicle with first three structural
modes, and (D) flexible vehicle with first five structural modes.
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Figure 20: Mean of imposed force time history of the bridge due to
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Figure 21: Standard deviation of imposed force time history of the
bridge due to passage of rigid and flexible vehicle.
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Figure 23: Effect of flexibility on standard deviation of bridge
response, (A) 𝐸V𝐼V = 5.3 × 10

6N-m2, (B) 𝐸V𝐼V = 6.4 × 10
7N-m2,

and (C) 𝐸V𝐼V = 8.2 × 10
10N-m2.

and standard deviation of imposed force on the bridge due
to passage of a rigid vehicle with those of flexible vehicle. It
reveals that when structural bending modes are considered,
the imposed force on the bridge is less.Thismay be attributed
to the fact that part total strain energy has been utilized in
bending of elastic vehicle body as compared to rigid beam,
which reduces imposed force on the bridge.

The comparison of mean response of bridge at midspan
with different values of vehicle flexural rigidity has been
presented in Figure 22. Corresponding standard deviation is
presented in Figure 23. It may be noted that vehicle with
lower flexural rigidity generates less response in the bridge.
In generating numerical results under this section vehicle
velocity is taken as 60 km/h.
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Figure 24: Mean of bridge midspan displacement due to different
eccentricity of vehicle path (𝑒

𝑥
), (A) 𝑒

𝑥
= 0.5m, (B) 𝑒
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= 1m, and

(C) 𝑒
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= 1.5m.
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Figure 25: Standard deviation of bridge midspan displacement due
to different eccentricity of vehicle path (𝑒

𝑥
), (A) 𝑒

𝑥
= 0.5m, (B) 𝑒

𝑥
=

1m, and (C) 𝑒
𝑥
= 1.5m.

4.2.4. Effect of Eccentricity of Vehicle Path on Mean and
Standard Deviation. The effect of eccentricity on the bridge
response has been studied by varying the loading position
from the centre of the bridge width. In the result shown in
Figures 24 and 25, 6% to 8% increment in the bridge dynamic
responses has been observed as the eccentricity varies from
0.5m to 1.5m. The vehicle stiffness for comparing the results
in Figures 24 and 25 is taken uniform (𝐸V𝐼V = 5.3×10

6N⋅m2).
In generating numerical results under this section vehicle
velocity is taken as 60 km/h.

4.3. Dynamic Amplification Factor (DAF). Considering any
response variable 𝑌 as random process, the maximum
dynamic response can be written as

𝑌dynamic =
󵄨󵄨󵄨󵄨𝜇𝑌 (𝑥𝑘, 𝑡𝑘) + 𝜎𝑌 (𝑥𝑘, 𝑡𝑘)

󵄨󵄨󵄨󵄨 , (46)
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Figure 26: Dynamic amplification factor (DAF) with the ratio of
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where 𝑌dynamic denotes the maximum response due to fluctu-
ating load imposed on bridge due to vibratory motion of the
vehicle excited by road unevenness.

Thus, dynamic amplification factor (DAF) in this study is
defined as

DAF =
𝑌static + 𝑌dynamic

𝑌static
, (47)

where𝑌static refers to the response of the bridge at themidspan
location for adverse position of static wheel loads.

4.3.1. Effect of Bridge Torsional Rigidity on Dynamic Ampli-
fication Factor (DAF). The effect of torsional rigidity of
bridge has been studied by obtaining DAF for different
ratios of torsional rigidity (𝐺

𝑏
𝐽
𝑏
) to flexural rigidity (𝐸

𝑏
𝐼
𝑏
)

of bridge with various values of vehicle flexural rigidity
(𝐸V𝐼V) and presented in Figure 26. The results reveal that
dynamic amplification factor decreases by an amount of 23%
to 34% when the ratio of torsional rigidity to flexural rigidity
of bridge increases from 0.002 to 0.01. This indicates that
torsionally stiffer bridge produces less dynamic amplification
of static live load response.

4.3.2. Effect of VehicleMass and Speed onDAF. Since dynamic
amplification factor depends on several variables, we choose
to represent it by surface plot rather than a two-dimensional
plot. The effect of vehicle mass as well as speed on the
dynamic amplification factor (DAF) has been shown in
Figure 27. Individual effect on earlier classical studies [43]
has shown that effect of increasing mass has reducing effect
on DAF. However, a surface plot shown in Figure 18 shows

that combined effect has an increasing trend. Earlier authors
argued that reduction of dynamic amplification factor with
increasing vehicle weight is due to increase of static deflec-
tion. However, the coupled dynamic interaction may be the
cause of increased inertia force in addition to suspension
force imposed by moving mass at greater velocity, which
increases dynamic component of the response.

4.3.3. Effect of Bridge Surface Roughness and Speed. The
surface roughness and speed of the vehicle are two most
influential factors that can cause increased dynamic ampli-
fication factor and rapid degradation of the bridge. Bridge
dynamic amplification factor has been found by changing
bridge surface roughness coefficient for good condition to
poor condition as mentioned in ISO specification [42] with
change in vehicle speed. Figure 28 shows that poor condition
of road induces more deflection on the bridge when vehicle
moves over it and also can be catalyzed by vehicle speed.

4.3.4. Effect of Bridge Span and Velocity. The span of the
bridge is an important factor which decides the impact factor
inmost of the bridge design codes. Combined effect of bridge
span and speed of the vehicle on DAF is not fully known.
Figure 29 shows the DAF with variation of bridge span and
velocity. It has been found thatwhen the bridge span increases
from 14m to 30m dynamic amplification factor decreases by
an amount of 12% to 15%, irrespective of increase of vehicle
velocity. Although increasing span shows a decreasing trend
in DAF similar to the earlier studies, the increment found in
the present case is not very significant for the range of span
14–30m

5. Conclusions

In the present study, an analytical solution for coupled
vehicle-bridge interaction problem considering eccentrically
moving flexible vehicle as well as randomdeck surface rough-
ness has been obtained. Response samples are generated
from the expressions derived in the present study considering
nonhomogeneity of deck roughness. The results obtained
from analytical approach have been validated with numerical
simulation and experimental data available in the literature.
Individual and combined effects of several bridge-vehicle
parameters have been considered to find out the response
statistics. The increased effect of vehicle speed has been
foundmore significant in changing the frequency of imposed
oscillation rather than noticeable increase in response peaks.
Combined effect of increasing vehicle weight and speed has
been found to increase the dynamic amplification factor. The
study reveals that flexibility of long vehicle is an important
consideration in obtaining bridge response and, due to
change in load carrying vehicle configuration, it is now
imperative to address this issue in bridge design codes.
Torsion of the bridge is activated by eccentric movement of
vehicle, and dynamic amplification factor is largely depen-
dent on the ratio of torsional rigidity to flexural rigidity of
bridge cross-section.
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Appendix

Expression of the Integral 𝐼
𝑗𝑘

for
Generating Response Sample

The vector {𝐹(𝑡)} needed to perform the integration is given
below:

𝐹
𝑗
(𝑡) = 0 for𝑗 = 1, 2, 3, . . . , 𝑛V

= 𝑘
𝑡𝑗−𝑛V

ℎ (𝑥
𝑗−𝑛V

) + 𝑐
𝑡𝑗−𝑛V

ℎ̇ (𝑥
𝑗−𝑛V

)

For𝑗 = 𝑛V + 1, 𝑛V + 2

= 𝑘
𝑡1
ℎ (𝑥
1
) 𝜙
𝑏𝑗−(𝑛V+2) (𝑥1) + 𝑘𝑡2ℎ (𝑥2) 𝜙𝑏𝑗−(𝑛V+2) (𝑥2)

+ 𝑐
𝑡1
ℎ̇ (𝑥
1
) 𝜙
𝑏𝑗−(𝑛V+2) (𝑥1) + 𝑐𝑡2ℎ̇ (𝑥2) 𝜙𝑏𝑗−(𝑛V+2) (𝑥2)

For 𝑗 = 𝑛V + 3, 𝑛V + 4, . . . , 𝑛V + 2 + 𝑛𝑏

= 𝑒
𝑥
{𝑘
𝑡1
ℎ (𝑥
1
) 𝜙
𝑡𝑗−(𝑛V+2+𝑛𝑏)

(𝑥
1
)

+ 𝑘
𝑡2
ℎ (𝑥
2
) 𝜙
𝑡𝑗−(𝑛V+2+𝑛𝑏)

(𝑥
2
)

+ 𝑐
𝑡1
ℎ̇ (𝑥
1
) 𝜙
𝑡𝑗−(𝑛V+2+𝑛𝑏)

(𝑥
1
)

+𝑐
𝑡2
ℎ̇
󸀠
(𝑥
2
) 𝜙
𝑡𝑗−(𝑛V+2+𝑛𝑏)

(𝑥
2
)}

For 𝑗 = 𝑛V + 𝑛𝑏 + 3,

𝑛V + 𝑛𝑏 + 4, . . . , 𝑛V + 𝑛𝑏 + 𝑛𝑡 + 2.

(A.1)

Themean surface profile has been taken as shallow parabolic,
the equation of which with respect to one end of the bridge is
given by

ℎ
𝑚
(𝑥) =

4ℎ
0

𝐿2
𝑥 (𝐿 − 𝑥) . (A.2)

For one trial, a generation of a set of random phase angles 𝜃
𝑠

(𝑠 = 1, 2, . . . , 𝑁) is employed to express a Gaussian process is

ℎ
𝑟
(𝑥) =

𝑁

∑

𝑠=1

𝐴
𝑠
cos (2𝜋Ω

𝑠
𝑥 + 𝜃
𝑠
) . (A.3)

Further ℎ󸀠(𝑥) = 𝑑ℎ/𝑑𝑥 and ℎ̇(𝑥) = 𝑑ℎ/𝑑𝑡 = 𝑉(𝑑ℎ/𝑑𝑥) where
𝑉 is the speed of vehicle.

For convenience of computation,

𝐼
𝑗𝑘
= 𝐼
𝑗𝑤
+ 𝐼
𝑗𝑥
+ 𝐼
𝑗𝑦
+ 𝐼
𝑗𝑧
, (A.4)

where 𝑤 = 1, 2, 3, . . . , 𝑛V; 𝑥 = 𝑛V + 1, 𝑛V + 2; 𝑦 = 𝑛V + 2 + 1,
𝑛V + 2 + 2, . . . , 𝑛V + 2 + 𝑛

𝑏
; 𝑧 = 𝑛V + 2 + 𝑛

𝑏
+ 1, 𝑛V + 2 + 𝑛

𝑏
+

2, . . . , 𝑛V + 2 + 𝑛𝑏 + 𝑛𝑇.
Thefirst term 𝐼

𝑗𝑤
(𝑤 = 1, 2, . . . , 𝑛V) of (A.4) can bewritten

as

𝐼
𝑗1
= 𝐼
𝑗2
= ⋅ ⋅ ⋅ = 𝐼

𝑗𝑛V
= 0. (A.5)

The second term of (A.4) can be written as

𝐼
𝑗𝑥
= 𝐼
𝑗𝑥1

+ 𝐼
𝑗𝑥2
. (A.6)

Splitting the first term of integral (A.6) again into two, we get

𝐼
𝑗𝑥1

= 𝐼
𝑗𝑥11

+ 𝐼
𝑗𝑥12

. (A.7)

Introducing 𝐴
𝑠
= √2𝑆(𝑉Ω

𝑠
)
−2 and 𝐵

𝑠
= 2𝜋{Ω

𝐿
+ (𝑠 −

0.5)(Ω
𝑈
− Ω
𝐿
)/𝑁}, the components can be written as

𝐼
𝑗𝑥11

= 𝑘
𝑡1
[

[

𝑁

∑

𝑠=1

𝐴
𝑠

exp (−𝛼
𝑗
𝑡)

𝛼2
𝑗
+ (𝐵
𝑠
𝑉)
2
{−𝛼
𝑗
cos (𝜃

𝑠
) − 𝐵
𝑠
𝑉 sin (𝜃

𝑠
)

+ exp (𝛼
𝑗
𝑡)

× [𝛼
𝑗
cos (𝐵

𝑠
𝑉𝑡 + 𝜃

𝑠
)

+𝐵
𝑠
𝑉 cos (𝐵

𝑠
𝑉𝑡 + 𝜃

𝑠
)]}

+
4ℎ
0
𝑉

𝛼3
𝑗
𝐿2

{𝛼
𝑗
𝐿 (𝛼
𝑗
𝑡 + exp (−𝛼

𝑗
𝑡) − 1)}

−
𝑉

𝛼3
𝑗
𝐿2

{𝛼
𝑗
𝑡 (𝛼
𝑗
𝑡 − 2) − 2 exp (−𝛼

𝑗
𝑡) + 2 }]

]

,

𝐼
𝑗𝑥12

= 𝑐
𝑡1
[

[

𝑁

∑

𝑠=1

𝑉𝐴
𝑠
𝐵
𝑠

exp (−𝛼
𝑗
𝑡)

𝛼2
𝑗
+ (𝐵
𝑠
𝑉)
2
{−𝛼
𝑗
sin (𝜃
𝑠
) − 𝐵
𝑠
𝑉 cos (𝜃

𝑠
)

+ exp (𝛼
𝑗
𝑡)

× [𝛼
𝑗
sin (𝐵

𝑠
𝑉𝑡 + 𝜃

𝑠
)

−𝐵
𝑠
𝑉 sin (𝐵

𝑠
𝑉𝑡 + 𝜃

𝑠
)]}

−
4ℎ
0
𝑉 exp (−𝛼

𝑗
𝑡)

𝛼3
𝑗
𝐿2

× {2𝑉 [exp (−𝛼
𝑗
𝑡) (𝛼
𝑗
𝑡 − 1) + 1]}

−
1

𝛼
𝑗
𝐿
{exp (𝛼

𝑗
𝑡) − 2}]

]

.

(A.8)
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Similarly, splitting the second term of integral (A.6) into two,
we get

𝐼
𝑗𝑥2

= 𝐼
𝑗𝑥21

+ 𝐼
𝑗𝑥22

𝐼
𝑗𝑥21

= 𝑘
𝑡2
[

[

𝑁

∑

𝑠=1

𝐴
𝑠

exp (−𝛼
𝑗
𝑡)

𝛼2
𝑗
+ (𝐵
𝑠
𝑉)
2

× { − 𝛼
𝑗
cos (𝐵

𝑠
𝑙V − 𝜃𝑠) − 𝐵𝑠𝑉 sin (𝐵

𝑠
𝑙V − 𝜃𝑠)

+ exp (𝛼
𝑗
𝑡) [𝛼
𝑗
cos (𝐵

𝑠
(𝑙 − 𝑉𝑡) − 𝜃

𝑠
)

+𝐵
𝑠
𝑉 sin (𝐵

𝑠
(𝑙V − 𝑉𝑡) + 𝜃𝑠)]

+𝑉
2
[2 − exp (𝛼

𝑗
𝑡) {𝛼
𝑗
𝑡 (𝛼
𝑗
𝑡 − 2) + 2}]}

+
4ℎ
0

𝛼3
𝑗
𝐿2

{−𝛼
2

𝑗
𝑙V (𝑙V + 𝐿) (exp (𝛼𝑗𝑡) − 1)

+𝛼
𝑗
𝑉 (2𝑙V + 𝐿) [exp (𝛼𝑗𝑡) (𝛼𝑗𝑡 − 1) + 1] }]

]

,

𝐼
𝑗𝑥22

= 𝑐
𝑡2
[

[

𝑁

∑

𝑠=1

𝐴
𝑠
𝐵
𝑠
𝑉

exp (−𝛼
𝑗
𝑡)

𝛼2
𝑗
+ (𝐵
𝑠
𝑉)
2
{𝛼
𝑗
sin (𝐵

𝑠
𝑙V − 𝜃𝑠)

+ 𝐵
𝑠
𝑉 cos (𝐵

𝑠
𝑙V − 𝜃𝑠)

− exp (𝛼
𝑗
𝑡) [𝛼
𝑗
sin (𝐵

𝑠
(𝑙 − 𝑉𝑡) − 𝜃

𝑠
)

+𝐵
𝑠
𝑉 cos (𝐵

𝑠
(𝑙V − 𝑉𝑡) + 𝜃𝑠)] }

+
4ℎ
0
𝑉 exp (−𝛼

𝑗
𝑡)

𝛼2
𝑗
𝐿2

× {2𝑉 [exp (𝛼
𝑗
𝑡) (𝛼
𝑗
𝑡 − 1) + 1]

−𝛼
𝑗
(2𝑙V + 𝐿) (exp (𝛼𝑗𝑡) − 1)}]

]

.

(A.9)

The third term of (A.4) is written as

𝐼
𝑗𝑦
=

𝑛𝑏

∑

𝑘=1

𝐼
𝑗𝑛V+2+𝑘

. (A.10)

The 𝑘th term of the above series is composed of ten different
terms as given below

𝐼
𝑗𝑛V+2+𝑘

=

10

∑

𝑎=1

𝐼
(𝑗𝑛V+2+𝑘)𝑎

(𝑘 = 1, 2, 3, . . . , 𝑛
𝑏
) . (A.11)

The components of (A.11) are as follows:
Introducing the following parameters:

𝑄
𝑠
= 𝐵
𝑠
𝑉; 𝑅

𝑘
=
𝑘𝜋𝑉

𝐿
;

𝑆
𝑘
=
𝑘𝜋

𝐿
; 𝑍

𝑠
= 𝐵
𝑠
𝑙V,

𝐼
(𝑗𝑛V+2+𝑘)

1

=
1

2
𝑘
𝑡1

𝑁

∑

𝑠=1

𝐴
𝑠
{ ((2𝑅

𝑘
exp (−𝛼

𝑗
𝑡)

× {(𝛼
2

𝑗
− 𝑄
2

𝑠
+ 𝑅
𝑘

2
) cos (𝜃

𝑠
)

+2𝛼
𝑗
𝑄
𝑠
sin (𝜃
𝑠
)})

× ({𝛼
2

𝑗
+ (𝑄
𝑠
− 𝑅
𝑘
)
2

}

× {𝛼
2

𝑗
+ (𝑄
𝑠
+ 𝑅
𝑘
)
2

})
−1

)

− ((𝛼
𝑗
sin {(𝑄

𝑠
− 𝑅
𝑘
) 𝑡 + 𝜃

𝑠
}

+ (𝑅
𝑘
− 𝑄
𝑠
)

× cos {(𝑄
𝑠
− 𝑅
𝑘
) 𝑡 + 𝜃

𝑠
})

× ({𝛼
2

𝑗
+ (𝑄
𝑠
− 𝑅
𝑘
)
2

})
−1

)

+ ((𝛼
𝑗
sin {(𝑄

𝑠
+ 𝑅
𝑘
) 𝑡 + 𝜃

𝑠
}

− (𝑅
𝑘
+ 𝑄
𝑠
)

× cos {(𝑄
𝑠
+ 𝑅
𝑘
) 𝑡 + 𝜃

𝑠
})

× ({𝛼
2

𝑗
+ (𝑄
𝑠
+ 𝑅
𝑘
)
2

})
−1

)} ,

𝐼
(𝑗𝑛V+2+𝑘)

2

=
1

2
𝑘
𝑡1
[

[

4ℎ
0
𝑉 exp (−𝛼

𝑗
𝑡)

𝐿2(𝛼2
𝑗
+ 𝑄2
𝑠
)
3

× {𝐿 (𝛼
2

𝑗
+ 𝑄
2

𝑠
) [exp (𝛼

𝑗
𝑡) sin (𝑄

𝑠
𝑡)

× {𝑄
2

𝑠
(𝛼
𝑗
𝑡 + 1)

+𝛼
2

𝑗
(𝛼
𝑗
𝑡 − 1)}]

− 𝑄
𝑠
exp (𝛼

𝑗
𝑡) cos (𝑄

𝑠
𝑡)

× [𝑄
2

𝑠
𝑡 + 𝛼
𝑗
(𝛼
𝑗
𝑡 − 2)] − 2𝛼

𝑗
𝑄
𝑠
}

+ 𝑉 (2𝑄
3

𝑠
+ 𝑄
𝑠
exp (𝛼

𝑗
𝑡)) cos (𝑄

𝑠
𝑡)

× {𝑄
4

𝑠
𝑡
2
+ 2𝑄
2

𝑠
(𝛼
2

𝑗
𝑡
2
− 2𝛼
𝑗
𝑡 − 1)
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+𝛼
2

𝑗
(𝛼
2

𝑗
𝑡
2
− 4𝛼
𝑗
𝑡 + 6)}

− exp (𝛼
𝑗
𝑡) sin (𝑄

𝑠
𝑡)

× {𝑄
4

𝑠
(𝛼
𝑗
𝑡 + 2) + 𝛼

𝑗
𝑄
2

𝑠
(𝛼
2

𝑗
𝑡
2
− 3)

+𝛼
3

𝑗
(𝛼
2

𝑗
𝑡
2
− 2𝛼
𝑗
𝑡 + 2)} − 6𝛼

2

𝑗
𝑄
𝑠
]

]

,

𝐼
(𝑗𝑛V+2+𝑘)

3

=
1

2
𝑘
𝑡2

𝑁

∑

𝑠=1

𝐴
𝑠
[ exp (−𝛼

𝑗
𝑡)

× { (((𝑅
𝑘
+ 𝑄
𝑠
) cos (𝑆

𝑠
− 𝑍
𝑠
− 𝜃
𝑠
)

+𝛼
𝑗
sin (𝑆
𝑘
− 𝑍
𝑠
− 𝜃
𝑠
))

× ({𝛼
2

𝑗
+ (𝑄
𝑠
− 𝑅
𝑘
)
2

})
−1

)

× (((𝑅
𝑘
− 𝑄
𝑠
) cos (𝑆

𝑘
− 𝑍
𝑠
+ 𝜃
𝑠
)

+𝛼
𝑗
sin (𝑆
𝑘
− 𝑍
𝑠
+ 𝜃
𝑠
))

×({𝛼
2

𝑗
+ (𝑄
𝑠
− 𝑅
𝑠
)
2

})
−1

)}

− ((𝛼
𝑗
sin {(𝑄

𝑠
− 𝑅
𝑘
) 𝑡 + 𝑆

𝑘
− 𝑍
𝑠
+ 𝜃
𝑠
}

− (𝑅
𝑘
+ 𝑄
𝑠
) cos {(𝑄

𝑠
− 𝑅
𝑘
) 𝑡

+𝑆
𝑘
− 𝑍
𝑠
+ 𝜃
𝑠
})

×({𝛼
2

𝑗
+ (𝑄
𝑠
− 𝑅
𝑠
)
2

})
−1

)

+ ((𝛼
𝑗
sin {𝑆
𝑘
+ 𝑍
𝑠
− (𝑄
𝑠
+ 𝑅) 𝑡 − 𝜃

𝑠
}

+ (𝑅
𝑘
+ 𝑄
𝑠
) cos {𝑆

𝑘
+ 𝑍
𝑠

+ (𝑄
𝑠
+ 𝑅
𝑘
) 𝑡

−𝜃
𝑠
})

×({𝛼
2

𝑗
+ (𝑄
𝑠
+ 𝑅
𝑘
)
2

})
−1

)] ,

𝐼
(𝑗𝑛V+2+𝑘)

4

= −
1

2
𝑘
𝑡2
[

[

4ℎ
0
𝑉

𝐿2(𝛼2
𝑗
+ 𝑉2)

3

× {sin (𝑉𝑡 − 𝑙V) {[𝛼𝑗𝑙
2

V(𝛼
2

𝑗
+ 𝑉
2
)
2

− 𝑙V (𝛼
2

𝑗
+ 𝑉
2
)

× {−𝛼
3

𝑗
𝐿 − 𝛼
𝑗
𝐿𝑉
2

+ 2𝑉
3
(𝛼
𝑗
𝑡 + 1)

+2𝛼
2

𝑗
𝑉(𝛼
𝑗
𝑡 − 1)}

+ 𝑉 [𝑉 {2𝛼
3

𝑗
+ 𝛼
𝑗
𝑡(𝛼
2

𝑗
+ 𝑉
2
)
2

+2𝑡 (𝛼
4

𝑗
− 𝑉
4
) − 6𝛼

𝑗
𝑉
2
}

− 𝐿 (𝛼
2

𝑗
+ 𝑉
2
)

× {𝛼
2

𝑗
(𝛼
𝑗
𝑡 − 1)+ 𝑉

2
(𝛼
𝑗
𝑡 +1)}]

+ 𝑉 cos (𝑙V − 𝑉𝑡) [𝑉
4
(𝑙
2

V + 𝑙V𝐿

+2𝛼
2

𝑗
𝑡
2
− 4𝛼
𝑗
𝑡 − 2)

+ 𝛼
2

𝑗
𝑉
2
(2𝑙
2

V + 2𝑙V𝐿

+4𝛼
2

𝑗
𝑡
2
+ 6)

+ 𝛼
4

𝑗
𝑙V (𝑙V + 𝐿)

− 𝑉
5
𝑡 (2𝑙V + 𝐿)

× (𝛼
𝑗
𝑡 − 1)

− 𝛼
3

𝑗
𝑉 (2𝑙V + 𝐿)

× (𝛼
𝑗
𝑡 − 2) + 𝑙

2

V𝑉
6
]}]

]

𝐼
(𝑗𝑛V+2+𝑘)

5

=
1

2
𝑐
𝑡1

𝑁

∑

𝑠=1

𝐴
𝑠
𝑄
𝑠
{( − (2𝑅

𝑘
exp (−𝛼

𝑗
𝑡)

× {(𝛼
2

𝑗
− 𝑄
2

𝑠
+ 𝑅
𝑘

2
) sin (𝜃

𝑠
)

−2𝛼
𝑗
𝑄
𝑠
cos (𝜃

𝑠
)})

× ({𝛼
2

𝑗
+ (𝑄
𝑠
− 𝑅)
2

}

× {𝛼
2

𝑗
+ (𝑄
𝑠
+ 𝑅
𝑘
)
2

})
−1

)

− ((𝛼
𝑗
cos {(𝑄

𝑠
− 𝑅
𝑘
) 𝑡 + 𝜃

𝑠
}

+ (𝑅
𝑘
− 𝑄
𝑠
)

× sin {(𝑄
𝑠
− 𝑅
𝑘
) 𝑡 + 𝜃

𝑠
})
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× ({𝛼
2

𝑗
+ (𝑄
𝑠
+ 𝑅
𝑘
)
2

})
−1

)

+ ((𝛼
𝑗
cos {(𝑄

𝑠
+ 𝑅
𝑘
) 𝑡 + 𝜃

𝑠
}

+ (𝑅
𝑘
+ 𝑄
𝑠
)

× sin {(𝑄
𝑠
+ 𝑅
𝑘
) 𝑡 + 𝜃

𝑠
})

×({𝛼
2

𝑗
+ (𝑄
𝑠
+ 𝑅
𝑘
)
2

})
−1

)}

𝐼
(𝑗𝑛V+2+𝑘)

6

= −𝑐
𝑡1

2ℎ
0
𝑉 exp (−𝛼

𝑗
𝑡)

𝐿2(𝛼2
𝑗
+ 𝑉2)

3

× {exp (𝛼
𝑗
𝑡) cos (𝑄

𝑠
𝑡)

× [𝑄
2

𝑠
(2𝛼
𝑗
𝑡𝑉 − 𝛼

𝑗
𝐿 + 2𝑉)

+𝛼
2

𝑗
(2𝛼
𝑗
𝑡𝑉 − 𝛼

𝑗
𝐿 − 2𝑉)]

− 𝑄
𝑠
exp (𝛼

𝑗
𝑡) sin (𝑄

𝑠
𝑡)

× [𝑄
2

𝑠
(𝐿 − 𝑉𝑡)

+𝛼
𝑗
(𝛼
𝑗
𝐿 − 2𝛼

𝑗
𝑡𝑉 + 4𝑉)]} ,

𝐼
(𝑗𝑛V+2+𝑘)

7

=
1

2
𝑐
𝑡2

𝑁

∑

𝑠=1

𝐴
𝑠
𝑄
𝑠

× [ exp (−𝛼
𝑗
𝑡 { ( ( (𝑅

𝑘
+ 𝑄
𝑠
) sin (𝑆

𝑘
+ 𝑍
𝑠
− 𝜃
𝑠
)

−𝛼
𝑗
cos (𝑆

𝑘
+ 𝑍
𝑠
− 𝜃
𝑠
))

×({𝛼
2

𝑗
+ (𝑄
𝑠
− 𝑅
𝑘
)
2

})
−1

)

× ( ( (𝑄
𝑠
− 𝑅
𝑘
) sin (𝑆

𝑘
− 𝑍
𝑠
+ 𝜃
𝑠
)

+𝛼
𝑗
cos (𝑆

𝑘
− 𝑍
𝑠
+ 𝜃
𝑠
))

×({𝛼
2

𝑗
+ (𝑄
𝑠
− 𝑅)
2

})
−1

)}

+ ((𝛼
𝑗
cos {𝑆

𝑘
+ 𝑍
𝑠
− (𝑄
𝑠
+ 𝑅
𝑘
) 𝑡 − 𝜃

𝑠
}

− (𝑅
𝑘
+ 𝑄
𝑠
) sin {𝑆

𝑘
+ 𝑍
𝑠

− (𝑄
𝑠
+ 𝑅
𝑘
) 𝑡 − 𝜃

𝑠
})

×({𝛼
2

𝑗
+ (𝑄
𝑠
+ 𝑅
𝑘
)
2

})
−1

)

− ((𝛼
𝑗
cos {𝑆

𝑘
− 𝑍
𝑠
+ (𝑄
𝑠
− 𝑅
𝑘
) 𝑡 + 𝜃

𝑠
}

+ (𝑄
𝑠
− 𝑅
𝑘
) sin {𝑆

𝑘
− 𝑍
𝑠

+ (𝑄
𝑠
− 𝑅
𝑘
) 𝑡 + 𝜃

𝑠
})

×({𝛼
2

𝑗
+ (𝑄
𝑠
− 𝑅
𝑘
)
2

})
−1

)] ,

𝐼
(𝑗𝑛V+2+𝑘)

8

= −𝑐
𝑡2

2ℎ
0
𝑉 exp (−𝛼

𝑗
𝑡)

𝐿2(𝛼2
𝑗
+ 𝑉2)

3

× {exp (𝛼
𝑗
𝑡) sin (𝑄

𝑠
𝑡)

× [𝑄
2

𝑠
(2𝛼
𝑗
𝑡𝑉 − 𝛼

𝑗
𝐿 + 2𝑉)

+𝛼
2

𝑗
(2𝛼
𝑗
𝑡𝑉 − 𝛼

𝑗
𝐿 − 2𝑉)]

− 𝑄
𝑠
exp (𝛼

𝑗
𝑡) cos (𝑄

𝑠
𝑡)

× [𝑄
2

𝑠
(𝐿 − 𝑉𝑡)

+𝛼
𝑗
(𝛼
𝑗
𝐿 − 2𝛼

𝑗
𝑡𝑉 + 4𝑉)]} ,

𝐼
(𝑗𝑛V+2+𝑘)

9

= −
exp (−𝛼

𝑗
𝑡) 𝑔𝐿 (𝑙V𝑚V + 2𝑚𝑤1)

2 (𝐿2𝛼2
𝑗
+ 𝑛2𝜋2𝑉2)

× [𝑘𝜋𝑉 + exp (𝛼
𝑗
𝑡) {𝑘𝜋𝑉 cos(𝑘𝜋𝑉𝑡

𝐿
)

+𝐿𝛼
𝑗
sin(𝑘𝜋𝑉𝑡

𝐿
)}]

−
exp (−𝛼

𝑗
𝑡) 𝑔𝐿 (𝑙V𝑚V + 2𝑚𝑤2)

2 (𝐿2𝛼2
𝑗
+ 𝑛2𝜋2𝑉2)

× [𝑘𝜋𝑉{cos(𝑘𝜋𝐷
𝐿

)

− exp (𝛼
𝑗
𝑡) cos(𝑘𝜋𝐷 − 𝑉𝑡

𝐿
)}

− 𝐿𝛼
𝑗
{sin(𝑘𝜋𝐷

𝐿
)

− exp (𝛼
𝑗
𝑡) sin(𝑘𝜋𝐷 − 𝑉𝑡

𝐿
)}] ,

𝐼
(𝑗𝑛V+2+𝑘)

10

= −2𝐿𝑉
2
(𝑚
𝑤1

+ 𝑚
𝑤2
)
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×

𝑁

∑

𝑠=1

𝐴
𝑠
𝐵
2

𝑠
[(((𝑘𝜋 − 𝐵

𝑠
𝐿)𝑉 cos [(𝑄

𝑠
− 𝑅
𝑠
) 𝑡 + 𝜃

𝑠
]

+𝐿𝛼
𝑗
sin [(𝑄

𝑠
− 𝑅
𝑠
) 𝑡 + 𝜃

𝑠
])

× (𝐵
2

𝑠
𝐿
2
𝑉
2
− 2𝑘𝜋𝐵

𝑠
𝐿𝑉
2

+𝑘
2
𝜋
2
𝑉
2
+ 𝐿
2
𝛼
2

𝑗
)
−1

)

− (((𝑘𝜋 + 𝐵
𝑠
𝐿)𝑉 cos [(𝑄

𝑠
+ 𝑅
𝑠
) 𝑡 + 𝜃

𝑠
]

+𝐿𝛼
𝑗
sin [(𝑄

𝑠
+ 𝑅
𝑠
) 𝑡 + 𝜃

𝑠
])

× (𝐵
2

𝑠
𝐿
2
𝑉
2
+ 2𝑘𝜋𝐵

𝑠
𝐿𝑉
2

+𝑘
2
𝜋
2
𝑉
2
+ 𝐿
2
𝛼
2

𝑗
)
−1

)

− exp (−𝛼
𝑗
𝑡) { ((− (𝑘𝜋 + 𝐵

𝑠
𝐿)𝑉 cos 𝜃

𝑠

+𝐿𝛼
𝑗
sin 𝜃
𝑠
)

× (𝐵
2

𝑠
𝐿
2
𝑉
2

+ 2𝑘𝜋𝐵
𝑠
𝐿𝑉
2

+ 𝑘
2
𝜋
2
𝑉
2

+𝐿
2
𝛼
2

𝑗
)
−1

)

+ ((𝑘𝜋 − 𝐵
𝑠
𝐿)𝑉 cos 𝜃

𝑠

−𝐿𝛼
𝑗
sin 𝜃
𝑠
)

× ((𝑘𝜋 − 𝐵
𝑠
𝐿)
2

𝑉
2

+𝐿
2
𝛼
2

𝑗
)
−1

)}]

−
8ℎ
0
𝑉
2
(𝑚
𝑤1

+ 𝑚
𝑤2
)

𝑘2𝜋2𝑉2 + 𝐿2𝛼2
𝑗

× [𝑘𝜋𝑉

× {exp (−𝛼
𝑗
𝑡) − cos(𝑘𝜋𝑉𝑡

𝐿
)}

+𝐿𝛼
𝑗
sin(𝑘𝜋𝑉𝑡

𝐿
)] .

(A.12)

The fourth term of (A.4) is written as

𝐼
𝑗𝑧
=

𝑛𝑡

∑

𝑘=1

𝐼
𝑗𝑛V+2+𝑛𝑏+𝑘

. (A.13)

The 𝑘th term of the above series, can be split up into ten parts
as given below:

𝐼
𝑗𝑛V+2+𝑛𝑏+𝑙

=

10

∑

𝑎=1

𝐼
(𝑗𝑛V+2+𝑛𝑏+𝑙)𝑎

(𝑘 = 1, 2, 3, . . . , 𝑛
𝑇
) . (A.14)

The components of (A.14) are as follows:

𝐼
(𝑗𝑛V+2+𝑛𝑏+𝑙)1

= −
1

2
𝑘
𝑡1
𝑒
𝑥

×

𝑁

∑

𝑠=1

𝐴
𝑠
exp (−𝛼

𝑗
𝑡)

×
{

{

{

𝛼
𝑗
cos (𝜃

𝑠
) + (𝑄

𝑠
− 𝑅
𝑘
) sin (𝜃

𝑠
)

𝛼2
𝑗
+ (𝑄
𝑠
− 𝑅
𝑘
)
2

+
𝛼
𝑗
cos (𝜃

𝑠
) + (𝑄

𝑠
+ 𝑅
𝑘
) sin (𝜃

𝑠
)

𝛼2
𝑗
+ (𝑄
𝑠
+ 𝑅
𝑘
)
2

+ ((𝛼
𝑗
cos [(𝑄

𝑠
− 𝑅
𝑘
) 𝑡 + 𝜃

𝑠
]

+ (𝑄
𝑠
− 𝑅
𝑘
) sin [(𝑄

𝑠
− 𝑅
𝑘
) 𝑡 − 𝜃

𝑠
])

×(𝛼
2

𝑗
+ (𝑄
𝑠
− 𝑅
𝑘
)
2

)
−1

)

+ ((𝛼
𝑗
cos [(𝑄

𝑠
+ 𝑅
𝑘
) 𝑡 + 𝜃

𝑠
]

+ (𝑄
𝑠
+ 𝑅
𝑘
) sin [(𝑄

𝑠
+ 𝑅
𝑘
) 𝑡 + 𝜃

𝑠
])

×(𝛼
2

𝑗
+ (𝑄
𝑠
+ 𝑅
𝑘
)
2

)
−1

)
}

}

}

,

𝐼
(𝑗𝑛V+2+𝑛𝑏+𝑙)2

=
4𝑘
𝑡1
𝑒
𝑥
ℎ
0
𝐿

𝑉(𝛼2
𝑗
+ 𝑅
𝑘

2
)
3

× [ (𝛼
2

𝑗
+ 𝑅
𝑘

2
) exp (−𝛼

𝑗
𝑡)

× {𝛼
2

𝑗
+ exp (−𝛼

𝑗
𝑡) cos (𝑅

𝑘
𝑡)

× [𝑅
𝑘

2
(𝛼
𝑗
𝑡 + 1) + 𝛼

2

𝑗
(𝛼
𝑗
𝑡 − 1)]
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+ 𝑅
𝑘
exp (𝛼

𝑗
𝑡) sin (𝑅

𝑘
𝑡)

× [𝑅
𝑘

2
𝑡 + 𝛼
𝑗
(𝛼
𝑗
𝑡 − 2)] − 𝑅

𝑘

2
}

+ 2𝛼
𝑗
exp (−𝛼

𝑗
𝑡) (𝛼
2

𝑗
+ 3𝑅
𝑘

2
)

+ 𝑅
𝑘
sin (𝑅

𝑘
𝑡) {6𝛼

2

𝑗
+ 𝑡
2
(𝛼
2

𝑗
+ 𝑅
𝑘

2
)
2

+4𝛼
𝑗
𝑡 (𝛼
2

𝑗
+ 𝑅
𝑘

2
) − 2𝑅

𝑘

2
}

+ cos (𝑅
𝑘
𝑡) {2𝑡 (𝑅

𝑘

4
− 𝛼
4

𝑗
)

+ 2𝛼
𝑗
(𝛼
2

𝑗
− 3𝑅
𝑘

2
)

× 𝛼
𝑗
𝑡
2
(𝛼
2

𝑗
+ 𝑅
𝑘

2
)
2

}] ,

𝐼
(𝑗𝑛V+2+𝑛𝑏+𝑙)3

= −
1

2
𝑘
𝑡2
𝑒
𝑥

×

𝑁

∑

𝑠=1

[𝐴
𝑠
exp (−𝛼

𝑗
𝑡)

× { ((𝛼
𝑗
cos (𝐵

𝑠
𝑙V − 𝑆𝑘 − 𝜃𝑠)

+ (𝑅
𝑘
− 𝑄
𝑠
) sin (𝐵

𝑠
𝑙V − 𝑆𝑘 − 𝜃𝑠))

×(𝛼
2

𝑗
+ (𝑄
𝑠
− 𝑅)
2

)
−1

)

+ ((𝛼
𝑗
cos (𝐵

𝑠
𝑙V + 𝑆𝑘 − 𝜃𝑠)

+ (𝑅
𝑘
+ 𝑄
𝑠
) sin (𝐵

𝑠
𝑙V + 𝑆𝑘 − 𝜃𝑠))

×(𝛼
2

𝑗
+ (𝑄
𝑠
+ 𝑅
𝑘
)
2

)
−1

)}

+ ((𝛼
𝑗
cos [(𝑅

𝑘
− 𝑄
𝑠
) 𝑡 + (𝐵

𝑠
𝑙V − 𝑆𝑘 − 𝜃𝑠)]

+ (𝑅
𝑘
− 𝑄
𝑠
) sin [− (𝑄

𝑠
+ 𝑅
𝑘
) 𝑡

+ (𝐵
𝑠
𝑙V + 𝑆𝑘 − 𝜃𝑠)])

×(𝛼
2

𝑗
+ (𝑄
𝑠
− 𝑅
𝑘
)
2

)
−1

)

+ ((𝛼
𝑗
cos [− (𝑅

𝑘
+ 𝑄
𝑠
) 𝑡

+ (𝐵
𝑠
𝑙V + 𝑆𝑘 − 𝜃𝑠)]

− (𝑅
𝑘
+ 𝑄
𝑠
) sin [− (𝑄

𝑠
+ 𝑅
𝑘
) 𝑡

+ (𝐵
𝑠
𝑙V + 𝑆𝑘 − 𝜃𝑠)])

×(𝛼
2

𝑗
+ (𝑄
𝑠
+ 𝑅
𝑘
)
2

)
−1

)] ,

𝐼
(𝑗𝑛V+2+𝑛𝑏+𝑙)4

=
4𝑘
𝑡2
𝑒
𝑥
ℎ
0

𝐿2
[{((𝑙V (𝑙V + 𝐿) exp (−𝛼𝑗𝑡)

× {𝛼
𝑗
cos (𝑆

𝑘
− 𝑅
𝑘
𝑡)

−𝑅
𝑘
sin (𝑆
𝑘
− 𝑅
𝑘
𝑡)}

+𝑅
𝑘
sin (𝑆) − 𝛼

𝑗
cos (𝑆

𝑘
))

× (𝛼
2

𝑗
+ 𝑅
𝑘

2
)
−1

)}

+
2𝐿𝑉 exp (−𝛼

𝑗
𝑡)

(𝛼2
𝑗
+ 𝑅
𝑘

2
)
2

× {(𝛼
2

𝑗
+ 𝑅
𝑘

2
) cos (𝑆

𝑘
)

+ exp (𝛼
𝑗
𝑡) cos (𝑆

𝑘
− 𝑅
𝑘
𝑡)

× [𝑅
2
(𝛼
𝑗
𝑡 + 1) + 𝛼

2

𝑗
(𝛼
𝑗
𝑡 − 1)]

+ 𝑅
𝑘
[𝑅
𝑘

2
𝑡 + 𝛼
𝑗
(𝛼
𝑗
𝑡 − 2)]

× sin (𝑆
𝑘
− 𝑅
𝑘
𝑡) − 2𝛼

𝑗
𝑅
𝑘
sin (𝑆
𝑘
)}

−
𝑉
2

(𝛼2
𝑗
+ 𝑅
𝑘

2
)
3

×{𝑅
𝑘
sin (𝑆
𝑘
− 𝑅
𝑘
𝑡)[6𝛼
2

𝑗
+𝑡
2
(𝛼
2

𝑗
+ 𝑅
𝑘

2
)
2

− 4𝛼
𝑗
𝑡 (𝛼
2

𝑗
+ 𝑅
𝑘

2
)

−2𝑅
𝑘

2
]

+ 2 exp (−𝛼
𝑗
𝑡)

× [(𝛼
3

𝑗
− 3𝛼
𝑗
𝑅
𝑘

2
) cos (𝑆

𝑘
)

+ 𝑅
𝑘
(𝑅
𝑘

2
− 3𝛼
2

𝑗
)

× sin (𝑆
𝑘
) ]

− [2𝑡 (𝑅
𝑘

4
− 𝛼
4

𝑗
) + 2𝛼

𝑗
(𝛼
2

𝑗
− 3𝑅
𝑘

2
)

+𝛼
𝑗
𝑡
2
(𝛼
2

𝑗
+𝑅
𝑘

2
)
2

]cos (𝑆
𝑘
− 𝑅
𝑘
𝑡)]} ,

𝐼
(𝑗𝑛V+2+𝑛𝑏+𝑙)5

= −
1

2
𝑘
𝑡1
𝑒
𝑥

×

𝑁

∑

𝑠=1

𝐴
𝑠
exp (−𝛼

𝑗
𝑡)
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×
{

{

{

𝛼
𝑗
sin (𝜃
𝑠
) + (𝑄

𝑠
− 𝑅
𝑘
) cos (𝜃

𝑠
)

𝛼2
𝑗
+ (𝑄
𝑠
− 𝑅
𝑘
)
2

+
𝛼
𝑗
sin (𝜃
𝑠
) − (𝑄

𝑠
+ 𝑅
𝑘
) cos (𝜃

𝑠
)

𝛼2
𝑗
+ (𝑄
𝑠
+ 𝑅)
2

+ ((𝛼
𝑗
sin [(𝑄

𝑠
− 𝑅
𝑘
) 𝑡 + 𝜃

𝑠
]

+ (𝑅
𝑘
− 𝑄
𝑠
) cos [(𝑄

𝑠
− 𝑅
𝑘
) 𝑡 + 𝜃

𝑠
])

× (𝛼
2

𝑗
+ (𝑄
𝑠
− 𝑅)
2

)
−1

)

+ ((𝛼
𝑗
sin [(𝑄

𝑠
+ 𝑅
𝑘
) 𝑡 + 𝜃

𝑠
]

− (𝑄
𝑠
+ 𝑅) sin [(𝑄

𝑠
+ 𝑅
𝑘
) 𝑡 + 𝜃

𝑠
])

× (𝛼
2

𝑗
+ (𝑄
𝑠
+ 𝑅
𝑘
)
2

)
−1

)
}

}

}

,

𝐼
(𝑗𝑛V+2+𝑛𝑏+𝑙)6

=
4𝑐
𝑡1
𝑒
𝑥
ℎ
0
𝐿

(𝛼2
𝑗
+ 𝑅
𝑘

2
)
3
(
𝑉

𝐿
)

2

× [(𝛼
2

𝑗
+ 𝑅
𝑘

2
) {𝛼
𝑗
cos (𝑅

𝑘
𝑡)}

+ 𝑅
𝑘
sin (𝑅

𝑘
𝑡) − 𝛼

𝑗
exp (−𝛼

𝑗
𝑡)

+ 2 exp (−𝛼
𝑗
𝑡) {𝛼
2

𝑗
+ exp (𝛼

𝑗
𝑡) cos (𝑅

𝑘
𝑡)

× [𝑅
𝑘

2
(𝛼
𝑗
𝑡 + 1) + 𝛼

2

𝑗
(𝛼
𝑗
𝑡 − 1)]

+ 𝑅
𝑘
exp (𝛼

𝑗
𝑡) sin (𝑅

𝑘
𝑡)

× [𝑅
𝑘

2
𝑡 + 𝛼
𝑗
(𝛼
𝑗
𝑡 − 2)]

−𝑅
𝑘

2
}] ,

𝐼
(𝑗𝑛V+2+𝑛𝑏+𝑙)7

=
4𝑐
𝑡2
𝑒
𝑥
ℎ
0

𝑉(𝛼2
𝑗
+ 𝑅
𝑘

2
)
2

× [ − 𝑅
𝑘
sin (𝑆
𝑘
− 𝑅
𝑘
𝑡)

× {𝑙V (𝛼
2

𝑗
+ 𝑅
𝑘

2
) + 𝐿 (𝛼

2

𝑗
+ 𝑅
𝑘

2
)

−2𝑉 [𝑅
𝑘

2
𝑡 + 𝛼
𝑗
(𝛼
𝑗
𝑡 − 2)]}

+ cos (𝑆
𝑘
− 𝑅
𝑘
𝑡)

× {𝑅
𝑘

2
[𝛼
𝑗
(𝑙V + 𝐿) − 2𝑉 (𝛼

𝑗
𝑡 + 1)]

+𝛼
2

𝑗
[𝛼
𝑗
(𝑙V + 𝐿) + 2𝑉 (1 − 𝛼

𝑗
𝑡)]}

+ exp (−𝛼
𝑗
𝑡) {𝑅
𝑘
sin (𝑆
𝑘
)

× [𝑙V (𝛼
2

𝑗
+ 𝑅
𝑘

2
)

+𝐿 (𝛼
2

𝑗
+ 𝑅
𝑘

2
)+4𝛼
𝑗
𝑉]

+ cos (𝑆
𝑘
)

× [𝑅
𝑘

2
{2𝑉 − 𝛼

𝑗
(𝑙V + 𝐿)}

− 𝛼
2

𝑗
{𝛼
𝑗
(𝑙V + 𝐿)

+2𝑉}]}] ,

𝐼
(𝑗𝑛V+2+𝑛𝑏+𝑙)8

=
1

2
𝑐
𝑡2
𝑒
𝑥

×

𝑁

∑

𝑠=1

[𝐴
𝑠
𝑄
𝑠
exp (−𝛼

𝑗
𝑡)

× {((𝛼
𝑗
cos (𝐵

𝑠
𝑙V − 𝑆𝑘 − 𝜃𝑠)

+ (𝑄
𝑠
− 𝑅
𝑘
) sin (𝐵

𝑠
𝑙V − 𝑆𝑘 − 𝜃𝑠))

× (𝛼
2

𝑗
+ (𝑄
𝑠
− 𝑅
𝑘
)
2

)
−1

)

+ ((𝛼
𝑗
sin (𝐵

𝑠
𝑙V + 𝑆𝑘 − 𝜃𝑠)

+ (𝑅
𝑘
+ 𝑄
𝑠
) cos (𝐵

𝑠
𝑙V + 𝑆𝑘 − 𝜃𝑠))

× (𝛼
2

𝑗
+ (𝑄
𝑠
+ 𝑅
𝑘
)
2

)
−1

)}

− ((𝛼
𝑗
sin [(𝑅 − 𝑄

𝑠
) 𝑡

+ (𝐵
𝑠
𝑙V − 𝑆𝑘 − 𝜃𝑠)]

+ (𝑄
𝑠
− 𝑅
𝑘
) cos [(𝑅

𝑘
− 𝑄
𝑠
) 𝑡

+ (𝐵
𝑠
𝑙V − 𝑆𝑘 − 𝜃𝑠)])

× (𝛼
2

𝑗
+ (𝑄
𝑠
− 𝑅
𝑘
)
2

)
−1

)

− ((𝛼
𝑗
sin [− (𝑅 + 𝑄

𝑠
) 𝑡

+ (𝐵
𝑠
𝑙V + 𝑆𝑘 − 𝜃𝑠)]

+ (𝑅
𝑘
+ 𝑄
𝑠
) cos [− (𝑄

𝑠
+ 𝑅
𝑘
) 𝑡

+ (𝐵
𝑠
𝑙V + 𝑆𝑘 − 𝜃𝑠)])
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×(𝛼
2

𝑗
+ (𝑄
𝑠
+ 𝑅
𝑘
)
2

)
−1

)] ,

𝐼
(𝑗𝑛V+2+𝑛𝑏+𝑙)9

= −𝑒
𝑥

exp (−𝛼
𝑗
𝑡) 𝑔𝐿 (𝑙V𝑚V + 2𝑚𝑤1)

2 (𝐿2𝛼2
𝑗
+ 𝑛2𝜋2𝑉2)

× [exp (𝛼
𝑗
𝑡) 𝑘𝜋𝑉 sin(𝑘𝜋𝑉𝑡

𝐿
)

−𝐿𝛼
𝑗
+ exp 𝐿𝛼

𝑗
(𝛼
𝑗
𝑡) cos(𝑘𝜋𝑉𝑡

𝐿
)]

− 𝑒
𝑥

exp (−𝛼
𝑗
𝑡) 𝑔𝐿 (𝑙V𝑚V + 2𝑚𝑤2)

2 (𝐿2𝛼2
𝑗
+ 𝑛2𝜋2𝑉2)

× [𝑘𝜋𝑉{sin(𝑘𝜋𝐷
𝐿

)

− exp (𝛼
𝑗
𝑡) sin(𝑘𝜋𝐷 − 𝑉𝑡

𝐿
)}

− 𝑒
𝑥
𝐿𝛼
𝑗
{cos(𝑘𝜋𝐷

𝐿
)

− exp (𝛼
𝑗
𝑡)

× cos(𝑘𝜋𝐷 − 𝑉𝑡

𝐿
)}] ,

𝐼
(𝑗𝑛V+2+𝑛𝑏+𝑙)10

= −2𝐿𝑉
2
(𝑚
𝑤1

+ 𝑚
𝑤2
) 𝑒
𝑥

×

𝑁

∑

𝑠=1

𝐴
𝑠
𝐵
2

𝑠
[ (((𝑘𝜋 − 𝐵

𝑠
𝐿)𝑉 cos [(𝑄

𝑠
− 𝑅
𝑠
) 𝑡 + 𝜃

𝑠
]

+𝐿𝛼
𝑗
sin [(𝑄

𝑠
− 𝑅
𝑠
) 𝑡 + 𝜃

𝑠
])

× (𝐵
2

𝑠
𝐿
2
𝑉
2
− 2𝑘𝜋𝐵

𝑠
𝐿𝑉
2

+𝑘
2
𝜋
2
𝑉
2
+ 𝐿
2
𝛼
2

𝑗
)
−1

)

− (((𝑘𝜋 + 𝐵
𝑠
𝐿)𝑉

× cos [(𝑄
𝑠
+ 𝑅
𝑠
) 𝑡 + 𝜃

𝑠
]

+𝐿𝛼
𝑗
sin [(𝑄

𝑠
+ 𝑅
𝑠
) 𝑡 + 𝜃

𝑠
])

× (𝐵
2

𝑠
𝐿
2
𝑉
2
+ 2𝑘𝜋𝐵

𝑠
𝐿𝑉
2

+𝑘
2
𝜋
2
𝑉
2
+ 𝐿
2
𝛼
2

𝑗
)
−1

)

− exp (−𝛼
𝑗
𝑡)

× {((− (𝑘𝜋 +𝐵
𝑠
𝐿)𝑉 cos 𝜃

𝑠
+𝐿𝛼
𝑗
sin 𝜃
𝑠
)

× (𝐵
2

𝑠
𝐿
2
𝑉
2
+ 2𝑘𝜋𝐵

𝑠
𝐿𝑉
2

+𝑘
2
𝜋
2
𝑉
2
+ 𝐿
2
𝛼
2

𝑗
)
−1

)

+ (((𝑘𝜋 − 𝐵
𝑠
𝐿)𝑉 cos 𝜃

𝑠
− 𝐿𝛼
𝑗
sin 𝜃
𝑠
)

×((𝑘𝜋 − 𝐵
𝑠
𝐿)
2

𝑉
2
+ 𝐿
2
𝛼
2

𝑗
)
−1

)]

−
8ℎ
0
𝑉
2
𝑒
𝑥
(𝑚
𝑤1

+ 𝑚
𝑤2
)

𝑘2𝜋2𝑉2 + 𝐿2𝛼2
𝑗

× [𝑘𝜋𝑉{exp (−𝛼
𝑗
𝑡) − cos(𝑘𝜋𝑉𝑡

𝐿
)}

+𝐿𝛼
𝑗
sin(𝑘𝜋𝑉𝑡

𝐿
)] .

(A.15)
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