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Vibration-based structural health monitoring is based on detecting changes in the dynamic characteristics of the structure. It is
well known that environmental or operational variations can also have an influence on the vibration properties. If these effects
are not taken into account, they can result in false indications of damage. If the environmental or operational variations cause
nonlinear effects, they can be compensated using a Gaussian mixture model (GMM) without the measurement of the underlying
variables.Thenumber ofGaussian components can also be estimated. For the local linear components,minimummean square error
(MMSE) estimation is applied to eliminate the environmental or operational influences. Damage is detected from the residuals after
applying principal component analysis (PCA). Control charts are used for novelty detection. The proposed approach is validated
using simulated data and the identified lowest natural frequencies of the Z24 Bridge under temperature variation. Nonlinearmodels
are most effective if the data dimensionality is low. On the other hand, linear models often outperform nonlinear models for high-
dimensional data.

1. Introduction

In structural health monitoring (SHM), changes in damage-
sensitive features are an indication of damage. Also other
sources of deviation are often present, for example, environ-
mental or operational variability. If these effects are not taken
into account, they can result in false identifications of damage
or a loss of sensitivity to detect minor damage. It is important
to distinguish between the two sources of changes in the
dynamic characteristics. One option is to make a physical
model of different environmental or operational phenomena,
but it can be too expensive and inaccurate. An alternative is to
include the normal variability in the training data and build a
model solely based on the data. Using multivariate statistics,
the environmental or operational effects can be eliminated
even without measuring the underlying variables (see [1] and
the references therein). Also a third source of change in the
monitoring data is sensor fault. Kullaa [1] proposed a unified
model to distinguish between the three sources of changes in
a monitoring system.

Most of themodels assume linear correlation between the
measured variables or features. However, the environmental

or operational variations often cause nonlinear effects. For
example, as the temperature falls below zero, its influence on
the natural frequencies can change abruptly.This often results
also in nonlinear correlation between the features, especially
if the data dimensionality is low. On the other hand, a linear
model may be sufficient with a large data dimensionality,
because the correlation structure may become linear [1].
There are only few studies of nonlinear models. Kullaa [2]
used the mixture of factor analyzers [3] model to compensate
the nonlinear effects. A similar approach was used by Yan
et al. [4] having local PCAmodels for local regions in the data
space. Sohn et al. [5] used an autoassociative neural network
that can be thought as a nonlinear PCA [6]. Figueiredo et al.
[7] applied the Bayesian approach to amixturemodel and the
Mahalanobis squared distance for the mixture components.

A nonlinear model is studied in this paper. A Gaussian
mixture model (GMM) is proposed in Section 2 to compen-
sate for the nonlinear effects. It is based on the mixture of
linear models, each modelling a region in the input space.
The approach needs a clustering algorithm to assign each
new measurement to the corresponding class. Clustering
can be performed independently of the local linear models.
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Therefore, clustering is first performed identifying aGaussian
mixture model followed by local linear models to eliminate
the underlying effects within each class. The number of
classes is often unknown but can also be estimated.Minimum
mean square error (MMSE) estimation is applied to the local
linearmodels, which is described in Section 3.Damage can be
detected from the residuals between the data and the model.
Damage detection is discussed in Section 4.

The first applications in Section 5 are numerical studies,
in which the objective is to validate the proposed approach.
Section 5.3 shows the experimental results of the Z24 Bridge,
in which the natural frequencies varied due to the tempera-
ture. Finally, concluding remarks are given in Section 6.

2. Gaussian Mixture Model (GMM)

Let x be the multivariate measurement data (also subse-
quently called variables), which can be time series (e.g.,
acceleration or strains) froma simultaneously sampled sensor
network, or a feature vector comprising identified dynamic
properties of the structure (e.g., natural frequencies or mode
shapes). Nonlinear data are not normally distributed and
cannot be modelled as a single Gaussian distribution. One
may try a mixture of Gaussian components, in which the
distribution can be written as a linear superposition of 𝐾
Gaussian densities in the form [8]

𝑝 (x) =
𝐾

∑

𝑘=1

𝜋
𝑘
𝑁(x | 𝜇

𝑘
,Σ
𝑘
) , (1)

which is called amixture of Gaussians. EachGaussian density
𝑁(x | 𝜇

𝑘
,Σ
𝑘
) is called a component of the mixture and has its

ownmean𝜇
𝑘
and covarianceΣ

𝑘
.The parameters𝜋

𝑘
are called

mixing coefficients, which are positive and are summed to
one.

The first step is to identify the model parameters. The
difficulty lies in the fact that the data points are unlabeled; that
is, it is typically not knownwhich component was responsible
for generating each data point. The data labels can be con-
sidered as latent variables and the expectation-maximization
(EM) algorithm can be used to identify the mixture model.
It is momentarily assumed that the number of components is
known.

The EM algorithm is iterative and consists of two steps:
the E step and the M step. In the expectation step, or E step,
the model parameters are held fixed and the posterior proba-
bility of the component 𝑘 (latent variable) given the data point
x is evaluated. In the maximization step, or M step, the latent
variables are assumed to be known, and themodel parameters
are obtained by maximizing the log-likelihood function.

A𝐾-dimensional binary random variable z is introduced
having a 1-of-𝐾 representation in which a particular element
𝑧
𝑘
is equal to 1 and all other elements are zero. For an

observation x
𝑛
, 𝑧
𝑛𝑘
denotes the 𝑘th component of z

𝑛
.

The algorithm is outlined as follows. In the E step, the
expected value of the indicator variable 𝑧

𝑛𝑘
under the pos-

terior distribution is
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𝑛𝑘
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. (2)

In the M step, the model parameters are updated to max-
imize the log-likelihood function, resulting in [8]
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(3)

where𝑁 is the number of observations and

𝑁
𝑘
=

𝑁

∑

𝑛=1

𝐸 [𝑧
𝑛𝑘
] . (4)

The log-likelihood is then evaluated:

ln𝑝 (X | 𝜇,Σ, 𝜋) =

𝑁

∑

𝑛=1

ln{
𝐾

∑

𝑘=1

𝜋
𝑘
𝑁(x
𝑛
| 𝜇
𝑘
,Σ
𝑘
)} . (5)

The steps are repeated until the log-likelihood converges.
It is not guaranteed that the algorithm converges to the global
maximum.Therefore, it is often advised to run the algorithm
a couple of times with different initial guesses of 𝜇

𝑘
and Σ

𝑘

to find a satisfactory maximum. An example of convergence
to a local maximum is given in Section 5.1. Another problem
is that the number of components is often unknown. To that
end, different models can be identified by varying𝐾, and the
model resulting in the highest log-likelihood is chosen. In
order to avoid overfitting, a penalty term −(1/2)𝑀 ln𝑁 is
added to the log-likelihood [8], where 𝑁 is the number of
training samples and𝑀 is the number of model parameters:

𝑀 = 𝐾[1 + 𝑝 +
𝑝 (𝑝 + 1)

2
] , (6)

where 𝑝 is the data dimensionality.
Once the model parameters are identified and fixed, the

objective is to decide if the new data are generated by the
model (undamaged) or by another model (damage). To this
end a residual is estimated, which is the difference of the true
data point and that estimated by the model:

r
𝑛
= x
𝑛
− 𝐸 [x̂

𝑛
| x
𝑛
] , (7)

where

𝐸 [x̂
𝑛
| x
𝑛
] =

𝐾

∑

𝑘=1

x̂
𝑛𝑘
𝑝 (𝑧
𝑛𝑘
= 1 | x

𝑛
) . (8)
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The last term in the RHS of (8) is obtained using Bayes’
theorem:
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= 1 | x
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(9)

which is the same as (2). The first term in the RHS of (8) is
given by the local linear model, which in this paper is the
minimum mean square error (MMSE) estimate for each
component [9]:

x̂
𝑛𝑘
= 𝜇
𝑘
+ A
𝑘
(x
𝑛
− 𝜇
𝑘
) , (10)

where the coefficient matrixA
𝑘
is composed of rows estimat-

ing the variable corresponding to that row using the remain-
ing variables. Therefore, the diagonal components of A

𝑘

are zero. The MMSE estimation is discussed in the next
section.

3. Local Linear Models Using
MMSE Estimation

With enough redundancy, a subset of observation x can be
estimated using the remaining variables. Each observation is
divided into observed variables v andmissing variables u. It is
assumed here that u is the 𝑖th variable 𝑥

𝑖
and the remaining

variables are collected in vector v:

x =
{

{

{

k
𝑎

u
k
𝑏

}

}

}

, k = {k𝑎k
𝑏

} . (11)

The partitioned covariance matrix Σ of the training data
is

Σ = [
Σ
𝑢𝑢
Σ
𝑢V

ΣV𝑢 ΣVV
] = [
Γ
𝑢𝑢
Γ
𝑢V

ΓV𝑢 ΓVV
]

−1

, (12)

where the precision matrix Γ is defined as the inverse of the
covariance matrix Σ and is also written in the partitioned
form. A linear minimum mean square error (MMSE) esti-
mate for u | k (u given v) is obtained byminimizing themean
square error (MSE)

MSE = 𝐸 [(u − û)𝑇 (u − û)] (13)

resulting in [9]

û = 𝐸 (u | k) = 𝜇
𝑢
− Γ
−1

𝑢𝑢
Γ
𝑢V (k − 𝜇V)

= 𝜇
𝑢
+H (k − 𝜇V) ,

(14)

where 𝜇
𝑢
and 𝜇V are the mean of u and v, respectively, and

H = −Γ
−1

𝑢𝑢
Γ
𝑢V. The error covariance is

cov (uk) = Γ−1
𝑢𝑢
. (15)

An MMSE model is estimated for each mixture compo-
nent. For component 𝑘, the estimate of variable 𝑥

𝑖
is given by

(14).Then, the 𝑖th row of matrixA
𝑘
in (10) is composed of the

partitioned row matrixH and a zero:

[A
𝑘
]
𝑖,∙
= [H𝑎 0 H

𝑏] . (16)

The partitioning should be clear from (11). The zero
element hits the diagonal inA

𝑘
, originating from the fact that

𝑥
𝑖
is not used to estimate itself, but all the remaining variables

are only used. Therefore, the diagonal elements of matrix A
𝑘

are all zeros. The other rows of A
𝑘
are obtained similarly by

estimating all variables in turn using the remaining variables.
Matrix A

𝑘
is estimated for each mixture component 𝑘.

To show the relation between (10) and (14), compute the
estimate of the 𝑖th variable 𝑥

𝑖
for a fixedmixture component 𝑘

using (10). For clarity, the component index 𝑘 is omitted.
Consider
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k
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𝑖
+H (k − 𝜇V) ,

(17)

which is equal to û in (14).

4. Damage Detection

Using the mixture model for damage detection introduces an
issue of residual scaling, because each class may have a differ-
ent error variance (15).Therefore, the residual of each variable
within each class is divided with the corresponding standard
deviation, which is the square root of (15). Also the data
dimensionalitymay be too high for statistical reliability (curse
of dimensionality). Therefore, the first principal component
scores [10] of residual (7) are used for damage detection.
Control charts [11] are used for damage detection. The
control chart used in this study is the Shewhart chart [11], and
the plotted variable is the subgroupmean of successive obser-
vations. It is believed that the robustness of damage detection
increases, because (1) additional variability due to environ-
mental or operational influences can be removed, in this
paper using a nonlinear model; (2) PCA is applied to the
residuals avoiding the curse of dimensionality; and (3) con-
trol charts utilize averaging for better statistical reliability.

5. Experimental Results

The proposed nonlinear model and the subsequent SHM
functions are applied to two numerical studies and the
experimental data of the Z24 Bridge.

5.1. Five Gaussian Components. The first numerical example
is a mixture of five Gaussian components in a two-dimen-
sional space. Each component has 10,000 data points. This
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Figure 1: Training data (a) and test data (b) with a change in mean. The identified GMMmodel is shown in red.

example was chosen because the model assumptions are
satisfied. In addition to damage detection, the objective is to
test the model identification performance and the number of
components selected by the algorithm.

The data were created as follows.The data dimensionality
was two and the number of components was five. For each
component 𝑘, the components of the mean vector 𝜇

𝑘
were

sampled from a uniform random distribution between −10
and 10. The covariance matrix was generated by first gener-
ating the variances of the principal directions, resulting in a
diagonal covariance matrix:

D = [
𝜆
1

0

0 𝜆
2

] , (18)

where 𝜆
1
and 𝜆

2
were uniform random variables, 𝜆

1
varying

between 1 and 2 and 𝜆
2
varying between 0.01 and 0.5. This

diagonal covariance matrix was then rotated in a random
orientation 𝜑, resulting in covariance matrix Σ

𝑘
:

Σ
𝑘
= UDU𝑇, (19)

where

U = [
cos𝜑 sin𝜑
− sin𝜑 cos𝜑] . (20)

The data were then generated by sampling from a multi-
variate Gaussian distribution

𝑁(x | 𝜇
𝑘
,Σ
𝑘
) . (21)

Once data from each component were generated, all data
were concatenated and random permutation was applied to
randomize the data labels.

The data are plotted in Figure 1. The training data are the
first 10,000 data points shown in Figure 1(a) which were used
to identify the model. Because the number of components is
often unknown, different models were identified varying the

number of components between 1 and 10.The log-likelihoods
with the penalty term are plotted in Figure 2(a) for
different number of components. The maximum was
correctly found with a five-component model. It should be
noted that sometimes the components were not correctly
identified, but the solution converged to a local maximum
(Figure 2(b)).Therefore, it is suggested that the identification
is repeated until a satisfying model is obtained, and the
model with the highest log-likelihood is selected.

Damage was an equal shift in mean for all components. A
bias vector x

𝑑
= [0.5 −0.25]

𝑇 was added to each data point.
The damaged data were the last 25,000 data points plotted
in Figure 1(b) together with the identified model for the
training data.The shift of mean can be visually observed.The
residuals were estimated for all data points and the first prin-
cipal component scores were used for the control chart. The
Shewhart chart was designed with a subgroup size 100 and
the in-control samples 1–10,000.The shift inmean was clearly
detected (Figure 3).

5.2.Three Piecewise Linear Components. The second example
is a more realistic one in which the data are continuous with
piecewise linear correlation between the twomonitored vari-
ables. The piecewise linear regions are not necessarily Gaus-
sian. Also, the variances are different in each region.

The data were created as follows.The data dimensionality
was two and the number of piecewise linear components was
three. Variable 𝑥

1
was uniformly distributed between 0 and 1.

Variable 𝑥
2
was a piecewise linear function of 𝑥

1
:

𝑥
2
= 𝑎
𝑘
+ 𝑏
𝑘
𝑥
1
, (22)

where the parameters and their validity regions are given
in Table 1. Gaussian noise was added to the variables, with
the standard deviations within each component shown in
Table 1.

The test data came from a limited region of component 2.
The first half of the test data was healthy and the second half
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Figure 2: Log-likelihood with the penalty term (a) and an identified GMMmodel (in red) converged to a local maximum (b).
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Figure 3: Shewhart control chart for damage detection.

Table 1: Parameters of the three linear components (22).

Class 𝑘 𝑥1,min 𝑥1,max 𝑎
𝑘

𝑏
𝑘

𝜎1 𝜎2

1 0 0.4 7 −0.2 0.01 0.02
2 0.4 0.6 6.4 1.3 0.02 0.01
3 0.6 1.0 7.84 −1.1 0.04 0.03

included damage, which was a shift in mean. A bias vector
x
𝑑
= [0.1 −0.05]

𝑇 was added to those data points.
The data are plotted in Figure 4. They consist of 20,000

data points in a two-dimensional space. The first half is
randomly distributed in all three regions (Figure 4(a)), but
the last 10,000 data points are confined to the middle region
(Figure 4(b)).

The training data include a larger variability than the
test data. This is also more realistic as the training typically

consists of monitoring under a full range of environmental
or operational conditions, while the test data often come from
a limited number of measurements at more or less constant
conditions.

The training data were the first 5,000 data points.
The model identification suggested 7 Gaussian components
(Figure 5(a)), which are plotted in Figure 4.

Data points 10,001–15,000 are from the undamaged case,
and data points 15,001–20,000 are from the damaged case
with a shift in mean shown in Figure 4(b) together with the
identified model for the training data.

The residuals were estimated for all data points and the
first principal component scores were used for damage detec-
tion. The Shewhart chart was designed with a subgroup size
100 and the in-control samples 1–5,000. Damage was clearly
detected with no false alarms (Figure 5(b)).

5.3.The Z24 Bridge. Thedata in the last case are the four low-
est identified natural frequencies of the Z24 Bridge (see [12]
for details) shown in Figure 6. Their pairwise correlation is
plotted in Figure 7. It was reported that the frequencies varied
considerably due to environmental effects and can be seen to
be nonlinearly correlated. The physical reason was the dif-
ferent behaviour of the bridge below and above the freezing
point.

Progressive damage test scenarios were introduced: set-
tlement of pier, spalling of concrete, landslide at abutment,
failure of a concrete hinge, failure of anchor heads, and rup-
ture of tendons [12].The first damage was introduced around
measurement number 3517, shown with a vertical dashed line
in Figure 6.

The training data were the first 3,000 samples shown in
blue in Figure 7 and with another vertical dashed line in
Figure 6. The training algorithm suggested 6 Gaussian com-
ponents (Figure 8). After identifying the Gaussian mixture
model, the residuals were estimated for all data points and
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Figure 4: Training data (a) and test data (b) with a change in mean. The identified GMMmodel is shown in red.
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Figure 5: Log-likelihood with the penalty term (a) and Shewhart control chart for damage detection (b).
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Figure 6: Identified lowest natural frequencies of the Z24 Bridge.
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Figure 7: Correlation between the four lowest natural frequencies of the Z24 Bridge. Blue symbols indicate the training data.
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Figure 9: Shewhart control charts for damage detection using GMM (a) and a corresponding linear model (b).

the first principal component scores were used for damage
detection. The Shewhart control chart was designed with a
subgroup size 4 and the in-control samples 1–3,000. Dam-
age was clearly detected (Figure 9(a)). The control limits
are probably too tight resulting in several false alarms. In
particular, a few false indications can be observed just prior to
damage. Some activity was reported as the settlement system
was installed [12], which may have changed the natural
frequencies. Another control chart is shown in Figure 9(b)
after using a corresponding linear model (with one compo-
nent only). Compared to the chart in Figure 9(a), it can be
concluded that GMM outperformed the linear model in this
case.

6. Conclusion

AGaussianmixturemodel was proposed to eliminate nonlin-
ear environmental or operational influences from structural
health monitoring data. The main advantages are that (1) the
measurement of the underlying variables is not necessary, (2)
the number of Gaussian components can be estimated, (3)
the GMMmodel can be identified independently of the local
linear models, and (4) it is a data-based method; no finite
element model is needed. The main disadvantages are that
the EM algorithm is not guaranteed to find the global maxi-
mumand that the trainingmay be quite slow.Nonlinearmod-
els are most effective if the data dimensionality is low. Linear
models often outperform nonlinear models for high-
dimensional data [1]. The number of environmental or oper-
ational variables is usually relatively small. Therefore, their
influences on the data are virtually located in a low-dimen-
sional subspace, and a linear analysis is capable of removing
this subspace from the subsequent analysis, thus eliminating
the environmental or operational effects from the data.

Once the GMMmodel was identified,MMSEwas applied
to each component to take into account the local linear

correlation.TheMahalanobis distance or whitening transfor-
mation [13] could also be applied to the linear components.

The question of how small damage can be detected was
not addressed in this study. Detection performance depends
on the signal-to-noise ratio (SNR), in which signal is the
shift or variance change due to damage and noise is often the
measurement error or more generally everything that cannot
be explained by the model. SNR should be as low as possible.
In this study, noise was decreased by building an accurate
model for nonlinear data.

Damage detection comprises several functions and mod-
els, many of which are classical. Also, many methods have
been applied to SHM by the author and other researchers.
This paper focused on the residual generation when the data
are nonlinearly correlated. The remaining functions were
merely referred to by name.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This research was performed in the Intelligent Structural
Health Monitoring System (ISMO) project, funded by the
Multidisciplinary Institute of Digitalisation and Energy
(MIDE) research programme at Aalto University, Finland
(http://mide.tkk.fi/en/). The natural frequencies of the Z24
Bridge were identified and provided by Dr. Bart Peeters,
whose contribution is greatly acknowledged.

References

[1] J. Kullaa, “Distinguishing between sensor fault, structural dam-
age, and environmental or operational effects in structural



Shock and Vibration 9

health monitoring,” Mechanical Systems and Signal Processing,
vol. 25, no. 8, pp. 2976–2989, 2011.

[2] J. Kullaa, “Is temperature measurement essential in structural
health monitoring?” in Proceedings of the 4th International
Workshop on Structural Health Monitoring, pp. 717–724, Stan-
ford University, DEStech, Stanford, Calif, USA, September
2003.

[3] Z. Ghahramani and G. E. Hinton, “The EM-algorithm for mix-
tures of factor analyzers,” Tech. Rep. CRG-TR-96-1, University
of Toronto, 1996.

[4] A.-M. Yan, G. Kerschen, P. de Boe, and J.-C. Golinval, “Struc-
tural damage diagnosis under varying environmental con-
ditions—part II: local PCA for non-linear cases,” Mechanical
Systems and Signal Processing, vol. 19, no. 4, pp. 865–880, 2005.

[5] H. Sohn, K. Worden, and C. R. Farrar, “Statistical damage clas-
sification under changing environmental and operational con-
ditions,” Journal of Intelligent Material Systems and Structures,
vol. 13, no. 9, pp. 561–574, 2002.

[6] M. A. Kramer, “Nonlinear principal component analysis using
autoassociative neural networks,” AIChE Journal, vol. 37, no. 2,
pp. 233–243, 1991.

[7] E. Figueiredo, L. Radu, R. Westgate et al., “Applicability of a
Markov-Chain Monte Carlo method for damage detection on
data from the Z-24 and Tamar suspension bridges,” in Pro-
ceedings of the 6th European Workshop on Structural Health
Monitoring, C. Boller, Ed., pp. 747–754, Dresden, Germany, July
2012.

[8] C. M. Bishop, Pattern Recognition and Machine Learning, Spri-
nger, New York, NY, USA, 2006.

[9] J. Kullaa, “Sensor validation usingminimummean square error
estimation,” Mechanical Systems and Signal Processing, vol. 24,
no. 5, pp. 1444–1457, 2010.

[10] S. Sharma,AppliedMultivariate Techniques, JohnWiley & Sons,
New York, NY, USA, 1996.

[11] D. C. Montgomery, Introduction to Statistical Quality Control,
John Wiley & Sons, New York, NY, USA, 3rd edition, 1997.

[12] B. Peeters, System identification and damage detection in civil
engineering [M.S. thesis], K.U.Leuven, 2000.

[13] J. Kullaa, “Whitening transformation in damage detection.
Smart structures,” in Proceedings of the 5th European Conference
on Structural Control (EACS ’12), C. D. ROM, A. E. del Grosso,
and P. Basso, Eds., Erredi Grafiche Editoriali, Genoa, Italy, June
2012.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


