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A dynamical model is developed for the rotating composite shaft with shape-memory alloy (SMA) wires embedded in.The rotating
shaft is represented as a thin-walled composite of circular cross-section with SMA wires embedded parallel to shaft’s longitudinal
axis. A thermomechanical constitutive equation of SMAproposed by Brinson is employed and the recovery stress of the constrained
SMA wires is derived. The equations of motion are derived based on the variational-asymptotical method (VAM) and Hamilton’s
principle. The partial differential equations of motion are reduced to the ordinary differential equations of motion by using the
Galerkin method. The model incorporates the transverse shear, rotary inertia, and anisotropy of composite material. Numerical
results of natural frequencies and critical speeds are obtained. It is shown that the natural frequencies of the nonrotating shaft and
the critical rotating speed increase as SMA wire fraction and initial strain increase and the increase in natural frequencies becomes
more significant as SMA wire fraction increases. The initial strain of SMA wires appears to have marginal effect on dynamical
behaviors of the shaft. The actuation performance of SMA wires is found to be closely related to the ply-angle.

1. Introduction

Composite materials have found the increased applications
for replacement of the conventional metallic materials in
the rotating flexible shaft employed for drive shafts of heli-
copters, steam, and gas turbines. This is likely attributed to
high stiffness and strength/weight ratios of composite shaft
compared with its metallic counterparts. The development
trend in design of light-weight composite shafts is towards
higher operating speeds, which gives rise to the problems of
high vibration amplitude and stability. Seeking the solution
of these problems has caused great research effort [1] in the
dynamic of composite rotor.

A review on the literature in this area has shown that
composite shafts have high whirling resistance capability and
are less susceptible to dynamic instability associated with
metallic shafts [2]. Several attempts to develop mathematical
models of spinning composite shafts are reported in the
literature. These models include the shaft models based
on shell theories [3], or beam theories combined with the
strain—displacement relations of the shell theories [4], or
a thin-walled beam theory [5]. Song et al. [5] developed

the composite thin-walled shaft model based on a thin-
walled beam theory of Rehfield [6]. This model was used
to investigate the natural frequencies and stability of the
system subject to the variation of the axial edge load and
the lamination angle of the composite layer. However, since
Rehfield’s formulation is known to be nonasymptotically
correct [7], there is no guarantee for consistent accuracy on
the results.

SMA composites are a new class of materials that have
the ability to change both their stiffness and their elastic
properties [8]. SMA composites consist of SMA actuators
embedded into a matrix material or in a fiber-reinforced
composite. This stiffness modification occurs as a result of
thermally induced martensite phase transformation of SMA
actuators embedded in composite structures. Several studies
have been done on [9–15] combining the advantages of
both the composite material and the SMA to build smart
composite shafts. Baz and Chen [9] have proposed a smart
shaft, which can actively stiffen in response to increased
rotational speed or increased amplitudes of vibration. Their
results showed activating theNitinol wires results in reducing
the amplitude of its vibration amplitudes by about 50%.
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Figure 1: Schematic drawing of the composite thin-walled beam of a circular cross-section.

Gupta [10] investigated the combined effect of embedding the
SMA wires in a rotor shaft and change of support stiffness
using the SMA on rotor critical speeds. Sawhney and Jain
[11] carried out fabrication and experimental investigations
on the fiber-reinforced composite shaft embedded with
the SMA wires. Baz and Chen [12] studied the static and
thermal characteristics of SMA-reinforced composite drive
shafts. They found that the Nitinol wires can play a role
in enhancing the torsional stiffness. Tylikowski [13] studied
the dynamic stability of globally activated simply supported
hybrid shells consisting of symmetrical balanced angle-ply
laminated classical plies and symmetrically laminated active
plies with axially oriented SMA fibers. Their results indicate
that the activation significantly increases the critical value
of angular velocity. Tylikowski and Hetnarski [14] analyzed
the stability criterion of the shaft equilibrium. The shaft is
treated as a thin symmetrically laminated shell containing
both the conventional fibers and the activated SMA fibers.
The results indicated that the SMA activation significantly
increases the stability domains of the shaft. Gupta et al. [15]
designed an experimental setup to embed prestrained SMA
wires in the fiber-reinforced composite shaft. Experimental
results showed a noticeable increase in the natural frequency
of the composite shaft due to activation of SMA wires.

In our dynamics study, the rotating shaft is represented as
a thin-walled composite of circular cross-section embedded
with SMAwires. It is the purpose of the present work to study
the effect of increase in stiffness and tension in wires due to
phase recovery stresses when wires are activated on the rotor
dynamic characteristics such as natural frequencies and the
critical speeds.Themodeling of the rotating shaft is based on
the VAM by Berdichevsky et al. [7]. The thermomechanical
constitutive equation of SMA proposed by Brinson [16] is
employed to establish the constitutive equation of the SMA
reinforced composite shaft. To determine the rotating shaft’s
dynamical characteristics, the Galerkin approach is carried
out here to approximate the motion equations by a system of
ordinary differential equations. Based on these approximate
equations the dynamical characteristics of the rotating shaft

systems are then calculated. Finally, the influence of SMA
activation on dynamical behaviors of the rotating composite
shaft has been examined.

2. Theoretical Formulations

2.1. Coordinate Systems and Basic Assumptions. The com-
posite shaft of length 𝐿, thickness ℎ, and the radius of
curvature 𝑟 rotating with constant rateΩ. As seen in Figure 1,
(𝑥, 𝑦, 𝑧) is the rotating coordinate system, (𝑋, 𝑌, 𝑍) is the
inertial coordinate system, and (𝑥, 𝑠, 𝜉) is the local coordinate
system. The coordinate systems (𝑥, 𝑦, 𝑧) and (𝑋, 𝑌, 𝑍) have
the common origin 𝑜 located in the geometric center. It is
assumed that at 𝑡 = 0, the axes of the two systems coincide.

In our study, the following assumptions are made. (1)
The composite shaft is characterized as a slender thin-walled
beam [7]; the geometric dimensions are such that 𝑑 ≪ 𝐿, ℎ ≪

𝑑, ℎ ≪ 𝑟; (2) transverse shear effects are considered, where
𝐿, ℎ, 𝑟, and 𝑑 denote the length, the thickness, the radius of
curvature, and the maximum cross-sectional dimension of
the cylinder, respectively; (3) the SMA wires are embedded
at an interlayer of the shaft and arranged parallel to its
longitudinal axis.

2.2. Equations of Motion. Berdichevsky et al. [7] have shown
that VAM is an asymptotically correct theory which can be
used effectively for the analysis of tubular composite thin-
walled. However, VAM does not account for the effects of
transverse shear because of which it may generate inaccurate
predictions of the rotating composite shaft. In the present
work, VAM has been refined to include effects of transverse
shear.

The displacement field incorporating shear deformation
in the local frame denoted (𝑥, 𝑠, 𝜉) is assumed in the form

𝑢
1
(𝑥, 𝑦, 𝑧, 𝑡) = 𝑈

1
(𝑥, 𝑡) − 𝑦 (𝑠) 𝜃

𝑦
(𝑥, 𝑡)

− 𝑧 (𝑠) 𝜃
𝑧
(𝑥, 𝑡) + 𝑔 (𝑠, 𝑥, 𝑡) ,
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𝑢
2
(𝑥, 𝑦, 𝑧, 𝑡) = 𝑈

2
(𝑥, 𝑡) − 𝑧𝜙 (𝑥, 𝑡) ,

𝑢
3
(𝑥, 𝑦, 𝑧, 𝑡) = 𝑈

3
(𝑥, 𝑡) + 𝑦𝜙 (𝑥, 𝑡) ,

(1)

where𝑈
1
(𝑥, 𝑡),𝑈

2
(𝑥, 𝑡),𝑈

3
(𝑥, 𝑡) denote the rigid-body trans-

lations along the 𝑥-, 𝑦-, and 𝑧-axes, while 𝜙(𝑥, 𝑡), 𝜃
𝑦
(𝑥, 𝑡),

𝜃
𝑧
(𝑥, 𝑡) denote the twist about the 𝑥-axis and rotations about

the 𝑦- and 𝑧-axes, respectively.
The warping functions 𝑔(𝑠, 𝑥, 𝑡) can be assumed as fol-

lows:

𝑔 (𝑠, 𝑥, 𝑡) = 𝐺 (𝑠) 𝜙
󸀠
(𝑥, 𝑡) + 𝑔

1
(𝑠) 𝑈
󸀠

1
(𝑥, 𝑡)

+ 𝑔
2
(𝑠) 𝜃
󸀠

𝑦
(𝑥, 𝑡) + 𝑔

3
(𝑠) 𝜃
󸀠

𝑧
(𝑥, 𝑡) .

(2)

In the above equation, the functions 𝑔
1
(𝑠), 𝑔
2
(𝑠), 𝑔
3
(𝑠),

𝐺(𝑠) are associated with physical behavior for the axial
strain, the bending curvatures, and the torsion twist rate,
respectively. The primes in (2) denote differentiation with
respect to 𝑥.

In (1) and (2), the expressions of 𝜃
𝑦
(𝑥, 𝑡), 𝜃

𝑧
(𝑥, 𝑡) are in

the following form:

𝜃
𝑦
(𝑥, 𝑡) = 𝑈

󸀠

2
(𝑥, 𝑡) − 2𝛾

𝑧𝑥

𝜃
𝑧
(𝑥, 𝑡) = 𝑈

󸀠

3
(𝑥, 𝑡) − 2𝛾

𝑦𝑥
.

(3)

Based on the displacement representations (1), (2), and
(3), and using the linear strain-displacement relations [7],
while referring to [17], the strain of the composite shaft can
be expressed as

𝛾
𝑥𝑥

= 𝑈
󸀠

1
(𝑥, 𝑡) − 𝑦𝜃

󸀠

𝑦
(𝑥, 𝑡) − 𝑧𝜃

󸀠

𝑧
(𝑥, 𝑡) ,

2𝛾
𝑥𝑠
=
𝑑𝑔

𝑑𝑠
+ 𝑟
𝑛
𝜙
󸀠
+ (𝑈
󸀠

2
(𝑥, 𝑡) − 𝜃

𝑦
(𝑥, 𝑡))

𝑑𝑦

𝑑𝑠

+ (𝑈
󸀠

3
(𝑥, 𝑡) − 𝜃

𝑧
(𝑥, 𝑡))

𝑑𝑧

𝑑𝑠
,

2𝛾
𝑥𝜉

= (𝑈
󸀠

2
(𝑥, 𝑡) − 𝜃

𝑦
(𝑥, 𝑡))

𝑑𝑧

𝑑𝑠

− (𝑈
󸀠

3
(𝑥, 𝑡) − 𝜃

𝑧
(𝑥, 𝑡))

𝑑𝑦

𝑑𝑠
.

(4)

The position vector of an arbitrary point on the cross-
section of the deformed shaft is r = (𝑦 + 𝑢

2
)i + (𝑧 + 𝑢

3
)j +

(𝑥 + 𝑢
1
)k. Here, i, j, k are unit vectors of the coordinate

systems (𝑥, 𝑦, 𝑧). By taking the time derivatives of unit vectors
and adopting the assumption of constant rate𝑊, the velocity
vector of an arbitrary point is V = ̇r = [𝑢̇

2
− Ω(𝑧 + 𝑢

3
)]i +

[𝑢̇
3
+ Ω(𝑦 + 𝑢

2
)]j + 𝑢̇

1
k.

The equations of motion for the rotating composite shaft
are derived based on Hamilton’s principle, which can be
expressed as [18]

∫

𝑡
1

𝑡
0

(𝛿𝑈 − 𝛿𝑇 − 𝛿𝑊) 𝑑𝑡 = 0, (5)

where

𝑈 =
1

2
∫
𝜏

𝜎
𝑖𝑗
𝜀
𝑖𝑗
𝑑𝑠 𝑑𝜉 𝑑𝑥, 𝐾 =

1

2
∫
𝜏

𝜌 ( ̇r ⋅ ̇r) 𝑑𝑠 𝑑𝜉 𝑑𝑥 (6)

are the strain energy and the kinetic energy of the composite
shaft, respectively.

Here 𝑡
0
and 𝑡
1
are two arbitrary instants of time, 𝜎

𝑖𝑗
and

𝜀
𝑖𝑗
are the stress components and the strain components,

respectively, 𝑊 is the virtual work of the external forces, 𝜌
is the mass density, and 𝛿 is the variation operator.

In order to display the elastic coupling between vertical
bending and horizontal bending, a special ply-angle dis-
tribution referred to as circumferentially uniform stiffness-
CUS configuration [19], achieved by skewing angle plies with
respect to the longitudinal beam axis meeting the condition
𝜃(𝑦) = 𝜃(−𝑦), 𝜃(𝑧) = 𝜃(−𝑧), is considered.

By employing Hamilton’s principle and taking into
account the results with a longitudinal compressive force
in [20], which is generated by SMA wires activation, the
equations of motion involving CUS configuration in terms of
displacements can be written as

− 𝑘
35
𝜃
󸀠󸀠

𝑧
− 𝑘
55
(𝑈
󸀠󸀠

2
− 𝜃
󸀠

𝑦
) + (𝑁

SMA
− 𝑁
Δ𝑇
)𝑈
󸀠󸀠

2

+ 𝑏
1
(𝑈̈
2
− 2Ω𝑈̇

3
− Ω
2
𝑈
2
) = 0,

− 𝑘
46
𝜃
󸀠󸀠

𝑦
− 𝑘
66
(𝑈
󸀠󸀠

3
− 𝜃
󸀠

𝑧
) + (𝑁

SMA
− 𝑁
Δ𝑇
)𝑈
󸀠󸀠

3

+ 𝑏
1
(𝑈̈
3
+ 2Ω𝑈̇

2
− Ω
2
𝑈
3
) = 0,

−𝑘
44
𝜃
󸀠󸀠

𝑦
− 𝑘
46
𝑈
󸀠󸀠

3
− 𝑘
55
(𝑈
󸀠

2
− 𝜃
𝑦
) − 𝑏
4
̈𝜃
𝑦
= 0,

−𝑘
33
𝜃
󸀠󸀠

𝑧
− 𝑘
35
𝑈
󸀠󸀠

2
− 𝑘
66
(𝑈
󸀠

3
− 𝜃
𝑧
) − 𝑏
5
̈𝜃
𝑧
= 0,

(7)

in which

𝑘
33
= ∮
Γ

(𝐴 −
𝐵
2

𝐶
)𝑧
2
𝑑𝑠 +

{

{

{

[∮
Γ
(𝐵/𝐶) 𝑧 𝑑𝑠]

2

∮
Γ
(1/𝐶) 𝑑𝑠

}

}

}

,

𝑘
44
= ∮
Γ

(𝐴 −
𝐵
2

𝐶
)𝑦
2
𝑑𝑠 +

{

{

{

[∮
Γ
(𝐵/𝐶) 𝑦 𝑑𝑠]

2

∮
Γ
(1/𝐶) 𝑑𝑠

}

}

}

,

(8)

𝑘
35
= −

1

2
∮
Γ

𝐵𝑧
𝑑𝑦

𝑑𝑠
𝑑𝑠,

𝑘
46
= −

1

2
∮
Γ

𝐵𝑦
𝑑𝑧

𝑑𝑠
𝑑𝑠,

𝑘
55
= ∮
Γ

[
1

2
𝐶(

𝑑𝑦

𝑑𝑠
)

2

+ 𝐷(
𝑑𝑧

𝑑𝑠
)

2

]𝑑𝑠,

𝑘
66
= ∮
Γ

[
1

2
𝐶(

𝑑𝑧

𝑑𝑠
)

2

+ 𝐷(
𝑑𝑦

𝑑𝑠
)

2

]𝑑𝑠.

(9)
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Herein,

𝐴 = 𝐴
11
−
(𝐴
12
)
2

𝐴
22

, 𝐵 = 2 [𝐴
16
−
𝐴
12
𝐴
26

𝐴
22

] ,

𝐶 = 4[𝐴
66
−
(𝐴
26
)
2

𝐴
22

] , 𝐷 = 𝐴
44
−
(𝐴
45
)
2

𝐴
55

,

𝐴
𝑖𝑗
=

𝑁

∑

𝑘=1

𝑄
(𝑘)

𝑖𝑗
(𝑧
𝑘
− 𝑧
𝑘−1

) ,

(𝑖, 𝑗 = 1, 2, 6; 𝑖, 𝑗 = 4, 5) ,

(10)

where 𝐴
𝑖𝑗
denotes the local stretching stiffness. 𝑄 (𝑘)

𝑖𝑗
denotes

the element of the transformed stiffness matrix of the 𝑘th
layer.

In the case of CUS configuration, it can be seen that
(7) reveals different elastic couplings which consist of the
coupling between flapwise bending and chordwise bending,
the coupling between flapwise transverse shear and chord-
wise bending, and the coupling between chordwise transverse
shear and flapwise bending.

And

Q = TQ(T)𝑇, (11)

in which

T = [

[

𝑛
2

𝑚
2

−2𝑚𝑛

𝑚
2

𝑛
2

2𝑚𝑛

𝑚𝑛 −𝑚𝑛 𝑛
2
− 𝑚
2

]

]

, (12)

Q = [

[

𝑄
11

𝑄
12

0

𝑄
21

𝑄
22

0

0 0 𝑄
66

]

]

(13)

andQ is the stiffness matrix, 𝑛 = cos 𝜃,𝑚 = sin 𝜃, and 𝜃 is the
fiber ply-angle.

And

𝑄
11
=

𝐸
1

1 − V
12
V
21

, 𝑄
12
= 𝑄
21
=

V
12
𝐸
2

1 − V
12
V
21

,

𝑄
22
=

𝐸
2

1 − V
12
V
21

, 𝑄
66
= 𝐺
12
.

(14)

In addition, the mass terms 𝑏
4
, 𝑏
5
, and 𝑏

6
in (7) are

expressed as

𝑏
4
= ∬
𝐴

𝜌𝑦
2
𝑑𝐴, 𝑏

5
= ∬
𝐴

𝜌𝑧
2
𝑑𝐴, 𝑏

6
= ∬
𝐴

𝜌𝑦𝑧 𝑑𝐴.

(15)

The modulus and Poisson’s ratio of the shaft can be
determined by considering the mixture rule of composition

𝐸
1
= 𝐸
1𝑚

(1 − 𝑉
𝑠
) + 𝐸
𝑠
𝑉
𝑠
,

𝐸
2
=

𝐸
2𝑚
𝐸
𝑠

𝐸
2𝑚
𝑉
𝑠
+ 𝐸
𝑠
(1 − 𝑉

𝑠
)
,

𝐺
12
=

𝐺
12𝑚

𝐺
𝑠

𝐺
12𝑚

𝑉
𝑠
+ 𝐺
𝑠
(1 − 𝑉

𝑠
)
,

]
12
= ]
12𝑚

(1 − 𝑉
𝑠
) + ]
𝑠
𝑉
𝑠
,

V
12

𝐸
1

=
V
21

𝐸
2

,

(16)

where the subscript𝑚 and 𝑠 denote the composite matrix and
SMA wire, respectively, and 𝑉 is volume fraction.

Herein,

𝑉
𝑠
=

𝐴 sma
𝐴Total

, (17)

where 𝐴 sma, 𝐴Total express the total cross-sectional areas of
the embedded SMA wires and the composite shaft, respec-
tively, and

𝐴 sma =
𝜋𝑑
2

4
𝑛, (18)

where 𝑛 and𝑑 represent the number and diameter of the SMA
wires, respectively.

The terms 𝑁SMA and 𝑁
Δ𝑇 appearing in (7) denote the

axial tension due to thermal expansion and SMA wires
activation, respectively.

The axial tensions𝑁SMA and𝑁Δ𝑇 are given by

𝑁
Δ𝑇

= 2𝜋𝑟

𝑛

∑

𝑘=1

(𝑄
11𝑘

𝛼
𝑥𝑘

+ 𝑄
12𝑘

𝛼
𝑦𝑘

+𝑄
16𝑘

𝛼
𝑥𝑦𝑘

) ⋅ (𝑧
𝑘
− 𝑧
𝑘−1

) Δ𝑇,

(19)

where 𝛼
𝑥𝑘
, 𝛼
𝑦𝑘
, and 𝛼

𝑥𝑦𝑘
denote the reduced thermal expan-

sion coefficients in the 𝑘th layer of composite medium, and

𝑁
SMA

=
𝜋𝑑
2

4
𝑛𝜎
𝑟
= 𝐴 sma𝜎𝑟, (20)

where 𝜎
𝑟
represents the recovery stress which can be deter-

mined analytically.
By eliminating from (7) the quantities 𝑘

55
(𝑈
󸀠󸀠

2
− 𝜃
󸀠

𝑦
) and

𝑘
66
(𝑈
󸀠󸀠

3
− 𝜃
󸀠

𝑧
), using the relations 𝜃

𝑦
(𝑥, 𝑡) = 𝑈

󸀠

2
(𝑥, 𝑡) and

𝜃
𝑧
(𝑥, 𝑡) = 𝑈

󸀠

3
(𝑥, 𝑡), the equations of motion for unshearable

shaft can be obtained. The results are not presented in this
paper for the sake of simplicity.

3. The Recovery Stress of the Constrained
SMA Wires

Based on the one-dimensional model of SMA proposed
by Brinson [16] and assuming all SMA wires are fully
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constrained, the expressions for the recovery stress of SMA
wires during heating and cooling can be written as follows,
respectively:

(i) during heating,

𝜎
𝑟
=

{{{{

{{{{

{

Θ(𝑇 − 𝑇
0
) + 𝜎
0
, 0 ≤ 𝑇 ≤ 𝐴

𝜎

𝑠

𝐸 (𝜉) 𝜀
0
− 𝐸 (𝜉

0
) 𝜀
0
+ Ω (𝜉) 𝜉

𝑠

−Ω (𝜉
0
) 𝜉
𝑠0
+ Θ (𝑇 − 𝐴

𝜎

𝑠
) + 𝜎
1
, 𝐴
𝜎

𝑠
≤ 𝑇 ≤ 𝐴

𝜎

𝑓

Θ(𝑇 − 𝐴
𝜎

𝑓
) + 𝜎
2
, 𝑇 ≥ 𝐴

𝜎

𝑓
,

(21a)

(ii) during cooling,

𝜎
𝑟
=

{{

{{

{

Θ(𝑇 − 𝐴
𝜎

𝑓
) + 𝜎
2
, 𝑀

𝜎

𝑠
≤ 𝑇 ≤ 𝐴

𝜎

𝑓

𝐸 (𝜉) 𝜀
0
− 𝐸 (𝜉

0
) 𝜀
0
+ Ω (𝜉) 𝜉

𝑠

+Θ (𝑇 −𝑀
𝜎

𝑠
) + 𝜎
3
, 𝑀

𝜎

𝑓
≤ 𝑇 ≤ 𝑀

𝜎

𝑠
,

(21b)

where 𝜉 denotes the martensite fraction, 𝐸(𝜉) denotes the
elastic modulus of SMA, Θ denotes the thermal elastic mod-
ulus, 𝑇 denotes temperature, 𝑇

0
is the reference temperature,

and Ω(𝜉) denotes the phase transformation coefficient. The
subscript 0 denotes initial state. 𝐴𝜎

𝑠
and 𝐴

𝜎

𝑓
denote the start

and finish temperatures of Austenite in stress, and 𝑀
𝜎

𝑠
and

𝑀
𝜎

𝑓
denote the start and finish temperatures of martensite in

stress. 𝜉
𝑠
is the martensite fraction induced by stress.The first

expression in (21a) is used for SMA in the initial martensite
state, while the third expression among them is used for
SMA in 100% austenite state, and the second one among
them is used for SMA in the phase transformation state from
martensite to Austenite.

The transformation processes from martensite to austen-
ite (𝑀 → 𝐴) and from austenite to martensite are given as
follows (𝐴 → 𝑀), respectively:

𝜉
𝑀→𝐴

=
𝜉
𝑠0

2
{cos[ 𝜋

𝐴
𝑓
− 𝐴
𝑠

(𝑇 − 𝐴
𝑠
−

𝜎
𝑟

𝐶
𝐴

)] + 1} ,

𝜉
𝐴→𝑀

=
1 − 𝜉
𝑠0

2

× cos{ 𝜋

𝜎cr
𝑠
− 𝜎

cr
𝑓

[𝜎
𝑟
− 𝜎

cr
𝑓
− 𝐶
𝑀
(𝑇 −𝑀

𝑠
)]}

+
1 + 𝜉
𝑠0

2
,

(22)

where 𝑀
𝑠
and 𝑀

𝑓
denote the start and finish temperature

points during the phase transformation from austenite to
martensite and𝐴

𝑠
and𝐴

𝑓
denote the start and finish temper-

ature points during the phase transformation frommartensite
to austenite, respectively. 𝐶

𝐴
and 𝐶

𝑀
are material constant

of SMA wires which determine the influence of the stress on
the transformation temperature. 𝜎cr

𝑠
and 𝜎

cr
𝑓
denote the start

and finish stress points of phase transformation, respectively,
and the subscript “s0” denotesmartensite fraction induced by
stress corresponding to initial state.

In (21a) and (21b), 𝜎
1
and 𝜎

2
denote the start and finish

stress for the transformation (𝑀 → 𝐴); 𝜎
3
denotes the start

stress for the transformation (𝐴 → 𝑀).
The phase transformation coefficientΩ(𝜉) and the elastic

modulus 𝐸
𝑠
(𝜉) can be expressed, respectively, as

𝐸 (𝜉) = 𝐸
𝐴
+ 𝜉 (𝐸

𝑀
− 𝐸
𝐴
) ,

Ω (𝜉) = −𝜀
𝐿
𝐸 (𝜉) ,

(23)

where 𝐸
𝑀
and 𝐸

𝐴
denote Young’s modulus in the martensite

and austenite phase, respectively, and 𝜀
𝐿
is recovery strain

limit.

4. Solution Method of Motion Equations

In order to find the approximate solution of the rotating
composite shaft, the quantities𝑈

2
(𝑥, 𝑡),𝑈

3
(𝑥, 𝑡), 𝜃

𝑦
(𝑥, 𝑡), and

𝜃
𝑧
(𝑥, 𝑡) are assumed in the form

𝑈
2
(𝑥, 𝑡) =

𝑁

∑

𝑗=1

𝑈
2𝑗
(𝑡) 𝛼
𝑗
(𝑥) ,

𝑈
3
(𝑥, 𝑡) =

𝑁

∑

𝑗=1

𝑈
3𝑗
(𝑡) 𝛼
𝑗
(𝑥) ,

𝜃
𝑦
(𝑥, 𝑡) =

𝑁

∑

𝑗=1

Θ
𝑦𝑗
(𝑡) 𝜓
𝑗
(𝑥) ,

𝜃
𝑧
(𝑥, 𝑡) =

𝑁

∑

𝑗=1

Θ
𝑧𝑗
(𝑡) 𝜓
𝑗
(𝑥) ,

(24)

where

𝛼
𝑗
= sin

𝑗𝜋

𝐿
𝑥,

𝜓
𝑗
= cos

𝑗𝜋𝑥

𝐿
.

(25)

Substituting (24) into the governing (7) and applying
Galerkin procedure, the following governing equations in
matrix form can be found:

[𝑀] {𝑋̈} + [𝐶] {𝑋̇} + [𝐾
Ω
+ 𝐾
1
] {𝑋} = {0} , (26)

where



6 Shock and Vibration

Table 1: Mechanical properties of composite material [5].

𝜌 (kg/m3) 𝐸
11
(GPa) 𝐸

22
(GPa) 𝐺

12
(GPa) 𝐺

23
(GPa) ]

21
]
32

11528.15 206.8 5.17 3.1 2.55 0.00625 0.25

M =

[
[
[

[

𝑏
1
𝐸
𝑖𝑗

0 0 0

0 𝑏
1
𝐸
𝑖𝑗

0 0

0 0 −𝑏
4
𝐹
𝑖𝑗

0

0 0 0 −𝑏
5
𝐹
𝑖𝑗

]
]
]

]

, C =

[
[
[

[

0 −2𝑏
1
Ω𝐸
𝑖𝑗

0 0

2𝑏
1
Ω𝐸
𝑖𝑗

0 0 0

0 0 0 0

0 0 0 0

]
]
]

]

, K
Ω
=

[
[
[

[

−𝑏
1
Ω
2
𝐸
𝑖𝑗

0 0 0

0 −𝑏
1
Ω
2
𝐸
𝑖𝑗

0 0

0 0 0 0

0 0 0 0

]
]
]

]

,

(𝑖, 𝑗 = 1, 2, . . . , 𝑁) ,

K
1
=

[
[
[
[

[

(−𝑘
55
+ 𝑁

SMA
− 𝑁
Δ𝑇
) 𝐼
𝑖𝑗

0 𝑘
55
𝐽
𝑖𝑗

−𝑘
35
𝐾
𝑖𝑗

0 (−𝑘
66
+ 𝑁

SMA
− 𝑁
Δ𝑇
) 𝐼
𝑖𝑗

−𝑘
46
𝐾
𝑖𝑗

𝑘
66
𝐽
𝑖𝑗

−𝑘
55
𝑂
𝑖𝑗

−𝑘
46
𝑃
𝑖𝑗

−𝑘
44
𝑄
𝑖𝑗
+ 𝑘
55
𝐹
𝑖𝑗

0

−𝑘
35
𝑃
𝑖𝑗

−𝑘
66
𝑂
𝑖𝑗

0 −𝑘
33
𝑄
𝑖𝑗
+ 𝑘
66
𝐹
𝑖𝑗

]
]
]
]

]

,

(𝑖, 𝑗 = 1, 2, . . . , 𝑁) ,

(27)

𝐸
𝑖𝑗
= ∫

𝐿

0

𝛼
𝑖
𝛼
𝑗
𝑑𝑥, 𝐹

𝑖𝑗
= ∫

𝐿

0

𝜓
𝑖
𝜓
𝑗
𝑑𝑥,

𝐼
𝑖𝑗
= ∫

𝐿

0

𝛼
𝑖
𝛼
󸀠󸀠

𝑗
, 𝐽

𝑖𝑗
= ∫

𝐿

0

𝛼
𝑖
𝜓
󸀠

𝑗
𝑑𝑥,

𝐾
𝑖𝑗
= ∫

𝐿

0

𝛼
𝑖
𝜓
󸀠󸀠

𝑗
𝑑𝑥, 𝑂

𝑖𝑗
= ∫

𝐿

0

𝜓
𝑖
𝛼
󸀠

𝑗
𝑑𝑥,

𝑃
𝑖𝑗
= ∫

𝐿

0

𝜓
𝑖
𝛼
󸀠󸀠

𝑗
𝑑𝑥, 𝑄

𝑖𝑗
= ∫

𝐿

0

𝜓
𝑖
𝜓
󸀠󸀠

𝑗
𝑑𝑥,

(𝑖, 𝑗 = 1, 2, . . . , 𝑁) .

(28)

Herein, the generalized displacements can be defined as

X𝑇 = {𝑈
2𝑗
(𝑡) , 𝑈

3𝑗
(𝑡) , Θ

𝑦𝑗
(𝑡) , Θ

𝑧𝑗
(𝑡)}
1 × 4𝑁

(𝑗 = 1, 2 . . . , 𝑁) .

(29)

From the matrix Equation (26), the eigenvalue problem
of the rotating composite shaft can be expressed as

AY = 𝜆Y, (30)

where

Y = (X Ẋ)T, 𝐴 = (
0 I

−M−1 (K
Ω
+ K
1
) −M−1C) . (31)

Lower frequencies are primarily concerned in order to
investigate the dynamic behavior of rotating composite shaft
system. If there is a value of 𝑁 for which any increase in 𝑁

will not significantly change the eigenvalues associated with
these lower frequencies, then the eigenvalues are considered
to be converged at this value of𝑁.

Table 2: Material properties of SMA wires [21].

SMA (nitinol)
𝐸
𝐴
/Mpa 67 × 10

3

𝐸
𝑀
/MPa 26.3 × 10

3

𝜎
𝑠

cr/MPa 100
𝜎
𝑓

cr/MPa 170
𝜀
𝐿

0.067
Θ/(MPa/∘C) 0.55
𝑀
𝑓
/∘C 9

𝑀
𝑠
/∘C 18.4

𝐴
𝑠
/∘C 34.5

𝐴
𝑓
/∘C 49

𝐶
𝑀
/(MPa/∘C) 8

𝐶
𝐴
/(MPa/∘C) 13.8

𝜌/(kg/m3) 6450

In (26) the stiffness matrix is made up of three compo-
nents: the elastic stiffness of the shaft with stiffness coeffi-
cients 𝑘

𝑖𝑗
(seeK

1
in (27)), the geometric stiffness that accounts

for the axial tension due to thermal expansion and SMAwires
activation, and the stiffness K

Ω
due to the shaft rotation.

It should be remarked that the stiffness matrix of the shaft
is reduced by the rotational stiffness matrix K

Ω
. However,

on the other hand, if the total axial tension of the shaft,
which is the sum of 𝑁SMA and 𝑁

Δ𝑇, is high enough such
that (𝑁SMA

− 𝑁
Δ𝑇) is positive then the stiffness of the shaft

can been enhanced. Thus, it can be seen that the SMA wires
activation plays an important role in controlling stiffness of
the shaft andmaintaining its stability at higher rotating speed.
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Figure 2: The first three natural frequencies versus rotating speeds of the shaft without SMA and with SMA (𝜃 = 30
∘; 𝑇 = 50

∘C; 𝑉
𝑠
= 0.24;

𝜀
0
= 0.067).

Table 3: Comparison of the natural frequencies of a cantilever composite shaft without shear deformation.

Ω
∗

𝜔
1

∗
𝜔
2

∗
𝜔
3

∗
𝜔
4

∗
𝜔
5

∗
𝜔
6

∗

0 3.5160 3.5160 22.0345 22.0345 61.6973 61.6973
Reference [22] 3.5160 3.5160 22.0340 22.0340 61.6970 61.6970
2 1.5160 5.5160 20.0345 24.0345 59.6973 69.6973
Reference [22] 1.5160 5.5160 20.0340 24.0340 59.6970 63.6970
3.5 0.0160 7.0160 18.5345 25.5345 58.1973 65.1973
Reference [22] 0.0000 7.0160 18.5340 25.5340 58.1970 65.1970
4 — 7.5160 18.0345 26.0345 57.6973 65.6973
Reference [22] — 7.5160 18.0340 26.0340 57.6970 65.6970
8 — 11.5160 14.0345 3.30345 53.6973 69.6973
Reference [22] — 11.5160 14.0340 30.0340 53.6970 69.6970
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Figure 3: The first three natural frequencies versus rotating speed for different SMA wire fractions (𝜃 = 30
∘; 𝑇 = 50

∘C; 𝜀
0
= 0.067).

5. Numerical Results and Discussion

The numerical calculations are performed by considering the
shaftmade of graphite-epoxywhose elastic characteristics are
listed in Table 1. The shaft has geometrical characteristics as
𝑟 = 0.127m, 𝐿 = 2.023m, ℎ = 0.381mm. The SMA wires
used in the numerical simulations are listed in Table 2.

The numerical results will be given in terms of the
normalized natural frequencies and rotating rate that are
defined by 𝜔∗ = 𝜔/𝜔

0
, Ω∗ = Ω/𝜔

0
, where the normalizing

factor 𝜔
0
= 138.85 rad/s is the fundamental frequency of the

nonrotating shaft with 𝜃 = 0
∘ and corresponds to the case of

the absence of the SMA activation (𝑁SMA
= 0) and of thermal

effect (𝑁Δ𝑇 = 0).
The natural frequencies of a cantilever composite shaft

obtained for without shear deformation using the present
model together with those obtained in [22] are shown in
Table 3 for different rotating speeds. A perfect agreement of
numerical results with those in [22] can be seen.
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Figure 4: The first three natural frequencies versus temperature for different SMA wire fractions (Ω∗ = 5 rad/s; 𝜃 = 30
∘; 𝜀
0
= 0.067).

In order to examine the influence of the number of mode
shape functions used in the solution of the equation on
the accuracy of the results, the numerical results of natural
frequency are shown in Table 4 for an increasing number of
mode shape functions. From Table 4, it can be seen that to
obtain an accurate result of the first three natural frequencies,
no more than six mode shape functions are required. This
indicates clearly that the convergence of the present model
is quite good.

Based onmode convergence examination, it is found that
𝑁 = 6 gives suitably converged eigenvalues. So for all results
given in this paper,𝑁 = 6 unless otherwise noted.

Figure 2 shows the variations of the first three natural
frequencies versus rotating speed for without SMA activation
and with SMA activation (𝜃 = 30

∘, 𝑇 = 50
∘C, 𝑉
𝑠
= 0.24,

𝜀
0
= 0.067). From this figure it clearly appears that when

Ω
∗

= 0, a single zero-speed mode natural frequency is
obtained. The reason is that for the circular cross-sectional
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Figure 5: The first three natural frequencies versus ply-angle for different SMA wire fractions (Ω∗ = 5 rad/s; 𝑇 = 50
∘C; 𝜀
0
= 0.067).

Table 4: Effect of model number𝑁 on natural frequencies (Ω∗ = 0

and 𝜃 = 30
∘).

𝑁 𝜔
1

∗
𝜔
2

∗
𝜔
3

∗
𝜔
4

∗
𝜔
5

∗
𝜔
6

∗

2 2.99 11.87 — — — —
4 2.98 11.68 25.17 42.41 — —
6 2.97 11.65 25.12 41.90 60.29 80.02
8 2.97 11.64 25.10 41.84 60.21 79.22
10 2.97 11.64 25.09 41.82 60.18 79.14

shaft, the frequencies in transversal and lateral bending of
each mode coincide. When Ω

∗
̸= 0, the natural frequency

“splits” into two distinct branches of bending vibration due to
the gyroscopic effect, namely, the upper and lower frequency
branches. The branch corresponding to the higher frequen-
cies is associated with the up-whirling frequency (UWF)
motion. Similarly, the branch corresponding to the lower
frequencies is associated with the low-whirling frequency
(LWF)motion.Theminimum rotating rate at which the LWF
becomes zero is referred to as the critical rotating speed that
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Figure 6:The first three natural frequencies versus rotating speed for the different initial strains of SMA wire (𝜃 = 30
∘; 𝑇 = 50

∘C; 𝑉
𝑠
= 0.36).

corresponds to the dynamical instability of the rotating shaft.
In addition, this figure clearly indicates that SMA actuation
can play a significant role in increasing the frequencies of
the nonrotating shaft and postponing the occurrence of the
whirling instability.

Figure 3 shows the variations of the first three natural
frequencies versus rotating speed for different fractions of
SMA wires at a temperature above 𝐴

𝑓
(𝜃 = 30

∘; 𝑇 = 50
∘C;

𝜀
0
= 0.067). It is obviously seen that the natural frequencies of

the nonrotating shaft and the critical rotating speed increase

with increasing SMA wire fraction, because increasing of the
fraction (or number) of the SMA wires results in generating
a higher axial tension 𝑁

SMA inside the rotating shaft. It thus
is apparent that the increase of the SMA wires which induces
the increase of bending stiffness brings the increase of overall
natural frequencies of the shaft.

Figure 4 shows that the variation of the first three natural
frequencies as function of the temperature for different SMA
wire fractions (Ω∗ = 5 rad/s; 𝜃 = 30

∘; 𝜀
0
= 0.067). Figure 4 is

plotted for both UWF and LWF.
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Figure 7: The first three natural frequencies versus temperature for the different initial strains of SMA wire (𝜃 = 30
∘; 𝑇 = 50

∘C; 𝑉
𝑠
= 0.36).

The temperature is increased from 0∘C to 100∘C and then
decreased from 100∘C to 0∘C.The phase transformation from
the martensite to the austenite (𝑀 → 𝐴) is induced in
the SMA wires during heating, and the phase transformation
from the austenite to the martensite (𝐴 → 𝑀) is induced
during cooling. From Figure 4, the following phenomena
can be observed: (1) the curves of natural frequencies and
temperature are typical hysteresis loops in a thermal cycle,
and the development of the natural frequencies can be
divided into two stage, that is, the increase stage and the

decline stage; (2) the natural frequencies increase with the
increase in temperature during the phase transformation
from the martensite to the austenite but decline with the
decrease in temperature during the phase transformation
from the austenite to the martensite; (3) the increase of
the SMA wire fraction is accompanied by the shift of these
hysteresis loops towards higher natural frequencies.

Figure 5 shows the variation of the first three natural
frequencies with the ply-angle for different SMA wire frac-
tions (Ω∗ = 5 rad/s; 𝑇 = 50

∘C; 𝜀
0
= 0.067). The results
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Figure 8: The first three natural frequencies versus ply-angle for the different initial strains of SMA wire (𝜃 = 30
∘; 𝑇 = 50

∘C; 𝑉
𝑠
= 0.36).

show that the effect of SMA wire fraction on the natural
frequencies is substantial when the ply-angle is located near
90∘. In addition, from Figure 5 it can be found that the trend
of variation of natural frequencies with ply-angle is the same
as that of the shaft without SMA actuation. Figure 5 also
shows that as the SMA wire fraction increases, the natural
frequencies increase.

Figure 6 shows the variations of the first three natural
frequencies versus rotating speed for the different initial
strains of SMA wire (𝜃 = 30

∘, 𝑇 = 50
∘C, 𝑉
𝑠
= 0.36). It can be

seen that the natural frequencies of the rotating shaft increase
with increasing of the initial strain of SMA wire.

Figure 7 shows the variation of the first three natural
frequencies and temperature for the different initial strains
of SMA wire (𝜃 = 30

∘; 𝑇 = 50
∘C; 𝑉
𝑠
= 0.36). The results

show that there is an obvious change in the shapes of natural
frequencies and temperature curves as the initial strain of
SMA wire is increased.

Figure 8 shows the variation of the first three natural
frequencies with the ply-angle for the different initial strains
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Figure 9: The first three natural frequencies versus ply-angle for different rotating speeds (𝑉
𝑠
= 0.24; 𝜃 = 30

∘; 𝑇 = 50
∘C; 𝜀
0
= 0.067).

of SMA wire (Ω∗ = 5 rad/s; 𝑇 = 50
∘C; 𝑉
𝑠

= 0.36).
It can be noted that the effect of the initial strain of SMA
wire on the natural frequencies is similar to that previously
presented for the SMAwire fraction. However, the SMAwire
fraction has a clear influence on the modes, while the initial
strain of SMA wire appears to have a marginal effect on the
modes.

Figure 9 shows the variation of the first three natural
frequencies with the ply-angle for different rotating speeds
(𝑉
𝑠
= 0.24; 𝜃 = 30

∘; 𝑇 = 50
∘C; 𝜀
0
= 0.067). The results show

that the increase of rotating speed is accompanied by both an

upward shift of the UWF branches and by a downward shift
of the LWF branches, which are similar to that in connection
with the results of Figures 2, 3, and 6.

Figure 10 shows the variation of the first three natural
frequencies versus ply-angle during heating and cooling at
50∘C (𝑉

𝑠
= 0.12; Ω∗ = 5 rad/s; 𝜀

0
= 0.067). For the

same temperature, there are two natural frequencies which
correspond to the heating and cooling processes, respectively
(see Figure 4). Moreover, when rotating speed Ω

∗
̸= 0 two

different frequencies are produced. Thus, we can obtain
totally four different curves at temperature 𝑇 = 50

∘C.
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Figure 10: The first three natural frequencies versus ply angle during heating and cooling processes at 50∘C (𝑉
𝑠
= 0.12; Ω∗ = 5 rad/s;

𝜀
0
= 0.067).

Table 5: The critical rotating speed corresponding to the different
SMA wire fractions (𝑇 = 50

∘C, 𝜀
0
= 0.067).

𝑉
𝑠

0.0 0.12 0.24 0.36 0.48
Ω
∗

cr 2.64 14.28 19.66 23.62 26.81

Table 6: The critical rotating speed corresponding to the different
initial strains of SMA wire (𝑇 = 50

∘C, 𝑉
𝑠
= 0.36).

𝜀
0

0.0 0.015 0.03 0.045 0.067
Ω
∗

cr 21.80 22.50 22.96 23.29 23.62

The effect of the fraction and the initial strain of SMA
wires on the critical rotating speed during heating at 50∘C is
presented in Tables 5 and 6, respectively.

The significant effects of the SMA wire fraction on the
critical rotating speed can be observed in Table 5. However,
as it appears fromTable 6, the initial strain of SMAwires does
not influence the critical rotating speed significantly.

6. Conclusion

A model was presented for the study of the vibration and
stability of rotating thin-walled composite shaft embedded
with SMA wires. The presented model was used to predict
the natural frequencies and dynamical stability. Emphasis is
placed on the study of the effects of SMA activation on the
above dynamical behavior. From the present analysis and
the numerical results, the following main conclusions can be
obtained.

(1) The developed model provides means of predicting
the natural frequency and critical rotating speed of

rotating composite thin-walled shaft with SMA wires
actuation.

(2) SMA wires activation can significantly postpone the
occurrence of the whirling instability and increase the
critical rotating speed through SMA phase transfor-
mation.

(3) The SMA wire fraction and ply-angle affect the
actuation performance of SMA significantly. There is
an obvious increase in the natural frequencies and
the critical rotating speed as the SMA wire fraction
is increased.

(4) The initial strain of SMA wire appears to have
marginal effect on the critical rotating speed of the
rotating shaft during heating.
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